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Abstract

Linearity testing has been a focal problem in property testing of functions. We combine different known
techniques and observations about Linearity testing in order to resolve two recent versions of this task.

First, we focus on the online-manipulation-resilient model introduced by Kalemaj, Raskhodnikova and
Varma (Theory of Computing 2023). In this model, up to t data entries are adversarially manipulated after
each query is answered. Ben-Eliezer, Kelman, Meir, and Raskhodnikova (ITCS 2024) showed an asymptotically
optimal Linearity tester that is resilient to t manipulations per query, but fails if t is too large. We simplify their
analysis for the regime of small t, and for larger values of t we instead use sample-based testers, as defined by
Goldreich and Ron (ACM Transactions on Computation Theory 2016). A key observation is that sample-based
testing is resilient to online manipulations but still achieves optimal query complexity for Linearity when t
is large. We complement our result by showing that when t is very large any reasonable property, and in
particular Linearity, cannot be tested at all.

Second, we consider Linearity over the reals with proximity parameter ε. Fleming and Yoshida (ITCS 2020)
gave a tester using O(1/ε · log(1/ε)) queries. We simplify their algorithms and modify the analysis accordingly,
showing an optimal tester that only uses O(1/ε) queries. This modification works for the low-degree testers
presented in Arora, Bhattacharyya, Fleming, Kelman, and Yoshida (SODA 2023) as well, resulting in optimal
testers for degree-d polynomials, for any constant d.

1 Introduction

In the field of property testing [RS96,GGR98], a randomized algorithm is given oracle access to a large object, and
a promise that the object either has some property (YES instances), or is “far” from having it (NO instances),
under some notion of distance. The goal of the algorithm is to distinguish between the two cases with success
probability at least 2/3, where the complexity is measured by the number of oracle calls made (this is well justified,
as the running time is typically polynomial in the query complexity).

Linearity testing. In this manuscript, we focus on testing functions over a field F (in particular F = F2 and
F = R). That is, the tester is allowed oracle access to some function f : Fn → F and distinguishes functions with a
desired property from ones that are far from any function satisfying the property. The most studied property of
functions is Linearity, for which a tester was first given in [BLR93], perhaps the earliest instance of a property
tester in the literature. The test, dubbed “the 3 points test” simply draws two random points x, y ∈ Fn and
accepts only if f(x) + f(y) = f(x⊕ y), where + denotes addition over F, and ⊕ denotes point-wise addition. By
definition, if f is linear, this equality must hold for any pair x, y. It was shown in various settings that if f is ε-far
from linear, there is an inequality for at least an Ω(ε)-fraction of the pairs x, y. [BLR93,BCH+96,FY20]. Thus,
repeating the process θ(1/ε) times defines a tester for linearity with the same query complexity. We note this
tester satisfies the additional requirement of never rejecting a linear function, making it a 1-sided error tester for
linearity.

It is well known that Ω(1/ε) oracle calls are necessary to test linearity (and most reasonable properties [Fis24]),
proving the 3 points test of [BLR93] is optimal in terms of query complexity.
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1.1 Online erasures over the Boolean field Linearity was studied extensively over the Boolean field
F2 [BLR93,BS94,FGL+96,BCH+96,BGS98,Tre98,ST98,ST00,HW03,BSVW03,Sam07,ST09,SW06,KLX10,KRV23]
and the survey in [RR16]. Before we present the erasure model, we first review the ideas from previous works that
are used in our result.

k-point test. Recently, in the context of online erasures over F = F2 (which we describe soon), the k-points
test was proposed by [KRV23]. In this test, which generalizes the 3-point test, the algorithm chooses points
x1, . . . , xk−1 at random, and accepts only if

∑
i∈[k−1] f(xi) = f

(
⊕i∈[k−1]xi

)
. It was later shown by [BKMR24]

that repeating the k-points test Θ(1/(kε)) times produces an optimal Linearity tester for any k = O(1/ε).
sample-based testers. Linearity over F2 was also considered in [GR16] using a weaker oracle access, where

the tester cannot retrieve f(x) for a value x of its choice, but instead each oracle call outputs a pair (x, f(x)) with
a uniformly random choice of x ∈R Fn

2 . A tester using such oracle access is called a sample-based tester [GGR98].
It was shown in [GR16] that Θ (n+ 1/ε) samples are sufficient and necessary to test Linearity. The gist is that
a linear function is determined by its value on a basis B of the entire space Fn

2 . After Θ(n) samples, one can
extrapolate some linear function g, and use the remaining 1/ε samples to compare f and g. A formal argument
for this setting, without online erasures, appears in Section 2.2.

The online erasure model was recently introduced by [KRV23]. In this model, after each query is answered, t
data points go through manipulations. These can be either (1) erasures, where an entry f(x) is replaced with ⊥;
or (2) corruptions, where an entry f(x) can be changed to any value in the range of f .

In particular, they study Linearity testing over F2. First, they note the 3-points-test is fragile in the presence
of an adversary: a tester that insists on querying a triplet of the form (x, y, x+ y) must make Ω (t) queries, as
fewer queries allow the adversary to erase all (new) pairs that were created at each step. To overcome this, they
devise the k-points test, which creates more combinations, and eventually leads to a tester with query complexity
O(log t/ε). It was then pointed out in [BKMR24] that the k-point test not only preserves the probability of
spotting a violation, but actually increases it by a factor of ≈ k — this is enough to reach query complexity of
log t+ 1/ε, which is optimal. Indeed, a lower bound of Ω(log t) was shown for this model by [KRV23], and an
Ω(1/ε) holds even without erasures. Another recent work by Minzer and Zheng [MZ24] showed a striking O(
logΘ(d)(t)) tester for any degree-d and any finite field. For the case of Linearity (d = 1), however, their result is
suboptimal , achieving a query complexity of O

(
log6(t/ε)/ε

)
.

How many erasures can the tester handle? All the above testers share a similar limitation: they all
require t ≤ 2n/c for some c ≥ 2 (See Table 1 for the precise values). It is natural to ask what is the highest value
of t for which Linearity is still testable. Clearly, t = 2n is too much, but how close can we get?

In Section 2 we fully resolve this question. Our observation, roughly speaking, is that all previous testers
include some queries that are “too predictable”, making them susceptible to adversarial manipulations. However,
this only occurs when the adversary has very large manipulation budget t = 2Ω(n), in which case we can simply
apply the sample-based tester instead, killing two birds at once. First, sample-based testers almost automatically
overcome online manipulations. Second, the seemingly high sample complexity of the tester is actually optimal as
in this regime we have Θ(log(t) + 1/ε) = Θ(n + 1/ε). Formally, we have the following.

Theorem 1.1. (Doubly-efficient tester) There exists a constant c > 0 such that for all n ∈ N, ε ∈ (0, 1/2],
and t satisfying t ≤ cmin

{
ε2, 1/n2

}
· 2n, there exists an ε-tester for linearity of functions f : {0, 1}n → {0, 1} that

works in the presence of a t-online erasure (or corruption) adversary and makes O (max {1/ε, log t}) queries. In
the case of erasure adversary, the tester has 1-sided error.

Our tester can also overcome the stronger budget-managing adversary, which can “bank” their manipulation
privilege and use it only when necessary. See [BKMR24] for more details.

Finally, we show our tester is optimal in both term of query complexity and the amount of manipulations
it can handle, which makes it doubly-optimal. For even a slightly larger value of t, we show that Linearity is no
longer testable in the model. For any n, t, ε where Linearity is testable, the tester has optimal query complexity.

Theorem 1.2. ε-testing linearity in the online erasure model is impossible whenever for any ε ∈ (0, 1/2) provided
that t ≥ 20ε22n.

1.2 Optimal Linearity tester over the Reals Over the reals, there is a distinction between
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Result Query Complexity Range of Erasures Reference

Lower bound Ω(log(t) + 1/ε) any t [KRV23]

Lower bound untestable t ≥ Ω̃ (2n) Theorem 1.2

Algorithm O(log(t)/ε) t ≤ O(2n/4) [KRV23]

Algorithm O(log6(t/ε)/ε) t ≤ O(2n/20) [MZ24]

Algorithm O(log(t) + 1/ε) t ≤ O(2n/2) [BKMR24]

New tester O(log(t) + 1/ε) t ≤ Õ (2n) Theorem 1.1

Table 1: A comparison of all known testers for linearity in the online erasure model. For the sake of clarity, in
the column for the range of erasures, we hide factors of poly(n/ε).

• linearity : f(x) ≡
∑n

i=1 cixi, for some {ci ∈ R, i ∈ {1, . . . , n}}, and

• additivity : for all x,y ∈ Rn, f(x) + f(y) = f(x+ y).

In fact, the 3 point BLR test checks for additivity, and this alone does not guarantee linearity due to some
pathological examples that are additive, but not linear [Ham05]. We therefore assume the function f is continuous,
as was done in previous works, and focus on testing additivity instead.

The best known result [FY20, Theorem 1, Algorithms 3, 2] for distribution-free additivity tester uses O( 1ε log(
1
ε ))

queries. Their algorithm uses the ‘self-correct and test’ approach. First, they test if f violates additivity over a
sufficiently large (Θ( 1ε )) random set of points. They then define the self-correction function g : Rn → R of f as
follows:

g(p) ≜ κp maj
x∼N (0,I)

gx(p), (1.1)

where κp ≜

{
1, if ∥p∥2 ≤ 1/50

50∥p∥2, if ∥p∥2 > 1/50
, and gx(p) ≜ f

(
p

κp
− x

)
+ f(x). (1.2)

Here, every p ∈ Rn is radially contracted to the point p/κp ∈ B(0, 1/50), and gx(p) is the self-correction vote
contributed by the direction x ∈ Rn, weighted as per the distribution N (0, I). The majority of these votes decides
the value of g(p). If no violations of additivity are found, then the g is proven to be a well defined, additive
function. Next, they build an (O(log 1

ε ))-query access for g, and using it, they estimate the distance between f
and g. This allows them to build a distribution-free tester, which is desirable as we may have no prior information
about the underlying distribution. This thus avoids making any unrealizable assumptions about it.

For a measurable function f : Rn → R, a distance parameter ε > 0, an unknown but samplable distribution D
supported over Rn, and a property P, f is ε-far from P with respect to D if

δD(f,P) ≜ inf
g∈P

{
Pr

x∼D
[f(x) ̸= g(x)]

}
> ε.

An algorithm is a distribution-free tester for P, if given query access to f , sample access to D and N (0, I), and
ε > 0, it accepts all f ∈ P with probability at least 2/3, and rejects all f such that δD(f,P) > ε, with probability
at least 2/3.

To shave off the log 1
ε factor, we only need to modify the distance estimator part of the tester.

Theorem 1.3. There exists a distribution-free, one-sided error O(1/ε)-query additivity tester over the reals.

We replace the O(log 1
ε )-query access for g at any point p ∈ Rn with gx(p), where x ∼ N (0, I) is a random

direction. Analysis-wise, the proof for completeness remains the same. For soundness, using the approach of [HK04],
we argue that g(p) agrees with at least 9/10 of the gx(p)’s (not just at least 1/2 of them). Consequently, evaluating
gq(p) in a random direction x ∼ N (0, I), i.e. gx(p) is sufficient to successfully query g(p).

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited67

D
ow

nl
oa

de
d 

08
/2

7/
25

 to
 1

28
.3

0.
48

.1
47

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



Low-degree testing over the reals. We observe that the same modification applies to the Distribution-free
Low degree testers (Algorithms 2, 4, and 6), as well as the Approximate Additivity (Linearity) Tester (Algorithm 8)
of [ABF+23], shaving off the log 1

ε factor from their query complexity (O( 1ε log
1
ε ) for constant d case), thus giving

optimal query complexity for constant d as well. We state the results here. The proofs of these improvements are
very similar to the proof of Theorem 1.3, and will appear in the full version of this paper.

Theorem 1.4. Let d ∈ N, and for L > 0, suppose f : Rn → R is a function that is bounded in the ball B(0, L).
Given ε > 0, query access to f , and sampling access to an unknown distribution D, there exists a one-sided error,
distribution-free, O(d5 + d2/ε)-query tester for testing whether f is a degree-d polynomial, or is ε-far from degree-d
polynomials over D.

Theorem 1.5. Let d ∈ N, for L > 0, suppose f : Rn → R is a function that is bounded in B(0, L), and for
ε ∈ (0, 1), R > 0, let D be an (ε/4, R)-concentrated distribution, i.e., Prp∼D[p ∈ B(0, R)] ≥ 1 − ε/4. Given

α > 0, β ≥ 2(2n)
O(d)

(R/L)dα, query access to f , and sampling access to D, there is a one-sided error, O(d5+d2/ε)-
query tester which distinguishes between the cases when:

• f is pointwise α-close to some degree-d polynomial, say h, i.e., |f(x)− h(x)| ≤ α, for every x ∈ Rn, and,

• for every degree-d polynomial h : Rn → R, Prp∼D[|f(p)− h(p)| > β] > ε.

Theorem 1.6. For d,B,R > 0, let B′ ≥ 16 · max{n5/2+2dd2d, B2R2/
√
n} be a multiple of B. Let L = 1

BZn

and L′ = 1
B′Zn. Given ε > 0, query access to a function f : Rn → R, and sample access to an unknown

(ε/4, R)-concentrated distribution D supported on L, there is a one-sided error, O(d5+d2/ε)-query tester for testing
whether f is a degree-d polynomial, or is ε-far from every degree-d polynomials over D. The tester queries f on
points in L′.

Theorem 1.7. Let α, ε > 0 and D be an unknown (R, ε/4)-concentrated distribution. There exists a one-sided
error, O(1/ε)-query tester for distinguishing between the case when f is pointwise α-close to some additive function
and the case when, for every additive function h, Prp∼D[|f(p)− h(p)| > O(Rn1.5α)] > ε.

1.3 Notation We use [n] for the set {1, 2, . . . , n} and log to denote logarithms with base 2. We use bold face,
e.g. p, q, etc., to denote vectors/points over the reals.

Organization. Section 2 is devoted to the online model, wherein we provide preliminaries for online testing,
as well as prove Theorem 1.1, and Theorem 1.2. Next, in Section 3, we prove Theorem 1.3. The proofs of
Theorem 1.4, Theorem 1.5, Theorem 1.6, and Theorem 1.7, being similar to the proof of Theorem 1.3, will appear
in the full version of this paper.

2 Testing over F2 with online manipulations

We start by introducing the model. The online manipulation-resilient testing model was introduced first by
Kalemaj et al. [KRV23] and formally defined by Ben-Eliezer et al. [BKMR24]. We follow the definitions of the
latter, as specified below.

The input is accessed via a sequence {Oi}i∈N of oracles, where Oi is used to answer the i-th query. The oracle
O1 gives access to the original input (e.g., when the input is a function f , we have O1 ≡ f), and subsequent oracles
are objects of the same type as the input (e.g., functions with the same domain and range). Each such oracle is
obtained by the adversary by modifying the previous oracle to include a growing number of erasures/corruptions
as i increases. We use Dist(O,O′) for the Hamming distance between the two oracles (i.e., the number of queries
for which they give different answers). We let t ∈ N denote the number of erasures (or corruptions) per query.

Definition 2.1. (Fixed-rate and budget-managing adversaries) Fix a parameter t > 0. A sequence1 of
oracles O = {Oi}i∈N is induced by a t-online fixed-rate adversary if O1 is equal to the input and, for all i ∈ N,

Dist(Oi,Oi+1) ≤ ⌊(i+ 1) · t⌋ − ⌊i · t⌋ .

A sequence of oracles O = {Oi}i∈N is induced by a t-online budget-managing adversary if O1 is equal to the input
and, for all i ∈ N,

Dist(O1,Oi+1) ≤ i · t.

1Our algorithms only access a finite subsequence of this sequence.
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Finally, we consider two types of manipulations to the input: erasures and corruptions.

Definition 2.2. (Erasure and corruption adversaries) Let ⊥ represent the erasure symbol. A sequence
of oracles O = {Oi}i∈N is induced by an erasure adversary if for all i ∈ N and data points x,

Oi+1(x) ∈ {Oi(x),⊥} .

In contrast, a corruption adversary can change answers to anything in the range, i.e., Oi can be any valid input
for the computational task at hand.

A property P denotes a set of objects (typically, a set of functions). Intuitively, it represents the set of positive
instances for the testing problem. The (relative Hamming) distance between a function f and a property P,
denoted dist(f,P), is the smallest fraction of function values of f that must be changed to obtain a function in P.
Given a proximity parameter ε ∈ (0, 1), we say that f is ε-far from P if dist(f,P) ≥ ε. An online tester is given a
proximity parameter ε and the rate of erasures (or corruptions) t.

Definition 2.3. (Online ε-tester) Fix ε ∈ (0, 1). An online ε-tester T for a property P that works in the
presence of a specified adversary (e.g., t-online erasure budget-managing adversary) is given access to an input
function f via a sequence of oracles O = {Oi}i∈N induced by that type of adversary. For all adversarial strategies
of the specified type,

1. if f ∈ P, then T accepts with probability at least 2/3, and

2. if f is ε-far from P, then T rejects with probability at least 2/3,

where the probability is taken over the random coins of the tester. If T works in the presence of an erasure (resp.,
corruption) adversary, we refer to it as an online-erasure-resilient (resp., online-corruption-resilient) tester.

If T always accepts all functions f ∈ P, then it has 1-sided error. If T chooses its queries in advance, before
observing any outputs from the oracle, then it is nonadaptive.

To ease notation, we use O(x) for the oracle’s answer to query x (omitting the timestamp i). If x was queried
multiple times, O(x) denotes the first answer given by the oracle.

We are now ready to prove Theorem 1.1. Let us define an important parameter, according to which we choose
our strategy against the adversary:

m := 4 ⌈log(t) + 10/ε⌉ .

When m ≤ n/3 (Case I), meaning that ε is not too small and t is not too big, we can safely use the tester
of [BKMR24] with the parameter m above. This allows us to significantly simplify the choice of m and leads to a
cleaner analysis of the tester. When m > n/3 (Case II), however, we revert to sample-based testing, showing this
strategy easily defeats the adversary and coincides with our desired query complexity, matching the lower bound.
We analyze each of the two cases separately.

2.1 Case I: m ≤ n/3 For this case we use the following primitive from [KRV23]:

Algorithm 1: XorTestk

Input :Even integer parameter k ≥ 2 and query access to a function f : {0, 1}n → {−1, 1}
1 Query k points x1, . . . , xk ∈ {0, 1}n chosen uniformly at random (with replacement).
2 Query point y =

⊕
i∈[k]xi.

3 Accept if f(y) =
∏

i∈[k] f(xi) (equivalently, if f(y) ·
∏

i∈[k] f(xi) = 1); otherwise, reject.

An improved soundness guarantee for this test was shown by [BKMR24]:

Lemma 2.1. (Soundness) If f is ε-far from linear, and k ≥ 2 is even, then

Pr [XorTestk(f) rejects] ≥
1− (1− 2ε)k−1

2
≥ min

{1

4
,
kε

2

}
.
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The algorithm is as follows:

Algorithm 2: Online-Erasure-Resilient Linearity Tester

Input :Parameters ε ∈ (0, 1/2], t ∈ N; query access to f via t-erasure oracle sequence O
1 Repeat 6 times
2 Sample X = (x1, . . . , xm) ∈ ({0, 1}n)m uniformly at random.
3 Query f at points x1, . . . , xm.
4 Query f at point y = ⊕j∈Sxj , where S is a uniformly random subset of [m] of size m

2 .
5 if O(y) ·Πj∈SO (xj) = −1 then
6 Reject ▷ This implies no erasures in this iteration.

7 Accept

In this case, Algorithm 2 performs a simplified version of the tester of [BKMR24]. We upper bound the
probability of seeing an erasure at any given iteration, simplifying the analysis of [BKMR24] for this restricted
regime (in particular ε ≥ Ω(1/n) and t ≤ 2O(n)).

Lemma 2.2. If m ≤ n/3, the probability that one specific iteration of the loop in line 1 of Algorithm 2 queries an
erased point is at most 3/64.

Proof. If m ≤ n/3, the algorithm enters the loop and queries a total of 6(m+ 1) points, which induce at most
6t(m+ 1) manipulations through the entire execution. We define three bad events and give upper bounds on their
probabilities.

An erasure while querying X. Let B1 be the event that O(xj) =⊥ for some point xj sampled in this
iteration, where j ∈ [m]. Each point xj is sampled uniformly from {0, 1}n, so the probability it is erased is at
most 6t(m+ 1)/2n. By a union bound over all m points, using m ≤ n, we have

Pr
X

[B1] ≤
6t(m+ 1)m

2n
≤ 6t(m+ 1)m

2m
. (2.3)

X induces a bad distribution of y points. For any choice S denote yS = ⊕j∈Sxj , and let B2 be the event
that, in this iteration, there exist two different choices of S leading to the same choice y ∈ {0, 1}n. For any two
distinct sets T1, T2 ⊂ [m] of size m/2 w.l.o.g. there exists an element ℓ ∈ T1 \ T2. Fix all entries in X besides xℓ.
The value of y

T2
is now fixed, but over the random choice of xℓ ∈ {0, 1}n, the vector y

T1
is uniform over {0, 1}n.

Thus, Prxℓ
[y

T1
= y

T2
] = 2−n and, consequently,

Pr
X

[
y
T1

= y
T2

]
= E

[
Pr
xℓ

[
y
T1

= y
T2

]]
= E

[
2−n

]
= 2−n,

where both expectations are over all entries in X besides xℓ, which are drawn independently from xℓ. We use a
union bound over all pairs of subsets T1 and T2, and the fact m ≤ n/3 to get

Pr [B2] = Pr
X

[
∃T1 ̸= T2 such that y

T1
= y

T2

]
≤ 22m

2n
≤ 2−m. (2.4)

An erasure on query y. Let B3 be the event that O(y) =⊥ for the point y queried in this iteration. The
adversary knows X before y is queried, but there are plenty of choices for y. Conditioned on B2, the distribution
of y is uniform over

(
m

m/2

)
different choices. We use

(
m

m/2

)
≥ 2m/

√
2m, to obtain

Pr
[
B3 |B2

]
≤ 6t(m+ 1)(

m
m/2

) ≤ 6t(m+ 1)
√
2m

2m
. (2.5)

In terms of the bad events, we wish to bound Pr[B1 ∪B3]. By using a union bound over B1 and B3 and then
the law of total probability to compute Pr[B3], we get

Pr [B1 ∪B3] ≤ Pr [B1] + Pr
[
B2

]
· Pr

[
B3 |B2

]
+ Pr [B2] · Pr [B3 |B2]
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≤ Pr [B1] + Pr
[
B3 |B2

]
+ Pr [B2].

We next combine the bounds from (2.3), (2.4) and (2.5), and use t ≤ 2
m
4 −10 (which is implied by ε ≤ 1/2).

Pr [B1 ∪B3] ≤
16t(m+ 1)m

2m
≤ (m+ 1)m

64 · 2 3m
4

≤ 3

64
,

where the last transition holds since (m+1)m

2
3m
4
≤ 3 for all positive values of m.

We are ready to prove the correctness of Algorithm 2, showing Theorem 1.1 for case I.

Proof. If Algorithm 2 entered the loop in line 1, then it makes 6(m+ 1) = O(log t+ 1/ε) queries.
We next analyse the algorithm in the presence of erasures. It is easy to see the algorithm always accepts all

linear functions. Now, fix an adversarial (budget-managing) strategy and suppose that the input function is ε-far
from linear. By Lemma 2.1 and since k = m/2 ≥ 1/ε is even, the probability that one iteration of the loop in
line 1 samples a witness of nonlinearity is at least min {1/4 , kε/2} ≥ min {1/4 , 1/2} = 1/4.

By Lemma 2.2, the probability that an erasure is seen in a specific iteration is at most 1/16. By a union
bound, the probability of a single iteration seeing an erasure or not selecting a witness of nonlinearity is at most
1− 1

4 + 1
16 = 1− 3

16 . Algorithm 2 errs only if this occurs in all iterations. By independence of random choices in
different iterations, the failure probability is at most(

1− 3

16

)6

≤ e−
18
16 ≤ 1

3
,

where we used 1− x ≤ e−x for all x.
Finally, we show that Algorithm 2 has two-sided error at most 1/3 in the presence of corruptions. The

soundness holds with the same analysis, as finding a single violation suffices for this case. For completeness, note
that the algorithm can only err if it has seen a manipulation, and the probability of seeing a manipulation at any
iteration is at most 3/64 by Lemma 2.2. Using a union bound over all 6 iterations, the overall probability of seeing
any manipulated entry during the entire execution is at most 6 · (3/64) ≤ 1/3.

2.2 Case II: m > n/3 In this case, we use [GR16, Theorem 5.1] for the domain {0, 1}n and run an algorithm
that only uses random samples, their algorithm is simple, and we bring it here for completeness:

Algorithm 3: Goldreich-Ron sampled based tester

Input :Parameters ε ∈ (0, 1/2]; sample access to (x, f(x))
1 m = O(n).
2 Sample X = (x1, . . . , xm) ∈ ({0, 1}n)m uniformly at random.
3 Accept if span(X) ̸= {0, 1}n. ▷ w.h.p. this doesn’t happen;
4 Let Y ⊂ X be an arbitrary basis for {0, 1}n and g : {0, 1}n → {0, 1} the unique linear function that agrees

with f on all points in Y .
5 for O(1/ε) times do
6 Sample z ∼ {0, 1}n.
7 Reject if f(z) ̸= g(z).

8 Accept.

Lemma 2.3. ( [GR16, Theorem 5.1 (1)], for Boolean functions) There is a one-sided error sample-based
tester of sample complexity O(1/ε+ n) for testing linearity of functions of the form f : {0, 1}n → {0, 1}.

Next, we show that if the algorithm uses only uniform random samples, then the adversary loses its power, in
the sense that we, most likely, won’t see any manipulation.
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Theorem 2.1. Let T be a sample-based tester (for some property P) with input length N and distance parameter
ε that uses q uniformly random samples and succeeds with probability 1− δ. Then the same tester with the same
number of queries succeeds with probability 1 − 2δ in the presence of t-online-manipulation adversary for any
t ≤ δ ·N/q2.

Proof. To analyze the tester, we note that all queries in this test are random samples, and the total number of
manipulations made is qt. Therefore, each sample has probability of at most qt/N to see an erasure. By a union
bound over all the samples taken, the overall probability to sample any previously-manipulated points is at most
q2t/N ≤ δ. Adding this error to the original error of the tester T completes the proof.

Remark 2.1. If T is a one-sided error tester, we can keep it one-sided against online-erasure adversary by
accepting whenever we see an erasure. Otherwise, we get a two-sided error tester.

Corollary 2.1. There is a one-sided error sample-based tester for testing linearity against online-erasure
adversaries that uses q = O(1/ε + n) queries, succeeds with probability 2/3 and works for all ε ∈ (0, 1/2) and
t ≤ O(min

{
2n/n2, ε22n

}
).

We are now ready to prove Theorem 1.1 for Case II.

Proof. The query complexity is q = O(n+ 1/ε), and in our case, it is at most O(m+ 1/ε) = O(log t+ 1/ε).

2.3 A testing impossibility result In this section we prove Theorem 1.2, that is that testing is impossible
when t is too large, by showing a much more general statement. The argument below is formulated for properties
of functions f : Fn

q → Fq, but can be adjusted to other settings as well (e.g., properties of strings, Σn).
The proof leverages a recent elegant argument of [Fis24], that shows c/ε queries do not suffice to ε-test a

property P, provided the testing task is not trivial (the precise will appear shortly).
Consider any such non-trivial task in the online manipulation model with large enough t (roughly ε2-fraction

of the input size). On the one hand, after c/ε the tester still cannot distinguish certain YES and NO instances
with high enough probability. On the other hand, at this point an online adversary can already manipulate an
ε-fraction of the original input, enough to completely erase the initial difference between a YES and a NO instance.
Hence, any additional query is useless, and the tester is doomed to fail.

We first review the argument of [Fis24] in the offline model and some of its notations, and later state and
prove the impossibility result for the online model.

The offline model. We consider properties of functions2 f : Fn
q → Fq, where a property P is identified with a

subset of all these functions. Fix a property P such that there exists two input functions FYES ∈ P and FNO that
is α-far from P for some constant α > 0. For simplicity, assume the proximity parameter satisfies ε = ℓ/qn > 0 for
some integer ℓ ∈ N.

First, we consider a function G ∈ P that minimizes the distance to fNO (if such G is not unique, choose one
arbitrarily), and denote by D ⊆ Fn

q the set of inputs on which G and FNO disagree. For any A ⊆ D, define

GA(x) :=

{
G(x), if x /∈ A

FNO(x), if x ∈ A

In particular, GD ≡ FNO, and G∅ ≡ G, and evidently GA has distance exactly |A| /qn from the property P (since
G minimizes the distance of FNO from P).

The focus from now on is on a task we call (G,D, ℓ)-testing. An algorithm solves this task if it accept G
with probability at least 2/3, but accepts GA with probability at most 1/3 for any A ⊆ D such that |A| = ℓ. In
particular, for ε = ℓ/qn, an ε-tester for P is a (G,D, ℓ)-tester.

It was shown in [Fis24] that w.l.o.g, a randomized (G,D, ℓ)-tester is non-adaptive and only queries points in
D. Thus, any such tester simply queries the function on q points x1, . . . xq, where each xi is a random variable
supported on D. Furthermore, for each point z ∈ D we can define the event Ez that the point z was queried (i.e,
xi = z for some i ∈ [q]).

2The original argument in [Fis24] is applied to properties of Σn, or equivalently functions f : [n] → Σ. We use a slightly different to
comply with linearity testing.
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Lastly, fix a randomized (G,D, ℓ)-tester, and observe the probabilities for any point z ∈ D to be queried (that
is, the probability of EZ). If the tester makes at most q queries, then∑

z∈D

Pr [Ez] =
∑
z∈D

E [1Ez ] = E

[∑
z∈D

1Ez

]
≤ E [q] = q.

Denoting by D′ = {z1, . . . , zℓ} the set with ℓ points that has the smallest probabilities (break ties arbitrarily), we
can bound the probability of the event ED′ that any point from D′ was queried. By a union bound, we have

Pr [ED′ ] ≤
∑
z∈D′

Pr [Ez] ≤
ℓ

|D|
·
∑
z∈D

Pr [Ez] ≤
ℓ · q
|D|

.

Since we started with fNO that is α-far from P, we have |D| ≥ α · qn as well as ℓ = ε · qn. Hence

Pr [ED′ ] ≤ ε · q
α

.

To finish up, consider two executions of the tester with the same random coins, one when fed values from G
and another when fed values from GD′ . The answer can only differ if the event ED′ occurred (otherwise, all the
oracle answers are the same for both inputs). Thus, the probabilities of acceptance can differ by at most Pr [ED′ ],
which leads to a contradiction if q < α/(3ε).

The online model. For the online model, we similarly begin from a guaranteed function fNO that is α-far,
and a closest function G ∈ P (arbitrarily chosen if not unique) that differs on the set of inputs D ⊆ Fn

q . We
consider the same task of (U,D, ℓ)-testing, where we assumed ε = ℓ/qn ∈ (0, α).

We denote Fn :=
{
f : Fn

q → Fq

}
and F = ∪n∈NFn. A property is simply P ⊆ F , and we use Pn = P ∩ Fn.

We have the following formal statement:

Theorem 2.2. Fix a constant α > 0, and a property P ⊆ F , such that for infinitely many values of n there exist
Fn
YES ∈ Pn and fn

NO that is α-far from P. Fix ε = ℓ/qn < α for some integer ℓ ∈ N, and t = (10/α)ε2qn. Then
there is not ε-tester for P that is resilient to t manipulations per query.

Proof. The argument begins as before. For any n we define G ∈ mathcalPn, and D that depend on fn
NO. Any ε-

tester for P is also a (U,D, ℓ)-tester as defined above. Assume such a tester exists and is resilient to t manipulations
per query.

Similarly to before, we define an event for each point z ∈ D, but these events focus only on the first queries.
Define Ez to be the event that z is queried within the first q0 = α/(10ε) queries by the tester. As before, we can
order the points z by the probabilities of Ez and define a set D′ ⊆ D consisting of the ℓ points with minimal
probabilities. The event that any of these point was queried within the first q0 queries is denoted by ED′ and
satisfies

Pr [ED′ ] ≤ ε · q0
α

<
1

10
.

As before, fix the random coins of a tester, and consider one execution on G and another on GD′ . Only now,
while the tester executes, an online adversary manipulates the inputs. The adversary will simply manipulate
the points in D′, of which there are exactly ℓ. Indeed, by the time q0 queries has been made, the adversary can
manipulate all entries in D′ since

q0t =
α

10ε
· 10ε

2qn

α
= εqn = ℓ.

For both executions on G and on GD′ , the adversary acts the same. An erasing adversary will erase all entries in
D′, whereas a manipulation adversary will fix their values to those of G.

All in all, for any value of the random points, the tester can only see a difference between an execution on G
and one on GD′ if the event ED′ occurred. Over all random choices, we have Pr [ED′ ] ≤ 1/(10), and since the tester
must accept G with probability at least 2/3 it also falsely accepts GD′ with probability at least 2/3− 1/(10) > 1/3.
In contradictions.

To summarize, the task of (U,D, ℓ)-testing is impossible against t-manipulation adversary for infinitely many
values of n, and so is the task of ε-testing the property P.

To prove Theorem 1.2, we simply apply the theorem with q = 2 and α = 1/2, as for any n ≥ 1, the affine
non-linear function 1 + x1 has distance 1/2 from linearity.
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3 Optimal Linearity Tester over the Reals

In this section, we show an optimal distribution-free additivity tester over the reals. The same tester works for
testing linearity if the input function is guaranteed to be continuous.

Algorithm 4: Distribution-free Additivity Tester

Input :Query access to f : Rn → R, sampling access to an unknown distribution D, proximity parameter
ε > 0;

1 Reject if TestAdditivity(f) returns Reject;
2 for N4 ← O(1/ε) times do
3 Sample p ∼ D and x ∼ N (0, I);
4 Reject if f(p) ̸= gx(p) ▷ Where gx(p) = κp (f(p/κp − x) + f(x)). as in (1.2)

5 Accept.

Algorithm 5: Additivity Subroutine

1 Procedure TestAdditivity(f)
Input :Query access to f : Rn → R;

2 for N5 ← O(1) times do
3 Sample x,y, z ∼ N (0, I);
4 Reject if f(−x) ̸= −f(x);
5 Reject if f(x− y) ̸= f(x)− f(y);

6 Reject if f
(

x−y√
2

)
̸= f

(
x−z√

2

)
+ f

(
z−y√

2

)
;

7 Accept.

[FY20, Theorem 1] showed that O
(
1
ε log(

1
ε )
)
queries suffice for testing if f : Rn → R is linear. We simplify

their algorithm, slightly modify the analysis accordingly, and show that O(1/ε) queries suffice instead. Our
simplified tester is given in Algorithm 4. First it runs Algorithm 5 (TestAddativity), which is exactly the same
subroutine from [FY20], and then it proceeds similarly to their algorithm except:

• when we want to evaluate the self-corrected function g(p) (as defined in (1.1)), we now use only one random
direction (x ∈ Rn) and in only two queries to f we output gx(p).

• Our approach differs from [FY20]’s at this juncture, as [FY20] designed a separate procedure, Query-g,
wherein they evaluate {gxi(p),xi ∼ N (0, I)} in O(log(1/ε)) random directions (xi’s), do a consistency check,
i.e., ensure gxi

(p)’s are all the same, and then output gx1
(p). Their idea was to get an accurate evaluation

of (the majority definition of) g at all points.

We observe that the approach of [HK04] can be applied to this case as well, i.e., it is enough to correctly evaluate
g with high (constant) probability at each point. Intuitively, one only needs to have a correct evaluation of g(p)
on one point p for which f(p) ̸= g(p). We begin by noting down the relevant useful result from [FY20]:

Lemma 3.1. ( [FY20, Lemma 8]) If Algorithm 5 accepts with probability at least 1/10, then g is a well-defined,
additive function on Rn, and furthermore, for every p ∈ Rn,

Pr
x∼N (0,I)

[g(p) ̸= gx(p)] < 1/2.

We now prove Theorem 1.3.

Proof. The proof of the YES case remains the same as in [FY20]: if f is linear, Algorithm 5 always accepts, and
moreover g ≡ f , ensuring Algorithm 4 also accepts f .
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No case: f is ε-far from all additive functions. If Algorithm 5 rejects f w.p. > 2/3, we are done. Otherwise by
Lemma 3.1, we have: g is a well defined, additive function on Rn, so δD(f, g) ≥ ε. And again by Lemma 3.1, for
every p ∈ Rn we have

Pr
x∼N (0,I)

[g(p) = gx(p)|f(p) ̸= g(p)] = Pr
x∼N (0,I)

[g(p) = gx(p)] ≥ 1/2. (3.6)

=⇒ Pr
p∼D

x∼N (0,I)

[f(p) ̸= gx(p)] ≥ Pr
p∼D

x∼N (0,I)

[f(p) ̸= g(p) ∧ g(p) = gx(p)]

= Pr
p∼D

[f(p) ̸= g(p)]︸ ︷︷ ︸
=δD(f,g)≥ε

· Pr
p∼D,x∼N (0,I)

[g(p) = gx(p)|f(p) ̸= g(p)]

≥ ε

∫
p∈supp(D)⊆Rn

Pr
X∼D

[X = p] Pr
x∼N (0,I)

[g(p) = gx(p)]︸ ︷︷ ︸
≥1/2,∀p∈Rn, by (3.6)

dµD

≥ ε

2

∫
p∈supp(D)⊆Rn

Pr
X∼D

[X = p]dµD︸ ︷︷ ︸
=1

= ε/2.

=⇒ Pr p∼D
x∼N (0,I)

[f(p) = gx(p)] ≤ 1− ε/2, which when applied over all N4 iterations of Algorithm 4 gives us

A ≜ Pr[Algorithm 4 doesn’t reject f | Algorithm 5 doesn’t reject f ]

= Pr[line 4 doesn’t reject f, ∀N4 iterations | Algorithm 5 doesn’t reject f ]

≤ (1− ε/2)N4 ≤ (1− ε/2)O(1/ε) ≤ 1/3.

Therefore, we get Pr[Algorithm 4 rejects f ] ≥ min{Pr[Algorithm 5 rejects f ], 1−A} ≥ 2/3.
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[FGL+96] Uriel Feige, Shafi Goldwasser, László Lovász, Shmuel Safra, and Mario Szegedy. Interactive proofs and the
hardness of approximating cliques. Journal of the ACM, 43(2):268–292, 1996. 2

[Fis24] Eldar Fischer. A basic lower bound for property testing. arXiv preprint arXiv:2403.04999, 2024. 1, 8
[FY20] Noah Fleming and Yuichi Yoshida. Distribution-Free Testing of Linear Functions on Rn. In Thomas Vidick, editor,

11th Innovations in Theoretical Computer Science Conference, ITCS 2020, January 12-14, 2020, Seattle, Washington,
USA, volume 151 of LIPIcs, pages 22:1–22:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. 1, 3, 10

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited75

D
ow

nl
oa

de
d 

08
/2

7/
25

 to
 1

28
.3

0.
48

.1
47

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



[GGR98] Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its connection to learning and
approximation. Journal of the ACM, 45(4):653–750, 1998. 1, 2

[GR16] Oded Goldreich and Dana Ron. On sample-based testers. ACM Transactions on Computation Theory (TOCT),
8(2):1–54, 2016. 2, 7

[Ham05] Georg Hamel. Eine basis aller zahlen und die unstetigen lösungen der funktionalgleichung: f(x+ y) = f(x) + f(y).
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