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Abstract—Recent advancements in flexible electronics have
enabled new motion tracking and activity recognition approaches.
The mechanical interactions of human or animal body vibrations
and movements can be transformed to valuable data for their
health monitoring. This paper presents a high-performance
flexible sensor fabricated using inkjet-printing on a polyethylene
terephthalate substrate with silver conductive ink for comprehen-
sive activity monitoring. The sensor shows consistent response to
various human activities including walking, running, clapping,
writing, waving, and typing. Experimental results indicate re-
liable signal acquisition for physical activity monitoring. The
sensor design offers practical advantages including low pro-
duction cost, minimal power requirements, and straightforward
integration into wearable systems. When combined with signal
processing algorithms, the platform effectively classifies different
activity patterns. The sensor offers several practical advantages
— it is lightweight, low-cost, consumes minimal power, and
supports easy integration into wearable devices. These character-
istics make the sensor suitable for healthcare monitoring, sports
analytics, rehabilitation tracking, and veterinary behavior studies
where continuous motion capture is needed.

Index Terms—Activity Monitoring, Capacitive Sensing, Flexi-
ble Sensor, Inkjet-Printing, Wearable Device.

I. INTRODUCTION

Physical activity serves as a fundamental indicator of health,
functionality, and behavioral patterns across diverse popu-
lations, including athletes, elderly individuals, and animals.
Accurate monitoring of motion and posture can provide critical
insights into performance optimization, early detection of
musculoskeletal or neurological conditions, and overall well-
being [1]–[3]. In elderly care, continuous activity monitoring
facilitates the evaluation of mobility, identification of falls, and
analysis of daily living patterns, thereby enabling independent
aging and prompt clinical interventions [4], [5]. Similarly in
veterinary applications, activity tracking aids behavioral analy-
sis, welfare assessment, and early detection of diseases in both
livestock and pets [6]–[8]. Detailed motion data can improve
individualized feedback systems, maximize biomechanics, and
help to minimize injuries in athletic training and rehabilitation
[9], [10]. With the rising demand for reliable, real-time,
and unobtrusive monitoring solutions, the advancement of
sensing technologies that are both comfortable and adaptable
to dynamic environments has become increasingly important.
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Recent advancements in sensor technology have led to a
new era of flexible sensors, redefining the collection, analysis,
and application of physical data. These sensors, capable of
withstanding bending, stretching, and twisting, offer mechan-
ical adaptability that rigid sensors inherently lack [11], [12].
Their flexibility allows for effortless integration onto uneven
and dynamic biological surfaces, such as human skin or animal
limbs, garments, accessories, and soft structures, enabling
continuous, unobtrusive monitoring without sacrificing user
comfort, making them ideal for healthcare, animal monitoring,
rehabilitation, and sports science [13]–[17].

Inkjet printing offers a scalable and cost-efficient approach
to fabricating flexible sensors by precisely depositing con-
ductive materials onto flexible substrates [18], [19]. This
technique enables rapid prototyping and customization of
sensor designs with minimal material waste [20]. Previous
studies have demonstrated inkjet-printed piezoresistive and
capacitive sensors for applications like gait analysis, gesture
detection, and tactile monitoring [21]–[23]. Silver nanoparticle
ink is widely used in inkjet printing due to their favorable
electrical properties and mechanical flexibility. While inkjet-
printed sensors may exhibit lower conductivity compared to
conventionally fabricated counterparts these factors are often
outweighed by the method’s advantages in affordability, me-
chanical adaptability, and design flexibility. Ongoing improve-
ments in ink formulations and printing resolution continue to
address performance gaps, further reinforcing the promise of
inkjet-printed sensors for reliable and practical use.

In this study, we present an unique pattern-based flexible
capacitive sensor fabricated by printing silver conductive ink
on a polyethylene terephthalate (PET) film using Voltera V-
One printer. The schematic of the proposed sensor is illustrated
in Fig. 1a. The sensors’ capacity to detect various physical
actions was evaluated, including walking, running, clapping,
writing, waving, and typing. The demonstrated results high-
light the sensor’s capability to detect motion-related signals
relevant to elderly care, athletic monitoring, and animal ac-
tivity tracking and medical surveillance. With its light-weight,
low-power, and low-cost profile, this sensor system presents a
promising solution for smart wearable and embedded activity
monitoring platforms.

The remainder of this paper is structured as follows:
Section II outlines the sensor architecture, underlying
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Fig. 1: (a) Schematic view of inkjet printed sensor, and (b)
Activity sensing evaluation setup.

working principles, and the inkjet printing fabrication
process. Section III introduces the data acquisition system
and the experimental setup used to evaluate the sensor
performance. Section IV analyzes the results obtained from
monitoring various physical activities. Finally, the conclusion
of this work is presented in Section V.

II. DEVICE FORMATION AND MODELING

Inkjet printing of electronics on flexible substrates has cap-
tured significant interest due to its flexibility, cost-effectiveness
and improved efficiency. The wearable sensor pattern based
on a comb-shaped electrode surrounded by a square ring
electrode was developed using KiCad Software. The designed
pattern was then converted to gerber file. A semitransparent
PET film was used as the substrate with a thickness of 135
µm. Voltera V-One was utilized to print the generated gerber
file onto the substrate with silver nanoparticle ink, as seen
in Fig. 2c. At first a gerber file of the layout pattern was
developed using KiCad Software. The layout was printed at
room temperature using Voltera Conductor 3 ink which is a
paste like silver nanoparticle ink. The trace width of the printed
design is 0.5 mm. Subsequent to printing, the ink was cured by
positioning the sensor on a hot plate at 70°C for ten minutes.
The dimension of the printed sensor is displayed in Fig. 1a.
The length and width of the whole device is 19.4 mm and
13.4 mm while the gap between the silver electrode patterns
and their linewidth are 0.4 mm and 0.9 mm. Fig. 2a presents
the top view of printed sensor through a digital microscope
and Fig. 2b displays a closer view of the printed electrodes
with silver nanoparticle ink.

The working principle of the inkjet-printed flexible sensor
is based on capacitive effects induced by mechanical defor-
mation. The printed device responds to vibration generated
by different physical activities such as running, walking or
waving. Slight stress or compression generated by physical
activities results in the reconfiguration of the relative positions
of silver nanoparticles within the printed lines. This leads
to a variation in the capacitance of the structure. The outer
rectangular electrode and the inner meander-shaped electrode
are parallel to each other, and the current flow within the
structure is defined by the following equation when a fixed
bias voltage is applied.
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Fig. 2: (a) Top view of proposed sensor through digital
microscope, (b) Closer View of silver nanoparticle ink based
electrodes, and (c) Sensor fabrication using an inkjet-printer.

i = V × dC

dt
(1)

The total capacitance C consists of a constant lateral ca-
pacitance Cl and a fringe capacitance Cf . The fringe-field
capacitance Cf developed between the neighboring electrode
fingers changes when vibration caused by physical movement
alters the relative distance and overlap area. These fluctuations
in capacitance vary the total impedance of the system resulting
in change in current for a fixed bias voltage.

III. DATA ACQUISITION AND EXPERIMENTAL
METHODOLOGY

The silver-based IJP sensor was tested for activity moni-
toring application. The sensor substrate was taped to skin on
wrist with the silver lines on top and a high-precision source-
meter, Keithley 2400, was used to monitor current variations
of the printed sensor in response to different activities. The
experimental setup is displayed in Fig. 1b. In our experiment,
ten data collections were performed for 500 data points for
each physical activity. Kickstart software interface was used to
extract data from the source meter to excel. A voltage limit of 5
V was set up in the source meter to allow current flow through
the prototype sensor, and the corresponding current profile
was observed through the source meter. A student volunteer
performed six different activities for the experiment- clapping,
running, slow walking, typing, waving, and writing. As seen
in Fig. 3, for different activities, the prototype sensor shows
sensitivity as the current profile for each activity has visible
difference when a fixed bias voltage is applied.



Fig. 3: Sensor’s current response to different activities.

IV. PERFORMANCE EVALUATION

Time series data collected from different activities was used
to train a machine learning model for activity classification.
Due to the limited number of original samples (59), data
augmentation techniques were employed to expand the dataset
to 531 samples and reduce the risk of overfitting. The aug-
mentation methods included jittering, scaling, wrapping, and
window slicing [24]. The wrapping technique was applied in
both the time and magnitude domains. In the jittering method,
Gaussian noise was added to the time series signal with a mean
of 0 and a standard deviation of 2× 10−11. For the wrapping
and slicing methods, parameters were tuned to achieve the
desired signal-to-noise ratio of 0.004. The resulting dataset
was split into training and test sets using an 8:2 ratio with
stratified sampling to maintain class distribution.

For classification, an Echo State Network (ESN) was se-
lected due to its strong performance with time series data
[25]–[27]. PyRCN library was used to design ESN in python
interface [28]. Table I presents the hyperparameters used to
configure the model. These hyperparameters were optimized
using a three-stage grid search over spectral radius, alpha, in-
put scaling, bias scaling, and leakage. K-fold cross-validation
was applied with a value of K = 20 to ensure robust model
evaluation.

To evaluate the performance of the ESN, precision, recall,
and F1 score were used alongside accuracy. For accuracy
assessment, both micro-average and weighted-average metrics
were considered. Table II presents the classification report, and
the confusion matrix is shown in Fig. 4. The model shows
overall accuracy of 99%. According to Fig. 5, typing, writing,
and clapping produced highly correlated time series signals,
which leads to reduced classification performance for these
activities. In contrast, due to their low correlation with other
classes, running and walking were classified with the highest

accuracy.

TABLE I: ESN Classifier Hyperparameters

Layer Hyperparameter Settings
Input Layer Bias scaling = 0.8333

Hidden layer size = 270
Activation function= ReLU
Input scaling = 0.89

Reservoir Hidden layer size = 270
Recurrent connectivity = 10
Leakage = 0.9
Activation function = ReLU
Sparsity = 0.0370
Spectral radius = 10−5

Output Layer Alpha = 0.1 (Incremental Regression)

TABLE II: Classification Report of ESN Classifier

Class Precision Recall F1-Score Support
Clapping 1.00 0.99 0.99 72
Running 1.00 1.00 1.00 72
Walking 1.00 1.00 1.00 72
Typing 0.98 0.96 0.97 50
Waving 1.00 0.97 0.99 72
Writing 0.95 1.00 0.97 72
Accuracy 0.99 410
Macro avg 0.99 0.99 0.99 410
Weighted avg 0.99 0.99 0.99 410

Fig. 4: Confusion matrix for ESN classifier.

V. CONCLUSION

In this work, an inkjet printed capacitive flexible sensor
is presented as a wearable device for activity monitoring
applications. Fabricated using an inkjet-printer with silver
nanoparticle ink, this sensor offers a low-cost, light-weight,
and practical solution for applications necessitating continuous
tracking of physical activity. The sensor response to different
physical activities was used to train an ESN network with an



Fig. 5: Heat plot for the correlation matrix for different
activities.

accuracy of 99%. As the need for continuous, comfortable,
and accurate monitoring systems grows, the proposed flexible
sensor shows promise serving across domains, from athletic
optimization and elderly care to animal behavior analysis.
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