Scalable spectral representations for multiagent reinforcement learning
in network MDPs

Zhaolin Ren*
Harvard University

Runyu (Cathy) Zhang*
Harvard University

Abstract

Network Markov Decision Processes (MDPs),
which are the de-facto model for multi-agent
control, pose a significant challenge to efficient
learning caused by the exponential growth of
the global state-action space with the number
of agents. In this work, utilizing the expo-
nential decay property of network dynamics,
we first derive scalable spectral local represen-
tations for multiagent reinforcement learning
in network MDPs, which induces a network
linear subspace for the local @-function of
each agent. Building on these local spectral
representations, we design a scalable algorith-
mic framework for multiagent reinforcement
learning in continuous state-action network
MDPs, and provide end-to-end guarantees for
the convergence of our algorithm. Empirically,
we validate the effectiveness of our scalable
representation-based approach on two bench-
mark problems, and demonstrate the advan-
tages of our approach over generic function
approximation approaches to representing the
local @Q-functions.

1 Introduction
Multi-agent network systems have found appli-

cations in various societal infrastructures, such
as power systems, traffic networks, and smart
cities | )

|. One particularly important class
of such problems is the cooperative multi-agent
network MDP setting, where agents are embed-
ded in a graph, and each agent has its own local
state | ] In network MDPs, the
local state transition probabilities and rewards only
depend on the states and actions of the agent’s
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direct neighbors in the graph. Such a property has
been observed in a great variety of cooperative
network control problems, ranging from thermal
control of multizone buildings | I,
wireless access control | | to phase syn-
chronization in electrical grids | I,
where agents typically only need to act and learn
based on information within a local neighbor-
hood due to constraints on the information and
communication infrastructure. = However, despite
many efforts (c.f. | , ,

) ]), efficiently finding
effective local policies for networks remains an open
challenge.

Reinforcement Learning (RL) | | has
emerged as a promising tool for addressing the com-
plex dynamics of these systems | ,
7 ]'

There are several pioneering works on designing scalable
RL algorithms for network systems | ,
) |. To facilitate

scalable control in network control, in | ],
the authors introduced a key insight, referred to as
the exponential decay property of the Q-function. This
property suggests that each agent’s local Q-function
can be well-approximated using only information from
its k-hop neighborhood. We note that a similar prop-
erty has also been proposed in | ] which
focuses on reinforcement learning in the mean field
multi-agent setting. Leveraging this property, the pro-
posed algorithm concentrates on learning truncated
Q-functions and then applying either policy gradient
[ , | or policy iteration
[ |. However, although these meth-
ods are scalable with respect to the network size, they
are limited to the tabular setting, where each agent
must store a local Q-table that scales with the state
and action spaces of its neighborhood, making it inef-
ficient for large state and action spaces. In fact, due
to the inherent complexity in network MDPs, i.e., net-
work size is large and the state and action spaces of
each agent are large or continuous, designing efficient
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and scalable RL algorithms for such systems remains a
long-standing challenge.

There have been several works aimed at addressing scal-
ability in the context of large state and action spaces.
A common approach is to use function approximation
to find an efficient representation of the Q-function.
For instance, [ | explores
function approximation to solve network RL problems.
However, their setting is simpler than the network MDP
considered here, as they assume fully decoupled agent
dynamics, whereas we allow an agent’s dynamics to de-
pend on the states of neighboring agents. In the broader
context of multi-agent learning, function approxima-
tion has also been widely studied | ,
|. However, these works
differ from ours: | | focuses on the
stochastic game setting, where agents share a common
global state, while [ | exam-
ines the parallel MDP setting. Additionally, outside
the RL domain, there are works on network repre-
sentation learning | , ,
|. However, it remains unclear
whether these techniques can be applied to control and
RL in network systems, which presents an interesting
open question for future research.

Finding a suitable representation for the Q-function
is not a unique problem in network RL. It is also a
central challenge in classical centralized or single-agent
RL. However, picking the right class of function ap-
proximators that can represent the @) function while
being sample efficient to learn is challenging. A natural
approach is to use deep neural network (NN) archi-
tectures, which have great representational capacities.
However, challenges to using deep NNs include sample-
inefficiency (deep NNs often require huge amounts of
data to train), hyperparameter sensitivity, stability
of training (it is known that TD learning with non-
linear function approximation may fail to converge),
and it can be difficult to pick an appropriate archi-
tecture for the problem setting at hand. One promis-
ing approach arises in the (low-rank) linear MDP set-
ting | |, where the transition kernel of
the MDP can be represented as a linear combination of
low-rank features. By applying the Bellman equation,
the Q-value function can then be represented as a linear
combination of these low-rank features. It has been
shown in | | in this setting, efficient RL
can be achieved, with sample complexity depending
on the dimension of the feature space rather than the
size of the state and action spaces. Moreover, compu-
tationally, to realize the theoretical promise of linear
MDPs, there has been a line of work | ,
) | that show that
the transition can be effectively approximated by a

linear decomposition of nonlinear features, with strong
empirical performances. Notably, [ ]
explore the connection between stochastic nonlinear dy-
namical systems and linear MDPs, showing that under
certain noise assumptions, stochastic nonlinear dynam-
ics can be well-approximated by a linear decomposi-
tion of finite-dimensional (nonlinear) spectral features
through an approach called spectral dynamic embedding.
Building on these spectral features, | ]
developed RL algorithms, with strong theoretical guar-
antees and empirical performances. Given the existing
literature, the following question remains open:

Can we identify an appropriate representation for
network MDPs and leverage it for scalability in both
the size of the network and state-action space?

Our contribution Building on the existing litera-
ture, this paper addresses the critical gap by proposing
a spectral dynamic embedding-based representation
and developing a multi-agent RL algorithm for network
systems that scales efficiently with both network size
and the complexity of state and action spaces, while
also providing provable convergence guarantees.

Our approach integrates insights from both network
RL and linear MDP /representation-based approaches
in centralized RL. Specifically, utilizing the exponen-
tial decay property and local nature of the transition
dynamics, we show how we can approximate the local
Q;-value function linearly via network k-local spectral
features that factorize the x-hop transition dynamics.
Leveraging this property, we develop a scalable sample-
efficient method to learn local Q-functions in continuous
network MDPs, followed by policy optimization based
on the learned Q-functions.

We provide rigorous sample complexity guarantees for
our framework, and to the best of our knowledge, this
is the first work to propose a provably efficient multi-
agent RL algorithm for network systems that is scalable
with respect to both network size and the size of the
state and action spaces of individual agents. Finally, we
validate our approach with numerical experiments on
network thermal control and Kuramoto oscillator syn-
chronization. In both cases, we find that our approach
provides benefits over generic neural network function
approximations, demonstrating the advantages of our
spectral representation-based framework.

Notations For any vectors vy, ..., v, € R% the nota-
tion ®7_,v; € R denotes their tensor product. The in-
ner product of two tensor products is defined as follows.
Consider another set of vectors wy, ..., w, € R% Then,
we denote (@1 v;, @™ w;) := [[1—, (vi, w;) . We also
use the notation [n] to denote the set {1,...,n} for a
positive integer n. In addition, when the context is
clear, for notational convenience, we may drop the time
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indices and denote (s(t), a(t),s(t + 1)) as (s,a,s’).

2 Problem Setup and Preliminaries

Network Markov Decision Process (MDP) We
consider the network MDP model, where there are n
agents associated with an underlying undirected graph
G =(N,&), where N = {1,...,n} is the set of agents
and £ C N x N is the set of edges. Each agent i is
associated with state s; € S;, a; € A; where S; € R®
and A; C R4 are bounded compact sets. At each time
t € N, the global state of the network is denoted as
s(t) = (s1(t),...,s,(t)) € S :== &1 x ... S,. Similarly,
the global actuation of the network at each time ¢ is
denoted as a(t) = (a1(t),...,an(t)) € A:= A1 x... A,.
We also introduce the following notations related to
k-hop neighborhoods. Let N denote the set of k-hop
neighborhood of node 7 and define N*, = N'\ NF, i.e.,
the set of agents that are outside of i’th agent’s k-hop
neighborhood. We write state s as (syr,sn= ), i.e.,
the states of agents that are in the x-hop neighborhood
of ¢ and outside of k-hop neighborhood respectively.
Similarly, we write a as (anyx,an=x,). When s = 1, for
simplicity we denote N; := N/}

We assume that the next state of each agent ¢ depends
only on the current states and actions of its neighbors,
so that the probability transition admits the following
factorization

P(s(t+1) | s(t),a(t) = Iy P(si(t+ 1) | s (8), an (2)

where N; indicates the neighbors of agent ¢, and sy, (t)
denotes the states of the neighbors of agent i at time ¢.
Further, each agent is associated with a stage reward
function r;(sy,,an;) that depends on the local state
and action, and the global stage reward is r(s,a) =
Ly ri(sn,,an,); for simplicity, in the rest of our
paper, we will assume that r; depends only on (s;, a;),
but we note that our analysis carries with minimal
changes when r; depends on (sy,,an,). The objective
is to find a (localized) policy tuple © = (71,...,7y),
where each 7;(- | s) = m;(- | sy==) depends only on a
Kx-hop neighborhood, such that the discounted global
stage reward is maximized, starting from some initial
state distribution ug,

maxy J(7) := EsnpoBa(rymn(1s(t)) im0 V(8(), a(t))]s(0) = s].

Next, we give the Kuramoto oscillator synchroniza-
tion problem as an example of continuous state-action
network MDPs. This example will be used in our sim-
ulations in Section 5 later. For space reasons, we defer
another example, that of thermal control of multi-zone
buildings, to Appendix 7.2.

Example 1 (Kuramoto oscillator synchroniza-
tion). The Kuramoto model [ ,

| is a well-known model of non-
linear coupled oscillators, and has been widely applied in
various fields, ranging from synchronization of neurons
in the brain [ [, to synchro-
nization of frequency of the alternating current (AC)
generators or oscillators [ . Con-
cretely, we consider here a Kuramoto system with n
agents, with an underlying graph G = (N, &), where
N ={1,...,n} is the set of agents and € C N x N
is the set of edges. The state of each agent i is its
phase 6; € |[—m, 7|, and the action of each agent is a
scalar a; € A; C R in a bounded subset of R. The
dynamics of each agent is influenced only by the states
of its meighbors as well as its own action, satisfying the
following form in discrete time [ |

0;(t+1)=0;(t)+dt <w1 )+ai(t ((Z K;;sin(6 )) +e;(t).

:=0;(t)

Above, w; denotes the natural frequency of agent i, dt
is the discretization time-step, K;; denotes the coupling
strength between agents i and j, a;(t) is the action of
agent i at time t, and €;(t) ~ N(0,0?) is a noise term
faced by agent i at time t. We note that this fits into the
localized transition considered in network MDPs. For
the reward, we consider frequency synchronization to a
fized target wiarget- In this case, the local reward of each

agent can be described as r;(On,,a;) = —

To provide context for what follows, we review a few
key concepts in RL. First, fixing a localized policy tuple

7w = (m1,...,7Ty), the Q-function for this policy = is:
Q" (s, a)
o ZEamw( Is(t) thri(&'(t%ai(ﬂ)l (5(0),(1(0):(5,@)]
t=0

= ;Q?(s,a).

In the last step, we defined the local @-functions
Q7 (s,a) which represent the @) functions for the in-
dividual reward r;. Correspondingly, we can also define
the local value function V;"(s) = [ w(a | s)Q7 (s,a)da.
We note that the global Q(s,a) function can be ob-
tained by averaging n local Q;(s,a) functions. This
plays an important role due to the following result
known as the policy gradient theorem, which states
that the policy gradient can be computed with knowl-
edge of the Q(s,a) function.

Lemma 0 (| ). Let d°(s) = (1 —
) > ooV Pr(sy = s) Then, we have

VoJ(n?) = Egndt ammo(.|s) [Q”e(s,a)VInge(a\s) .

O
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A natural approach to learning the Q(s, a) function in
the networked case is for each agent to learn its local
Qi(s,a) function and share it across the network to
form a global average. However, this poses a signif-
icant challenge when (i) the network size n is large,
and (ii) the individual state and action spaces S; and
A; are continuous. Even if S; and A; are finite, rep-
resenting Q; (s, a) requires (|S;| x |A;|)™ entries, which
grows exponentially with n. This challenge worsens
with continuous spaces, which have infinite cardinality.
To address this, we first explore the exponential decay
property from prior work, which improves scalability
with network size. We then present our main contribu-
tion: integrating the exponential decay property with
spectral representations from single-agent RL to de-
rive scalable local QQ;-value function representations for
continuous state-action network MDPs. We begin by
discussing the exponential decay property.

Exponential decay property. The exponen-
tial decay property | , ,
| is defined as follows.

Definition 1. Given any ¢ > 0 and 0 < p < 1, the
(¢, p)-exponential decay property holds for a policy w
if given any natural number k, for any i € N, SNy €
SNF’SNfi S SNfi’a‘Nf S .AN;v,aNfi S ‘ANEH the local
value function QT satisfies, /

QF (snw, 8N, ans, an=,) — QF (snx, S§V§L7aNf7a'zvgi)‘ < eprtt,

As an immediate corollary, it follows that

Vi (snessne,) — VT(SN,;N»SM)‘ <™t O

We defer discussion about when the exponential de-
cay property holds to Appendix 7.3. The power of
the exponential decay property is that it immediately
guarantees that the dependence of QT on other agents
shrinks quickly as the distance between them grows,
such that the true local Q;(s,a)-functions can be ap-
proximated by truncated QAl(s Nz, anr)-functions up to
an error that decays exponentially with x. The trun-
cated Qi function is significantly easier to represent
in the finite state-action setting since each agent only
needs to keep track of (|S;| x |A;])" entries. However,
continuous state and action space problems still pose
a significant challenge. To overcome this, we will use
the idea of spectral representations from linear MDPs
and show how this can be adapted to the networked
setting to yield truncated functions.

3 Spectral representations for
truncated approximations of local
Q;-value functions

To recap, the key question we face is this: how can
we derive scalable local );-value function representa-
tions in network problems with continuous state-action

spaces, and integrate them into a scalable control frame-
work? This forms the main contribution of our work.
In this section, we tackle this question by demonstrat-
ing that the spectral representation of local transition
kernels provides an effective representation for the local
Q;-value functions (see Lemma 3 below).

We first motivate our analysis by reviewing representa-
tion learning in centralized RL via spectral decomposi-
tions | , |. From such
works, we know that if the global P(s’ | s,a) admits a
linear decomposition in terms of some spectral features
@(s,a) and u(s’), then the Q(s,a)-value function can
be linearly represented in terms of the spectral features
¢(s,a). In the case of representing local @Q;-functions,
this property can be stated as follows.

Lemma 1 (Representing local @;-value functions
via spectral decomposition of P (Linear MDP
in [ ). Suppose the probability tran-
sition P(s' | s,a) of the next state s’ given the cur-
rent (s,a) pair can be linearly decomposed as P(s' |
s,a) = ¢(s,a) " pu(s") for some features ¢(s,a) € RP
and pu(s") € RP, which we also refer to as spectral rep-
resentations. Then, the local Q;-value function admits
the linear representation

Q7 (5,a) = Bils,0) T,
where
Gils, @) = [ri(si, ), 9(s, ),
wf = [y [ Vs O

Remark 1. We note that Lemma 1 requires the as-
sumption of the existence of a linear decomposition of
the transition kernel. One significant such example
of where a linear decomposition of the transition ker-
nel is possible was discussed in [ |. The
authors in [ | showed that for a wide
class of stochastic control setting with Gaussian noise
(or more generally, noise which take the form of a
positive-definite kernel), the transition kernel admits
an exact (but infinite-dimensional) linear decomposi-
tion. By considering a finite-dimensional truncation
of these infinite-dimensional features, it can be shown
that the linear decomposition holds approximately with
finite-dimensional features, and rigorous approximation
error bounds can be shown for these finite-dimensional
truncations, as shown later in Lemma 5 of our paper
as well as [ .

More generally, a linear decomposition of the kernel
also exists when the transition displays a particular
latent variable structure [ /- O

The benefit of the spectral decomposition property is
that the @;-value functions can be represented by a (D+
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1)-dimensional representation gzgi(s, a) comprising the
spectral representation ¢(s,a) € RP and local reward
ri(si,a;) € R; as demonstrated in [ I,
under appropriate normalization conditions on the
norm of the features, the sample complexity of using
RL using such features will only depend polynomially
on the feature dimension D, rather than the number of
the states and actions.. However, applying this result
directly in the networked case poses significant chal-
lenges, since the required feature dimension D + 1 may
be high. To see why this is the case, recall that the
probability transition in our networked setting admits
the following factorization:

P(S/ ‘ 87(1) = HzT'L:l ]P)(S; | SNmaNz‘)'

Suppose for the sake of discussion that each agent’s
transition probability satisfies the following Property
1, which states that the local transition has an exact
d-dimensional spectral /linear decomposition. As dis-
cussed earlier in Remark 1, such a property can be ex-
pected to hold (at least approximately) for many prob-
lems, in particular stochastic dynamics under Gaussian
noise.

Property 1. For any i € [n] and any state-action-next
state tuple (s,a,s’), there exist features ¢;(sn,,an,) €
R? and i;(s;) € R? such that

P(S; ‘ sNi7aNi) = <(5i(sNi’aNi)7ﬂi(sé)>' O
Given the factorization of the dynamics, this implies

that ~
P(s' | s,a) = [T (Gilsni any), fis(s7)

= <®?=1 QEZ'(SNM aNi)’ ®?=1 ﬁ1(8;)> = <¢_5(5’ a)v ﬂ(sl)> .

We note that the above expression of P(s’ | s,a) as an
inner product between two tensor products follows from
the definition of the tensor product introduced earlier in
our notations; in particular, note that ¢(s,a) and ji(s’)
are both in the space R%". Intuitively, to interpret why
the tensor product arises, we note that in the absence of
any structure and correlations between the agents, the
features factorizing the transition of the entire network
are essentially the outer/tensor product of the local
transition-factorization features of the n individual
agents. Agnostically, Property 1 means that represent-
ing the global network dynamics may require using the
d"-dimensional features ¢(s,a) := @, ¢i(sn,,an,),
which even for small d is undesirable due to an expo-
nential dependence on the network size n.

While the exponential decay property suggests that
the Qi—function can be approximated by considering a
k-hop neighborhood of agent i, it is unclear how we can
combine this with the spectral decomposition property
to derive scalable representations for the local @Q;-value
functions.

To resolve this, we combine insights from both the ex-
ponential decay and spectral decomposition property,
which intuitively, suggests that what matters in deter-
mining Q7 (s, a) is the probability transition dynamics
within a k-hop neighborhood of agent i. In fact, due
to the local factorization property of the dynamics, the
evolution of k-hop neighborhood only depends on the
%+ 1-hop neighborhood, which, when Property 1 holds,
admits the following spectral decomposition.

Property 2 (Network k-local spectral features). For
any i € [n] and any state-action-next state tuple
(s,a,s"), there exist some positive integer d; . and fea-
tures ¢; (S yrt1, aynt1) € R4 and p; o (slys) € R
such that ' '

P (53\7; | SN:,H,aNfH) = <(biy,€(5Nln+l7G/N’Ln+1),luz‘y,€(5/]\]f)>. O

Property 2 is a statement that a linear decomposition
of the x-hop neighborhood transition kernel for any
agent ¢ is possible. As we see in Lemma 3 later, the
features ¢ ,;(syr+1,ap~+1) € R%~ that arise in this
decomposition can représent the local @;-value function
with error decaying exponentially in k. While Property
2 can be viewed as a standalone property independent
of Property 1, the following lemma shows that when
Property 1 is true, Property 2 automatically holds, with
@i and p; . given by appropriate tensor products of
the original ¢; and fi; from the factorization of the
local dynamics. We defer the proof to Appendix 7.4.

Lemma 2. Property 2 holds whenever Property 1 holds,
by setting

¢i7H(SN:’+1(t)ﬂaNi“""l(t)) = ®jeN{° Q_Sj(ij (t)v an; (t))v
,Ufz,n(st<t+]-)) = ®j€N{i ﬂj(sj(t—i—l)) O

Remark 2. While the tensor product representation
in Lemma 2 can be used to give a factorization of the k-
transition dynamics in Property 2, for specific problems,
there may exist problem-specific alternative ¢;, and
i features that may be lower-dimensional and thus
more tractable to use. O

Property 2 presents us with a path towards scalable
representation of the local @); via factorization of the
local x-hop neighborhood dynamics and approximat-
ing Q;(s,a) by network local representations. We first
formalize this in the case when the spectral decomposi-
tion is exact and error-free. When this holds, we have
the following lemma which shows how Q7 (s,a) can be
approximated by network local representations. We
defer the proof to Appendix 7.5.1.

Lemma 3 (Local @; approximation via network x-local
spectral features). Suppose the (c, p)-exponential decay

property holds. Suppose Property 2 also holds. Then,
for any (s,a) pair, agent i, and natural number ,

there exists an approzimation QT which depends linearly
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on network k-local spectral features q@i,m(sN‘NH LAt ),
such that

Q?(SNerl y aN?+1 y SNEJ[I 5 aNim+1) - Q?(Slewrl y aNf+1)

< 207",

where Qf (SN_*WI ) aN_NJrl ) = <(£i,ﬁ(5N{f+l 5 a/Nfﬁl )7 wZn(SIN{‘)>7
k2 k2 k2 k2
with the definitions

g)i’,i(SNin{»l s aNf+1) = [H(Si, ai), ¢i)N(SN£€+1 s G/Nf+1 )]T,
wgn(sle) = (1,7 dsll\lfui7/€(53\/f')‘7iw(3/1\/f)]—ra
Syr
/7 (! 7’ dS/qu (! /
where V; (st) = fsf « Vol(Snr )V; (SN;’SNL) O

Approximation. In general, it may be impossible to
find ¢; ., and p; . that can exactly factorize the tran-
sition kernel. However, in both the unknown-model
and the known-model cases, there exist ways to ap-
proximate the kernel. In the model-free case, we may
leverage representation-learning techniques to approxi-
mate the spectrum of the x-hop transition kernel, such
as the spectral decomposition in | |
which seeks to approximate the SVD of the kernel. In
the model-based case, in the case when the local tran-
sition evolves according to a known dynamics function
subject to Gaussian noise, we may approximate the ker-
nel by random or Nystrom features | |
We provide below a unified analysis for the error bound
of approximating @;(s,a) in terms of network x-local
representations g%iy,{(stl,anl) that approximately
factorize P(sn» | stﬂl, aNﬁf).

Lemma 4. For any distribution v° over the space
SN:,+1 X AN5+1, suppose there exists a network rk-local

representation QASLK(SN@H ,apns+1) € R™ for which there
exists fi(sy.) € R™ such that for every i € [n], the
following holds for some approzimation error ep > 0:

E o / ’Ai,n ((SN{<+17@N{<+1): 53\7;) ’ dsé\’f < ep, (1)
s/ k2 k3
NE

where

Ai,ﬁ ((SN_K+1 B CLN_K+1 ), ngzn)

i i
= P(SINF |SN_~+1 5 G/N{e+1 ) —(ZA)Z‘,K(SN{QJA 5 aN@Jrl )Tﬂi,K(SIN{v).
v i i i i
Then, by  setting ém(sN@H L et ) =
[ri(si,a:), ¢i,n(3Nf+1aaNf+1)]T; for every i € [n],
. = 7 T
i B[00

epYT
< 2
< @

O

Proof. Suppose (1) holds.  Then, define w* :=
(1,7 [, frin (8 ) Vi (sl )dsys] T € R™ 1. Then, by

using the upper bound

Viﬂ (S/N;)

T
§ m, we have

. A e T
][O ——

epYT
<
<ot ®)

O
The approximation error in the bound above relies on

the condition in (1) to hold. In the case when the
local transition evolves according to a known dynamics
function subject to a positive-definite kernel noise (e.g.
Gaussian noise), we may approximate the x-hop tran-
sition kernel with random features such that (1) holds
with high probability. For clarity of exposition, we fo-
cus on the approximation error of random features for
Gaussian kernels | |'. In this
case, our error bound is shown in the following result,
whose proof we defer to Appendix 7.5.2.

Lemma 5. Fiz any ¢ € [n]. Suppose the lo-
cal dynamics take the form s, = fi(sn,,an,) + €
where ¢; ~ N(0,02Ig), such that for any k, 33\,{1 =
fi,K(SN:+17aN;+1) + enr where ens ~ N (0, 02I|Nf|S)
and f; . is concatenation of f; for j € NF. Fiz any
0 < a < 1. Then, for a positive integer m, define
the m-dimensional features (51'75(8N5+1,0/N5+1) e R™,
where L '

qgi*“(stJrl ) aNf+1 )
ga(sN:,+1,aN:,+1)
T il

\/7 w;fi,fi(sN{i+l,aN{¢+1) . m
X — cos i i n ’
m Niere ‘S,

with {we}pr, being i.i.d draws from N(O,U_QI|N_,€|S),
{be} 72, being i.i.d draws from Unif([0,27]), and

2

042’ fi,,g(stl,anl)
i i

2(1 — a?)o?

Ga (8 pr+1, 0y nt1) 1= €XP
k2 k2

In addition, define

ga ()
|nE|s

Jo 1= max

sup
i€(n]

xefi,N(SN’Ei+1 "ANf+1 ) «

Suppose

m=Q <max {bg (“Nfs(dmm(sw)f)) NfLSﬁD

i€nl o2(8/n)(ep/ga) €

1We note that our result easily generalizes to any positive-
definite transition kernel noise (e.g. Laplacian, Cauchy,
Matérn, etc; see Table 1 in | | for more ex-
amples)
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for some § > 0. Then, with probability at least 1 — 9,
the condition in (1) holds for every i € [n] and any
distribution v° over S x A, with

m

N 2
,ui,,g(sk;f) = {\/ - 04(5/]\77{‘) cos(v/1 — 0420.)2—8'1\75 —l—be)} ,

=1
INF|s asiyr

where pa(siyr) = (2"2)|le5 exp(— H 5o ) is a

Gaussian distribution with standard deviation n<. U

The key takeaway from the above result is that un-
der Gaussian noise and known reward and dynamics
function, there exists finite-dimensional features that
can, with high probability, approximately factorize the
local k-transition kernels, satisfying the condition in
(1) with high probability. Moreover, from this result,
we note that the required number of features to achieve
this is O —maxie["giNﬂSﬁ

dimension of statgs in the largest x-hop neighborhood.
We note that the tunable o in Lemma 5 allows greater
flexibility and may be tuned to improve empirical per-
formance | ].

), which only depends on the

4 Algorithms

As suggested in Lemma 3, qT)i,,i serves as a good repre-
sentation for the local @;-functions. Based upon this
observation, this section focuses on how the local @Q;-
function and subsequently a good localized policy can
be learned. The algorithm contains three major steps:
feature generation, policy evaluation and policy
gradient.

The first step is feature generation (Lines 1 through
3), where we generate the appropriate features QNSM
This comprises the local reward function as well as
the spectral features qAbm(s Nf,ays) coming from the
factorization of the local k-hop dglnamics. In the case
of known dynamics and Gaussian noise, we know from
Lemma 5 that (Z)LK(SN%GNN) can be derived by ran-
dom features which factorize the local k-hop dynamics
with high probability. In this case, we note that our
spectral features are scalable with respect to both the
network size and the continuous state-action space,
since the required number of features only depend on
the dimensions of the x-hop neighborhoods.

The second step is policy evaluation, where we use
the feature ¢; .. and apply LSTD to find a set of weights
w; to approximate the local @Q;-functions by Ql =

6] ;. At each round k € [K], we first sample M,
samples from the stationary distribution of (%) (Line
5), and then perform a LSTD update for each agent
i € [n] to learn the appropriate weights for the local
Q;-functions (Line 6).

Finally, the last step is updating policy using policy

gradient (Lines 6 to 7). For each agent i € [n], with
the learned {Q; }JGNK,,H we perform a gradient step
to update the local policy weights 6;, and update to the
new policy. We note that this update is scalable since
from the perspective of each agent 4, it only requires
knowledge of the local Qj for agents j in a (kr + K)-
hop neighborhood of agent i. In practice, the xk-hop
spectral representation we introduce can be combined
flexibly with any actor in a distributed cooperative
actor-critic framework that requires knowledge of the
local @Q;-functions.

4.1 Policy evaluation error

We have the following result on the policy evaluation
error with our network r-local features. We defer the
details of the proof (including preliminary results re-
quired for the proof) to Appendix 7.6.

Lemma 6 (Policy Evaluation Error). Suppose equa-
tion (1) in Lemma J holds. Suppose the sample size

M, > log (5753
1 — 26, for every i € [n] and k € [K], the ground truth
Q function Q?(k)(s,a) and the truncated Q function
learnt in Algorithm 1 Qi(sNﬁﬂ,anl) satisfies, for
any distribution v on S X A, ' '

)

Es HQ:%) (S, a) - ng) (SNin+1 y aNin+1)
(m+1)) D2L°

6/(Kn)) VM,

statistical error

D)

o L= max|giyl
i€ [r

Then, with probability at least

< O< cpL?Dp" ! +1og <
—_———

truncation error

Vil
l/O

+ Ler (|5
v 0o

approxlmatlon error

H (k)

D =
where zE[n] kE[K]

and Mi(k) is defined as in equation (4). O

From the above result, we note that the policy evalua-
tion error comprises three components, with one being
the statistical error due to using finite samples, which
decays with the square root of the sample size M, and
the truncation error from considering a truncated -
hop neighborhood (this decays exponentially in k), as
well as the approximation error of the spectral features
in approximating the x-hop transition (ep).

4.2 Policy optimization error and main
convergence result

Theorem 1. Suppose the sample size M, >

log (%g;n;i))) Suppose with probability at least 1 — 4,

for all i € [n], the following holds for some features
Gir € R™ and f1;,, € R™:

E,o

’ ’
/ ’Ai,n ((SN5+1,G,N5+1),SN1@-)’dSNiR < ep,
’ k2 1
SN

i
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Algorithm 1: Networked control with spectral
embedding

N =

Result: 7K+ =
Spectral dynamic embedding generation
for i € [n] do

Data: @-value truncation radius x, Policy

truncation radius k,, Reward Function
r(s,a), Number of features m, Number
of samples/round My, Learning Rate 7,
Number of rounds K

(K+1)
(my :

K+1
i )
Generate features @; (s rt1,ayni1):=
[Ti(si, a,'), QZBZ‘,,{(SN‘m{»l ; aN;eJrl )] c ]Rm“,where

q@i,n(st+1, (lN::«H) satisfies the condition in (1).

end

Policy evaluation and update
for k=1,2,---

,K do

Least squares policy evaluation
(k) oD

Set m," ==, . Sample
iid. Dy, = {(s(),a(j).s s'(7)),a" ()} jem,)

where (s(j),a(j)) ~ v,

s'(j) ~ P(- | s(4),a(j)) where v ) is the
stationary distribution of 7(¥), and

Vj € M), Vi € [n] : af(5) ~ w7 (- | siyen (1)
for i € [n] do

Solve wfk) using least square temporal
difference (LSTD) as follows:

B = (M®)"L g0,

s,a,s’,a’EDktpiﬁ"(@iﬁ _’YQEQ,K)T (4)

M ™

- aT
s,a,s’,a’ €Dy, Pi,wPik

ri :=[1,0,0,...,0]" e R™"!

(bl N( N["Jrl (j)vaNf+1 (]))a

@2,n(j) = (f’i,re(s;\,fﬂ (7), a/Nf“ (4))-

Update approximate Ql(-k)—value function as

Qi(sN;H,aN;ﬂ) = ¢i7,€(sNi~+1,aN:+1)Twi
end
Policy gradient for control
for i € [n] do
Calculate
4 = Z > Qé’”(sN;ilj),aN; 2N

I=lpenptem

0%y

Vo, log , (ai(4) | sy (4))
10 ||Take gradient step 9 (1) — 9§m) + nﬁi(k)
11 |end
12 end

o)

for some ep > 0 and distribution v° over S x A, where

!
Ai,,ﬂ ((SN,”“*l 5 (lN5+1 )7 SNim)
k2 k2

= P(SIN{c IS 1, Gt ) —(;?)@,.;(SNN-H s Gt )Tﬂi,,{(sﬁvf).
i i i i

Then, if n = O(1/VK), with probability at least 1 — 4,

9y

P/(1=9)  Laetes | L' (o ( LT ?
go( VK +1—7+¢?<J+(1—7>)>

where €5 1= 2cLp" + iz 2”‘ A} log( ) +eqLy, and
D2
= L2Dp ! 4 log (1)
@ éE?X()(CP e Og(amK )) VAT
i (k)
SRR
v° lloo

where L' is the Lipschitz continuity parameter of
VJ(@), Lix is a bound on HV@i log (- | -) ‘, and

= \/ Z?:l L?,Z,Tr' O

From the above result, we see that our algorithm can
achieve convergence to an approximate stationary point
of the global objective J as the number of rounds K
increases, up to an error term depending on €7, which
depends on the policy evaluation error eg from Lemma
6. As we observed before, the policy evaluation er-
ror comprises a statistical error, a truncation error
decaying exponentially as k increases, and a feature
approximation error term ep. Consequently, the con-
vergence error to an approximation stationary point
also depends on these three terms.

5 Simulations

5.1 Thermal control of multi-zone buildings

We consider a stochastic linear dynamical system mod-
eling the thermal control of a 50-zone building. We
assume that the network is connected, with each agent
having 2 neighbors. The dynamics of each agent is
only affected by its neighbors, and subject to Gaussian
noise. We also assume access to the model dynamics
and reward function. In this problem, to implement
our algorithm, we utilize random features that factor-
ize the k-hop Gaussian transition (cf. Lemma 5), and
perform least squares, followed by normalized gradient
descent. The controller is parameterized to be linear.
More details on our experimental setup can be found
in Appendix 7.9.

Since the dynamics are assumed to be linear, we have
access to the cost of the optimal controller, making
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this a good way to benchmark the performance of our
algorithm. The performance of our algorithm is shown
in Figure 1 below. As we can see, as kK, increases, our
algorithm is indeed able to approximate the perfor-
mance of the optimal controller. Moreover, the speed
at which it converges is faster than Qz approximations
that leverage a generic two-hidden layer neural network
(NN) to represent the (truncated) local Q; value func-
tions; we note that in both cases, the algorithms utilize
the same learning rate for the policy gradient step, and
have access to the rewards and dynamics function.

N =50

(a) NN critic (b) Spectral features critic

Figure 1: Learning trajectories of cost (lower is better)
using Algorithm 1 + random features and NN critics on
a 50-dimensional stochastic linear dynamical system for
varying k.. Average and 1 std confidence intervals over 5
seeds.

5.2 Kuramoto oscillator control

Due to the nonlinearity in this problem, we adopt the
Soft-Actor-Critic (SAC) framework for this problem,
and compare the performance of a generic deep NN
critic with our network spectral local-x critic. In this
problem, we consider the more realistic and difficult set-
ting where the dynamics is unknown. In this problem,
the network has 40 agents in total, and the network
graph is connected, with each agent having 2 neighbors.
We set the goal for the agents to synchronize to a target
frequency of 0.2.

In both the generic SAC and our spectral SAC imple-
mentation, the local critic for @;-value function con-
siders a r-hop neighborhood, i.e. approximate Q; by
Q,’(SNF,CLN?) = qﬁi(st,aN;)Twi, where ¢i(5NfaaNf)
is a two-hidden layer neural network. However, for our
approach (spectral + SAC), we add a feature step that
regularizes the feature ¢;(s N, anr) towards factoriz-
ing the local dynamics, i.e. minimizing the objective
in Condition 1 in Lemma 4. We defer more details on
the problem setup as well as experimental details to
Appendix 7.9.

In Figure 2, we compare the performance of our ap-
proach (Spectral + SAC) with a generic SAC with
two-hidden layer NN critic. As we can see, our ap-
proach leads to significantly higher rewards. Moreover,
we observe that our approach leads to qualitatively
better synchronization behavior when starting from

the same initial condition, as indicated in Figure 3.
Finally, we note that in the model-based setting, our
algorithm (utilizing random features) achieves a perfor-
mance comparable to that of generic NN approaches.
The model-based results are deferred to Appendix 7.9.

-150

-175
—— SAC

Spectral-SAC

—200

1000 2000 3000 4000 5000
Iterations

Figure 2: Change in reward during training for Kuramoto
oscillator control, N = 20, kr = 1,k = 2. The performance
for each algorithm is averaged over 5 seeds.

0 200 400 600 800 0 200 100 600 800
time step time step

(a) SAC Controller (b) Spectral+ SAC Controller

Figure 3: Synchronization of frequency (0) under SAC and
Spectral + SAC controller, for 800 time steps with time
interval dt = 0.01.

6 Conclusion

In this work, utilizing local spectral representations, we
provide the first provably efficient algorithm for scal-
able network control in continuous state-action spaces.
We validate our results numerically, where we find that
utilizing k-local spectral features can achieve effective
control on a thermal network control problem as well as
a Kuramoto nonlinear coupled oscillator control prob-
lem. Moreover, in both cases, we demonstrate that our
approach has benefits over generic neural network ap-
proximations for local @;-value functions. Collectively,
our theoretical and empirical results demonstrate the
validity and importance of a representation-based view-
point in achieving more effective and scalable control
in continuous state-action network MDPs.
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7 Appendix
7.1 More Related Works

Multi-agent reinforcement learning (MARL) for Markov games The study of MARL dates back
to the early work of | ) ) |. One classical setting
considered is the stochastic game setting | |, where agents can take their own actions but they
share a common global state and maximize a global reward. There are many recent works that studies reducing
the computational and sample complexity in this scenario, e.g. | , ,

|. However, one restriction of their approach is that it assumes access to the
global state s, as opposed to our setting where each agent only observes a local state sy, thus their approach
won’t extend easily to the network setting considered in our paper.

Distributed Control for Network Linear Quadratic Regulator (LQR) Apart from reinforcement

learning, there is also another line of work tackling the network system from the control perspective. Dis-

tributed control is a classical topic that is widely discussed in literature (c.f. | , ,

, |) Notably, some recent works | ) )

| also leverage a similar exponential decaying property to address the near-global-optimality of

distributed controllers. However, these works are primarily focused on linear dynamical systems, as opposed to
our work which is targeted to potentially nonlinear dynamics via representation learning

Other multi-agent dynamical models There are also other settings in multi-agent/network systems such
as the weakly coupled MDP | |, where agents’ transition dynamics are
fully decoupled and the only coupling is through the reward function; factored MDP | ,
, |, where there is a global action affecting every agent’s individual
local state. (See the ‘Related Literature’ in | | for a more detailed summary and comparison.)

Linear MDPs There has been a sequence of work on sample-efficient RL via the linear MDPs ap-
proach | |. In a linear MDP, the transition kernel of the MDP can be represented as a linear
combination of low-rank features. By applying the Bellman equation, the @)-value function can then be repre-
sented as a linear combination of these low-rank features. It has been shown in | ] in this setting,
sample-efficient RL can be achieved, with sample complexity depending on the dimension of the feature space
rather than the size of the state and action spaces. Computationally, to realize the theoretical promise of linear
MDPs, there has been a line of works with strong empirical performances that represents the Q-value function
using finite-dimensional features that factorize the transition kernel, where the features are learnt in different ways,
e.g. a latent variable approach | ], a noise-contrastive approach | | building
on noise contrastive estimation [ , |, and a diffusion-inspired
approach [ ]. A key question in the study of linear MDPs is the circumstances under which a low-
rank linear factorization of possibly nonlinear features that represent the transition kernel indeed exists. Towards
answering this question, the works in [ , | show that for a wide range of problems
in stochastic nonlinear control, specifically stochastic nonlinear control problems where the transition noise takes
the form of a positive-definite kernel (e.g. Gaussian noise), there exists infinite-dimensional spectral features
which exactly factorizes the transition kernel. However, to enable tractable control, finite-dimensional features are
required. Tn | |, the authors propose a finite-dimensional approximation of the infinite-dimensional
spectral features via random features | | and Nystrom features | ],
characterize the approximation error of these finite-dimensional truncation approaches, and provide end-to-end
theoretical guarantees for a actor-critic framework building on these finite-dimensional features, with strong
empirical performance.

7.2 Example of thermal control in buildings as network MDP

Example 2 (Thermal control in buildings). The problem of thermal control of multiple zones in a building can
also be cast as a network MDP. Consider a multi-zone building with a Heating Ventilation and Air Conditioning
(HVAC) system. Each zone is equipped with a sensor that can measure the local temperatures and can adjust the
supply air flow rate of its associated HVAC system. For simplicity, we consider a discrete-time linear thermal
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dynamics model based on [ , |, where for any i € [n],

zi(t+1) — z;(t) = A (0°(t) — 2;(1)) + Z A (z; () — z4(t)) + éai(t) + ém+ \/UKiwi(t),

U3 G ~ ViGij U5 V4

where x;(t) denotes the temperature of zone i at time t, a;(t) denotes the control input of zone i that is related
with the air flow rate of the HVAC system, 6°(t) denotes the outdoor temperature, m; represents a constant heat
from external sources to zone i, w;(t) represents random disturbances, A is the time resolution, v; is the thermal
capacitance of zone i, (; represents the thermal resistance of the windows and walls between zone i and the outside
environment, and (;; represents the thermal resistance of the walls between zone ¢ and j. Again, we note that the
transition dynamics of each agent depends only on its neighbors (and itself). At each zone i, there is a desired
temperature 0F set by the users. The local reward function is composed of the (negative) deviation from the desired
temperature and the control cost, i.e.

ri(t) = — ((zi(t) — 0;)* + cvias(t)?)

where a;; > 0 is a trade-off parameter.

7.3 On the exponential decay property

It may not be immediately clear when the exponential decay property holds. The following lemma (cf. Appendix
Ain | |) highlights that for a local policy where each agent’s actions depend only only on its and
its neighbors’ states (i.e. m;(- | s) = m;(- | sn;,) ), the exponential decay property holds generally, with p = . We
defer the proof to our appendix.

Lemma 7. Suppose Vi € [n], agent i adopts a localized policy, i.e. w;(- | s) =mi(- | sn,). Suppose also that the
local rewards are bounded such that 0 < r; < 7. Then the (%, ’y) -exponential decay property holds.

We note that under some mixing time assumptions on the MDP | |, the exponential decay property
may in fact hold for p < v depending on the system parameters, making it applicable to problems with large
discount factors or even in the average-reward setting | |.

We proceed now to prove Lemma 7, which shows that the exponential decay property holds for localized policies
and bounded rewards. We note that this was first shown in | |, and we provide the proof here for
completeness.

Proof. Consider any i, and choose any natural number . For an arbitrary (s,a) = (snx,sn=,,an=,an=,),
consider any state-action pair (s',a’) that differs with (s,a) only outside the Nf-neighborhood, i.e. (s',a") =
(8N45’83Vf,i’aNi57a/IVii)' For any natural number ¢, let p;; denote the distribution of s;(t),a;(¢) conditional on
5(0) = s,a(0) = a, and let p; ; denote the distribution of s;(t), a;(t) conditional on s(0) = s, a(0) = a’. Then,

Zvn si(t),ai(1)) | 5(0) = s',a(0) = a'

t=0

Q?(Sva) QW s' a lZV 7i(s z )) ‘ S(O) = Saa( 1

=Y 4 (Ept,i [ri(si(t), ai(t)] — By | [ri(si(t), as (t))])

0

-
= |l

=3y (Ep“- [ri(s4(t), ai(t))] — By, [ra(si(t), ai(t))])

“
Il
=3

(i)

(i) et

N
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Above, (i) is a direct application of the definition of p;; and pfm-. Meanwhile, (ii) utilizes the fact that for any
0 <t <k, we have p;; = p; ;. This is because of (a) localized policy, such that a;(t) depends only on sy, (t — 1),
and (b) factorized localized dynamics, that s, (t) depends only only on s,;+1(t) for any natural number j; hence

an iterative argument shows that for any ¢, p;; and p; ; both only depend on s Nt (0) and a Nt (0). Thus, since
(s,a) and (s',a’) share identical sy~ (0) and ay=(0), it follows that p;; = p;; for ¢ < s. Finally, (iii) uses the
fact that bounded reward assumption, i.e. 0 < r; < 7. The proof then concludes by rerunning the argument on

Q?(S/7a/) - Q?(Saa)' O

Next, we state and prove the following elementary technical result, which bounds any two truncated Q(or
V)-functions with different weights.

Lemma 8. Suppose the (c,p)-exponential decay property holds. Then, for any two different weights
wi(sNr,ans;sn= ,anx ) and wi(snx,anx;SN= ,anx,) over the space Snx X Anx_, i.e.

E wi(SNr, ang; SN, anx,) = 1,
SNE SANK .,
R AN,

> wilsnransisneans) =1,

Snn ANt
we have

’Q?(SNf»aNf) — (@7 (sivzr anes)| < 2ep™
where

Q7 (snr, anr) = Z wi(sng,anpiSne,,ane, ) Q7 (Snr, SN=,, ang, anx, ),
SNE AN
-1 -1

(@7 (snrrans) = Y wi(snr,anr;sne,,an=,)QF (snr, SN, anr, anrx)

SNE _LANFK .
~i ~i

Similarly, for any two different weights wi(st; sti) and wg(st;sti) over the space Syx_, i.e.

> wilsnrisne) =1,

SN
~i

> wi(swrisne,) =1,

SNk
—1
we have

Vi (snr — (V)7 (snvp)| < 2¢p" Y,

7

where

Viﬂ(st) = Z wi(st; SNfi)Vf(SNpSNf,%

SNE
i

(V7 (swr) = > wi(snrssne Vi (snr, s,

i

SNFE.
—i

Proof. Compare both truncated Q-functions to a Q-function evaluated at any specific state action pair where the
states and actions of the agents in N/ are s NF and a NF respectively. The desired result then follows by Definition
1. A similar argument works for the V-function. 0
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7.4 Helper results on factorization of network probability transition

Lemma 2. Property 2 holds whenever Property 1 holds, by setting
¢i7n(sN[‘+1 (t)’ aNf“ (t)) = ®jeNf (EJ(SN]' (t)a an; (t))’
pri (5N (E+1)) = Qe nn i (85(E+ 1)) O

Proof. To see that, observe that

P (s (1) [syen (D ayers () = T B (st +1) s, (003, (0)

JENF

(iv)

_ (V)
= ] (@i(sn, (), an;, (£)), 1 (s; (t + 1))) <® (s, (1), an;, (1), Q) Mj(sj(t+1))>-

JENE JENE JENE

Above, (iv) follows from Property 1, while (v) uses the definition of the inner product of two tensor products.
Thus, when Property 1 holds, Property 2 holds by setting

Gin(syrri (D) aymer () = Q) @5(sw; (1), an, (1), piw(swe (t+1)) = @) fiy(s;(t + 1))

JENF JENF

7.5 Approximation error of spectral features

7.5.1 Approximation error when spectral features exactly factorize k-hop transition

We recall and prove this result, which bounds the approximation error of using the truncated spectral features to
approximate the local @;-function, in the case when there is no approximation error in the spectral features in
representing the k-hop transition.

Lemma 3 (Local @); approximation via network s-local spectral features). Suppose the (c, p)-exponential decay
property holds. Suppose Property 2 also holds. Then, for any (s,a) pair, agent i, and natural number k, there
exists an approzimation QT which depends linearly on network k-local spectral features Qgi’H(SN:+17aN{.:+1)7 such
that

‘Qf (SNf‘+1 y Apprtly Spyrtl, aN5+1) - Q:— (SNf‘+1 y aNfe+1)
i i —i i i i
g 26’ypn+l
where Ql (SN"‘H aNrc+1) <J)i7“(st“+1’aNf‘+l)7 ’LUZ:R(S/NF)>,
i i i
with the deﬁmtwns

éi,fi(sN;‘*l ) a’Nerl) = [Ti(sia ai)a d)i,lﬁ(sN’i"*l 5 aNi*‘+1 )}T7

Wi, (se) = [1,7 ds?v;ﬂi,n(slzvjé)‘zﬂ(skf)]i

where i N %

Proof. For notational convenience, we omit the ¢ and (¢ 4+ 1) in the parentheses of the state and action notations,
and instead use a superscript * to denote (¢ + 1), e.g. s to denote s(t + 1). Observe that

us
Qi (SN:+1 y aNf+1 ; Sijl 3 aszrl)

+ + o+ +
= ri(si, a;) +7/ dsk sNN | Snm+1 aNK+1) /+ dsoe Vi (s sy )P (sti | s,a)

SNE .

(vi) N
= 74(ss,a) —&—7/ dsNNIP SNs | st aNHl)Vf(s;(w)
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(vii) _
= 7ri(si,a:) + ’y/+ dsj\',fl[” (sEf | SN:+1,CLN:+1> Vlﬂ(s'}\}f)

SNE
i

+'Y/+ dsf\ffp (5}5 | SNf“aaNf“) (f/f(sﬁm) - ‘ZW(SJJ\FM))
‘}Nf
(viii)

= 71i(si,ai) + ’Y/Jr dSE;v <¢i,n(3N;+17aNf“)aMi,n(SEf)ViW(SE&»
SN

""'}’/+ ds P <3E~ | 3N6+1=aN.”+1> (V7 (s%n) = Vi (542))
ot , i i ;

7

In (vi) above, we used the notation
V;r(s']'\’,n) = / ds]‘gii%”(sj\‘,f,s}fi)lp (3?{@ | s,a) ,
S
and in (vii), we recall that we defined

+
Vi (sh) ::/ %VW(S'H st ).
% N S;N VOI(SNL.) % NF»9NF,

Since the (¢, p)-exponential decay property holds, applying Lemma 8, we have

< 2cp“+1.

Viﬂ (S]J(l;) - ‘_/iﬂ- (ng)

Thus our desired result holds by setting

Q7 (syp+1; ayser) 1= 1i(si, i) + <¢i,m(5Nf“’aNf“)77/+ ds}fﬂi,n(sj\/iﬁ)%ﬂ(s}f)>
SNE

1

7.5.2 Results on approximation error of random features

We first state the following result on uniform convergence of random Fourier features, adapted from Claim 1 in
[ |-

Lemma 9 (Uniform convergence of Fourier features). Let M be a compact subset of R with diameter diam(M).
Let k be a positive definite shift-invariant kernel k(x,y) = k(x — y). Define the mapping z, where

2
2= \/; [cos(w/ @ +b1) .-+ cos(whx+bp)],

where wy,...,wp € R are D iid samples from p, where p is the Fourier transform of k, i.e. p(w) =
i fe’j“’T‘sk(é)dé, and by, ..., bp are D are iid samples from Unif (0, 27w). We assume that k is suitably scaled
such that p is a probability distribution.

Then, for the mapping z defined above, we have

T

where Jf, =E,[w w] is the second moment of the Fourier transform of k.

Further,

sup |2(z) "z(y) — k(z,y)| < e
z,yeM

. 2
D=9 <log ("P dm;zw) ) :i) :

with probability at least 1 — § when
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Lemma 5. Fiz any i € [n]. Suppose the local dynamics take the form s, = f;(sn,,an,)+€; where ; ~ N(0,0°Is),
such that for any k, sy~ = fiﬂ.@(SN/{eJrl’G,N_chrl) + enr where enx ~ N(0,0%1 N.'<|S) and f; . is concatenation

of fj for j € Nf. Fiz any 0 < a < 1. Then, for a positive integer m, define the m-dimensional features
Gin(Syn+1, aynir) € R™, where

Qgi,ﬂ(sN{‘Jrl 3 G‘N{‘*l)
i i
ga(Syrt1saynir)
I R S

alVEls

2 W fin(8ynt1, Qpntr) ) "
X — cos - . + R
m V1—a? ‘ -

with {we}yr, being i.i.d draws from N(O,U_QI‘N,le), {be}72, being i.i.d draws from Unif([0, 27]), and

2

fi,m(8N5+1 s GN5+1 )
2(1 — a?)o?

ga(sN_NH , aN_NH) 1= exp
i i

In addition, define

Jao := max sup gc;v(f)s .
i€[n] € fi,n (S rt1 A rt1) a| 1|

S (max {log <(|NfS(diam(SNf))2)> Nf|sg§D

Suppose

i€(n] o2(6/n)(ep/ga) b

for some & > 0. Then, with probability at least 1 — §, the condition in (1) holds for every i € [n] and any
distribution v° over S x A, with

~ ! 2 / / "
frin (Snr ) = {1 / Ep"‘(sN{") cos(v/1— a2w2—sN{e -l-bz)} ,

=1

’
H‘f"sz\rri
i

where pa(s},{e) il exp(—1—4) s a Gaussian distribution with standard deviation 2. O

T (2no2)INEls

Proof. Observe that P (s?{,n \ fm(stH’aNHl )) follows the Gaussian distribution N (0, UQI| Nf|S)' For notational

convenience, in this proof, we denote x := f; . (syr+1 ), y := s}~. In addition, in this proof we denote

a -
s N{”+l

d :=|NF|S. For any 0 < a < 1, observe that
2
Ga\T (1 7a2)y7$
Py |z) = a(d ) exp (— H H Pa(y),

where go (z) := exp(a?[lz]*/(202(1 = 0?))), and pa(y) = Greaz exp(—[lay[*/(202)).2

7112
[l==="]|

202%(1—a?)

do " 2diam(Syr)? 5
W) dg;) it follows that with

Define g, := max;ep, SUD e (S ptA gett) g‘;(f) 3 Observe now that k. (z,2") := exp(—

) is a positive-

definite shift-invariant kernel. Hence, by Lemma 9, if m = Q) (log (
probability at least 1 — ¢,

_ B €
sup | i () i s (y) — kalz, (1 - a®)y)| < ==,
m,yESN{c Ja

ZWhen « := 0, this simplifies to P(y | ) < exp (7%) However, we allow a general 0 < a < 1 because it gives
greater flexibility both theoretically and empirically.

3Here we overload notation to use fin(Syrt1, Ayr+1) to denote {fi,ﬁ(sNHl,aNHl)}(SNﬁH7aNN+1)€5N~+1 XA nt1
K K v v i i i i
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where

- 2 w) T "
bin(x) = D {COS (\/113_7a2 + be) }e_1 ;
funt) = 5 {eos (VImaZy+3) )

and {we}’s are drawn iid from N(0,0721,), {b;}’s are drawn iid from Unif(0,2n). It follows then for any
x € fi n(Syr+1, Ayr+1), we have

J

ga ()
Oéd

Ply| @) = die() fuiely)| dy = / a2, (1= a®)y) = diu(@) i (®)| Ipa ()| dy

Y

_ €
< Jo /pa(y)dy = ep
Ja Jy
where we recall that . o -
Gin(x) 1= a%@,n(x)’ fii i (Y) = Pa(y)fii(Y)-

The proof then follows by rescaling ep := ep/n, and taking a union bound over all i € [n].

7.6 Algorithm analysis - policy evaluation error

For simplicity, we assume throughout the analysis that we are solving the LSTD step in the policy evaluation
exactly, i.e. we take the number of least square solves, T, to infinite. Moreover, we drop the i subscript in the
notation of ¢; ,, and use v to denote v, ). At round k, the algorithm output of the policy parameter w; of agent
1 is given by

wit = ()

where
o 1 ; ; ; T
MY = Drl Y Pinlsyrraysi) <¢i,R(SNf+1’aNf+l) - 7¢i,n(S'Nf+1,a§V:+1)> ;
k s,a,s’,a’ €Dy,
k 1 ~ ~
i( ) = m Z ¢i,n(5Nf+1aaN:+1)¢i,n(sN:+17aNf*l)T

s,a,s’,a’ €Dy,

For notational convenience, when the context is clear, we drop the k-superscript indicating the current round k,
and denote w; := wgk), M; = Mi(k) and H; := Hi(k)'

We define an intermediate variable w; as follows:
’UNJZ' = M;lHiT‘Z‘
where
— - - - . , T
M; = B anv @i (8 yntr; apnrr) ((bixﬁ(st“’aNfﬂ) - ’V]Es/,af~P<-|s,a>m<-\s’>¢>z‘,~(81v;+1’C‘Nfﬂ)>
77 7 7 T
H; = Es,awu(bi,n(sN{H'l y et )Qsi,n(SN_'H'l 3 aN{"*'l)
and further define

éi(SN:Jrl R (J,N:+1) = éi,n(st*l s aN:+1)TU~)i

The real Q-function is Q:(k)(s, a). From Lemma 3 and Lemma 4, we have that there exists
QAZ‘(SN;HA , ClNinrl) = q?)iv,ﬁ(SN:ﬂ 3 aN:ﬂ )le)z

such that with probability at least 1 — §, for every i € [n],

€P7f (5)

E, [|Q?(k)(s,a) — QAi(SN’5+1,aN/;e+1)| < 2ep" T+ ‘ 1=~

v
o
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Assumption 1.
1M <D
Assumption 2.
H(lgi,fi(stJrlaaNerl)H SL, Vsypr,ayen

Lemma 10 (Bellman Error). On the event that condition (1) in Lemma 4 holds, for every i € [n], we have

Yrep
o1 -

[; —1s]| < 2LD (cp”“ + HL
14

Proof. From Bellman equation we have that
k k
QZT( )(Sa a) = ri(siv ai) + ’YES,,G,’NP,TK‘Q;T( )(8I7 al>
— Qi(st*““Nf“) =r;i(si,a;) + 7ES/’Q,NPJQi(s;fo , agvfﬂ) + A(s, a),
where A(s,a) = — (Q?(k)(s, a) — Qi(sN{eﬂ,aNfﬂ)) +Es o' mPyr (Q?(k)(s’, a) — Qi(slzvﬁ“’a;vﬁ“))' Substitut-
ing Qi(sN“l,anl) = gZNH,K(SN_Hl,anl)TlD,; into the above equation we have
(Z;i,lﬁ(st+1 , aN:—,+1 )Tfuf)l = éiy,ﬂ(sN:H , aN:+1)TT'Z- + ’yES/ﬂa/Np,ﬂ.(g)i’ﬁ(sgﬂi_H s a?le_*_l )T'I_[)l —+ A(S, a).
On both side multiply by Qgi7K(SN5+1 ,ay+1) and take expectation over s,a ~ v, we have that
ES,GNVQZ%,K(SN?+1 s aNinﬂ )qz)im(SN{chl , aNf+1 )T’lf)i
= Es,awv&i,n(stJrl y Aprtt )Qgi,n(sNﬁl ) aNfrl)T?"i
+ ’YEs,aNVQNSi,n(SN:"H ) CLN:+1 )Es’,a’wP,w(gi,n(SlNinJrl ) agvlfvrl )TUA)z + Es,awuﬁgi,n(sN:‘*'l ’ aN:+1 )A(sv a)
- Mﬁ}z = Erz‘ri + Es,aNVéi,n(SNi"*l ) CL/N_,@+1)A(S, Cl)
Further, given that
My; = Hyr;,
on the event that condition (1) in Lemma 4 holds.
W; — Ww; = Mi—lEs,aNngi,ﬁ(stﬁ,aEVHl)A(s,a)
= i = @) < 1M 1 Es amPir (8 yrtts @ynia)A (s, a)|

eEpYT
ool—’)/ ’

where for the final inequality we used (5). O

<2LD (cp”'H + ‘

v
7o

Lemma 11 (Statistical Error). Fiz an i € [n] and k € [K]. For sample size M, > log (2("?'1)), we have that

with probability at least 1 — 20
w® — o™ <0 (1og (T DLt
7 7 = K /7Ms

Proof. Again, for notational simplicity we drop the k-superscript. We first bound the differences | M; — ]\N/[ZH,
|H; — H;||. Since
1 7 7 7 / 1 T
M; = m Z ¢i7n(3Nf+1aaNi’<+1) (¢i,n(SNf+17aNf+1) - 7¢i7n(3Nﬁ+laG/N’_~+1)) )

’ ’
s,a,s’,a’ €Dy
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. - - - T
M; = Egan@in(syrt, ayrin) (@’H(Swﬁlvazv:‘“) - VEszawP('\s,a>,w(-|s/)¢i,~(83w+l7aﬁvwl)) ’

From the Matrix Bernstein inequality (see Lemma 15 in Appendix 7.8) we have that when M, > log (2("?1))

with probability at least 1 — §

IM; — M|l < 8L2\/Ms_1 log (

J

Thus with probability 1 — 2§
lw; — |l = || M Hiry = M Hir|
<M = M H |+ 1M || H — H )
< (| M| My — M|+ 1|05 Hy — H
<o () P o on(22) B

which completes the proof. O

Combining the above statement we can get the following Lemma for policy evaluation error, which is a restatement
of our result in Lemma 6.
Lemma 12 (Policy Evaluation Error, restatement of Lemma 6). Suppose condition (1) in Lemma 4 holds.

Suppose the sample size Mg > log (?5(/7?;;))) Then, with probability at least 1 — 20, for every i € [n] and k € [K],

the ground truth Q function Qf(k)(s,a) and the truncated Q function learnt in Algorithm 1 Qi(stl,aNﬁl)
satisfies, for any distribution v on S X A,

w(k A
E,j |:|Q’L( )(S,a) — Qi(SN’ifc+l,aNf+1)‘:|

+1)\ D?L° epYT (|| U V()
<0 oo i () P (2]
O(” P +Og<5/(Kn) 7 1_7<yooo+ Vo oo) !

where denoting ~ ~
@i)ﬁ = ¢i7N(SNf+1 s aNerl)’ @;)N = ¢i7n(3;\/:+1 s alNinrl)a

D := max H(Mi(k)r1
i€[n],k€[K]

, L :=max||@; x|, where
1€[n]

1
M(k) =T E ~in Nika_ ) T'
K3 |Dk| 90 ) (80 ) 7%01,,&)

s,a,s’,a’ €Dy

Proof. Suppose the condition (1) in Lemma 4 holds. Consider any ¢ € [n] and k € [K]. From Lemma 10 and 11
we have that with probability at least 1 — 26,

E; [|Q?(k)(s,a) — Qgivn(SN:+l,aN:+l)ngk)|:|

<Ep [1Q7™ (s,0) = Qilsyprs anse)l| + B [1Qilsymin, ansn) = Gin(syeonsaneen) Tl

< <2CPH+1 + ‘ =z EPVT) +Ez [|¢~)z‘,n(3Nﬁ+1,ClNHl)T(wEk) - wl(k))@
Vo lleol — Y i i
v epT ~ ~

< (20 | 2] )+ (1 - a0+ 1 - w])
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2] 50w (s (52)) )

< <2cpn+1

EPW) +L (QLD(cp’“““

o 0o 1 — ,y
+1)\ D2L5 EPYT (|| U v
= 0 (epr2Dp+t +10g (™ rE (2| +]5]))
O(‘”’ pr e ) A TR =y Ule e T el
The desired result then follows by rescaling § := §/(Kn) and taking an union bound over all ¢ € [n] and
k € [K]. O

7.7 Policy gradient analysis
We show now that our algorithm can find an approximate stationary point of the averaged discounted cumulative

reward function J(7(?)). For notational convenience, for a given set of policy parameters § = (4, ...,6,), we
define

J(G) = J(ﬂ'g) = ESNHoEa ()~ (O (]s(t)) [Z’Y r | 8( ) 8‘| 5
where we recall that 7(s,a) := £ 3" | 7;(s;,a;). From Lemma 0, we have that
V9J<9) = IEs~d‘9,a~7r9(-\s) [Q9(87 a’>V9i log Tr?(a’i I SNf” )]

1 ¢ _
= IEsrwi”,11,~7r9(~\s) E Z Q?(Sv CL)VQ IOg Triel (ai | SN:”)

We first provide the following result, which shows that assuming Lipschitz continuity of the gradient of the
objective function J as well as the gradients of log 7%, there exists the following bound on the following weighted
sum of the squared gradient norms.

Lemma 13. Suppose that VJ(H) is L'-Lipschitz continuous. Suppose that for each i € |

nl, [ Vo 10l (1] <
L; . Denote L, == />""" | L? . Suppose for each round k € [K], 0+ = (k) — ng(k). Then,

) 2 L7 \°
§® = v 0M)|" + (1—7) )

K
1 2 _r/(1-7) r X
— (k) A Lx (k) (k — /
3 REC I KZ v -a]+ £ ZL
k=1
Proof. By the Lipschitz continuity of VJ(6), we have

JOF) > (0W) + 5 (VI(OD), g(k)> 0 ® H

= J(O®) + UHVJ(H(’“))HQ + 1 (VIOM), 5% — V(M) -

By rearranging and using a telescoping sum, we obtain

K 9 K ) ,
nZHVJ(Q(k))H < S (OFD) (60 < o), (%) — g<k>> Ly, )H
k=1 =1
— ;{:lHVJ(@(k))H? . J(G(KH;)K J(OW) iHVJ HHV‘] g(k)H +;{§2 .

Recall that J(OE+D) — 7(0M) < 7/(1 — 7). Hence, by the given assumption on the bound on the derivative
term Vy, log 7", it follows that || V.J(-)|| < fj; The desired bound then follows by plugging this in as well as

using the triangle inequality to decompose || G ||2 O
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As we can tell from the above result, the crux to bounding the average stationarity gap after K rounds of
optimization is the difference between the true gradient V.J(#*)) and the learned gradient %) used in the update.
In this next result, we bound this error, assuming that the truncated local @;-functions are learned up to some
error.

Lemma 14. For any optimization round k € [K], let ¥ (%) denote the empirical distribution of the samples used
during round k, i.e. {s(j),a(4)};jcim,) where (s(5),a(j)) ~ vpw . Suppose that for each £ € [n], the learnt Q-value
function satisfies the following error bound:

E,m {‘ng)(SN;+l’aN;+l) — Qs a)H <€ (6)

Suppose that for each i € [n], va"’ log 71'?% | )H < L x. Denote Ly := />, L?ﬂr. Then, for any optimization
round k € [K], with probability at least 1 — 6,

27 L, | 1 dg+1
(k) _ (k) H < K s 0
g Vo J(0'))|| < 2cLp”™ + T\ L og( 5K +eqLn, (7)

where the i-th component of the approximate gradient

—Z S Qulsnrn () (D)o, logm™ (i) | snpe (1)

7j=1 [EN'H—K"
is defined in Line 9 of Algorithm 1.

Proof. For notational convenience, in the proof, we fix the optimization round k¥ € [K], and hence, denote

§; = g , 60 := 0% and Qg Qék) unless otherwise specified. Moreover, we also denote QY := Q™ for simplicity.
From Lemma 0, for any agent i € [n], we have that

Vo, J(0) = Egoao amno(.|s) [Qe(s,a)VQi log 7 (a; | SN )}

1 < 4
= Bt ammd(-s) [n ZQ?(& a)Vp, log 7% (a; | Swa)]
=1

To bound the difference between §; and Vy, J(0), we define the following intermediate terms.

We define the terms

gi = Z Y QUs(),ali)Ve, log i (ai(f) | snr=(5)

j=1 ZeN'i'Fhﬂ-

Cl)

1 .
hi = Eyao amno(|s) - Z QY(s,a)Vy, log 7l (a; | SNrw)

eeN{’v‘F'ﬁr
Then, we decompose the error as
Vo, J(0) — gi = (Vo, J(0) — hi) + (hi — gi) + (95 — §i) - (8)
—_— Y Y
Ejn Ehn,q Eq.5

We proceed now to bound the three error terms in (8).

Error term Ej ;. We can bound the term Ej, as follows. For any ¢ € [n] and positive integer , we define

QZ(SN;,GN;) = Z w((stl)lv (aNfz)/)Qé(SNgyaNgv (SNf,Z)/a (aNf[)l)v

(sne ) (ans,)!
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where we let w((snz)’, (ans)") denote the uniform weight over the space Syx, x An=,. From Lemma 8, we know
that

Q(s.0) = Qs an)| < 2e0" (9)

We then have

1

n

ZQ@(SJL)—% Z QY(s,a) V@ilogwfi(ai|sN:w)

/=1 lc N:H—Kn—

VGIJ(Q) —hi = Es~d9,a~7r9(-\s)

1 .
= Eodt amno(]s) - Z QY(s,a) | Vo, log 7 (a; | Snrw)
(eNFTrm

1 ~ ~ )
= Eowwvammoly | |5 2. Qblsngrang) + (QF(s,0) = Qflsnzsany)) | Vo, logmf(ai | swye)
(eNFTrm

1

> (Qs.a) — Qllsny any)) | Vo, log ! (as | sne)

CeN"Trm

= Eswdf’,awﬂs(~\s)

1 ~ )
+ Egeatamnocls) | | = Z Qf (s any) | Vo, logm!(a; | sy=r)
" LeEN"Trm

=Ejp1+Erne
To bound Ejj 1, utilizing the bound in (9) as well as the bound Vg, log 7ri0i (a; | s%,) < Lix in the statement of

the lemma, we have that
IEsnall < 2¢Lixp”.

Meanwhile, observe that by definition, for any ¢ € N*"= Qf(s Ng»>any) does not depend on syrx. Hence,

1 - 0
Ejne = IEs~d9,a~7r9(-\s) n Z Qg(SN;7aN;) Vo, log 7Til(a’i | SNf")
LENTTrT
LS Qiengiany) | B Vi log n (a: | sxze)
- SNy, ANp aiNﬂfi(,‘stﬂ) 0, 108 7" (a; | SN
LEN"Trm

= Eyva0,a_imn?(]s)

1 ~ .
= Es~d9,a,i~7r9(-|s) E Z Q?(sNg,aN;) V@i (/ 71-1_01 (ai | SN’iNT\' )dal>
LENTTrT @i

Z Qf (sng ang) | Vo, (1)| = 0.

LENTTrET

= Bsvivainmocis) | |

Thus Ejp.2 = 0. This implies then that

IEsnll = [IVe,J(0) = hall < 2¢Lixp"™. (10)

Error term Ej, ,. To bound F}, 4, we may use standard concentration inequalities. Observe that

Eng:i=hi—g
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M
1 (1 o o )
—hi= 2= [~ D QUs().a() Vo, log nl (ai(i) | sz ()
S]:l EGN:+N7
1 Y 1
= hi — D QU(s(i):a(i) Ve, log i (ai(j) | sy ()
S]:l ZGN:JrNﬂ-

Eh,g(j)

Since

1 ,
hi = Eswds,a~ﬂ9(~\s) E Z Qg(s’ a)VGi log 7ri91 (ai | SN{“‘) )
ZeN:JrN-,r
it follows that E [Eh’g(j)] = 0. Moreover, using the fact that for any ¢ € [n], 6 and (s, a) pair, 0 < QY(s,a) < %,
and the bound Vy, log 7% (a; | sn#) < Li, in the assumption, we have [|E}, 4(j)| < % Using the i.i.d.
assumption between the samples j € [M], we may apply Bernstein’s concentration inequality for vectors (see
Lemma 15) to find that for any § > 0, with probability at least 1 — 0,

27“.[/”r do +1
E 1 11
EWE MMS os (24). 1)

where dg is the dimension of ;.

Error term E, ;. Observe that

R 1
gi_gZ_Ms. g

1 1 , . A o) ) .
=~ > 37 2 (Qels)ali)) — Qelszn (s anps (3))) Vo, log ™ (ai(s) | swee (3))
eNrtrn 8 =1
M,
1 1 u . ) A o )
<3S o S (@ulstinatn) - Qutsnzrihayen )| toe s wi) Lswge )
LEN[TrT Jj=1
(ix) q -
< = L, L,
X n Z €Q Li,ﬂ' X €Q L’L,7T'
LeNptrn
Above, (ix) follows from the bound in (6), as well as the bound HVg log ¥ ( H L; » in the assumption.

Combining the bounds for £, Ep g and Ey 4, we find that with probability at least 1 — 6,

N 27 L dog +1
Ve J(6) — gl < ZHW — 3il* < 2cLrp” + 7 \/M ( 5 )JreQLr

The final result then follows by applying a union bound over k € [K]. O

We are now ready to state our main convergence result.

Theorem 2 (Restatement of Theorem 1). Suppose the sample size M > log (( 3R ) Suppose with probability
at least 1 — 8, for all i € [n], the following holds for some features ém and fi; -

dsNN <e€p

Eyo /+ ‘P(SXMLSN."*%aNf‘+1)_¢Ei7N(SN5+17aNT‘+1) i, /-:(SN*»)
7 k2 k2 k2 k2
SNk
i
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for some ep > 0. Then, if n = O(1/v'K), we have that with probability at least 1 — 45,

N ? r/d - TE ! 7\ 2
U

where
27L 1 do +1
= 2cL, m | Lﬂ_,
€J c p—i—l_ Mso<5/K>+€Q
and
d D2L5 eEpYT ﬁ(k) V_(k)
= O ( epL?Dp"t* +1 L ’ ™ ’ .
QT o k1) (Cp e\ ) A Tty e |l T e s

Proof. Fix a 6 > 0. Suppose the condition in (1) holds with probability at least 1 — § for all i € [n] for a
distribution v° over S x A. In other words, with probability at least 1 — §, for all ¢ € [n], the following holds:

El,o ‘/+ ’P(S?\}{CBN{HJ’aN?+1)_¢Eiv’i(SNf+l’aNf+1) /LZ,{(SN,‘) dSNh <ep

SNR
7

for some e€p > 0. Then, by Lemma 6, it follows that with probability at least 1 — 34, for every i € [n] and
optimization round k € [K], we have

E, HQgc)(sNﬁl,aNﬁl) - Qg(S,a)H b,

where - ) .
(k) R L2D rk+1 1 dﬁ D*L L€PP)/T v ‘ Vo (k) ‘
‘@ =0 (C” e\ sy ) van Tt e e ) )

Note that by Lemma 13, with probability at least 1 — ¢, for every optimization round k € [K], we have

oL, |1 dy+1
) — o(k) H < 2L p" i 1 6 ®p
g v9']( ) X 4CLgqp +1_’Y M, og (S/K +€Q ™

Thus, by picking 7 = O(1/v/K), using union bound, with probability at least 1 — 43, we have
K _ _ _\2
1 2 T/(L=7) | LaTes L7
— ok H < I/ 2
Kkz—lHVJ( W <o+ (S + (15 ,

27 L 1 dog +1 (k)
= 2¢L . p" L.
Cri=2ehap” N AL © (5/K)+1§2?§]€Q

where

7.8 Concentration inequalities
Lemma 15 (Matrix Bernstein). Suppose {My}?_, are i.i.d random matrices where My, € R1*% and that
My — EMi|| < C

then for a given § € (0,1) and n > log (d1+d2)

(s

, we have

> QC\/nllog <d1 —gd2>> < 4,

En: My, — EMy)
k=1
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Proof. Let € :==2C/n~1log (%), then since n > log (d1+d2) we have € < 2C.

Now we can apply the matrix Bernstein inequality (Theorem 6.1.1 in | ]) and get that
> (M, — EMy)

1 —n?e? /2
— > < + e
Pr (n P ~ 6) < (dy+dy) exp (nC’2 + C’ne/S)

—n?e?/2 ne
< (dy +dg)exp (W) = (dy + d3) exp <402>

n

Substituting e = 2C'y/n~—! log (%) into the right hand side of the equation we get

R

zn: (Mj, — EMy,)
k=1

which completes the proof.
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7.9 Simulation details

All code for this project is available as a zip folder with the supplementary material.

7.9.1 Thermal control of multi-zone building

Problem setup details. In the simulations, we consider a discrete-time linear thermal dynamics model adapted
from | , ], where for any i € [n],

A

R

(z;(t) — zi(t)) + éaiai(t) + \/UKiﬁiwi(t);

zi(t+ 1) — z;(t) e o

(0°(t) — zi(t) + >

JEN;

where z;(t) denotes the temperature of zone i at time ¢, a;(t) denotes the control input of zone 4 that is related
with the air flow rate of the HVAC system, 6°(¢) denotes the outdoor temperature, 7; represents a constant
heat from external sources to zone 7, w;(t) represents random disturbances, A is the time resolution, v; is the
thermal capacitance of zone i, ; represents the thermal resistance of the windows and walls between zone 7 and
the outside environment, (;; represents the thermal resistance of the walls between zone ¢ and j, and a; and j;
denote scaling factors on the input and noise respectively. The local reward is defined as

ri(t) = —pil(zi(t) = 07))% + ai(t)?,
where 0 is the target temperature and p; is a trade-off parameter.

The parameters in the dynamics and rewards are set as follows. For simplicity, we center the temperatures
at 0, and hence set the target 6 to be 0. We set p; = 3. We set the following parameters for the dynamics:

A:207vi :200741] :17<i = %aai = %7Bi: Vi %’9020.

We also assume w;(t) to be drawn iid from N(0,1). We set the discount factor in the problem to be 0.75, and
(when collecting data) set the horizon length of each episode to be 20.

Connectivity. In this problem, there are n = 50 agents, and the agents have circular connectivity and has two
neighbors each, such that agent 1 is connected to agents N and agent 2, agent 2 is connected to agents 1 and 3,
so on and so forth.

Experimental details. We assume knowledge of the dynamics and rewards. For policy truncation parameter
kr =0,1,2,3, we use k = 0, 1,2,2 respectively® as the evaluation x parameter. We now explain the simulation
setup for our implementation of Algorithm 1 with random features, as well as the benchmark algorithm using a
two-hidden layer NN.

1. (Spectral embedding generation step). For Algorithm 1 with random features, for each agent i, we use random

feature dimension of m = 30, 50, 800, 800 for each of the four experiments (k. = 0,1,2,3) to represent the

Q7 (s yrt1,0yk41)—Ti(si,0:)
¥

layer NN with 128 neurons to represent the function 77 (sr+1, @ r+1).

function T (s yr+1, pn+1) 1= . For the NN implementation, we used a two-hidden

2. (Policy evaluation step) We used M, = 100, 200, 500, 1000 episodes respectively for each of the four experiments
(kr = 0,1,2,3) to perform the policy evaluation. For the random features implementation, we used the
least squares method in Algorithm 1 to compute the new weights for the local value functions. For the NN
implementation, we ran batch gradient descent, and used a target network with update rate of 0.005.

3. (Policy update step). For both implementations, we normalize the policy gradient, and run gradient descent
with n = 0.2.
7.9.2 Kuramoto synchronization

Problem setup details. We recall the setup described earlier in the paper. We consider here a Kuramoto
system with n agents, with an underlying graph G = (N, &), where NV = {1,...,n} is the set of agents and
E C N X N is the set of edges. The state of each agent i is its phase 6; € [—m, 7|, and the action of each agent is

“We found in practice that using k = 3 for K, = 3 performed less well in this specific example.
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a scalar a; € A; C R in a bounded subset of R. The dynamics of each agent is influenced only by the states of its

neighbors as well as its own action, satisfying the following form in discrete time | |:
0;(t+1)=0; () +dt |w;(t)+a;(t)+ | Y Kijsin(0;—0;) | | +&(t).
ieN;
=0, (t)

Above, w; denotes the natural frequency of agent ¢, dt is the discretization time-step, K;; denotes the coupling
strength between agents i and j, a;(t) is the action of agent i at time ¢, and €;(t) ~ N(0,0?) is a noise term faced
by agent ¢ at time ¢. We note that this fits into the localized transition considered in network MDPs. For the
reward, we consider frequency synchronization to a fixed target wiarget- In this case, the local reward of each

agent can be described as r;(On,,a;) = — ‘91- — Wiarget |-

The parameters in the dynamics and rewards are set as follows. We set the target wiarget to be 0.75. We set the
action space as [—3, 3]. For agents ¢ and j that are connected, we sample K;; uniformly at random from [0.2,1.2].
For the natural frequency w;’s, we sample them iid uniformly at random from [0, 1.5]. For the noise, we sample
€i(t) ~ N(0,0.01%). The time resolution is dt = 0.01.

We also assume w;(t) to be drawn iid from N(0,1). We set the discount factor in the problem to be 0.99, and set
the horizon length to be 800 steps.

Connectivity. In this problem, there are n = 20 agents, and the agents have circular connectivity and has two
neighbors each, such that agent 1 is connected to agents N and agent 2, agent 2 is connected to agents 1 and 3,
so on and so forth.

Experimental details (model-free). In this case, we do not assume access to the dynamics function. We
now explain the simulation setup for our implementation of Algorithm 1 with spectral features, as well as the
benchmark algorithm using a two-hidden layer NN.

1. (Policy evaluation step) For both the spectral feature and NN implementation, the features are the last layer
of a two-hidden layer neural network with hidden dimension 256. At each iteration, for each agent i, we
draw a batch (of 128 transitions) from the replay buffer and we run 1 step of gradient descent on the least
square bellman error, and used a target network with update rate of 0.005.

2. (Policy update step). For each agent ¢, the policy is parameterized to be a 3-hidden layer NN which outputs
the mean and standard deviation of the agent’s action, and the input is sy, , i.e. the states of the neighborhood
of agent . We update the policy parameters {60;}7 ; by taking one gradient descent step on the following
objective:

() = Equp exp(Lis; Qilsyrr, {-i}:l_m)] |

Z(s)

Dk, (H 7o, (i | SN

i=1

where D is a set of data from the replay buffer, Z(s) is a normalization constant. Above, we assume the
temperature parameter 7 to be 1. This objective is identical to the implementation in Soft-Actor-Critic
(SAC) | ] but for factored policies, as well as using the learned Q;-value functions to
approximate the value function.

3. (Feature step). For the spectral features, for each agent i, we add an additional feature step, which seeks to
regularize the features such that they approximate the top left eigenfunctions of the probability transition
P(syn | $pnt ), by taking a gradient descent step on the following objective to update agent i’s feature

Ayt
i
¢(8Niii+1 s (IN?Jrl )Z

min  Eges0)[|0(snmt1, anrs) 1P = 2Bags.a),simP(cfs,a) @0(Shi) T O(S o1, @), (12)
¢:{¢1)"'7¢L} z v K i i
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where in practice we pick d(s,a) to be the a set of samples from the current replay buffer. We note that
(12) can be seen as a randomized way to compute the singular value decomposition (SVD) of the transition

operator P(sye | Sys+1, +1), and we picked it due to its better numerical performance compared to
4 i UNE

existing spectral decomposi{ion methods in the literature | |, in our simulation example. We
also note that unlike for the model-based case (with random features), we do not have guarantees on the
end-to-end performance of the model-free version of the algorithm. However, we note that the feature step
encourages the features to minimize the objective in (1). We leave more detailed analysis of this to future
work. We give more details on the derivation of (12) in Appendix 7.9.3.

Experimental details and results (model-based). In this case, we do assume knowledge of the dynamics
function and that the noise is Gaussian, allowing us to use random features as the spectral features.

We focus on discussing the feature generation step, since this is the only difference with the previous model-free
case. For the random features, for each agent i, we select the random features according to the procedure in
Lemma 5 (with feature dimension being 1024), and in the simulations we set « = 0. For the NN implementation,
we use a two-hidden layer NN with hidden dimension 256. For the NN implementation, for a fair comparison, we
also give it knowledge of the dynamics function f; ,(sys+1,ay+1), such that it can use this information when
computing the local value functions. We note that for the poliéy evaluation step, for both random features and
NN, we perform gradient descent on the Bellman least square error.

The results of the learning performance are shown below. We see that while the spectral-based method has more
variance initially, it soon displays comparable performance to the NN-based implementation.
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Figure 4: Change in reward during training for Kuramoto oscillator control, N = 20, kr = 1,k = 2. In this experiment,
the dynamics model is known. The performance for each algorithm is averaged over 5 seeds.

7.9.3 Randomized Spectral Decomposition

We give here a more detailed derivation of the objective in (12). For simplicity, we focus on the single-agent case,
when we are trying to decompose P(s' | s,a) as P(s' | s,a) ~ ¢(s,a) " u(s"), and in particular trying to find the
@(s,a) in this decomposition. As suggested in | ], this is akin to finding the top left eigenfunctions
of P(s' | s,a). Motivated by randomized SVD for computing the top left singular vectors of finite-dimensional
matrices, in the functional space setting, we can perform an analogous randomized SVD to learn the top left
eigenfunctions of P(s’ | s,a) according to the following procedure.



Scalable spectral representations for multiagent reinforcement learning in network MDPs

1. Fix a positive integer L.

2. For each i € [L], sample a random function w;(s') € R, e.g. w;(s’) = cos(a; 8’ + 3;), where a; ~ N(0, I)
and §; ~ Unif([0, 27]).

3. For each i € [L], learn a ¢;(s,a) that approximates Pw;(s,a) := [, P(s' | s,a)w;(s')ds" as follows:

(a) Pick a sampling distribution d(s, a), e.g. uniform distribution.
(b) For each i € [L], solve

win [ d(s.a) (6x(5,0) ~ Pas(s.0))

7
)

= i [ d(so) (o(s.0) - [ P | sl

i

— n;)lln /S’a d(s,a)¢i(s,a)? — 2/51& d(s,a) /S/ ds'P(s' | s,a)w;(s")pi(s,a)

— H;)Hl IEd(s,a) [¢Z (Sa a)2] - 2]Ed(s,a),s’~P(-\s,a) [wi (S/)d)z (S, CL)]

We note that the final objective is equivalent to solving the L ¢;’s jointly which is single-agent analogue of the
objective in (12):

min ) Eacs,a)[l6(s, @)|1*] = 2Ea(s,a), 5/~ P(-|s,a) [w(s") T é(s,a)].
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