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Abstract
We extend the framework of augmented distribution testing (Aliakbarpour, Indyk, Rubinfeld, and
Silwal, NeurIPS 2024) to the differentially private setting. This captures scenarios where a data ana-
lyst must perform hypothesis testing tasks on sensitive data, but is able to leverage prior knowledge
(public, but possibly erroneous or untrusted) about the data distribution.

We design private algorithms in this augmented setting for three flagship distribution testing
tasks, uniformity, identity, and closeness testing, whose sample complexity smoothly scales with
the claimed quality of the auxiliary information. We complement our algorithms with information-
theoretic lower bounds, showing that their sample complexity is optimal (up to logarithmic factors).
Keywords: distribution testing, identity testing, closeness testing, differential privacy, learning-
augmented algorithms

1. Introduction
Accurately analyzing data while preserving individual privacy is a fundamental challenge in statistical
inference. Since its formulation nearly two decades ago, Differential Privacy (DP) (Dwork et al.,
2006) has emerged as the leading framework for privacy-preserving data analysis, providing strong
mathematical privacy guarantees and gaining adoption by major entities such as the U.S. Census
Bureau, Amazon (Amazon Web Services, 2024), Google (Erlingsson et al., 2014), Microsoft (Ding
et al., 2017), and Apple (Differential Privacy Team, Apple, 2017; Thakurta et al., 2017).

Unfortunately, DP guarantees often come at the cost of increased data requirements or compu-
tational resources, which has limited the widespread adoption of differential privacy in spite of its
theoretical appeal. To address this issue, a recent line of work has investigated whether access to
even small amounts of additional public data could help mitigate this loss of performance. Promising
results for various tasks have been shown, both experimentally (Kerrigan et al., 2020; Lowy et al.,
2024; Bu et al., 2024; Daum et al., 2024) and theoretically (Bie et al., 2022; Ben-David et al., 2023).
The use of additional auxiliary information is very enticing, as such access is available in many
real-world applications: for example, hospitals handling sensitive patient data might leverage public
datasets, records from different periods or locations, or synthetic data generated by machine learning
models to improve analysis. Similarly, medical or socio-econonomic studies focusing on a minority
or protected group can leverage statistical data from the overall population.
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However, integrating public data introduces its own challenges, as it often lacks guarantees
regarding its accuracy or relevance to private datasets. If the external data distribution deviates
significantly from the target population, then it becomes at best useless for the task at hand, and
at worst misleading; yet assessing its reliability prior to using it can be as complex as the original
inference task. This leads to the following question, which is the focus of our work:

How can we design private algorithms which optimally utilize auxiliary information in a way
that seamlessly adapts to its (unknown, arbitrary) quality?

We formalize the question by extending the recently proposed framework of “augmented test-
ing” (Aliakbarpour et al., 2024) to the differentially private setting (see Section 2 for formal defini-
tions). In our new framework, the testing algorithm is provided with the auxiliary information as
an “advice” probability distribution p̂, purported to be a good approximation of the unknown data
distribution p, along with a claimed accuracy α of this approximation. The algorithm must correctly
solve the inference task when the advice is indeed α-accurate, but it is allowed to abort and return a
“failure” symbol when it detects that the advice does not meet the claimed accuracy α. The name
of the game is to achieve better data utilization as a function of this new accuracy parameter α by
leveraging the advice when it is good, yet not being fooled by it when it is bad enough to derail the
algorithm.

Our new model must take into account the privacy constraints of the samples. While there is no
need to consider the privacy of sample data p̂ that is already public, we must ensure that any other
sample data remains private, even if our algorithm decides to abort due to bad advice.

Finally, for the purpose of this paper, we primarily focus on distribution testing (which can
be viewed as a finite-sample, computational take on hypothesis testing), the cornerstone of many
scientific endeavors. However, we believe that differentially private inference using (unverified)
auxiliary public data is a promising avenue for work beyond the specific tasks we consider here.

1.1. Related work

Distribution testing has been extensively studied since its first formulation in Goldreich et al. (1998);
Batu et al. (2000); we only refer below to the papers most relevant to us, and refer the reader to the
expositions, textbooks, and surveys (Rubinfeld, 2012; Goldreich, 2017; Canonne, 2020, 2022) for a
more extensive coverage. Uniformity testing, that is, the task of deciding if an unknown distribution
over a given domain of size n is uniform, or at distance at least ε from it (in total variation), was
shown to have sample complexity Θ(

√
n/ε2) in Goldreich and Ron (2000, 2011); Paninski (2008);

Acharya et al. (2015); Diakonikolas et al. (2018). It was shown to be equivalent to the more general
task of identity testing, where the reference distribution is allowed to be arbitrary (instead of uniform)
in Diakonikolas (2016); Goldreich (2020). The sample complexity of closeness testing, where the
algorithm has access to samples from two unknown distributions and must decide whether they
are equal or at total variation distance at least ε, was settled in a series of works (Batu et al., 2000;
Valiant, 2011; Chan et al., 2014; Diakonikolas et al., 2021; Canonne and Sun, 2022), culminating in
the tight sample complexity Θ(

√
n/ε2 + n2/3/ε4/3).

Beyond this standard distribution testing setting, the work closest to ours is the recent paper
of Aliakbarpour et al. (2024), which introduced the (non-private) framework of augmented test-
ing for distributions. While there has been before a large body of work on learning-augmented
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algorithms (and previously, on algorithms with advice) (e.g., Hsu et al. (2019); Indyk et al. (2019);
Jiang et al. (2020); Aamand et al. (2023); Bhattacharyya et al. (2024)), the specific formulation
whereby the algorithm is provided with advice in the form of a hypothesis probability distribution,
and is allowed to abort if it detects this advice is incorrect, is crucial to obtaining non-vacuous
formulations of the problem. While Aliakbarpour et al. (2024) do address identity (and unifor-
mity) as well as closeness testing of distributions in their augmented testing framework, they only
consider the non-private versions of these tasks: introducing the constraint of differential privacy
on the data (but not on the advice itself, considered public) is the main novelty of our work, and
comes with a host of technical and conceptual challenges to overcome. We refer the reader to the
website https://algorithms-with-predictions.github.io/, for more on learning-
augmented algorithms.

On the privacy-preserving side, there is a large literature on DP distribution testing, where
the samples provided to the algorithm are considered sensitive and the algorithm must satisfy the
constraint of (central) DP, notably Cai et al. (2017); Acharya et al. (2018); Aliakbarpour et al. (2018,
2019). The tight private sample complexity of uniformity, identity,1 and closeness testing under
ξ-DP are now known to be Θ(

√
n/ε2 +

√
n/(ε
√
ξ) + n1/3/(ε4/3ξ2/3) + 1/(εξ)) and Θ(

√
n/ε2 +

n2/3/ε4/3 +
√
n/(ε
√
ξ) + n1/3/(ε4/3ξ2/3) + 1/(εξ)), respectively (Zhang, 2021).

As mentioned earlier, a recent line of work has investigated the use of additional public data
for DP inference questions, and in particular for distribution learning questions (Bie et al., 2022;
Ben-David et al., 2023). We emphasize that while these results can accommodate a (small) amount
of distribution shift between the private and public data distributions, they assume that the publicly
available data is accurate (comes from the same distribution as, or one very close to, the the sensitive
data). This is a crucial limiting assumption, and one our paper does not make: in our setting, we
do not have to trust the quality of the auxiliary data. Our framework for distribution testing bears
some resemblance to the framework of Khodak et al. (2023) for learning-augmented private quantile
estimation, in which the algorithm must be correct (and efficient) even if the prediction is poor.

Another important difference is in the parameter regime: (Bie et al., 2022; Ben-David et al., 2023)
consider the setting where the quantity of public data is small compared to the amount of public data:
that is, they investigate whether the algorithm can benefit from a few “useful” public data points, in
order to perform its analysis on a much larger sensitive dataset. In contrast, we focus on the setting
where the public data abounds (so that even using it to get a full probability distribution p̂ as advice
is possible), but the private data is much scarcer.

The broader concept of learning from both public and private data has had some success beyond
distribution learning. On the experimental side, prior work has pre-trained models on public data
and then used private data for finetuning (Li et al., 2022; Bu et al., 2024). On the theoretical side,
there has been work on using public data to improve the efficiency of learning algorithms (Block
et al., 2024) and statistical upper and lower bounds for learning when only some of the data is private
(Alon et al., 2019).

1.2. Our results

Our main results are sample-efficient private algorithms for identity and closeness testing in the
augmented setting, complemented by (nearly)-matching information-theoretic lower bounds.

1. Note that the equivalence between uniformity and identity testing of Diakonikolas (2016); Goldreich (2020) carries
over to the differentially private setting.
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Theorem 1 (Informal version of Theorem 16 and Theorem 19) There is an algorithm for private
augmented identity testing of distributions over [n] which, given a reference distribution q, privacy
parameter ξ > 0, distance parameter ε ∈ (0, 1], purported accuracy α ∈ (0, 1], as well as advice
distribution p̂, takes

Θ

(√
n

ε2
+

√
n

ε
√
ξ
+

n1/3

ε4/3ξ2/3
+

1

εξ

)
samples when the distance η := dTV(p̂, q) satisfies η ≤ α, and

Θ

(
min

(
1

(η − α)2
+

1

(η − α)ξ
,

√
n

ε2
+

√
n

ε
√
ξ
+

n1/3

ε4/3ξ2/3
+

1

εξ

))

when η > α. Moreover, this is optimal.

Observe that in the “interesting regime” – i.e., when the advice suggests to the algorithm that it
should reject, as the claimed distance between p̂ and the unknown distribution p is strictly smaller
than the distance between p̂ and the reference distribution q – and, in particular, for vanishing α, the
resulting sample complexity can become as small as Θ(1/η2 + 1/(ηξ)), leading to stark savings in
the amount of private data required to conduct the task.

Note that the above theorem also applies to uniformity testing in a straightforward manner. In
particular, by setting q as the uniform distribution, our identity testing algorithm immediately applies
to uniformity testing, and our lower bound—proven under the assumption of uniform q—establishes
the complete equivalence of these two problems.
Our results for the task of closeness testing are summarized in the next theorem:

Theorem 2 (Informal version of Theorem 6 and Theorem 38) There is an algorithm for private
augmented closeness testing of distributions over [n] which, given privacy parameter ξ > 0, distance
parameter ε ∈ (0, 1], purported accuracy α ∈ (0, 1], as well as advice distribution p̂ for one of the
two distributions, takes

Õ

(
n2/3α1/3

ε4/3
+

√
n

ε2
+

n1/3

ε4/3ξ2/3
+

√
n

ε
√
ξ
+

1

εξ

)

samples. Moreover, this is optimal up to logarithmic factors in n.

Again, observe that the advice influences the first term of the sample complexity. As the claimed
advice quality α goes to 0 (and ignoring logarithmic factors), our results show that, surprisingly, the
task becomes essentially as simple as differentially private identity testing.

1.3. Overview of our technical contributions

Upper bounds. A popular technique for testing closeness of distributions p and q in total variation
(or ℓ1) distance is to first test ℓ2 distance and translate the result into an ℓ1 guarantee. Chan et al.
(2014) use this technique to give an algorithm whose sample complexity is proportional to the
minimum of the ℓ2 norms of p and q. On a domain of size n, the ℓ2 norm of a distribution can vary
between 1/

√
n and 1, leading to a large difference between the best and worst case costs of testing.

The flattening technique, introduced in Diakonikolas and Kane (2016), aims to shrink this gap by
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reducing every instance of closeness testing to the aforementioned best case. The technique maps a
distribution p to a “flattened distribution” p′ with a low ℓ2-norm. It accomplishes this by breaking any
high-probability element into multiple new domain elements (buckets) and assigning its probability
mass equally among them. The key problem is to determine the number of buckets required for each
element i, which can vary depending on the problem’s structure.

The original approach proposed in Diakonikolas and Kane (2016) is as follows. Suppose we
have k samples from an unknown distribution p, referred to as flattening samples. Let ki denote the
frequency of element i among these samples. For each element i, we assign ki+1 buckets. Elements
which appear more frequently (i.e., the large elements) are split into more buckets, reducing their
individual probability mass. More formally, one can show that the resulting distribution p′ has an
ℓ2-norm of at most 1/

√
k in expectation. (Note that we can simulate a sample from p′ by drawing a

fresh sample i from p and assigning it to a random bucket in [ki + 1].)
Why is this result significant for closeness testing (or related problems)? One can show that

if the same flattening is applied to two distributions, their ℓ1-distance remains unchanged. Thus,
testing the closeness of p and q reduces to testing the closeness of their flattened versions p′ and q′.
Since the flattened distributions have a reduced ℓ2-norm, we can leverage the ℓ2-tester from Chan
et al. (2014), whose sample complexity is proportional to the ℓ2-norm of p, thereby achieving more
sample-efficient testing. This technique is particularly appealing because it allows us to exploit
problem-specific structure to design an effective flattening scheme. For example, Aliakbarpour et al.
(2024) use a predicted distribution to guide the flattening: if the prediction assigns a higher probability
to an element, more buckets are allocated to it, further reducing its ℓ2-contribution. After flattening,
they test whether the ℓ2-norm of the new distribution p′ is sufficiently small. If not, they conclude
that the prediction quality was poor, and abort early. If the norm is small, the ℓ2-tester from Chan
et al. (2014) can be used with significantly fewer samples, yielding an augmented closeness tester
with an optimal dependence on the prediction quality. The prediction allows the algorithm to achieve
a useful flattening with fewer samples, leading to significant savings over the optimal non-augmented
algorithm.

To achieve our goals, a natural approach is thus to privatize the algorithm from Aliakbarpour
et al. (2024). Unfortunately, the sample-based flattening step introduces privacy challenges, because
flattening via samples is highly sensitive: changing a single sample can alter the number of buckets
for two elements, drastically changing the structure of the resulting distribution. To ensure privacy,
the outcomes of these very different cases must be made similar, typically by adding a large amount
of noise. Consequently, statistics computed on the flattened distribution would require a large number
of samples to be privatized, leading to suboptimal algorithms.

To circumvent this issue, we need to reduce the sensitivity of the flattening step. To do so, we
leverage the framework of Aliakbarpour et al. (2019), which focuses on privatizing a flattening-based
tester – exactly what we need for our approach to work! However, this is not as straightforward
as it seems. Because the advice distribution p̂ used as a guide in the flattening step may be wildly
inaccurate, we must verify that the outcome of the flattening step is satisfactory; that is, that the ℓ2
norm of the flattened distribution is sufficiently small (as it should be, were the advice correct). To
further complicate matters, this verification must be done privately.

Our solution is to apply flattening in two steps. First, we use the prediction p̂ to flatten p into p′.
Then we use samples drawn from p (more precisely, from p′) to further flatten the distribution into
p′′. If p̂ is α-close to the true distribution, we expect that the ℓ2-norm of p′′ is roughly less than α/k.
We separate the two flattening steps due to our privacy requirements; since the prediction is public
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information, there is no privacy concern in the first step, which in turn simplifies the analysis of the
second step.

The standard statistic for computing the ℓ2-norm is the number of collisions in a sample set (i.e.,
the number of pairs of equal samples) (Goldreich and Ron, 2011). This statistic is highly sensitive
to changes in one sample. For example, consider estimating the ℓ2-norm using ℓ samples. Suppose
element i appears ℓ/2 times. If we assign one bucket to i, the number of collisions is

(
ℓ/2
2

)
. However,

if we assign two buckets to i, we expect each bucket to receive roughly ℓ/4 samples, so the total
number of collisions is 2

(
ℓ/4
2

)
. This change reduces the number of collisions by roughly ℓ2/16,

whereas ideally we would like this number to be a constant.
Thankfully, this worst-case only occurs in highly atypical scenarios. In general, if we draw

k samples for flattening, we expect about kpi buckets for element i. Then if we draw ℓ samples
for estimation, we expect approximately ℓpi samples from i. Distributing these equally among the
buckets yields roughly ℓ/k samples per bucket. Assuming k = ℓ, a typical dataset should have
a constant number of samples per bucket. Consequently, altering either a flattening sample or an
estimation sample would change the overall number of collisions by at most a constant factor. Hence,
the sensitivity of the statistic should be low for a “typical” dataset.

The challenge is thus to pay only a privacy cost proportional to the sensitivity of a typical dataset,
rather than the worst-case dataset. To this end, we identify the “bad events” that cause our dataset to
have high sensitivity, which correspond to having a high unbalance between samples either within
buckets, or between flattening and estimation sets. That is, we must ensure that the following holds
for every element i ∈ [n]:

1. When the samples of element i are distributed among buckets, no bucket receives an unreason-
ably high number of samples.

2. The number of instances of i in the estimation sample set is not much larger than the number
of instances of i in the flattening sample set.

To address the first issue, we mitigate the randomness inherent in distributing samples among
buckets. The original statistic sums the collisions across buckets, where if ℓi,j denotes the number of
samples in the j-th bucket of element i, the contribution is

(ℓi,j
2

)
. We replace this quantity with its

expectation under the assumption of a uniform distribution of samples among buckets.
The second issue is more complex. We need to ensure that the number of instances of element i is

approximately the same in both the flattening and estimation sample sets. To achieve this, we employ
a technique from Aliakbarpour et al. (2019). Roughly speaking, each high-sensitivity sample set X
is randomly mapped to another sample set X ′ such that any imbalance in the number of samples
for an element is corrected. The mapping has the key property of preserving the Hamming distance
between datasets. More precisely, if two datasets X1 and X2 (differing in one element) are mapped
to low-sensitivity datasets Y1 and Y2, then there exists a coupling between Y1 and Y2 such that their
Hamming distance is bounded by a constant. This property ensures that applying a private algorithm
to the Y ’s (with low sensitivity) yields privacy guarantees for the original X’s.

In our context, we ensure that the transformed dataset has a balanced number of instances for
each element across both the estimation and flattening sets. We then run our private algorithm on this
new sample set. If the original sample set already had low sensitivity, it remains unchanged, and we
obtain the correct answer with high probability. If the dataset had high sensitivity, it is transformed
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to ensure privacy; although this may render the statistical result unreliable, such high-sensitivity
datasets occur with low probability.2

With these technical components, we obtain a low-sensitivity statistic for the ℓ2-norm and apply
the Laplace mechanism to ensure privacy. Plugging this into the above outline yields our main
algorithmic result. A complete proof is given in Appendix C, with a short version is presented in
Section 3.

The upper bound for identity and uniformity testing can be obtained via simple prioritization
of the upper bound in Aliakbarpour et al. (2024) and the existing private algorithm for identity
testing Acharya et al. (2018).

Lower bounds. For the lower bounds, the difficulties are reversed. The lower bound for private
augmented closeness testing is derived by combining two existing lower bounds; further details are
provided in Appendix D.

For uniformity testing, and consequently for identity testing, to show a lower bound, we must
combine the statistical inference and privacy constraints on a private augmented tester. When p̂ and q
are closer than the suggested accuracy α, we show that private identity testing reduces to augmented
private identity testing using a similar reduction to Aliakbarpour et al. (2024). In this case, known
lower bounds (Zhang, 2021) automatically apply to our setting.

However, if p̂ and q are more than α-far apart, we must combine several tools for proving
information-theoretic lower bounds. In the non-augmented setting, a lower bound can be shown
using a version of Le Cam’s method for differential privacy (Acharya et al., 2018). Informally, the
idea is to construct a coupling between two distributions (one close to the uniform distribution, one
far) whose expected Hamming distance is low given too few samples. Since no answer will succeed
for both, and no private algorithm can answer too differently on the two sets of samples, no algorithm
can succeed with high probability. In our case, there are three possible answers, which requires us to
construct three distributions such that no single answer works for all three. It also does not suffice
to directly follow the approach of Aliakbarpour et al. (2024) and construct a multivariate coupling
between the three distributions such that all three are close in Hamming distance. This would prove
the privacy terms of our lower bound, but would not give the correct combination of statistical and
privacy terms.

To avoid this problem, we use a general version of Le Cam’s method under privacy and statistical
constraints. Informally, our result states that if any algorithm requires s1 samples to statistically
distinguish two distributions with high probability and s2 samples to guarantee that they are far in
Hamming distance, it requires max(s1, s2) samples to distinguish them privately. We then construct
a hard distribution which is ε-far from the uniform distribution, and a hard distribution which is
α-close to the prediction p̂. Any private augmented uniformity tester cannot answer similarly for
all three distributions, so it must distinguish the uniform distribution from at least one of the hard
distributions. Therefore, the sample complexity must satisfy at least one of the constraints imposed by
our version of Le Cam’s method. This explains why the optimal sample complexity is the minimum
of two expressions, which matches our upper bound. For more details, see Appendix B.

2. For readers familiar with differential privacy, note that our approach differs from the well-known “Propose-Test-
Release” mechanism, where noise is added proportional to the typical sensitivity (see Section 3 in Vadhan (2017)). In
that mechanism, the probability of a high-sensitivity (bad) event is absorbed into an approximate DP guarantee via an
additive error δ. However, our approach is more suitable for pure DP: our privacy guarantee remains intact, and the
bad event only introduces a small probability of error in accuracy.
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2. Preliminaries and Problem Setup

We use [n] to indicate the set of integers {1, 2, . . . , n}, and standard asymptotic notation (O(·),Ω(·),Θ(·))
as well as the (slightly) less standard Õ(·), which omits polylogarithmic factors in its argument. In
this paper, we focus on discrete probability distributions with a finite domain, which we identity
with their probability mass functions (pmf). Let p denote a probability distribution over [n]: for any
i ∈ [n], we denote by pi the probability of the element i according to p. For a subset S ⊂ [n], p(S)
then denotes the probability of observing an element in S according to p: p(S) =

∑
i∈S pi. The

distribution of s i.i.d. samples from p is written as p⊗s. If we know the probability pi of each element,
we say p is a known distribution. We also use the following standard probability distributions: Poi(λ)
denotes a Poisson distribution with mean λ; Bern(x) denotes a Bernoulli distribution with success
probability x; and Lap(b) denotes a Laplace distribution with scale b.

The total variation distance between p and q is defined as the maximum possible difference in
probabilities assigned to any event (subset of outcomes):

dTV(p, q) := max
S⊆[n]

|p(S)− q(S)| = 1

2
∥p− q∥1 ∈ [0, 1].

where for the last expression we identify the pmf of p, q with their vector of probabilities. For two
distributions p and q, and any ε ∈ [0, 1], we say p is ε-close to q iff dTV(p, q) is at most ε. We say p
and q are ε-far from each other iff dTV(p, q) is greater than ε. A property P is a set of distributions.
We say a distribution p has property P if p ∈ P , and p is ε-far from property P if dTV(p, q) > ε for
all q ∈ P .

Problem setup: The standard distribution testing problem is to decide, given samples from an
unknown distribution p, whether p has a property P or whether p is ε-far from property P . In our
case, the tester receives three additional inputs: a privacy parameter ξ, which it must respect, a
predicted distribution (or “advice”) p̂, and a suggested accuracy value α. If p̂ is α-close to p, the
tester must either output accept or reject with high probability; otherwise, it may output ⊥, which
denotes inaccurate information.

Definition 3 (Augmented private tester) Suppose we are given three parameters ε, α ∈ (0, 1), and
ξ > 0, along with distributions p and p̂ over the same domain. Suppose A receives samples from p
and returns a value in {accept, reject,⊥}. We say algorithm A is a (ξ, ε, α, δ)-private augmented
tester for property P iff the following holds:

• A is a ξ-differentially private algorithm.

• If p ∈ P , A does not output reject with probability more than δ.

• If p is ε-far from P , A does not output accept with probability more than δ.

• If p and p̂ are α-close, A does not output ⊥ with probability more than δ.

Remark 4 (On knowing the parameter α) While it may seem difficult to suggest an accuracy level
α for an unverified prediction, this is not an actual limitation, as one can avoid this in practice using
the search algorithm of Aliakbarpour et al. (2024). The algorithm iteratively increases α until the
tester either returns accept or reject. If the true accuracy is α∗ and the tester uses f(α) samples for
a single run with input α, the search algorithm uses O(f(α∗)) total samples in expectation.
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While we do not provide the full proof here, careful analysis shows that a private version of
this claim can be established under certain constraints. The main challenge is determining the
stopping point at which the tester privately returns either accept or reject. This can be accomplished
using the well-known Sparse Vector Technique, which does not increase the privacy cost by more
than a constant factor, provided that the stopping point can be replaced with a threshold query to a
low-sensitivity function. Notably, this condition holds for all the algorithms in this paper.

We will refer to a non-private augmented tester as a (ε, α, δ)-augmented tester. We will refer to a
non-augmented private tester as a (ξ, α, δ)-private tester. Finally, a (ε, δ)-tester is simply a standard,
non-private, non-augmented tester.

We focus on two common variants of the distribution testing problem in which P contains a
single distribution q, and the problem is to distinguish between the cases p = q and dTV(p, q) > ε.
In the case of identity testing, q is a known distribution. In the case of closeness testing, q is unknown,
and the algorithm receives samples from both p and q.
Differential privacy: For two datasets X and X ′, we write the Hamming distance of X and X ′ –
the number of samples in which the two datasets differ – as Ham(X,X ′). We consider an algorithm
to be private if it satisfies the following definition.

Definition 5 (Differential privacy) Fix parameter ξ > 0. Let X,X ′ ∈ X be two datasets with
Ham(X,X ′) = 1; that is, X and X ′ differ in exactly one sample. A randomized algorithm
A : X → {accept, reject,⊥} is ξ-differentially private if for all such X and X ′ and any O ⊆
{accept, reject,⊥}, Pr[[[A(X) ∈ O ]]] ≤ eξ ·Pr[[[A(X ′) ∈ O ]]] .

Our algorithms use the Laplace mechanism (Dwork and Roth, 2014), which works as follows.
Let X be the set of all datasets and f : X → R be a real-valued function. Define the sensitivity
of f , denoted ∆(f), as ∆(f) := maxX,X′∈X :Ham(X,X′)=1 |f(X) − f(X ′)| . The quantity f(X) +
Lap(∆(f)/ξ) is then ξ-differentially private.

In this paper, we focus on pure differential privacy in the central setting, and implicitly focus on
the “high-privacy regime” (range ξ ∈ (0, 1]). We leave other variants (e.g., local DP or approximate
DP) as open problems.
Organization of the paper: A detailed yet succinct description of the upper bound for private
augmented closeness testing is presented in Section 3 of the main paper. Due to space constraints,
some proofs have been omitted here; a complete version is available in Appendix C. The lower bound
for private augmented closeness testing is given in Appendix D. Additionally, the upper bound for
identity testing (and, equivalently, uniformity testing) is presented in Appendix A, while the lower
bound for uniformity testing (and hence identity testing) appears in Appendix B.

3. Upper bound for Private Augmented Closeness Testing

We establish the algorithmic part of Theorem 2, restated below:

Theorem 6 Let ε, α ∈ (0, 1] and ξ > 0. Let p and q both be unknown distributions over [n]. Then
Algorithm 1 is a ξ-DP augmented (ε, α, 0.32)-closeness tester which takes s samples each from p
and q, where

s = Õ

(
n2/3α1/3

ε4/3
+

√
n

ε2
+

1

εξ
+

√
n

ε
√
ξ
+

n1/3

ε4/3ξ2/3

)
(1)

9
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Algorithm 1: PRIVATE-AUGMENTED-CLOSENESS-TESTER
Input: p, q, p̂, α, n, δ = 0.32
Output: accept, reject, or ⊥

1 if ε = o(n−1/4) or ε2ξ = o(n−1) then
2 Run the tester of Lemma 29 and return its answer
3 k̂p, k̂q ← Poi(k), ℓ̂← Poi(ℓ) where k, ℓ are determined as described in the proof of Theorem 6
4 if k̂p + k̂q > 200k or ℓ̂ > 100ℓ then
5 return reject

6 p′, q′ ← Flatten p and q according to Eq. (24)
7 p′′, q′′ ← Flatten p′ and q′ according to Eq. (25) using k̂p samples from p and k̂q from q

8 L← compute the statistic in Eq. (38) using ℓ̂ samples

9 L̃← L+ Lap
(

∆(L)
ξ

)
10 if L̃ > 30 ·

(
2α
k + 4

n

)
then

11 return ⊥
12 Run the tester of Lemma 25 and return its answer

Roadmap. We describe our flattening procedure in Section 3.2, drawing on the flattening proce-
dures of Aliakbarpour et al. (2024) and Aliakbarpour et al. (2019) which we review in Appendix C.1;
and analyze our algorithm in Section 3.3. Finally, in Section 3.4, we show how to privately estimate
the ℓ2 norm to verify our flattening procedure. Due to space constraints, all proofs and details are
deferred to Appendix C.

3.1. Overview of Flattening

Flattening is motivated by a result of Chan et al. (2014), in which the authors give a closeness tester
for distributions p and q whose sample complexity is O(bn/ε2), where b = min(∥p∥2, ∥q∥2). The
flattening technique described by Diakonikolas and Kane (2016) works as follows: draw a multiset
F of Poi(k) samples from p. Let ki denote the number of elements in F equal to i. The new
distribution p′ will be supported on domain {(i, j) : i ∈ [n], j ∈ [ki]}. To draw a sample from
p′, draw i from p and choose j uniformly at random from the set [ki]. This effectively divides the
probability mass of each element i evenly into ki buckets. Diakonikolas and Kane (2016) show that
the expected ℓ2 norm of p′ is low: E[∥p′∥22] ≤ 1

k .
In the rest of this section, we describe two variations on the original technique which will be

useful in constructing our augmented private tester.

Private Flattening: The private tester of Aliakbarpour et al. (2019) attempts to derandomize the
original flattening of Diakonikolas and Kane (2016). When a flattening-based tester divides its
samples into flattening and test sets, it introduces randomness based on the permutation π used to
partition the samples. This results in high sensitivity of the test statistic Z (we treat the statistic itself
as a black box, analyzing its sensitivity using results from Aliakbarpour et al. (2019)). The private
tester reduces the sensitivity by taking the expectation of Z over every permutation π of the data and
the randomness r of the flattening procedure:

Z := Eπ,r[[[Z ]]]

The authors show that Z has low sensitivity and preserves the correctness of any flattening procedure
which satisfies certain properties. In Appendix C.1, we give a formal definition of these properties

10
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and establish that the flattening of Diakonikolas (2016) satisfies these properties, allowing it to be
made private.

Augmented Flattening: In the augmented setting of Aliakbarpour et al. (2024), the estimate p̂
guides the choice of buckets for each element i. Let ν ∈ (0, 1] be a flattening parameter. Rather than
dividing elements into ki + 1 buckets, the flattener creates bi =

⌊
p̂i
ν

⌋
+ ki + 1 buckets in flattened

distributions p′ and q′. If p̂ is α-close to p, the expected ℓ22 norm after flattening is shown to be
2α
k + 4 · ν. The tester then draws O(

√
n) samples each from p′ and q′ to estimate their ℓ22 norm.

If at least one distribution has been sufficiently flattened, the algorithm proceeds to the test phase.
Otherwise, it returns ⊥.

3.2. Our Two-Step Flattening

To simplify the analysis of our augmented private closeness tester, we split the flattening into two
steps. The first step flattens p and q into distributions p′ and q′ using only on the prediction p̂.
The second step draws samples from p′ and q′ and uses these samples to flatten them into a third
set of distributions p′′ and q′′. This two-step flattening makes it much easier to guarantee that
the procedure is private. Since the first step draws no samples, it can be performed without any
modifications for privacy. Since the second step does not use p̂, it is precisely the same procedure as
the flattening described in Lemma 24, and can be made private by the same mechanism. We show
that if dTV(p̂, p) ≤ α, then ∥p′′∥22 is small in expectation, allowing us to test efficiently with fewer
flattening samples than the optimal non-augmented tester.

Flattening procedure: Suppose we are given parameter k, which determines the expected number
of flattening samples. The two-step flattening works as follows.

1. From the original distributions p and q, estimate p̂, and suggested accuracy α, construct p′ and
q′ by flattening each element i ∈ [n] into bi buckets, where

bi = ⌈np̂i⌉+ 1 (2)

(This is analogous to setting ν = 1/n in Equation 22). Since p, p̂, and α are not private, this
can be done as a preprocessing step before running the private portion of the algorithm. After
this step, p′ is defined by having, for all i ∈ [n] and j ∈ [bi], p′i,j = pi/bi. Sampling from p′

can be done as follows: sample i ∼ p and j ∼ Unif([bi]), and return (i, j). Sampling from
q′ is equivalent (note that both p and q use the same bucketing, so p′ and q′ have the same
domain).

2. Sample k̂p, k̂q ∼ Poi(k) independently. Draw a multiset F (p) of k̂p samples from p′ and
a multiset F (q) of k̂q samples from q′. Let F = F (p) ∪ F (p), and ki,j be the total number
of instances of element (i, j) in F . Then divide each element of the domain of p′, q′ into
bi,j = ki,j + 1 buckets.

The domain of p′′ and q′′ is Ω = {(i, j,m) : i ∈ [n], j ∈ [bi],m ∈ [bi,j ]}, and

p′′i,j,m =
pi,j
bi,j

, q′′i,j,m =
qi,j
bi,j

(3)

for all (i, j,m) ∈ Ω. To sample from p′′, we sample (i, j) ∼ p′ and m ∼ Unif([bi,j ]), then
return (i, j,m).

11
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Effect of flattening: We now show that the domain size after flattening remains Θ(n + k) with
high probability. After the second flattening step, the number of elements is n′′ = |Ω| (itself a
random variable), where n′′ =

∑n
i=1

∑bi
j=1 bi,j =

∑n
i=1

∑bi
j=1(ki,j + 1) ≤ k̂p + k̂q + 3n . Note

that k̂p + k̂q ∼ Poi(2k), so k̂p + k̂q ≤ 200k with probability at least 0.99 by Markov’s inequality.
Therefore, n′′ = O(n+ k) with probability at least 0.99. Next, we bound the expected ℓ22 norm of
the flattened distribution, assuming the suggested accuracy level α is valid:

Lemma 7 (see Lemma 28) Let p and p̂ be distributions over [n] with dTV(p, p̂) ≤ α. Then the
two-step flattening produces a distribution p′′ with EF

[
∥p′′∥22

]
≤ 2α

k + 4
n .

3.3. The Algorithm

At a high level, our algorithm works in three steps. The first step flattens p and q into distributions
p′′ and q′′ as described above. The second step tests the ℓ22 norm of p′′. If the norm is not within a
constant multiplicative factor of the bound guaranteed by Lemma 28, then we have dTV(p̂, p) > α
with high probability, and the tester returns ⊥. If the norm is close to the bound, our algorithm can
perform an efficient closeness test. The final step runs the private closeness tester of Aliakbarpour
et al. (2019) and returns its result. We give pseudocode for our algorithm in Algorithm 1.

By our lower bound (Theorem 38), there are some regimes of parameters in which an augmented
tester cannot use asymptotically fewer samples than a non-augmented private tester. In these cases, we
simply invoke the optimal (private) non-augmented tester of Zhang (2021), whose sample complexity
is given by Lemma 29. In all other regimes, we show that our tester is optimal up to log n factors.
We are now ready to prove our upper bound.
Proof [Proof Outline of Theorem 6] For the analysis, we will condition on two assumptions:

1. Poissonization did not cost too many samples: k̂ = k̂p + k̂q < 200k, ℓ̂ < 100ℓ, and ŝ < 100s.

2. Ratios are roughly what they should be: for all i ∈ [n], ℓi
ki+1 < 12 log

(
n

0.05

)
· ℓk This holds

with probability at least 0.95 by Lemma 37. If this assumption does not hold in our original
dataset, we enforce it via the differentially private mapping of Lemma 35.

Privacy: If ε = o(n−1/4) or ε2ξ = o(n−1), we run the tester of Lemma 29, which is private by the
same result. If ε = Ω(n−1/4) and ε2ξ = Ω(n−1), the algorithm’s outputs depend only on the statistic
L̃, and the choice of k̂p, k̂q and ℓ̂. The latter two do not depend on the sampled data. If assumption
(2) is satisfied, then L̃ is ξ-DP by Lemma 12. Finally, the second flattening step is a equivalent to
the non-augmented flattening procedure described by Aliakbarpour et al. (2019). Therefore, if the
algorithm reaches Line 12, its output is private by Lemma 25.
Correctness: If ε = o(n−1/4) or ε2ξ = o(n−1), the algorithm returns a valid answer with probability
at least 0.95 by Lemma 29. Thus, we can hereafter assume that ε = Ω(n−1/4) and ε2ξ = Ω(n−1).

• First, we show that if dTV(p, p̂) ≤ α, the algorithm does not output ⊥ with high probability.
The only case in which the algorithm returns ⊥ is when L̃ > 30(2α/k + 4/n). By Lemma 12,
the estimate L̃ is within a constant factor of ∥p′′∥22 with probability at least 0.94: ∥p′′∥22

2 ≤
L̃ ≤ 3

∥p′′∥22
2 Combining Lemma 28 with Markov’s inequality, with high probability ∥p′′∥22 ≤

20
(
2α
k + 4

n

)
. Therefore, by union bound, we have that L̃ is not more than 20 times the

expected value of ∥p′′∥22 with probability at least 0.91, and the probability of returning ⊥ in
this case is at most 0.09.
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• Next, we show that the algorithm does not output reject with high probability when p = q.
Conditioned on assumption (1), the algorithm only rejects if the tester of Lemma 25 rejects.
This occurs with probability at most 0.25 when p = q.

• Finally, we show that the algorithm does not return accept when dTV(p, q) > ε. In this case,
the algorithm only accepts if the tester of Lemma 25 accepts, so with probability at most 0.25.

Therefore, the algorithm outputs a valid answer with probability 0.75 conditioned on the assumptions.
Taking a union bound, the algorithm outputs a valid answer with probability 0.68 overall.

Sample Complexity: By assumption (1), we draw O(k) flattening samples, O(ℓ) estimation
samples, and O(s) test samples from both p and q. Let n′′ = O(n + k) be the domain size of p′′.
Then the parameters must satisfy the following constraints: (1) k ·min

(
k

log2 n
, ℓ
logn

)
= Ω

(
n′′

ξ

)
and

(2) ℓ ≥ Θ(
√
n′′) for ℓ2 norm estimation, and (3) s ≥ Θ(n′′ ·

√
EF

[
∥p′′∥22

]
/ε2+

√
n′′∆(Z)/(ε

√
ξ))

for testing. By Lemma 25, the sensitivity of the test statistic is ∆(Z) = Θ
(
s+k
k

)
, while by

Lemma 28 we have EF [∥p′′∥22] ≤ 2α/k+4/n . A careful case analysis and choice of k, s then yields
the claimed sample complexity.

Remark 8 Algorithm 1 can be implemented in polynomial time in the number of samples taken. The
test statistic L̃ can be computed efficiently by counting the number of instances of each element in
the flattening and test sets, then computing the closed form expression in Eq. (38). We emphasize
that this expectation is only over the random choice of buckets, not over permutations of samples as
in Aliakbarpour et al. (2019).

To complete the analysis, note that both non-augmented private testers used in our algorithm (see
Lemmas 25 and 29) run in polynomial time. Note that the tester of Lemma 25 computes the expected
value of an expression over every permutation of samples; this expression appears to take exponential
time to compute. However, as described by Aliakbarpour et al. (2019), the computation can be
performed efficiently. For each domain element, (more precisely, for each element that appears at
least once in the sample set), the expression consists of three terms:a, b, and c. Here, a and b are
the numbers of test samples drawn from p and q, respectively, and c is the number of samples in the
flattening set. By iterating over all possible values a, b, and c for each element (each has at most
O(k + s+ 1) possible values, the total number of samples), we can compute in polynomial time the
probability of observing any given combination under random permutations.

3.4. Private Testing of ℓ2 Norm

To determine whether the two-step flattening worked, we must (privately) test the ℓ2 norm of the
flattened distribution p′′. The standard ℓ2 tester (Goldreich and Ron, 2011; Aliakbarpour et al., 2024)
computes the number of collisions in its sample set, and has the following guarantee:

Lemma 9 (Goldreich and Ron (2011); Aliakbarpour et al. (2024)) Let δ ∈ (0, 1) and p be a dis-
tribution over [n]. Let E be a multiset of ℓ = O (

√
n log(1/δ)) samples from p. For each i ∈ [n],

define ℓi as the number of instances of element i in E. Let L(E) =
(
ℓ
2

)−1∑n
i=1

(
ℓi
2

)
. Then with

probability at least 1− δ, ∥p∥22
2 ≤ L(E) ≤ 3∥p∥22

2 .
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The statistic above has high sensitivity; intuitively, if a large number of samples fall in the same
bin (i, j,m), changing a single instance of element i could affect a large number of collisions. To
avoid this, we will derandomize this tester by taking

L(E) := Er[L | E] (4)

where r is the string of random bits used to choose the bucket when generating a sample from p′′

given a sample from p′, and E is a multiset (the estimation set) of Poi(ℓ) flattening samples from p′.
Each of these samples is a pair (i, j). Rather than sample the third coordinate to generate a sample
from p′′, we will consider the expected number of collisions over all such samplings, conditioned on
E. In the result below, we give a closed-form expression for L.

Lemma 10 Let ki,j and ℓi,j be the number of instances of element (i, j) in the flattening and
estimation sets F and E respectively. For each i ∈ [n], let bi be the number of buckets created for
element i by the first flattening step. Then

L =
1(
ℓ
2

) n∑
i=1

Er

 bi∑
j=1

bi,j∑
k=1

(
ℓi,j,k
2

) ∣∣∣∣ ki, ℓi
 =

1(
ℓ
2

) n∑
i=1

bi∑
j=1

(ℓi,j
2

)
ki,j + 1

(5)

In general, the sensitivity of L might be quite high. In the worst case, we might draw no instances of
element (i, j) in F but Θ(ℓ) instances in E, giving a sensitivity of Θ(1). However, the sensitivity is
considerably lower whenever the flattening and estimation sets are similar (i.e., no element has a
much higher frequency in E than in F ). The following lemma formalizes this intuition.

Lemma 11 Suppose that there exists A ≥ 0 such that for all i ∈ [n], ℓi,j
ki,j+1 ≤ A · ℓk . Then the

sensitivity of L is bounded by ∆(L) ≤ O(A
2

k2
+ A

kℓ) .

Assuming the sensitivity obeys this bound (in Appendix C.5, we show how to transform any dataset
into one that satisfies this property for A = Θ(log n)), the last remaining task is to show that we can
efficiently estimate ∥p′′∥22 to within a constant multiplicative factor:

Lemma 12 Let E be a set of Poi(ℓ) estimation samples from p, and L be the derandomized ℓ22
norm estimator defined above. Let A = 12 log(n/0.05). For a given value of ξ > 0, define

L̃ = L+ Lap
(
∆(L)/ξ

)
.

Suppose k̂ = k̂p + k̂q ≤ 100k, that Eq. (43) holds, and that k ·min(k/A2, ℓ/A) ≥ C1 · k+n
ξ , ℓ ≥

C2

√
k + n for sufficiently large constants C1, C2. Then Pr

[[[
|L̃− ∥p′′∥22| > ∥p′′∥22/2

]]]
≤ 0.06 .

Putting all these elements together as outlined establishes Theorem 6.
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Appendix A. Upper bound for Private Augmented Identity Testing

Our upper bound follows directly from the upper bound of Aliakbarpour et al. (2024) for non-private
augmented identity testing. The tester aims to detect the case where p is far from q using the Scheffé
set S of p̂ and q, where S := {i ∈ [n] : p̂i < qi}. The difference in the probability of S under p̂ and
q is precisely the total variation distance:

η := dTV(q, p̂) = |q(S)− p̂(S)|

The algorithm draws samples from p and computes the test statistic σ, the fraction of samples which
fall in S. If σ is sufficiently far from q(S), the tester rejects; otherwise, it returns ⊥. The full
pseudocode of our private tester is given in Algorithm 2.

The sample complexity of the non-private augmented tester depends on η and α:

Lemma 13 (Aliakbarpour et al. (2024)) Let ε ∈ (0, 1], α ∈ [0, 1). Suppose we are given known
distributions q and p̂, and unknown distribution p, all over [n]. Let η := dTV(q, p̂) and δ0 := 1/10.
There is an (ε, α, δ0)-augmented identity testing algorithm which takes s samples from p, where

s =

Θ
(√

n
ε

)
if η ≤ α

Θ
(
min

(
1

(η−α)2
,
√
n

ε2

))
if η > α

This result shows an improvement in sample complexity if p̂ is a sufficiently good estimate of p, and
does no worse than a standard identity tester if not. To privatize the tester, we simply add Laplace
noise to the test statistic σ.

Lemma 14 Fix privacy parameter ξ > 0. Let p̂ and q be known distributions, and p be an unknown
distribution, over [n]. Let S := {i ∈ [n] : p̂i < qi}. For a set {x1, ..., xs} of s i.i.d. samples from p,
let

σ :=
1

s

s∑
j=1

1 [xj ∈ S]

Then the statistic σ̂ = σ + Lap(1/(sξ)) is ξ-differentially private.

Proof The sensitivity of σ is

∆(σ) = max
X,X′:|X−X′|<1

|σ(X)− σ(X ′)| = 1

s

Therefore, adding Lap(1/(sξ)) noise suffices to make the statistic private by the Laplace mechanism.

In the case where augmentation does not decrease the sample complexity, we must run a non-
augmented private identity tester. The following lemma gives the sample complexity of private
identity testing.
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Algorithm 2: PRIVATE-AUGMENTED-IDENTITY-TESTER

Input: p, q, p̂, n, ε, α, ξ, δ = 0.1
Output: accept, reject, or ⊥

1 η ← dTV(p̂, q)

2 if η ≤ α or
√
n

ε2
+

√
n

ε
√
ξ
+ n1/3

ε4/3ξ2/3
+ 1

εξ ≤
1

(η−α)2
+ 1

(η−α)ξ then
3 Run the tester of Lemma 15 and output its answer
4 S ← {i ∈ [n] : p̂i < qi}
5 Draw s = Θ

(
1

(η−α)2
+ 1

(η−α)ξ

)
samples x1, ...xs from p

6 σ ← 1
s

∑s
j=1 1[xj ∈ S]

7 σ̂ ← σ + Lap
(

1
sξ

)
8 if |σ̂ − q(S)| > η−α

4 then
9 return reject

10 else
11 return ⊥

Lemma 15 (Acharya et al. (2018)) Fix parameters ε ∈ (0, 1] and ξ > 0. Let q be a known
distribution and p be an unknown distribution over [n]. There is a (ξ, ε, δ = 0.1)-private identity
tester which takes s samples from p, where

s = Θ

(√
n

ε2
+

√
n

ε
√
ξ
+

n1/3

ε4/3ξ2/3
+

1

εξ

)
(6)

Additionally, any (ξ, ε, δ = 0.1)-private identity tester requires Ω(s) samples.

Combining the results above, we have the following upper bound.

Theorem 16 Fix parameters ε ∈ (0, 1], α ∈ [0, 1), ξ > 0, and δ0 := 1/10. Let p̂ and q be known
distributions, and p be an unknown distribution, over [n]. Then Algorithm 2 is a (ξ, ε, α, δ0)-private
augmented identity tester which takes s samples from p, where

s =

Θ
(√

n
ε2

+
√
n

ε
√
ξ
+ n1/3

ε4/3ξ2/3
+ 1

εξ

)
, η ≤ α

Θ
(
min

(
1

(η−α)2
+ 1

(η−α)ξ ,
√
n

ε2
+

√
n

ε
√
ξ
+ n1/3

ε4/3ξ2/3
+ 1

εξ

))
, η > α

(7)

Moreover, the algorithm can be implemented in polynomial time in s.

Proof Note that the choice to use one algorithm or the other only depends on the (public) parameters,
not on the samples: therefore, the decision of which algorithm to use does not compromise privacy.

If η ≤ α or
√
n/ε2+

√
n/(ε
√
ξ)+n1/3/(ε4/3ξ2/3)+1/(εξ) ≤ 1/(η−α)2+1/(ξ(η−α)), we

run the non-augmented private identity tester, which is ξ-differentially private and returns the correct
answer with probability at least 0.9. The sample complexity in this case is given by Lemma 15.

Next, we consider the case where η > α and 1/(η−α)2+1/(ξ(η−α)) <
√
n/ε2+

√
n/(ε
√
ξ)+

n1/3/(ε4/3ξ2/3) + 1/(εξ). We will separately prove privacy, correctness, and the sample complexity.
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Privacy: In the case where η ≤ α or the non-augmented tester has lower sample complexity than
the augmented version, we run the non-augmented private identity tester, which is ξ-differentially
private by Lemma 15. If we run the augmented tester, the algorithm is ξ-differentially private by
Lemma 14.

Correctness: Note that the augmented tester can never return accept. We will only consider the
other two possibilities. First, we show that with high probability, the algorithm does not return reject
when p = q. If s = Ω(1/(η − α)2), then by Hoeffding’s inequality,

Pr

[[[
|σ − p(S)| ≥ η − α

8

]]]
≤ 2 exp

(
−2
(
η − α

8

)2

· s

)
≤ 0.05 (8)

By the cdf of the Laplace distribution, if s = Ω(1/((η − α)ξ)),

Pr

[[[
|σ̂ − σ| ≥ η − α

8

]]]
= exp

(
−(η − α)ξ

8∆(σ)

)
= exp

(
−(η − α)ξ · s

8

)
≤ 0.05 (9)

Combining Eq. (8) and Eq. (9) and taking a union bound, the following holds with probability at
least 0.9:

|σ̂ − p(S)| ≤ |σ̂ − σ|+ |σ − p(S)| ≤ η − α

4

If p = q, then p(S) = q(S), and the algorithm returns reject with probability at most 0.1.
Finally, we show that if dTV(p, p̂) ≤ α, then the algorithm does not return⊥with high probability.

In this case, with probability at least 0.9,

α ≥ dTV(p, p̂) ≥ |p(S)− p̂(S)|
≥ |p(S)− q(S)| − |q(S)− p̂(S)|
= dTV(p, q)− |q(S)− p̂(S)|
= η − |q(S)− p̂(S)|
≥ η − |σ̂ − p(S)| − |σ̂ − q(S)|

≥ η − η − α

4
− |σ̂ − q(S)|

Therefore,

|σ̂ − q(S)| ≥ 3(η − α)

4

and the probability that the algorithm returns ⊥ is at most 0.1.

Sample Complexity: We have used the fact that s = Ω(1/(η − α)2) and s = Ω(1/((η − α)ξ)).
Therefore, it suffices to have

s = Θ

(
1

(η − α)2
+

1

(η − α)ξ

)
.

We can efficiently compute σ by checking (in constant time) whether xj ∈ S for each sample xj ,
yielding a tester which takes linear time in the number of samples.
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Appendix B. Lower bound for Private Uniformity Testing

Our lower bound can be split into two parts based on the regime of parameters. When α ≥ η, we
cannot improve on private identity testing, and we obtain our lower bound from known results. When
α < η, augmented private testing may be able to achieve a lower sample complexity. In this case, we
prove a lower bound using a version of Le Cam’s method.

B.1. Lower Bound When α ≥ η

When the predicted distribution p̂ is further from the known distribution q than the desired accuracy
(that is, η ≤ α), standard identity testing can be reduced to augmented identity testing. It immediately
follows from this that private identity testing can be reduced to private augmented identity testing.
Therefore, the lower bound when η ≤ α is precisely the lower bound for private identity testing. We
formalize this argument by combining two known results.

Lemma 17 (Aliakbarpour et al. (2024)) Fix testing parameters ε, α ∈ [0, 1/2) and privacy pa-
rameter ξ > 0. Let p̂ and q be known distributions over [n], and p be an unknown distribution over
[n]. Let η := dTV(q, p̂). Then if there exists an (ε, α, δ = 1/3)-augmented identity tester which
takes s samples, there exists an (ε, δ = 1/3) standard identity tester which takes s samples.

Theorem 18 Fix testing parameters ε, α ∈ [0, 1/2) and privacy parameter ξ > 0. Let p̂ and q be
known distributions over [n], and p be a known distribution over [n]. Let η := dTV(q, p̂). Then if
η < α, any (ξ, α, ε, δ = 0.2)-private augmented identity tester for testing identity of p and q with
prediction p̂ requires s samples, where

s ≥ Ω

(√
n

ε2
+

n1/3

ε4/3ξ2/3
+

√
n

ε
√
ξ
+

1

εξ

)
(10)

Proof By Lemma 17, identity testing can be reduced to augmented identity testing when η ≤ α.
Since the privacy constraint does not reduce the sample complexity necessary for correctness, private
identity testing can be reduced to private augmented identity testing. Therefore, the lower bound for
private identity testing given in Lemma 15 is also a lower bound for augmented testing in this case.

B.2. Lower Bound When α < η

When α < η, it is sometimes possible for the augmented private tester to achieve a lower sample
complexity than the non-augmented tester. To account for this possibility, our lower bound uses an
extension of Le Cam’s method to the augmented setting. At a high level, the idea is to construct three
distributions such that no single answer is valid for all three. We show that, with too few samples,
(1) the distributions are statistically indistinguishable from the uniform distribution and (2) under
differential privacy constraints, no algorithm can answer differently for all three distributions with
high probability. We conclude that any algorithm which uses too few samples must have high error
probability on at least one distribution. Formally, our result is the following:

Theorem 19 Fix testing parameters ε, α ∈ [0, 1/2) and privacy parameter ξ > 0. Let p̂ and q be
known distributions, and p be an unknown distribution over [n]. Let η := dTV(q, p̂). Then if η > α,
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any ξ-differentially private (α, ε, δ = 0.2)-augmented testing algorithm for testing identity of p and
q with prediction p̂ requires s samples, where

s ≥ Ω

(
min

(
1

(η − α)2
+

1

ξ(η − α)
,

√
n

ε2
+

n1/3

ε4/3ξ2/3
+

√
n

ε
√
ξ
+

1

εξ

))
(11)

We defer the proof to the end of this section. We begin by establishing a general tool to combine
statistical and privacy constraints. In particular, we show that if two sets of samples look similar with
respect to either statistical indistinguishability or Hamming distance, any algorithm must behave
similarly on those inputs.

Lemma 20 Suppose we are given three positive integers n, s1, and s2, along with parameters ξ > 0
and τ ∈ (0, 1). Consider two distributions (or families of distributions) p1 and p2 over [n]. Let T s

1

and T s
2 indicate two sample set of size s from p1 and p2 respectively. Assume we have the following

properties:

• Suppose we pick p ∈ {p1, p2} uniformly at random, and generate a sample set of size s from
p. Upon receiving the sample set, no algorithm can distinguish whether the sample set is
generated according to p1 or p2 with probability more than (1 + τ)/2.

• For any s ≤ s2, there exists a coupling C between T s
1 and T s

2 such that

E(T s
1 ,T

s
2 )∼C[[[Ham(T s

1 , T
s
2 )]]] ≤

0.4 τ

ξ
.

LetM : [n]s → R be a ξ-private algorithm that receives a sample set of size s from an unknown
underlying distribution and produces an outcome in a finite set R. Then, for any such M, s ≤
max(s1, s2), and any subset of outcomes R ⊆ R, we have:

PrX∼p⊗s
1
[[[M(X) ∈ R]]] ≤ 1.5 ·PrX∼p⊗s

2
[[[M(X) ∈ R]]] + τ.

Proof We consider two cases based on whether s ≤ s1. If s ≤ s1, we use the statistical indistin-
guishability of p1 and p2. The behavior ofM should be almost identical for sample sets drawn
from these two families due to the following standard trick. Consider an algorithm A that runs as
follows: Upon receiving a sample set X , it invokesM(X). If the outcome ofM is in R it declares
p1; otherwise, it declares p2. Since this algorithm cannot distinguish p1 from p2, we have:

1 + τ

2
≥ PrX∼p⊗s[[[A(X) = p]]] = PrX∼p⊗s[[[A(X) = p1|p = p1 ]]] ·Pr[[[p = p1 ]]]

+PrX∼p⊗s[[[A(X) = p2|p = p2 ]]] ·Pr[[[p = p2 ]]]

=
1

2

(
PrX∼p⊗s

1
[[[M(X) ∈ R]]] +PrX∼p⊗s

2
[[[M(X) ̸∈ R]]]

)
=

1

2

(
PrX∼p⊗s

1
[[[M(X) ∈ R]]] + 1−PrX∼p⊗s

2
[[[M(X) ∈ R]]]

)
Thus, we obtain:

PrX∼p⊗s
1
[[[M(X) ∈ R]]] ≤ PrX∼p⊗s

2
[[[M(X) ∈ R]]] + τ
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Now, consider the case where s > s1. Since s ≤ max(s1, s2), we must have s ≤ s2. Thus, we
use the coupling C2. Let W2 denote the event that Ham(T s

1 , T
s
2 ) ≥ 0.4/ξ for (T s

1 , T
s
2 ) drawn from

C2. By assumption and Markov’s inequality, the probability of W2 is at most τ .
Using the definition of a ξ-private algorithm M, for every pair of datasets T s

1 and T s
2 with

Ham(T s
1 , T

s
2 ) ≤ 0.4/ξ, we have

Pr[[[M(T s
1 ) ∈ R]]] ≤ eξ·Ham(T s

1 ,T
s
2 )Pr[[[M(T s

2 ) ∈ R]]]

≤ e0.4 ·Pr[[[M(T s
2 ) ∈ R]]] ≤ 1.5 ·Pr[[[M(T s

2 ) ∈ R]]].

Now, we obtain

PrX∼p⊗s
1
[[[M(X) ∈ R]]] = Pr(T s

1 ,T
s
2 )∼C1

[[[M(T s
1 ) ∈ R]]]

= Pr(T s
1 ,T

s
2 )∼C1

[[[
M(T s

1 ) ∈ R |W2

]]]
·Pr(T s

1 ,T
s
2 )∼C1

[[[
W2

]]]
+Pr(T s

1 ,T
s
2 )∼C1

[[[M(T s
1 ) ∈ R |W2 ]]] ·Pr(T s

1 ,T
s
2 )∼C1

[[[W2 ]]]

≤ 1.5 ·Pr(T s
1 ,T

s
2 )∼C1

[[[
M(T s

2 ) ∈ R |W2

]]]
·Pr(T s

1 ,T
s
2 )∼C1

[[[
W2

]]]
+
(
1.5 ·Pr(T s

1 ,T
s
2 )∼C1

[[[M(T s
2 ) ∈ R | T s

1 ̸= T s
2 ]]] + 1

)
·Pr(T s

1 ,T
s
2 )∼C1

[[[W2 ]]]

≤ 1.5 ·Pr(T s
1 ,T

s
2 )∼C1

[[[M(T s
2 ) ∈ R]]] + τ

= 1.5 ·PrX∼p⊗s
2
[[[M(X) ∈ R]]] + τ .

Hence, the proof is complete.

B.3. Construction of Hard Distributions

It remains to construct three distributions which satisfy the indistinguishability and closeness as-
sumptions of Lemma 20. We will use a similar construction to Aliakbarpour et al. (2024). Some of
the necessary properties are well-known; we will prove the rest.

Choice of distributions: First, we describe the three distributions used in the proof. For the
following constructions, we will assume without loss of generality that n is even. (For odd n, we can
set the probability of the last element to 0 and choose the remaining elements using the construction
for n− 1.) Let q = Un be the uniform distribution on [n]. We will define the predicted distribution p̂
as follows:

p̂i :=

{
1+2η
n , i is even

1−2η
n , i is odd

(12)

Note that dTV(p̂, q) = η.
We will generate two other distributions p• and p⋄. Set ε′ ∈ (0, 1/2] to be Θ(ε) and α′ ∈ (0, α)

such that η − α′ = Θ(η − α). Let Z ∼ Unif({−1, 1}n/2). Define p• and p⋄ as follows:

p•i =

{
1+2Zi/2·ε′

n , i is even
1−2Zi/2·ε′

n , i is odd
(13)
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p⋄i =

{
1+2·(η−α′)

n , i is even
1−2·(η−α′)

n , i is odd
(14)

Note that p• is ε′-far from Un, so accept is an incorrect answer given samples from p•. Similarly, p⋄

is α-close to p̂, so ⊥ is an invalid answer given samples from p⋄. Finally, reject is an invalid answer
given samples from Un. Therefore, no single answer works for all three distributions Un, p•, and p⋄.

To prove the privacy assumption of Lemma 20, we will need two couplings: a coupling C•
between Un and p•, and a coupling C⋄ between Un and p⋄. The existence of C• follows from a
known result:

Lemma 21 (Acharya et al. (2018)) Let ε′ ∈ (0, 1/2), and n > 0 be an even number. Let Un be
the uniform distribution on [n], and let p• be the distribution defined in Eq. (13). Then there exists a
coupling C• between U⊗s

n and p•⊗s such that for any (T s
1 , T

s
2 ) ∼ C•, we have

E[[[Ham(T s
1 , T

s
2 )]]] ≤ C(ε′)2 ·min

(
s2

n
,
s3/2

n1/2

)
(15)

for some sufficiently large constant C > 0.

Finally, we will show that there exists a coupling between T s
1 ∼ U⊗s

n and T s
3 ∼ C⋄⊗s such that

the Hamming distance between the two is small.

Lemma 22 Let η, α′ > 0 be parameters such that η−α′ ∈ (0, 1/2), and n > 0 be an even number.
Let Un be the uniform distribution on [n], and let p⋄ be the distribution defined in Eq. (14). Then
there exists a coupling C⋄ such that for any (T s

1 , T
s
3 ) ∼ C⋄, we have

E[[[Ham(T s
1 , T

s
3 )]]] = s(η − α′) (16)

Proof We will construct the coupling by the following process:

1. Draw P1, ..., Ps ∼ Unif([n/2]).

2. For each j ∈ [s], draw Zj ∼ Bern(1/2) and Z ′
j ∼ Bern(1− 2(η − α′)). Let Xj =

2Pj − Zj . Then define Yj as

Yj =

{
2Pj − Zj , Zj = 0

2Pj − Z ′
j , Zj = 1

3. Let T s
1 = {X1, ..., Xn} and T s

3 = {Y1, ..., Yn}. Return (T s
1 , T

s
3 ).

First, we will show that this is a valid coupling: that is, the marginal distributions on T s
1 and T s

3 are
U⊗s
n and p⋄⊗s respectively. For all i ∈ [n] and j ∈ [s],

Pr[[[Xj = i]]] =
1

2
·Pr

[[[
Pj =

⌈
i

2

⌉]]]
=

1

n
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Since the values Xj are independent, the marginal on T s
1 is U⊗s

n . For all even i ∈ [n] and j ∈ [s], we
also have

Pr[[[Yj = i]]] = Pr

[[[
Pj =

i

2

]]]
·
(
Pr[[[Zj = 0]]] +Pr

[[[
Z ′
j = 0 | Zj = 1

]]]
·Pr[[[Zj = 1]]]

)
=

2

n

(
1

2
+ 2(η − α) · 1

2

)
=

1 + 2(η − α′)

n

For all odd i,

Pr[[[Yj = i]]] = Pr

[[[
Pj =

⌈
i

2

⌉]]]
·Pr

[[[
Z ′
j = 1 | Zj = 1

]]]
·Pr[[[Zj = 1]]]

=
2

n
· (1− 2(η − α′)) · 1

2

=
1− 2(η − α′)

n

which proves that C⋄ is a valid coupling.
Finally, we bound the expected Hamming distance between the two sample sets. For all j,

Xj ̸= Yj if and only if Zj = 1 and Z ′
j = 0. Therefore,

E[[[Ham(T s
1 , T

s
3 )]]] = E

 s∑
j=1

1[Xj ̸= Yj ]

 =
s∑

j=1

Pr[[[Xj ̸= Yj ]]]

=
s∑

j=1

Pr[[[Zj = 1]]] ·Pr
[[[
Z ′
j = 0

]]]
=

s∑
j=1

1

2
· 2(η − α′)

= s(η − α′)

as desired.

B.4. Proof of Theorem 19

Proof SupposeA : [n]s → {accept, reject,⊥} is an (α, ε, δ = 0.2)-augmented identity tester which
uses

s < min

(
max

(
0.004

√
n

(ε′)2
,
C1
√
n

ε′
√
ξ
,

C2n
1/3

(ε′)4/3ξ2/3

)
,max

(
0.00005

(η − α′)2
,

0.4

ξ(η − α′)

))
(17)

for some constants C1, C2. We will use Lemma 20 and the distributions constructed above to show
that A must have a high error probability if its sample complexity is too low. Let T s

1 ∼ U⊗s
n ,

T s
2 ∼ p•⊗s, and T s

3 ∼ p⋄⊗s. We have the following facts about the distributions:
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• By a result of Paninski (2008), no algorithm can distinguish Un from p• with probability
greater than 0.505 with fewer than 0.004

√
n/(ε′)2 samples.

• By Lemma 21, for any s ≤ max(C1
√
n/(ε′

√
ξ), C2n

1/3/((ε′)4/3ξ2/3)) there exists a coupling
C• between T s

1 and T s
2 such that

E(T s
1 ,T

s
2 )∼C•[[[Ham(T s

1 , T
s
2 )]]] ≤

0.4

ξ

• No algorithm can distinguish Un from p• with probability greater than 0.505 with fewer than
0.00005/(η − α′)2 samples. This follows by noting that distinguishing a distribution which is
biased toward even elements from the uniform distribution is equivalent to distinguishing a
η− α′-biased coin from a fair one. It is a folklore fact that this requires at least Ω(1/(η− α′)2

samples. (See, e.g., Aliakbarpour et al. (2024)).

• By Lemma 22, if s ≤ 0.4/(ξ(η−α′)), there exists a coupling C⋄ between T s
1 and T s

3 such that

E(T s
1 ,T

s
3 )∼C⋄[[[Ham(T s

1 , T
s
3 )]]] ≤

0.4

ξ

Since A has only three possible outputs, we have:

1 = PrT1∼U⊗s
n
[[[A(T1) = accept]]] +PrT1∼U⊗s

n
[[[A(T1) = reject]]] +PrT1∼U⊗s

n
[[[A(T1) = ⊥]]]

Using Lemma 20, we have:

1 ≤ PrT1∼U⊗s
n
[[[A(T1) = accept]]] + 1.5 ·PrT2∼p⊗̇s[[[A(T2) = reject]]] + 1.5 ·PrT3∼p⋄⊗s[[[A(T3) = ⊥]]] + 0.02

Based on our definition of Un, p• and p⋄, the three probabilities above are at most the probability
that A makes a mistake. Thus, we have:

1 ≤ 4δ + 0.02

Hence, δ ≥ 0.245, which contradicts our assumption that δ = 0.2. Therefore, s cannot be lower than
the bound in Eq. (17), which immediately implies the lower bound in Eq. (11).

Appendix C. Upper Bound for Private Augmented Closeness Testing

Our result for closeness testing combines the flattening-based closeness testers of Aliakbarpour et al.
(2024) and Aliakbarpour et al. (2019). The flattening technique, introduced by Diakonikolas and
Kane (2016), uses samples to map the original distributions p and q onto new distributions p′ and q′

such that p′ has a low ℓ2 norm, but dTV(p, q) = dTV(q
′, q′). The main result of Aliakbarpour et al.

(2019) is that any flattening procedure which satisfies certain technical conditions can be made private.
Since the augmented closeness tester of Aliakbarpour et al. (2024) also relies on flattening, we show
that it too can be made private with some modifications. In Appendix C.1, we review the flattening
procedures of Aliakbarpour et al. (2024) and Aliakbarpour et al. (2019). We describe our own
procedure in Appendix C.2, and present our algorithm in Appendix C.3. Finally, in Appendix C.4,
we show how to privately estimate the ℓ2 norm to verify the success of our flattening.

27



ALIAKBARPOUR BURUDGUNTE CANONNE RUBINFELD

C.1. Overview of Flattening

In this section, we formally state the guarantees of previous flattening-based testers described in
Section 3.1. We restate the descriptions of both algorithms for convenience, followed by the technical
results we need for our analysis.

Private Flattening: The private tester of Aliakbarpour et al. (2019) attempts to derandomize the
original flattening of Diakonikolas and Kane (2016). When a flattening-based tester divides its
samples into flattening and test sets, it introduces randomness based on the permutation π used to
partition the samples. This results in high sensitivity of the test statistic Z, as swapping one of
the samples used for the flattening can wildly affect the resulting value of Z. The private tester
reduces the sensitivity by taking the expectation of Z over every permutation π of the data and the
randomness r of the flattening procedure:

Z := Eπ,r[[[Z ]]]

The authors show that Z has low sensitivity and preserves the correctness of any flattening procedure
which satisfies two technical conditions. Such a flattening is called a proper procedure.

Definition 23 Let A be an algorithm which draws a multiset X from distribution p and reduces
testing property P of p to testing closeness between two distributions p′ and q′. We say A is a proper
procedure if there exist constants c0 < 1 and c1 ≥ 1 such that the following holds for any p′ and q′

produced by A:

PrX

[[[
Eπ

[∥∥p′ − q′
∥∥2
2

∣∣∣∣X] ≥ 4c0 ·EA

[∥∥p′ − q′
∥∥2
2

]]]]
≥ 9/10 (18)

EA

[∥∥p′ − q′
∥∥4
4

]
≤ c1 ·

(
EA

[∥∥p′ − q′
∥∥2
2

])2
(19)

As we show in Appendix C.2, a crucial step in our flattening procedure is identical to one proven to
be proper in Aliakbarpour et al. (2019): the flattening of Diakonikolas and Kane (2016) when the
flattening set is drawn from both p and q.

Lemma 24 Let A be an algorithm for testing closeness of distributions p and q with the following
flattening procedure: draw a multiset F (p) from p and a multiset F (q) from q. Let ki denote the
number of instances of element i in F (p) ∪ F (q). Divide the probability mass of element i evenly into
ki buckets. Then A is a proper procedure.

The sample complexity of any proper procedure is given by the following result.

Lemma 25 (Aliakbarpour et al. (2019)) LetA be a proper procedure for testing property P which
reduces the problem to testing closeness of p′ and q′ over a domain of size n′ using Poi(k) flattening
samples. Then there exists an (ξ, ε, 3/4)-private tester for property P which draws Poi(s) test
samples, for any

s ≥ Θ

n′ ·
√
EA

[
min(∥p′∥22, ∥q′∥22)

]
ε2

+

√
n∆(Z)

ε
√
ξ

 (20)

Additionally, the sensitivity of the test statistic Z is bounded by

∆(Z) = O

(
s+ k

k

)
(21)
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Augmented Flattening: In the augmented setting of Aliakbarpour et al. (2024), the estimate p̂
guides the choice of buckets for each element i. Let ν ∈ (0, 1] be a flattening parameter. Rather than
dividing elements into ki + 1 buckets, the flattener creates

bi =

⌊
p̂i
ν

⌋
+ ki + 1 (22)

buckets in flattened distributions p′ and q′. If p̂ is α-close to p, the expected ℓ2 norm after flattening
is shown to be

E
[∥∥p′∥∥2

2

]
≤ 2α

k
+ 4 · ν (23)

The tester then draws O(
√
n) samples each from p′ and q′ to estimate their ℓ22 norm. If at least one

distribution has been sufficiently flattened, the algorithm proceeds to the test phase. Otherwise, it
returns ⊥. The sample complexity of this tester is given below.

Lemma 26 (Aliakbarpour et al. (2024)) Fix parameters α, ε ∈ (0, 1]. Let p and q be unknown
distributions, and p̂ be a known distribution over [n]. There exists an (ε, α, δ = 0.3)-augmented
closeness tester for p and q which uses Θ

(
n2/3α1/3

ε4/3
+

√
n

ε2

)
samples from both p and q.

As discussed in the introduction, to mimic this approach we need to perform this last step – the
estimation of the ℓ22 norm to verify that the flattening was successful – in a differentially private
fashion.

C.2. Two-Step Flattening

To simplify the analysis of our augmented private closeness tester, we split the flattening into two
steps. The first step flattens p and q into distributions p′ and q′ using only the prediction p̂. The
second step draws samples from p′ and q′ and uses these samples to flatten them into a third set of
distributions p′′ and q′′. This two-step flattening makes it much easier to guarantee that the procedure
is private. Since the first step draws no samples, it is already differentially private. Since the second
step does not use p̂, it is precisely the same procedure as the flattening described in Lemma 24,
and can be made private by the same mechanism. We show that if dTV(p̂, p) ≤ α, then ∥p′′∥22 is
small in expectation, allowing us to test efficiently with fewer flattening samples than the optimal
non-augmented tester.

Flattening procedure: Let k be a parameter which will determine the expected number of flattening
samples. The two-step flattening works as follows.

1. From the original distributions p and q, estimate p̂, and suggested accuracy α, construct p′ and
q′ by flattening each element i ∈ [n] into bi buckets, where

bi = ⌈np̂i⌉+ 1 (24)

(This is analogous to setting ν = 1/n in Equation 22). Since p̂ and α are not private, this can
be done as a preprocessing step before running the private portion of the algorithm. After this
step, p′ is defined by having, for all i ∈ [n] and j ∈ [bi], p′i,j = pi/bi. Sampling from p′ can
be done as follows: sample i ∼ p and j ∼ Unif([bi]), and return (i, j). Sampling from q′ is
analogous (note that both p and q use the same bucketing, so p′ and q′ have the same domain).
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2. Sample k̂p, k̂q ∼ Poi(k) independently. Draw a multiset F (p) of k̂p samples from p′ and
a multiset F (q) of k̂q samples from q′. Let F = F (p) ∪ F (p), and ki,j be the total number
of instances of element (i, j) in F . Then divide each element of the domain of p′, q′ into
bi,j = ki,j + 1 buckets.

The domain of p′′ and q′′ is Ω = {(i, j,m) : i ∈ [n], j ∈ [bi],m ∈ [bi,j ]}, and

p′′i,j,m =
pi,j
bi,j

, q′′i,j,m =
qi,j
bi,j

(25)

for all (i, j,m) ∈ Ω. To sample from p′′, we sample (i, j) ∼ p′, m ∼ Unif([bi,j ]), then return
(i, j,m).

Effect of flattening: We now show that the domain size after flattening remains Θ(n+k) with high
probability. After the second flattening step, the number of elements is n′′ = |Ω| (itself a random
variable), where

n′′ =
n∑

i=1

bi∑
j=1

bi,j =
n∑

i=1

bi∑
j=1

(ki,j +1) = k̂p+ k̂q+
n∑

i=1

bi ≤ k̂p+ k̂q+
n∑

i=1

(np̂i+2) ≤ k̂p+ k̂q+3n

Note that k̂p + k̂q ∼ Poi(2k), so k̂p + k̂q ≤ 200k with probability at least 0.99 by Markov’s
inequality. Therefore, n′′ = O(n+ k) with probability at least 0.99. Next, we bound the expected ℓ22
norm of the flattened distribution, assuming the suggested accuracy level α is valid.

Lemma 27 (See, e.g., (Diakonikolas and Kane, 2016, Lemma 2.6)) Fix λ > 0. If X ∼ Poi(λ),

then E
[[[

1
1+X

]]]
≤ 1

λ .

Proof Follows from manipulating the series corresponding to the expectation:

E

[[[
1

1 +X

]]]
= e−λ

∞∑
k=0

1

k + 1

λk

k!
=

1

λ
e−λ

∞∑
k=0

λk+1

(k + 1)!
=

1

λ
e−λ

∞∑
k=1

λk

k!
=

1− e−λ

λ
.

Lemma 28 Let p and p̂ be distributions over [n] with dTV(p, p̂) ≤ α. Then the two-step flattening
produces a distribution p′′ with

EF

[
∥p′′∥22

]
≤ 2α

k
+

4

n
(26)

Proof The proof is inspired by Aliakbarpour et al. (2024). Let ∆i = pi − p̂i for all i ∈ [n], so that

pi = ∆i + p̂i ≤ 2max(∆i, p̂i)

Letting A := {i ∈ [n] : ∆i ≥ p̂i}, this gives the following bound on pi:

pi ≤

{
2∆i, i ∈ A

2p̂i, i ∈ [n] \A
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By definition of p′ and p′′, we have

∥p′′∥22 =
n∑

i=1

bi∑
j=1

bi,j∑
m=1

(p′′i,j,m)2 =
n∑

i=1

bi∑
j=1

(p′i,j)
2

bi,j

=
∑
i∈A

bi∑
j=1

(p′i,j)
2

bi,j
+

∑
i∈[n]\A

bi∑
j=1

(p′i,j)
2

bi,j

≤
∑
i∈A

bi∑
j=1

2∆ip
′
i,j

bibi,j
+

∑
i∈[n]\A

bi∑
j=1

p2i
b2i bi,j

≤
∑
i∈A

bi∑
j=1

2∆ip
′
i,j

bibi,j
+

∑
i∈[n]\A

bi∑
j=1

p2i
b2i

(bi,j ≥ 1)

≤
∑
i∈A

bi∑
j=1

2∆ip
′
i,j

bi(ki,j + 1)
+

∑
i∈[n]\A

bi∑
j=1

(2p̂i)
2

b2i

≤
∑
i∈A

bi∑
j=1

2∆ip
′
i,j

bi(ki,j + 1)
+ 4

∑
i∈[n]\A

p̂2i
bi

≤
∑
i∈A

bi∑
j=1

2∆ip
′
i,j

bi(ki,j + 1)
+ 4

∑
i∈[n]\A

p̂2i
np̂i

(bi ≥ np̂i)

≤
∑
i∈A

bi∑
j=1

2∆ip
′
i,j

bi(ki,j + 1)
+

4

n

Note that we can write ki,j = k
(p)
i,j + k

(q)
i,j , where k

(p)
i,j ∼ Poi

(
kp′i,j

)
and k

(q)
i,j ∼ Poi

(
kq′i,j

)
.

Applying Lemma 27,

EF

[
1

ki,j + 1

]
≤ EF

[
1

k
(p)
i,j + 1

]
≤ 1

kp′i,j

Combining the two results, the expected norm is bounded by

EF

[
∥p′′∥22

]
≤
∑
i∈A

(
2∆i

k

)
+

4

n
≤ 2α

k
+

4

n

the last inequality since
∑

i∈A∆i = p(A)− p̂(A) ≤ supS(p(S)− p̂(S)) = dTV(p, p̂) ≤ α.

C.3. The Algorithm

At a high level, our algorithm works in three steps. The first step flattens p and q into distributions
p′′ and q′′ as described in Appendix C.2. The second step tests the ℓ22 norm of p′′. If the norm is
not within a constant multiplicative factor of the bound guaranteed by Lemma 28, then we have
dTV(p̂, p) > α with high probability, and the tester returns ⊥. If the norm is close to the bound, our
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algorithm can perform an efficient closeness test. The final step runs the private closeness tester of
Aliakbarpour et al. (2019) and returns its result. We give pseudocode for our algorithm in Algorithm
1.

By our lower bound (Theorem 38), there are some regimes of parameters in which an augmented
tester cannot use asymptotically fewer samples than a non-augmented private tester. In these cases,
we simply invoke the non-augmented tester, whose sample complexity is given by Lemma 29. In all
other regimes, we show that our tester is optimal up to log n factors.

Lemma 29 (Zhang (2021)) Let ε ∈ (0, 1] and ξ > 0. Let p and q both be unknown distri-
butions over [n]. Then there is a (ξ, ε, 0.05)-private closeness tester for p and q which takes
Θ
(
n2/3

ε4/3
+

√
n

ε2
+ 1

εξ +
√
n

ε
√
ξ
+ n1/3

ε4/3ξ2/3

)
samples.

We are now ready to prove our upper bound.

Theorem 30 [Theorem 6, restated] Let ε, α ∈ (0, 1] and ξ > 0. Let p and q both be unknown
distributions over [n]. Then Algorithm 1 is a ξ-differentially private augmented (ε, α, 0.32)-closeness
tester which takes s samples each from p and q, where

s = Õ

(
n2/3α1/3

ε4/3
+

√
n

ε2
+

1

εξ
+

√
n

ε
√
ξ
+

n1/3

ε4/3ξ2/3

)
(27)

Proof For the analysis, we will condition on two assumptions:

1. k̂ = k̂p + k̂q < 200k, ℓ̂ < 100ℓ, and ŝ < 100s. This holds with probability at least 0.97 by
Markov’s inequality and a union bound.

2. For all i ∈ [n],
ℓi

ki + 1
< 12 log

( n

0.05

)
· ℓ
k

(28)

This holds with probability at least 0.95 by Lemma 37. If this assumption does not hold in our
original dataset, we enforce it via the mapping of Lemma 35, which preserves privacy.

Privacy: If ε = o(n−1/4) or ε2ξ = o(n−1), we run the tester of Lemma 29, which is private by
the same result.

If ε = Ω(n−1/4) and ε2ξ = Ω(n−1), the algorithm’s outputs depend only on the statistic L̃, and
the choice of k̂p, k̂q and ℓ̂. The latter two do not depend on the sampled data. If assumption (2) is
satisfied, then L̃ is ξ- differentially private by Lemma 12 . Finally, the second flattening step is a
proper procedure by Lemma 24. Therefore, if the algorithm reaches Line 12, its output is private by
Lemma 25.

Correctness: If ε = o(n−1/4) or ε2ξ = o(n−1), the algorithm returns a valid answer with
probability at least 0.95 by Lemma 29. Therefore, we need only consider the case where ε =
Ω(n−1/4) and ε2ξ = Ω(n−1).

First, we show that if dTV(p, p̂) ≤ α, the algorithm does not output ⊥ with high probability.
The only case in which the algorithm returns ⊥ is when L̃ > 30(2α/k + 4/n). By Lemma 12 , the
estimate L̃ is within a constant factor of ∥p′′∥22 with probability at least 0.94:

∥p′′∥22
2
≤ L̃ ≤ 3

∥p′′∥22
2

(29)
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Combining Lemma 28 with Markov’s inequality, the following holds with probability at least 0.95:

∥p′′∥22 ≤ 20

(
2α

k
+

4

n

)
(30)

Therefore, by union bound, we have that L̃ is not more than 20 times the expected value of ∥p′′∥22
with probability at least 0.91, and the probability of returning ⊥ in this case is at most 0.09.

Next, we show that the algorithm does not output reject with high probability when p = q.
Conditioned on assumption (1), the algorithm only rejects if the tester of Lemma 25 rejects. This
occurs with probability at most 0.25 when p = q.

Finally, we show that the algorithm does not return accept when dTV(p, q) > ε. In this case, the
algorithm only accepts if the tester of Lemma 25 accepts, which happens with probability at most
0.25.

Therefore, the algorithm outputs a valid answer with probability 0.75 conditioned on the as-
sumptions. Taking a union bound, the algorithm outputs a valid answer with probability 0.68
overall.

Sample Complexity: By assumption (1), we draw O(k) flattening samples, O(ℓ) estimation
samples, and O(s) test samples from both p and q. Let n′′ = O(n + k) be the domain size of p′′.
Then the parameters must satisfy the following constraints:

k ·min

(
k

log2 n
,

ℓ

log n

)
= Ω

(
n′′

ξ

)
(for ℓ2 norm estimation) (31)

ℓ ≥ Θ(
√
n′′) (for ℓ2 norm estimation) (32)

s ≥ Θ

n′′ ·
√
EF

[
∥p′′∥22

]
ε2

+

√
n′′∆(Z)

ε
√
ξ

 (for testing) (33)

By Lemma 25, the sensitivity of the test statistic is

∆(Z) = Θ

(
s+ k

k

)
.

And by Lemma 28, we have

EF

[
∥p′′∥22

]
≤
√

2α

k
+

4

n
.

Finally, to simplify the constraint in Eq. (31), we note that the equation implies two constraints on k:

k2

log2 n
= Ω

(
k

ξ

)
, so k = Ω

(
log2 n

ξ

)
k2

log2 n
= Ω

(
n

ξ

)
, so k = Ω

(√
n log n√

ξ

)
.

If both of the above hold and ℓ = k, the parameters always satisfy Eq. (31). Note that the first
constraint dominates if and only if ξ = o(log n/

√
n).

We are now ready to describe the sample complexity. We will consider the following cases:
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Case 1: ε = o(n−1/4). In this case we run the non-augmented private tester, whose sample
complexity is given by Lemma 29. We have

n2/3

ε4/3
=

n2/3ε2/3

ε2
= O

(√
n

ε2

)
Therefore, n2/3/ε4/3 is not the dominating term, and the sample complexity can be written as

O

(√
n

ε2
+

n1/3

ε4/3ξ2/3
+

√
n

ε
√
ξ
+

1

εξ

)

which matches our lower bound.

Case 2: ε = Ω(n−1/4) and ε2ξ = o(n−1). Once again, we run the non-augmented tester. By our
assumption,

ε2ξ = o(n−1) = o

(
n−2/3

n1/3

)
= o

(
ε8/3

n1/3

)

Rearranging terms, we have n/ε2 = o(1/ξ3). Consequently,

n2/3

ε4/3
=

(
n

ε2
· n

3

ε6

)1/6

= O

((
1

ξ3
· n

3

ε6

)1/6
)

= O

( √
n

ε
√
ξ

)

Therefore, n2/3/ε4/3 is not the dominating term. The sample complexity is

O

(√
n

ε2
+

n1/3

ε4/3ξ2/3
+

√
n

ε
√
ξ
+

1

εξ

)

which matches our lower bound.

Case 3: ε = Ω(n−1/4), ε2ξ = Ω(n−1), and

√
n log n√

ξ
= O

(
n2/3α1/3

ε4/3
+

√
n

ε2
+

√
n

ε
√
ξ

)
(34)

In this case, we run the augmented tester. We set

ℓ = k = Θ

(
n2/3α1/3

ε4/3
+

√
n

ε2
+

√
n

ε
√
ξ

)
= O(n) (35)

and

s = Θ

(
n

ε2

√
2α

k
+

4

n
+

√
n

ε
√
ξ

)
= O

(
n2/3α1/3

ε4/3
+

√
n

ε2
+

√
n

ε
√
ξ

)
= O(k)
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Therefore, ∆(Z) = Θ(1), and s satisfies Eq. (33). By our assumptions, we have the following
facts:

n2/3α1/3

ε4/3
≤ nα1/3 = O(n)

√
n

ε2
= O(n)

√
n

ε
√
ξ
= O (n)

We also have ℓ = k = Ω(
√
n/ε2) = Ω(

√
n), which satisfies Eq. (32). Finally, k =

Ω(
√
n log n/

√
ξ) = Ω(

√
n+ k log n/

√
ξ), which satisfies Eq. (31). In this case, the overall

sample complexity is equal to Eq. (35). Each of the terms in this upper bound appear in our
lower bound, so the sample complexity is optimal.

Case 4: ε = Ω(n−1/4), ε2ξ = Ω(n−1), and the following holds:


n2/3α1/3

ε4/3
+

√
n

ε2
+

√
n

ε
√
ξ
= O

(√
n logn√

ξ

)
and,

O
(√

n logn√
ξ

)
= O(n)

In this case, we run the augmented tester. The
√
n log n/

√
ξ term dominates each term

in Eq. (35). Therefore, we set ℓ = k = Θ(
√
n log n/

√
ξ), and

s = Θ

(
n

ε2

√
2α

k
+

4

n
+

√
n

ε
√
ξ

)
= O(k)

Similar to the previous case, this setting satisfies all three constraints. The sample complexity is
Θ(
√
n log n/

√
ξ). Since a

√
n/(ε
√
ξ) term appears in our lower bound, our sample complexity

will be off by a factor of O(ε · log n) compared to the lower bound.

Case 5: ε = Ω(n−1/4), ε2ξ = Ω(n−1), and
√
n log n/

√
ξ = Ω(n). In this case, we run the

augmented tester. We set ℓ = k = Θ(log2 n/ξ). Since k = Ω(n), we have n′′ = O(k) and
∆(Z) = Θ((s+ k)/k). Therefore, we require

s = Ω

(
k

ε2

√
α

k
+

1

n
+

√
s+ k

ε
√
ξ

)

Notice that α/k = O(1/n), so solving for s yields

s = Θ

(
k

nε2
+

1

ε2ξ
+

√
k

ε
√
ξ

)
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We can bound each of these terms using our assumptions. Since
√
n log n/ξ = Ω(n), we must

have ξ = O(log n/
√
n). Using these facts, we can bound s:

k

nε2
= O

(
log2 n

nε2ξ

)
= O(log2 n) = O(k)

1

ε2ξ
= O(n) = O(k)

√
k

ε
√
ξ
= Θ

(
log n

εξ

)
Therefore, the overall sample complexity is O(log2 n/ξ + log n/(εξ)). Once again, this is
within a factor of O(ε · log2 n+ log n) of our lower bound.

C.4. Private Testing of ℓ2 Norm

To determine whether the two-step flattening worked, we must (privately) test the ℓ2 norm of the
flattened distribution p′′. The standard ℓ2 tester (Goldreich and Ron, 2011; Aliakbarpour et al., 2024)
works by computing the number of collisions between elements in its sample set. This algorithm has
the following guarantee:

Lemma 31 (Goldreich and Ron (2011); Aliakbarpour et al. (2024)) Let δ ∈ (0, 1) and p be a
distribution over [n]. Let E be a multiset of ℓ = O (

√
n log(1/δ)) samples from p. For each i ∈ [n],

define ℓi as the number of instances of element i in E. Let

L(E) =
1(
ℓ
2

) n∑
i=1

(
ℓi
2

)
(36)

Then with probability at least 1− δ,

∥p∥22
2
≤ L(E) ≤ 3∥p∥22

2
(37)

The statistic above has high sensitivity; intuitively, if a large number of samples fall in the same
bucket (i, j,m), changing a single instance of element i could affect a large number of collisions. To
avoid this, we will derandomize this tester by taking

L(E) := Er[L | E] (38)

where r is the string of random bits used to choose the bucket when generating a sample from p′′

given a sample from p′, and E is a multiset (the estimation set) of Poi(ℓ) flattening samples from p′.
Each of these samples is a pair (i, j). Rather than sample the third coordinate to generate a sample
from p′′, we will consider the expected number of collisions over all such samplings, conditioned on
E. In the result below, we give a closed-form expression for L.
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Lemma 32 [Lemma 10, restated] Let ki,j and ℓi,j be the number of instances of element (i, j) in
the flattening and estimation sets F and E respectively. For each i ∈ [n], let bi be the number of
buckets created for element i by the first flattening step. Then

L =
1(
ℓ
2

) n∑
i=1

Er

 bi∑
j=1

bi,j∑
k=1

(
ℓi,j,k
2

) ∣∣∣∣ ki, ℓi
 =

1(
ℓ
2

) n∑
i=1

bi∑
j=1

(ℓi,j
2

)
ki,j + 1

(39)

Proof Fix ki,j and ℓi,j . Recall that element (i, j) is divided into bi,j = ki,j + 1 buckets. Define
ℓi,j,m as the number of instances of bucket (i, j,m) in the estimation set. Since bi,j and ℓi,j are both
fixed, ℓi,j,m ∼ Bin(ℓi,j , 1/bi,j), where the randomness comes only from r. We have the following:

Er[ℓi,j,m] =
ℓi,j
bi,j

Er[ℓ
2
i,j,m] = Var[ℓi,j,m] +Er[ℓi,j,m]2 =

ℓi,j
bi,j

(
1− 1

bi,j

)
+

ℓ2i,j
b2i,j

=
ℓi,j
bi,j

+
ℓ2i,j − ℓi,j

b2i,j

(40)

We can now write the expectation as

1(
ℓ
2

) n∑
i=1

Er

 bi∑
j=1

bi,j∑
m=1

(
ℓi,j,m
2

) ∣∣∣∣ ki, ℓi
 =

1(
ℓ
2

) n∑
i=1

bi∑
j=1

bi,j∑
m=1

Er

[
ℓ2i,j,m − ℓi,j,m

2

∣∣∣∣ ki, ℓi
]

=
1(
ℓ
2

) n∑
i=1

bi∑
j=1

bi,j∑
m=1

(
ℓi,j
2bi,j

+
ℓ2i,j − ℓi,j

2b2i,j
− ℓi,j

2bi,j

)

=
1(
ℓ
2

) n∑
i=1

bi∑
j=1

bi,j ·
ℓ2i,j − ℓi,j

2b2i,j

=
1(
ℓ
2

) n∑
i=1

bi∑
j=1

ℓ2i,j − ℓi,j

2bi,j

=
1(
ℓ
2

) n∑
i=1

bi∑
j=1

(ℓi,j
2

)
ki,j + 1

(41)

In general, the sensitivity of L might be quite high. In the worst case, we might draw no instances
of element (i, j) in F but Θ(ℓ) instances in E, giving a sensitivity of Θ(1). However, note that the
sensitivity is considerably lower if the flattening and estimation sets are similar (i.e., no element has
a much higher frequency in E than in F ). The following lemma formalizes this intuition.

Lemma 33 Suppose that there exists A ≥ 0 such that for all i ∈ [n] and j ∈ [bi],

ℓi,j
ki,j + 1

≤ A · ℓ
k

(42)

Then the sensitivity of L is bounded by

∆(L) ≤ O

(
A2

k2
+

A

kℓ

)
(43)
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Proof Assume that X and X ′ are fixed datasets which differ in only one sample (an instance of (i, j)
in X is replaced by an instance of (i′, j′) in X ′). The extra instance can only change the contribution
from (i, j) and (i′, j′). Let ki,j and ℓi,j represent the number of instances of (i, j) in the the flattening
and estimation sets of X respectively. Let k′i,j and ℓ′i,j represent the number of instances of (i, j) in
the flattening and estimation sets of X ′. We will bound the difference for a single term; by symmetry,
doubling the bound gives the overall sensitivity.

Case 1: The extra instance of (i, j) falls in the flattening set F . In this case, ℓi,j = ℓ′i,j and
ki,j = k′i,j +1 ≥ 1. As ℓi,j/(ki,j +1) ≤ A · ℓ/k and ki,j ≥ 1, ℓi,j/ki,j ≤ 2A · ℓ/k. Therefore,∣∣∣∣∣

(ℓi,j
2

)(
ℓ
2

)
· (ki,j + 1)

−
(ℓ′i,j

2

)(
ℓ
2

)
· (k′i,j + 1)

∣∣∣∣∣ =
∣∣∣∣∣

(ℓi,j
2

)(
ℓ
2

)
· (ki,j + 1)

−
(ℓi,j

2

)(
ℓ
2

)
· (k′i,j + 1)

∣∣∣∣∣
=

ℓ2i,j − ℓi,j

ℓ2 − ℓ

∣∣∣∣∣ 1

ki,j + 1
− 1

k′i,j + 1

∣∣∣∣∣
=

ℓ2i,j − ℓi,j

ℓ2 − ℓ

∣∣∣∣∣k′i,j + 1− (ki,j + 1)

(ki,j + 1)(k′i,j + 1)

∣∣∣∣∣
=

ℓ2i,j − ℓi,j

ℓ2 − ℓ
· 1

ki,j(ki,j + 1)

≤
ℓ2i,j

ℓ2 − ℓ
· 1

k2i,j

≤ 1

ℓ2 − ℓ
·
(
2A · ℓ

k

)2

≤ O

(
A2

k2

)

(44)

Case 2: The extra instance of i falls in the estimation set E, in which case ki,j = k′i,j and ℓi,j =
ℓ′i,j + 1. Then we have∣∣∣∣∣

(ℓi,j
2

)(
ℓ
2

)
· (ki,j + 1)

−
(ℓ′i,j

2

)(
ℓ
2

)
· (k′i,j + 1)

∣∣∣∣∣ =
∣∣∣∣∣

(ℓi,j
2

)(
ℓ
2

)
· (ki,j + 1)

−
(ℓ′i,j

2

)(
ℓ
2

)
· (ki,j + 1)

∣∣∣∣∣
=

∣∣∣(ℓ′i,j + 1)2 − (ℓ′i,j + 1)− ℓ′2i,j + ℓ′i,j

∣∣∣
(ℓ2 − ℓ)(ki,j + 1)

=
2ℓ′i,j

(ℓ2 − ℓ)(ki,j + 1)

≤ 2ℓi,j
ki,j(ℓ2 − ℓ)

≤ 2Aℓ

k(ℓ2 − ℓ)

≤ O

(
A

ℓk

)

(45)
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Combining the two cases proves the lemma.

For now, we assume Eq. (42) holds, and thus that the sensitivity obeys the bound of Eq. (43)
(in Appendix C.5, we show how to transform any dataset into one that satisfies this property for
A = Θ(log n)). The next task is to show that under this assumption, we can estimate ∥p′′∥22 to within
a constant multiplicative factor.

Lemma 34 [Lemma 12, restated] Let E be a set of Poi(ℓ) estimation samples from p, and L be the
derandomized ℓ22 norm estimator given in Eq. (38). Let A = 12 log(n/0.05). For a given value of
ξ > 0, define

L̃ = L+ Lap

(
∆(L)

ξ

)
(46)

Suppose k̂ = k̂p + k̂q ≤ 100k, that Eq. (43) holds, and that

k ·min(k/A2, ℓ/A) ≥ C1 ·
k + n

ξ

ℓ ≥ C2

√
k + n

(47)

for some sufficiently large constants C1, C2. Then

Pr

[[[∣∣∣L̃− ∥p′′∥22∣∣∣ > ∥p′′∥222

]]]
≤ 0.06

Proof First, we show that the magnitude of the Laplace noise is not too large. Since k̂ ≤ 100k, the
domain size of p′′ is at most n′′ ≤ 200k + 3n, and ∥p′′∥2 ≥ 1/

√
200k + 3n. Using the pdf of the

Laplace distribution and Eq. (47), we have

Pr

[[[∣∣∣L̃− L
∣∣∣ > ∥p′′∥22

4

]]]
= exp

(
−∥p′′∥22ξ
4∆(L)

)
≤ exp

(
−ξ

4(200k + 3n)∆(L)

)
≤ 1/100 (48)

Next, we show that the derandomized statistic L concentrates around the true ℓ22 norm of p′′. From
Goldreich and Ron (2011), we have

E
[[[
L
]]]
= EX [Er[L]] = EX,r [L] = ∥p′′∥22 (49)

The variance of L can also be bounded using the result of Goldreich and Ron (2011) and the law of
total variance:

Var
[[[
L
]]]
= Var[[[L]]]−E[[[Var[[[L | r ]]]]]] ≤ Var[[[L]]] ≤ 2 (E[[[L]]])3/2 =

1(
ℓ
2

)1/2 ·(E[[[L]]])3/2 = ∥p′′∥32(
ℓ
2

)1/2
(50)

By Chebyshev’s inequality, we obtain the following bound:

Pr

[[[∣∣L− ∥p′′∥22∣∣ > ∥p′′∥224

]]]
≤

Var
[[[
L
]]]

∥p′′∥42/16
≤ 32(

ℓ
2

)1/2 · ∥p′′∥2 ≤
64
√
200k + 3n

ℓ
≤ 0.05 (51)

(The second to last inequality is true for all ℓ > 2, and the last is true for ℓ ≥ 1280
√
200k + 3n.)
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Applying a union bound, the total error is bounded by∣∣∣L̃− ∥p′′∥22∣∣∣ ≤ ∣∣∣L̃− L
∣∣∣+ ∣∣L− ∥p′′∥22∣∣ ≤ ∥p′′∥224

+
∥p′′∥22
4

=
∥p′′∥22
2

(52)

with probability at least 0.94, as desired.

C.5. Extending the Domain of The Private Closeness Tester

From Lemma 33, it is clear that as long as Equation 42 holds, the sensitivity is low. We will use
the mapping technique given in Aliakbarpour et al. (2019) to ensure that our dataset always has this
property. Let A ≥ 2. Define X as the set of all datasets (over domain [n]) and X ∗ as the subset of X
which satisfies the property:

X ∗ =

{
X ∈ X : ∀i ∈ [n],

ℓi
ki + 1

≤ A · ℓ
k

}
(53)

where, as before, ℓi and ki represent the number of occurrences of i ∈ [n] in the testing and flattening
parts of X , respectively. If X ∈ X ∗, we can add minimal noise to L and release a private statistic
L̃ which is close to L with high probability. The issue arises when X /∈ X ∗. In this case, we
use a mapping to transform X into another dataset Y ∈ X such that the mapping from X to Y is
differentially private. We do not worry about the tester’s correctness in this case; the goal is merely
to release a private statistic.

Lemma 35 There exists a randomized mapping that takes X,X ′ ∈ X to Y, Y ′ ∈ X ∗ respectively
with the following properties:

• If X ∈ X ∗, then Y = X

• If the Hamming distance between X and X ′ is 1, there exists a coupling C between the random
outputs of the mapping Y and Y ′, where for any (Y, Y ′) ∼ C, the Hamming distance between
Y and Y ′ is at most 4.

Proof The proof follows the idea of (Aliakbarpour et al., 2019, Lemma C.5), with the required
modifications to match our definition of X ∗. Given a flattening set F and an estimation set L, the
goal is to replace elements of F until ℓi/(ki + 1) ≤ A · ℓ/k for all i. For each element i, we need
ri(X) extra copies in F , where

ri(X) = max

{⌈
k · ℓi(X)

A · ℓ

⌉
− ki(X)− 1, 0

}
(54)

Construct a multiset R with ri(X) copies of i. To avoid violating the property, we must not remove
more than si(X) copies of each i, where

si(X) = max

{
ki(X) + 1−

⌈
k · ℓi(X)

A · ℓ

⌉
, 0

}
(55)
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To find these slots, mark si instances of each i as “available” in F . We have at least |R| available
slots in total:

|R| =
n∑

i=1

ri(X) ≤
n∑

i=1

k · ℓi(X)

A · ℓ
=

k

A
≤ (A− 1) · k

A
≤ k −

n∑
i=1

ki(X)

A
= k −

(
n∑

i=1

ki(X)

A

)

≤ k −

(
n∑

i=1

⌈
ki(X)

A

⌉
− 1

)
≤ k −

n∑
i=1

ki(X)− si(X) =
n∑

i=1

si(X)

(56)
We choose the first |R| available slots in F and insert elements of R in those slots, randomly assigning
elements to slots. The resulting dataset is in X ∗. If |R| = 0, then the original dataset was already in
X ∗, and we change nothing.

Note that there are |R| slots and |R| elements to be assigned to them, so there are |R|! possible
assignments of elements to slots. If we choose an assignment uniformly at random, each assignment
has probability 1/|R|! of being chosen. The existence of the coupling then follows by a result shown
as part of the proof of (Aliakbarpour et al., 2019, Lemma C.5):

Lemma 36 LetM be the mapping above, and let X,X ′ be two datasets which differ in exactly one
sample. Then there exists a coupling C between the outputsM(X) andM(X ′) such that for any
(M(X),M(X ′)) ∼ C, Ham(M(X),M(X ′)) ≤ 4.

This completes the proof.

Given that our mapping satisfies Lemma 35, there exists a choice of A which decreases the error
probability of the tester by at most δ′ while preserving privacy.

Lemma 37 (Aliakbarpour et al. (2019)) Let A be a ξ/4-differentially private algorithm over X ∗

with parameter A ≥ 12 log(n/δ′) which tests the ℓ2 norm of p and returns the correct answer with
probability at least 1− δ. Let B be a randomized mapping satisfying the conditions in Lemma 35.
Then the algorithm which returns A(B(X)) is ξ-differentially private and returns the correct answer
with probability at least 1− δ − δ′.

Appendix D. Lower Bound for Private Augmented Closeness Testing

We now state our lower bound for private augmented closeness testing. This result follows from the
known lower bound for augmented closeness testing and a simple reduction from private identity
testing.

Theorem 38 Let ε, α ∈ (0, 1]. Let p and q both be unknown distributions over [n]. Then any
(ε, α, δ = 0.2)-augmented closeness tester for p and q requires

Ω

(
n2/3α1/3

ε4/3
+

√
n

ε2
+

n1/3

ε4/3ξ2/3
+

√
n

ε
√
ξ
+

1

εξ

)
samples.

Proof The first two terms in the lower bound come directly from the lower bound for the non-private
version of this problem:
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Lemma 39 (Aliakbarpour et al. (2024)) Let ε, α ∈ (0, 1]. Let p and q both be unknown distribu-
tions over [n]. Then, for every δ ≤ 11/24, any (ε, α, δ)-augmented closeness tester for p and q
requires

Ω

(
n2/3α1/3

ε4/3
+

√
n

ε2

)
samples.

The proof of the remaining terms is via a standard reduction from the identity testing problem to
the augmented closeness testing problem. A similar statement is provided in Aliakbarpour et al.
(2024) in the non-private setting. Here we include the proof for the private version for the sake of
completeness.

Fix δ ≤ 1/5. Given a (ξ, ε, α, δ)-private augmented closeness tester and an instance of identity
testing between unknown distribution p and known distribution q, we set p̂ = q and run the closeness
tester with samples from p and q, predicted distribution p̂, and suggested accuracy α = ε. If the
closeness tester returns reject or ⊥, we output reject; if the closeness tester returns accept, we output
accept.

Next, we show that with high probability our output is correct. If dTV(p, q) > ε, the closeness
tester will not return accept with probability greater than 1/5. If p = q, since q = p̂, the closeness
tester will not return⊥ or reject with probability greater than 2δ ≤ 2/5 by a union bound. Finally, the
closeness tester is ξ-differentially private, so any function of its output is similarly private. Therefore,
the closeness tester can be used to construct a ξ-private (ε, 2δ)-identity tester, and the lower bound
of Acharya et al. (2018) stated in Lemma 15 gives a lower bound for private augmented closeness
testing.
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