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Abstract—In a recent breakthrough, Kelley and Meka (FOCS
2023) obtained a strong upper bound on the density of sets of
integers without non-trivial three-term arithmetic progressions.
In this work, we extend their result, establishing similar bounds
for all linear patterns defined by binary systems of linear forms,
where “binary” indicates that every linear form depends on
exactly two variables. Prior to our work, no strong bounds were
known for such systems even in the finite field model setting.

A key ingredient in our proof is a graph counting lemma.
The classical graph counting lemma, developed by Thomason
(Random Graphs 1985) and Chung, Graham, and Wilson (Com-
binatorica 1989), is a fundamental tool in combinatorics. For a
fixed graph H , it states that the number of copies of H in a
pseudorandom graph G is similar to the number of copies of
H in a purely random graph with the same edge density as
G. However, this lemma is only non-trivial when G is a dense
graph. In this work, we prove a graph counting lemma that is also
effective when G is sparse. Moreover, our lemma is well-suited
for density increment arguments in additive number theory.

As an immediate application, we obtain a strong bound for
the Turán problem in abelian Cayley sum graphs: let Γ be a
finite abelian group with odd order. If a Cayley sum graph on
Γ does not contain any r-clique as a subgraph, it must have at
most 2−Ωr(log1/16 |Γ|) · |Γ|2 edges.

These results hinge on the technology developed by Kelley
and Meka and the follow-up work by Kelley, Lovett, and Meka
(STOC 2024).

Index Terms—sparse graph counting lemma, Kelley-Meka
bounds, Density increment, additive combinatorics, pseudoran-
domness and derandomization

I. INTRODUCTION

The graph counting lemma, due to Thomason [1] and
Chung, Graham, and Wilson [2], is a fundamental result
in graph theory, with many applications in extremal com-
binatorics, additive number theory, discrete geometry, and
theoretical computer science. Informally, it states that the
number of embeddings of a fixed graph H into a random-
looking (pseudorandom) graph G is similar to the number of
embeddings of H into a genuine random graph with the same
edge density as G.

This project has received funding from the European Union’s Horizon 2020
research and innovation program under grant agreement No 802020-ERC-
HARMONIC. This work was partially supported by the Goergen Institute
for Data Science at the University of Rochester. E. K. was supported in part
by the NSF TRIPODS program (award DMS-2022448). This project was
partially carried out at the Simons Institute for the Theory of Computing, UC
Berkeley, while the authors were participating in the program Analysis and
TCS in Summer 2023.

For certain problems, particularly in additive number theory,
it is possible to use the counting lemma to obtain a density
increment argument. Roughly speaking, if the number of
embeddings of H into G deviates from that of a random
graph, then by the counting lemma, G is not pseudorandom
and, therefore, contains some structure. In certain cases, it is
possible to exploit this structure to restrict the problem to a
significantly denser subproblem and repeat the argument. As
the density cannot exceed one, this process must stop after a
bounded number of iterations.

Many of the strongest known bounds in additive number
theory and extremal combinatorics rely on the density incre-
ment approach. This method often yields much better bounds
compared to other common techniques, such as the regularity
method.

The classical graph counting lemma has a shortcoming: it
is only effective for dense graphs. Indeed, while the counting
lemma and the regularity method provide an elegant theory
for understanding the subgraph densities in dense graphs [3],
obtaining an analogous theory for the sparse setting has proven
challenging. Over the past few decades, considerable effort
has been devoted towards developing sparse analogs of the
counting and regularity lemmas (see for example [4]–[11]).

The conventional strategy for extending these results to
sparse graphs is to introduce an additional requirement: that
the graph G, even though sparse, is a relatively dense subgraph
of a much more pseudorandom host graph Γ. For example,
in an important paper, Conlon, Fox, and Zhao [10] proved
an effective sparse counting lemma under this additional
requirement. Their result generalizes an earlier theorem of
Kohayakawa, Rödl, Schacht, and Skokan [9] that only applied
to counting triangles. However, the additional requirement
that G must live in a much more pseudorandom graph Γ
makes such sparse counting lemmas unsuitable for certain
applications of the original counting lemma.

In this paper, we prove a counting lemma for sparse graphs
(Theorem I.4) that circumvents this extra assumption on G.
Our theorem states that if the number of embeddings of H
into G deviates from what is expected, then either G contains
many vertices of small degree, or there exist large subsets
S, T ⊆ V (G) such that the density of the induced bipartite
graph between them is notably higher than the density of G.
Due to its guarantee of increased density, our counting lemma
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is tailored for density increment arguments.
We use our new sparse counting lemma alongside various

tools from additive number theory, such as the Bohr set
machinery, almost periodicity, and dependent random choice,
to extend Kelley and Meka’s strong bound on 3-progression-
free sets to a broad and important class of more general linear
patterns. We will postpone the detailed discussion of this result
to Section I-B.

A. The sparse graph counting lemma

We identify undirected graphs as symmetric functions
A : X × X → {0, 1} through the correspondence with the
characteristic function of the edges. The density of A is

E[A] := Ex1,x2∈X [A(x1,x2)],

where x1,x2 ∈ X means that x1 and x2 are chosen uniformly
and independently from X .

Let H = ([k], EH) be a fixed undirected graph with vertex
set [k] := {1, . . . , k} and m = |EH | edges. We define the
density of H in A as

tH(A) := Ex1,...,xk∈X

 ∏
{i,j}∈EH

A(xi,xj)

 .
When A is the Erdős–Rényi random graph with parameter

α, we have tH(A) ≈ αm, with high probability. For an
arbitrary A, the graph counting lemma of [1], [2] guarantees
tH(A) ≈ αm if A is pseudorandom in a certain structural
sense. We state this result in the contrapositive form.

Theorem I.1 (Graph Counting Lemma [1], [2]). For every
fixed graph H with m edges and ε ∈ (0, 1), there exists δ =
δ(ε,m) > 0 such that the following is true. If A is a graph
on X with density α that satisfies

|tH(A)− αm| ≥ ε,

there must exist S, T ⊆ X with densities |S||X | ,
|T |
|X | ≥ Ωm,ε(1)

such that ∣∣E(x,y)∈S×T [A(x,y)]− α
∣∣ ≥ δ.

In other words, if tH(A) is significantly different from
what is expected from a random graph of density α, then on
some large combinatorial rectangle S × T , the density of A
significantly deviates from α.

In the sparse setting, where α = o(1), we have |tH(A) −
αm| = o(1), and therefore, to obtain a useful counting lemma
for sparse graphs, we need to refine the assumption of the
counting lemma to

|tH(A)− αm| ≥ εαm. (1)

The following well-known example shows that (1) does not
necessarily imply the existence of S, T ⊆ X with density
Ωm,ε(1) that satisfy∣∣E(x,y)∼S×T [A(x,y)]− α

∣∣ ≥ Ω(α). (2)

Example I.2. Let H be the triangle graph, and let A be
the Erdős–Rényi random graph on n vertices with parameter

α = n−2/3. With high probability, we have tH(A) ≈ α3 =
n−2, and therefore, there are at most O(n) triangles in A.
By removing at most O(n) edges from A, we can obtain a
triangle-free A′. Since A′ is triangle-free and its density is
very close to α, it satisfies the assumption (1). Moreover,∣∣E(x,y)∼S×T [A′(x,y)]− α

∣∣ = o(α)

for all subsets S, T ⊆ [n] of density at least, say, n−1/7.
Therefore, A′ violates the desired conclusion (2).

To circumvent such examples, Conlon, Fox and Zhao [10]
assume further that A is a relatively dense subgraph of a
host graph Γ that satisfies much stronger pseudo-randomness
conditions. Their counting lemma states that under this extra
requirement, (1) indeed implies (2) for some S, T ⊆ X with
density Ωm,ε(1). We prove a counting lemma that does not
require such an extra pseudorandomness condition on A.

Theorem I.3. Let H be a graph with m edges, and let ε ∈
(0, 1). For every graph A with vertex set X and density α, the
following holds.
(i) If tH(A) ≥ (1 + ε)mαm, there exist S, T ⊆ X with

|S||T |
|X |2 = Ω(αm+1) such that

E(x,y)∼S×T [A(x,y)] ≥
(

1 +
ε

2

)
α.

(ii) If tH(A) ≤ (1 − ε)mαm, there exist S, T ⊆ X with
|S||T |
|X |2 = Ω(ε(1− ε)m−1αm) such that

E(x,y)∼S×T [A(x,y)] ≤
(

1− ε

2

)
α.

Theorem I.3 is a special case of a slightly more general
result (Theorem II.2) that we state and prove later. Theorem I.3
is not our main counting lemma, and as explained later, it is
not useful for strong density increment applications. However,
it can be viewed as an extension of Theorem I.1 to the sparse
setting and provides a nice complement to Example I.2.

Kelley, Lovett, Meka [12] proved the first part of Theo-
rem I.3 using a smooth analog of the dependent random choice
method in the special case when H is a complete bipartite
graph. In Theorem I.3, we generalize their result to all graphs
using a similar proof.

a) A density increment counting lemma.: Theorem I.3 is
not useful for obtaining density increment arguments since,
in case (ii), it only provides a combinatorial rectangle with
decreased density.

Let us consider the original counting lemma (Theorem I.1).
By tracking the parameters in the proof of this theorem, one
can easily show that (1) implies the existence of S, T ⊆ X
with densities Ωm,ε(1) such that

E(x,y)∼S×T [A(x,y)] ≥ α+ Ω(αm).

While this result provides a density increase, the magnitude
of this increase is insignificant when α is small. In many appli-
cations, having an increase of Ω(α) is crucial. For example,
a density increment that multiplies the density by a factor
of 1 + Ω(1) can be repeated at most O(log(2/α)) times. In
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contrast, a weaker density increment by a factor of 1 + Ω(αc)
for c > 0 needs to be repeated at least Ω(α−c log(2/α)) times
before it reaches a contradiction. Since each iteration decreases
the size of the domain by a constant factor, this large number
of iterations would only be possible if α ≥ Ω(1/ log |X |).

Our main graph counting lemma provides a significant
density increment when A does not contain many vertices with
small degrees.

Theorem I.4 (Main graph counting lemma). Let H be a graph
with m edges, and let ε ∈ (0, 1). There exists δ = δ(ε,m) > 0
such that for every graph A of density α on a vertex set X ,
the following holds. If

|tH(A)− αm| ≥ εαm,

then, either A has 2−Om,ε(log(2/α))|X | vertices with degrees
at most (1 − δ)α|X |, or there exist S, T ⊆ X of densities at
least 2−Om,ε(log2(2/α)) satisfying

E(x,y)∈S×T [A(x,y)] ≥ (1 + δ)α.

Theorem I.4 states that if A is a graph with |tH(A)−αm| ≥
εαm, then either it has many vertices with small degrees, or the
density of A on some large rectangle is greater than (1 + δ)α.
The significance of this theorem lies in the fact that even when
tH(A) is smaller than, say, αm/2, it provides a rectangle with
increased density. This feature makes the theorem suitable for
density increment arguments, especially in additive number
theory, where one naturally deals with regular graphs.

Theorem I.4 is a special case of a more general result
(Theorem II.1) which we state and prove later.

B. Kelley–Meka bounds for binary systems of linear forms

To study the number of occurrences of a linear pattern
(e.g., 3-progressions) in a subset of the interval {1, . . . ,M}, it
suffices to embed {1, . . . ,M} in ZN for a prime N = O(M)
chosen sufficiently large to avoid wraparound. Consequently,
rather than working with the interval, one can focus on subsets
of finite abelian groups G. The two important cases are
G = ZN , where N is a large prime and asymptotics are as N
tends to infinity, and G = Fnq , where q is a fixed prime and
asymptotics are as n tends to infinity. The former is important
for applications in number theory, and the latter is the setting
that is most relevant to applications in combinatorics and
computer science.

In 1953, Roth [13] proved that a set of integers A ⊆
ZN without non-trivial 3-progressions must have density
O(1/ log logN). The quest to determine the optimal bound
in Roth’s theorem stands as a central problem in additive
number theory, which has been studied extensively over the
past seven decades (notably [14]–[19]). For a long time,
1/ logN was perceived as a barrier for all the available
techniques. In [18], Bloom and Sisask overcame this barrier
and established the bound O(1/ log1+εN) for some small
ε > 0. More recently, in a remarkable breakthrough, Kelley
and Meka [19] took a huge leap forward and improved the
bound to 2−Ω(log1/12N). Subsequently, this bound was refined

to 2−Ω(log1/9N) by Bloom and Sisask [20]. On the other
hand, Behrend’s classical construction [21] shows that there
are sets with density 2−O(log1/2N) that are free of non-trivial
3-progressions.

Similarly to all previous approaches, [19] uses a density
increment argument. Note that the density of 3-progressions
in a set A ⊆ ZN is given by

t3AP(A) := Ex,y∈ZN [A(x)A (x + y)A(x + 2y)] , (3)

where we identified A with its indicator function. If A is a
random set of density α, then we expect t3AP(A) ≈ α3. Kelley
and Meka [19] show that if a set A with density α satisfies

|t3AP(A)− α3| ≥ α3

2
,

then restricting to some large low-rank Bohr set B increases
the relative density of A by a multiplicative factor of 1+Ω(1).
Repeating this argument iteratively for at most O(log(2/α))
times shows that if A does not contain any non-trivial 3-
progressions, then α ≤ 2−Ω(log1/12N).

Most linear patterns, such as 4-progressions, are funda-
mentally beyond the scope of such a Bohr set counting
lemma: there are sets A with density α = Ω(1) that satisfy
|t4AP(A)− α4| = Ω(1), but the relative density of A in every
large low-rank Bohr set remains extremely close to α, see [22].
Remark 1. In 1975, Szemerédi [23] extended Roth’s o(1)
bound using a completely new approach to arithmetic pro-
gressions of arbitrary length. However, in contrast to Roth’s
Fourier-analytic proof, all the various known proofs of Sze-
merédi’s theorem give much weaker bounds. Indeed, it was
considered a major breakthrough when Gowers [22] proved an
upper bound of 1/(log logN)2−2k+9

on the density of sets of
integers without k-term arithmetic progressions. Very recently,
Leng, Sah, and Sawhney posted a preprint [24] improving
Gowers’ bound to an impressive bound of O(2−(log logN)ck ),
where ck > 0 is a constant depending on k.

Nonetheless, there is an important class of linear patterns
that lie somewhere between 3-progressions and 4-progressions
in terms of their “complexity”. These linear patterns, defined
by binary systems of linear forms, stem from the graph-
theoretic approach of Ruzsa and Szemerédi [25] to Roth’s
theorem. Ruzsa and Szemerédi discovered a versatile proof of
Roth’s theorem by establishing and applying the so-called tri-
angle removal lemma, which is a consequence of Szemerédi’s
regularity lemma. Their proof uses the expression

t3AP(A) = Ex,y,z∈ZN [A(2x− 2y)A (x− z)A(2y − 2z)]
(4)

to represent the density of 3-progressions in A as the density
of triangles in a tripartite graph constructed from A, and then
applies these graph theoretic tools.

In [26], Erdős, Frankl, and Rödl proved the graph removal
lemma, which generalizes the triangle removal lemma to
all graphs. This generalization extends the graph-theoretic
approach to a large class of linear patterns, namely those
defined by binary systems of linear forms. Essentially, these
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linear patterns have a graph-like structure, similar to how
3-progressions have a triangle-like structure. We will for-
mally define these systems in Section I-D, but for now, it
suffices to mention that the term binary indicates that each
linear form is supported on exactly two variables. Note that
(2x − 2y, x − z, 2y − 2z), which captures 3-progressions,
satisfies this property. As another notable example of a binary
system, consider

tK4
(A) := Ex,y,z,w∈ZN [A(x + y)A(x + z)

A(x + w)A(y + z)A(y + w)A(z + w)], (5)

which corresponds to the density of K4 (the complete graph
on 4 vertices) in the Cayley sum graph Cay(ZN , A), whose
edges are {x, y} for x+ y ∈ A.

The graph-theoretic approach relies on Szemerédi’s regular-
ity lemma, and therefore results in an extremely weak bound
compared to Roth’s original bound. However, one can use a
common technique in additive number theory and extremal
combinatorics, based on a few careful applications of the
Cauchy–Schwarz inequality, to extend Roth’s original Fourier-
analytic proof and upper bound to all binary systems.

Unfortunately, the aforementioned Cauchy–Schwarz ap-
proach incurs too much loss to extend Kelley and Meka’s
upper bound to such a broad class of linear patterns. In fact,
a priori, it is unclear whether Kelley and Meka’s techniques
could be applied to, for instance, tK4

(A). Let us briefly review
the key steps of their proof:

1) Their proof starts from the assumption |t3AP(A)−α3| ≥
εα3, and notes that

t3AP(A)− α3 = 〈(A− α) ∗ (A− α), C〉,

where C = {2a | a ∈ A}.
2) (Hölder step): Since the density of C is α, one can use

Hölder’s inequality to show that the right-hand side is
at most O(α‖(A− α) ∗ (A− α)‖p) for p ≈ log(2/α).

3) (Positivity/Significant Increment): Then, in one of the
key steps of the proof, the proof uses the fact that the
Fourier coefficients of the convolution (A−α)∗(A−α)
are positive to deduce from ‖(A − α) ∗ (A − α)‖p =
Ω(α2) that

‖A ∗A‖p = (1 + Ω(1))α2.

4) (Sifting/Dependent random choice): This key step in-
volves the application of the dependent random choice
technique to the lower bound on ‖A ∗A‖p.

5) (Almost periodicity): At this point, one can combine
the result of the previous step with the available almost
periodicity result of [27] to achieve the desired density
increment.

Note that several steps in the above proof rely on the
properties of convolution, and while one can express t3AP(A)
by a simple formula involving convolution, this is not true for
other more complex binary systems such as tK4

(A). Is it still
true that |tK4(A)−α6| = Ω(α6) implies a significant density
increment in a large low-rank Bohr set? If |tK4(A) − α6| =

Ω(α6), then our counting lemma (Theorem I.4) provides two
sets S and T with densities 2−O(log2(2/α)) such that

(1 + Ω(1))αSαTα ≤ Ex,y∈ZN [S(x)T (y)A(x + y)] , (6)

where αS and αT are the densities of S and T , respectively.
This is promising, as E [S(x)T (y)A(x + y)] is a much

simpler expression than tK4
(A), and moreover, we have shown

in (6) that it is significantly larger than its “expected” value
αSαTα. By establishing a sifting step for general finite abelian
groups that is applicable to (6), we prove the following
theorem.

Theorem I.5 (Kelley–Meka-type bounds over finite abelian
groups). Let L be a binary system of linear forms over a
finite abelian group G, and suppose |G| is coprime with all the
coefficients in the linear forms. If A ⊆ G is free of translations
of non-degenerate instances of L, then
(i) |A| ≤ |G| · 2−ΩL(log1/16 |G|).

(ii) If, in addition, the underlying graph of L is 2-degenerate,
then

|A| ≤ |G| · 2−ΩL(log1/9 |G|).

Here, an undirected graph H is called k-degenerate if every
subgraph of H has a vertex of degree at most k.
Remark 2. It is worth noting that even in the case of the
group G = Fnq , despite the success of the polynomial method
in proving strong bounds for Roth’s theorem [28], [29], the
bound of Theorem I.5 is new. In 2017, [28], [29] used the
polynomial method to prove that any subset of G = Fnq
without 3-progressions must be of size at most cn, where
c = c(q) < q is a fixed constant. This bound is stronger
than Kelley and Meka’s bound, and indeed, the significance
of Kelley and Meka’s result lies in the integer case, where
there is no known analog of the polynomial method. However,
even in the setting of Fnq , the polynomial method appears to
be limited in dealing with general binary systems. In a recent
article [30], Gijswijt extended the polynomial method to a
larger class of systems of linear forms. However, even this
class does not include the binary systems whose underlying
graphs are dense graphs such as K4 or larger cliques. For
cases such as (5), the strongest known previous bounds were
of the form qn−Ωq(log n). Theorem I.5 improves these bounds
to qn−Ωq(n

1/16).
Remark 3. In the case of 3 - progressions, currently the
strongest known bound for G = ZN is |A| ≤ |G| ·
2−Ω(log1/9 |G|) , due to Bloom and Sisask [20], which is
stronger than what we obtain for general binary systems in
Theorem I.5 (i). To briefly explain this disparity, note that
we need to apply our counting lemma to obtain (6), and the
two resulting sets, S and T , are of densities 2−O(log2(2/α)),
which is small compared to α. In contrast, in the case of 3-
progressions, one can directly work with ‖A ∗ A‖p, which
leads to a stronger bound. Nevertheless, in Theorem I.5 (ii)
we show that if the underlying graph of the binary system is
2-degenerate (e.g., the triangle graph for 3-progressions), we
can obtain the same upper bound |A| ≤ |G| · 2−Ω(log1/9 |G|).
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C. Turán’s theorem for Cayley sum graphs over abelian
groups

Here, we present a quick application of Theorem I.5 to
Turán’s theorem, a classical result in extremal graph theory
regarding the largest edge density of a graph that does not
contain any copies of Kr (the complete graph on r vertices),
for some given r. Turán proved that this density is at most
1 − 1

r−1 + o(1), which is tight, as witnessed by a complete
(r − 1)-partite graph where the parts have an almost equal
number of vertices.

Recall that given a finite abelian group Γ and a set A ⊆ Γ,
the Cayley sum graph Cay(Γ, A) is the graph with vertex set
Γ and edge set {{x, y} | x+ y ∈ A}. Theorem I.5 (i) implies
a strong upper bound on the edge density of G in Turán’s
theorem if G is further assumed to be a Cayley sum graph of
a finite abelian group Γ with 2 6 | |Γ|.

Corollary I.6. Let r ≥ 2 be a fixed positive integer. Let Γ be
a finite abelian group such that 2 6 | |Γ|, and let A ⊆ Γ. If
Cay(Γ, A) does not contain any copies of Kr, then its edge
density is at most 2−Ωr(log1/16 |Γ|).

Proof. The system of linear forms associated with r-clique
is L = {xi + xj : i 6= j, i, j ∈ [r]}. Next, we show that if
2 6 | |Γ|, then L is translation invariant (see Definition 1 on
page 5), and therefore, we can apply Theorem I.5 to conclude
the corollary. We need to show that every shift of an r-clique
is also an r-clique. This follows from the identity xi + xj +
c = (xi + c/2) + (xj + c/2) for all i 6= j, which is valid if
2 6 | |Γ|.

Note that the requirement 2 6 | |Γ| is crucial. For example,
let Γ = Z2N and let A be the set of all odd numbers in
Z2N , namely, A = {2i + 1 mod 2N : i ∈ [N ]} ⊆ Γ. The
Cayley sum graph Cay(Γ, A) does not contain any triangles
because for any three elements x, y, z ∈ Z2N , at least one of
x+y, x+z, y+z is even, hence not in A. However, Cay(Γ, A)
has edge density ≈ 1

2 .
Layout of the paper: In the remainder of the introduction,

we introduce some notation and terminology on systems of
linear forms. In Section II, we discuss the graph counting
lemmas and their proofs. In Section III, we discuss the Kelley–
Meka-type bounds for binary linear systems. In Section IV, we
discuss some concluding remarks regarding the limitations of
these methods in relation to other systems of linear forms.

D. Notation and terminology

The function log is the base 2 logarithm. For a positive
integer m, we denote [m] := {1, . . . ,m}. We denote random
variables with bold font.

Let X be a finite set. Given a function f : X → R and
p ∈ [1,∞), let ‖f‖p = (E[|f(x)|p])1/p, and let ‖f‖∞ =
maxx |f(x)|.

We use the standard Bachmann–Landau asymptotic nota-
tion: O(·),Ω(·),Θ(·), o(·), and ω(·). Sometimes, we will use
these notations in combination with subscripts to indicate that
the hidden constants may depend on the parameters in the

subscript. For example, Om(1) means bounded by a constant c
that may depend on m. We sometimes write f . g to indicate
f = O(g).

a) Systems of linear forms.: A linear form in d variables
is a vector L = (λ1, . . . , λd) ∈ Zd. Given an abelian group
G, the linear form L defines a linear map Gd → G by
L(x1, . . . , xd) :=

∑
i λixi. A system of m linear forms in d

variables is a tuple L = (L1, . . . , Lm) of linear forms. A tuple
(a1, . . . , am) ∈ Gm is called an instance of L if there exists
x ∈ Gd with L(x) := (L1(x), . . . , Lm(x)) = (a1, . . . , am). It
is called a non-degenerate instance if additionally a1, . . . , am
are all distinct.

We often require that |G| be coprime with all the coefficients
of the linear forms that define L. Otherwise, it would be
possible to have sets that do not contain instances of even a
single linear form. For example, let L(x) = 2x and G = Zm
for some even number m. Then the set A = {a ∈ G :
a mod 2 ≡ 1} does not contain any instance of L(x) for
x ∈ G.

For an integer λ with (λ, |G|) = 1, the map x 7→ λx is
a G-automorphism. Let λ−1 be a positive integer such that
λ−1(λx) = x for all x ∈ G. This is guaranteed to exist
because (λ, |G|) = 1 implies the existence of an integer λ−1

with λ−1λ ≡ 1 mod |G|.
Let L = (L1, . . . , Lm) be a system of linear forms in

d variables and let A ⊆ G. Let x1, . . . ,xd be independent
random variables taking values in G uniformly at random.
The probability that L(x1, . . . ,xd) ∈ Am is given by the
expectation

tL(A) := E

[
m∏
i=1

A(Li(x1, . . . ,xd))

]
.

b) Translation-invariance.: When studying linear pat-
terns, it is natural to consider systems whose instances are
invariant under translations.

Definition 1 (Translation-Invariance). A system

L = (L1, . . . , Lm)

in d variables is translation-invariant over a finite abelian
group G if for every instance (a1, . . . , am) of L and every
c, the tuple (c+ a1, . . . , c+ am) is also an instance of L.

For example, (a, a + b, a + 2b), which represents 3-
progressions, is translation-invariant over every finite abelian
group. As another example, (x−y, y−z, 2x−2z) is translation-
invariant over Z3, but it is not translation-invariant over Z5.

Given a system L = (L1, . . . , Lm) of linear forms (not
necessarily translation-invariant) in d variables x1, . . . , xd, we
are interested in sets A ⊆ G that are free of translations of
non-degenerate instances of L. That is, there are no c ∈ G
and non-degenerate instance (a1, . . . , am) of L such that (c+
a1, . . . , c + am) ∈ Am. Equivalently, one can introduce an
additional variable xd+1, and require that A is free of non-
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degenerate instances of the translation-invariant system L′,
where

L′(x1, . . . , xd+1) :=

(xd+1 + L1(x1, . . . , xd), . . . , xd+1 + Lm(x1, . . . , xd)).

Definition 2 (Binary Systems of Linear forms). A system of
linear forms L = (L1, . . . , Lm) in the d variables x1, . . . , xd
is binary if every linear form in L is supported on exactly
two variables, and moreover no two linear forms in L are
supported on the same two variables.

In other words, every Li is of the form λixai + ηixbi
where ai < bi and ai, bi ∈ {1, . . . , d}, and moreover,
{ai, bi} 6= {aj , bj} if i 6= j. Such a binary system naturally
defines an oriented acyclic graph H with vertex set {1, . . . , d}
and an edge (ai, bi) for the linear form Li = λixai + ηixbi .
We say that H is the underlying graph of L. In the case of
3-progressions, the underlying graph H is an oriented triangle,
as described below.

Example I.7 (3-progressions as a binary system of linear
forms). Let N > 2 be an odd number. One can apply the
change of variables a = 2x−2y and b = 2y−x−z to (a, a+
b, a + 2b) and capture 3-progressions in ZN with the system
of linear forms L = (2x−2y, x− z, 2y−2z). The underlying
graph H of L is the oriented triangle {(1, 2), (1, 3), (2, 3)}.

II. GRAPH COUNTING LEMMA

We will adopt a more general framework that encom-
passes oriented graphs. Recall that a directed graph is an
oriented graph if it contains no opposite pairs of directed
edges, or equivalently, it does not contain any 2-cycles. Let
H = (VH , EH) be a fixed oriented graph with vertex set
VH = {1, . . . , k}. Let X be a finite set. For every A ⊆ X×X ,
define

tH(A) := E

[ ∏
uv∈EH

A(xu,xv)

]
,

where xv for v ∈ VH are independent random variables taking
values in X uniformly at random. One can interpret A as an
oriented graph with vertex set X and edges (u, v) ∈ A. Then
tH(A) is the probability that a random map from the vertices
of H to the vertices of A is a graph morphism, i.e., it maps
every edge of H to an edge in A. It is worth noting that, more
generally, one can define tH(f) for a function f : X × X →
[0, 1]. Our counting lemma is based on the following notion
of pseudo-randomness.

Definition 3 (Spreadness for graphs). Let r ≥ 1 and δ > 0,
and let X and Y be finite sets. A set A ⊆ X ×Y with density
α is (δ, r)-spread if, for all subsets S and T of density at least
2−r, we have

Ex∼S
y∼T

[A(x,y)] ≤ (1 + δ)α.

The following counting lemma states that if A is spread and
does not have many vertices with small degrees, then tH(A) ≈

αm for all oriented graphs H on m edges. We state the result
in a more general setting.

Theorem II.1 (Main graph counting lemma). Let H =
([k], E) be an oriented graph with m edges such that (u, v) ∈
E implies u < v, and let α > 0. For every 0 < ε < 1,
there exists δ = δ(ε,m) > 0 such that the following holds.
Let X1, . . . ,Xk be finite sets, and for every edge (u, v) ∈ E,
suppose Auv ⊆ Xu ×Xv has density αuv ≥ α. If∣∣∣∣∣∣E

∏
(u,v)∈E

Auv(xu,xv)−
∏

(u,v)∈E

αuv

∣∣∣∣∣∣ ≥ ε
∏

(u,v)∈E

αuv,

then for some (u, v) ∈ E, at least one of the following cases
holds:

1) There exist S ⊆ Xu and T ⊆ Xv of densities at least
2−Om,ε(log2(2/α)) such that

E(x,y)∈S×T [Auv(x,y)] ≥ (1 + δ)αuv

2) There exists S ⊆ Xu of density at least 2−Om,ε(log(2/α))

such that

Ex∈Xv [Auv(z,x)] ≤ (1− δ)αuv ∀z ∈ S

In other words, if |tH(A)− αm| ≥ εαm, then either A
contains a large subgraph that is significantly denser, or it
contains many vertices whose degrees are significantly smaller
than the average.

Our next theorem shows that when the goal is to identify a
rectangle where the density deviates from α, we do not need
to require any assumption on the degrees of the vertices, and
additionally, we can ensure a stronger lower bound on the
density of the rectangle.

Theorem II.2. Let H = ([k], E) be an oriented graph with
m edges such that (u, v) ∈ E implies u < v, and let α > 0.
Let X1, . . . ,Xk be finite sets, and for every edge (u, v) ∈ E,
suppose Auv ⊆ Xu ×Xv has density αuv ≥ α.
(i) If

E
∏

(u,v)∈E

Auv(xu,xv) ≥ (1 + ε)m
∏

(u,v)∈E

αuv,

then for some (u, v) ∈ E, there exist S × T ⊆ Xu × Xv
with |S||T |

|Xu||Xv| = Ω(εαm+1) such that

E(x,y)∼S×T [Auv(x,y)] ≥
(

1 +
ε

2

)
αuv.

(ii) If

E
∏

(u,v)∈E

Auv(xu,xv) ≤ (1− ε)m
∏

(u,v)∈E

αuv,

then for some (u, v) ∈ E, there exist S × T ⊆ Xu × Xv
with |S||T |

|Xu||Xv| = Ω(ε(1− ε)m−1αm) such that

E(x,y)∼S×T [Auv(x,y)] ≤
(

1− ε

2

)
αuv.

This implies the following immediate corollary for bipartite
graphs which we use in the proof of Theorem II.1.
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Corollary II.3. Let H = (L,R,E) be a bipartite graph with
m edges with left vertices L = [k] and right vertices R = [p],
and let 0 < ε < 1. For every bipartite graph A : X × Y →
{0, 1} and density α, the following holds. Suppose

Ex1,...,xk∈X
y1,...,yp∈Y

 ∏
{i,j}∈E

A(xi,yj)

 ≥ (1 + ε)mαm.

Then there exist S ⊆ X and T ⊆ Y with |S||T ||X ||Y| = Ω(εαm+1)
such that

E(x,y)∼S×T [A(x,y)] ≥
(

1 +
ε

2

)
α.

As mentioned in the introduction, the case where H is a
complete bipartite graph was proven in [12].

A. Proof of Theorem II.2

To prove Theorem II.2, we need the following lemma, which
is a generalization of [12, Claim 4.6]. Let X ,Y be finite sets,
define

R := {S × T : S ⊆ X , T ⊆ Y},

and let conv(R) denote the convex hull of R.

Lemma II.4. Let ∆ ≥ 1 and γ, ε ∈ (0, 1]. Let D : X ×
Y → R≥0 and F ∈ conv(R), and suppose ‖D‖∞ ≤ ∆ and
‖F‖1 ≥ γ.

(i) If
〈

F
‖F‖1 , D

〉
≥ 1 + ε, there exists a rectangle S × T

with |S||T ||X ||Y| ≥
εγ
4∆ and

E(x,y)∈S×T D(x, y) ≥ 1 +
ε

2
.

(ii) If
〈

F
‖F‖1 , D

〉
≤ 1 − ε, there exists a rectangle S × T

with |S||T ||X ||Y| ≥
εγ
4∆ and

E(x,y)∈S×T D(x, y) ≤ 1− ε

2
.

Proof. Let F =
∑
i ciRi for rectangles Ri ∈ R and ci ≥ 0

with
∑
i ci = 1. Let τ = εγ

4∆ , and set F :=
∑
i c
′
iRi with

c′i =

{
ci if ‖Ri‖1 ≥ τ,
0 if ‖Ri‖1 < τ.

Note ‖F − F ′‖1 ≤ τ .

Part (i): In this case, we have

〈F ′, D〉
‖F ′‖1

≥ 〈F
′, D〉
‖F‖1

=
〈F,D〉
‖F‖1

+
〈F ′ − F,D〉
‖F‖1

≥

1 + ε− ‖F
′ − F‖1‖D‖∞
‖F‖1

≥ 1 + ε− τ∆

γ
≥ 1 +

3ε

4
.

The definition of F ′ implies there is a choice of R = Ri with
‖R‖1 ≥ τ and

〈
R
‖R‖1 , D

〉
≥ 1 + 3ε

4 .

Part (ii): We have

〈F ′, D〉
‖F‖1

=
〈F,D〉
‖F‖1

+
〈F ′ − F,D〉
‖F‖1

≤

1− ε+
‖F ′ − F‖1‖D‖∞

‖F‖1
≤ 1− ε+

τ∆

γ
≤ 1− 3ε

4
.

Furthermore,

‖F ′‖1 ≥ ‖F‖1 − τ ≥ ‖F‖1 −
ε‖F‖1

4
=
(

1− ε

4

)
‖F‖1.

We get
〈F ′, D〉
‖F ′‖1

≤ 1− (3ε/4)

1− (ε/4)
≤ 1− ε

2
.

The definition of F ′ implies there is a choice of R = Ri with
‖R‖1 ≥ τ and

〈
R
‖R‖1 , D

〉
≤ 1− ε

2 .

We can now prove Theorem II.2.

Proof of Theorem II.2.. We will prove the theorem by induc-
tion on m. The base case m = 1 is trivial.

Pick any edge (u0, v0) ∈ E and let E′ := E − {(u0, v0)}
and H ′ := (V,E′). Let V ′ = V \ {u0, v0} and let E′′ be the
edges with both endpoints in V ′. For (x, y) ∈ Xu0 × Xv0 ,
define

F (x, y) := Exw∈Xw ∀w∈V ′

[ ∏
(u,v)∈E′′

Auv(xu,xv)

∏
(u0,v)∈E′

Au0v(x,xv)
∏

(u,v0)∈E′
Auv0(xu, y)

]
.

Note that F is an average of rectangles: each of the factors
may depend on x or y but not both. Therefore, F ∈ conv(R).

Part (i): By applying the induction hypothesis to H ′, we may
assume

‖F‖1 = E
∏

(u,v)∈E′
Auv(xu,xv) ≤ (1 + ε)m−1

∏
(u,v)∈E′

αuv,

as otherwise, we are done. Since

〈F,Au0v0〉 = E
∏

(u,v)∈E

Auv(xu,xv) ≥ (1 + ε)m
∏
uv∈E

αuv,

by setting D =
Au0v0
‖Au0v0‖1

, we have〈
F

‖F‖1
, D

〉
≥

(1 + ε)m
∏
uv∈E αuv

αu0v0‖F‖1
≥ 1 + ε.

Since ‖D‖∞ ≤ 1
‖Au0v0‖1

≤ 1
α and by our assumption

‖F‖1 ≥ E
∏

(u,v)∈E Auv(xu,xv) ≥ αm, Lemma II.4 provides
a rectangle S × T ⊆ Xu0

×Xv0 with |S||T |
|Xu0 ||Xv0 |

= Ω(εαm+1)

and
E(x,y)∈S×T Au0v0(x,y) ≥ (1 +

ε

2
)αu0v0 .

Part (ii): By applying the induction hypothesis to H ′, we may
assume

‖F‖1 = E
∏

(u,v)∈E′
Auv(xu,xv) ≥ (1− ε)m−1

∏
(u,v)∈E′

αuv,
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as otherwise, we are done. In this case, we have〈
F

‖F‖1
, D

〉
≤

(1− ε)m
∏

(u,v)∈E αuv

(1− ε)m−1
∏

(u,v)∈E αuv
≤ 1− ε.

Since ‖D‖∞ ≤ 1
α and ‖F‖1 ≥ (1−ε)m−1αm−1, Lemma II.4

provides a rectangle S × T with |S||T |
|Xu0 ||Xv0 |

= Ω(ε(1 −
ε)m−1αm) and E(x,y)∈S×T Au0v0(x,y) ≤ (1− ε

2 )αu0v0 .

B. Proof of Theorem II.1

The proof of Theorem II.1 is more involved and requires
some preparation.

a) Grid norms.: One of the striking results in the work
of Chung, Graham and Wilson [2] states that if an undirected
graph with edge density α has approximately the same number
of 4-cycles as the Erdős–Rényi random graph G(n, α), then
it shares several structural, spectral and statistical properties
with G(n, α).

The pseudo-randomness theorem of [2] naturally general-
izes to binary relations A ⊆ X ×Y . A set A ⊆ X ×Y exhibits
any of several pseudo-random properties if tbK2,2

(A) = α4 +
o(1) where

tbKk,p(A) := Ex∼Xk
y∼Yp

 k∏
i=1

p∏
j=1

A(xi,yj)

 .
One of the key ideas used in the work of Kelley and Meka,

and more explicitly in the follow-up work of Kelley, Lovett,
and Meka [12], is to consider a certain generalization of
tK2,2

(A).

Definition 4 (Grid semi-norms). For a function f : X×Y → R
and k, p ∈ N, let

Uk,p(f) := Ex∼Xk
y∼Yp

 k∏
i=1

p∏
j=1

f(xi,yj)

 .
Also define ‖f‖U(k,p) := |Uk,p(f)|1/pk and ‖f‖|U(k,p)| :=
Uk,p(|f |)1/pk.

Remark 4. Note that if A : X ×Y → {0, 1}, then tbKk,p(A) =
Uk,p(A).

Lemma II.5 below is the analogue of the so-called Gowers–
Cauchy–Schwarz inequality for U(k, p) norms.

Lemma II.5. (Gowers – Cauchy – Schwarz inequality) Let
p, k ∈ N, and for i ∈ [k] and j ∈ [p], let fij : Xi × Yj →
R. Suppose that either k, p are both even numbers, or the
functions fij take only non-negative values. Then

Ex1∼X1,...,xk∼XkEy1∼Y1,...,yp∼Yp

 k∏
i=1

p∏
j=1

fij(xi,yj)

 ≤
k∏
i=1

p∏
j=1

‖fij‖U(k,p). (7)

Proof. Recall the generalized Hölder inequality:

Ez

∣∣∣∣∣∣
p∏
j=1

gj(z)

∣∣∣∣∣∣ ≤
p∏
j=1

(Ez |gj(z)|p)1/p
.

Choosing z = (x1, . . . , xk) and

gj(x1, . . . , xk) = Eyj∼Yj

∏
i

fij(xi,yj),

we obtain

L.H.S. of (7) ≤
p∏
j=1

(
Ex1∼X1,...,xk∼Xk

(
Eyj∼Yj

k∏
i=1

fij(xi,yj)

)p)1/p

.

(8)

Next, note that for every fixed j, we can apply the generalized
Hölder inequality to the variable y ∼ Ypj and obtain

Ex1∼X1,...,xk∼Xk

(
Ey∼Yj

k∏
i=1

fij(xi,y)

)p

= Ey∼Ypj Ex1∼X1,...,xk∼Xk

k∏
i=1

p∏
t=1

fij(xi,yt)

= Ey∼Ypj

k∏
i=1

(
Exi∼Xi

p∏
t=1

fij(xi,yt)

)

≤
k∏
i=1

Ey∼Ypj

(
Ex∼Xi

p∏
t=1

fij(x,yt)

)k1/k

=
k∏
i=1

‖fij‖pU(k,p).

Substituting these in (8), we obtain the desired inequality.

Applying Lemma II.5 to the expansion of Uk,p(f+g) easily
implies that ‖ · ‖|U(k,p)| is a norm, and that when p and k are
both even, ‖ · ‖U(k,p) is a semi-norm.

Corollary II.6 ( [12, Claim 4.2]). If f : X × Y → R≥0 then
‖f‖U(k,p) is monotone in both k and p.

Proof. We will prove monotonicity for k; the same argument
can be applied to p. Let k′ ≥ k, and define fij : X×Y → R≥0

for 1 ≤ i ≤ k′ and 1 ≤ j ≤ p as

fij =

{
f i ≤ k,
1 i > k.

Applying (7) to these functions, we have

‖f‖kpU(k,p) = Ex1,...,xk′ Ey1,...,yp

 k′∏
i=1

p∏
j=1

f(xi,yj)

 ≤
‖f‖kpU(k′,p)‖1‖

k′p−kp
U(k′,p) = ‖f‖kpU(k′,p),

as desired.
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We also need the following simple lemma.

Lemma II.7. Let p ≥ 1, and let f : X → [0, 1] satisfy E[f ] =
α and ‖f − α‖p ≥ εα. Then one of the following two cases
holds:
(i) Ex

[
1[f(x)>α(1+ ε

4 )]

]
≥ εpαp/4.

(ii) Ex

[
1[f(x)<α(1− ε4 )]

]
≥ εp/4.

Proof. From the assumption,

Ex |f(x)− α|p = ‖f − α‖pp ≥ εpαp.

We have

E
[
|f(x)− α|p1[|f(x)−α|≤ εα4 ]

]
≤ (ε/4)pαp ≤ εp

4
αp,

and therefore,

3εp

4
αp ≤ E

[
|f(x)− α|p1[f(x)>α(1+ ε

4 )]

]
+ E

[
|f(x)− α|p1[f(x)<α(1− ε4 )]

]
≤ E

[
1[f(x)>α(1+ ε

4 )]

]
+ αp E

[
1[f(x)<α(1− ε4 )]

]
,

which implies that one of the two cases (i) or (ii) must hold.

b) Main technical lemma.: Next, we prove the following
lemma, which constitutes the technical core of the proof of
Theorem II.1.

Lemma II.8 (Main technical lemma). Let H = ([k], E) be an
oriented graph with m edges such that (u, v) ∈ E implies u <
v. For every 0 < ε < 1, there exists δ = δ(ε,H) ≥ ε22−4m−10

such that the following holds. Let d be the maximum indegree
of a vertex in H and let α > 0. Let X1, . . . ,Xk be finite sets,
and for every edge (u, v) ∈ E, let fuv : Xu × Xv → {0, 1}
with E[fuv] = αuv ≥ α be such that∣∣∣∣∣∣E

∏
(u,v)∈E

fuv(xu,xv)−
∏

(u,v)∈E

αuv

∣∣∣∣∣∣ ≥ ε
∏

(u,v)∈E

αuv. (9)

There exists (u, v) ∈ E and p . m
ε log(2/α) such that at least

one of the following holds:
(i)

‖fuv‖U(2(d−1),p) ≥ (1 + δ)αuv. (10)

(ii)
‖Exv∼Xv fuv(·,xv)− αuv‖p ≥ δαuv. (11)

Proof. We can assume that H contains no isolated vertices.
We can also assume that H contains no isolated edges. Indeed,
suppose that H contains an isolated edge e, and let H ′ be
obtained from H by removing e. If (9) holds for H then it
also holds for H ′. In this way, we can remove all isolated
edges from H .

We will prove the theorem by induction on the quantity
κ(H) := 2|E|−d1(H), where d1(H) is the number of vertices
of degree 1 in H . More precisely, the induction hypothesis
states that the theorem holds with δ(ε,H) = ε22−2κ(H)−10.

To verify the base case κ(H) = 0, note that in this case,
H is empty, and so the L.H.S. of (9) is always 0, and the
statement is trivially true.

We normalize the functions fuv : Xu × Xv → {0, 1} by
defining Fuv : Xu ×Xv → {0, α−1

uv } as Fuv := α−1
uv · fuv . We

can rephrase the assumption, (9), as∣∣∣∣∣E ∏
uv∈E

Fuv(xu,xv)− 1

∣∣∣∣∣ ≥ ε. (12)

Consider the vertex s = k, which is a sink in the graph since
H is topologically ordered. Let u1, . . . , u` be the neighbors of
s, where 1 ≤ ` ≤ d. Let H ′ = (V \ {s}, E′) where E′ ( E
is the set of the edges that do not involve s.

Since H has no isolated edges, d1(H ′) ≥ d1(H) − `, and
so

κ(H ′) = 2|E′| − d1(H ′) ≤ 2(|E| − `)− (d1(H)− `)
= κ(H)− `.

By applying the induction hypothesis to H ′, we may assume∣∣∣∣∣E ∏
uv∈E′

Fuv(xu,xv)− 1

∣∣∣∣∣ ≤ ε

2
, (13)

as otherwise, we are done with

δ = δ(ε/2, H ′) = (ε/2)22−2κ(H′)−10 ≥
ε22−2κ(H)−10 = δ(ε,H),

as desired. In particular, we may assume

E
∏
uv∈E′

Fuv(xu,xv) ≤ 2.

Therefore, using Fuv ∈ {0, α−1
uv }, we have for every q ≥ 1,

E

[( ∏
uv∈E′

Fuv(xu,xv)

)q]
=

E

[ ∏
uv∈E′

α−(q−1)
uv

∏
uv∈E′

Fuv(xu,xv)

]
≤

2 ·
∏
uv∈E′

α−(q−1)
uv ≤ 2 · αm(1−q). (14)

We will single out the edge u1s and set E′′ := E \ {u1s}.
c) Case 1: ` = 1.: In this case, E′′ = E′. Combining

(13) and (12), we have∣∣∣∣∣E
[

(Fu1s(xu1
,xs)− 1)

∏
uv∈E′

Fuv(xu,xv)

]∣∣∣∣∣ =∣∣∣∣∣E ∏
uv∈E

Fuv(xu,xv)− E
∏
uv∈E′

Fuv(xu,xv)

∣∣∣∣∣ ≥ ε

2
.
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Consequently, we may apply Hölder’s inequality over the
variables x := {xu}u∈V \{s} with the even integer p =
2mdlog(2α−1)e ≥ 2m log(2α−1) and 1

p + 1
q = 1, obtaining

ε

2
≤

∣∣∣∣∣E
[

(Fu1s(xu1
,xs)− 1)

∏
uv∈E′

Fuv(xu,xv)

]∣∣∣∣∣
≤ Ex

[( ∏
uv∈E′

Fuv(xu,xv)

)q]1/q

× Ex [(Exs(Fu1s(xu1 ,xs)− 1))
p
]
1/p

≤ 3 · Ex [(Exs(Fu1s(xu1
,xs)− 1))

p
]
1/p

,

where the last inequality follows from

(
2 · αm(1−q)

)1/q

≤ 2 · αm( 1
q−1) = 2 · α−

m
p ≤

2 · α−
m

2m log(2α−1) ≤ 3. (15)

We conclude that

‖Ey Fu1s(·,y)− 1‖p ≥ ε/6 ≥ δ,

which verifies Equation (11).
d) Case 2: ` ≥ 2.: Consider the graph H ′′ obtained

from H by “detaching” the edge u1s from the node s. More
formally, to obtain H ′′, we add a new vertex s′ to H , remove
the edge u1s, and add the edge u1s

′ instead. Note that
κ(H ′′) ≤ κ(H) − 1. By applying the induction hypothesis
to H ′′ with parameter ε/2, we may assume that∣∣∣∣∣Ex

[( ∏
uv∈E′′

Fuv(xu,xv)

)
· (Ez∼Xs Fu1s(xu1 , z))

]
− 1

∣∣∣∣∣
≤ ε

2
, (16)

as otherwise, the assertion of the theorem follows from the in-
duction hypothesis with parameter δ = δ(ε/2, H ′′) ≥ δ(ε,H),
as desired. Set J(x, y) := Fu1s(x, y)−Ez∼Xs Fu1s(x, z). We
have

E

[
J(xu1 ,xs)

∏
uv∈E′′

Fuv(xu,xv)

]
=

E
∏
uv∈E

Fuv(xu,xv)−

Ex

[( ∏
uv∈E′′

Fuv(xu,xv)

)
· Ez∼Xs Fu1s(xu1 , z)

]
.

Combining the above equation with (12) and (16), we obtain∣∣∣∣∣E
[
J(xu1 ,xs)

∏
uv∈E′′

Fuv(xu,xv)

]∣∣∣∣∣ ≥ ε

2
.

We may apply Hölder’s inequality over the variables x :=
{xu}u∈V \{s} with the even integer p = 2mdlog(2α−1)e ≥
2m log(2α−1) and 1

p + 1
q = 1, obtaining∣∣∣∣∣E

[
J(xu1 ,xs)

∏
uv∈E′′

Fuv(xu,xv)

]∣∣∣∣∣
=

∣∣∣∣∣Ex

[( ∏
uv∈E′

Fuv(xu,xv)

)

· Exs

[
J(xu1 ,xs) ·

∏
uv∈E′′\E′

Fuv(xu,xv)

]]∣∣∣∣∣
≤ Ex

[( ∏
uv∈E′

Fuv(xu,xv)

)q]1/q

× Ex

[(
Exs J(xu1

,xs) ·
∏̀
i=2

Fuis(xui ,xs)

)p]1/p

(∗)
≤ 3 · Ex

[(
Exs J(xu1 ,xs) ·

∏̀
i=2

Fuis(xui ,xs)

)p]1/p

,

where (∗) follows from (14) and (15). We conclude that

Ex

[(
Exs J(xu1

,xs)
∏̀
i=2

Fuis(xui ,xs)

)p]1/p

≥ ε

6
. (17)

On the other hand, by Cauchy–Schwarz and then (7), we have

Ex

[(
Exs J(xu1 ,xs)

∏̀
i=2

Fuis(xui ,xs)

)p]

= Ey1,...,yp

[
Exu1

p∏
j=1

J(xu1
,yj)

· Exu2 ,...,xu`

∏̀
i=2

p∏
j=1

Fuis(xui ,yj)
]

≤ ‖J‖pU(2,p)

·

Ey1,...,yp

Ex2,...,x`

∏̀
i=2

p∏
j=1

Fuis(xi,yj)

2


1/2

≤ ‖J‖pU(2,p)

∏̀
i=2

‖Fuis‖
p
U(2(`−1),p).

Taking the p-th root of this upper bound and combining it with
(17), we get

‖J‖U(2,p)

∏̀
i=2

‖Fuis‖U(2(`−1),p) ≥
ε

6
.

If there exists i ∈ {2, . . . , `} with ‖Fuis‖U(2(`−1),p) ≥ 2, we
are done by monotonicity of grid norms (Corollary II.6) with
2(d− 1) ≥ 2(`− 1), and otherwise,

‖J‖U(2,p) ≥
ε

6 · 2`−1
.
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Note that Ez∼Xs J(x, z) = 0 for every x ∈ Xu1
. Therefore,

we can apply Lemma II.9 (stated and proved below) to J and
obtain that for p′ = 2pd1/εe, we have

‖1 + J‖U(2,p′) ≥ 1 +
ε2

45 · 22`
≥ 1 + 2δ.

The last inequality is true because

κ(H) =
∑

v∈V : deg(v)>1

deg(v) ≥ deg(s) = `.

Since J(x, y) = Fu1s(x, y) − D(x, y) with D(x, y) :=
Ez∼Xs Fu1s(x, z), applying the triangle inequality, we have

‖Fu1s‖U(2,p′) + ‖D − 1‖U(2,p′) ≥ 1 + 2δ.

Now either
‖Fu1s‖U(2,p′) ≥ 1 + δ,

in which case, we are done, or

‖D − 1‖U(2,p′) ≥ δ.

Since D(x, y) − 1 does not depend on y, we have ‖D −
1‖U(2,p′) = ‖D − 1‖2, and thus in this latter case, we get

‖D − 1‖2 ≥ δ,

which verifies Equation (11).

It remains to prove Lemma II.9 below.

Lemma II.9. If g : X × Y → R satisfies ‖g‖2U(2,p) ≥ ε for
some even p and some ε ∈ (0, 1/2] and

Ez g(x, z) = 0 ∀x ∈ X ,

then for every even p′ ≥ 2p
ε , we have ‖1+g‖U(2,p′) ≥ 1+ε/5.

The proof will make use of the following result of Kelley
and Meka.

Proposition II.10 ( [19, Proposition 5.7]). Suppose f : Ω→ R
is such that
• E(f − 1)k ≥ 0 for all odd k ∈ N, and
• ‖f − 1‖k0 ≥ ε for some even k0 ≥ 2 and some ε ∈

[0, 1/2].
Then, for any integer k′ ≥ 2k0/ε,

‖f‖k′ ≥ 1 +
ε

2
.

Proof of Lemma II.9. Let g ◦ g : X × X → R be defined as
(g ◦ g)(x1, x2) := Ey g(x1,y)g(x2,y). Note that

‖g‖2U(2,p) = ‖g ◦ g‖p.

Moreover, for every q ∈ N,

E(g ◦ g)q = Ey1,...,yq

(
Ex

q∏
i=1

g(x,yi)

)2

≥ 0.

It follows from Proposition II.10 that for every integer p′ ≥ 2p
ε ,

‖g ◦ g + 1‖p′ ≥ 1 +
ε

2
.

Moreover, Ey g(·,y) ≡ 0 implies that (g + 1) ◦ (g + 1) =
(g ◦ g) + 1, and thus

‖1+g‖U(2,p′) = ‖(g+1)◦(g+1)‖1/2p′ ≥
√

1 +
ε

2
≥ 1+

ε

5
.

We are now ready to deduce Theorem II.1 from Lemma II.8
(main technical lemma). We repeat the statement of Theo-
rem II.1 for convenience.

Theorem II.1 (Main graph counting lemma). Let H =
([k], E) be an oriented graph with m edges such that (u, v) ∈
E implies u < v, and let α > 0. For every 0 < ε < 1,
there exists δ = δ(ε,m) > 0 such that the following holds.
Let X1, . . . ,Xk be finite sets, and for every edge (u, v) ∈ E,
suppose Auv ⊆ Xu ×Xv has density αuv ≥ α. If∣∣∣∣∣∣E

∏
(u,v)∈E

Auv(xu,xv)−
∏

(u,v)∈E

αuv

∣∣∣∣∣∣ ≥ ε
∏

(u,v)∈E

αuv,

then for some (u, v) ∈ E, at least one of the following cases
holds:

1) There exist S ⊆ Xu and T ⊆ Xv of densities at least
2−Om,ε(log2(2/α)) such that

E(x,y)∈S×T [Auv(x,y)] ≥ (1 + δ)αuv

2) There exists S ⊆ Xu of density at least 2−Om,ε(log(2/α))

such that

Ex∈Xv [Auv(z,x)] ≤ (1− δ)αuv ∀z ∈ S

Proof. By applying Lemma II.8 to fuv := Auv and using
the monotonicity of the grid norms, for some p ≤ 8m

ε log 2
α ,

δ = ε22−4m−10 and (u, v) ∈ E, at least one of the following
holds:
(i)

‖Auv‖U(2k,p) ≥ (1 + δ)αuv;

(ii)
‖Ey [Auv(·,y)]− αuv‖p ≥ δαuv.

Case (i): Note that by Remark 4,

‖Auv‖U(2k,p) = tbK2k,p
(Auv).

In this case, we can apply Corollary II.3 with H = K2k,p,
which implies the existence of S × T ⊆ Xu ×Xv with

|S||T |
|Xu||Xv|

≥ Ω(δα2pk+1) ≥ 2
−O

(
m2

ε log2(2/α)
)
,

that satisfies Item 1 of Theorem II.1.
Case (ii): By applying Lemma II.7 to the function

f : Xu → [0, 1] given by f(x) := Ey[Auv(x,y)], we conclude
that one of the following two cases holds:

a) E
[
1[f(x)>αuv(1+ δ

4 )]

]
≥ (δαuv)p

4 = 2
−O

(
m2

ε2
log2(2/α)

)
.

b) E
[
1[f(x)<αuv(1− δ4 )]

]
= δp/4 ≥ αO(m2/ε2).

In case (a), let S := {x ∈ Xu : Ey[Auv(x,y)] > αuv(1 +
δ/4)} and T = Xv and conclude Item 1 of Theorem II.1:

E(x,y)∈S×T Auv(x,y) ≥ (1 + δ/4)αuv.
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In case (b), let S = {x ∈ Xu : Ey[Auv(x,y)] < αuv(1 −
δ/4)} and conclude Item 2 of Theorem II.1:

Ex∈Xv [Auv(z,x)] ≤ (1− δ/4)αuv for all z ∈ S.

III. KELLEY–MEKA-TYPE BOUNDS FOR BINARY SYSTEMS

In this section, we establish Kelley–Meka-type bounds for
the density of sets that do not contain translations of non-
degenerate instances of binary systems of linear forms.

Theorem I.5 (Kelley–Meka-type bounds over finite abelian
groups). Let L be a binary system of linear forms over a
finite abelian group G, and suppose |G| is coprime with all the
coefficients in the linear forms. If A ⊆ G is free of translations
of non-degenerate instances of L, then

(i) |A| ≤ |G| · 2−ΩL(log1/16 |G|).
(ii) If, in addition, the underlying graph of L is 2-degenerate,

then
|A| ≤ |G| · 2−ΩL(log1/9 |G|).

The rest of this section is devoted to the proof of Theo-
rem I.5.

A. Preliminaries

This section discusses the necessary notation and terminol-
ogy from additive number theory.

a) Set addition.: Let G be a finite abelian group. For an
integer k ≥ 0 and x ∈ G, let

kx = x+ x+ · · ·+ x︸ ︷︷ ︸
k times

and (−k)x = −kx.

We denote the sumset of two sets A,B ⊆ G as

A+B := {a+ b : a ∈ A, b ∈ B}.

Given a natural number k ∈ N, we denote the iterated sumset
of A as

kA := {a1 + · · ·+ ak : a1, . . . , ak ∈ A},

and we let
k ·A := {ka : a ∈ A}.

b) Bohr sets.: We start with some standard notation and
some basic facts about Bohr sets. Let G be a finite abelian
group and let Ĝ denote the character group of G.

Given a set B ⊆ G, we define µB to be the uniform
probability measure on B. The relative density of A ⊆ G
in B is denoted by µB(A) = |A∩B|

|B| . The normalized indi-

cator function of B is defined as ϕB(·) = |G|
|B|B(·) so that

‖ϕB‖1 = 1.
Given two functions f, g : G → R, define the convolution

and the cross-correlation as

f ∗g(x) = Ey f(y)g(x−y) and f ?g(x) = Ey f(y)g(x+y),

respectively. Note that

〈f ∗ g, h〉 = 〈f, g ? h〉.

We recall the definition of a Bohr set.

Definition 5 (Bohr sets). For a non-empty Γ ⊆ Ĝ and τ ∈
[0, 2], define the corresponding Bohr set B = Bohr(Γ, τ) as

Bohr(Γ, τ) := {x ∈ G : |χ(x)− 1| ≤ τ ∀χ ∈ Γ}.

We call Γ the frequency set of B, and τ the width. We define
the rank of B, denoted by rk(B), to be the size of Γ.

When we speak of a Bohr set, we implicitly refer to the
triple (Γ, τ,Bohr(Γ, τ)), since the set Bohr(Γ, τ) alone does
not uniquely determine the frequency set nor the width.

We note some easy facts about Bohr sets. We have

Bohr(Γ, τ) ∩ Bohr(Γ′, τ) = Bohr(Γ ∪ Γ′, τ), (18)

and

Bohr(Γ, τ) + Bohr(Γ, τ ′) ⊆ Bohr(Γ, τ + τ ′).

In particular, for any λ ∈ N, we have the following inclusion:

λ · Bohr(Γ, τ) ⊆ λBohr(Γ, τ) ⊆ Bohr(Γ, λτ).

Since χ(λx) = χ(x)λ, we also have

λ · Bohr(Γ, τ) = Bohr(λ · Γ, τ). (19)

Definition 6 (Dilate of a Bohr set). If B = Bohr(Γ, τ) is a
Bohr set, and ρ ≥ 0, then Bρ = Bohr(Γ, ρτ) is the dilate of
B with parameter ρ.

While Bohr sets, in general, lack approximate group-like
properties, Bourgain [16] observed that certain Bohr sets are
approximately closed under addition in a certain weak sense.

Definition 7 (Regularity). A Bohr set B of rank d is regular
if for all κ with |κ| ≤ 1

100d , we have

(1− 100d|κ|)|B| ≤ |B1+κ| ≤ (1 + 100d|κ|)|B|.

Note that by (19), if (λ, |G|) = 1 and Bohr(Γ, τ) is a regular
Bohr set of rank d, then λ ·Bohr(Γ, τ) is also a regular Bohr
set of rank d and has the same size as Bohr(Γ, τ). We will
use this fact frequently in the proofs.

The following two lemmas show that a low-rank Bohr set
B can be made into a regular Bohr set Bρ without decreasing
its size by much.

Lemma III.1 ( [16]; See [31, Lemma 4.25]). For any Bohr
set B, there exists ρ ∈

[
1
2 , 1
]

such that Bρ is regular.

Lemma III.2 ( [31, Lemma 4.20]). If ρ ∈ (0, 1) and B is a
Bohr set of rank d then |Bρ| ≥

(
ρ
4

)d |B|.
One of the nuances of working with Bohr sets is that even if

B is a regular Bohr set (e.g., a large interval centred at 0), then
for randomly chosen x,x′ ∈ B, the distribution of x + x′ is
very different from the uniform distribution on B. A common
strategy to address this issue is to work with two Bohr sets.
We will have an additional regular Bohr set B′ = Bρ for
some sufficiently small ρ (e.g., a smaller interval centred at
0). Then, for every y0 ∈ B′, when x ∈ B is chosen randomly
and uniformly, the distribution of x+y0 is close to the uniform
distribution on B.
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Lemma III.3 ( [32, Lemma 4.5]). If B is a regular Bohr set
of rank d and x ∈ Bρ with ρ ∈ (0, 1), then

‖ϕB − ϕB+x‖1 ≤ 200ρd.

Proof. The assertion of the lemma is equivalent to |B4(B +
x)| ≤ 200ρd|B|. Note B + x ⊆ B1+ρ. If ρ ≥ 1

100d , the
lemma is obvious. Otherwise, by the regularity of B, we have
|B1+ρ| ≤ (1 + 100dρ)|B|, which implies the lemma.

We also need the following generalization of [18, Lemma
12.1].

Lemma III.4. There exists a constant c > 0 such that the
following is true. Let B be a regular Bohr set of rank d, and
A ⊆ B with µB(A) = α. Let γ > 0, and suppose B is a
finite family of Bohr sets where each B′ ∈ B is a subset of
Bρ, where ρ ≤ cαγ

d|B| . Then, there exists x ∈ G such that one
of the following two cases holds for the shift A′ = A+ x.

1) For every B′ ∈ B, we have |µB′(A′)− α| ≤ γα.
2) There exists B′ ∈ B such that µB′(A′) ≥

(
1 + γ

2|B|

)
α.

Proof. If c > 0 is small enough, then by Lemma III.3, for
every B′ ∈ B,

|〈A ∗ ϕB′ , ϕB〉 − 〈A,ϕB〉| =
|〈A,ϕB′ ? ϕB〉 − 〈A,ϕB〉| ≤

‖ϕB′ ? ϕB − ϕB‖1 ≤
αγ

2|B|
.

In particular, since 〈A,ϕB〉 = α, we have

〈A ∗ ϕB′ , ϕB〉 ≥
(

1− γ

2|B|

)
α,

which, by averaging over all B′ ∈ B, implies(
1− γ

2|B|

)
α ≤ Ex∈B EB′∈B A ∗ ϕB′(x) =

Ex∈B EB′∈B µB′(x−A) =

Ex∈B EB′∈B µB′(A− x). (20)

Here, the last equality follows from the fact that B′ = −B′
for any Bohr set B′. Let x ∈ B be such that

EB′∈B µB′(A− x) ≥
(

1− γ

2|B|

)
α. (21)

Suppose there is B′′ ∈ B such that µB′′(A− x) ≤ (1− γ)α.
Combining this with (21), implies that there is B′ ∈ B such
that µB′(A−x) ≥

(
1 + γ

2|B|−2

)
α which implies item (2).

We finally give the definition of an algebraically spread set
with respect to Bohr sets.

Definition 8 (Algebraic Spreadness for Bohr Sets). Let B ⊆ G
be a regular Bohr set and A ⊆ B with µB(A) = α. We say that
A is a (δ, d′, r)-algebraically spread subset of B if for every
x0 ∈ G and every regular Bohr set B′ with rk(B′) ≤ rk(B)+
d′ and |B′| ≥ 2−r|B|, we have µB′(A+ x0) ≤ (1 + δ)α.

B. Counting lemma over abelian groups

In this section, we prove an algebraic counting lemma that
will provide the key density increment step in the proof of
Theorem I.5. Roughly speaking, this result shows that an
algebraically spread set must contain many instances of a given
binary system of linear forms.

Theorem III.5 (Algebraic counting lemma). Let

L = {L1, . . . , Lm}

be a binary system of linear forms over variables x1, . . . , xk.
For every ε > 0, there is a δ = δ(ε,L) > 0 such that the
following is true.

Suppose G is a finite abelian group such that |G| is coprime
with all the coefficients in L. Let A ⊆ B have density
µB(A) ≥ α where B ⊆ G is a regular Bohr set of rank
d = O(1/α). If A is (δ, d′, r)-algebraically spread, where
r = Oδ(d log2(2/α) + log14(2/α)) and d′ = Oδ(log12(2/α))
are sufficiently large, then there exist Bohr sets B(1), . . . , B(k)

and a shift A′ = A + x0 such that the following statements
hold.
• For every i ∈ [k], we have

|B(i)| ≥ 2−OL,ε(d log2(2/α))|B|;

• We have

Ex1∈B(1),...,xk∈B(k)

m∏
i=1

A′(Li(x1, . . . ,xk)) ≥ (1−ε)αm.

(22)

To prove Theorem III.5, we will need an almost-periodicity
theorem from [20]. The following theorem is stated with U1 =
U2 in [20], but the same proof works for arbitrary U1 and U2.

Theorem III.6 (Almost Periodicity [20, Lemma 8]). Let
ε ∈ (0, 1

10 ), and let B,B′, B′′ ⊆ G be regular Bohr sets
of rank d. Suppose that U1, U2 ⊆ B, A1 ⊆ B′, and A2 ⊆ B′′
with densities µB(U1), µB(U2) ≥ τ , µB′(A1) = α1 and
µB′′(A2) = α2. Let Γ ⊆ G be a set with |Γ| ≤ 2|B′′| such
that

1) Ex1∈A1,x2∈A2 Γ(x1 − x2) ≥ 1− ε
2) For all x ∈ Γ,

Ez∈B U1(x+ z)U2(z) ≥ (1 + 2ε)µB(U1)µB(U2)

Let C = log(2/τ) + log(d) + log log(2/α1) + log log(2/α2).
There exists x0 ∈ G and a regular Bohr set B∗ ⊆ B′ with

rk(B∗) ≤ d+Oε
(
log2(2/τ) log(2/α1) log(2/α2)

)
and

|B∗| ≥ 2−Oε(r)|B′|

where

r = C ·
(
d+ log2(2/τ) log(2/α1) log(2/α2)

)
such that

µB∗(U1 + x0) ≥
(

1 +
ε

4

)
µB(U1).
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We will also need the following theorem, whose proof uses
one of the key ideas in the work of Kelley and Meka [19],
namely, the dependent random choice technique.

Theorem III.7 (Dependent Random Choice). Let G be a finite
abelian group, let X1,X2,Y ⊆ G, and τ > 0. Suppose A ⊆
X1 and B ⊆ X2 satisfy

E(x1,x2)∈X1×X2
(Ey∈Y A(x1 + y)B(x2 + y))

p ≥
(1 + 2ε)pτp, (23)

where ε > 0 and p ≥ Ω(log(2/ε)/ε). Then there exist A1 ⊆
X1 and A2 ⊆ X2 with µX1(A1)µX2(A2) ≥ τp such that

Pr
(x1,x2)∈A1×A2

[Ey∈Y A(x1 + y)B(x2 + y) > (1 + ε) τ ] ≥

1− ε

100
. (24)

Proof. Our assumption says

E(x1,x2)∈X1×X2

y1,...,yp∈Y

p∏
j=1

A(x1 + yj)B(x2 + yj) ≥ (1 + 2ε)pτp.

Denote ~x = (x1, x2) and ~y = (y1, . . . , yp), and let

F(~x, ~y) :=

p∏
j=1

A(x1 + yj)B(x2 + yj).

Define

A′~y := {x ∈ X1 : x+ y1, . . . , x+ yk ∈ A} =
k⋂
i=1

(A− yi),

and denote α~y := µX1(A′~y). Similarly, define

B′~y := {x ∈ X2 : x+ y1, . . . , x+ yk ∈ B} =
k⋂
i=1

(B − yi),

and denote β~y := µX2(B′~y). We have

(1 + 2ε)pτp ≤ E~x,~y F(~x, ~y)

= E~y

[(
Ex1∈X1

p∏
j=1

A(x1 + yj)

)

·

(
Ex2∈X2

p∏
j=1

B(x2 + yj)

)]
= E~y[α~yβ~y].

We will only be interested in those ~y where A′~y and B′~y are
not very small. Let

Λ = {~y ∈ Yp : α~yβ~y > τp} .

We have

E~y [Λ(~y)E~x [F(~x, ~y)]] = E~y Λ(~y)α~yβ~y ≥
(1 + 2ε)pτp − τp = ((1 + 2ε)p − 1) τp. (25)

Let S ⊆ X1 × X2 defined such that (x1, x2) ∈ S iff
Ey∈Y A(x1 + y)B(x2 + y) ≤ (1 + ε) τ . Note that

E~x,~y F(~x, ~y) =

E(x1,x2)∈X1×X2
(Ey∈Y A(x1 + y)B(x2 + y))

p
,

and
E~x,~y F(~x, ~y)S(~x) ≤ (1 + ε)

p
τp. (26)

Putting (25) and (26) together gives

E~y E~x F(~x, ~y)S(~x)

E~y Λ(~y)E~x F(~x, ~y)
≤ (1 + ε)p

(1 + 2ε)p − 1
.

In particular, for p = Ω(log(2/ε)/ε), there exists a choice of
~y ∈ Λ such that

E~x F(~x, ~y)S(~x)

E~x F(~x, ~y)
≤ (1 + ε)p

(1 + 2ε)p − 1
≤ ε

100
.

Now note that F(~x, ~y) = 1 iff (x1, x2) ∈ A′~y ×B′~y , and thus

Pr
(x1,x2)∈A′

~y
×B′

~y

[(x1,x2) ∈ S] =
E~x F(~x, ~y)S(~x)

E~x F(~x, ~y)
≤ ε

100
.

We set A1 := A′~y and A2 := B′~y . Since ~y ∈ Λ, we have
µX1(A1)µX2(A2) ≥ τp, as desired.

1) Proof of Theorem III.5: Suppose the underlying graph
of L is an oriented graph H = ([k], E) such that (i, j) ∈ E
implies i < j. For convenience, we re-index L = {Lij :
(i, j) ∈ E} where Lij(x1, . . . , xk) = λijxi+ηijxj with i < j.
By our assumption, all the coefficients are coprime with |G|.
Let γ = Ωm,ε(1) be a small constant to be determined. We
emphasize that γ does not depend on the particular choice of
the coefficients in L. Let

K :=
∏

(i,j)∈E

|ηij ||λij | and ρ :=
γ exp(−γ−1 log2(2/α))

103dKk+1
.

(27)
By Lemma III.1, there exist ρk

2kKk2
≤ ρ1 ≤ · · · ≤ ρk ≤ ρ

K
such that the following properties hold.

(P1) Bρi ’s are regular for all i;
(P2) ρρi+1

2Kk ≤ ρi ≤ ρρi+1

Kk for all i = 1, . . . , k−1. In particular,
ρk

2kKk2
≤ ρ1.

Let B(i) = Kk−i · Bρi for all i. Note that the conditions on
ρ and ρi guarantee the following.

(P3) for all (i, j) ∈ E, we have

λij ·B(i) = λijK
k−i ·Bρi ⊆ BρkK ⊆ Bρ and

ηij ·B(j) = ηijK
k−j ·Bρj ⊆ BρkK ⊆ Bρ;

(P4) For every (i, j) ∈ E, since i < j and K is divisible by
ηij , we have λijK

j−i

ηij
· Bρi ⊆ Bρ·ρj . In particular, for

every (i, j) ∈ E, we have

λij ·B(i) ⊆ B′ρ with B′ := ηij ·B(j);
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(P5) By Lemma III.2, for all i, we have

|B(i)| ≥ (ρi/4)d|B| ≥
(

ρk

4× 2kKk2

)d
|B| ≥

2−OL,ε(d log2(2/α))|B|,

where the last inequality uses the assumption d =
O(1/α).

Consider the collection B = {λij · B(i) : (i, j) ∈ E} ∪ {ηij ·
B(j) : (i, j) ∈ E} of Bohr sets and observe that |B| ≤ 2m.
Note that by (P3), all these Bohr sets are subsets of Bρ, and
moreover, if γ ≤ O(1/m) is sufficiently small, we can ensure
ρ < cαγ

d|B| , where c is the constant from Lemma III.4. Therefore,
we can apply Lemma III.4 with A, B, d, γ, α∗ = µB(A) ≥ α
to guarantee that there is a shift A′ = A + x0 such that one
of the following two cases holds:

(P6) For every B′ ∈ B,

|µB′(A′)− α∗| ≤ γα∗; (28)

(P6′) There is B′ ∈ B such that µB′(A′) ≥
(

1 + γ
2|B|

)
α∗ ≥(

1 + γ
4m

)
α∗.

Since A is (δ, d′, r)-algebraically spread, assuming δ < γ
8m

and r = Ωm,ε(d log2(2/α)) is sufficiently small, (P6′) cannot
hold, and therefore, (28) holds. Assume to the contrary of the
theorem that (22) does not hold. In particular,∣∣∣∣∣Ex1∈B(1),...,xk∈B(k)

m∏
i=1

A′(Li(x1, . . . ,xk))− αm∗

∣∣∣∣∣ > εαm∗ .

(29)
We will show that A is not (δ, d′, r)-algebraically spread,
reaching a contradiction. We divide the proof into two stages.
In the first part, we find some large subsets S, T such that

Ex∈S,y∈T A
′(x + y) ≥ (1 + 100δ)α∗.

In the second stage, we obtain a Bohr set B∗ of rank d + d′

and relative density at least 2−r such that

µB∗(A
′) ≥ (1 + δ)α∗

which gives the desired contradiction.
a) Stage 1: Density increment on a rectangle.: For every

(i, j) ∈ E, define Gij ⊆ B(i)×B(j) as Gij(x, y) := A′(λijx+
ηijy) and let αij denote the density of Gij in B(i) ×B(j).

Claim III.8. For any (i, j) ∈ E and every x ∈ B(i), we have

|Ey∈B(j) Gij(x,y)− α∗| ≤ 2γα∗. (30)

In particular,
|αij − α∗| ≤ 2γα∗,

and ∣∣∣∣∣∣
∏

(i,j)∈E

αij − αm∗

∣∣∣∣∣∣ = O(mγαm∗ ). (31)

Proof. Denote B′ = ηij ·B(j) and recall that by (P4), λijx ∈
λij ·B(i) ⊆ B′ρ. Therefore, by Lemma III.3 and the choice of
ρ, we have

‖ϕB′+λijx − ϕB′‖1 ≤ 200ρd ≤ γα.

In particular,

|Ey∈B′ A
′(λijx+ y)− µB′(A′)| =

|
〈
ϕB′+λijx − ϕB′ , A′

〉
| ≤ γα.

By (28), we have |µB′(A′) − α∗| ≤ γα∗, and therefore, we
can conclude

|Ey∈B(j) Gij(x,y)− α∗| =
|Ey∈B′ A

′(λijx+ y)− α∗| ≤ 2γα∗,

which verifies (30). Averaging this inequality over x ∈ B(i)

yields |αij − α∗| ≤ 2γα∗. Finally, (31) follows from

(1− 2γ)mαm∗ ≤
∏

(i,j)∈E

αij ≤ (1 + 2γ)mαm∗ .

By (29) and (31), if γ = O(ε/m) is sufficiently small, we
get∣∣∣∣∣∣Ex1∈B(1),...,xk∈B(k)

∏
(i,j)∈E

Gij(xi,xj)−
∏

(i,j)∈E

αij

∣∣∣∣∣∣
≥ ε

2

∏
(i,j)∈E

αij .

Now, we are ready to apply our graph counting lemma (i.e.,
Theorem II.1). There exists a constant δ′ = δ′(ε,m) > 0 such
that for some (i, j) ∈ E, at least one of the following cases
holds.

(i) There exist S′ ⊆ B(i) and T ′ ⊆ B(j) with |S′||T ′| ≥
2−Om,ε(log2(2/α))|B(i)||B(j)| such that

E(x,y)∈S′×T ′ [Gij(x,y)] ≥ (1 + δ′)αij ; (32)

(ii) There exists a set S ⊆ B(i) of density at least
2−Om,ε(log(2/α)) such that

Ex∈B(j) [Gij(z,x)] ≤ (1− δ′)αij ∀z ∈ S;

If γ = O(δ′) is sufficiently small, by Claim III.8, for every
z ∈ B(i), we have

|Ex∈B(j) [Gij(z,x)]− αij | < δ′αij ,

and (ii) cannot hold. Therefore, (i) must be true. In particular,
if γ ≤ δ′/8,

E(x,y)∈S′×T ′ [Gij(x,y)] ≥ (1 + δ′)αij ≥

(1 + δ′)(1− 2γ)α∗ ≥
(

1 +
δ′

2

)
α∗; (33)

Denoting

S := λij ·S′, T := ηij ·T ′, B′ := ηij ·B(j), B′′ := λij ·B(i),

we have the following:
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• B′, B′′ ⊆ B are regular Bohr sets of rank d that by (P5)
satisfy

|B′|, |B′′| ≥ 2−OL,ε(d log2(2/α))|B|.

Moreover, by (P4), we have B′′ ⊆ B′ρ and B′ ⊆ Bρ.
• By (P6), we have |µB′(A′)−α∗| ≤ γα∗ and |µB′′(A′)−
α∗| ≤ γα∗.

• T ⊆ B′ and S ⊆ B′′ and they satisfy

Es∈S,t∈T A
′(s + t) ≥

(
1 +

δ′

2

)
α∗, (34)

with δ′ = Ωm,ε(1) and

µB′′(S), µB′(T ) ≥ 2−Om,ε(log2(2/α)).

b) Stage 2: Density increment on a Bohr set.: We can
rewrite (34) as

Eb′′∈B′′,b′∈B′ A
′(b′′ + b′)S(b′′)T (b′) ≥(

1 +
δ′

2

)
α∗ · µB′′(S) · µB′(T ) ≥ 2−Om,ε(log2(2/α)). (35)

We wish to apply a change of variables and then apply
Hölder’s inequality to eliminate the set S. Since the averages
are over Bohr sets rather than the entire group, we will incur
some small errors as a result of the change of variables. By
Lemma III.3 and our choice of ρ in (27), if γ = Ωε,m(1)
sufficiently small, for every z ∈ B′′ρ ⊆ B′ρ,∣∣Eb′′∈B′′−z Eb′∈B′+z A

′(b′′ + b′)S(b′′)T (b′)

− Eb′′∈B′′,b′∈B′ A
′(b′′ + b′)S(b′′)T (b′)

∣∣
≤ 400ρd ≤ γα · µB′′(S) · µB′(T ).

By averaging over z ∈ B′′ρ and combining it with (35), if
γ ≤ δ′/8, we have

Ez∈B′′ρ ,b′′∈B′′,b′∈B′ A
′(b′′ + b′)S(b′′ − z)T (z + b′) ≥(

1 +
δ′

4

)
α∗ · µB′′(S) · µB′(T ). (36)

Next, we will apply Hölder’s inequality to remove S. For any
p ≥ 2 and q ∈ (1, 2] with 1

p + 1
q = 1, we have

Ez∈B′′ρ ,b′′∈B′′,b′∈B′ A
′(b′′ + b′)S(b′′ − z)T (z + b′) ≤(

Ez∈B′′ρ ,b′′∈B′′ (Eb′∈B′ A
′(b′′ + b′)T (z + b′))

p
)1/p

·
(
Ez∈B′′ρ ,b′′∈B′′ S(b′′ − z)

)1/q

.

By Lemma III.3, we have

|Ez∈B′′ρ ,b′′∈B′′ S(b′′ − z)− µB′′(S)| ≤ 200dρ ≤ γµB′′(S),

which with (36) gives us(
Ez∈B′′ρ ,b′′∈B′′ (Eb′∈B′ A

′(b′′ + b′)T (z + b′))
p
)1/p

· (1 + γ)
1/q ≥(

1 +
δ′

4

)
α∗ · µB′(T ) · µB′′(S)1− 1

q .

By (28), we have α∗ > (1 − γ)µB′(A
′). If γ ≤ δ′/100, we

have

Ez∈B′′ρ ,b′′∈B′′ (Eb′∈B′ A
′(b′′ + b′)T (z + b′))

p ≥(
1 +

δ′

8

)p
µB′(A

′)pµB′(T )p · µB′′(S).

Taking p = O(log(2µB′′(S)−1)/δ′) = O(log2(2/α)) to be
sufficiently large, we obtain that

Ez∈B′′ρ ,b′′∈B′′ (Eb′∈B′ A
′(b′′ + b′)T (z + b′))

p ≥(
1 +

δ′

16

)p
µB′(A

′)pµB′(T )p. (37)

Now, we are in the position to apply Theorem III.7 with
X1 = B′′ρ , X2 = B′′, and Y = B′. Therefore, there exists sets
A1 ⊆ B′′ρ and A2 ⊆ B′′, and δ′′ = δ′

32 , such that

µB′′ρ (A1)µB′′(A2) ≥ µB′(A′)pµB′(T )p =

2−Oε,m(p log(2/α)+p log2(2/α)) = 2−Oε,m(log4(2/α)). (38)

and

Pr
(x1,x2)∈A1×A2

[
Ez∈B′ A

′(x1 + z)T (x2 + z) >

(1 + δ′′)µB′(A
′)µB′(T )

]
≥

1− δ′′

100
. (39)

Note that (x1, x2) ∈ A1 × A2 implies x2 ∈ B′′ ⊆ B′ρ where
the latter inclusion is by (P4). Therefore, by Lemma III.3,
assuming γ ≤ δ′′/10, for every (x1, x2) ∈ A1 ×A2, we have

|Ez∈B′ A
′(x1+z)T (x2+z)−Ez∈B′ A

′(x1−x2+z)T (z)| ≤

200ρd ≤ δ′′

10
µB′(A

′)µB′(T ). (40)

Let Γ ⊆ B′′ be the set of all b ∈ B′′ such that

Ez∈B′ A
′(b+ z)T (z) ≥ (1 + 0.9δ′′)µB′(A

′)µB′(T ).

By (39) and (40), we have

E(x1,x2)∈A1×A2
[x1 − x2 ∈ Γ] ≥ 1− δ′′

100
.

By Lemma III.1, we may assume that B′′′ := B′′ρ is reg-
ular. We invoke Theorem III.6 with 2ε = 0.9δ′′, τ =
2−Oε,m(log2(2/α)), and A′, T ⊆ B′, A1 ⊆ B′′′ and A2 ⊆ B′′.
Note that |Γ| ≤ |B′′|, and we have
• µB′(A

′) ≥ (1− γ)α ≥ τ ;
• µB′(T ) ≥ 2−Oε,m(log2(2/α)) ≥ τ ;
• α1 := µB′′′(A1) ≥ 2−Oε,m(log4(2/α)) and α2 :=
µB′′(A2) ≥ 2−Oε,m(log4(2/α)) by (38).

We obtain a regular Bohr set B∗ and x ∈ G such that

|(A′ + x) ∩B∗|
|B∗|

≥
(

1 +
δ′′

10

)
|A′|
|B′|

≥(
1 +

δ′′

10

)
(1− γ)

|A|
|B|
≥
(

1 +
δ′′

20

)
|A|
|B|

.
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The last inequality is by assuming γ ≤ δ′′/40. Moreover,

rk(B∗) ≤ rk(B′) +Oε(log2(2τ−1) log(2α−1
1 ) log(2α−1

2 ))

≤ rk(B′) +Oε
(
log12(2α−1)

)
and

|B∗| ≥ 2−Om,ε(r)|B′′′|,

where

C = log(2/τ)+log(rk(B′))+log log(2/α1)+log log(2/α2)

= O(log(2/τ)) = O(log2(2/α))

and

r ≤ C · (rk(B′) + log2(2τ−1) log(2α−1
1 ) log(2α−1

2 ))

≤ C ·
(
rk(B′) + log12(2α−1)

)
≤ O

(
log2(2α−1)d+ log14

(
2α−1

))
.

Combining |B∗| ≥ 2−Om,ε(r)|B′′′| with

|B′′′| = |B′′ρ | ≥
(ρ

4

)d
|B′′| ≥

exp
(
−Om,ε(d log2 (2α−1))

)
|B|,

we have

|B∗| ≥ exp
(
−Om,ε

(
d log2(2α−1) + log14(2α−1)

))
|B|.

By taking γ = Ωm,ε(1) to be a small enough constant,
we can satisfy all the requirements on γ. Taking δ =

min
(
δ′′

20 ,
γ

10m

)
finishes the proof of Theorem III.5.

C. Proof of Theorem I.5 (i)

Let L = {L1, . . . , Lm} and α = µ(A). Suppose d′ =
OL(log12(2/α)) and r = OL(log15(2/α)) are sufficiently
large. Let δ = δ(ε,L) > 0 given by Theorem III.5 with
ε = 1/2. We wish to obtain an algebraically spread set A∗
to apply Theorem III.5. If A is (δ, d′, r)-algebraically spread
then A∗ = A, otherwise, from Definition 8 (where B = G),
we find a regular Bohr set B[1] ⊆ G of rank d′ and density
at least 2−r and an x1 ∈ G such that A1 := (A+ x1) ∩ B[1]

satisfies µB[1](A1) ≥ (1 + δ)α. We can repeat this density
increment process at most Oδ(log(2/α)) times and obtain a
regular Bohr set B∗ and x∗ ∈ G such that A∗ := (A+x∗)∩B∗
is (δ, d′, r)-algebraically spread in B∗. At this point, we have

rk(B∗) ≤ OL(d′ log(2/α)) = OL(log13(2/α))

and for
µ(B∗) ≥ exp

(
−OL(log16(2/α))

)
.

Note α∗ := µB∗(A∗) ≥ α. Since r = Oδ(rk(B∗) log2(2/α)+
log14(2/α)) = OL(log15(2/α)) is sufficiently large, by The-
orem III.5, there are Bohr sets B(1), · · · , B(k) such that
• For every i ∈ [k], we have

µ(B(i)) ≥ 2−OL(log15(2/α))µ(B∗) ≥ 2−OL(log16(2/α)).
(41)

• We have

Pr
x1∈B(1),...,xk∈B(k)

[L(x1, . . . ,xk) ∈ Am∗ ] ≥ αm/2.
(42)

Note that x 7→ λijx and x 7→ ηijx are group automorphisms.
Hence, given any two distinct linear forms L,L′ ∈ L, we have

Pr
x1∈B(1),...,xk∈B(k)

[L(x1, . . . ,xk) = L′(x1, . . . ,xk)] ≤

1

mini |B(i)|
. (43)

This implies that

Pr
x1∈B(1),...,xk∈B(k)

[L(x1, . . . ,xk) is degenerate] ≤

m2

mini |B(i)|
. (44)

Since we have assumed that A does not contain non-
degenerate instances of L, by combining (41), (42), and (44),
we get

αm

2
≤ m2

mini |B(i)|
≤ m2 · |G|−1 · exp(OL(log16(2/α))).

(45)
If α ≥ exp

(
−OL(log1/16(|G|))

)
, we can ensure the right

hand side in (45) is at most, say, |G|−1/2, which violates (45)
if |G| = ΩL(1) is large enough. This is a contradiction.

D. Proof of Theorem I.5 (ii)

Recall that we want to leverage the assumption that the
underlying graph of L is 2-degenerate to conclude the stronger
bound of

|A| ≤ |G| · 2−ΩL(log1/9 |G|).

We will describe how the proof of Theorem III.5 can be
modified to yield a stronger density increment. We change the
definition of ρ in (27) to the following, shaving off a factor
of log(2/α).

K :=
∏

(i,j)∈E

|ηij ||λij | and ρ :=
γ exp(−γ−1 log(2/α))

103dKk+1
.

(46)
Let H be the underlying graph of L. Since H is 2-

degenerate, there exists an ordering of the vertices such that
every vertex has at most 2 preceding neighbours. We then
orient each edge of H from the smaller to the larger vertex
in this ordering. Note that the indegree of every vertex is at
most 2. Therefore, if one applies Lemma II.8 with this graph
H , one would obtain

‖Gij‖U(2,p) ≥ (1 + δ′)αij ,

for p = Om,ε(log 2
α ) and δ′ = ε22−4m−10. Recalling the

definitions of B′ and B′′, we can express this as,

Ex∈B′′,y∈B′′ Ez∈B′ (A
′(x + z)A′(y + z))

p ≥ (1 + δ′)2pα2p
ij .

(47)
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Note that this allows us to bypass obtaining the large rectangle
S × T and directly jump to (37) with T = A′, where
we also use αij ≥ (1 − O(γ))µB′(A

′). Furthermore, we
are in a better situation in terms of the parameters: Firstly,
p = Om,ε(log(2/α)) instead of p = Om,ε(log2(2/α)).
Secondly, in (47), we have µB′(A

′)2p = 2−O(log2(2/α)) in-
stead of µB′(A′)pµB′(T )p = 2−Om,ε(p log(2/α)+p log2(2/α)) =
2−O(log4(2/α)) in (37). Note also that the reason we could
choose a larger ρ is that in (40), we now only need 200ρd
to be sufficiently small compared to δ′′

10µB′(A
′)µB′(A

′) =
Ω(α2). Therefore, when we apply Theorem III.7, we obtain
A1, A2 ⊆ B′′ with

µB′′(A1), µB′′(A2) ≥ 2−Om,ε(log2(2/α)).

Now, we invoke Theorem III.6 with U1 = U2 := A′ ⊆ B′ and
A1, A2 ⊆ B′′, and obtain B′′′ and x0 ∈ G with (A + x0) ∩
B′′′ ≥ (1 + δ)α, such that

rk(B′′′) ≤ rk(B′) +Om,ε(log2(2α−1) log(2α−1
1 ) log(2α−1

2 ))

≤ rk(B′) +Om,ε
(
log6(2α−1)

)
and

|B′′′| ≥ 2−Om,ε(r)|B′′|,

where

C =

log(2/α) + log(rk(B′)) + log log(2/α1) + log log(2/α2) =

O(log(2/α))

and

r ≤ C · (rk(B′) + log2(2α−1) log(2α−1
1 ) log(2α−1

2 ))

≤ C ·
(
rk(B′) + log6(2α−1)

)
≤ O

(
log(2α−1)d+ log7

(
2α−1

))
.

By an iterative density increment argument, similar to
Theorem III.5, we obtain a Bohr set B∗ and x∗ ∈ G such
that A∗ := (A + x∗) ∩ B∗ is (δ′, d′, r)-algebraically spread
in B∗ where d′ = Om(log6(2/α)) and r = Om(log8(2/α)),
δ′ = δ(ε,m), and α∗ := µB∗(A∗) ≥ α. We have

rk(B∗) ≤ Om,ε(log7(2/α))

and
µ(B∗) ≥ exp

(
−Om,ε(log9(2/α))

)
.

A similar argument as in the proof of Theorem I.5 (i) con-
cludes the proof.

IV. CONCLUDING REMARKS: RESILIENCE TO SPREADNESS

In this section, we discuss negative results and argue that,
essentially, the approach based on the graph and algebraic
spreadness does not apply to most systems of linear forms.
For simplicity, we focus on the case of the group Fn where
F = Fq is a finite field, and q is a fixed prime. The following
notion of pseudo-randomness, based on graph spreadness, is
implicit in the proof of Theorem I.5.

Definition 9 (Spreadness [12], [19]). Let r ≥ 1 and δ > 0.
A set A ⊆ Fn of density α is called (δ, r)-combinatorially
spread if, for all subsets S and T of density at least 2−r, we
have

Ex∼S
y∼T

[A(x + y)] ≤ (1 + δ)α.

In the literature, two main notions are commonly used to
characterize the complexity of systems of linear forms. The
first notion is called the Cauchy-Schwarz complexity (CS-
complexity for short), defined by Green and Tao [33] in their
study of solutions of linear equations in the primes. The second
notion, defined by Gower and Wolf [34], [35], is called the
true complexity. In both definitions, the complexity of a system
is a positive integer. The following inclusions follow from the
definitions of these complexity measures.

{L : L is binary} ⊆ {L : L has CS-complexity 1} ⊆
{L : L has true complexity 1}.

Our sparse graph counting lemma shows that for binary
systems of linear forms, combinatorial spreadness implies
tL(A) ≈ αm. On the other hand, we will show in Theo-
rem IV.3 that if the true complexity of a linear system L is
larger than 1, then there are sets A with density α that are
combinatorially spread with extremely good parameters, and
yet tL(A) > (1 + Ω(1))αm.

a) True complexity and CS-complexity.: Gowers, in his
proof of Szemerédi’s theorem, introduced a hierarchy of
increasingly stronger notions of pseudo-randomness based on
the so-called Gowers uniformity norms ‖ · ‖Uk for k ≥ 1.
He used iterated applications of the classical Cauchy–Schwarz
inequality to prove∣∣Ex,y [A(x)A(x + y) · · ·A(x + (k − 1)y)]− αk

∣∣ ≤
k‖A− α‖Uk−1 ,

showing that the density of k-progressions in A is controlled
by the pseudo-randomness condition ‖A− α‖Uk−1 = o(1).

Green and Tao [33] determined the most general class
of systems of linear forms that can be handled by Gowers’
iterated Cauchy–Schwarz argument.

Definition 10 (The Cauchy–Schwarz Complexity). Let L =
{L1, . . . , Lm} be a system of linear forms. The Cauchy–
Schwarz complexity of L is the minimal k such that the
following holds. For every 1 ≤ i ≤ m, we can partition
{Lj}j∈[m]\{i} into k+1 subsets, such that Li does not belong
to the linear span of any of these subsets.

In particular, Green and Tao [33] showed that if the Cauchy–
Schwarz complexity of L is k, then

|tL(A)− αm| ≤ m‖A− α‖Uk+1 . (48)

Example IV.1. The system of linear forms (x, x+ y, . . . , x+
(k − 1)y), which represents k-term arithmetic progressions,
has CS-complexity k − 2. It is also straightforward to verify
that binary systems of linear forms have CS-complexity 1.
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Later, in a series of articles [34], [35], Gowers and Wolf
initiated a systematic study of classifying the systems of
linear forms that are controlled by the k-th Gowers uniformity
norm. They defined the true complexity of a system of linear
forms L = (L1, . . . , Lm) as the smallest k such that the
pseudo-randomness condition of ‖A−α‖Uk+1 = o(1) implies
|tL(A)− αm| = o(1).

By (48), the true complexity is at most the CS-complexity.
Gowers and Wolf [34] fully characterized the true complexity
of systems of linear forms, provided that the field size is not
too small. Let L = λ1x1 + · · · + λdxd be a linear form in d
variables. We identify L ≡ (λ1, . . . , λd) ∈ Fd, and define the
k-th tensor power of L by

Lk =

 k∏
j=1

λij : i1, . . . , ik ∈ [d]

 ∈ Fd
k

.

Theorem IV.2 ( [34]). Let L = (L1, . . . , Lm) be a system
of linear forms of CS-complexity at most |F|. The true com-
plexity of L is the least integer k ≥ 1 such that the forms
Lk+1

1 , . . . , Lk+1
m are linearly independent.

It is known that the true complexity of the linear system
identifying 4-progressions is 2 [34], [35]. Moreover, it is well-
known that there is a set A of density α such that ‖A −
α‖U2 = o(1) (which implies combinatorial spreadness) but
the count of 4-progressions in A is far from what is expected
from a random set of density α [22]. Here, we generalize this
result. We essentially show that if the true complexity of a
linear system L is larger than 1, then there are sets A with
density α that are combinatorially spread with extremely good
parameters, and yet tL(A) 6≈ αm.

Theorem IV.3. Let F be a finite field of prime order. Suppose
that L = (L1, . . . , Lm) is a system of linear forms over d
variables such that L2

1, . . . , L
2
m are linearly dependent. There

exists a set A ⊆ Fn with density α ≥ 1
3 that is (e−Ω(n),Ω(n))-

combinatorially spread, yet

tL(A) > (1 + Ω(1))αm.

As the proof makes clear, the constant 1
3 can be replaced by

any constant strictly smaller than 1. We omit the proof and
refer the reader to the full version of this paper [36].
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[7] Y. Kohayakawa and V. Rödl, “Regular pairs in sparse random graphs i,”
Random Structures & Algorithms, vol. 22, no. 4, pp. 359–434, 2003.
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