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Abstract—Inkjet printing is an emerging fabrication technique
for flexible electronics, offering a simple fabrication method,
environmental sustainability, and cost-effectiveness. Recent ad-
vancements in inkjet printing method have explored the im-
plementation of computational devices such as transistors and
relays using inkjet printing technology. Following this trend, a
novel nonlinear computation device has been developed via inkjet
printing, exhibiting I-V characteristics with nonlinearity analo-
gous to activation functions commonly used in neural networks.
In neural network, the activation function is used to introduce
nonlinearity in neural networks and enables the network to learn
the complex pattern of the dataset. To evaluate the performance
of this device as an activation function, the mathematical model
derived from its I-V curve was implemented within a graph
neural network to predict the solubility of organic molecules.
The neural network incorporating the nonlinear computation
device demonstrated comparable performance to commonly used
activation functions, including tanh and sigmoid, achieving mean
squared error, root mean square error and R> score of 1.556,
1.247 and 0.62 respectively.

Index Terms—Activation Function, Inkjet Printing Technology,
Graph Neural Network, Solubility.

I. INTRODUCTION

The concept of flexible electronics is gaining attention
in both sensing and computational device applications due
to their stretchable and conformable nature, allowing these
devices to adapt to the shape of organic objects [1]. Among the
various fabrication techniques available for flexible electronics,
inkjet printing technology has emerged as one of the most
widely adopted fabrication methods [2]. This popularity stems
from its advantages over other fabrication approaches, such
as thin-film deposition [3], laser printing [4], and roll-to-roll
processing. Specifically, inkjet printing offers benefits includ-
ing low cost, a simplified fabrication process, environmental
sustainability, and compatibility with low-power devices [5].
Furthermore, the versatility of inkjet printing enables the depo-
sition of multiple nanoparticle inks on a variety of substrates,
facilitating the design and development of a wide range of
devices and exploring different characteristics of nanoparticle
inks for device formation [6]-[8].

In alignment with these advancements, numerous inkjet-
printed sensors have been successfully developed for diverse
applications, including breathing flow monitoring [10] and
pressure gradient mapping [11]. While these sensors are

cost-effective and require minimal processing, their perfor-
mance often remains inferior to that of solid-state sensors.
To overcome these limitations and enhance the reliability and
scalability of inkjet-printed sensors, artificial intelligence has
been integrated into sensor operation [12], [13]. Motivated by
these requirements, researchers have sought to implement var-
ious computational devices using inkjet printing technology.
Furthermore, the fabrication of inkjet-printed computational
devices such as transistors, memristors, and relays has been
extensively investigated in the literature [14]-[16]. Prior state-
of-the-art studies have demonstrated the development of inkjet-
printed memristive device for neuromorphic computing, with
mathematical modeling indicating its capability to form grid-
like architectures for mapping data into higher dimensions
and classifying image data [17] with simple machine learning
model. In [18], S. D. Gardner et al. reported the fabrication of
a fully inkjet-printed artificial neuron capable of implementing
the hyperbolic sine activation function within neural networks.
However, these devices typically operate within relatively high
voltage ranges, which constrains their applicability in low-
power circuit implementations.

In this study, a low-voltage flexible non-linear comput-
ing element is designed and fabricated using inkjet printing
technology. This device exhibits nonlinearity comparable to
that utilized in neural network activation functions such as
hyperbolic tangent (tanh) in a very low operating voltage range
of -0.5 V to +0.5 V. To investigate its potential as an activation
function within neural networks, this nonlinear computation
element has previously been applied successfully in echo state
networks for Mackey-Glass time series data prediction [9] and
in multilayer perceptrons for Fashion MNIST image classifi-
cation tasks [19]. In this work, the device is integrated within
a graph neural network framework with graph-type dataset
to predict the solubility of various organic molecules, and its
performance is evaluated against commonly used activation
functions such as tanh and sigmoid.

The paper is organized in the following structure. Section
IT introduces the inkjet-printed nonlinear element, describ-
ing its fabrication process, electrical characterization, and
mathematical modeling. Section III presents the graph neural
network framework and the dataset utilized in this study. The
experimental results are detailed and discussed in Section IV,
followed by concluding remarks in Section V.



II. INKJET PRINTED NONLINEAR COMPUTATION ELEMENT

Inkjet printing has emerged as a promising fabrication
technique for flexible electronics. In this study, a nonlinear
element device was fabricated using an inkjet printing process.
The device architecture, along with the relevant dimensions, is
illustrated in Fig. 1(a). The device consists of centrally located
floating square islands and triangular islands positioned on
either side, with dimensions of 1.5 mm, and separated by 0.5
mm distance. Additionally, eight padframes, each measuring
5 mm and separated by § = 45° angle from each other, were
incorporated into the design to facilitate electrical connections.

A. Fabrication Process

Inkjet printing technology offers a straightforward and ver-
satile fabrication process. The fundamental steps of inkjet
printing-based fabrication include designing the desired pattern
using a 2D vector graphic tool, printing the pattern onto a
substrate with an inkjet system, and curing the jetted ink pat-
tern. Depending on specific research requirements, additional
steps such as ink preprocessing, substrate surface preparation
to enhance ink adhesion, and post-processing of the printed
patterns may also be incorporated. The fabrication method
employed in this study is outlined in the flowchart presented
in Fig. 1(c). The device pattern was designed using Microsoft
Publisher, and printing was performed using a modified Epson
XP 960 inkjet printer adapted for silver nanoparticle ink
deposition. In the first step, a 2.35um thick layer of silver
nanoparticle ink was printed onto a polyethylene terephthalate
(PET) film substrate using the modified printer. This printed
layer was subsequently cured on a hotplate at 90°F' for 4-5
minutes to prepare the device for the deposition of the second
layer. The second layer, consisting of hexagonal boron nitride
(hBN), was applied using a drop casting method. HBn is
chosen as the second layer for device because it increases the
charge density in the active region of the device. Two layers of
hBN were deposited and cured with a hot air gun at 90° F' for
2-3 minutes. This results in a hBN layer with the thickness
range of 2.35um — 1.53um. In case of hBN layer, thickness
varies in this wide range due to its spread over the substrate
and silver layer. Finally, manual cuts were made in the open
spaces between the islands to complete the device structure.
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Fig. 1. (a) Inkjet printed nonlinear element device architecture along with
the device dimension and material information, (b) a comparable image of
the device with a dime, and (c) the device fabrication process flowchart.

B. Electrical Characterization

For the electrical characterization of the device, a Keithley
2604B Dual Channel Source Measure Unit was utilized. Volt-
age sweeps were performed across the device from -5 V to +5
V, followed by a reverse sweep from +5 V to -5 V, to generate
a complete hysteresis loop. This procedure was repeated twice
to evaluate the repeatability of the IV characteristics, and
multiple trials with multiple sampled devices were conducted
to further confirm the consistency of the measurements. In
each test,the device shows repetitive I-V curve with its distinc-
tive behavior. Additionally, I-V characteristics were measured
across different padframe angles, revealing that with increasing
padframe angles, the I-V curves exhibit an upward tilt, as
shown in Fig. 2(b). Fig. 2(a) presents the I-V characteristics
measured between two padframes oriented at an angle of 90°,
where it is evident that the device begins to exhibit nonlinearity
within a low voltage range of approximately -1 V to +1 V.
During the forward voltage sweep, three distinct pinch-off
points were observed near -1 V, -0.09 V, and +1.3 V, while in
the reverse sweep, two pinch-off points were noted during the
transition period. These pinch-off features were consistently
observed across all measurement cycles and are attributed
to charge trapping within the hexagonal boron nitride (hBN)
layer. Importantly, the device demonstrates pronounced non-
linearity within a narrow voltage range of approximately -0.5
V to +0.5 V, indicating its potential suitability for low-power
device applications.

C. Mathematical Modeling

The reverse path of the device’s IV characteristics exhibits a
profile similar to the hyperbolic tangent (tanh) function, which
is widely utilized as an activation function in neural networks.
This resemblance suggests the potential for employing the
device’s IV curve directly as an activation function within
neural network architectures. To enable this, the forward and
reverse paths of the IV curve are mathematically expressed
using the following equations 1 and 2.

As the reverse path closely mimics the traditional tanh
function, its curve-fitting formulation incorporates a modified
tanh function with tunable coefficients and constants to control
its slope and position, enabling accurate fitting to the measured
reverse path. Similarly, the forward path demonstrates char-
acteristics resembling a flipped sigmoid function. Therefore,
the forward path is expressed using Equation 2. In addition,
Gaussian functions are employed to replicate the pinch-off
behavior observed in the IV curve.

freverse(x) = t(l‘) X gl(x) X gQ(x) (N

Jrorwara () = () X g3(x) % ga(x) % gs5(x) )

Here, #(x) and s(x) represent the modified fanh and sigmoid
functions, respectively, while g1(x), g2(x), g3(z), g4(x), and
gs(x) denote Gaussian functions used to model the pinch-off
phenomena within the IV curves.
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Fig. 2. (a) Two dual sweep I-V characteristics for nonlinear computation element show the repeatability of electrical characterization; (b) I-V characteristics
of the nonlinear computation element measured at different padframe angles (). An increase in the angle between padframes results in an upward tilt in the
I-V curves; (c) Forward and reverse paths of the I-V characteristics alongside their respective fitted equations, demonstrating the close agreement between

experimental data and the fitted models.

The modified tanh and sigmoid functions are defined as
follows:
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The Gaussian functions used to replicate the pinch-off
behavior are defined by:
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where, n = {1,2,3,4,5}

In these formulations, the constants a, b, ¢, d, and e are
used to adjust the slope and position of the fanh function to
align with the experimental reverse path of IV data. Similarly,
the constants p, g, r, and ¢ control the slope and position of
the sigmoid function for precise fitting in the forward path.
In the Gaussian functions, the mean . determines the position
of the pinch-off, while the variance o controls its width. The
parameters h and m regulate the height and vertical position
of the Gaussian functions, enabling accurate replication of the
pinch-off behavior observed in the device’s IV characteristics.
The forward and reverse path of the IV curve is shown along
with their respective fitted curves in Fig. 2(c).
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g. 3. Graph neural network model architecture.

III. GRAPH NEURAL NETWORK

The IV curve of the nonlinear element exhibits a non-
linearity comparable to activation functions commonly used
in neural networks. To assess the potential of this nonlinear
device as an activation function, the fitted equations of its IV
characteristics are implemented within a graph neural network
(GNN) framework to predict molecular solubility.

A. Dataset

For the regression task in the graph neural network, the
MoleculeNet ESOL dataset is utilized [20]. This dataset
serves as a benchmark for molecular property prediction and
comprises 1,128 samples. Each sample includes the water
solubility (log solubility in mol/L) along with the chemical
structure of an organic compound, encoded as a SMILES
string. The dataset is partitioned into training, validation, and
testing subsets using an 8:1:1 ratio.

B. Model Description

GNNs are a class of deep neural networks designed to
operate on graph-structured data and were first introduced
by S. Franco et al. in 2008 [21]. Given the non-Euclidean
structure of molecular data, GNNSs are particularly effective for
molecular datasets, motivating their selection as the machine
learning model in this study. The basic architecture of the
developed graph neural network is illustrated in Fig. 3.

The proposed model consists of four graph convolutional
network (GCN) layers, each followed by an activation func-
tion. In this study, three different activation functions are
evaluated: the traditional tanh, the sigmoid function, and
the reverse path of the IV curve of the nonlinear device,
which is named mTanh due to its behavior similar to that
of the tanh function. Following the final GCN and activation
function layer, a global pooling layer is applied, which is then
followed by a linear dense layer serving as the output layer
for regression tasks. For model training, mean squared error
is utilized as the loss function, and the Adam optimizer is



employed for optimization. The model is trained using 80%
of the dataset over 2000 epochs.

IV. RESULTS

For the regression performance comparison of the nonlinear
computation element with commonly used activation functions
such as tanh and sigmoid, three evaluation metrics are em-
ployed: mean squared error (MSE), root mean squared error
(RMSE) and coefficient of determination (R?). These metrics
are computed using Equations 6, 7 and 8.
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Here, n, y;, and ¢; denote the total number of samples,

the true values, and the predicted values from the model,

respectively. An optimal regression performance is indicated

by MSE and RMSE value approaching zero and R? value
approaching one.

TABLE I
REGRESSION PERFORMANCE COMPARISON OF NONLINEAR COMPUTATION
ELEMENT WITH OTHER ACTIVATION FUNCTIONS IN GRAPH NEURAL

NETWORK.
Activation Function MSE RMSE R? Score
Sigmoid 1.305 1.143 0.681
Tanh 0.898 0.947 0.781
mTanh 1.556 1.247 0.62

Fig. 4 and table I presents the comparative performance
analysis of the different activation functions. From that table,
it is evident that for tanh activation function, MSE and RMSE
both are closest to zero, comparative to sigmoid and mTanh
function. On the contrary for tanh, GNN model gives R? value
closest to one compare to other two activation functions. The
figure illustrates the scatter plots of the actual versus predicted
solubility for each activation function along with the MSE,
RMSE and the R? square in the label. The data points along
the slope show the perfect prediction of solubility. Among the
evaluated functions, the tanh activation yields the most concen-
trated scatter distribution, whereas the nonlinear computation
element exhibits a more dispersed scatter pattern. This further
confirms that the developed nonlinear computation element
can function as an activation mechanism within a graph neural
network. Although its performance does not surpass that of
the tanh and sigmoid functions, the results demonstrate the
feasibility of utilizing the nonlinear computation element as
an activation function in machine learning models.

This nonlinear computational element does not surpass other
activation functions in performance due to the occurrence of

pinch-offs in the transition region, which can introduce insta-
bility in the learning process of neural network models. These
pinch-offs primarily arise from charge trapping within defect
states of the device. Appropriate surface treatments, such
as plasma oxidation, can mitigate these issues by reducing
defect density and trapped charge concentration. Furthermore,
replacing the hBN dielectric layer with an alternative material
exhibiting lower polarization could help minimize dips and
overshoots in the device’s I-V characteristics. As part of future
work, efforts will focus on exploring alternative nanoparticle
inks to achieve improved device morphology, as well as
incorporating additional fabrication steps to enhance overall
performance. Additionally, this device will be employed in
the fabrication of an inkjet-printed echo state reservoir.

V. CONCLUSION

In this work, a flexible device was developed using inkjet
printing technology, demonstrating I-V characteristics with
nonlinearity analogous to activation functions commonly em-
ployed in neural networks. To evaluate its applicability as an
activation function, the forward and reverse paths of the I-V
curve were mathematically modeled, with the equation derived
from the reverse path implemented as an activation function
within a graph neural network to predict the solubility of
various organic molecules. The performance of this nonlinear
device was subsequently compared with widely used activation
functions such as tanh and sigmoid. Although the device
did not outperform these traditional activation functions, it
exhibited comparable results, demonstrating its feasibility for
use as an activation function in neural network models. This
study highlights the potential of the developed device for
future implementation in neuromorphic computing and neural
network applications within flexible electronics utilizing inkjet
printing technology.
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