MODELING STUDENTS' STRATEGIES WHEN CREATING A GRAPH: A FOCUS ON
REFERENCE FRAMES AND COORDINATE SYSTEMS
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We examined students’ thinking of graphs around a graphing task from 14 individual interviews,
in terms of three layers—frames of reference, coordinate systems, and graphs—and explored
their productive and intuitive strategies. As a result, we present a framework that offers a
characterization of students’ graphing activities. We then discuss implications of the framework.
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Graph literacy is important for students to progress in STEM coursework and careers
(Paoletti et al., 2020; Costa, 2020) and for making sense of, and responding to, information in the
real world (Yore et al., 2007). Sherin (2000) argued researchers should move beyond identifying
students’ difficulties to explore students’ natural inclinations when developing graphical
representations and how these inclinations can be leveraged to support graph literacy. In line
with researchers who have focused on asset-based accounts of students’ strategies, the work we
report in this paper was guided by the question, ‘What cognitive strategies and intuitive insights
do middle school students invent or draw upon when representing quantities in a graphical
representation?’ To address this question, we present a framework we developed and refined
through analyzing interviews with 14 middle school students on the Family Frenzy graphing
task. We close by discussing the broader implications of the presented framework.

Some Relevant Literature and Brief Theoretical Underpinnings

Researchers have identified many difficulties students encounter with graphs. Of relevance to
this report, researchers identified that students often treat graphs as literal representations of a
situation (Bell & Janvier, 1981; Clement, 1989; Lai et al., 2016; Oehrtman et al., 2008). For
example, Clement (1989) described students interpreting a speed-height graph of a bike rider as
representing a hill the bike rider traveled over. To explore ways students may reason as they
construct graphs, we modified Swan’s (1985) “Bus Stop Queue” task (Figure 1a), which
requested students to interpret a scatterplot by matching each person in the picture to their
appropriate point. Note that height and age were labeled along the horizontal and vertical axis,
respectively; from this we inferred one goal of the task was to perturb students who interpreted
graphs as literal pictures, i.e., interpreted the height of a point as the height of a person. We
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modified the task by switching the axes labels (Figure 1b) and asking students to create their own
graph, as our goal was to examine students’ generative activities and intuitions they can build on.

Our work builds on previous work that examined students’ generative activities (diSessa et
al., 1991; Sarama et al., 2003; Sherin, 2000). Sherin (2000) described students’ intuitive
representations when tasked to create a picture to describe a motorist’s motion over time.
Students’ depictions often contained pictorial features (i.e., using symbols such as lines to
represent more or less of a quantity) that could lead to ideas akin to conventional graphs.
However, as Sherin stated, he did not “attempt to be more specific about how this collection is
constituted in detail (for example, in terms of knowledge structures)” (p. 413). In this paper, we
account for cognitive strategies students draw upon to identify knowledge structures (i.e.,
thinking patterns that might be involved in students’ graph literacy).

3. The picture below shows the Sun Family. Please use the
representation below their picture to show the height and age of
the family members.

1. The Bus Stop Queue

Who is represented by each point on the scattergraph, helow?
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Figure 1: (a) Bus Queue task from Swan (1985); (b) The Family Frenzy task

Height

Frames of Reference, Coordinate System, and Graph

Graphical representations involve spatial depictions of quantities (Thompson, 2011) and are a
way to mathematize phenomena. A graphical representation consists of three layers: frames of
reference, a coordinate system, and a graph (a collection of points). Frames of reference refer to
mental structures used to gauge the relative extents of various attributes in the phenomenon
(Levinson, 2003; Lee, 2017; Joshua et al., 2015). Thinking within frames of reference entails
attending to and establishing reference points, directionality, and having an idea of what
attributes to consider and how to measure them (Joshua et al., 2015; Lee et al., 2020). The nature
of graphs and hence, ways of thinking about a graph fundamentally depends on the frames of
reference and coordinate systems upon which they are created.

Methods

The data presented here comes from 14 clinical interviews (Ginsburg, 1997) across two
projects, both aimed to examine middle school students’ (5" to 8" grades) graphing meanings.
We collected video recordings, screen recordings, and digital copies of students’ written work.
The projects recruited students from various mathematical and socio-economic backgrounds. In
this paper, we present data from the Family Frenzy task (Figure 1b) which was used in these
clinical interviews. We initially examined students’ thinking in Family Frenzy and sorted them
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related to frames of reference, coordinate systems, and graphs (three layers) using the Analytical
Framework for Making Sense of Students’ Graphical Representations (Lee, 2024). Next, using
open and axial techniques (Corbin & Strauss, 1996), we created descriptions of themes within
each layer; from these descriptions, we further abstracted and classified the students’ strategies,
and we present those results in Table 1. We note that the resulting codes are meant to be a holistic
characterization of the students’ strategies for each attempt they made at the task. Each graphing
attempt received a set three of codes where one code was from each category (graphing activity,
reference frame activity, coordinate system activity). Results

Students demonstrated a variety of intuitive approaches, which is organized in Table 1. In the
table, representational objects refers to the (often geometric) objects students physically
inscribed on the paper, which included stacked dots, stick people, and bubbles (regions). To
distinguish students’ inscriptions from the pre-made, two-line segments labeled as Age and
Height (what the researchers intended as axes), we call the totality of the two-line segments and
the space they span as the graph space. We take both the graph space and students’
representational objects to constitute their representation of the Sun Family’s height and age. We
next present one student’s strategies to exemplify a subset of these strategies.
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Table 1: Summary of Students’ Representation Strategies

Graphing Activity Reference Frame Activity

Height | e Spatial Transfer: Uses fingers or e Pictorial Ordering: Represents
other physical materials to transfer height in the order of the members
the height of members in the picture standing in the picture (e.g.,
to the graph space and marks the Grandma, Claudia, Grandpa, Harper)
height using representational objects. | in the graph space.

e Non-physical Transfer: Estimates e Quantitative Ordering: Represents
relative heights of each member, height in ascending or descending
without using any observable order of heights of the members (can
physical action or object to transfer be different order than in picture;
length and indicates such heights in e.g., Harper, Claudia, Grandma,
the graph space using Grandpa).
representational objects.

Age e [ndexing: Estimates relative ages of | e Pictorial Ordering: Represents age
members based on picture and writes | in the order of the members standing
the age of members near the in the picture (e.g., Grandma,
representational object used for Claudia, Grandpa, Harper) in the
height in the graph space. Ages’ graph space.
representations are add-ons to those | e Indexed Ordering: Represents age in
used for height. the same order of height in the graph

e Non-indexing: Estimates relative space because age is indexed onto
ages of members based on picture height’s representational objects.
and indicates such ages using e Quantitative Ordering: Represents
representational objects in the graph age in ascending or descending order
space. Ages’ representations are of ages of the members (can be in
independent of (though could be different order than in the picture).
related to) those used for height.

Height |e One, implied axis as an ordered number line: One of the axes in the graph
and Age space is acting as an ordered number line while the other is not; 1-D
Together coordination.

(Coordinate |e Two, separate, implied axes as number lines: Both axes in the graph space are
System acting as an ordered number line for each quantity but the two number lines
Activity) are used individually; two 1-D coordinations.

Two, overlapping, implied axes as number lines: One axis in the graph space
acts as an ordered number line for both quantities; both quantities are
represented on a single axis: stacked 1-D coordination.

Two, coordinated, implied axes as number lines: Each axis in the graph space
is acting as an ordered number line for a quantity; both quantities are
represented in the two-dimensional space produced by the product of the two
axes: 2-D Cartesian coordination
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Thomas’ Representation and His Strategies

Six students used a spatial transfer strategy when graphing the family’s height. Transferring
was evidenced by measuring the height in the picture in some manner (e.g., using a ruler, using
the span of two fingers) and then marking this measurement directly in the graph space, resulting
in a literal copy of the cartoon’s height. Figure 2 shows Thomas enacting spatial transfer (and his
final representation). Thomas partitioned the Height axis into what he called centimeters. He then
used his fingers to measure Grandma’s height and then maintained this gap to represent her
height on the vertical axis (Figure 2 left and middle). He used this strategy for all the family
members, which yielded a set of stacked names on the y-axis (Figure 2 right). Further, this
strategy yielded a quantitative ordering for heights in that the heights of family members were
ordered from shortest to tallest in his representation.

o
o

w8 Oy
a I Laa o

Fighre 2: Thomas’ Stratégy and Final Representation

Thomas used a non-indexing strategy for age as he inferred ages based on the picture and
represented them along the horizontal axis in the graph space. Specifically, he placed 60 tick
marks on the Age axis, and plotted the family members from youngest (Harper) to oldest
(Grandpa) along the axis. Thomas ordered the ages in ascending order (see Figure 2 right), and
we inferred this order was independent of his representations of height, yielding a quantitative
ordering for age. Thomas’ graphing was indicative of using two, separate, implied axes as
number lines. Based on how he partitioned each axis into unit-heights and unit-ages and plotted
family members’ height and age on each axis, we inferred he treated each axis as a number line.
Note, Thomas plotted each family member twice, once along each axis. When the interviewer
asked if he could find a way to mark each family member only once, Thomas maintained that
age and height could not be represented together with a single point. Thus, we inferred his graph
space remained as two, separate, implied axes as number lines.

Discussion

We presented a framework characterizing a variety of strategies students used when creating
graphical representations given a pictorial scenario. Our framework attends to students’ graphing
activities of each quantity, height and age before potentially being coordinated together. The
framework provides more nuanced “knowledge structures” (Sherin, 2000, p. 413) that students
draw on when constructing graphs than previously described, attending to their graphing
activities in relation to their reference frame and coordinate system activities. These activities
refer to mental actions we inferred from observing students’ physical graphing actions. We do
not intend our framework to be exhaustive, but instead a starting point for future research that
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can contribute additional strategies to the framework. We believe the students’ strategies in the
framework can be leveraged to support students in achieving more conventional graphing
meanings. For example, we can build from students’ creations of 1-dimensional graphs as
conceptual starting points to motivate the potential construction of a 2-dimensional coordinate
system from their 1-dimensional graphs. While most research has described students’ literal
translations as hindering, we view it as a tool that could be productively used and subsequently
modified to lead to more productive graphing meanings. We will be further examining these
constructions as we continue in our research.
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