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Mitigating Eddington and Malmquist Biases in Latent-Inclination Inference of the Tully-Fisher Relation
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ABSTRACT
The Tully-Fisher relation is a vital distance indicator, but its precise inference is challenged by selection bias,

statistical bias, and uncertain inclination corrections. This study presents a Bayesian framework that simultane-
ously addresses these issues. To eliminate the need for individual inclination corrections, inclination is treated
as a latent variable with a known probability distribution. To correct for the distance-dependent Malmqvist bias
arising from sample selection, the model incorporates Gaussian scatter in the dependent variable, the distribu-
tion of the independent variable, and the observational selection function into the data likelihood. To mitigate
the statistical bias—termed the “general Eddington bias”—caused by Gaussian scatter and the non-uniform
distribution of the independent variable, two methods are introduced: (1) analytical bias corrections applied to
the dependent variable before likelihood computation, and (2) a dual-scatter model that accounts for Gaussian
scatter in the independent variable within the likelihood function. The effectiveness of these methods is demon-
strated using simulated datasets. By rigorously addressing selection and statistical biases in a latent-variable
regression analysis, this work provides a robust approach for unbiased distance estimates from standardizable
candles, which is critical for improving the accuracy of Hubble constant determinations.

Keywords: Linear regression (1945) — Bayesian statistics (1900) — Maximum likelihood estimation (1901) —
Scaling relations (2031) — Disk galaxies (391)

1. INTRODUCTION

The Tully-Fisher relation (TFR) is an empirical correlation
between luminosity (or mass) and maximum rotation veloc-
ity of spiral galaxies (Tully & Fisher 1977). The tightness
of the correlation makes it a remarkable distance indicator
in the category of standardizable candles, so it was immedi-
ately utilized to measure the Hubble constant H0 (Sandage &
Tammann 1976; Tully & Fisher 1977). In fact, the discov-
ery of the correlation between peak luminosity and rate of
decline for Type Ia supernovae, the most popular standardiz-
able candles today, was made possible by distances from the
TFR and surface brightness fluctuations (Phillips 1993). But
it was soon realized that the TF distances were affected by
local peculiar velocities (Tully 1988) and the Malmquist bias
(Giraud 1987). The classic Malmquist bias (Eddington 1914;
Malmquist 1922) is caused by observational selection effects
and the intrinsic scatter in the luminosity of standard candles.
The intrinsic scatter of the TFR is expected, as the physical
properties of the galaxies are unlikely to be fully captured by
rotation velocity alone. When a sample is subdivided in red-
shift, the Malmquist bias starts to show distance-dependent
behaviors, causing the artifact that the mean luminosity at
fixed rotation velocity (and H0 as a consequence) increases
outward (Sandage 1994a,b).

Multiple methods have been proposed to correct for the
distance-dependent Malmquist bias: (1) the method of re-
placing the linewidth-predicted mean luminosity with the
analytical mean luminosity that depends on both flux limit
and redshift (Sandage 1994a; Butkevich et al. 2005), (2) the
method of normalized distances, which enhances the S/N
of the luminosity-redshift diagram by shifting galaxies of
different luminosities diagonally along the luminosity limit
and uses the plateau at lower normalized distances to ob-
tain an unbiased luminosity estimate (Bottinelli et al. 1986,
1988), and (3) the method of maximum likelihood estima-
tion (MLE) that includes the distance-dependent sample se-
lection function in the data likelihood function (Willick 1994;
Willick et al. 1997). Among the three, the MLE is the most
powerful and versatile method, because it utilizes the full
data set, naturally accounts for heteroscedastic measurement
errors, and fits the slope, the intercept, and the intrinsic scat-
ter simultaneously. Willick et al. (1997) derived the likeli-
hood functions for the two commonly used “unidirectional”
models2: the forward TFR and the inverse TFR, where the
independent variable is velocity width and luminosity, re-

2 These unidirectional models include the error and the intrinsic scatter of
the dependent variable but neglect the scatter of the independent variable.
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spectively. Recent applications of the MLE method on the
Cosmicflows-4 (CF4) data include Kourkchi et al. (2022) for
the inverse TFR and Boubel et al. (2024) for the forward
TFR. However, even with identical data set, the inferred TF
parameters from the two unidirectional models disagree well
beyond the inferred statistical uncertainties. This happens be-
cause there is a separate bias in linear regression that stems
from the independent variable.

It has long been recognized that linear regression coeffi-
cients are biased when the independent variable is measured
with error, but the model ignores this error (e.g., Fuller 1987).
In § 3, I will derive the analytical formula of this additional
bias, which originates from the scatter and the distribution
function of the independent variable. Because the result re-
sembles that of the classic Eddington bias of the mean true
value, it will be referred to as the “general Eddington bias”.
The popular methods to mitigate this bias in general linear re-
gression include (1) the bivariate correlated errors and intrin-
sic scatter (BCES) estimator (Akritas & Bershady 1996) and
(2) the Bayesian dual-scatter methods (LINMIX3 by Kelly
2007 and ROXY4 by Bartlett & Desmond 2023)5. The for-
mer uses the moments of the data to estimate regression co-
efficients by correcting the bias in the ordinary least squares
(OLS) estimator, while the latter derives the data likelihood
function that includes not only the intrinsic scatter and selec-
tion function of the dependent variable, but also the covari-
ance matrixes of measurement errors and the intrinsic distri-
bution of the independent variable (approximated there as a
mixture of Gaussians for flexibility and mathematical con-
venience). The dual-scatter methods can reduce the general
Eddington bias but cannot address the distance-dependent
Malmquist bias, as these linear regression methods do not
treat distance as a separate variable within the dependent
variable. For example, in Kelly (2007) the sample selection
function p(I = 1|x,y) depends only on x and y; while for a
flux-limited survey, the selection function of y should depend
on distance (which is part of y if it represents luminosity).

Besides the distance-dependent Malmquist bias and the
general Eddington bias, a major data-related issue limits the
precision of our statistical inference of the TFR. Before mod-
eling, the observational data must be corrected for galaxy in-
clination. Inclination correction is necessary because (1) the
observed velocity width is projected along the line of sight
and the observed luminosity is attenuated by dust in the plane
of the disk and (2) random inclinations cause non-Gaussian
scatters in both axes. But inclination estimation with axial

3 https://github.com/jmeyers314/linmix
4 https://github.com/DeaglanBartlett/roxy
5 While LINMIX requires the user to set (1) the Gaussian scatter of the

independent variable and (2) a reasonable number of Gaussians to model
the distribution function, ROXY can infer these parameters from the data.

ratio is highly uncertain even for well resolved galaxies, be-
cause (1) the axial ratio depends the method (isophote fitting
vs. surface brightness modeling), the depth of the photomet-
ric data, and the bulge-to-disk ratio of the galaxy, and (2)
the inclination angle also depends on the unknown edge-on
thickness of the disk. As a result, galaxies with lower incli-
nations (e.g., < 45→ ! 60→ from face-on) are often discarded
in TF studies because of their larger inclination corrections.
Inclination correction also causes correlated errors because
the same inclination is used for both luminosity and velocity
width.

To avoid the problems caused by individual inclination cor-
rection, one can model the inclination statistically by treat-
ing it as a latent variable with a known probability density
function (pdf). It is a prime time to develop such meth-
ods, because wide-area H I surveys like ALFALFA (Haynes
et al. 2018) and WALLABY (Westmeier et al. 2022) con-
tinue to produce large samples of H I-selected galaxies at
all inclination angles. In Fu (2024), I introduced an iter-
ative latent-inclination method to restore the TFR from the
full ALFALFA sample using measurements not corrected for
inclination. The method is highly efficient and produces a
tighter correlation than that from inclination-corrected data.
But the method requires binning and the biases in the data are
carried directly into the restored TFR. For unbiased inference
of the TFR, one could incorporate the latent variable in the
data likelihood function. Obreschkow & Meyer (2013) pro-
posed a latent-inclination MLE method for the inverse TFR,
where luminosity is used to predict velocity width. But they
missed an important term in their derivation: the intrinsic dis-
tribution function of the independent variable. Even though
this term drops out in the likelihood function of the inverse
TFR (see § 5.2), its omission led the authors to incorrectly
conclude that for a dual-scatter model, the scatter of the in-
dependent variable can be added in quadrature to the scatter
of the dependent variable. As a result, their latent-variable
MLE model is unidirectional, hence does not account for the
general Eddington bias.

To summarize, precise and unbiased inference of the TFR
is limited by the distance-dependent Malmquist bias, the
general Eddington bias, and elusive measurement errors in
the inclination angle. While the literature addresses each
of these problems individually, no solution currently tack-
les all three simultaneously. For example, the unidirectional
MLE method (Willick et al. 1997) accounts for the distance-
dependent Malmquist bias, but it neglects the general Ed-
dington bias from the scatter of the independent variable.
The Gaussian-mixture dual-scatter Bayesian method (Kelly
2007; Bartlett & Desmond 2023) can account for the gen-
eral Eddington bias, but it does not correct for the distance-
dependent Malmquist bias because distance is not separated
from luminosity in these general regression methods. In ad-

https://github.com/jmeyers314/linmix
https://github.com/DeaglanBartlett/roxy
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dition, neither methods address the inclination-angle prob-
lem: they both require the input line widths to be individu-
ally corrected by inclination, so low-inclination galaxies are
excluded to avoid the most problematic corrections. Here I
develop latent-variable, dual-scatter, Bayesian methods that
incorporate (1) the Sine pdf of inclination angle, (2) the
distance-dependent selection function of luminosity, (3) the
Gaussian measurement errors and intrinsic scatters in both
the dependent and the independent variables, and (4) the dis-
tribution function of the independent variable. The precision
and efficacy of the methods in mitigating the biases will be
tested with synthetic data that realistically simulate (1) the
luminosity function of galaxies, (2) the distribution in incli-
nation angle and redshift, (3) the data censorship due to de-
tection limit, and (4) the measurement errors and intrinsic
scatters in both luminosity and rotation velocity.

This paper is organized as follows. In § 2, I describe the
observational data used in TFR studies and formulate the
TFR problem with shorthand notations. Next in § 3, I start
by discussing how biases of the regression coefficient impact
measurements of the Hubble constant. Then I describe how
observational selection effects and luminosity scatter bias the
mean luminosity via the distance-dependent Malmquist bias.
Finally, I show how the scatter in the independent variable
distorts the distribution of the dependent variable through a
formula analogous to the classic Eddington bias of the true
mean value. Both biases shift the first moment of the de-
pendent variable away from the true correlation, causing bi-
ases in the regression coefficients. The next four sections de-
tail the likelihood-based framework that tackles the three pri-
mary challenges of Tully-Fisher relation inference: distance-
dependent Malmquist bias, general Eddington bias, and in-
clination correction. First in § 4, I outline the methodology.
Next in § 5, I derive the data likelihood functions for two
latent-inclination unidirectional models: the forward model
and the inverse model that use rotation velocity and luminos-
ity as the independent variable, respectively. In § 6, I imple-
ment the likelihood functions in a Bayesian framework and
employ a Markov-Chain Monte Carlo method to sample the
posterior pdf of the inferred parameters. Simulated data of
disk galaxies with random sky orientations are then gener-
ated to test the numerical methods, to quantify the statistical
uncertainties, and to expose the biases of the inferred param-
eters. As expected, results are biased when the independent
variable is measured with error, due to the general Eddington
bias described in § 3. Two extensions of the unidirectional
models are then introduced to mitigate the general Edding-
ton bias. First, in § 7.1, I reverse the expected Eddington bias
in the velocity width data and use the moment-shifted data
to constrain the inverse model; and in § 7.2, I introduce the
latent-inclination bidirectional dual-scatter model by incor-
porating scatter of the independent variable in the likelihood

function. Tests on simulated datasets show that both methods
yield nearly unbiased estimates of model parameters, con-
firming the theory in § 3. Finally, I summarize the work and
discuss future extensions and applications in § 8.

To keep the main text focused on key concepts and results,
I defer extended equations and important numerical consid-
erations to the Appendices. Appendix A presents the com-
plete analytical expressions for the conditional pdfs that con-
stitute the likelihood functions for flux-limited samples. Ap-
pendix B gives the alternative derivation of the dual-scatter
model, starting from the inverse model, showing that it is
bidirectional (symmetric). Appendix C outlines the key nu-
merical methods that enhanced the evaluation speed of the
dual-scatter model’s likelihood function by three orders of
magnitude, rendering it computationally practical.

In general, Roman letters are used to denote observable
quantities and Greek letters are reserved for model param-
eters. I will use x̃ to indicate measured value (with errors)
and x to indicate the true value. Similarly, ω̃ and ω represent
the estimated value and the true value of parameter ω, respec-
tively. And the bias of the parameter estimation is defined as
Bω → ω̃ !ω.

Python functions and a Jupyter notebook implement-
ing the methods described in this paper are publicly
available on GitHub under the MIT license: https://
github.com/fuhaiastro/TFR_biases and on Zenodo under
an open-source Creative Commons Attribution license:
doi:10.5281/zenodo.16378199.

2. FORMULATION OF THE PROBLEM

The TFR has various empirical forms. The luminosity axis
could be absolute magnitude, stellar mass, or baryonic mass;
and the velocity axis could be line widths from neutral hy-
drogen (H I), molecular gas (CO), or ionized gas ([O II]). I
will formulate the problem using the TFR between baryonic
mass and H I line width, because (1) the addition of gas mass
to stellar mass tends to reduce the curvature of the correla-
tion (e.g., McGaugh et al. 2000; Kourkchi et al. 2022) and
(2) H I is the best tracer of the maximum rotation velocity
thanks to its extended spatial distribution. This choice does
not restrict the application of the methods to only baryonic
TFR, since the derived expressions can be easily adjusted to
suit magnitude-based TFRs.

The baryonic TFR is a power-law correlation between the
baryonic mass (stellar + gas) and the edge-on rotation veloc-
ity. In logarithmic, it is a linear relation with two coefficients
(ε,ϑ):

logMb = ε[logW ! logsin(inc) ! 2.5] +ϑ (1)

where logMb is the logarithmic baryonic mass in solar mass
(M↑) and logW ! logsin(inc) is the observed velocity width
(W in km s!1) corrected for the inclination angle (inc). The

https://github.com/fuhaiastro/TFR_biases
https://github.com/fuhaiastro/TFR_biases
https://doi.org/10.5281/zenodo.16378199
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relation is anchored at logV0 = 2.5 dex (or V0 = 316 km s!1),
so that the intercept ϑ is the baryonic mass of spirals with
edge-on velocity width of 316 km s!1.

The baryonic mass is calculated as the apparent baryonic
mass multiplied by the square of the luminosity distance,
which in logarithmic is:

logMb = logmb + 2logDL (2)

The apparent mass (logmb) includes the 4ϖ term and is calcu-
lated using the H I 21 cm flux (S21 in Jy km s!1) and apparent
magnitude in an optical/near-IR filter (mε) using the follow-
ing relation:

mb = 2.356↑105KgS21 + 10!0.4(mω!Mω,→!25)(M/L)ε (3)

where Kg is the H I-to-gas conversion factor (typically as-
sumed to be 1.33 to account for Helium), Mε,↑ is the abso-
lute magnitude of the Sun (Willmer 2018), and (M/L)ε is the
color-estimated mass-to-light ratio in solar units (M↑/L↑).
The latter two must be in the same filter as the galaxy mag-
nitude, as indicated by the subscript ϱ.

For most galaxies, distance is not a direct observable, but
rather an inferred quantity from the observed redshift and a
cosmological model. At low redshift (z < 0.1), the redshift-
derived luminosity distance can be accurately calculated us-
ing the Taylor expansion form of Caldwell & Kamionkowski
(2004):

DL ↓
cz
H0

[
1 + 1

2
(1 ! q0)z ! 1

6
(1 ! q0 ! 3q2

0 + j0)z2
]

(4)

where cz is the cosmological redshift in km s!1, H0 =
70 km s!1 Mpc!1 is the assumed Hubble constant, q0 = ! äa

ȧ2 =
!m,0/2!!!,0 is the deceleration parameter, and j0 = !

...a a2

ȧ3 =
!m,0 + !!,0 is the cosmic jerk. When adopting !m,0 =
0.315,!!,0 = 0.685 from Planck Collaboration et al. (2020),
q0 = !0.53 and j0 = 1.

In the following, I will use shorthand symbols for the log-
arithmic of the apparent mass, the distance squared, the ve-
locity width ratio, and the sine of the inclination:

m → logmb

d → 2logDL

w → logW ! 2.5
i → logsin(inc) (5)

With these shorthands, the TFR in Eq. 1 can be rewritten as:

m + d = ε(w ! i) +ϑ (6)

The data available to the astronomer are {m̃i, w̃i, d̃i}
N
k=1 for

a sample of N galaxies that survived the observational selec-
tion function S(m̃, w̃). The goal of parameter inference is to
optimally utilize these data to constrain the TF parameters
(ε,ϑ), ideally free of statistical and selection biases.

3. SELECTION BIAS AND STATISTICAL BIAS

It is important to mitigate biases in the inferred regression
coefficients of the TFR because a biased ϑ directly leads to
a biased Hubble constant (H0). Two separate samples are
needed to estimate H0: a larger and more distant redshift
sample and a smaller and closer zero-point sample. The dis-
tances of the former are calculated using an assumed value
of H0, and the distances of the latter are from standard can-
dles on the lower rung of the distance ladder (e.g., Cepheids).
The two separate samples are needed for H0 measurement be-
cause (1) the redshifts of the zero-point sample are strongly
influenced by peculiar velocities, and (2) the distances of the
redshift sample are inferred from an assumed H0. The TF
coefficients (ε,ϑ) are estimated using the redshift sample,
while the zero-point sample determines the intercept (ϑZP)
with Cepheid distances assuming the same slope ε. Since
it is fair to assume that both samples follow the same TFR,
any difference between the intercepts from the two samples
(ϑ and ϑZP) implies a deviation between the actual value of
H0 and the assumed Hubble constant (70 km s!1 Mpc!1):

log(H0/70) = 0.5(ϑ !ϑZP) (7)

As a result, the bias in ϑ will directly transfer to the inferred
Hubble constant:

BH0 ↓ 35ln10Bϑ = 4.84(Bϑ/0.06)kms!1 Mpc!1 (8)

A bias of 0.06 dex (or 0.15 mag) in the intercept would lead
to a bias of ↔5 km s!1 Mpc!1 in the Hubble constant, compa-
rable to the current “Hubble tension” (e.g. Riess et al. 2024).

Note that Bϑ is only one of the two biases involved in the
Hubble constant; the other is the bias of ϑZP from the zero-
point sample. It is thus critical to use the same statistical
model for the redshift and the zero-point samples, in addi-
tion to consistent measurements of rotation velocities and
masses (or luminosities) across the two samples (Bradford
et al. 2016). If the intercept biases from the two samples are
equal, they will cancel out, resulting in an unbiased H0 esti-
mate. However, this is unlikely, as the biases depend on sam-
ple characteristics that typically differ between the two sam-
ples. Therefore, to obtain an unbiased Hubble constant de-
termination, both samples must be analyzed using statistical
models that account for their specific characteristics to cor-
rect for their distinct biases. In the following, I describe how
random Gaussian scatter in both the dependent and indepen-
dent variables biases regression coefficients through mecha-
nisms akin to the classic Malmquist and Eddington biases.

The classic Malmquist bias (Eddington 1914; Malmquist
1922) is caused by data censorship and the Gaussian lumi-
nosity scatter of a standard candle. The classic Eddington
bias of the mean true value (Dyson 1926; Eddington 1940)
is due to measurement error and gradient in the distribution
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function of the measurements. The two biases are orthogo-
nal to each other: Malmquist takes the true mean luminosity
as known and compare it to the mean of the measured lu-
minosities that survived the selection (BM → ↗x̃↘ ! x), while
Eddington takes the measurement as known and compare
it to the mean of the unknown true values (BE → x̃ ! ↗x↘).
However, the two biases are often conflated because, in the
simplest cases, their mathematical outcomes appear similar.
The classic Malmquist bias of absolute magnitude for uni-
formly distributed standard candles with a Gaussian lumi-
nosity function of a mean of M and a standard deviation of
ςM is ↗M̃↘ ! M = !1.382ς2

M , and the Eddington bias of ap-
parent magnitude for uniformly distributed sources with con-
stant luminosity and a measurement error of ςm is m̃ ! ↗m↘ =
!1.382ς2

m. In both cases, the constant 1.382 is 0.6ln10.
To formulate the problem, consider a family of standardiz-

able candles on an idealized linear correlation: y(x) = εx +ϑ.
For galaxies on the TFR, y would be the logarithmic luminos-
ity and x the inclination-corrected logarithmic velocity width.
And the inverse function of y(x) is x(y) = (y !ϑ)/ε.

First, consider random Gaussian scatter only in the lumi-
nosity axis, ỹ = y(x) + φy, where the random variable φy is
drawn from a normal distribution with zero mean and a stan-
dard deviation of ςy. So the conditional pdf of ỹ at a given x
is a Gaussian:

p(ỹ|x) =
1

≃
2ϖςy

exp
(

! [ỹ ! y(x)]2

2ς2
y

)
(9)

When the sample is selected above a logarithmic luminosity
limit of yl that depends on distance (DL; yl = 2logDL + const.
for a flux-limited sample), the selection function and the lu-
minosity dispersion ςy shifts the mean luminosity of the ob-
served sample relative to the correlation-predicted mean lu-
minosity according to:

y(x) ! ↗ỹ↘x =

∫↓
yl

[y(x) ! ỹ]p(ỹ|x)dỹ
∫↓

yl
p(ỹ|x)dỹ

= !ςy

√
2
ϖ

exp[!(yl ! y(x))2/(2ς2
y )]

erfc[(yl ! y(x))/(
≃

2ςy)]
(10)

For the TFR, y(x) is the correlation-predicted luminosity for
a given rotation velocity and ↗ỹ↘x is the mean of measured
luminosities at the same rotation velocity. Because the dif-
ference between the two depends on distance, this is termed
the “distance-dependent Malmquist bias” (e.g., Willick 1994;
Butkevich et al. 2005).

Next, consider the scatter is instead only in the x-axis,
x̃ = x(y) + φx, where the random variable φx is drawn from
a normal distribution with zero mean and a standard devia-
tion of ςx. In this case, there is no selection function, but
the mean y will still be shifted from the correlation-predicted
value, because the distribution of y at a given x̃ is altered from

a Gaussian according to Bayes’ rule:

p(y|x̃) =
p(x̃|y)p(y)

p(x̃)
(11)

where the conditional pdf of x̃ at a given y is a Gaussian:

p(x̃|y) =
1

≃
2ϖςx

exp
(

! [x̃ ! x(y)]2

2ς2
x

)

=
1

≃
2ϖςx

exp
(

! [y(x̃) ! y]2

2(εςx)2

)
(12)

For the TFR, the difference between the correlation-
predicted luminosity at a measured rotation velocity [y(x̃)]
and the mean luminosity at the same rotation velocity (↗y↘x̃)
can be calculated as:

y(x̃) ! ↗y↘x̃ =
∫

[y(x̃) ! y]
p(x̃|y)p(y)

p(x̃)
dy

=
∫

[y(x̃) ! y]
1

≃
2ϖςx

exp
(

! [y(x̃) ! y]2

2(εςx)2

)
p(y)
p(x̃)

dy

=
ε2ςx

≃
2ϖp(x̃)

∫
↼

↼y

[
exp

(
! [y(x̃) ! y]2

2(εςx)2

)]
p(y)dy (13)

The symmetry between y and y(x̃) in the exponential function
allows the chain rule:

y(x̃) ! ↗y↘x̃

= ! ε2ςx
≃

2ϖp(x̃)

∫
↼

↼y(x̃)

[
exp

(
! [y(x̃) ! y]2

2(εςx)2

)]
p(y)dy

= !ες2
x

p(x̃)

∫
↼

↼x̃
[
p(x̃|y)p(y)

]
dy (14)

The final result is obtained by taking the derivative out of the
integral (Leibniz’s integral rule):

y(x̃) ! ↗y↘x̃ = !ες2
x

p(x̃)
d
dx̃

(∫
p(x̃|y)p(y)dy

)

= !ες2
x

d ln p(x̃)
dx̃

(15)

The result is analogous to the classic Eddington bias of the
mean true value (Dyson 1926; Eddington 1940):

x̃ ! ↗x↘x̃ = !ς2 d ln p(x̃)
dx̃

(16)

where x̃ is the measured value, ↗x↘x̃ =
∫

xp(x|x̃)dx the mean of
the true values that could have produced the measured value,
ς the measurement error, and p(x̃) the distribution function
of the measured values. In fact, the classic Eddington bias is
a special case of Eq. 15 for ε = 1 and ϑ = 0. Thus, this bias is
termed the “general Eddington bias”.

Both biases affect the estimates of regression coefficients
by distorting the underlying data distribution. It is easy to
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imagine how the general Eddington bias leads to biased re-
gression coefficients. Suppose p(x̃) is a simple exponential
distribution function, p(x̃) ⇐ exp(x̃/x0), the Eddington bias
is a constant, implying a vertical shift of the best-fit relation
from the truth, causing the intercept to change while keeping
the slope intact. For other distributions (e.g., power-law or
Schechter function), the Eddington bias varies with x̃, lead-
ing both the slope and the intercept to drift away from the
truth. The distance-dependent Malmquist bias affects the re-
gression coefficients in a more complicated way because the
bias depends not only on luminosity scatter and flux limit,
but also on redshift and the unknown true correlation.

The biases operate on the data simultaneously but are
driven by different sample characteristics: Malmquist by lu-
minosity dispersion and luminosity limit [ςy,yl(cz)], while
Eddington by dispersion of the independent variable and its
distribution function [ςx, p(x̃)]. From a modeling perspec-
tive, correcting the biases in parameter estimation thus re-
quires statistical models that build in all of those sample char-
acteristics [ςy,yl(cz),ςx, p(x̃)].

4. OVERVIEW OF THE METHODOLOGY

Although the TFR is often described as a simple linear cor-
relation in logarithmic scales, the inference of its slope and
intercept is not a simple linear regression problem, because
of several important characteristics of the TFR problem:

• The dependent variable (e.g., baryonic mass) is a com-
bination of two observables: the apparent mass and
the luminosity distance from redshift. For flux-limited
samples, the selection function of the dependent vari-
able depends on distance (not mass).

• The independent variable (maximum rotation velocity)
requires de-projecting the apparent H I line width to the
edge-on perspective. So it requires estimating the in-
clination angle of the disk relative to the line-of-sight.

• There are measurement errors in all four observables,
and there are intrinsic dispersions in both axes6.

Because of these characteristics, precise and unbiased in-
ference of the TFR is limited by three major factors:

• The uncertain estimate of the inclination angle.

6 The dual intrinsic dispersion model posits that galaxies with identical
luminosity may exhibit a range of maximum rotation velocities, and sim-
ilarly, galaxies with identical rotation velocities may show a range of
luminosities. The extent of these dispersions, both absolute and rela-
tive, should be derived from the data rather than arbitrarily set by the
observer. Like measurement errors, the intrinsic Gaussian dispersions
along the two axes cannot be merged into a single Gaussian when distri-
bution functions are non-uniform.

• The distance-dependent Malmquist bias (Eq. 10) due
to (1) the separation of flux limit and luminosity limit
in a sample covering a range of distances, and (2) the
measurement error and the intrinsic dispersion in mass.

• The general Eddington bias (Eq. 15) due to (1) non-
uniform distributions of galaxies in rotation velocity,
and (2) the measurement error and the intrinsic scatter
in rotation velocity.

In this work, I will tackle all three problems simultane-
ously in a self-consistent Bayesian framework:

• To avoid errors associated with inclination measure-
ments, galaxy inclination is treated as a latent variable
with a known pdf, which is then marginalized when
computing the data likelihood function.

• To mitigate the Malmquist bias, apparent masses and
redshift-inferred distances are kept separate in all ex-
pressions, and the conditional probability of the ap-
parent mass is normalized to account for the distance-
dependent sample truncation.

• To mitigate the Eddington bias, two approaches are in-
troduced: (1) the analytical formula of the bias from
§ 3 is utilized to correct for the moment of the data in
an iterative fashion (§ 7.1), and (2) both the Schechter
distribution function and the scatter of the independent
variable are included in the data likelihood function
of a “bidirectional dual-scatter model” (§ 7.2). The
model is bidirectional (symmetric), producing equiva-
lent likelihood functions regardless of whether rotation
velocity or baryonic mass is selected as the indepen-
dent variable.

5. DERIVATION OF THE LIKELIHOOD FUNCTIONS

To begin the Bayesian inference process, I derive the data
likelihood functions for the two unidirectional models: the
forward model with rotation velocity as the independent vari-
able and the inverse model with mass as the independent
variable. These models are useful because they isolate the
Eddington bias (§ 6.3) and lay the foundation for the more
complicated bidirectional dual-scatter model (§ 7.2).

5.1. The Forward Model

The forward model uses velocity width (w! i) to predict the
mass (m + d). It also assumes Gaussian dispersion along the
mass axis. By using w as an independent variable, its mea-
surement error is inherently ignored in the forward model. To
make this explicit in the notation and to distinguish the for-
ward model with the dual-scatter model in § 7.2, I use w in
place of w̃ in this subsection. In addition, the residual redshift
noise propagated into the distance parameter d̃ is ignored and
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d is used in place of d̃ to make this assumption explicit. But
I will comment on how to properly include redshift noise in
the likelihood function.

Given the TFR in Eq. 6, the forward model can be ex-
pressed as:

m̃ = ε(w ! i) ! d +ϑ + φim + φem (17)

where the random variables represent the intrinsic dispersion
(φim) and the measurement error (φem), and they are drawn
from Gaussian distributions with zero means and standard
deviations of ςim and ςem, respectively.

In addition, the forward model also requires parameter-
izing the distribution function of edge-on rotation velocity
(w ! i) of the galaxy population (hereafter “velocity func-
tion”). Given the TFR that links velocity with mass, the ve-
locity function is closely related to the mass function, which
is parameterized as a Schechter function:

dn
d(m + d)

= ↽⇀10(ϖ+1)(m+d!M⇀) exp(!10m+d!M⇀ ) (18)

where ⇁ is the faint-end slope, M⇀ the characteristic mass
(above which the exponential drop-off commences). Typi-
cally, the normalization factor ↽⇀ is in units of Mpc!3 dex!1;
for the purpose here, I redefine ↽⇀ as the factor that normal-
izes the distribution function to unity so that it becomes a
properly normalized pdf p(m + d).

Substituting m + d with ε(w ! i) +ϑ, one obtains the corre-
sponding velocity function:

dn
d(w ! i)

= ε↽⇀10(ϖ+1)[ϱ(w!i)!v⇀] exp[!10ϱ(w!i)!v⇀ ] (19)

where v⇀ = M⇀ ! ϑ, which equals the characteristic logarith-
mic velocity multiplied by ε. Notice the extra ε in front of
↽⇀ because d(m + d) = εd(w ! i).

In the following, I will start by expressing the joint prob-
ability of (m̃,d,w, i), then marginalize it over i to obtain the
joint probability of the observables (m̃,d,w), and finally us-
ing the joint probability and the selection function to calcu-
late the conditional probability of m̃, which makes up the
likelihood function.

The joint probability that a galaxy has the three observ-
ables (m̃, d̃,w) and an inclination i can be factorized using
the multiplication rule:

p(m̃,d,w, i) = p(m̃|w, i,d)p(w|i)p(i)p(d) (20)

When choosing these factors, I have considered relations be-
tween the variables and have made the following assump-
tions:

• the velocity function parameters does not evolve over
the redshift range covered by the sample, so that p(w|i)
does not depend on distance.

• inclination and distance are independent variables, so
that p(i,d) = p(i)p(d).

The particular set of conditional pdfs are straightforward
to express. The first term is obtained by marginalizing the
join pdf p(m̃,m|w, i,d) over m, which is a convolution of two
Gaussians:

p(m̃|w, i,d) =
∫ ↓

!↓
p(m̃|m)p(m|w, i,d)dm

=
1

ςm
≃

2ϖ
exp

[
! [m̃ + d !ε(w ! i) !ϑ]2

2ς2
m

]
(21)

Per the convolution theorem of Gaussians, the variance of
the convolved Gaussian, ς2

m, is the sum of the variances from
intrinsic dispersion and measurement error:

ς2
m = ς2

im +ς2
em (22)

Note that the likelihood-based method naturally handles het-
eroscedastic measurement errors, because a different ςem can
be supplied for each source while ςim is kept as a constant for
the whole sample.

The second term is the probability of projected velocity
given the inclination and it can be expressed by the normal-
ized Schechter velocity function in Eq. 19:

p(w|i) = ε↽⇀10(ϖ+1)[ϱ(w!i)!v⇀] exp[!10ϱ(w!i)!v⇀ ] (23)

The velocity function is a critical component of the forward
model because the term depends on i so it does not drop out
in the conditional pdf in Eq. 30 below.

The third term is the prior pdf of the inclination parameter.
Assuming isotropic random orientation on the sky, the pdf of
inclination angle inc is a sine function: p(inc) = sin(inc) for
0< inc< ϖ/2. The pdf of i→ logsin(inc) can then be derived
using the pdf identity p(i)di = p(inc)dinc, and the result is:

p(i) = ln10
102i

≃

1 ! 102i
(24)

Note that i ⇒ 0 given its definition.
The last term is the probability of observing a galaxy at

a given distance. It is proportional to the integrated galaxy
volume density at the distance n(d) (i.e., the redshift distribu-
tion) multiplied by the survey volume !D2

LdDL. Expressed
in distance parameter d, the probability is:

p(d) ⇐ 103d/2n(d) (25)

When one ignores the difference between the redshift-
inferred distance d̃ and the true distance d (as assumed here),
this term drops out in the conditional pdf in Eq. 30 below.
But if one opts to account for this difference (e.g., Willick
et al. 1997), the following term needs to be multiplied to the
joint pdf in Eq. 28 below to obtain p(m̃,w, d̃,d, i):

p(d̃|d) =
1

ςd
≃

2ϖ
exp

[
! (d̃ ! d)2

2ς2
d

]
(26)
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where the standard deviation is proportional to the ratio be-
tween the velocity noise (ςcz) and the redshift:

ςd ↓
2

ln10
ςcz

cz
(27)

and an additional marginalization over d is required when
calculating the joint pdf of the three observables in Eq. 29.
Note that because of the additional d-dependent terms in p(d)
(Eq. 25), the marginalization over d is not as simple as the
marginalization over m in Eq. 21. For this reason, it is incor-
rect to absorb this integral over d by simply adding ς2

d to ς2
m

in Eq. 22.
Combining the terms defined above, the joint probability

can be written is:

p(m̃,w,d, i) = p(d)↑
ln10 ·102i
≃

1 ! 102i

↑
1

ςm
≃

2ϖ
exp

[
! [m̃ + d !ε(w ! i) !ϑ]2

2ς2
m

]

↑ε↽⇀10(ϖ+1)[ϱ(w!i)!v⇀] exp[!10ϱ(w!i)!v⇀ ] (28)

which can then be marginalized over i to obtain the joint
probability of the three observables:

p(m̃,w,d) =
∫ 0

!↓
p(m̃,w,d, i)di (29)

The observational selection function, S(m̃,w), truncates
the joint pdf, p(m̃,w,d), so that the resulting pdf is no
longer normalized. To account for S(m̃,w) and the associ-
ated Malmquist bias, one shall compute the conditional pdf
of m̃ by normalizing the truncated joint pdf:

p(m̃|w,d) =
S(m̃,w)p(m̃,w,d)∫↓

!↓ S(m̃,w)p(m̃,w,d)dm̃

=
S(m̃,w)

∫ 0
!↓ p(m̃|w, i,d)p(w|i)p(i)di

∫↓
!↓ S(m̃,w)

∫ 0
!↓ p(m̃|w, i,d)p(w|i)p(i)didm̃

(30)

Notice that the distance distribution function, p(d), has can-
celled out in the division. When the sample is simply flux-
limited by a step function, the integral over m̃ on the denom-
inator becomes an error function, making it much faster to
evaluate. I provide the full expression of the conditional pdf
for flux-limited samples in Eq. A3 in Appendix A.

The data likelihood function (L) is defined as the proba-
bility of the data given the model. For the forward model,
the data are {m̃k}

N
k=1 and the model is the combination of the

model parameters ω → (ε,ϑ,ςm,v⇀,⇁) and the independent
variables {wk,dk}

N
k=1. It is thus the product of the conditional

probabilities in Eq. 30 of all valid data points. In practice, its
logarithmic is preferred:

lnL =
N∑

k=1

ln p(m̃k|wk,dk) (31)

5.2. The Inverse Model

The inverse model uses mass (m + d) to predict velocity
width (w ! i) and assumes Gaussian dispersion along the ve-
locity axis:

w̃ ! i = (m + d !ϑ)/ε + φiw + φew (32)

where the random variables represent the intrinsic dispersion
in velocity (φiw) and measurement error (φew). By using m + d
as the independent variable, its measurement error is inher-
ently ignored in the inverse model, so I use m and d in place
of m̃ and d̃ in this subsection.

Starting by factorizing the joint pdf:

p(w̃,m,d, i) = p(w̃|m,d, i)p(m|d)p(d)p(i) (33)

Similar to the forward model, the first term is obtained by
marginalizing the joint pdf p(w̃,w|m,d, i) over w:

p(w̃|m,d, i) =
∫ ↓

!↓
p(w̃|w)p(w|m,d, i)dw

=
1

ςw
≃

2ϖ
exp

[
! [w̃ ! i ! (m + d !ϑ)/ε]2

2ς2
w

]
(34)

where the variance ς2
w is the sum of the variances from in-

trinsic dispersion and measurement error:

ς2
w = ς2

iw +ς2
ew (35)

The second term is the normalized mass function in Eq 18:

p(m|d) = ↽⇀10(ϖ+1)(m+d!M⇀) exp(!10m+d!M⇀ ) (36)

For simplicity, I assume that the baryonic mass function is
independent of inclination angle, implying that intrinsic dust
extinction has been corrected for when calculating the stellar-
mass-to-light ratio using color. The last two terms of the joint
pdf are the same as in Eqs. 24 and 25. Therefore, the joint pdf
can be written as:

p(w̃,m,d, i) = p(d)↑
ln10 ·102i
≃

1 ! 102i

↑
1

ςw
≃

2ϖ
exp

[
! [w̃ ! i ! (m + d !ϑ)/ε]2

2ς2
w

]

↑↽⇀10(ϖ+1)(m+d!M⇀) exp(!10m+d!M⇀ ) (37)

which can then be marginalized over i to obtain the joint
probability of the three observables:

p(w̃,m,d) =
∫ 0

!↓
p(w̃,m,d, i)di (38)

The conditional probability of w̃ is then obtained by nor-
malization:

p(w̃|m,d) =
S(m, w̃)p(w̃,m,d)∫↓

!↓ S(m, w̃)p(w̃,m,d)dw̃

=
S(m, w̃)

∫ 0
!↓ p(w̃|m, i,d)p(i)di

∫↓
!↓ S(m, w̃)

∫ 0
!↓ p(w̃|m, i,d)p(i)didw̃

(39)
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where both the mass distribution function, p(m|d), and the
distance distribution, p(d), have dropped out. Hence, only
the three TFR model parameters are constrained by the in-
verse model: ω → (ε,ϑ,ςw). When the selection function de-
pends only on m [i.e., S(m, w̃) = S(m)], it also drops out from
the expression, further simplifying the result:

p(w̃|m,d) =
∫ 0

!↓
p(w̃|m,d, i)p(i)di

=
ln10

ςw
≃

2ϖ

∫ 0

!↓

102i
≃

1 ! 102i
exp

[
! [w̃ ! i ! (m + d !ϑ)/ε]2

2ς2
w

]
di

(40)

The data likelihood function is obtained from the condi-
tional pdf in the same manner as in the forward model:

lnL =
N∑

k=1

ln p(w̃k|mk,dk) (41)

6. IMPLEMENTATION AND TESTING

This section describes how I implement the latent-
inclination unidirectional models in a Bayesian framework
(§ 6.1), simulate TF galaxy samples with random sky orien-
tations (§ 6.2), and test the models with simulated data sets
(§ 6.3). The testing reveals the biases of inferred param-
eters when the independent variable randomly scatters, as
expected from the general Eddington bias described in § 3.
For measurement errors and sample sizes typical for the AL-
FALFA sample, the biases are much greater than the inferred
statistical uncertainties and they scale with the scatter of the
independent variable.

6.1. Parameter Inference

The Bayesian theorem uses the data likelihood function
lnL to update the prior knowledge of the model to provide
the posterior distribution of the model parameters given the
data (D):

ln p(ω|D) = lnL+ ln p(ω) ! ln p(D) (42)

where p(ω) is the prior pdf of the model parameters and p(D)
is the Bayesian evidence of the model as a whole.

When prior knowledge is insufficient or ignored, the priors
are assumed to be flat within specified bounds:

p(ω) =
∏

j

1
”ω j

(43)

When such bounded flat priors are assumed, the posterior
peaks at the parameters that maximizing the data likelihood,
making the Bayesian inference essentially the same as MLE.

The evidence is defined as the marginalized probability of
the data (D) over all model parameters (ω) of a given model:

p(D) =
∫

p(D|ω)p(ω)dω (44)

It is often challenging to evaluate the evidence accurately
because it is a multi-dimensional integral that requires calcu-
lations of the data likelihood function over the entire param-
eter space. But it can be safely ignored for the purpose of pa-
rameter inference, because it is a constant for a given model
and a given data set. In addition, Markov-Chain Monte Carlo
(MCMC) algorithms do not require normalized pdf to sample
the parameter space at frequencies proportional to the pdf,
making them the favored method for Bayesian inference.

I employ the affine-invariant MCMC ensemble sampler
implemented in the Python code emcee7 (Foreman-Mackey
et al. 2013) to sample the posterior pdfs. The ensemble ap-
proach is naturally parallelizable, inherently handles corre-
lated parameters, and minimizes the need for manual tuning
of step sizes for poorly scaled parameters. Standard proce-
dure to set up the sampler is followed. The number of walkers
is set to an integer number of CPU cores and is set between
two and three times the number of free parameters. Starting
from random initial positions within the bounds, the walk-
ers proceed until the length of the chains exceeds 50 times
the estimated autocorrelation length (l; typically between 40
and 200 steps). After discarding the initial 2l steps (“burn-
in”) and thinning the chains by keeping one step for every
l/2 steps, the chains from all walkers are combined to form
the final parameter array, whose distribution functions should
trace the posterior pdfs of the parameters given the data. For
each model parameter, I quote the best-fit value and the 1ς
(68%) credible interval given by the 50th, 16th, and 84th per-
centiles of the marginalized cumulative distribution function.

6.2. Simulated Data for Testing

To test whether the models in § 5 can recover unbiased
parameter estimation, I simulate three samples of galaxies
where the ground truth of the model parameters are known.
I start the process by random sampling of the velocity func-
tion in narrow redshift intervals. This is necessary because
other than the Schechter function parameters, the survey vol-
ume and the redshift distribution also change the probability
of sampling a galaxy with a particular rotation velocity, and
both of these factors could vary with redshift. So the first
step is to divide the specified redshift range into a fine grid
of equal intervals (δcz), then for each redshift, a subsample
is generated following the procedure below:

1. The redshift grid center, cz0, represents the true cosmo-
logical redshift of the simulated subset, i.e., all galax-
ies in this subset are at the same true distance d(cz0),
calculated using Eq. 4.

2. The initial subsample size for each cz0 is calculated as
N0 = a (cz0)2+n δcz, where a is a scale factor and n is

7 https://emcee.readthedocs.io

https://emcee.readthedocs.io
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Figure 1. Distributions of simulated sample C in baryonic mass vs. projected line width (left) and baryonic mass vs. redshift (right). The
dashed line in the left panel shows the prescribed TFR and the dashed curve in the right panel shows the mass limit as a function of redshift.

Table 1. Input Parameters vs. Inferred Parameters

Simulated Data Set
Parameter A B C
Input Parameters (Truth)
ωm 0.15 0.0 0.15
ωw 0.0 0.045 0.045
ε 10.50 10.50 10.50
ϑ 3.33 3.33 3.33
v⇀ 0.3 0.3 0.3
ϖ !1.27 !1.27 !1.27
ml 5.736 5.736 5.736
N 10,132 10,111 10,147
Inferred Parameters from Forward Model
ε 10.502+0.004

!0.004 10.444+0.004
!0.003 10.450+0.005

!0.005

ϑ 3.355+0.031
!0.031 3.094+0.024

!0.025 3.164+0.039
!0.037

ωm 0.162+0.003
!0.003 0.145+0.003

!0.003 0.210+0.004
!0.004

v⇀ 0.264+0.033
!0.033 0.273+0.033

!0.030 0.248+0.040
!0.037

ϖ !1.206+0.039
!0.040 !1.225+0.042

!0.043 !1.181+0.046
!0.043

Inferred Parameters from Inverse Model
ε 10.560+0.004

!0.003 10.500+0.003
!0.003 10.554+0.005

!0.004

ϑ 3.587+0.025
!0.024 3.337+0.023

!0.024 3.593+0.029
!0.029

ωw 0.046+0.001
!0.001 0.046+0.001

!0.001 0.062+0.001
!0.001

NOTE—The fitted parameters are assumed to have flat priors within
the following bounds: 10 < ε < 11, 2.5 < ϑ < 4.5, 0.001 < ωm <
0.3, 0.001 < ωw < 0.1, !1 < v⇀ < 1, and !2 < ϖ < 0. For both the
forward and the dual-scatter models, the standard mass limit ml is
fixed to the input value.

the power-law index of the integrated galaxy volume
density. Both parameters can be adjusted to change

the redshift distribution and the size of the final sample
after the selection function is applied.

3. Optional: Random redshifts perturbed by velocity
noise, {czi}

N0
i=1, are drawn around cz0 following a nor-

mal distribution with a mean of cz0 and a standard de-
viation of ςcz: N (cz0,ς2

cz). Distances, {d̃i}, are then
calculated from {czi} using Eq. 4. The velocity noise
is thus propagated into {d̃i}.

4. Intrinsic edge-on velocities, {vi}, are drawn from the
Schechter function in Eq. 19 with specified parameters
(v⇀,⇁) using the inverse transform sampling method.
The default sampling range is !3.5 < εv ! v⇀ < 1.5.

5. Intrinsic masses, {Mi}, are calculated from the edge-
on velocities using an idealized TFR: Mi = εvi + ϑ.
The exact linear relation between {vi} and {Mi} makes
sampling the intrinsic velocity function equivalent to
sampling the intrinsic mass function in Eq. 18, as long
as M⇀ is set to equal v⇀ +ϑ.

6. Apparent masses, {m̃i}, are calculated from the ide-
alized TFR mass by subtracting the true distance and
adding Gaussian scatters: m̃i = Mi ! d(cz0) + φm. The
random scatter φm is drawn from a normal distribution
with a standard deviation of ςm: N (0,ς2

m).

7. Projected velocities, {w̃i}, are calculated from the
edge-on velocities by adding random inclinations and
Gaussian scatters: w̃i = vi + logsinφi + φw. To simulate
samples with isotropic random orientations, the cosine
of the inclination angle, cosφi, is drawn from a uniform
distribution between 0 and 1, which then allow sinφi to
be computed as

√
1 ! cos2 φi. The random scatter in
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w is drawn from a normal distribution with a standard
deviation of ςw, i.e., φw ↔N (0,ς2

w).

8. Finally, the observational selection function, S(m̃, w̃),
is applied to the simulated data set, and the survived
subsample is kept.

For simplicity, I use homoscedastic scatters in the simu-
lated data (i.e., ςm and ςw are both constants for the en-
tire sample), although the Bayesian methods can handle het-
eroscedastic measurement errors. It is worth noting that the
frequently reported increase in mass/magnitude dispersion
among slow rotators in a TF sample is mainly due to the
smearing of the luminosity limit across the redshift range
of the sample (see Fig. 1 for example). Dispersion measure-
ments in mass/magnitude near these luminosity limits should
be deemed as upper limits, thus they do not offer evidence
for heteroscedastic intrinsic dispersion in the TFR.

Three simulated samples were generated for testing. They
assume modest levels of scattering that are typically expected
in galaxy samples like the ALFALFA or CF4:

A. ςm = 0.15,ςw = 0 (no scatter in w)

B. ςm = 0,ςw = 0.045 (no scatter in m)

C. ςm = 0.15,ςw = 0.045 (scatters in both axes)

Samples A and B match the assumptions of the forward
model and the inverse model, respectively, and Sample C rep-
resents the more realistic case where scatters are present in
both axes. The ratio of the dispersions, ςm/ςw, matches the
assumed slope of the TFR (ε = 3.33) to ensure equal contri-
butions.

The other model parameters are shared across the samples:

• The velocity noise due to residual peculiar motion is
ignored (ςcz = 0) to avoid the additional marginaliza-
tion over the true distance, as explained in § 5.1.

• The selection function depends only on the apparent
logarithmic mass (m̃) and is a step function with a
detection limit at ml = 5.736, appropriate for the AL-
FALFA sample.

• The power-law index of the integrated galaxy volume
density is set to n = !1 to produce a flatter redshift dis-
tribution, and the sampling scale factor is set to pro-
duce ↔10,000 galaxies over the redshift range between
4,000 < cz < 18,000 km s!1 above the detection limit.
The sample size and its redshift distribution are com-
parable to those of H I-selected galaxy samples like the
ALFALFA and CF4.

• The TF parameters are set to ε = 3.33 and ϑ = 10.5,
similar to the values found in Kourkchi et al. (2022).

• The Schechter function parameters for the intrinsic
velocity and mass distributions are set to ⇁ = !1.27,
v⇀ = 0.3, and M⇀ = v⇀ + ϑ = 10.8. These values are
consistent with the tabulated baryonic mass function
of Papastergis et al. (2012).

The input parameters and the final sample sizes (N) are listed
in Table 1. As an example, Fig. 1 shows the distributions of
simulated sample C in the plane of mass vs. projected ve-
locity width and mass vs. redshift. The former illustrates the
combination of Sine scatter and Gaussian scatters, while the
latter illustrates the observational selection function.

6.3. Code Validation and the General Eddington Bias

According to the theory of the general Eddington bias in
§ 3, parameter estimation from unidirectional models would
be unbiased only when there is no scatter in the independent
variable; otherwise, the estimated parameters will be biased.
The testing in this subsection thus serves two purposes: (1) to
validate the implementation of the likelihood functions in the
code, and more important, (2) to quantify the level of Edding-
ton biases when there is scatter in the independent variable.

Assuming bounded flat priors for all parameters, I run the
forward and the inverse models on the three simulated sam-
ples and the inferred parameters are compared to the input
parameters in Table 1. The MCMC-sampled posterior pdfs
of the two key parameters (TF slope ε and intercept ϑ) are
presented in Fig. 2. As expected, the forward model recovers
the truth using Sample A, and the inverse model recovers the
truth using Sample B. These findings provide confidence in
the implemented likelihood functions of the two models. On
the other hand, significant biases are observed when the for-
ward model is used on Samples B and C (where ςw ⇑= 0), and
when the inverse model is used on Samples A and C (where
ςm ⇑= 0).

The directions of the biases are that the forward model un-
derestimate both parameters while the inverse model over-
estimate them. The amount of biases (Bϑ ⇓ ±0.06,Bϱ ⇓

±0.24) are significantly greater than the statistical uncertain-
ties shown in the marginalized pdfs (ςϑ ⇓ 0.004,ςϱ ⇓ 0.03).
Further experiments show that both biases increase almost
linearly with the variance of the independent variable (see
§ 7.3).

It is worth noting that the same biases are present when
inclination-corrected data are used; i.e., the bias is not intro-
duced by treating inclination as a latent variable. Instead, it is
a feature of unidirectional regression models. As mentioned
earlier, it is well known that the OLS estimate of the regres-
sion slope is biased to zero when the independent variable is
measured with error (e.g., Fuller 1987; Akritas & Bershady
1996). Since least-squares is a maximum likelihood esti-
mator, the same biases are expected in unidirectional MLE
methods that neglect the error of the independent variable,
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Figure 2. MCMC-sampled posterior pdfs from the forward (blue)
and the inverse (red) models for samples A, B, and C, respectively.
For simplicity, only the two TF parameters are shown: slope (ϑ)
and intercept (ε). In all posterior plots, the contours in the joint
pdfs enclose 68% and 95% of the volume, the highlighted regions
in the marginalized pdfs show the credible intervals defined by the
16th and the 84th percentiles, and the black crosses indicate the
truth. Biases appear whenever the data contains scattering in the
model-assumed independent variable.

Figure 3. The distribution of mass vs. projected line width of the
input data (a) is compared with the distributions of larger samples
simulated using the best-fit parameters of the forward model (b)
and the inverse model (d). The contours enclose bins containing a
minimum of 9 objects in panel a. In this example, the input data
are from sample A, so only the forward model inferred the correct
TF parameters. However, both models fit the distribution of the data
equally well according to the residuals in panels c and e. This result
shows that it is difficult to use a goodness-of-fit parameter such as
the reduced ϱ2 to select the correct model.

regardless whether the data are corrected for inclination or
not.

Despite of the biased parameter estimation, both models
fit the input data equally well for all three input samples. I
demonstrate this with sample A in Fig. 3, where simulated
samples 20↑ larger than the input sample are generated using
the best-fit parameters of the two models8, and their distribu-
tions are compared with that of the input sample. The model
residuals show statistical fluctuations comparable to the Pois-
son noise, as indicated by the reduced χ2 values around unity.
The slight difference in the χ2 values between the two mod-
els is actually due to the stochastic nature of the simulated

8 Unconstrained ω is set to zero and unconstrained Schechter function pa-
rameters are set to the truth values.
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Figure 4. MCMC-sampled posterior pdfs from the inverse model
after iterative corrections of the general Eddington bias. Sample C
is used as the input data. Iteration 0 is before any bias correction,
so it is the same as the posterior of the inverse model in Fig. 2c. In
subsequent iterations, {w̃k}N

k=1 are bias corrected using Eq. 51. The
process converges after just a few iterations, but unbiased parameter
inference is achieved only when the correct ωm is specified.

samples. This finding shows that the goodness-of-fit cannot
be used to tell which model is better supported by the data.
Instead of model selection, one should focus on methods that
can mitigate the general Eddington bias, which are the topics
of the next section.

7. UNBIASED PARAMETER INFERENCE

This section introduces two latent-inclination methods that
can mitigate both Malmquist bias and Eddington bias in the
inference of the TFR. The first method shifts the dependent
variable using the predicted Eddington bias from its analyt-
ical expression (§ 7.1), and the second method incorporates
the scatter of the independent variable in the likelihood func-
tion of a bidirectional dual-scatter model (§ 7.2). Technically,
there is a third method—choosing an empirical unbiased an-
chor point for the correlation (§ 7.3)—but it only reduces the
bias of the intercept parameter, limiting its application.

7.1. Shifting the Moment of the Dependent Variable

In § 3, I have explained that the general Eddington bias
is caused by the scatter in the independent variable and the
gradient of its distribution function. It is thus expected that,
when the predicted Eddington bias of the dependent variable
is corrected for using its analytical expression, the inferred
regression coefficients will be no longer biased.

For calibrating the TFR using inclination-corrected data,
one could choose to debias the dependent variable in either

the forward model or the inverse model. But when the in-
clination angle is considered a latent variable, one can only
correct w̃ for the inverse model. This is because to debias
m̃ for the forward model using Eq. 15 requires knowing the
inclination-corrected velocity width (x → w̃ ! i).

For the forward model, the general Eddington bias of the
mean y at a fixed x̃ is given by Eq. 15 in § 3:

y(x̃) ! ↗y↘x̃ = !ες2
x

d ln p(x̃)
dx̃

(45)

For the inverse model, the general Eddington bias of the
mean x at a fixed ỹ is:

x(ỹ) ! ↗x↘ỹ = !
ς2

y

ε

d ln p(ỹ)
dỹ

(46)

To remove the bias, one can shift the value of individual x:

xc = x !
ς2

y

ε

d ln p(ỹ)
dỹ

(47)

so that the mean of xc matches the ỹ-predicted x:

x(ỹ) ! ↗xc↘ỹ = x(ỹ) ! ↗x↘ỹ +
ς2

y

ε

d ln p(ỹ)
dỹ

= 0 (48)

If ỹ follows a Schechter function:

p(ỹ) ⇐ 10(ϖ+1)(ỹ!y⇀) exp(!10ỹ!y⇀ ) (49)

then the Eddington bias correction in x is:

xc = x ! ln10
ε

ς2
y [(⇁+ 1) ! 10ỹ!y⇀ ] (50)

For the case of the inverse TFR, the bias correction in w̃ is:

w̃c = w̃ ! ln10
ε

ς2
m[(⇁+ 1) ! 10(m̃+d)!M⇀ ] (51)

which shows that the correction depends on four parameters
(ςm,ε,M⇀,⇁) and the observed mass of the galaxy (m̃ + d).
The success of the bias correction depends on the accurate
specification of the four parameters.

First, M⇀ and ⇁ characterize the observed mass function,
which can be estimated through various methods. For ex-
ample, it can be measured using luminosity-function estima-
tors that correct for the Malmquist bias, e.g., the C! method
(Lynden-Bell 1971), followed by a Schechter function fit.
Here I opt to infer v⇀ and ⇁ using the latent-inclination for-
ward model introduced in § 5.1, and calculate M⇀ as v⇀ + ϑ.
It is safe to use v⇀ and ⇁ from the forward model because
(1) they are mildly biased (unlike ε,ϑ), i.e., their deviations
from the truth are within twice the statistical error (see the
blue curves in the third and fourth columns of Fig. 5), and (2)
the Eddington bias correction is relatively insensitive to these
parameters.
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Next, ε is the slope of the TFR, which is a key parameter
to be determined by the model. Using it as an input parame-
ter thus requires an iterative process. It starts from the results
of the forward model and the inverse model without Edding-
ton bias correction. The former provides v⇀, ⇁, and the upper
limit on ςm, the latter provides ε j and ϑ j for j = 0, where
the subscripts indicate that they are the initial guess values
and will be updated in subsequent iterations. For a specified
value of ςm, the line widths are then corrected for the Ed-
dington bias using Eq. 51 with parameters (ςm,ε j,v⇀ +ϑ j,⇁).
The subsequent runs of the inverse model uses Eddington-
bias-corrected line widths (w̃c) as the input data and produce
updated values of ε j and ϑ j. Fig. 4 illustrates the iterative
process and shows that results converge in just a few itera-
tions.

Finally, ςm is the mass scatter that includes both measure-
ment error and intrinsic dispersion. This is the only param-
eter that needs to be specified by the user based on prior
knowledge of the data. In the worse case, one can use the
forward model to estimate the total dispersion of the data
in the m-direction (ςt

m), which gives the upper limit of ςm:
0 < ςm < ςt

m. The bias-corrected results should lie some-
where between the two extremes defined by the forward and
the inverse models without corrections (e.g., see Fig. 2 for
Sample C). Underestimating ςm causes under-correction of
the Eddington bias, so the inferred ε and ϑ will be biased
high (although their biases are reduced compared to those
from the uncorrected model). On the other hand, overesti-
mating ςm causes over-corrections of the Eddington bias, so
the TF parameters overshoot the truth and will be biased low
as they approaches those inferred from the forward model.
Therefore, the primary limitation of this method is that the
inferred parameters will be unbiased only when the correct
value of ςm is prescribed by the user.

7.2. The Bidirectional Dual-Scatter Model

In this subsection, I introduce the dual-scatter model where
I expand the likelihood function of the latent-inclination for-
ward model by including scatters of the independent variable
w. In Appendix B, I expand the likelihood function of the in-
verse model by including scatters in m. It is shown there that
the results are mathematically equivalent, making the model
bidirectional (symmetric).

When w̃ and m̃ are independent9, the joint probability of
the dual-scatter model can be decomposed as:

p(m̃, w̃,d,w, i) = p(m̃, w̃,d|w, i)p(w, i)
= p(m̃|d,w, i)p(w̃|w)p(d)↑ p(w|i)p(i)
= p(w̃|w)p(m̃,w,d, i) (52)

9 This is a valid assumption because correlated measurement errors in TFR
data are introduced by inclination correction.

where p(m̃,w,d, i) is given by Eq. 28, and the new term,
p(w̃|w), is a Gaussian:

p(w̃|w) =
1

ςw
≃

2ϖ
exp

[
! (w̃ ! w)2

2ς2
w

]
(53)

The joint pdf of the observables (m̃, w̃,d) is then calculated
by marginalizing Eq. 52 over both w and i:

p(m̃, w̃,d)

=
∫ ↓

!↓

∫ 0

!↓
p(m̃, w̃,d,w, i)didw

=
ε↽⇀p(d)
2ϖςmςw

∫ ↓

!↓

∫ 0

!↓

ln10 ·102i
≃

1 ! 102i

↑ exp
[

! (w̃ ! w)2

2ς2
w

]
exp

[
! (m̃ + d !ε(w ! i) !ϑ)2

2ς2
m

]

↑10(ϖ+1)[ϱ(w!i)!v⇀] exp(!10ϱ(w!i)!v⇀ )didw (54)

Accounting for the selection function S(m̃, w̃), the condi-
tional pdf of m̃ is:

p(m̃|w̃,d) =
S(m̃, w̃)p(m̃, w̃,d)∫↓

!↓ S(m̃, w̃)p(m̃, w̃,d)dm̃
(55)

And the data likelihood function is composed of the above
conditional pdfs:

lnL =
N∑

k=1

ln p(m̃k|w̃k,dk) (56)

Like the forward model, when the selection function is a
step function of m̃, the integral over m̃ on the denominator of
Eq. 55 becomes an error function. This replacement reduces
the triple integral to a double integral. I provide the full ex-
pression of the conditional pdf in Eq. A4 in Appendix A.

Note that even after this simplification, evaluating the like-
lihood function remains computationally expensive because
each data point still requires calculating two double inte-
grals. In Appendix C, I describe a Fast Fourier Transform
(FFT) method that drastically accelerated the computation of
the double integrals. Additional acceleration is achieved by
vectorizing the conditional pdf and leveraging the integrated
Graphics Processing Unit (GPU). Together, the computation
time is reduced by three orders of magnitude when com-
pared to direct integration, making the dual-scatter model
even faster than the forward model, when the latter is run
on the CPU.

The dual-scatter model is applied to the simulated Sam-
ple C, which includes significant amounts of scatter in both
axes. I show the MCMC-sampled posterior pdfs in Fig. 5
and compare them with those from the forward and the in-
verse models. The results from the dual-scatter model can be
summarized as follows:
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Figure 5. MCMC-sampled posterior pdfs from the dual-scatter model (green) compared to those from the forward model (blue) and the inverse
model (red). The data are from sample C, whose input parameters are indicated by black dashed lines and black crosses. The dual-scatter model
produces relatively unbiased inferences for all parameters, gives more realistic statistical uncertainties, and reveals parameter degeneracies. For
example, the two ω’s are tightly correlated on an ellipse: ω2

m +ϑ2ω2
w = ω2

t , as indicated by the dotted curve in the panel.

• The marginalized posteriors show that the best-fit (me-
dian) parameters are relatively unbiased for all three
samples, i.e., they lie within 1ς from the truth.

• The statistical uncertainties of the inferred parameters
are larger compared to those from the forward and the
inverse model: the TF parameters (ε,ϑ) show 2-3↑
larger uncertainties, the dispersion parameters (ςm,ςw)
show 2-8↑ greater uncertainties, while the Schechter
parameters (v⇀,⇁) show comparable uncertainties.

• The joint posteriors show significant correlations
among parameters. In particular, the two dispersion
parameters are tightly correlated on an ellipse: ς2

m +
ε2ς2

w = ς2
t . These covariances explain the larger un-

certainties of the inferred parameters.

Compared to the forward model, including the scatter of
the independent variable w requires multiplication of another
Gaussian function of w̃ ! w and an additional marginaliza-
tion over w in both the numerator and the denominator of the
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conditional pdf that constitutes the likelihood function. The
added complexity makes the MCMC sampling significantly
more computationally expensive, motivating innovative ap-
plications of numerical methods and GPU acceleration. The
resulting posteriors show nearly unbiased parameter estima-
tion, more realistic estimates of the uncertainties, and strong
degeneracy between the two dispersion parameters. The de-
generacy is a feature of the mathematical problem, so it can-
not be eliminated, but its effects decreases as the sample size
increases.

7.3. The Unbiased Anchor Point

The TFR is typically anchored at logV0 = 2.5, which is an
arbitrary choice. In this subsection, I describe the existence
of a preferred anchor point at which the inferred intercepts of
both the forward and the inverse models are unbiased.

By simulating a number of data sets that share the same
TFR (ε = 3.33,ϑ = 10.5) and observational selection function
but have different amount of scatters in the independent vari-
able (w), I find the following power-law relations between the
biases of the regression coefficients and the amount of scatter
(ςw):

Bϑ =





!0.058(ςw/0.05)1.8 forward model

+0.060(ςm/0.15)1.8 inverse model

Bϱ =





!0.246(ςw/0.05)1.8 forward model

+0.237(ςm/0.15)1.8 inverse model
(57)

Notice that because the biases of both coefficients scale
with ςw following power laws of the same index, their ratios
are independent of the scatter. A consequence of the constant
bias ratio Bϑ/Bϱ is that the true TFR and the inferred TFRs
from the two models all converge at a single point at:

logV0 = 2.5 ! Bϑ

Bϱ

ϑ0 = ϑ !ε
Bϑ

Bϱ
(58)

At this converging point, the intercepts of all the inferred
TFRs are unbiased. This finding suggests that one can re-
duce the general Eddington bias by choosing the unbiased
anchor location instead of the default anchor at logV0 = 2.5.

This unbiased anchor location depends on sample charac-
teristics and the coefficients of the TFR, but it can be de-
termined empirically by running the forward model and the
inverse model on the same data. Take Sample C as an ex-
ample, I use the inferred TF parameters listed in the last
column of Table 1. I first calculate the differences between
the inferred parameters of the two models, ”Bϑ = 10.554 !
10.450 = 0.104,”Bϱ = 3.593 ! 3.164 = 0.429, then their ra-
tio, ”Bϑ/”Bϱ = 0.24, and finally the unbiased anchor point

at logV0 = 2.5 !”Bϑ/”Bϱ = 2.26. At this anchor point, the
intercepts of both the forward model and the inverse model
are at ϑ0 = 9.69, which is essentially the same as the inter-
cept of the true relation at logV0 = 2.26 (ϑ0 = 9.70). Despite
of their different slopes, adopting the converging point as the
anchor has minimized the bias of the inferred intercepts for
both the forward and the inverse models.

8. SUMMARY AND DISCUSSION

Linear regression of the TFR requires the observed data to
be corrected for inclination. But the current method to es-
timate inclination angle from galaxy morphology is highly
uncertain and requires well-resolved images. One solution is
to treat the inclination as a latent variable with a known dis-
tribution function, so that one can infer the TFR using data
uncorrected for inclinations. In this paper, I have developed
Bayesian latent-inclination inference methods that can also
mitigate the distance-dependent Malmquist bias due to sam-
ple selection and the general Eddington bias due to scatter in
the independent variable. These biases are important because
they directly impact measurements of the Hubble constant.

I start by deriving the likelihood functions for two latent-
inclination unidirectional models that neglect the scatter of
the independent variable: the forward model (velocity width
as independent variable) and the inverse model (mass as in-
dependent variable). Both likelihood functions are imple-
mented in Python with a MCMC-sampler and are tested on
simulated galaxy samples with random orientations and with
random Gaussian scatters in mass and velocity. I find that,
when the independent variable has significant scatters, the
inferred regression coefficients are biased (Fig. 2), although
biased models demonstrate similarly good quality of fit to the
data (Fig. 3). The biases of both coefficients increase with
the scatter of the independent variable Bω ⇐ ς1.8

x . For ex-
ample, using the inverse TFR model, neglecting a scatter of
0.15 dex in luminosity would lead to an overestimate of H0
by ↔5 km s!1 Mpc!1 (Eq. 8), comparable to the “Hubble ten-
sion”.

Evidently, the scatter of the independent variable (x) does
not simply propagate into the dependent variable (y) through
the correlation as ςy = εςx, because that would not have led
to biases in the regression coefficients. Instead, the bias shifts
the first moment of y at each x by altering the conditional pdf
p(y|x) according to Bayes’ rule. I derive the analytical form
of this bias (Eq. 15). Because the classic Eddington bias is a
special case of this bias, it is termed the “general Eddington
bias”.

Methods aimed at unbiased parameter inference must in-
clude both (1) the scatter of the dependent variable and
the selection function to account for the distance-dependent
Malmquist bias, and (2) the scatter and the distribution func-
tion of the independent variable to account for the general
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Eddington bias. I then introduce two approaches to mitigate
the general Eddington bias:

• Shifting the dependent variable by reversing the ex-
pected amount of Eddington bias (Moment Shifting,
§ 7.1),

• Incorporating the scatter of the independent variable in
the likelihood function (Dual-scatter Model, § 7.2).

Testing on simulated data sets shows that both methods
can effectively reduce or eliminate both the Malmquist bias
and the Eddington bias (Figs. 4 and 5). Each method has its
own strengths and limitations, and it is a trade-off between
efficiency and accuracy:

• The moment-shifting method can iteratively determine
most of the required parameters for bias correction, but
the dispersion parameter of the independent variable
must be specified a priori.

• The dual-scatter model is the most versatile and is
recommended for most scenarios. It fits both dis-
persion parameters simultaneously, produces more re-
alistic estimates of parameter uncertainties, and re-
veals covariances among model parameters. But it is
the most computationally expensive method, requiring
FFT techniques and GPUs to accelerate (Appendix C).

Technically, there is one additional method to mitigate the
general Eddington bias: defining the intercept of the TFR
at an unbiased anchor point (§ 7.3). The “unbiased anchor”
method takes advantage of the correlation between the biases
of the regression coefficients and determines the unbiased an-
chor empirically. The inferred intercepts at this preferred an-
chor are unbiased for both unidirectional models. However,
the inferred slopes remain biased, and the location of the un-
biased anchor depends on sample characteristics. This vari-
ability complicates applying the method to Hubble constant
measurements, as the unbiased anchors for the redshift and
zero-point samples are likely distinct.

Naturally, the next step is to apply the latent-inclination
likelihood-based methods on actual data. Currently there
are two major data sets for TF studies in the nearby Uni-
verse (cz < 20,000 km s!1): the ALFALFA sample of
↔31,500 galaxies10 (Haynes et al. 2018; Durbala et al. 2020)
and the CF4 BTF-Distances catalog of ↔10,000 galaxies11

(Kourkchi et al. 2022). The ALFALFA sample is bet-
ter suited for the latent-inclination methods because it is
a 7000 deg2 H I survey from a single instrument (Arecibo

10 The ALFALFA sample contains 25,432 high S/N H I detections (Code 1)
and 6,068 low S/N detections with prior optical detection (Code 2).

11 The CF4 catalogs are available in the Extragalactic Distance Database:
https://edd.ifa.hawaii.edu.

ALFA) and it includes galaxies at all inclinations. In contrast,
the CF4 sample is a compilation of H I surveys from seven ra-
dio telescopes and excludes galaxies with estimated inclina-
tion less than 45→. Some of the compiled subsamples in CF4
were selected to be edge-on systems, causing a spike near 90→

in the distribution of measured inclinations. The ALFALFA
sample is also preferred because of selection bias: a single
observational selection function that describes the full data
set can be used in the likelihood function. For a heterogenous
sample like the CF4, the complex selection effects from var-
ious instruments are unlikely to be captured by a single post
facto selection function. Instead, each constituent subsam-
ple should be separately analyzed using their own selection
function, and the final result would be a weighted average of
the results from the subsamples.

Future applications of the methods on the ALFALFA data
also face challenges. First, the H I flux limit increases with
line width. Like all spectroscopic line surveys with fixed in-
tegration time per area, ALFALFA is more sensitive to nar-
rower lines because the same amount of signal is spread over
fewer spectroscopic channels. The line flux limits set gas
mass limits, making the latter also depending on the line
width. Second, both the total H I flux and the optical pho-
tometry become unreliable for the nearest galaxies. The for-
mer has been addressed by the special catalog for extended
sources (Hoffman et al. 2019). But to address the latter, one
needs to replace the automatic photometry from pipelines
with more involved asymptotic photometry (Courtois et al.
2011) for a large sample of galaxies. Because of the incli-
nation cutoff at 45→, only 43% (13,617) of the ALFALFA
sample are included in the CF4 Initial Candidates catalog,
leaving 57% of the sample without asymptotic photometry.

Thus far, the discussion has centered on the linear baryonic
TFR. Depending on the available data, researchers may pre-
fer a different form of the TFR. Fortunately, the expressions
derived for the baryonic TFR can be readily adapted to other
empirical forms of the TFR:

• To apply the methods to magnitude-based TFR, only a
simple modification is required: compute m as !0.4
times the apparent magnitude at wavelength ϱ (i.e.,
m → !0.4mε) to convert the decreasing magnitude
scale defined by Pogson’s ratio to an increasing decade
scale. With this conversion, the best-fit intercept pa-
rameter ϑ is related to the fiducial absolute magnitude
M0

ε as: M0
ε = !2.5ϑ ! 25.

• To apply the methods to non-linear TFR (e.g., to cap-
ture the curvature of the i-band TFR at the luminous
end), one can replace the linear relation in Eq. 6 with
more complex functions of (w ! i) (e.g., a polynomial).

I have made the following simplifications to keep the dis-
cussion focused on the Sine scatter of the velocity width

https://edd.ifa.hawaii.edu
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and the Gaussian scatters of logarithmic mass and velocity
width: (1) the redshifts are assumed to have been corrected
for peculiar velocities, (2) the residual velocity noise is ig-
nored, and (3) the apparent baryonic mass is assumed to be
unaffected by galaxy inclination (i.e., either gas mass domi-
nates or stellar mass extinction is accounted for by the color-
derived mass-to-light ratio). Below I describe future exten-
sions of the model to relax these assumptions.

Incorporating velocity noise in the likelihood function re-
quires multiplying a Gaussian function of d̃ ! d to the joint
pdf and an additional marginalization over the true distance
d (§ 5.1). In addition, models that simultaneously fit the
scale parameters of a peculiar velocity model and the velocity
noise have been developed previously for TFR studies using
inclination-corrected data (e.g., Willick et al. 1997; Boubel
et al. 2024). The same methodology can be applied to the
latent-inclination models.

For magnitude-based TFRs, to account for the inclination-
dependent internal extinction in the forward and the dual-
scatter model, one needs to replace m̃ with its extinction-
corrected counterpart m̃ ! 0.4A(inc) in p(m̃|w, i,d) (Eq. 21).
A common way to parameterize the extinction is A(inc) =
▷ log[sec(inc)] (e.g., Shao et al. 2007). The extinction-
corrected mass is then m̃ ! 0.2▷ log(1 ! 102i) (where i →
log[sin(inc)] as defined in Eq. 5), and the conditional pdf be-
comes:

p(m̃|w, i,d) =
1

ςm
≃

2ϖ

↑ exp
[

! [m̃ ! 0.2▷ log(1 ! 102i) + d !ε(w ! i) !ϑ]2

2ς2
m

]
(59)

The replacement adds ▷ (the face-on extinction) as a new pa-
rameter and changes the subsequent calculation of the condi-
tional pdf p(m̃|w,d) in Eq. 30 and p(m̃|w̃,d) in Eq. 55.

To account for the inclination-dependent extinction in the
inverse model, one needs to replace m with m ! 0.2▷ log(1 !
102i) in both p(w̃|m,d, i) and p(m|d) (Eqs. 34 and 36). This
modification causes the mass function term, p(m|d), to de-
pend on inclination, preventing it from being cancelled out
in the conditional pdf in Eq. 39.

Latent-variable Bayesian methods provide wide applica-
bility in observational astronomy. Although this paper fo-
cuses on inferring the Tully-Fisher relation, the likelihood-
based framework is highly generalizable and can be adapted
to other linear regression problems involving Gaussian and
non-Gaussian scatter. The primary requirement is knowledge
of the latent variable’s prior probability distribution, which
can be expressed analytically or provided numerically as a
tabulated function.
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APPENDIX

A. THE CONDITIONAL PROBABILITIES OF FLUX-LIMITED SAMPLES

In this Appendix, I present the complete analytical expressions for the conditional PDFs of the forward, inverse, and dual-scatter
models for a common scenario where the sample is flux-limited and the selection function is a step function:

S(m̃) =





1, if m̃ ⇔ ml

0, otherwise
(A1)

This particular selection function significantly simplifies the marginalization of the joint pdf over m̃, because the only m̃-
dependent term is a Gaussian, and its integral is the complementary error function (erfc):

∫ ↓

!↓
S(m̃)p(m̃|w, i,d)dm̃ =

∫ ↓

ml

p(m̃|w, i,d)dm̃

=
∫ ↓

ml

1
ςm

≃
2ϖ

exp
[

! [m̃ + d !ε(w ! i) !ϑ)]2

2ς2
m

]
dm̃

=
1
2

erfc
[

ml + d !ε(w ! i) !ϑ
≃

2ςm

]
(A2)

After this simplification, the conditional pdfs for the forward and the dual-scatter models become:

• The forward model:

p(m̃|w,d) =
≃

2
≃
ϖςm

∫ 0
!↓

102i
↔

1!102i exp

! [m̃+d!ϱ(w!i)!ϑ]2

2ς2
m


10(ϖ+1)[ϱ(w!i)!v⇀] exp(!10ϱ(w!i)!v⇀ )di

∫ 0
!↓

102i↔
1!102i erfc


ml +d!ϱ(w!i)!ϑ↔

2ςm


10(ϖ+1)[ϱ(w!i)!v⇀] exp(!10ϱ(w!i)!v⇀ )di

(A3)

• The dual-scatter model:

p(m̃|w̃,d) =
≃

2
≃
ϖςm

∫ 0
!↓

102i
↔

1!102i

∫↓
!↓ exp


! (w!w̃)2

2ς2
w


exp


! (m̃+d!ϱ(w!i)!ϑ)2

2ς2
m


10(ϖ+1)[ϱ(w!i)!v⇀] exp(!10ϱ(w!i)!v⇀ )dw


di

∫ 0
!↓

102i↔
1!102i

∫↓
!↓ exp


! (w!w̃)2

2ς2
w


erfc( ml +d!ϱ(w!i)!ϑ↔

2ςm
)10(ϖ+1)[ϱ(w!i)!v⇀] exp(!10ϱ(w!i)!v⇀ )dw


di

(A4)

For the inverse model, simplifying the conditional pdf does not require a step function, but any function that depends only on
m [i.e., S(m, w̃) = S(m)]. When this is the case, the selection functions can be taken out of the integrals and cancel out. After the
cancellation of S(m), the denominator becomes unity because both p(w̃|m, i,d) and p(i) are properly normalized pdfs. The result
has been given in Eq. 40 and is repeated here for completeness:

p(w̃|m,d) =
S(m)

∫ 0
!↓ p(w̃|m,d, i)p(i)di

∫ 0
!↓

∫↓
!↓ S(m)p(w̃|m,d, i)dw̃


p(i)di

=
∫ 0

!↓
p(w̃|m,d, i)p(i)di

=
ln10

ςw
≃

2ϖ

∫ 0

!↓

102i
≃

1 ! 102i
exp

[
! [w̃ ! i ! (m + d !ϑ)/ε]2

2ς2
w

]
di (A5)
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B. DUAL-SCATTER MODEL STARTING FROM THE INVERSE MODEL

In this Appendix, I derive the joint PDF of the observables for the latent-inclination dual-scatter model, starting from the inverse
model, complementing the derivation in § 7.2 that began with the forward model.

Starting from the joint pdf of p(w̃,m,d, i) in Eq. 37:

p(w̃,m,d, i) = p(w̃|m,d, i)p(m|d)p(d)p(i)

= p(d)↑
ln10 ·102i
≃

1 ! 102i

1
ςw

≃
2ϖ

exp
[

! [w̃ ! i ! (m + d !ϑ)/ε]2

2ς2
w

]
↽⇀10(ϖ+1)(m+d!M⇀) exp(!10m+d!M⇀ ) (B6)

To account for measurement error in m, one needs to multiply an additional term because the joint probability including m̃ is:

p(w̃, m̃,d,m, i) = p(m̃|m)p(w̃,m,d, i) (B7)

where the new factor is a Gaussian:

p(m̃|m) =
1

ςm
≃

2ϖ
exp

[
! (m̃ ! m)2

2ς2
m

]
(B8)

The joint pdf of the observables (w̃, m̃,d) is then calculated by marginalizing the above joint pdf over both m and i:

p(w̃, m̃,d) =
∫ 0

!↓

∫ ↓

!↓
p(w̃, m̃,d,m, i)dmdi

=
↽⇀p(d)

2ϖςwςm

∫ 0

!↓

∫ ↓

!↓
exp

[
! [w̃ ! i ! (m + d !ϑ)/ε]2

2ς2
w

]
exp

[
! (m̃ ! m)2

2ς2
m

]
10(ϖ+1)(m+d!M⇀) exp(!10m+d!M⇀ )p(i)dmdi (B9)

When substituting m for ε(w ! i) +ϑ ! d using the idealized TFR, the above equation becomes:

p(w̃, m̃,d)

=
ε↽⇀p(d)
2ϖςwςm

∫ 0

!↓

∫ ↓

!↓
exp

[
! (w̃ ! w)2

2ς2
w

]
exp

[
! [m̃ + d !ε(w ! i) !ϑ]2

2ς2
m

]
10(ϖ+1)[ϱ(w!i)!v⇀] exp[!10ϱ(w!i)!v⇀ ]p(i)dwdi (B10)

which is equivalent to p(m̃, w̃,d) in Eq. 54. This exercise shows that the data likelihood function of the latent-inclination dual-
scatter model remains the same whether one starts from the forward model or the inverse model. This proves that the dual-scatter
model is bidirectional (i.e., symmetric), unlike the forward and the inverse models.
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C. NUMERICAL ACCELERATION BY FAST FOURIER TRANSFORM AND PYTORCH

For the latent-inclination dual-scatter model with step-like selection function, the conditional pdf that constitutes the likelihood
function is (Eq. A4 in Appendix A):

p(m̃|w̃,d) =
≃

2
≃
ϖςm

∫ 0
!↓

102i
↔

1!102i

∫↓
!↓ exp


! (w!w̃)2

2ς2
w


exp


! (m̃+d!ϱ(w!i)!ϑ)2

2ς2
m


10(ϖ+1)[ϱ(w!i)!v⇀] exp(!10ϱ(w!i)!v⇀ )dw


di

∫ 0
!↓

102i↔
1!102i

∫↓
!↓ exp


! (w!w̃)2

2ς2
w


erfc( ml +d!ϱ(w!i)!ϑ↔

2ςm
)10(ϖ+1)[ϱ(w!i)!v⇀] exp(!10ϱ(w!i)!v⇀ )dw


di

(C11)

Direct integration of the double integrals for each data point is computationally expensive. For instance, on a 2021 Macbook Pro
with an M1 Pro chip (8 performance CPU cores and 2 efficiency cores), direct integrations of 1,024 nodes in each integration axis
take ↔17 min per MCMC step for 16 walkers and 10,147 data points. This is painfully slow and forces the user to either reduce
the number of nodes or to bin the data points, neither of which is desirable. In this Appendix, I describe numerical methods that
expedited the computation by thousands of times.

The key is to realize that the integral over i on the numerator of Eq. C11,
∫ 0

!↓

102i
≃

1 ! 102i
exp

[
! (m̃ + d !ε(w ! i) !ϑ)2

2ς2
m

]
10(ϖ+1)[ϱ(w!i)!v⇀] exp(!10ϱ(w!i)!v⇀ )di (C12)

is a convolution between:

f (i) =






102i
↔

1!102i , if i < 0

0, otherwise
(C13)

and

g(w ! i) = exp
[

! (m̃ + d !ε(w ! i) !ϑ)2

2ς2
m

]
10(ϖ+1)[ϱ(w!i)!v⇀] exp(!10ϱ(w!i)!v⇀ ) (C14)

The result is a new function of w:
{ f ↖g}(w) =

∫ ↓

!↓
f (i)g(w ! i)di (C15)

which can be calculated with Fourier transform given the convolution theorem:

{ f ↖g}(w) = F
!1[F{ f}(w) ·F{g}(w)] (C16)

Since the computation of the Fast Fourier Transform (FFT) of f and g and the inverse FFT of their product has a total complexity
of O(N logN) and direct computation of the convolution integral has a complexity of O(N2), substantial improvement in com-
puting efficiency can be achieved with FFT-based convolution when the number of nodes in each integration axis (N) is a large
number.

The result of the convolution can then be supplied to the integral over w to complete the calculation of the numerator:
∫ ↓

!↓
{ f ↖g}(w)exp

[
! (w ! w̃)2

2ς2
w

]
dw (C17)

Notice that even though this second integral is also a convolution, direct evaluation is faster because the convolution result is
needed only at a specific value of w̃ instead of an array of w̃. In such cases, FFT methods have no computational advantage over
direct evaluation.

The same method can be applied to compute the denominator, simply replace the function of g as:

g(w ! i) = erfc
(

ml + d !ε(w ! i) !ϑ
≃

2ςm

)
10(ϖ+1)[ϱ(w!i)!v⇀] exp(!10ϱ(w!i)!v⇀ ) (C18)

On the same 2021 Macbook Pro with the same 1,024 nodes in each integral, the FFT-accelerated dual-scatter model takes 1.65 s
per MCMC step for 16 walkers and 10,147 data points, which is ↔600↑ faster than direct integration. The FFT-accelerated dual-
scatter model is only 1.9↑ and 7.6↑ slower than the much simpler forward and inverse models, respectively.

An additional ↔4↑ acceleration is achieved by vectorizing the function that computes the conditional pdf in Eq. C11 and
leveraging the integrated 16-core Graphics Processing Unit (GPU) with PyTorch’s Metal Performance Shaders (MPS) backend
(Paszke et al. 2019). The GPU- and FFT-powered dual-scatter model takes 0.44 s per MCMC step, which is even 2↑ faster than
the simpler forward model on the CPU. The MCMC chains sufficiently converged after ↔6,000 steps, so the total computing time
is ↔0.75 hr. The PyTorch version of the code is made available along with the NumPy version.
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