
Provable Multi-Task Representation Learning by Two-Layer ReLU
Neural Networks

Liam Collins∗, Hamed Hassani†, Mahdi Soltanolkotabi‡,
Aryan Mokhtari∗, Sanjay Shakkottai∗

Abstract

An increasingly popular machine learning paradigm is to pretrain a neural network (NN)
on many tasks offline, then adapt it to downstream tasks, often by re-training only the last
linear layer of the network. This approach yields strong downstream performance in a variety of
contexts, demonstrating that multitask pretraining leads to effective feature learning. Although
several recent theoretical studies have shown that shallow NNs learn meaningful features when
either (i) they are trained on a single task or (ii) they are linear, very little is known about
the closer-to-practice case of nonlinear NNs trained on multiple tasks. In this work, we present
the first results proving that feature learning occurs during training with a nonlinear model on
multiple tasks. Our key insight is that multi-task pretraining induces a pseudo-contrastive loss
that favors representations that align points that typically have the same label across tasks. Using
this observation, we show that when the tasks are binary classification tasks with labels depending
on the projection of the data onto an r-dimensional subspace within the d ≫ r-dimensional
input space, a simple gradient-based multitask learning algorithm on a two-layer ReLU NN
recovers this projection, allowing for generalization to downstream tasks with sample and neuron
complexity independent of d. In contrast, we show that with high probability over the draw of a
single task, training on this single task cannot guarantee to learn all r ground-truth features.

∗Chandra Family Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin,
TX, USA. {liamc@utexas.edu, mokhtari@austin.utexas.edu, sanjay.shakkottai@utexas.edu}.

†Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA.
{hassani@seas.upenn.edu}

‡Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles,
CA, USA. {soltanol@usc.edu}

1

ar
X

iv
:2

30
7.

06
88

7v
5

 [c
s.L

G
]

7
Ju

n
20

24

1 Introduction

Recent empirical results have demonstrated huge successes in pretraining large neural networks
(NNs) on many tasks with gradient-based algorithms [22, 67, 63]. These works suggest that the
quality of the pretrained representation improves with the number of pretraining tasks, yet this
phenomenon remains not well understood from a theoretical standpoint. Specifically, the natural
questions of why nonlinear NNs learn effective feature representations when pretrained on multiple
tasks with gradient-based methods and how the number of pretraining tasks affect the downstream
performance of these representations remain largely unanswered.

Significant progress has been made in theoretically understanding the dynamics of NNs trained
with gradient-based methods in recent years, especially in regards to proving that shallow NNs can
learn meaningful features when trained with gradient descent and its variants [23, 54, 1, 2, 5, 11, 41,
26, 12, 57, 4, 68]. However, these results are limited to single-task settings, so they cannot explain
the improvements in model performance seen by pretraining on many tasks. While a few studies
show the representation learning benefits of multi-task pretraining with gradient-based algorithms
[7, 58, 21, 20, 51, 56, 18, 13, 15], these analyses study only linear models; it is not clear whether
they can generalize to even simple non-linear NNs.

In this work, we aim to bridge this gap by analyzing the training dynamics of a two-layer ReLU
network pretrained with a generic gradient-based multi-task learning algorithm on many binary
classification tasks. Following the aforementioned line of work, we suppose the existence of a
ground-truth low-dimensional subspace that for all tasks preserves all information in the input data
relevant to its label. We ask whether a variant of gradient descent applied to this multi-task setting
can learn a representation that projects the input data onto the ground-truth subspace. Learning
such a representation entails successful pretraining, since it reduces the complexity of solving a
downstream task to that of solving a classification problem in the low-dimensional space, rather
than the potentially very high-dimensional input data space.

Figure 1 shows that gradient-based multi-task learning with a two-layer ReLU NN with first-layer
parameters (the representation) shared among all tasks and last-layer weights (the head) learned
uniquely for each task indeed recovers the ground-truth subspace with error diminishing with the
number of tasks. We theoretically justify this observation, providing the first known proofs of multi-
task feature learning with a nonlinear model along with a new explanation for why multi-tasking
aids feature learning. Our theoretical contributions are summarized below, and verified numerically
in Appendix F.

• Proof of multi-task representation learning with two-layer ReLU network. We consider
binary classification tasks whose labels depend on only r features of the input, where r is much
smaller than the ambient dimension d, and a large class of task distributions that includes, e.g.,
a uniform distribution over sparse parity tasks. We prove that multi-task pretraining with a
gradient-based learning algorithm on T tasks drawn from such a distribution leads the first-layer
ReLU weights to approximately project onto the ground-truth r-dimensional feature space, with
error diminishing with T and the number of samples per task n as roughly 2r

√
d√
T
(1 +

√
d√
n
) (see

Proposition 3.1 and Theorem 3.2). The key to this result is showing that updating task-specific
heads prior to the representation induces a pseudo-contrastive loss function of the representation,
which encourages learning the ground-truth features to align points likely to share a label on a

2

0 200 400 600 800 1000 1200 1400 1600
Number of Iterations

10 1

100

101

102

Re
pr

es
en

ta
tio

n
Le

ar
ni

ng
 E

rro
r

Representation Learning Error vs # Tasks
T = 1
T = 4
T = 16
T = 64

Figure 1: Representation learning error vs training iterations with varying numbers of
tasks T . Here we sample tasks from the uniform distribution over sparse parity tasks on r binary
coordinates determined by sign(Mx) for some row-orthogonal matrix M and d-dimensional input x.
Here d = 32, r = 3, and the learning model is a two-layer, m-neuron ReLU network with first-layer
weights W∈Rm×d (the representation). All cases use the same total number of training samples, i.e.
the number of samples/task is inversely proportional to the number of training tasks T , meaning all
cases use the same total number of samples across tasks. Still, as T increases, the row space of W
approaches that of M (smaller representation learning error). Please see Appendix F for details.

randomly drawn task (see Section 4).

• Generalization guarantees. We show that we can add a random ReLU layer on top of the
pretrained representation, then train a linear layer on top of this random layer with finite samples,
to solve any downstream task with binary labels that are a function of the r important features.
Crucially, we prove that the sample and neuron complexity of solving the downstream task are
independent of the ambient dimension d (see Theorem 3.3).

• Negative results. We confirm the necessity of multi-task pretraining by proving that using a
random features model (no pretraining) or pretraining on only a single, randomly-selected task
with high probability require neuron or sample complexity scaling polynomially in d for solving a
downstream task (see Theorems 3.6 and 3.7).

Notations. We uppercase boldface to denote matrices, lowercase boldface to denote vectors, and
standard typeface to denote scalars. We employ Unif(S) to denote the uniform distribution over
the set S. We denote the zero vector in Rd as 0d, the identity matrix in Rd×d as Id, the standard
multivariate normal distribution over Rd as N (0d, Id), and the Rademacher hypercube in Rd as
Hd := {−1, 1}d. We denote the space of r × d matrices with orthonormal rows as Or×d, and use
χ{A} as the indicator function for the event A. We denote the set {1, . . . , r} as [r]. We use Ω(·),Θ(·)
and O(·) in the standard fashion, and Ω̃(·), Θ̃(·) and Õ(·) to denote scalings up to logarithmic factors.

3

1.1 Related Work

Single-task learning with neural networks. A plethora of works have studied the behavior of
gradient-based algorithms for optimizing NNs on single tasks in recent years. Many of these studies
consider the neural tangent kernel (NTK) regime [33, 8, 28, 6, 49, 34, 40, 29, 69, 39, 17], in which a
large initialization and small step size mean that early layer model weights barely change during
training, so the algorithm dynamics reduce to those of linear regression on fixed features. We are
interested in the feature learning regime of training neural networks, wherein the representation
weights change significantly and the dynamics are nonlinear.

Numerous works have studied feature learning in NNs, but the vast majority consider optimizing only
a single task from a particular class of functions [5, 11, 41, 26, 12, 57, 4, 68, 2, 9, 46, 54, 23, 24, 62, 3, 25].
Among studies most similar to ours, Abbe et al. [2, 3], Wang et al. [62], Dandi et al. [25] showed
that gradient-based algorithms can learn hierarchical features when training on single polynomial
tasks. Damian et al. [23] proved that a gradient-based method on a single r-index polynomial
regression task with two-layer ReLU network can learn all r relevant indices as long as this single
task satisfies a Hessian lower bound assumption, and Nichani et al. [48] extended this line of work to
three-layer networks. Shi et al. [54] showed that two-layer ReLU networks with activation noise can
learn functions of the sum of r inputs. Additional works consider single-task feature learning in the
mean-field regime with infinitely-wide networks [16, 45, 55, 47].

Multitask feature learning. Several works have studied whether multitask learning algorithms
recover expressive low-dimensional data representations shared across tasks, but only consider linear
models [7, 58, 21, 19, 20, 51, 56, 18, 13, 15, 66]. Kao et al. [37] noticed a similar phenomenon
as this work in that adapting task-specific heads induces a contrastive loss, but in the context of
a particular meta-learning algorithm, and they did not provide feature learning results. Further
studies including [44, 60, 29, 59, 64] have provided statistical bounds on the downstream task loss for
multitask-pretrained representations. However, these representations are learned by exactly solving
an empirical risk minimization problem on the pretraining tasks, not by executing a gradient-based
algorithm.

2 Formulation

In this section, we formally define the multi-task learning problem and the algorithms analyzed in
Section 3. Our motivation is drawn from classification problems where the input data for all tasks
share a common representation, i.e. a small set of features that determine their labels. However,
the mapping from these features to labels varies across tasks. Ultimately, the goal of the multi-task
learner is to leverage the large set of pretraining tasks to learn a representation that captures the
small set of label-relevant features, thereby enabling strong performance on downstream tasks.

2.1 Pretraining tasks and data generating model

We consider pretraining on a set of T binary classification tasks, each drawn independently from a
distribution T over tasks. All these tasks share a common characteristic: their labeling function
depends solely on a projection of the input features onto a low-dimensional subspace. Specifically,

4

each task i consists of a distribution Di on X × Y , where the input space is X = Rd and the label
space is Y = {−1, 1}. Samples are drawn from Di by first selecting a Gaussian feature vector x ∈ X ,
then computing its label fi(x) ∈ Y as follows:

x ∼ N (0d, Id); fi(x) = gi(sign(Mx)) ∈ {−1, 1}. (1)

Here, M := [m1, . . . ,mr]
⊤ ∈ Rr×d is a matrix with orthonormal rows that captures the r label-

relevant features (sign(m⊤
1 x), . . . , sign(m

⊤
r x)) in x, and gi : Hr → {−1, 1} is the ground-truth link

function for task i that maps vertices on the r-dimensional Rademacher hypercube to binary labels.
To model shared information across the tasks, we assume that r ≪ d. Thus, the complexity of
solving a new task can be drastically reduced by learning an appropriate low-dimensional projection
onto the row space of M. The question we ask here is whether gradient-based multi-task pretraining
can efficiently recover the r label-relevant features expressed by M.

This setting is similar to the sparse coding model studied by Shi et al. [54], except we assume the
input data is continuous in Rd, while Shi et al. [54] assume the input data is on the hypercube Hd.
By assuming that the labelling function is a function of “sign” of the r ground-truth features, we
make our model more similar to the one in [54], as they assume the label for each task is a function
of the first r coordinates of the integer input data.

Critically, the set of label-relevant coordinates of the input data are shared among all tasks, while
the link functions gi mapping from these coordinates to labels are specific to each task. Thus,
the goal of the multi-task learner is to recover the shared label-relevant features, so that it may
solve a downstream task with complexity scaling only with the number r of label-relevant features,
rather than the much larger ambient dimension of the data d. This model draws inspiration from
classification tasks in which labels are functions of the presence (or lack thereof) of a small number
of features in the data. For example, whether or not a brain MRI reveals cancerous tissue depends
on the presence of tumor-shaped structures in the image, indicated by a small number of features
relative to the MRI dimension.

More formally, the generative model in (1) implies that, for any task, the sample labels are a
function of the projection of the data onto the r ground-truth features in M. We use T to denote
the distribution over link functions gi : Hr → {−1, 1}, and T (M) to denote the distribution over
functions mapping from Rd → {−1, 1}, i.e. the distribution over fi, where fi(x) = gi(sign(Mx))
and gi ∼ T .

However, in order to recover all the r ground-truth features, it is not sufficient that the labels simply
depend on the r ground-truth features – they must depend on all of them in aggregate across tasks.
For example, if the labels for all tasks can be written as functions of only the projection of the inputs
onto the first r − 1 rows of M, there is no hope to recover the r-th row of M. Thus, the tasks must
be “diverse” in the sense that in aggregate they depend on all ground-truth features.

To formalize this idea, we make the following assumption on the distribution of task link functions T .
Our condition entails that for any pair of points with different sign patterns on their r label-relevant
features, it is equally likely for them to have the same label as it is for them to have different labels
on a task link function drawn from T .

Assumption 2.1. For any two points z, z′ ∈ Hr such that z ̸= z′, the probability that the labels of z
and z′ are the same for a task link function drawn from T satisfies:

Pi∼T
[
gi(z) = gi(z

′)
]
= 1

2 . (2)

5

Assumption 2.1 is necessary to ensure the task link functions depend equally on all inputs. To see
this, suppose that all pairs of inputs z, z′ with identical first r − 1 coordinates but differing r-th
coordinates had the same labels, i.e. Pi∼T [gi(z) = gi(z

′)] = 1. Then, all link functions in the support
of T would in fact only depend on the first r − 1 input coordinates, rather than all r inputs. So, we
need Pi [gi(z) = gi(z

′)] < 1 for some dependence on all inputs. We make a stronger assumption of 1
2

in the RHS of (2) that ensures perfectly balanced dependence across all inputs. We note that our
results do not strictly require perfect balance, rather it is useful for ease of exposition1.

Another interpretation of Assumption 2.1 is that it enforces that the correlation of the labels of z
and z′ across tasks, i.e. Ei∼T [gi(z)gi(z

′)], is 1 if z = z′, and 0 otherwise. In other words, the label
correlation of x and x′ across tasks is 1 if the ground-truth features of x and x′ are the same, and 0
otherwise. We will show in Section 4 intuitively why the correlation of the labels of x and x′ need
only be “roughly” increasing with the similarity of the ground-truth features in x and x′, a very
natural condition, for gradient-based multi-task training to recover row(M). For now, we describe
two examples of task distributions that satisfy Assumption 2.1.

Example 1: Uniform distribution over all tasks. Here we have T = Tall, where

Tall := Unif({gi : Hr → {−1, 1}}), (3)

i.e. Tall is the uniform distribution over all possible mappings from the r-dimensional ±1 hypercube
to {−1, 1}.

Example 2: Uniform distribution over all sparse parity tasks. Sparse parity tasks are a
well-studied class of tasks in which the label is the parity of a subset of the number of −1’s among
a particular subset of input bits [38]. In this case we have T = Ts.p., where Ts.p. is the uniform
distribution over parity functions on r input bits, formally defined as follows:

Ts.p. := Unif({gi : gi(z) = (−1)
∑

j∈Si
χ{zj=−1}

, Si ⊆ [r], ∀ z ∈ Hr}). (4)

Both Tall and Ts.p. effectively assign equal importance to all r inputs, so they naturally satisfy
Assumption 2.1 (please see Appendix D for proofs).

2.2 Learning model and loss

We consider multi-task pretraining of a two-layer neural network ŷ(·) = ŷ(·;W,b, a) : Rd → R with
m ReLU neurons in the hidden layer, namely

ŷ(x) = ŷ(x;W,b, a) :=

m∑
j=1

ajσ(w
⊤
j x+ bj) (5)

where σ(x) = max(x,0) element-wise, wj ∈ Rd and bj ∈ R are the weight vector and bias for
the j-th neuron, respectively, and aj ∈ R is the last-layer weight for the j-th neuron. We let

1Our results hold for finitely-many tasks drawn for training, so the empirical distribution of tasks does not assign
equal importance to each of the r input features, in the sense that Assumption 2.1 does not hold exactly on the
empirical task distribution. This implies that our results can extend to cases in which the population distribution of
tasks T does not satisfy Assumption 2.1 exactly, i.e. we can tolerate Pi∼T [gi(sign(Mx)) = gi(sign(Mx′))] ≤ 1

2
+ ϵ for

some small ϵ > 0.

6

W = [w1, . . . ,wm] ∈ Rd×m denote the matrix of concatenated weight vectors, b = [b1, . . . , bm] ∈ Rm

denote the vector of biases, and a = [a1, . . . , am] ∈ Rm denote the vector of last-layer weights, which
we call the head. We use the hinge loss to measure the accuracy of the predictions of this model:

ℓ(ŷ(x), fi(x)) := max
(
1− fi(x)ŷ(x), 0

)
,

and for each task i, we define

Li(W,b, a) := E(x,fi(x))∼Di
[ℓ(ŷ(x), fi(x))]

L̂i(W,b, a; D̂i) :=
1

|D̂i|

∑
(x,fi(x))∈D̂i

ℓ(ŷ(x), fi(x))

as the population loss on Di and empirical loss on a finite dataset D̂i drawn from Di, respectively.
Ultimately, the goal of multi-task pretraining is to learn a first-layer representation that generalizes
to downstream tasks, in the sense that we can easily train a new classifier on top of the first layer in
order to achieve small task-specific loss. To this end, we consider optimizing the following multi-task
objective:

min
W,b,{a1,...,aT }

L(W,b, {ai}Ti=1) :=
1

T

T∑
i=1

Li(W,b, ai) +
λa
2
∥ai∥22 +

λw
2

∥W∥2F , (6)

where λa and λw are regularization parameters. Optimizing L entails learning task-specific heads
on top of a shared representation, a widely used and empirically successful approach to multi-task
learning [67, 22, 50]. By optimizing the above problem, we hope to find a W that projects input
data onto the row space of M and thus captures all r label-relevant features, while disregarding all
other spurious features. However, we cannot access L directly, and instead must approximate it via
stochastic queries of finite samples from each Di. So, we will use the gradient of L̂i instead of L to
update the variables, as we discuss next.

2.3 Algorithm

We consider a two-stage learning process: (1) Representation learning, in which we aim to learn
effective features using T available tasks, and (2) Downstream evaluation, in which we encounter a
new task and aim to efficiently learn an accurate classifier on the pre-trained features.

Representation learning phase. The multi-task learning algorithm we consider aims to solve the
global objective (6) with task-specific heads. We denote the j-th neuron weights at initialization as
w0

j ∈ Rd, and the global bias and head corresponding to task i at time 0 as b0 ∈ Rm and a0i ∈ Rm,
respectively. We initialize these parameters as:

w0
j ∼ N (0d, ν

2
wId), a0i = 0m, b0 = 0m (7)

where νw ∈ R≥0. After initialization, we execute an alternating gradient descent-based algorithm.
We first optimize the heads, i.e., a1, . . . , aT , with one step of stochastic gradient descent (SGD) on
the corresponding task-specific empirical loss on a batch of samples D̂i,a for each task i:

a1i = (1− ηλa)a
0
i − η∇aL̂i(W

0,b0,a0i ; D̂i,a) ∀ i ∈ [T].

7

The same number of samples is used for each task, denoted by n1 := |D̂i,a|. Next, we update the
model weights W with one step of SGD on the global empirical loss induced by the updated heads,
with a fresh batch of samples D̂i,W for each task i:

W1 = W0 − η

T

T∑
i=1

∇WL̂i(W
0,b0,a1i ; D̂i,W)

Again all tasks use the same number of samples, denoted by n2 := |D̂i,W|. In Theorem 3.2, we show
that this single iteration of alternating stochastic gradient descent with respect to {a1, . . . , aT } and
W is sufficient to learn meaningful features. Notably, it is standard practice in the feature learning
theory literature to consider only one gradient descent step for the first layer weights [26, 2, 12, 23, 9].
We later show empirically that in our multi-task setting, it is necessary to first optimize the heads
before updating the first-layer weights in order to recover the ground-truth features. In any case,
following Damian et al. [23], we do not update the biases during pretraining. Next we describe how
we leverage the pre-trained weights W1 for learning a downstream task.

Downstream evaluation phase. After the representation learning phase, we consider learning a
prediction function to fit a downstream task that may have any link function on the r ground-truth
features, i.e. any function in the support of Tall. Since we consider such a wide range of possible
downstream tasks, we need to increase the model complexity to allow for solving such tasks. Thus,
we use prediction functions with two hidden layers with first layer weights determined by the output
of the representation learning phase, and second hidden layer parameters set randomly. This random
second layer is necessary to linearly separate the classes induced by any binary function on the r
coordinates with high probability, without having to use a very wide first layer; please see Remark
3.4 for more details.

In other words, the first hidden layer has m neurons and the weights are a scaled version of W1

denoted by αW1, and the bias term is b. Note that here α > 0 is a re-scaling factor (see Appendix
B for more details). The second hidden layer of the classifier has m̂ neurons with weights denoted
by Ŵ := [ŵ1, . . . , ŵm̂]⊤ ∈ Rm̂×m and bias by b̂ ∈ Rm̂. Hence, the embedding of these two layers for
input x, which we denote by ϕ(x) ∈ Rm̂, is given by

ϕ(x) = σ
(
Ŵ σ

(
αW1x+ b

)
+ b̂

)
(8)

Again note that W1 is fixed from the previous phase; it remains to set b, Ŵ, and b̂ to create
an effective embedding for the downstream task. We do this by sampling Ŵ and (b, b̂) from
mean-zero Gaussian and uniform distributions, respectively, with variances that depend only on m;
see Appendix B for more details.

Next, given a dataset D̂T+1 := {(xl, fT+1(xl))}Nℓ=1 of N i.i.d. samples from a distribution DT+1

corresponding to a downstream task, we learn a task-specific head a and a bias term τ by solving
the following problem:

min
a∈Rm̂,τ∈R

1

N

N∑
l=1

ℓ(a⊤ϕ(xl)+τ, fT+1(xl)) +
λ̂a
2
∥a∥22.

We use the resulting head, i.e., aT+1, and bias term, i.e. τT+1, to define the prediction function for
task T + 1 as

F (x; aT+1, τT+1,W
1,b,Ŵ, b̂) := a⊤T+1σ

(
Ŵ σ

(
αW1x+ b

)
+ b̂

)
+ τT+1.

8

For ease of notation, we denote the above function by F (x). We evaluate the performance of the
prediction function on the task population loss:

Leval
T+1(F) := E(x,fT+1(x))∼DT+1

[ℓ(F (x), fT+1(x))].

Note that Leval
T+1 is a random function of b,Ŵ, b̂, and D̂T+1 in addition to the randomness from

pretraining. We upper bound Leval
T+1 with high probability in Theorem 3.3.

3 Theoretical Results

Feature learning guarantees. We start by showing that the gradient-based multi-task learning
algorithm described in the previous section recovers the ground-truth features. To do this, we first
need the following proposition, which shows that the projection of the initial features W0 onto the
subspace spanned by the label-relevant, or ground-truth, features stays roughly the same after one
step, while their projection onto the subspace spanned by the spurious features becomes very small.

Here, we let Π∥(W) := WM⊤M denote the projection of the rows of the matrix W onto the
ground-truth subspace, and Π⊥(W) := WM⊤

⊥M⊥ denote the projection onto the spurious subspace.
For brevity, we abbreviate the statements of the theoretical results in this section and defer the full
versions, along with their proofs, to the Appendix.

Proposition 3.1. Consider the gradient-based multi-task algorithm described in Section 2.3 that
uses T tasks and (n1, n2) samples per task to update the (head, representation), respectively, and
suppose Assumption 2.1 holds. Further assume2 m = O(d) and define

ϵ := O

(
d log(dTn2/δ)√

Tn2

(
1 +

√
log(T/δ)√

n1

)
+

√
dr log(dm/δ)√

T

)
for δ < 1 and δ = Ω(e−d). Then there is a

setting of the parameters η, λw and νw such that with probability at least 1− δ,

1. 1
νw

√
m
∥Π∥(W

1)− 1
2r+1π

Π∥(W
0)∥2 = O

(
ϵ+ r4+log4(m/δ)

2rd

)
,

2. 1
νw

√
m
∥Π⊥(W

1)∥2 = O
(
ϵ+ r3.5+log3.5(m/δ)

2rd1.5

)
.

Proposition 3.1 shows that with high probability (w.h.p.) over the random initialization, the weights
learned by the gradient-based multi-task learning algorithm satisfy two properties, for sufficiently
large T, n1, and n2: (1) the projection of these weights onto the ground-truth subspace is close to a
slightly scaled down (by a factor of 2−r) version of their projection at initialization, and (2) their
projection onto the spurious subspace is negligible. These two observations, combined with the
fact that the neuron weights have independent standard Gaussian initializations, imply that the
projection of the neuron weights onto the ground-truth subspace dominates their projection onto
the spurious subspace. We formalize this observation below.

Theorem 3.2 (Representation Learning). Consider the setting in Proposition 3.1 with d = Ω̃(r4),
m = O(d), and ϵ defined the same way. Further suppose m = Ω̃(r), T = Ω̃(22rdr) and Tn2 =

2The m = O(d) condition in Proposition 3.1 and Theorem 3.2 is purely for ease of presentation; please see Lemma
A.17 for a complete statement of the errors for arbitrary m.

9

Ω̃(22rd2). Let σr(B) denote the r-th singular value of the matrix B. Then with probability at least
1− δ,

σ1(Π⊥(W
1))

σr(Π∥(W1))
= O

(
r3.5+log3.5(m/δ)

d1.5
+ 2rϵ

)
.

Theorem 3.2 characterizes the representation learned by multi-task pretraining in an intuitive manner.
For d≫ r4, T ≫ 22rd and Tn2 ≫ 22rd2, we have σr(Π∥(W

1)) ≫ σ1(Π⊥(W
1)), meaning that most

of the energy in each neuron weight is in the column space of the ground-truth subspace. This is
equivalent to saying that applying W1 to an input x essentially projects it onto the ground-truth
subspace spanned by the row space of M, as desired.

Downstream performance. Now that we have shown that the learned representation recovers the
ground-truth subspace, we use this result to show that the representation generalizes to downstream
tasks. We consider tasks with input data sharing the same label-relevant r features as the pretraining
tasks, but here the input data is discrete. In particular, each v ∈ Rd is generated as:

v = M⊤z+M⊤
⊥ξ, z ∼ Unif(Hr), ξ ∼ Unif(Hd−r)

where z is a latent vector whose coordinates indicate the activations of the ground-truth features in
the input x and ξ is a noise vector whose coordinates indicate the activation of the spurious features
in the input. Again, labels for the downstream task T + 1 are generated by projecting the input
onto the row space of M as follows:

fT+1(x) = gT+1(sign(Mv)) = gT+1(z) ∈ {−1, 1}

We formally show below that the features learned during pretraining generalize to any such link
function gT+1.

Theorem 3.3 (End-to-End Guarantee). Let W1 be the outcome of the multi-task representation
learning algorithm described in Section 2.3 on the task distribution T (M), where T satisfies Assump-
tion 2.1. Consider a downstream task in the support of T (M) with link function gT+1. Construct
the two-layer ReLU embedding ϕ using the rescaled W1 for first layer weights as in (8), and train
the task-adapted head (aT+1, τT+1) using N i.i.d. samples from the downstream task. Further,
suppose d = exp(Ω̃(r5)), T = d2r exp(Ω̃(r5)), Tn2 = d3 exp(Ω̃(r5)), n1 = Ω(log(T)) m = Θ̃(r5),
and m̂ = exp

(
Ω̃(r5)

)
. Then there is a setting of the parameters η, λw and νw such that for any

δ ∈ (e−d, 0.05], with probability at least 1− δ,

Leval
T+1 =

exp(Õ(r5))√
N

. (9)

Theorem 3.3 shows that the features learned by multi-task pretraining generalize to any downstream
task that has the same representation as the pretraining tasks, i.e., its labels are a function of the
input’s projection onto the row space of M. Specifically, if we compose the learned representation
with a random ReLU layer, then learn a linear head using exp(Õ(r5)) samples from the task, we
solve the task w.h.p. Crucially, the number of samples and neurons needed to solve the downstream
task do not depend on the ambient dimension d.

The proof of Theorem 3.3 leverages Proposition 3.1 to show that the embedding generated by
multi-task learning is close to the embedding of a coupled, “purified” two-hidden layer random ReLU

10

network whose first layer weights project the input exactly onto the row space of M. Then, the proof
applies Theorem 2 from Dirksen et al. [27] which implies that w.h.p. the purified network linearly
separates two classes of points on Hr with margin and neuron complexity scaling as functions of the
input dimension r. The representation learning error from Proposition 3.1 is smaller than this margin
due to the lower bounds on T , n1, n2, and d in Theorem 3.3, so the learned network also linearly
separates the two classes w.h.p. Then, the proof invokes a standard linear classification generalization
bound to control the final error in learning the head [42]. Note that Theorem 3.3 requires d3 training
sample complexity rather than the d2 complexity of Theorem 3.2 because Theorem 3.2 concerns the
spectral norm of the representation learning error, whereas for the generalization result, we require
a Frobenius norm bound, which induces an extra d factor. Please see the proof of Lemma C.3 for
details.

Remark 3.4 (Necessity of second layer). In the ideal representation learning scenario, the first-layer
weights are i.i.d. isotropic Gaussians in the ground-truth subspace row(M). In this scenario we can
think of the network as taking an r-dimensional input (corresponding to the r ground-truth features
of the input) and having first-layer weights that are i.i.d.isotropic Gaussians in Rr. Even in this
ideal scenario, existing results have not shown whether such a representation is sufficiently expressive
or generalization to all downstream tasks w.h.p. There are several positive results for the expressivity
of a random, finite-width ReLU layer, but these concern approximating low-degree polynomials under
the squared loss [32, 35, 65, 10]. However, to our knowledge, there are no analogous positive results
showing that one layer of random ReLU neurons can linearly separate two arbitrary classes of
points on the Boolean hypercube w.h.p., even with exponentially-many neurons or exponentially-small
margin.

Remark 3.5 (Tightness of exponential complexity in r in positive results). Replacing d with r,
Theorem 3.6 implies that at least rΩ(k) samples or width is necessary to express all k-sparse parity tasks
on r inputs. So, even if we learn exactly the correct representation, we require rΩ(r) samples or width
to solve all r

2 -sparse parity tasks on the r ground-truth features. Please see [43, 1, 2, 3, 52, 32, 36, 30]
for similar lower bounds. Nevertheless, our complexity of exp(poly(r)) is larger than such lower
bounds. We leave to future work to investigate whether the poly(r) complexity in the exponent can be
reduced.

3.1 Negative Results

Next, we present two negative results that underscore the tightness of our findings in the previous
section. The first result emphasizes the significance of representation learning in achieving strong
generalization guarantees. The second result highlights the importance of multi-task learning by
demonstrating that single-task learning may fail to capture all critical features.

Random features do not generalize. A consequence of Theorem 3.3 is that multi-task pretraining
improves the sample and neuron complexity of solving downstream tasks by an exponential factor in
d. To show this, we consider sparse parity tasks, and show that learning a linear classifier on top
of random features entails exponential complexity in d to solve the task. Now, there is no feature
learning, so the learner has no knowledge of which few features are relevant and needs to consider
tasks on all d inputs. We model this by considering a set of tasks sharing a single link function but
having many distinct representations. We consider a smaller class of representations than in our
positive results: here M belongs to Or×d

{0,1} := {M : M ∈ Or×d,M ∈ {0, 1}r×d}, that is, the rows of

11

M are standard basis elements. The single link function we consider is the parity function on r
inputs, namely g(r)(v) := (−1)

∑r
j=1 χ{vj=−1}.

While there is a large literature demonstrating the hardness of learning sparse parities in various
settings [38, 1, 57, 12, 43, 36, 31], the most relevant results to our setting show that any data-
independent, m̂-dimensional embedding of d inputs can admit linear classifiers that solve all sparse
parity tasks on subset only if the dimension m̂ and/or the classification margin is exponentially large
(small, respectively) in d. In particular, the following result adapts Theorem 5 in [12], which in turn
draws on the works of Kamath et al. [36] and Malach & Shalev-Shwartz [43].

Theorem 3.6. Consider any embedding Ψ : Hd → Rm̂ such that ∥Ψ(v)∥2 ≤ 1 for all v ∈ Hd. For
any ϵ > 0, if m̂B2 ≤ ϵ2

(
d
r

)
, then there exists a representation M ∈ Or×d

{0,1} such that:

inf
a:∥a∥2≤B

Ev∼Unif(Hd)

[
ℓ
(
a⊤Ψ(v), g(r)(Mv)

)]
≥ 1− ϵ.

Theorem 3.6 implies that any random feature model requires a number of neurons and/or inverse
margin that is polynomially large in dr in order to solve a downstream sparse parity task with a
linear classifier. Note that the margin (i.e. inverse of B in Theorem 3.6) is inversely proportional to
the number of samples that are required to learn the classifier [53]. On the other hand, Theorem 3.2
guarantees that after multi-task pretraining, the output embedding admits a linear classifier that
solves any sparse parity task on the extracted r features, with the number of neurons and samples of
the downstream task of the order of exp(poly(r)).

Single task does not suffice for feature learning. Although Theorem 3.6 shows that feature
learning is essential for generalization in our setting, we have not yet shown that effective feature
learning necessitates pretraining on multiple tasks. We address this issue next.

Theorem 3.7. Consider any algorithm A that takes as input infinite samples from any single task
in Ts.p.(M) and returns an m̂-dimensional representation Ψ : Hd → Rm̂. Then there exists an
M ∈ Or×d

{0,1} such that for any k ∈ [r], with probability at least 1 − 2−r
∑r

j=k

(
r
j

)
over the draw of

a single training task f1 ∼ Ts.p.(M), the representation Ψf1 := A(f1) satisfies that for any ϵ > 0,
m̂B2 > ϵ2

(
d−k+1
r−k+1

)
is necessary to obtain

min
a2:∥a2∥2≤B

Ev∼Unif(Hd)[ℓ(a
⊤
2 Ψf1(v), f2(v))] ≥ 1− ϵ.

Theorem 3.7 shows that w.h.p., a single task drawn from the task distribution Ts.p.(M) cannot
be used to guarantee generalization with downstream neuron and margin complexity smaller than
the ambient dimension for all ground-truth representations M. For example, if k = r, then with
probability at least 1 − 2−r, the number of neurons must be Ω(d) and/or the margin must be
O(d−1/2) to allow for non-trivial error. The underlying reason is that most tasks in Ts.p.(M) are
“simple” in that they only depend on a strict subset of the r ground-truth features, thus do not
contain information about all the important features (although they are still “hard” by virtue of
being sparse parity tasks), so single-task pretraining cannot improve upon random features in terms
of recovering the remaining important features. Nevertheless, Theorem 3.2 shows that multi-task
pretraining aggregates information across the tasks to learn a generalizable model.

Remark 3.8 (Single-task training with highly informative task). Theorem 3.2 leaves open the
possibility that training on a highly-informative task could perform as well as multi-tasking. Note

12

that there is one task supported by Ts.p.(M), the full parity task, that provides information abut all
r ground-truth features in M. While gradient-based training on this task may allow for efficient
generalization to any downstream task on the r features [12]3, the sample complexity of this training
may be much larger than multi-tasking. Additional prior results show that gradient-based algorithms
require at least Ω(dr) samples to solve the full parity task on r inputs [3, 1, 52]. This complexity
has worse dependence on d and T than the n1 + n2 = Õ(d

3

T) training samples per task required by
Theorem 3.3 for downstream generalization with the number of downstream samples independent of
d. In fact, it is even worse complexity in d than the T (n1 + n2) +N = Õ(d3) total samples across
tasks that Theorem 3.3 requires for multi-task pretraining followed by downstream adaptation. Thus
multi-tasking reduces feature learning sample complexity compared to training with any single task.

4 Proof Sketch

In this section, we sketch the proof of Proposition 3.1, which is the key feature learning result that
enables downstream guarantees. The proof heavily leverages the fact that multi-task pretraining
entails updating the first-layer weights after fitting a unique head to each task. Surprisingly, we
show that making one gradient-based update of the head for each task induces a pseudo-contrastive
loss that encourages representations of two points to be similar if and only if they are likely to share
a label on a randomly drawn task. Since two points are likely to share a label on a drawn task if
and only if they share the same sign pattern on their r ground-truth features (by Assumption 2.1),
the pseudo-contrastive loss inclines the representation to extract these r latent features4. For ease of
exposition, in this setting we focus on the population setting with infinite tasks and samples per
task, and defer the finite-task and samples proof to Appendix A.

Step 1: Derive pseudo-contrastive loss after head updates. We first update the task-specific
head with one gradient step for each task i given the initial parameters (W0,b0,a0i). Due to the
choice of a0i = 0m for all i ∈ [T], f(x;W0,b0,a0i) = 0 for all x ∈ Rd and i ∈ [T], so the hinge loss
is affine in a0i for all tasks (the max(·, 0) threshold is inactive). Therefore, using also the choice of
b0 = 0m, we have

a1i = (1− ηλa)a
0
i − η∇Li(W

0,b0,a0i) = ηEx[fi(x)σ(W̄
0x)] (10)

where we use W̄0 to denote a stop-gradient on W0. As a result, the updated head for task i, a1i , is
proportional to the average label-weighted neuron output over the dataset for task i. Now we can
insert this value of a1i back into the loss, to obtain Li(W

0,b0,a1i). For ease of notation we define
β(x,x′) := Ei[fi(x)fi(x

′)] for all pairs of inputs x,x′, and replace max(·, 0) with σ(·) in the hinge
loss (recall σ(·) is the ReLU). Taking the average over all tasks yields

L(W0,b0, {a1i }i) = Ei,x

[
σ
(
1− ηfi(x)Ex′ [fi(x

′)σ(W̄0x′)]⊤σ(W0x)
)]

≈ 1− η Ex,x′

[
β(x,x′)σ(W̄0x′)⊤σ(W0x)

]
(11)

where the approximation holds as |ηEx′ [fi(x
′)σ(W0x′)]⊤σ(W0x)| < 1 w.h.p. over x and W0. The

resulting loss in (11) encourages the first-layer representation to align sample pairs (x,x′) that have
3Barak et al. [12] show that SGD on a two-layer ReLU NN with batch size Ω̃(dr) can solve the parity task on r

features with unknown M ∈ Od×r
0,1 , which suggests that the representation learned during this process generalizes to

simpler tasks on the features in M.
4We also show in Appendix E that these intuitions can be extended to the regression setting.

13

the same label for most tasks (β(x,x′) ≈ 1) and penalizes the representation for aligning pairs of
samples that do not have the same label on most tasks (β(x,x′) ≪ 1). In this way, (11) is reminiscent
of a constrastive loss5 [14] in which positive pairs are pairs with large β.

To translate these intuitive connections with contrastive learning to feature learning, we must leverage
Assumption 2.1, which implies that β(x,x′) encodes information about the ground-truth features
Mx and Mx′. In particular, pairs of points with the same sign patterns among the ground-truth
features have the same label, so β(x,x′) = 1 almost surely, while pairs of points with different sign
patterns on the ground-truth features have the same label for only half of the tasks in the universe
of tasks T , meaning β(x,x′) = 0. As a result, the loss can now be approximated as:

1
ηL(W

0,b0, {a1i }i) ≈ −Ex,x′

[
χ{sign(Mx)=sign(Mx′)}σ(W̄0x′)⊤σ(W0x)

]
(12)

We next show that a gradient descent step on (12) results in W1 essentially projecting onto the row
space of M.

Step 2: Update neuron weights. The proof of this step requires computing the gradient of
L(W0,b0, {a1i }i) with respect to each vector of neuron weights. For ease of notation, we from here
onwards denote wj = w0

j . Using (12), this gradient can be approximated by A(wj)wj , where
A(w) ∈ Rd×d is defined as:

A(w) :=−Ex,x′
[
χ{sign(Mx) = sign(Mx′)}σ′(w⊤x)σ′(w̄⊤x′)x(x′)⊤

]
(13)

where σ′(z) = 1 if z > 0 and σ′(z) = 0 otherwise. The crucial reason why A(wj) has favorable
structure is due to the indicator χ{sign(Mx) = sign(Mx′)} in the RHS of (12). Intuitively, this
indicator encourages the first-layer weights to align only the representations of points with the same
sign pattern on the label-relevant coordinates, by ensuring that only these pairs of points appear
in the gradient. With this indicator removed, we would have A(wj) =

2
π∥wj∥22

wjw
⊤
j , meaning the

gradient would not put any emphasis on the ground-truth projection. However, the indicator means
that A(wj) is an average outer product over vectors whose signs agree on the r important features
and may disagree on all other features. This disagreement results in cancellation during averaging,
unlike the important r features, leading to:

MA(wj)wj ≈ − 1
2rπMwj , M⊥A(wj)wj ≈ − 1

2r+1π
M⊥wj , (14)

meaning that the gradient up-weights the energy of wj in the ground-truth subspace by a factor of
roughly 2 compared to the the energy in the spurious subspace. Moreover, applying A(wj) to wj

does not change the direction of Mwj , meaning Mw1
j remains isotropic in Rr. These observations

are the crux of the proof; please see Appendix A for full details.

5 Conclusion

We have provided the first results showing that multi-task pretraining with a gradient-based algorithm
on a non-linear neural network learns generalizable features. Moreover, our analysis reveals that

5This analysis suggests that any β(x,x′) that is “roughly” increasing with the similarity of Mx and Mx′ results in
a pseudo-contrastive loss, that, as we later show, results in representation learning. As such, our observations suggest
that Assumption 2.1 can be relaxed to the very natural condition that the correlation of the labels of x and x′ across
tasks is roughly increasing with the similarity of their ground-truth features. We verify this conjecture empirically in
Appendix F.

14

updating the task-specific heads prior to updating the first-layer weights induces a supervised
contrastive loss that encourages recovering the features indicative of whether two points share a
label. As a result, this work suggests further exploring the role of adapting the head to each task in
order to learn more expressive features.

Acknowledgements

L.C., A.M. and S.S. are supported in part by NSF Grants 2127697, 2019844, 2107037, and 2112471,
ARO Grant W911NF2110226, ONR Grant N00014-19-1-2566, the Machine Learning Lab (MLL) at
UT Austin, and the Wireless Networking and Communications Group (WNCG) Industrial Affiliates
Program. M.S. is supported by an NIH Director’s new innovator award #1DP2LM014564-01, a
Packard Fellowship in Science and Engineering, a Sloan Research Fellowship in Mathematics, an
NSF-CAREER under award #1846369, DARPA FastNICS program, and NSF-CIF award #2008443.
H.H. is supported by the NSF Institute for CORE Emerging Methods in Data Science (EnCORE)
as well as The Institute for Learning-enabled Optimization at Scale (TILOS).

References

[1] Abbe, E. and Sandon, C. Poly-time universality and limitations of deep learning. arXiv preprint
arXiv:2001.02992, 2020.

[2] Abbe, E., Adsera, E. B., and Misiakiewicz, T. The merged-staircase property: a necessary and
nearly sufficient condition for sgd learning of sparse functions on two-layer neural networks. In
Conference on Learning Theory, pp. 4782–4887. PMLR, 2022.

[3] Abbe, E., Adsera, E. B., and Misiakiewicz, T. Sgd learning on neural networks: leap complexity
and saddle-to-saddle dynamics. In The Thirty Sixth Annual Conference on Learning Theory,
pp. 2552–2623. PMLR, 2023.

[4] Akiyama, S. and Suzuki, T. Excess risk of two-layer relu neural networks in teacher-student
settings and its superiority to kernel methods. arXiv preprint arXiv:2205.14818, 2022.

[5] Allen-Zhu, Z., Li, Y., and Liang, Y. Learning and generalization in overparameterized neural
networks, going beyond two layers. Advances in neural information processing systems, 32, 2019.

[6] Allen-Zhu, Z., Li, Y., and Song, Z. A convergence theory for deep learning via over-
parameterization. In International Conference on Machine Learning, pp. 242–252. PMLR,
2019.

[7] Argyriou, A., Evgeniou, T., and Pontil, M. Multi-task feature learning. Advances in neural
information processing systems, 19, 2006.

[8] Arora, S., Du, S. S., Hu, W., Li, Z., Salakhutdinov, R. R., and Wang, R. On exact computation
with an infinitely wide neural net. Advances in neural information processing systems, 32, 2019.

[9] Ba, J., Erdogdu, M. A., Suzuki, T., Wang, Z., Wu, D., and Yang, G. High-dimensional
asymptotics of feature learning: How one gradient step improves the representation. arXiv
preprint arXiv:2205.01445, 2022.

15

[10] Bach, F. Breaking the curse of dimensionality with convex neural networks. Journal of Machine
Learning Research, 18(19):1–53, 2017.

[11] Bai, Y. and Lee, J. D. Beyond linearization: On quadratic and higher-order approximation of
wide neural networks. arXiv preprint arXiv:1910.01619, 2019.

[12] Barak, B., Edelman, B., Goel, S., Kakade, S., Malach, E., and Zhang, C. Hidden progress in
deep learning: Sgd learns parities near the computational limit. Advances in Neural Information
Processing Systems, 35:21750–21764, 2022.

[13] Bullins, B., Hazan, E., Kalai, A., and Livni, R. Generalize across tasks: Efficient algorithms for
linear representation learning. In Algorithmic Learning Theory, pp. 235–246. PMLR, 2019.

[14] Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. A simple framework for contrastive learning
of visual representations. In International conference on machine learning, pp. 1597–1607. PMLR,
2020.

[15] Chen, Y., Jamieson, K., and Du, S. Active multi-task representation learning. In International
Conference on Machine Learning, pp. 3271–3298. PMLR, 2022.

[16] Chizat, L. and Bach, F. On the global convergence of gradient descent for over-parameterized
models using optimal transport. Advances in neural information processing systems, 31, 2018.

[17] Chizat, L., Oyallon, E., and Bach, F. On lazy training in differentiable programming. Advances
in neural information processing systems, 32, 2019.

[18] Chua, K., Lei, Q., and Lee, J. D. How fine-tuning allows for effective meta-learning. Advances
in Neural Information Processing Systems, 34, 2021.

[19] Collins, L., Hassani, H., Mokhtari, A., and Shakkottai, S. Exploiting shared representations
for personalized federated learning. In International Conference on Machine Learning, pp.
2089–2099. PMLR, 2021.

[20] Collins, L., Hassani, H., Mokhtari, A., and Shakkottai, S. Fedavg with fine tuning: Local
updates lead to representation learning. Advances in Neural Information Processing Systems,
35:10572–10586, 2022.

[21] Collins, L., Mokhtari, A., Oh, S., and Shakkottai, S. Maml and anil provably learn representa-
tions. arXiv preprint arXiv:2202.03483, 2022.

[22] Crawshaw, M. Multi-task learning with deep neural networks: A survey. arXiv preprint
arXiv:2009.09796, 2020.

[23] Damian, A., Lee, J., and Soltanolkotabi, M. Neural networks can learn representations with
gradient descent. In Conference on Learning Theory, pp. 5413–5452. PMLR, 2022.

[24] Damian, A., Nichani, E., Ge, R., and Lee, J. D. Smoothing the landscape boosts the signal for sgd:
Optimal sample complexity for learning single index models. arXiv preprint arXiv:2305.10633,
2023.

[25] Dandi, Y., Krzakala, F., Loureiro, B., Pesce, L., and Stephan, L. How two-layer neural networks
learn, one (giant) step at a time. In NeurIPS 2023 Workshop on Mathematics of Modern
Machine Learning, 2023.

16

[26] Daniely, A. and Malach, E. Learning parities with neural networks. Advances in Neural
Information Processing Systems, 33:20356–20365, 2020.

[27] Dirksen, S., Genzel, M., Jacques, L., and Stollenwerk, A. The separation capacity of random
neural networks. The Journal of Machine Learning Research, 23(1):13924–13970, 2022.

[28] Du, S., Lee, J., Li, H., Wang, L., and Zhai, X. Gradient descent finds global minima of deep
neural networks. In International conference on machine learning, pp. 1675–1685. PMLR, 2019.

[29] Du, S. S., Hu, W., Kakade, S. M., Lee, J. D., and Lei, Q. Few-shot learning via learning the
representation, provably. In International Conference on Learning Representations, 2020.

[30] Ghorbani, B., Mei, S., Misiakiewicz, T., and Montanari, A. When do neural networks outperform
kernel methods? Advances in Neural Information Processing Systems, 33:14820–14830, 2020.

[31] Goel, S., Karmalkar, S., and Klivans, A. Time/accuracy tradeoffs for learning a relu with
respect to gaussian marginals. Advances in neural information processing systems, 32, 2019.

[32] Hsu, D., Sanford, C. H., Servedio, R., and Vlatakis-Gkaragkounis, E. V. On the approximation
power of two-layer networks of random relus. In Conference on Learning Theory, pp. 2423–2461.
PMLR, 2021.

[33] Jacot, A., Gabriel, F., and Hongler, C. Neural tangent kernel: Convergence and generalization
in neural networks. Advances in neural information processing systems, 31, 2018.

[34] Ji, Z. and Telgarsky, M. Polylogarithmic width suffices for gradient descent to achieve arbitrarily
small test error with shallow relu networks. arXiv preprint arXiv:1909.12292, 2019.

[35] Ji, Z., Telgarsky, M., and Xian, R. Neural tangent kernels, transportation mappings, and
universal approximation. arXiv preprint arXiv:1910.06956, 2019.

[36] Kamath, P., Montasser, O., and Srebro, N. Approximate is good enough: Probabilistic variants
of dimensional and margin complexity. In Conference on Learning Theory, pp. 2236–2262.
PMLR, 2020.

[37] Kao, C.-H., Chiu, W.-C., and Chen, P.-Y. Maml is a noisy contrastive learner in classification.
arXiv preprint arXiv:2106.15367, 2021.

[38] Kearns, M. Efficient noise-tolerant learning from statistical queries. Journal of the ACM
(JACM), 45(6):983–1006, 1998.

[39] Lee, J., Xiao, L., Schoenholz, S., Bahri, Y., Novak, R., Sohl-Dickstein, J., and Pennington, J.
Wide neural networks of any depth evolve as linear models under gradient descent. Advances in
neural information processing systems, 32, 2019.

[40] Li, Y. and Liang, Y. Learning overparameterized neural networks via stochastic gradient descent
on structured data. Advances in neural information processing systems, 31, 2018.

[41] Li, Y., Ma, T., and Zhang, H. R. Learning over-parametrized two-layer neural networks beyond
ntk. In Conference on learning theory, pp. 2613–2682. PMLR, 2020.

[42] Livni, R., 2017. URL https://www.cs.princeton.edu/~rlivni/cos511/lectures/lect13.
pdf.

17

https://www.cs.princeton.edu/~rlivni/cos511/lectures/lect13.pdf
https://www.cs.princeton.edu/~rlivni/cos511/lectures/lect13.pdf

[43] Malach, E. and Shalev-Shwartz, S. When hardness of approximation meets hardness of learning.
Journal of Machine Learning Research, 23(91):1–24, 2022.

[44] Maurer, A., Pontil, M., and Romera-Paredes, B. The benefit of multitask representation learning.
Journal of Machine Learning Research, 17(81):1–32, 2016.

[45] Mei, S., Montanari, A., and Nguyen, P.-M. A mean field view of the landscape of two-layer
neural networks. Proceedings of the National Academy of Sciences, 115(33):E7665–E7671, 2018.

[46] Mousavi-Hosseini, A., Park, S., Girotti, M., Mitliagkas, I., and Erdogdu, M. A. Neural networks
efficiently learn low-dimensional representations with sgd. arXiv preprint arXiv:2209.14863,
2022.

[47] Nguyen, P.-M. Mean field limit of the learning dynamics of multilayer neural networks. arXiv
preprint arXiv:1902.02880, 2019.

[48] Nichani, E., Damian, A., and Lee, J. D. Provable guarantees for nonlinear feature learning in
three-layer neural networks. arXiv preprint arXiv:2305.06986, 2023.

[49] Oymak, S. and Soltanolkotabi, M. Toward moderate overparameterization: Global convergence
guarantees for training shallow neural networks. IEEE Journal on Selected Areas in Information
Theory, 1(1):84–105, 2020.

[50] Ruder, S. An overview of multi-task learning in deep neural networks. arXiv preprint
arXiv:1706.05098, 2017.

[51] Saunshi, N., Gupta, A., and Hu, W. A representation learning perspective on the importance
of train-validation splitting in meta-learning. In International Conference on Machine Learning,
pp. 9333–9343. PMLR, 2021.

[52] Shalev-Shwartz, S., Shamir, O., and Shammah, S. Failures of gradient-based deep learning. In
International Conference on Machine Learning, pp. 3067–3075. PMLR, 2017.

[53] Shamir, O. The sample complexity of learning linear predictors with the squared loss. J. Mach.
Learn. Res., 16:3475–3486, 2015.

[54] Shi, Z., Wei, J., and Liang, Y. A theoretical analysis on feature learning in neural networks:
Emergence from inputs and advantage over fixed features. arXiv preprint arXiv:2206.01717,
2022.

[55] Sirignano, J. and Spiliopoulos, K. Mean field analysis of neural networks: A law of large
numbers. SIAM Journal on Applied Mathematics, 80(2):725–752, 2020.

[56] Sun, Y., Narang, A., Gulluk, I., Oymak, S., and Fazel, M. Towards sample-efficient overparame-
terized meta-learning. Advances in Neural Information Processing Systems, 34:28156–28168,
2021.

[57] Telgarsky, M. Feature selection with gradient descent on two-layer networks in low-rotation
regimes. arXiv preprint arXiv:2208.02789, 2022.

[58] Thekumparampil, K. K., Jain, P., Netrapalli, P., and Oh, S. Sample efficient linear meta-learning
by alternating minimization. arXiv preprint arXiv:2105.08306, 2021.

18

[59] Tripuraneni, N., Jordan, M., and Jin, C. On the theory of transfer learning: The importance of
task diversity. Advances in Neural Information Processing Systems, 33:7852–7862, 2020.

[60] Tripuraneni, N., Jin, C., and Jordan, M. Provable meta-learning of linear representations. In
International Conference on Machine Learning, pp. 10434–10443. PMLR, 2021.

[61] Vershynin, R. High-dimensional probability: An introduction with applications in data science,
volume 47. Cambridge university press, 2018.

[62] Wang, Z., Nichani, E., and Lee, J. D. Learning hierarchical polynomials with three-layer neural
networks. arXiv preprint arXiv:2311.13774, 2023.

[63] Wang, Z., Panda, R., Karlinsky, L., Feris, R., Sun, H., and Kim, Y. Multitask prompt tuning
enables parameter-efficient transfer learning. arXiv preprint arXiv:2303.02861, 2023.

[64] Xu, Z. and Tewari, A. Representation learning beyond linear prediction functions. Advances in
Neural Information Processing Systems, 34, 2021.

[65] Yehudai, G. and Shamir, O. On the power and limitations of random features for understanding
neural networks. Advances in Neural Information Processing Systems, 32, 2019.

[66] Yuksel, O., Boursier, E., and Flammarion, N. Model agnostic methods meta-learn despite
misspecifications. arXiv preprint arXiv:2303.01335, 2023.

[67] Zhang, Y. and Yang, Q. A survey on multi-task learning. IEEE Transactions on Knowledge
and Data Engineering, 34(12):5586–5609, 2021.

[68] Zhou, M., Ge, R., and Jin, C. A local convergence theory for mildly over-parameterized two-layer
neural network. In Conference on Learning Theory, pp. 4577–4632. PMLR, 2021.

[69] Zou, D., Cao, Y., Zhou, D., and Gu, Q. Stochastic gradient descent optimizes over-parameterized
deep relu networks. arXiv preprint arXiv:1811.08888, 2018.

19

Contents

1 Introduction 2

1.1 Related Work . 4

2 Formulation 4

2.1 Pretraining tasks and data generating model . 4

2.2 Learning model and loss . 6

2.3 Algorithm . 7

3 Theoretical Results 9

3.1 Negative Results . 11

4 Proof Sketch 13

5 Conclusion 14

A Proofs of Proposition 3.1 and Theorem 3.2 21

A.1 General lemmas . 21

A.2 Finite-task and finite-sample concentration results 25

A.3 Analysis of the population gradient . 37

A.4 Full results . 43

B Proof of Downstream Guarantees 48

C Negative Results 55

D Distributions That Satisfy Assumption 2.1 59

E Informal Extension to Regression 60

F Numerical Simulations 62

20

A Proofs of Proposition 3.1 and Theorem 3.2

In this section we prove Proposition 3.1 and Theorem 3.2. Throughout, we will slightly abuse
notation by reusing c, c′, c′′ and C as absolute constants independent of all other parameters. The
notations O(·), Θ(·), and Ω(·) describe scalings up to absolute constants independent of all other
parameters.

A.1 General lemmas

Lemma A.1. Suppose x ∼ N (0d, Id). Then for any w ∈ Rd,

Ex

[
σ′(w⊤x)x

]
=

√
2

π

w

∥w∥2
.

Proof. For any u : w⊤u = 0, we have

u⊤(Ex

[
σ′(w⊤x)x

]
) = Ex

[
σ′(w⊤x)u⊤x

]
= Ex

[
σ′(w⊤x)

]
Ex

[
u⊤x

]
= 0 (15)

by the independence of orthogonal projections of isotropic Gaussian vectors. So, Ex

[
σ′(w⊤x)x

]
is

parallel to w. Thus,

Ex

[
σ′(w⊤x)x

]
=

ww⊤

∥w∥22
Ex

[
σ′(w⊤x)x

]
=

w

∥w∥22
Ex

[
σ′(w⊤x)w⊤x

]
=

w

∥w∥22
Ex

[
σ(w⊤x)

]
(16)

where σ(w⊤x) is a half-normal random variable with parameter ∥w∥2, so it has mean ∥w∥2
√

2
π ,

completing the proof.

Lemma A.2. Suppose x ∼ N (0d, Id) and M⊥ ∈ O(d−r)×d and M ∈ Or×d such that M⊥M
⊤ =

0(d−r)×r, i.e. the rowspaces of M and M⊥ are orthogonal. Then for any w ∈ Rd,

EM⊥x

[
M⊥x σ

′(w⊤x)
]
=

1√
2π

exp

(
−(w⊤M⊤Mx)2

2

)
M⊥w

∥M⊥w∥2
(17)

Proof. We have

EM⊥x

[
M⊥x σ

′(w⊤x)
]

= EM⊥x

[
M⊥x σ

′(w⊤M⊤Mx+w⊤M⊤
⊥M⊥x)

]

21

= EM⊥x

[
M⊥x|w⊤M⊤Mx+w⊤M⊤

⊥M⊥x > 0
]
PM⊥x[w

⊤M⊤Mx+w⊤M⊤
⊥M⊥x > 0]

= EM⊥x

[
M⊥x

∣∣∣∣w⊤M⊤Mx > |w⊤M⊤
⊥M⊥x|

]
PM⊥x[w

⊤M⊤Mx > |w⊤M⊤
⊥M⊥x|] (18)

where the last line follows by considering two cases: (i) w⊤M⊤
⊥M⊥x < 0 and (ii) w⊤M⊤

⊥M⊥x > 0.
If case (i) holds, then −w⊤M⊤

⊥M⊥x = |w⊤M⊤
⊥M⊥x| so

EM⊥x

[
M⊥x|w⊤M⊤Mx+w⊤M⊤

⊥M⊥x > 0
]
= EM⊥x

[
M⊥x

∣∣∣∣w⊤M⊤Mx > |w⊤M⊤
⊥M⊥x|

]
and

PM⊥x[w
⊤M⊤Mx+w⊤M⊤

⊥M⊥x > 0] = PM⊥x[w
⊤M⊤Mx > |w⊤M⊤

⊥M⊥x|].

Alternatively, if case (ii) holds, then by the law of total expectation,

EM⊥x

[
M⊥x|w⊤M⊤Mx+w⊤M⊤

⊥M⊥x > 0
]

= EM⊥x

[
M⊥x|w⊤M⊤Mx > w⊤M⊤

⊥M⊥x
]

× PM⊥x

[
w⊤M⊤Mx > w⊤M⊤

⊥M⊥x|w⊤M⊤Mx > −w⊤M⊤
⊥M⊥x

]
+ EM⊥x

[
M⊥x|w⊤M⊤

⊥M⊥x > w⊤M⊤Mx > −w⊤M⊤
⊥M⊥x

]
× PM⊥x

[
w⊤M⊤

⊥M⊥x > w⊤M⊤Mx > −w⊤M⊤
⊥M⊥x|w⊤M⊤Mx > −w⊤M⊤

⊥M⊥x
]

= EM⊥x

[
M⊥x|w⊤M⊤Mx > w⊤M⊤

⊥M⊥x
]

× PM⊥x

[
w⊤M⊤Mx > w⊤M⊤

⊥M⊥x|w⊤M⊤Mx > −w⊤M⊤
⊥M⊥x

]
= EM⊥x

[
M⊥x|w⊤M⊤Mx > |w⊤M⊤

⊥M⊥x|
]

× PM⊥x

[
w⊤M⊤Mx > w⊤M⊤

⊥M⊥x|w⊤M⊤Mx > −w⊤M⊤
⊥M⊥x

]
(19)

= EM⊥x

[
M⊥x|w⊤M⊤Mx > |w⊤M⊤

⊥M⊥x|
] PM⊥x

[
w⊤M⊤Mx > |w⊤M⊤

⊥M⊥x|
]

PM⊥x

[
w⊤M⊤Mx > −w⊤M⊤

⊥M⊥x
]

where (19) follows since w⊤M⊤
⊥M⊥x = |w⊤M⊤

⊥M⊥x|. Now we return to (18). Note that

EM⊥x

[
M⊥x

∣∣∣∣w⊤M⊤Mx > |w⊤M⊤
⊥M⊥x|

]
= EM⊥x

[
M⊥x− 2σ

(
−

w⊤M⊤
⊥

∥M⊥w∥2
M⊥x

)
M⊥w

∥M⊥w∥2

∣∣∣∣|w⊤M⊤Mx| > |w⊤M⊤
⊥M⊥x|

]
(20)

by the symmetry of the Gaussian distribution and the fact that

M⊥x− 2σ

(
−

w⊤M⊤
⊥

∥M⊥w∥2
M⊥x

)
M⊥w

∥M⊥w∥2

is the flip of M⊥x across the hyperplane with normal vector w⊤M⊤
⊥

∥M⊥w∥2 when w⊤M⊤
⊥M⊥x <

−|w⊤M⊤
⊥M⊥x|. Using this, we obtain

EM⊥x

[
M⊥xσ

′(w⊤x)
]

22

= EM⊥x

[
M⊥x− 2σ

(
−

w⊤M⊤
⊥

∥M⊥w∥2
M⊥x

)
M⊥w

∥M⊥w∥2

∣∣∣∣|w⊤M⊤
⊥M⊥x| > |w⊤M⊤Mx|

]
× PM⊥x

[
w⊤M⊤

⊥M⊥x > |w⊤M⊤Mx|
]

= 2EM⊥x

[
σ

(
−
w⊤M⊤

⊥M⊥x

∥M⊥w∥2

) ∣∣∣∣|w⊤M⊤
⊥M⊥x| > |w⊤M⊤Mx|

]
× PM⊥x

[
w⊤M⊤

⊥M⊥x > |w⊤M⊤Mx|
] M⊥w

∥M⊥w∥2

= EM⊥x

[
σ

(
−
w⊤M⊤

⊥M⊥x

∥M⊥w∥2

) ∣∣∣∣w⊤M⊤
⊥M⊥x < −|w⊤M⊤Mx|

]
× PM⊥x

[
w⊤M⊤

⊥M⊥x > |w⊤M⊤Mx|
] M⊥w

∥M⊥w∥2

=

1√
2π

exp(−(w⊤M⊤Mx)2/2)

PM⊥x

[
w⊤M⊤

⊥M⊥x < −|w⊤M⊤Mx|
]PM⊥x

[
w⊤M⊤

⊥M⊥x > |w⊤M⊤Mx|
] M⊥w

∥M⊥w∥2
(21)

=
1√
2π

exp(−(w⊤M⊤Mx)2/2)
M⊥w

∥M⊥w∥2
(22)

where (21) follows by the definition of the inverse Mills ratio.

Lemma A.3. For any function f : Rd → {−1, 1} such that f(x) = g(Mx) for some row-orthonormal
matrix M ∈ Or×d and some function g : Rr → {−1, 1} for all x ∈ Rd. Then for any vector w ∈ Rd,

∥Ex

[
f(x)σ′(w⊤x)x

]
∥2 ≤

√
r

2

(
1 +

√
π

2

∥Mw∥2
∥M⊥w∥2

)
+

(
1 + ∥Mw∥22

2π

)1/2

. (23)

Proof. Let M⊥ ∈ O(d−r)×d be a row-orthonormal matrix whose rowspace is orthogonal to that of M.
Using that M⊤M+M⊤

⊥M⊥ = Id and Mx and M⊥x are independent standard normal multivariate
random vectors, we have

Ex

[
f(x)σ′(w⊤x)x

]
= Ex

[
g(Mx)σ′(w⊤M⊤Mx+w⊤M⊤

⊥M⊥x)M
⊤Mx

]
+ Ex

[
g(Mx)σ′(w⊤M⊤Mx+w⊤M⊤

⊥M⊥x)M
⊤
⊥M⊥x)

]
= EMx

[
g(Mx)EM⊥x

[
σ′(w⊤M⊤Mx+w⊤M⊤

⊥M⊥x)
]
M⊤Mx

]
︸ ︷︷ ︸

1

+ EMx

[
g(Mx)EM⊥x

[
σ′(w⊤M⊤Mx+w⊤M⊤

⊥M⊥x)M
⊤
⊥M⊥x)

]]
︸ ︷︷ ︸

2

so ∥Ex

[
f(x)σ′(w⊤x)x

]
∥2 ≤

∥∥ 1
∥∥
2
+
∥∥ 2

∥∥
2

by the triangle inequality. First we consider 1 . We
have

EMx

[
g(Mx)EM⊥x

[
σ′(w⊤M⊤Mx+w⊤M⊤

⊥M⊥x)
]
M⊤Mx

]
= EMx

[
g(Mx)PM⊥x

[
w⊤M⊤

⊥M⊥x > −w⊤M⊤Mx
]
M⊤Mx

]
= EMx

[
g(Mx)

(
1

2
+

1

2
erf

(
w⊤M⊤Mx√
2∥M⊥w∥2

))
M⊤Mx

]
(24)

23

=
1

2
EMx

[
g(Mx)M⊤Mx

]
+

1

2
EMx

[
g(Mx) erf

(
w⊤M⊤Mx√
2∥M⊥w∥2

)
M⊤Mx

]
where (24) is due to the Gaussian CDF. Thus by the triangle inequality,∥∥ 1

∥∥
2
≤ 1

2

∥∥∥EMx

[
g(Mx)M⊤Mx

]∥∥∥
2
+

1

2

∥∥∥∥EMx

[
g(Mx) erf

(
w⊤M⊤Mx√
2∥M⊥w∥2

)
M⊤Mx

]∥∥∥∥
2

(25)

For the first term, ∥∥∥EMx

[
g(Mx)M⊤Mx

]∥∥∥
2
≤ EMx

[∥∥∥g(Mx)M⊤Mx
∥∥∥
2

]
(26)

= EMx [∥Mx∥2]

≤ EMx

[
∥Mx∥22

]1/2
(27)

=
√
r (28)

where (26) and (27) follow by Jensen’s inequality. For the second term in (25), we have∥∥∥∥EMx

[
g(Mx) erf

(
w⊤M⊤Mx√
2∥M⊥w∥2

)
M⊤Mx

]∥∥∥∥
2

≤ EMx

[∥∥∥∥g(Mx) erf

(
w⊤M⊤Mx√
2∥M⊥w∥2

)
M⊤Mx

∥∥∥∥
2

]
(29)

≤

(
EMx

[∣∣∣∣g(Mx) erf

(
w⊤M⊤Mx√
2∥M⊥w∥2

)∣∣∣∣2
]
EMx

[∥∥∥M⊤Mx
∥∥∥2
2

])1/2

(30)

=
√
rEMx

[∣∣∣∣g(Mx) erf

(
w⊤M⊤Mx√
2∥M⊥w∥2

)∣∣∣∣2
]1/2

≤
√
rEMx

[(√
πw⊤M⊤Mx

2∥M⊥w∥2

)2
]1/2

(31)

=

√
πr

2

∥Mw∥2
∥M⊥w∥2

(32)

where (29) follows by Jensen’s inequality, (30) follows by the Cauchy-Schwarz inequality, and (31)
follows since | erf(x)| ≤ |

√
π/2 x|. Combining (25), (28) and (32) yields∥∥ 1

∥∥
2
≤

√
r

2

(
1 +

√
π

2

∥Mw∥2
∥M⊥w∥2

)
(33)

Next we consider 2 . We have

EMx

[
g(Mx)EM⊥x

[
σ′(w⊤M⊤Mx+w⊤M⊤

⊥M⊥x)M
⊤
⊥M⊥x)

]]
=

1√
2π

EMx

[
g(Mx) exp

(
−(w⊤M⊤Mx)2

2

)]
M⊤

⊥M⊥w

∥M⊥w∥2
(34)

by Lemma A.2, thus ∥∥ 2
∥∥
2
=

1√
2π

∣∣∣∣EMx

[
g(Mx) exp

(
−(w⊤M⊤Mx)2

2

)]∣∣∣∣ . (35)

24

Next we upper bound
∣∣∣EMx

[
g(Mx) exp

(
− (w⊤M⊤Mx)2

2

)]∣∣∣. We have∣∣∣∣EMx

[
g(Mx) exp

(
−(w⊤M⊤Mx)2

2

)]∣∣∣∣
≤ EMx

[
exp

(
−(w⊤M⊤Mx)2

2

)]
(36)

=

∫
Rr

1

(2π)r/2
exp

(
−(w⊤M⊤Mx)2

2
− x⊤M⊤Mx

2

)
dMx (37)

=

∫
Rr

1

(2π)r/2
exp

(
−
x⊤M⊤ (Ir +Mww⊤M⊤)Mx

2

)
dMx

= det(Ir +Mww⊤M⊤)1/2

×
∫
Rr

1

(2π)r/2det(Ir +Mww⊤M⊤)1/2
exp

(
−
x⊤M⊤ (Ir +Mww⊤M⊤)Mx

2

)
dMx (38)

= det(Ir +Mww⊤M⊤)1/2

=
(
1 + ∥Mw∥22

)1/2 (39)

where (36) follows since exp() is positive, (37) follows since w⊤M⊤Mx is a Gaussian random variable
with mean zero and variance ∥Mw∥22, and (38) follows due to the multivariate normal distribution,
and (39) follows by the matrix determinant lemma. Therefore,

∥∥ 2
∥∥
2
≤
(
1 + ∥Mw∥22

2π

)1/2

, (40)

completing the proof.

A.2 Finite-task and finite-sample concentration results

Lemma A.4 (Initialization I). For any δ ∈ (0, 1), define the set

Gw(δ) :=
{
w ∈ Rd : ∥Mw∥2 ≤ cνw(

√
r +

√
log(m/δ)),

cνw(
√
d− r −

√
log(m/δ)) ≤ ∥M⊥w∥2 ≤ cνw(

√
d− r +

√
log(m/δ)),

cνw(
√
d−

√
log(m/δ)) ≤ ∥w∥2 ≤ cνw(

√
d+

√
log(m/δ))

}
(41)

for an absolute constant c. Then with probability at least 1− δ, wj ∈ Gw(δ) for all j ∈ [m].

Proof. Since each wj ∼ N (0d, ν
2
wId), each ∥Mwj∥2, ∥M⊥wj∥2, and ∥wj∥2 are sub-Gaussian with

parameters νw
√
r, νw

√
d− r, and νw

√
d. That is,

Pwj [|∥Mwj∥2 − νw
√
r| ≤ t] ≤ e−c′t2/ν2w (42)

for any t > 0, and likewise for ∥M⊥wj∥2 and ∥wj∥2 (with νw
√
r replaced by νw

√
d− r and νw

√
d,

respectively). Choosing t = c′′νw
√

log(m/δ) and union bounding over all j ∈ [m] completes the
proof.

25

Lemma A.5 (Initialization II). Suppose m > r. For an absolute constant c and any δ ∈ (0, 1),

σmin(MW0) ≥ νw
√
m

(
1− c

√
r +

√
log(1/δ)√
m

)
(43)

with probability at least 1− δ.

Proof. The result follows from the fact that each row of W0 is drawn independently from N (0d, ν
2
wId),

so each of the r rows of MW0 are drawn i.i.d. from N (0m, ν
2
wIm) (recalling that the rows of M

are orthogonal, so u⊤
i wj and u⊤

i′wj are independent for any two distinct rows ui and ui′ of M). A
standard (sub-)Gaussian matrix concentration inequality yields the result (e.g. Equation 4.21 in
[61]).

Lemma A.6 (Initialization III). For an absolute constant c and any δ ∈ (0, 1),

∥W0∥2 ≤ νw
√
m

(
1 +

√
d+

√
log(1/δ)√
m

)
(44)

for some absolute constant with probability at least 1− δ.

Proof. As in Lemma A.5, the proof follows by standard (sub-)Gaussian matrix concentration (e.g.
Equation 4.21 in [61]).

Lemma A.7. For any δ ∈ (0, 1) define the event Ew(δ) as follows:

Ew(δ) :=

{
w0

j ∈ Gx(δ), σmin(MW0) ≥ νw
√
m

(
1− c

√
r −

√
log(1/δ)√
m

)
,

∥W0∥2 ≤ νw
√
m

(
1 +

√
d+

√
log(1/δ)√
m

)}
. (45)

Then P(Ew(δ)) ≥ 1− 3δ.

Proof. The proof follows immediately from Lemmas A.4, A.5, A.6 and a union bound.

Next we begin to analyze the first gradient-based update of the algorithm. Throughout, let
D̂i,a = {(xi,k, fi(xi,k))}n1

k=1 and D̂i,W = {(xi,l, fi(xi,l))}n2
l=1, where all samples are drawn i.i.d. from

Di, for each i ∈ [T].

Lemma A.8. Let λa = 1
η and x ∼ N (0d, Id). On the first iteration of the multitask learning

algorithm described in Section 2.3, the locally updated head for task i is:

a1i =
η

n1

n1∑
k=1

fi(xi,k)σ(W
0xi,k) (46)

for all tasks i ∈ [T].

26

Proof. Since a0i = 0m for all i, (a0i)
⊤σ(W0x + b0) = 0 for all x and i. Therefore, max(1 −

fi(x)(a
0
i)

⊤σ(W0x+ b0), 0) = 1− fi(x)(a
0
i)

⊤σ(W0x), and

a1i = a0i − η∇aL̂i(W
0,b0,a0i ; D̂i,a)

= − η

n1

n1∑
k=1

∇a(max(1− fi(xi,k)(a
0
i)

⊤σ(W0xi,k + b0), 0))

= − η

n1

n1∑
k=1

∇a(1− fi(xi,k)(a
0
i)

⊤σ(W0xi,k + b0))

=
η

n1

n1∑
k=1

fi(xi,k)σ(W
0xi,k)

where in the last equality we have used b0 = 0m by choice of initialization.

Next, we substitute the updated heads in the global empirical loss. Since the gradient computation
for the update of W does not backpropagate through the update of the heads, we use σ̄(·) to denote
the stop-gradient ReLU activation, meaning all model parameters inside are treated as constants for
the purposes of later gradient updates. In particular, from Lemma A.8 we have

a1i =
η

n1

n1∑
k=1

fi(xi,k)σ(W
0xi,k) (47)

for all i ∈ [T].

Lemma A.9. After updating the heads on the first iteration, the empirical loss averaged across the
task datasets {D̂i,W}Ti=1 used for updating the neuron weights is given by

L̂(W0,b0, {a1i }Ti=1; {D̂i,W}Ti=1)

:=
1

T

T∑
i=1

L̂i(W
0,b0,a1i ; D̂i,W)

= 1− η

Tn1n2

T∑
i=1

n2∑
l=1

n1∑
k=1

fi(xi,l)fi(xi,k)σ̄(W
0xi,k)

⊤σ(W0xi,l)

− 1

Tn2

T∑
i=1

n2∑
l=1

χ

ηfi(xi,l)

(
1

n1

n1∑
k=1

fi(xi,k)σ̄(W
0xi,k)

)⊤

σ(W0xi,l) > 1


×

1− ηfi(xi,l)

(
1

n1

n1∑
k=1

fi(xi,k)σ̄(W
0xi,k)

)⊤

σ(W0xi,l)


Proof. First, by the fact that b0 = 0m due to the choice of initialization, we have

L̂(W0,b0, {a1i }Ti=1; {D̂i,W}Ti=1)

=
1

T

T∑
i=1

L̂i(W
0,b0, {a1i }Ti=1; D̂i,W)

27

=
1

Tn2

T∑
i=1

n2∑
l=1

max
(
1− fi(xi,l)(a

1
i)

⊤σ(W0xi,l), 0
)

=
1

Tn2

T∑
i=1

n2∑
l=1

χ
{
fi(xi,l)(a

1
i)

⊤σ(W0xi,l) < 1
}(

1− fi(xi,l)(a
1
i)

⊤σ(W0xi,l)
)

= 1− 1

Tn2

T∑
i=1

n2∑
l=1

fi(xi,l)(a
1
i)

⊤σ(W0xi,l)

− 1

Tn2

T∑
i=1

n2∑
l=1

χ
{
fi(xi,l)(a

1
i)

⊤σ(W0xi,l) > 1
}(

1− fi(xi,l)(a
1
i)

⊤σ(W0xi,l)
)

Substituting the value of a1i from (47) completes the proof.

Next we show that after one update of the heads, the model predictions are still close to zero, so
max() in the hinge loss is mostly inactive.

Lemma A.10. Suppose ν2w = O(1
η2dm log(T)(d+m)

). With probability at least 1− δ,

η

Tn2

T∑
i=1

n2∑
l=1

χ

ηfi(xi,l)

(
1

n1

n1∑
k=1

fi(xi,k)σ
′(W0xi,k)

)⊤

σ(W0xi,l) > 1


= ηO

(
exp

(
− c

η2ν2wm log(T/δ)(d+ log(m/δ))(d+m)

))
+ η O

(√
log(1/δ)√
Tn2

)
(48)

for an absolute constant c.

Proof. Consider any fixed W0 satisfying Ew(δ1) for δ1 ∈ (0, 1), which occurs with probability at
least 1− 3δ1 by Lemma A.7. For ease of notation we replace w0

j with wj . Recall that

ηfi(xi,l)

(
1

n1

n1∑
k=1

fi(xi,k)σ
′(W0xi,k)

)⊤

σ(W0xi,l) = fi(xi,l)(a
1
i)

⊤σ(W0xi,l) (49)

by the computation of a1i in Lemma A.8. For any fixed fi and fixed a1i ,
χ
{
fi(xi,l)(a

1
i)

⊤σ(W0xi,l) > 1
}

is a Bernoulli random variable with parameter

Pxi,l

(
fi(xi,l)(a

1
i)

⊤σ(W0xi,l) > 1
)

≤ Pxi,l

(∣∣∣(a1i)⊤σ(W0xi,l)
∣∣∣ > 1

)
(50)

≤ Pxi,l

(∣∣∣(a1i)⊤σ(W0xi,l)− Exi,l
[(a1i)

⊤σ(W0xi,l)]
∣∣∣ > 1− Exi,l

[(a1i)
⊤σ(W0xi,l)]

)
(51)

≤ 2 exp

(
−
(
1− Exi,l

[(a1i)
⊤σ(W0xi,l)]

)2
c∥a1i ∥22∥W0∥22

)

≤ 2 exp

(
−
(
1− ∥a1i ∥2∥W0∥2

)2
c∥a1i ∥22∥W0∥22

)

28

≤ 2 exp

(
−1− 2∥a1i ∥2∥W0∥2

c∥a1i ∥22∥W0∥22

)
=: γi (52)

for some absolute constant c, where (50) follows since fi(xi,l) ∈ {−1, 1}, and (51) follows since
(a1i)

⊤σ(W0xi,l)− Exi,l
[(a1i)

⊤σ(W0xi,l)] is sub-Gaussian with mean 0 and variance O(∥a1i ∥22∥W0∥22).
Next, since for fixed a1i and fi, the random variables {χ{ηfi(xi,l)(a

1
i)

⊤σ(W0xi,l) > 1}}n1
l=1 are i.i.d.,

we have by Hoeffding’s inequality

Pxi,l

(∣∣∣∣∣ 1n2
n2∑
l=1

χ{fi(xi,l)(a
1
i)

⊤σ(W0xi,l) > 1} − Px(fi(x)(a
1
i)

⊤σ(W0x) > 1)

∣∣∣∣∣ > t

)
≤ 2 exp

(
−2n2t

2
)

(53)

for any t > 0. So 1
n2

∑n2
l=1 χ{fi(xi,l)(a

1
i)

⊤σ(W0xi,l) > 1} − Px(ηfi(x)(a
1
i)

⊤σ(W0x) > 1) is sub-
Gaussian with mean zero and variance proxy 1

n2
. Also, each random variable in

{ 1
n2

∑n2
l=1 χ{fi(xi,l)(a

1
i)

⊤σ(W0xi,l) > 1}−Px(ηfi(x)(a
1
i)

⊤σ(W0x) > 1)}Ti=1 is independent, so again
by Hoeffding’s inequality,

Pxi,l

(∣∣∣∣∣ 1

Tn2

T∑
i=1

n2∑
l=1

χ{fi(xi,l)(a
1
i)

⊤σ(W0xi,l) > 1} − 1

T

T∑
i=1

Px(fi(x)(a
1
i)

⊤σ(W0x) > 1)

∣∣∣∣∣ > t

)
≤ 2 exp

(
−2Tn2t

2
)

(54)

Set t = O

(√
log(1/δ2)√

Tn2

)
, then we have

1

Tn2

T∑
i=1

n2∑
l=1

χ{fi(xi,l)(a
1
i)

⊤σ(W0xi,l) > 1}

=
1

T

T∑
i=1

Px(fi(x)(a
1
i)

⊤σ(W0x) > 1) +O

(√
log(1/δ)√
Tn2

)

≤ 1

T

T∑
i=1

γi +O

(√
log(1/δ2)√
Tn2

)
(55)

with probability at least 1− δ2 over the sampling of {xi,l}i,l. It remains to bound each γi. Next, for
any i ∈ [T], we have

∥a1i ∥2 =

∥∥∥∥∥ ηn1
n1∑
k=1

fi(xi,k)σ(W
0xi,k)

∥∥∥∥∥
2

≤ η
√
mmax

j∈[m]

∣∣∣∣∣ 1n1
n1∑
k=1

fi(xi,k)σ(w
⊤
j xi,k)

∣∣∣∣∣ (56)

Each fi(xi,k)σ(w
⊤
j xi,k) is sub-Gaussian with mean O(∥wj∥2) and variance O(∥wj∥22). Also, for fixed

fi, the random variables {fi(xi,k)σ(w
⊤
j xi,k)}n1

k=1 are independent. So, we have

∥a1i ∥2 = O(η
√
mtmax

j∈[m]
∥wj∥2)

with probability at least 1 − e−t2 for any t > 0. Union bounding over all i ∈ [T] and setting
t = Θ(

√
log(T) +

√
log(1/δ3)) yields

max
i∈[T]

∥a1i ∥2 = O(η
√
m log(T/δ3) max

j∈[m]
∥wj∥2)

29

with probability at least 1− δ3. Now applying Lemma A.4 and the fact that Ew(δ) holds results in
maxi∈[T] ∥a1i ∥2 = O(ηνw

√
m log(T/δ3)(

√
d+

√
log(m/δ1))) and

max
i∈[T]

∥a1i ∥2∥W0∥2 = O
(
ηνw

√
m log(T/δ3)(

√
d+

√
log(m/δ1))(

√
d+

√
m+

√
log(1/δ1))

)
= O

(
ηνw

√
m log(T/δ3)(

√
d+

√
log(m/δ1))(

√
d+

√
m)
)

(57)

with probability at least 1 − δ3 − 3δ1. Set δ3 + 3δ1 + δ2 ≤ δ, then from (52) and using νw =
O(1

η
√

m log(T/δ)(
√
d+

√
log(m/δ))(

√
d+

√
m)

), we have maxi∈[T] ∥a1i ∥2∥W0∥2 = O(1) and

1

T

T∑
i=1

γi ≤ max
i∈[T]

γi =
2

T

T∑
i=1

exp

(
−1− 2∥a1i ∥2∥W0∥2

c∥a1i ∥22∥W0∥22

)

≤ 2 exp

(
−
1− 2maxi∈[T] ∥a1i ∥2∥W0∥2
cmaxi∈[T] ∥a1i ∥22∥W0∥22

)

≤ 2c′ exp

(
− 1

cmaxi∈[T] ∥a1i ∥22∥W0∥22

)

≤ 2c′ exp

(
− c′′

η2ν2wm log(T/δ)(d+ log(m/δ))(d+m)

)
with probability at least 1− δ, completing the proof in light of (55).

Lemma A.11. For any δ ∈ (0, 1), with probability at least 1−δ, for all neurons j ∈ [m], the gradient
used to compute w1

j satisfies∥∥∥∥∥∇wj L̂(W0,b0, {a1i }Ti=1; {D̂i,W}Ti=1)

+
η

Tn1n2

T∑
i=1

n2∑
l=1

n1∑
k=1

fi(xi,l)fi(xi,k)σ
′(w⊤

j xi,k)σ
′(w⊤

j xi,l)xi,lx
⊤
i,kw

0
j

∥∥∥∥∥
2

= O

(
ηνw(

√
d+

√
log(m/δ))

√
d log(Tn2/δ)

(
1 +

√
log(T/δ)
√
n1

)

×

(
exp

(
− c

η2ν2wm log(T/δ)(d+ log(m/δ))(d+m)

)
+

√
log(1/δ)√
Tn2

))

where c is an absolute constant and σ′(x) = χ{x > 0} denotes the derivative of the ReLU.

Proof. Consider any fixed W0 satisfying Ew(δ1) for δ1 ∈ (0, 1), which occurs with probability at
least 1− 3δ1 by Lemma A.7. For ease of notation we write wj = w0

j . Using Lemma A.9 and the
chain rule,

∇wj L̂(W0,b0, {a1i }Ti=1; {D̂i,W}Ti=1)

= − η

Tn1n2

T∑
i=1

n2∑
l=1

n1∑
k=1

fi(xi,l)fi(xi,k)σ̄(w
⊤
j xi,k)σ

′(w⊤
j xi,l)xi,l

30

+
η

Tn2

T∑
i=1

n2∑
l=1

χ

ηfi(xi,l)

(
1

n1

n1∑
k=1

fi(xi,k)σ̄(W
0xi,k)

)⊤

σ(W0xi,l) > 1


× fi(xi,l)

(
1

n1

n1∑
k=1

fi(xi,k)σ̄(w
⊤
j xi,k)

)
σ′(w⊤

j xi,l)xi,l

= − η

Tn1n2

T∑
i=1

n2∑
l=1

n1∑
k=1

fi(xi,l)fi(xi,k)σ
′(w⊤

j xi,k)σ
′(w⊤

j xi,l)xi,lx
⊤
i,kwj︸ ︷︷ ︸

1

+
η

Tn2

T∑
i=1

n2∑
l=1

χ

ηfi(xi,l)

(
1

n1

n1∑
k=1

fi(xi,k)σ̄(W
0xi,k)

)⊤

σ(W0xi,l) > 1

︸ ︷︷ ︸
2

×fi(xi,l)

(
1

n1

n1∑
k=1

fi(xi,k)σ̄(w
⊤
j xi,k)

)
σ′(w⊤

j xi,l)xi,l︸ ︷︷ ︸
2

(58)

where (58) follows since σ̄(x) = σ′(x)x when σ̄ is the ReLU activation. By (58) and the triangle
inequality we have ∥∇wj L̂(W0,b0, {a1i }Ti=1; {D̂i,W}Ti=1) − 1 ∥2 ≤ ∥ 2 ∥2, so the result follows by
bounding ∥ 2 ∥2. To do this, note that by Hölder’s inequality,

∥ 2 ∥2 ≤

∥∥∥∥∥ η

Tn2

T∑
i=1

n2∑
l=1

χ

ηfi(xi,l)

(
1

n1

n1∑
k=1

fi(xi,k)σ̄(W
0xi,k)

)⊤

σ(W0xi,l) > 1


× fi(xi,l)

(
1

n1

n1∑
k=1

fi(xi,k)σ̄(w
⊤
j xi,k)

)
σ′(w⊤

j xi,l)xi,l

∥∥∥∥∥
2

≤ η
1

Tn2

T∑
i=1

n2∑
l=1

χ

ηfi(xi,l)

(
1

n1

n1∑
k=1

fi(xi,k)σ̄(W
0xi,k)

)⊤

σ(W0xi,l) > 1


× max

i∈[T],l∈[n2]

∥∥∥∥∥
(

1

n1

n1∑
k=1

fi(xi,k)σ̄(w
⊤
j xi,k)

)
σ′(w⊤

j xi,l)xi,l

∥∥∥∥∥
2

≤ η
1

Tn2

T∑
i=1

n2∑
l=1

χ

ηfi(xi,l)

(
1

n1

n1∑
k=1

fi(xi,k)σ̄(W
0xi,k)

)⊤

σ(W0xi,l) > 1

︸ ︷︷ ︸
2a

×max
i∈[T]

∣∣∣∣∣ 1n1
n1∑
k=1

fi(xi,k)σ̄(w
⊤
j xi,k)

∣∣∣∣∣ max
i∈[T],l∈[n2]

∥xi,l∥2︸ ︷︷ ︸
2b

(59)

31

By Lemma A.10, we have

2a = ηO

(
exp

(
− c

η2ν2wm log(T/δ3)(d+ log(m/δ3))(d+m)

))
+ η O

(√
log(1/δ3)√
Tn2

)
(60)

with probability at least 1 − δ3. It remains to control 2b . Fix wj , i, and l, then each random
variable fi(xi,k)σ̄(w

⊤
j xi,k) is sub-Gaussian with mean O(∥wj∥2) and variance O(∥wj∥22), and each

random variable in {fi(xi,k)σ̄(w
⊤
j xi,k)}n1

k=1 is i.i.d. Thus, 1
n1

∑n1
k=1 fi(xi,k)σ̄(w

⊤
j xi,k) is sub-Gaussian

with mean O(∥wj∥2) and variance O
(
∥wj∥22
n1

)
, so, by a union bound over all i ∈ [T],

max
i∈[T]

∣∣∣∣∣ 1n1
n1∑
k=1

fi(xi,k)σ̄(w
⊤
j xi,k)

∣∣∣∣∣ = O

∥wj∥2

1 +

√
log(T/δ2)

n1


= O

νw(√d+√log(m/δ1))

1 +

√
log(T/δ2)

n1

 (61)

with probability at least 1− 3δ1 − δ2. Next, ∥xi,l∥22 is sub-exponential with mean O (d) and variance
O
(
d2
)
. So, with probability at least 1− δ4,

max
i∈[T],l∈[n2]

∥xi,l∥22 = O (d(1 + log(Tn2/δ4))) = O (d log(Tn2/δ4))

=⇒ max
i∈[T],l∈[n2]

∥xi,l∥2 = O
(√

d log(Tn2/δ4)
)

(62)

Combining these bounds via a union bound, applying (59), and setting δ1, δ2, δ3, δ4 = Θ(δ) yields

2 = O

(
ηνw(

√
d+

√
log(m/δ))

√
d log(Tn2/δ)

(
1 +

√
log(T/δ)√

n1

)

×

(
exp

(
− c

η2ν2wm log(T/δ)(d+ log(m/δ))(d+m)

)
+

√
log(1/δ)√
Tn2

))

for an absolute constant c with probability at least 1− δ, completing the proof.

Lemma A.12. For any δ ∈ (0, 1), with probability at least 1− δ, for all j ∈ [m],∥∥∥∥∥ 1

Tn1n2

T∑
i=1

n2∑
l=1

n1∑
k=1

fi(xi,l)fi(xi,k)σ
′((w0

j)
⊤xi,k)σ

′((w0
j)

⊤xi,l)xi,lx
⊤
i,kw

0
j

− Ei∼T E(x,fi(x))∼Di
E(x′,fi(x′))∼Di

[
fi(x)fi(x

′)σ′((w0
j)

⊤x′)σ′((w0
j)

⊤x′)x(x′)⊤w0
j

] ∥∥∥∥∥
2

= O

(
νw

√
d+ log(m/δ)

T
log(d/δ)

(√
r log(m/δ) +

√
d

n2

))
.

Proof. For ease of notation we replace E(x,fi(x))∼Di
E(x′,fi(x′))∼Di

with Ex,x′ and Ei∼T with Ei, and
write wj = w0

j . Consider any fixed W0 satisfying Ew(δ1) for δ1 ∈ (0, 1), which occurs with

32

probability at least 1− 3δ1 by Lemma A.7. We have∥∥∥∥∥ 1

Tn1n2

T∑
i=1

n2∑
l=1

n1∑
k=1

fi(xi,l)fi(xi,k)σ
′(w⊤

j xi,k)σ
′(w⊤

j xi,l)xi,lx
⊤
i,kwj

− EiEx,x′

[
fi(x)fi(x

′)σ′(w⊤
j x

′)σ′(w⊤
j x

′)x(x′)⊤wj

] ∥∥∥∥∥
2

=

∥∥∥∥∥ 1T
T∑
i=1

qi − EiEx,x′

[
fi(x)fi(x

′)σ′(w⊤
j x

′)σ′(w⊤
j x

′)x(x′)⊤wj

]∥∥∥∥∥
2

(63)

where qi :=
1

n1n2

∑n2
l=1

∑n1
k=1 fi(xi,l)fi(xi,k)σ

′(w⊤
j xi,k)σ

′(w⊤
j xi,l)xi,lx

⊤
i,kwj . By the linearity of the

expectation,

E[qi] =
1

n1n2

n2∑
l=1

n1∑
k=1

EiExi,l,xi,k
[fi(xi,l)fi(xi,k)σ

′(w⊤
j xi,k)σ

′(w⊤
j xi,l)xi,lx

⊤
i,kwj]

= EiEx,x′

[
fi(x)fi(x

′)σ′(w⊤
j x

′)σ′(w⊤
j x

′)x(x′)⊤wj

]
(64)

which means that the random vectors qi − EiEx,x′

[
fi(x)fi(x

′)σ′(w⊤
j x

′)σ′(w⊤
j x

′)x(x′)⊤wj

]
= qi −

E[qi] in (63) are mean zero. Next we bound ∥ 1
T

∑T
i=1 qi − E[qi]∥2 by bounding each coordinate

of 1
T

∑T
i=1 qi − E[qi] separately. Let qi,h denote the h-th entry of qi, and xi,l,h denote the h-th

entry of xi,l. Note that each qi,h is the sum of products of two sub-Gaussian random variables
(fi(xi,l)σ

′(w⊤
j xi,l)xi,l,h and fi(xi,k)σ

′(w⊤
j xi,k)x

⊤
i,kwj), so qi,h is the sum of sub-exponential random

variables and is therefore sub-exponential. Its variance is upper bounded by:

E
[
(qi,h − E[qi,h])2

]
= E

((1

n2

n2∑
l=1

fi(xi,l)σ
′(w⊤

j xi,l)xi,l,h

)(
1

n1

n1∑
k=1

fi(xi,k)σ
′(w⊤

j xi,k)x
⊤
i,kwj

)
− E[qi,h]

)2


≤ 4Ei,D̂i,D̂′
i

[((
1

n2

n2∑
l=1

fi(xi,l)σ
′(w⊤

j xi,l)xi,l,h

)(
1

n1

n1∑
k=1

fi(xi,k)σ
′(w⊤

j xi,k)x
⊤
i,kwj

)
︸ ︷︷ ︸

1

−Ex

[
fi(x)σ

′(w⊤
j x)xh

](1

n1

n1∑
k=1

fi(xi,k)σ
′(w⊤

j xi,k)x
⊤
i,kwj

))2]
︸ ︷︷ ︸

1

+ 4Ei,D̂′
i

[(
Ex

[
fi(x)σ

′(w⊤
j x)xh

](1

n1

n1∑
k=1

fi(xi,k)σ
′(w⊤

j xi,k)x
⊤
i,kwj

)
︸ ︷︷ ︸

2

−Ex

[
fi(x)σ

′(w⊤
j x)xh

]
Ex′

[
fi(x

′)σ′(w⊤
j x

′)(x′)⊤wj

])2]
︸ ︷︷ ︸

2

33

+ 2Ei

[(
Ex

[
fi(x)σ

′(w⊤
j x)xh

]
Ex′

[
fi(x

′)σ′(w⊤
j x

′)(x′)⊤wj

]
︸ ︷︷ ︸

3

−Ei

[
Ex

[
fi(x)σ

′(w⊤
j x)xh

]
Ex′

[
fi(x

′)σ′(w⊤
j x

′)(x′)⊤wj

]])2]
︸ ︷︷ ︸

3

(65)

where (65) follows from the triangle inequality and the fact that (a+ b)2 ≤ 2a2 + 2b2. To bound 1 ,
first let si := Ex

[
fi(x)σ

′(w⊤
j x)xh

]
and si,h be its h-th element. Also denote s2h := Ei[s

2
i,h]. Observe

that

1 = Ei,D̂i,D̂′
i

[(
1

n2

n2∑
l=1

fi(xi,l)σ
′(w⊤

j xi,l)xi,l,h − si,h

)2(
1

n1

n1∑
k=1

fi(xi,k)σ
′(w⊤

j xi,k)x
⊤
i,kwj

)2]

≤ Ei,Di

[(
1

n2

n2∑
l=1

fi(xi,l)σ
′(w⊤

j xi,l)xi,l,h − si,h

)4]1/2

× ED̂i

[(
1

n1

n1∑
k=1

fi(xi,k)σ
′(w⊤

j xi,k)x
⊤
i,kwj

)4]1/2
(66)

= Ei,Di

[(
1

n2

n2∑
l=1

fi(xi,l)σ
′(w⊤

j xi,l)xi,l,h − si,h

)4]1/2
O
(
∥wj∥22

)
(67)

= O

(
∥wj∥22
n2

)
(68)

= O

(
ν2w

d+ log(m/δ1)

n2

)
(69)

where (66) follows by the Cauchy-Schwarz inequality, (67) follows since

1

n1

n1∑
k=1

fi(xi,k)σ
′(w⊤

j xi,k)x
⊤
i,kwj

is sub-Gaussian with mean O(∥wj∥2) and variance O(
∥wj∥22
n1

), and (68) follows since

1

n2

n2∑
l=1

fi(xi,l)σ
′(w⊤

j xi,l)xi,l,h − si,h

is sub-Gaussian with mean zero and variance O(1
n2
Ex[fi(x)

2σ′(w⊤
j x)x

2
h]) = O(1

n2
). To bound 2 ,

consider that

2 = Ei,D̂′
i[

Ex

[
fi(x)σ

′(w⊤
j x)xh

]2(1

n1

n1∑
k=1

fi(xi,k)σ
′(w⊤

j xi,k)x
⊤
i,kwj − Ex′

[
fi(x

′)σ′(w⊤
j x

′)(x′)⊤wj

])2]

= Ei

s2i,hED̂′
i

(1

n1

n1∑
k=1

fi(xi,k)σ
′(w⊤

j xi,k)x
⊤
i,kwj − Ex′

[
fi(x

′)σ′(w⊤
j x

′)(x′)⊤wj

])2


34

≤ Ei

s2i,hmax
i′

ED̂′
i′

(1

n1

n1∑
k=1

fi′(xi′,k)σ
′(w⊤

j xi′,k)x
⊤
i′,kwj − Ex′

[
fi′(x

′)σ′(w⊤
j x

′)(x′)⊤wj

])2

(70)

= Ei

[
s2i,h
]
max
i′

ED̂′
i′

(1

n1

n1∑
k=1

fi′(xi′,k)σ
′(w⊤

j xi′,k)x
⊤
i′,kwj − Ex′

[
fi′(x

′)σ′(w⊤
j x

′)(x′)⊤wj

])2


= Ei

[
s2i,h
]
O

(
ν2w

d+ log(m/δ1)

n1

)
(71)

= O

(
s2hν

2
w

d+ log(m/δ1)

n1

)
where (70) follows since s2i,h ≥ 0 and

ED̂′
i′

[(
1
n1

∑n1
k=1 fi′(xi′,k)σ

′(w⊤
j xi′,k)x

⊤
i′,kwj − Ex′

[
fi′(x

′)σ′(w⊤
j x

′)(x′)⊤wj

])2]
≥ 0, and (71) fol-

lows since for all i′, 1
n1

∑n1
k=1 fi′(xi′,k)σ

′(w⊤
j xi′,k)x

⊤
i′,kwj − Ex′

[
fi′(x

′)σ′(w⊤
j x

′)(x′)⊤wj

]
is sub-

Gaussian with mean zero and variance O(
∥wj∥22
n1

) = O(dν
2
w

n1
). To control 3 , note that

3 = Ei

[(
Ex

[
fi(x)σ

′(w⊤
j x)xh

]
Ex′

[
fi(x

′)σ′(w⊤
j x

′)(x′)⊤wj

])2]
− Ei

[
Ex

[
fi(x)σ

′(w⊤
j x)xh

]
Ex′

[
fi(x

′)σ′(w⊤
j x

′)(x′)⊤wj

]]2
= Ei

[
s2i,hEx′

[
fi(x

′)σ′(w⊤
j x

′)(x′)⊤wj

]2]
≤ Ei

[
s2i,hmax

i′
Ex′

[
fi′(x

′)σ′(w⊤
j x

′)(x′)⊤wj

]2]
= Ei[s

2
i,h] max

i′
Ex′

[
fi′(x

′)σ′(w⊤
j x

′)(x′)⊤wj

]2]
= Ei

[
s2i,h

]
O(ν2w(d+ log(m/δ1)))

= O(s2hν
2
w(d+ log(m/δ1))) (72)

Combining the bounds on 1 , 2 and 3 yields E
[
(qi,h − E[qi,h])2

]
= O(ν2w(d+log(m/δ1))(s2h+

1
n2
)),

therefore, since each random variable in {qi,h}Ti=1 is i.i.d., Bernstein’s inequality gives

P{qi,h}i

(∣∣∣∣∣ 1T
T∑
i=1

qi,h − E[qi,h]

∣∣∣∣∣ > th

)

≤ 2 exp

−cT min

 t2h

ν2w(d+ log(m/δ1))(s2h +
1
n2
)
,

th

νw
√
d+ log(m/δ1)

√
s2h +

1
n2

 (73)

with probability at least 1− 3δ1 over the selection of W0 for an absolute constant c and any th ≥ 0.

Set th = O

(
νw

√
d+log(m/δ1)

T (s2h +
1
n2
) log(d/δ)

)
for all h ∈ [d], then as long as T ≥ log(d/δ2), via a

union bound over all h ∈ [d] we have∥∥∥∥∥ 1T
T∑
i=1

qi − E[qi]

∥∥∥∥∥
2

=

 d∑
h=1

(
1

T

T∑
i=1

qi,h − E[qi,h]

)2
1/2

35

≤ c

(
d∑

h=1

ν2w
d+ log(m/δ1)

T

(
s2h +

1

n2

)
log(d/δ2)

)1/2

(74)

= cνw

√
d+ log(m/δ1)

T
log(d/δ2)

(
d∑

h=1

s2h +
d

n2

)1/2

= cνw

√
d+ log(m/δ1)

T
log(d/δ2)

(
Ei

[
d∑

h=1

s2i,h

]
+

d

n2

)1/2

= cνw

√
d+ log(m/δ1)

T
log(d/δ2)

(
Ei

[
∥si∥22

]
+

d

n2

)1/2

≤ c′νw

√
d+ log(m/δ1)

T
log(d/δ2)

(
r +

r∥Mwj∥22
∥M⊥wj∥22

+ ∥Mwj∥22 +
d

n2

)1/2

(75)

≤ c′νw

√
d+ log(m/δ1)

T
log(d/δ2)

(
r(1 + log(m/δ1)) +

d

n2

)1/2

(76)

= O

(
νw

√
d+ log(m/δ1)

T
log(d/δ2)

(√
r log(m/δ1) +

√
d

n2

))

with probability at least 1− 3δ1 − δ2 for absolute constants c, c′, where (74) follows with probability
at least 1− 3δ1 − δ2 due to (73) and our choice of th, (75) follows by Lemma A.3 and the fact that
(a+ b)2 ≤ 2a2 + 2b2, and (76) follows since wj ∈ Gw. Setting δ1, δ2 = Θ(δ) completes the proof.

Lemma A.13. For any δ ∈ (0, 1), with probability at least 1− δ, for all j ∈ [m],

∇wj L̂(W0,b0, {a1i }Ti=1; {D̂i,W}Ti=1) = −η2−rA(w0
j)w

0
j + ηe (77)

where

∥e∥2 = νw O

(
(
√
d+

√
log(m/δ))

√
d log(Tn2/δ)

(
1 +

√
log(T/δ)
√
n1

)

×

(
exp

(
− c

η2ν2wm log(T/δ)(d+ log(m/δ))(d+m)

)
+

√
log(1/δ)√
Tn2

))

+ νw O

(√
d+ log(m/δ)

T
log(d/δ)

(√
r log(m/δ) +

√
d

n2

))
(78)

and for a vector w ∈ Rd,

A(w) := Eu

[
Ex,x′

[
σ′(w⊤x′)σ′(w⊤x)x(x′)⊤| sign(Mx) = sign(Mx′) = u

]]
(79)

where u ∼ Unif(Hr) is a random vector drawn uniformly from the Rademacher hypercube in r
dimensions.

Proof. Let wj = w0
j . We have

∇wj L̂(W0,b0, {a1i }Ti=1; {D̂i,W}Ti=1)

36

= − η

Tn1n2

T∑
i=1

n2∑
l=1

n1∑
k=1

fi(xi,l)fi(xi,k)σ
′(w⊤

j xi,k)σ
′(w⊤

j xi,l)xi,lx
⊤
i,kwj + ηe1

= −ηEi∼T E(x,fi(x))∼Di
E(x′,fi(x′))∼Di

[
fi(x)fi(x

′)σ′(w⊤
j x)σ

′(w⊤
j x

′)x(x′)⊤wj

]
+ ηe1 + ηe2 (80)

where

∥e1∥2 = O

(
νw(

√
d+

√
log(m/δ1))

√
d log(Tn2/δ1)

(
1 +

√
log(T/δ1)√

n1

)

×

(
exp

(
− c

η2ν2wm(log(T/δ1))(d+ log(m/δ1))(d+m)

)
+

√
log(1/δ1)√
Tn2

))

with probability at least 1− δ1 by Lemma A.11 and

∥e2∥2 = O

(
νw

√
d+ log(m/δ2)

T
log(d/δ2)

(√
r log(m/δ2) +

√
d

n2

))
(81)

with probability at least 1− δ2 by Lemma A.12. Set δ1, δ2 = Θ(δ) and apply the triangle inequality
to complete the bound on ∥e∥2 = ∥e1 + e2∥2 in the theorem statement.

Next, for ease of notation we replace E(x,fi(x))∼Di
E(x′,fi(x′))∼Di

with Ex,x′ and Ei∼T with Ei. Also,
let u ∼ Unif(Hr) be uniformly drawn from the r-dimensional Rademacher hypercube Hr = {−1, 1}r.
We have

EiEx,x′

[
fi(x)fi(x

′)σ′(w⊤
j x)σ

′(w⊤
j x

′)x(x′)⊤wj

]
= Ex,x′

[
Ei[fi(x)fi(x

′)]σ′(w⊤
j x)σ

′(w⊤
j x

′)x(x′)⊤wj

]
= Ex,x′

[
χ{sign(Mx) = sign(Mx′)}σ′(w⊤

j x
′)σ′(w⊤

j x)x(x
′)⊤wj

]
= 2−rEu

[
Ex,x′

[
σ′(w⊤

j x
′)σ′(w⊤

j x)x(x
′)⊤| sign(Mx) = sign(Mx′) = u

]]
wj

= −2−rA(wj)wj (82)

where (82) follows by the definition of A(w).

A.3 Analysis of the population gradient

Next we define matrices capturing the energy of A(wj) in the ground-truth subspace and its
perpendicular complement. Again let u ∼ Unif(Hr) be a random variable drawn uniformly from the
Rademacher hypercube in r dimensions, and x and x′ be drawn independently from N (0d, Id), then
for any w ∈ Rd the matrices A||,||(w), A||,⊥(w), A⊥,||(w), and A⊥,⊥(w) are defined as

A||,||(w) = MA(w)M⊤

= Eu

[
Ex,x′

[
σ′(w⊤x)σ′(w⊤x′)Mx(x′)⊤M⊤| sign(Mx) = sign(Mx′) = u

]]
(83)

A||,⊥(w) = MA(w)M⊤
⊥

= Eu

[
Ex,x′

[
σ′(w⊤x)σ′(w⊤x)Mx(x′)⊤M⊤

⊥| sign(Mx) = sign(Mx′) = u
]]

(84)

37

A⊥,||(w) = M⊥A(w)M⊤

= Eu

[
Ex,x′

[
σ′(w⊤x)σ′(w⊤x′)M⊥x(x

′)⊤M⊤| sign(Mx) = sign(Mx′) = u
]]

(85)

A⊥,⊥(w) = M⊥A(w)M⊤
⊥

= Eu

[
E,x,x′

[
σ′(w⊤x)σ′(w⊤x′)M⊥x(x

′)⊤M⊤
⊥| sign(Mx) = sign(Mx′) = u

]]
(86)

Next we control the matrices A||,||(w), A||,⊥(w), A⊥,||(w), and A⊥,⊥(w).

Lemma A.14. For any δ ∈ (0, 1) such that δ = Ω(me−d), then if w ∈ Gw(δ), we have∥∥∥∥A∥,∥(w)− 1

2π
Ir

∥∥∥∥
2

= O

(
r3 + log3(m/δ)

d

)
. (87)

Proof. Recall that u is drawn uniformly from Hr. From Lemma A.13, we have

A∥,∥(w)

= Eu

[
Ex,x′

[
σ′(w⊤x′)σ′(w⊤x)Mx(Mx′)⊤| sign(Mx′) = sign(Mx) = u

]]
= Eu

[
EMx,Mx′

[
EM⊥x,M⊥x′

[
σ′(w⊤x′)σ′(w⊤x)

]
Mx(Mx′)⊤| sign(Mx′) = sign(Mx) = u

]]
= Eu

[
EMx,Mx′

[
Mx(x′)⊤M⊤PM⊥x

[
w⊤M⊤

⊥M⊥x > −w⊤M⊤Mx
]

× PM⊥x′

[
w⊤M⊤

⊥M⊥x
′ > −w⊤M⊤Mx′

]
| sign(Mx′) = sign(Mx) = u

]]
= Eu,Mx,Mx′

[
Mx(x′)⊤M⊤

(
1

2
+

1

2
erf

(
w⊤M⊤Mx√
2∥M⊥w∥2

))
(
1

2
+

1

2
erf

(
w⊤Mx′

√
2∥M⊥w∥2

))
| sign(Mx′) = sign(Mx) = u

]
(88)

=
1

4
Eu,Mx,Mx′

[
Mx(x′)⊤M⊤| sign(Mx′) = sign(Mx) = u

]
+

1

2
Eu,Mx,Mx′

[
Mx(x′)⊤M⊤ erf

(
w⊤M⊤Mx√
2∥M⊥w∥2

)
| sign(Mx′) = sign(Mx) = u

]
+

1

4
Eu,Mx,Mx′[

Mx(x′)⊤M⊤ erf

(
w⊤M⊤Mx√
2∥M⊥w∥2

)
erf

(
w⊤M⊤Mx′
√
2∥M⊥w∥2

)
| sign(Mx′) = sign(Mx) = u

]
(89)

where (88) follows using the Gaussian CDF. For the first term in (89), we can re-write Mx conditioned
on sign(Mx) = u as diag(u)|Mx|, where | · | denotes element-wise absolute value, to obtain

1

4
Eu,Mx,Mx′

[
Mx(x′)⊤M⊤| sign(Mx′) = sign(Mx) = u

]
=

1

4
Eu,Mx,Mx′

[
diag(u)|Mx||Mx′|⊤ diag(u)

]
=

1

4
Eu

[
diag(u)EMx [|Mx|]EMx′

[
|Mx′|

]⊤
diag(u)

]
38

=
1

2π
Eu

[
diag(u)1r1

⊤
r diag(u)

]
(90)

=
1

2π
Eu

[
uu⊤

]
=

1

2π
Ir (91)

where (90) follows since each element of |Mx| and |Mx′| is a standard half-normal random variable.
For the second term in (89), we have

1

2
Eu,Mx,Mx′

[
Mx(x′)⊤M⊤ erf

(
w⊤M⊤Mx√
2∥M⊥w∥2

)
| sign(Mx′) = sign(Mx) = u

]
=

1

2
Eu,Mx,Mx′

[
diag(u)|Mx||Mx′|⊤ diag(u) erf

(
w⊤M⊤ diag(u)|Mx|√

2∥M⊥w∥2

)]
(92)

=
1

2
Eu,Mx,Mx′

[
diag(−u)|Mx||Mx′|⊤ diag(−u) erf

(
w⊤M⊤ diag(−u)|Mx|√

2∥M⊥w∥2

)]
(93)

= −1

2
Eu,Mx,Mx′

[
diag(u)|Mx||Mx′|⊤ diag(u) erf

(
w⊤M⊤ diag(u)|Mx|√

2∥M⊥w∥2

)]
(94)

= 0 (95)

where (93) follows from the fact that u and −u have the same distribution, (94) follows since erf()
is an odd function, and (95) follows since x = −x ⇐⇒ x = 0.

The final term in (89) is

Eu,Mx,Mx′

[
Mx(x′)⊤M⊤ erf

(
w⊤M⊤Mx√
2∥M⊥w∥2

)
erf

(
w⊤M⊤Mx′
√
2∥M⊥w∥2

)
| sign(Mx′) = sign(Mx) = u

]
= Eu

[
EMx

[
Mx erf

(
w⊤M⊤Mx√
2∥M⊥w∥2

) ∣∣∣∣ sign(Mx) = u

]

× EMx′

[
(x′)⊤M⊤ erf

(
w⊤M⊤Mx′
√
2∥M⊥w∥2

) ∣∣∣∣ sign(Mx′) = u

]]
(96)

Again to remove the conditioning, we can equivalently write

EMx

[
Mx erf

(
w⊤M⊤Mx√
2∥M⊥w∥2

) ∣∣∣∣ sign(Mx) = u

]
= EMx

[
diag(u)|Mx| erf

(
w⊤M⊤diag(u)|Mx|√

2∥M⊥w∥2

)]
(97)

For all u ∈ Hr, we have∥∥∥∥EMx

[
diag(u)|Mx| erf

(
w⊤M⊤diag(u)|Mx|√

2∥M⊥w∥2

)]∥∥∥∥
2

≤ EMx

[∥∥∥∥diag(u)|Mx| erf
(
w⊤M⊤diag(u)|Mx|√

2∥M⊥w∥2

)∥∥∥∥
2

]

≤ EMx

[
∥diag(u)|Mx|∥2

∣∣∣∣erf (w⊤M⊤diag(u)|Mx|√
2∥M⊥w∥2

)∣∣∣∣]

39

≤ EMx

[
∥diag(u)|Mx|∥2

∣∣∣∣w⊤M⊤diag(u)|Mx|
∥M⊥w∥2

∣∣∣∣] (98)

≤ ∥diag(u)∥2 EMx

[
∥Mx∥22

] ∥w⊤M⊤diag(u)∥2
∥M⊥w∥2

≤
cr(

√
r +

√
log(m/δ))√
d

(99)

for an absolute constant c, where (98) follows since | erf(x)| ≤
√
2|x|, and (99) follows since w ∈ Gw(δ).

and m/δ = O(ed), thus ∥M⊥w∥2 = Ω(
√
d). Therefore, using (96),∥∥∥∥Eu,Mx,Mx′

[
Mx(x′)⊤M⊤ erf

(
w⊤M⊤Mx√
2∥M⊥w∥2

)
erf

(
w⊤M⊤Mx′
√
2∥M⊥w∥2

)
| sign(Mx′) = sign(Mx) = u

]∥∥∥∥
2

≤ c′r3 + c′ log3(m/δ)

d
(100)

completing the proof.

Lemma A.15. For any δ ∈ (0, 1) such that δ = Ω(me−d), then if w ∈ Gw(δ), we have∥∥∥∥A⊥,⊥(w)−
(
1− ∥Mw∥22

∥M⊥w∥22

)
M⊥ww⊤M⊤

⊥
2π∥M⊥w∥22

∥∥∥∥
2

≤ O

(
r4 + log4(m/δ)

d2

)
. (101)

Proof. We have

A⊥,⊥(w)

= Eu

[
Ex,x′

[
M⊥x(M⊥x

′)⊤σ′(w⊤x′)σ′(w⊤x)| sign(Mx′) = sign(Mx) = u
]]

= Eu,Mx,Mx′

[
EM⊥x,M⊥x′

[
M⊥x(M⊥x

′)⊤σ′(w⊤x′)σ′(w⊤x)
]
| sign(Mx′) = sign(Mx) = u

]
= Eu,Mx,Mx′

[
EM⊥x

[
M⊥xσ

′(w⊤x)
]
EM⊥x′

[
(M⊥x

′)⊤σ′(w⊤x′)
]
| sign(Mx′) = sign(Mx) = u

]
(102)

Using Lemma A.2 to compute EM⊥x

[
M⊥xσ

′(w⊤x)
]

and EM⊥x′
[
(M⊥x

′)⊤σ′(w⊤x′)
]

yields

A⊥,⊥(w)

= Eu,Mx,Mx′

[
exp

(
−(x⊤M⊤Mw)2 + ((x′)⊤M⊤Mw)2

2∥M⊥w∥22

) ∣∣∣∣ sign(Mx′) = sign(Mx) = u

]
× 1

2π∥M⊥w∥22
M⊥ww⊤M⊤

⊥ (103)

We analyze the scalar term in the top line. We have

Eu

[
EMx,Mx′

[
exp

(
−(x⊤M⊤Mw)2 + ((x′)⊤M⊤Mw)2

2∥M⊥w∥22

) ∣∣∣∣ sign(Mx′) = sign(Mx) = u

]]
= Eu

[
EMx

[
exp

(
−(x⊤M⊤Mw)2

2∥M⊥w∥22

) ∣∣∣∣ sign(Mx) = u

]

× EMx′

[
exp

(
−((x′)⊤M⊤Mw)2

2∥M⊥w∥22

) ∣∣∣∣ sign(Mx′) = u

]]

40

= Eu

[
EMx

[
exp

(
−(x⊤M⊤Mw)2

2∥M⊥w∥22

) ∣∣∣∣ sign(Mx) = u

]2]
(104)

where, using the Taylor expansion of exp(−x2) and re-writing Mx conditioned on {sign(Mx) = u}
as diag(u)|Mx|,

EMx

[
exp

(
−(x⊤M⊤Mw)2

2∥M⊥w∥22

) ∣∣∣∣ sign(Mx) = u

]
= EMx

[
exp

(
−(|Mx|⊤diag(u)Mw)2

2∥M⊥w∥22

)]
= 1− 1

2∥M⊥w∥22
EMx

[
(|Mx|⊤ diag(u)Mw)2

]
+O

(
r4 + log4(m/δ)

d2

)
(105)

where (105) follows since ∥M⊥w∥22 = Ω((
√
d−

√
log(m/δ))4) = Ω(d2) and

EMx[(|Mx|⊤diag(u)Mw)4] ≤ EMx[∥Mx∥42]∥Mw∥42 = O(r4 + log4(m/δ))

since w ∈ Gw. To compute the second term in (105), note that

EMx

[
(|Mx|⊤diag(u)Mw)2

]
= w⊤M⊤diag(u)EMx

[
|Mx||Mx|⊤

]
diag(u)Mw

= w⊤M⊤diag(u)
(
2

π
1r1

⊤
r +

(
1− 2

π

)
Ir

)
diag(u)Mw

= w⊤M⊤
(
2

π
uu⊤ +

(
1− 2

π

)
Ir

)
Mw

therefore

Eu

[
EMx

[
exp

(
−(x⊤M⊤Mw)2

2∥M⊥w∥22

) ∣∣∣∣ sign(Mx) = u

]2]

= Eu

[(
1− 1

2∥M⊥w∥22
w⊤M⊤

(
2

π
uu⊤ +

(
1− 2

π

)
Ir

)
Mw +O

(
r4 + log4(m/δ)

d2

))2
]

= 1− 1

∥M⊥w∥22
w⊤M⊤

(
2

π
Eu[uu

⊤] +

(
1− 2

π

)
Ir

)
Mw

+
1

4∥M⊥w∥42
w⊤M⊤Eu

[(
2

π
uu⊤ +

(
1− 2

π

)
Ir

)
Mww⊤M⊤

(
2

π
uu⊤ +

(
1− 2

π

)
Ir

)]
Mw

+O

(
r4 + log4(m/δ)

d2

)
= 1− ∥Mw∥22

∥M⊥w∥22
+

(
(1− 2

π)
2 + 4

π

(
1− 2

π

))
∥Mw∥42

4∥M⊥w∥42

+
4

π2
w⊤M⊤Eu

[
uu⊤Mww⊤M⊤uu⊤

]
Mw +O

(
r4 + log4(m/δ)

d2

)
= 1− ∥Mw∥22

∥M⊥w∥22
+

(
(1− 2

π)
2 + 4

π

(
1− 2

π

))
∥Mw∥42

4∥M⊥w∥42

+
1

π2∥M⊥w∥42
w⊤M⊤Eu

[
uu⊤(u⊤Mw)2

]
Mw +O

(
r4 + log4(m/δ)

d2

)
41

= 1− ∥Mw∥22
∥M⊥w∥22

+

(
(1− 2

π)
2 + 4

π

(
1− 2

π

))
∥Mw∥42

4∥M⊥w∥42

+
1

π2∥M⊥w∥42
w⊤M⊤

(
∥Mw∥22Ir + 2Mww⊤M⊤ − diag(Mw)2

)
Mw +O

(
r4 + log4(m/δ)

d2

)
= 1− ∥Mw∥22

∥M⊥w∥22
+

(
(1− 2

π)
2 + 4

π

(
1− 2

π

))
∥Mw∥42

4∥M⊥w∥42
+

3∥Mw∥42 − ∥Mw∥44
π2∥M⊥w∥42

+O

(
r4 + log4(m/δ)

d2

)
= 1− ∥Mw∥22

∥M⊥w∥22
+O

(
r4 + log4(m/δ)

d2

)
,

where we have used w ∈ Gw(δ) and m/δ = O(ed). Combining this with (103) and (104) completes
the proof.

Lemma A.16. For any δ ∈ (0, 1) such that δ = Ω(me−d), then if w ∈ Gw(δ), we have∥∥∥∥A∥,⊥(w)−
Mww⊤M⊤

⊥
2π∥M⊥w∥22

∥∥∥∥
2

≤ O

(
r3.5 + log3.5(m/δ)

d1.5

)
(106)

Proof. Arguing similarly to the previous two lemmas, we obtain

A∥,⊥(w) = Eu,x,x′

[
Mx(M⊥x

′)⊤σ′(w⊤x′)σ′(w⊤x)| sign(Mx′) = sign(Mx) = u
]

= Eu,x,Mx′

[
Mxσ′(w⊤x)EM⊥x′

[
(M⊥x

′)⊤σ′(w⊤x′)
]
| sign(Mx′) = sign(Mx) = u

]
= Eu,x,Mx′

[
Mxσ′(w⊤x) exp

(
−((x′)⊤M⊤Mw)2

2∥M⊥w∥22

)
| sign(Mx′) = sign(Mx) = u

]
×

w⊤M⊤
⊥√

2π∥M⊥w∥2
(107)

where (107) follows by Lemma A.2. Next, since the only term that depends on M⊥x is σ′(w⊤x), we
have

A⊥,⊥(w)

= Eu,Mx,Mx′

[
MxEM⊥x[σ

′(w⊤x)] exp

(
−((x′)⊤M⊤Mw)2

2∥M⊥w∥22

)
| sign(Mx′) = sign(Mx) = u

]
×

w⊤M⊤
⊥√

2π∥M⊥w∥2

= Eu,Mx,Mx′

[
MxPM⊥x[w

⊤M⊤
⊥M⊥x > −w⊤M⊤Mx] exp

(
−((x′)⊤M⊤Mw)2

2∥M⊥w∥22

)
| sign(Mx′) = sign(Mx) = u

]
×

w⊤M⊤
⊥√

2π∥M⊥w∥2

= Eu,Mx,Mx′

[
Mx

(
1

2
+

1

2
erf

(
x⊤M⊤Mw√
2∥M⊥w∥2

))
exp

(
−((x′)⊤M⊤Mw)2

2∥M⊥w∥22

)
| sign(Mx′) = sign(Mx) = u

]
42

×
w⊤M⊤

⊥√
2π∥M⊥w∥2

(108)

where (108) is due to the Gaussian CDF. Note that

Eu,Mx,Mx′

[
Mx exp

(
−((x′)⊤M⊤Mw)2

2∥M⊥w∥22

)
| sign(Mx′) = sign(Mx) = u

]
= Eu,Mx,Mx′

[
diag(u)|Mx| exp

(
−(|Mx′|⊤ diag(u)Mw)2

2∥M⊥w∥22

)]
= EMx,Mx′

[
Eu

[
diag(u)|Mx|

(
1− (|Mx′|⊤ diag(u)Mw)2

2∥M⊥w∥22
+

(|Mx′|⊤ diag(u)Mw)4

2∥M⊥w∥42
− . . .

)]]
(109)

= 0 (110)

where (110) follows since each term in (109) is an odd power of u. Thus, from (108) we have

A∥,⊥(w) = Eu,Mx,Mx′

[
Mx erf

(
x⊤M⊤Mw√
2∥M⊥w∥2

)
exp

(
−((x′)⊤M⊤Mw)2

2∥M⊥w∥22

)
| sign(Mx′) = sign(Mx) = u

]
×

w⊤M⊤
⊥

2
√
2π∥M⊥w∥2

(111)

Next we take the Taylor expansions of erf(x) and exp(−x2) to obtain

A∥,⊥(w) = Eu,Mx,Mx′

[
Mx

(
x⊤M⊤Mw

∥M⊥w∥2
− (x⊤M⊤Mw)3

6∥M⊥w∥32
+ . . .

)

×
(
1− ((x′)⊤M⊤Mw)2

2∥M⊥w∥22
+ . . .

)
| sign(Mx′) = sign(Mx) = u

]
w⊤M⊤

⊥
2π∥M⊥w∥2

= Eu,Mx,Mx′

[
Mxx⊤M⊤| sign(Mx′) = sign(Mx) = u

]Mww⊤M⊤
⊥

2π∥M⊥w∥22
+E

= EMx

[
Mxx⊤M⊤

]Mww⊤M⊤
⊥

2π∥M⊥w∥22
+E

=
Mww⊤M⊤

⊥
2π∥M⊥w∥22

+E

where ∥E∥2 = O
(
r3.5+log3.5(m/δ)

d1.5

)
since ∥M⊥w∥2 = Ω(

√
d) and ∥Mw∥2 = O(

√
r +

√
log(m/δ)) as

w ∈ Gw(δ) and m/δ = O(ed).

A.4 Full results

Lemma A.17. Set η = Θ(1) and λw = 1
η + η

2r+1π
. Consider any δ ∈ (0, 1) such that δ = Ω(me−d).

Then there is an absolute constant c such that for all j ∈ [m],∥∥∥∥∥Mw1
j −

η2

2r+2
Mw0

j

∥∥∥∥∥
2

43

≤ η2νwO

(
r4 + log4(m)

2rd

)
+ η2νw O

(√
d

T
log(d/δ)

(√
r log(m/δ) +

√
d

n2

))
+ η2νw

×O

(
d
√

log(Tn2/δ)

(
1 +

√
log(T/δ)
√
n1

)(
exp

(
− c

η2ν2wlog(T/δ)dm(d+m)

)
+

√
log(1/δ)√
Tn2

))
(112)

and∥∥∥∥M⊥w
1
j

∥∥∥∥
2

≤ η2νw O

(
r3.5 + log3.5(m)

2rd1.5

)
+ η2νw O

(√
d

T
log(d/δ)

(√
r log(m/δ) +

√
d

n2

))
+ η2νw

×O

(
d
√
log(Tn2/δ)

(
1 +

√
log(T/δ)
√
n1

)(
exp

(
− c

η2ν2wlog(T/δ)dm(d+m)

)
+

√
log(1/δ)√
Tn2

))

with probability at least 1− δ.

Proof. First note that W0 ∈ Ew(δ1) with probability at least 1− δ1 by Lemma A.7. We consider
any fixed W0 satisfying Ew(δ1) for the rest of the proof. Due to the computation of the gradient in
Lemma A.13, we have

w1
j = (1− ηλw)w

0
j −∇wj L̂(W0,b0, {a1i }Ti=1; {D̂i,W}Ti=1)

= (1− ηλw)w
0
j + η22−rA(w0

j)w
0
j + ηe

Mw1
j = (1− ηλw)Mw0

j + η22−rA∥,∥(w
0
j)Mw0

j + η22−rA∥,⊥(w
0
j)M⊥w

0
j + ηMe

M⊥w
1
j = (1− ηλw)M⊥w

0
j + η22−rA⊥,∥(w

0
j)Mw0

j + η22−rA⊥,⊥(w
0
j)M⊥w

0
j + ηM⊥e

where, with probability at least 1− δ2 for δ2 = Ω(me−d),

∥e∥2 = ηνw O

(
d
√

log(Tn2/δ)

(
1 +

√
log(T/δ)
√
n1

)

×

(
exp

(
− c

η2ν2wlog(T/δ)dm(d+m)

)
+

√
log(1/δ)√
Tn2

))

+ ηνw O

(√
d

T
log(d/δ)

(√
r log(m/δ) +

√
d

n2

))
. (113)

Next,

Mw1
j = (1− ηλw)Mw0

j +
η22−r

2π
Mw0

j +
η22−r

2π∥M⊥w
0
j∥22

Mw0
j (M⊥w

0
j)

⊤M⊥w
0
j

+ η22−r

(
A∥,∥(w

0
j)−

1

2π
Ir

)
Mw0

j

44

+ η22−r

(
A∥,⊥(w

0
j)−

1

2π∥M⊥w
0
j∥22

Mw0
j (M⊥w

0
j)

⊤

)
M⊥w

0
j + ηMe

=

(
1− ηλw +

η2

2rπ

)
Mw0

j + η22−re∥ + ηMe (114)

where

∥e∥∥2 =

∥∥∥∥∥(A∥,∥(w
0
j)− 1

2π Ir
)
Mw0

j +

(
A∥,⊥(w

0
j)−

1

2π∥M⊥w
0
j∥22

Mw0
j (M⊥w

0
j)

⊤

)
M⊥w

0
j

∥∥∥∥∥
2

≤
∥∥(A∥,∥(w

0
j)− 1

2π Ir
)
Mw0

j

∥∥
2

+

∥∥∥∥∥
(
A∥,⊥(w

0
j)−

1

2π∥M⊥w
0
j∥22

Mw0
j (M⊥w

0
j)

⊤

)
M⊥w

0
j

∥∥∥∥∥
2

≤
∥∥A∥,∥(w

0
j)− 1

2π Ir
∥∥
2

∥∥Mw0
j

∥∥
2

+

∥∥∥∥∥A∥,⊥(w
0
j)−

1

2π∥M⊥w
0
j∥22

Mw0
j (M⊥w

0
j)

⊤

∥∥∥∥∥
2

∥∥M⊥w
0
j

∥∥
2

= O

(
νw

r4 + log4(m/δ1)

d

)
, (115)

where (115) follows by Lemmas A.14 and A.16 and the fact that w0
j ∈ Gw(δ1). Similarly,

M⊥w
1
j = (1− ηλw)M⊥w

0
j + η22−r

M⊥w
0
j (Mw0

j)
⊤

2π∥M⊥w
0
j∥22

Mw0
j

+

(
1−

∥Mw0
j∥22

∥M⊥w
0
j∥22

)
η22−r

M⊥w
0
j (M⊥w

0
j)

⊤

2π∥M⊥w
0
j∥22

M⊥w
0
j

+ η22−r

(
A⊥,∥(w

0
j)−

M⊥w
0
j (Mw0

j)
⊤

2π∥M⊥w
0
j∥22

)
Mw0

j

+ η22−r

(
A⊥,⊥(w

0
j)−

(
1−

∥Mw0
j∥22

∥M⊥w
0
j∥22

)
M⊥w

0
j (M⊥w

0
j)

⊤

2π∥M⊥w
0
j∥22

)
M⊥w

0
j + ηM⊥e

= (1− ηλw)M⊥w
0
j + η22−r

M⊥w
0
j (M⊥w

0
j)

⊤

2π∥M⊥w
0
j∥22

M⊥w
0
j

+ η22−r

(
A⊥,∥(w

0
j)−

M⊥w
0
j (Mw0

j)
⊤

2π∥M⊥w
0
j∥22

)
Mw0

j

+ η22−r

(
A⊥,⊥(w

0
j)−

(
1−

∥Mw0
j∥22

∥M⊥w
0
j∥22

)
M⊥w

0
j (M⊥w

0
j)

⊤

2π∥M⊥w
0
j∥22

)
M⊥w

0
j + ηM⊥e

=

(
1− ηλw +

η2

2r+1π

)
M⊥w

0
j + η22−re⊥ + ηM⊥e (116)

where

∥e⊥∥ =

∥∥∥∥∥
(
A⊥,∥(w

0
j)−

M⊥w
0
j (Mw0

j)
⊤

2π∥M⊥w
0
j∥22

)
Mw0

j

45

+

(
A⊥,⊥(w

0
j)−

(
1−

∥Mw0
j∥22

∥M⊥w
0
j∥22

)
M⊥w

0
j (M⊥w

0
j)

⊤

2π∥M⊥w
0
j∥22

)
M⊥w

0
j

∥∥∥∥∥
2

≤

∥∥∥∥∥A⊥,∥(w
0
j)−

M⊥w
0
j (Mw0

j)
⊤

2π∥M⊥w
0
j∥22

∥∥∥∥∥
2

∥Mw0
j∥2

+

∥∥∥∥∥A⊥,⊥(w
0
j)−

(
1−

∥Mw0
j∥22

∥M⊥w
0
j∥22

)
M⊥w

0
j (M⊥w

0
j)

⊤

2π∥M⊥w
0
j∥22

∥∥∥∥∥
2

∥M⊥w
0
j∥2

= O

(
νw

r3.5 + log3.5(m/δ1)

d1.5

)
(117)

where (117) follows by Lemmas A.15 and A.16 and the fact that w0
j ∈ Gw(δ1). Applying the choice

of λw and setting δ1, δ2 = Θ(δ) completes the proof.

Finally we are ready to prove Proposition 3.1 and Theorem 3.2. For convenience, we restate the
statements in full detail here.

Proposition A.18. Consider the gradient-based multi-task algorithm described in Section 2.3
and suppose Assumption 2.1 holds. Further let η = Θ(1), λw = 1/η + η/(2r+1π), and νw =
O(d−5/4(m log(T/δ))−1/2). Then for any m = O(d) and δ = Ω(e−d), with probability at least 1− δ
we have

1. 1
νw

√
m
∥Π∥(W

1)− Ω(1
2r)Π∥(W

0)∥2

= O

(
r4+log4(m/δ)

2rd + dlog(dTn2/δ)√
Tn2

(
1 +

√
log(T/δ)√

n1

)
+

√
dr log(dm/δ)√

T

)
,

2. 1
νw

√
m
∥Π⊥(W

+)∥2 = O

(
r3.5+log3.5(m/δ)

2rd1.5
+ dlog(dTn2/δ)√

Tn2

(
1 +

√
log(T/δ)√

n1

)
+

√
dr log(dm/δ)√

T

)
.

Proof. The result is a direct consequence of Lemma A.17, the additional conditions on η,m

and νw (which make the exp
(
− c

η2ν2wlog(T/δ)dm(d+m)

)
term negligible), and the fact that ∥B∥2 ≤

√
mmaxj∈[m] ∥bj∥2 for any matrix B ∈ Rm×d, where bj is the j-th row of B. We use ab ≤ a2+ b2 ≤

(a+ b)2 for nonnegative a, b to combine log terms.

Theorem A.19. Consider that η, νw and λw are set as in Proposition 3.1 and let d = Ω(r4 +
log4(m/δ)), m = Ω(r + log(1/δ)) and m = O(d), δ = Ω(e−d), T = Ω(22rdr log2(dm/δ)), Tn2 =
Ω(22rd2 log2(dTn2)), and Tn1n2 = Ω(22rd2(log2(dTn2/δ) log(T/δ)). Let σr(B) denote the r-th
singular value of the matrix B. Then with probability at least 1− δ, we have

σ1(Π⊥(W
1))

σr(Π∥(W1))
= O

(
r3.5 + log3.5(m/δ)

d1.5
+

2rdlog(dTn2/δ)√
Tn2

(
1 +

√
log(T/δ)
√
n1

)
+

2r
√
dr log(dm/δ)√

T

)
(118)

Proof. By Lemma A.7, we have that Ew(δ1) holds with probability at least 1 − δ1, which entails

that σr(Π∥(W
0)) ≥ νw

√
m

(
1− c

√
r+
√

log(1/δ1)√
m

)
for an absolute constant c. Thus we can invoke

46

Lemma A.17 to obtain

σr(Π∥(W
1))

≥ η

2π
2−r−2σr(Π∥(W

0))

− νw
√
mO

(
r4+log4(m/δ2)

2rd + dlog(dTn2/δ2)√
Tn2

(
1 +

√
log(T/δ2)√

n1

)
+

√
dr log(dm/δ2)√

T

)
≥ η

2π
2−rνw

√
m

− 2−rνw
√
m

×O

(√
r+
√

log(1/δ1)√
m

+ r4+log4(m/δ2)
d + 2rdlog(dTn2/δ2)√

Tn2

(
1 +

√
log(T/δ2)√

n1

)
+ 2r

√
dr log(dm/δ2)√

T

)
= Ω(2−rνw

√
m) (119)

with probability at least 1− 3δ1 − δ2. Likewise, we have by Proposition A.18

σ1(Π⊥(W
1)) = 2−rνw

√
m O

(
r3.5+log3.5(m/δ2)

d1.5
+ 2rdlog(dTn2/δ2)√

Tn2

(
1 +

√
log(T/δ2)√

n1

)
+ 2r

√
dr log(dm/δ2)√

T

)
.

(120)

with probability at least 1− δ2. Combining (119) and (120) and setting δ1, δ2 = Θ(δ) completes the
proof.

47

B Proof of Downstream Guarantees

In this section we prove Theorem 3.3 and a corollary thereof. Given a function g : Hr → {−1, 1} and
representation M ∈ Or×d, we refer to the sets V+ := {v = Mz⊤+M⊤

⊥ξ : z ∈ Hr, ξ ∈ Hd−r, g(z) = 1}
and V− := {v = Mz⊤ +M⊤

⊥ξ : z ∈ Hr, ξ ∈ Hd−r, g(z) = −1} as the inverse sets of g. Note that
solving the task described by g entails finding a classifier that separates the inverse sets of g. As in
Appendix A, we will abuse notation by reusing c and c′ as absolute constants independent of all
other parameters.

Proof summary. Informally, the proof of Theorem 3.3 follows six steps:

1. Construct a two-layer ReLU network embedding using the weights output by the during
multi-task pretraining algorithm for the first-layer weights, then randomly sampling first-layer
biases and second layer weights and biases (calling this the “learned” embedding),

2. Construct a nearby two-layer ReLU network embedding that is “purified” in the sense that it
is only a function of the the r label-relevant features of the input,

3. Show that the “purified” network linearly separates the pair of inverse sets corresponding to any
binary function on the r-dimensional hypercube with high probability as long as the number
of neurons in each layer is larger than some function of r,

4. Prove that the outputs of the learned embedding are very close to the outputs of the “purified”
embedding, meaning the learned embedding has the same linear separation capability with
only slightly smaller margin,

5. Prove that the learned embedding linearly separates the inverse sets with lower bounded
margin, and finally

6. Apply a standard generalization result for linear classification showing that the empirically-
optimal head achieves loss close to the minimal loss (zero).

Step 1: Construct downstream embedding. We start by fully describing the construction of
the downstream classifier as described first in Section 2.3. Let W1 be the model weights resulting
from one step of the multitask representation learning algorithm.

The downstream classifier is a linear head composed with a two-layer ReLU network embedding with
m neurons in the first layer and m̂ neurons in the second layer. For now, we focus on the embedding
itself, excluding the linear classification head. The weights of the first layer of the embedding are
equal to the weights in W1 up to rescaling. The biases of the first layer and weights and biases of
the second layer are contained in b, Ŵ := [ŵ1, . . . , ŵm̂]⊤ and b̂, respectively, where

b ∼ Unif

([
−
√
2γ√
m
,

√
2γ√
m

]m)

ŵj ∼ N
(
0m,

2

m̂
Im

)
∀ j = 1, . . . , m̂

b̂ ∼ Unif

[−√
2γ̂√
m̂
,

√
2γ̂√
m̂

]m̂
48

for some γ, γ̂ > 0 to be defined later. The full embedding is given by:

ϕ(v;αW1,b,Ŵ, b̂) := σ(Ŵσ(αW1v + b) + b̂) ∀ v ∈ Hd (121)

where α := 2r+2.5
√
mη2

is a rescaling factor. For ease of notation we denote ϕ(v) := ϕ(v;αW1,b,Ŵ, b̂).

Step 2: Construct purified downstream embedding. Next, the “purified” embedding also
has m neurons in the first layer and m̂ neurons in the second layer, and is also parameterized by
b, W and b, for the first layer biases and second layer weights and biases, respectively, but has a
different construction of the first layer weights. In particular, the first-layer weights are equal to the
component of the corresponding weights in W0 in the rowspace of M, up to rescaling. Formally,
this embedding is given by

ϕ̃(v;W0M⊤M,b,Ŵ, b̂) := σ(Ŵσ(α̂W0M⊤Mv + b) + b̂) (122)

where α̂ = 2
νw

√
m

.

For ease of notation we denote ϕ̃(v) := ϕ̃(v; α̂W0M⊤M,b,Ŵ, b̂).

Step 3: Purified embedding linearly separates the two classes. We start by showing that
for any function ḡ : {− 1√

r
, 1√

r
}r → {−1, 1}, with high probability ϕ̃ linearly separates the pair of

inverse sets V̄+ := {v̄ = M⊤z̄ + M⊤
⊥ξ : z̄ ∈ {− 1√

r
, 1√

r
}r, ξ ∈ Hd−r, ḡ(z̄) = 1} and V̄− := {v̄ =

M⊤z̄ +M⊤
⊥ξ : z̄ ∈ {− 1√

r
, 1√

r
}r, ξ ∈ Hd−r, ḡ(z̄) = −1} with lower bounded margin by adapting a

result of [27]. Note that we have not optimized the dependence of m on log() and the dependence of
m̂ on log() factors in the exponent.

Lemma B.1 (Adapted from Theorem 1 in [27]). Let δ ∈ (0, 0.05], γ = Θ(log(r)), γ̂ = Θ(r2.5 log4(r)),
m = Ω(r5 log8(r)log(1/δ)), and m̂ = exp (Ω (m)). Consider any function g : {− 1√

r
, 1√

r
}r → {−1, 1}.

With probability at least 1− δ, ϕ̃ makes the classes V̄+ := {v̄ = M⊤z̄+M⊤
⊥ξ : z̄ ∈ {− 1√

r
, 1√

r
}r, ξ ∈

Hd−r, ḡ(z̄) = 1} and V̄− := {v̄ = M⊤z̄ + M⊤
⊥ξ : z̄ ∈ {− 1√

r
, 1√

r
}r, ξ ∈ Hd−r, ḡ(z̄) = −1} linearly

separable with margin µ = exp
(
−O(r5 log6(r) log(log(r)/δ))

)
, i.e. there exists a vector a ∈ Rm̂ with

∥a∥2 = 1 and bias τ ∈ R such that for all v̄ = M⊤z̄+M⊤
⊥ξ : z̄ ∈ {− 1√

r
, 1√

r
}r, ξ ∈ Hd−r

ḡ(z̄) = 1 =⇒ a⊤ϕ̃(v̄) + τ > µ

ḡ(z̄) = −1 =⇒ a⊤ϕ̃(v̄) + τ < −µ

Proof. First note that given v̄ = M⊤z̄+M⊤
⊥ξ, ϕ̃(v̄) = ϕ̃′(z̄) for a random network ϕ̃′ : Rr → R. So,

the problem reduces to showing whether ϕ̃′ linear separates the classes Z̄+ := {z̄ ∈ {− 1√
r
, 1√

r
}r :

ḡ(z̄) = 1} and Z̄− := {z̄ ∈ {− 1√
r
, 1√

r
}r : ḡ(z̄) = −1}. The construction of ϕ̃′ matches that in

Theorem 1 in [27], so we can directly apply this theorem. Note that to compute the margin, we use
that the distance between Z̄+ and Z̄− is 2√

r
and |Z̄+||Z̄−| ≤ 22r.

Next we extend the above result to the case in which z is on the Rademacher hypercube.

Lemma B.2. Let γ = Θ(
√
r log(r)), γ̂ = Θ(r3 log4(r)), and m, m̂ satisfy the same conditions as

in Lemma B.1, for any δ ∈ (0, 0.05]. Consider any function g : Hr → {−1, 1}. With probability

49

at least 1 − δ, ϕ̃ makes the classes V+ := {v = M⊤z + M⊤
⊥ξ : z ∈ Hr, ξ ∈ Hd−r, g(z) = 1}

and V− := {v = M⊤z + M⊤
⊥ξ : z ∈ Hr, ξ ∈ Hd−r, g(z) = −1} linearly separable with margin

µ = exp(−O(r5 log6(r) log(log(r)/δ))).

Proof. Let ϕ̃√r : Rd → Rm̂ denote the version of ϕ̃ that was constructed in Lemma B.1, with γ and
γ′ set accordingly. Construct the coupled network ϕ̃ : Rd → Rm̂ by scaling the biases up by

√
r, so

the γ, γ corresponding to ϕ̃ have the scaling defined in the current lemma statement. Note that

ϕ̃(
√
rM⊤z̄+M⊤

⊥ξ;W
0M⊤M,

√
rb,Ŵ,

√
rb̂) =

√
rϕ̃√r(M

⊤z̄+M⊤
⊥ξ),

thus if V̄+ := {v̄ = M⊤z̄ + M⊤
⊥ξ : z̄ ∈ {− 1√

r
, 1√

r
}r, ξ ∈ Hd−r, ḡ(z̄) = 1} and V̄− := {v̄ =

M⊤z̄ + M⊤
⊥ξ : z̄ ∈ {− 1√

r
, 1√

r
}r, ξ ∈ Hd−r, ḡ(z̄) = −1} are linearly separated with margin µ′ by

ϕ̃√r, then V+ := {v =
√
rM⊤z̄ + M⊤

⊥ξ :
√
rz̄ ∈ Hr, ξ ∈ Hd−r, g(

√
rz̄) = 1} and V− := {v =

√
rM⊤z̄+M⊤

⊥ξ :
√
rz̄ ∈ Hr, ξ ∈ Hd−r, g(

√
rz̄) = −1} are linearly separated by ϕ̃ with margin

√
rµ′.

So the result follows from Lemma B.1.

Step 4: Downstream embedding is close to purified embedding. Next we compare the
outputs of the “purified” embedding ϕ̃ to those of the learned embedding ϕ.

Lemma B.3. Suppose the same conditions as Lemma B.2 hold. Additionally, suppose η = Θ(1),
λw = 1/η+η/(2r+1π), and νw = O(d−5/4(m log(T/δ))−1/2), m = O(d), δ = Ω(e−d) and Assumption
2.1 holds, then with probability at least 1− δ, for all v = M⊤z+M⊤

⊥ξ : z ∈ Hr, ξ ∈ Hd−r,

∥ϕ̃(v)− ϕ(v)∥2

= O

(
r3.5 + log3.5(m/δ)

2r
√
d

++
d1.5log(dTn2/δ)√

Tn2

(
1 +

√
log(T/δ)
√
n1

)
+
d
√
r log(dm/δ)√

T

)
.

Proof. For any v = M⊤z+M⊤
⊥ξ : z ∈ Hr, ξ ∈ Hd−r, we have

∥ϕ̃(v)− ϕ(v)∥2

=

∥∥∥∥σ(Ŵσ

(
2√
mνw

W0M⊤Mv + b

)
+ b̂

)
− σ

(
Ŵσ

(
2√

mνwη22−r−2
W1v + b

)
+ b̂

)∥∥∥∥
2

=

∥∥∥∥σ(Ŵσ

(
2√
mνw

W0M⊤z+ b

)
+ b̂

)
− σ

(
Ŵσ

(
2√

mνwη22−r−2
W1v + b

)
+ b̂

)∥∥∥∥
2

≤
∥∥∥∥Ŵσ

(
2√
mνw

W0M⊤z+ b

)
− Ŵσ

(
2√

mνwη22−r−2
W1v + b

)∥∥∥∥
2

(123)

≤ ∥Ŵ∥2
∥∥∥∥ 2√

mνw
W0M⊤z− 2√

mνwη22−r−2
W1v

∥∥∥∥
2

(124)

=
2√
mνw

∥Ŵ∥2
∥∥∥∥W0M⊤z− 1

η22−r−2
W1M⊤Mv − 1

η22−r−2
W1M⊤

⊥M⊥v

∥∥∥∥
2

(125)

≤ 2√
mνw

∥Ŵ∥2
∥∥∥∥W0M⊤z− 1

η22−r−2
W1M⊤z

∥∥∥∥
2

+
2√
mνw

∥Ŵ∥2
∥∥∥∥ 1

η22−r−2
W1M⊤

⊥ξ

∥∥∥∥
2

(126)

≤ 2√
mνw

∥Ŵ∥2
∥∥∥∥W0M⊤ − 1

η22−r−2
W1M⊤

∥∥∥∥
2

∥z∥2 +
2√

mνwη22−r−2
∥Ŵ∥2

∥∥∥W1M⊤
⊥

∥∥∥
2
∥ξ∥2

(127)

50

=
2
√
r√

mνw
∥Ŵ∥2

∥∥∥∥W0M⊤ − 1

η22−r−2
W1M⊤

∥∥∥∥
2

+
2
√
d− r√

mνwη22−r−2
∥Ŵ∥2

∥∥∥W1M⊤
⊥

∥∥∥
2

= O

(
r4.5 +

√
r log4(m/δ1)

2rd
+
√
rϵ

)
∥Ŵ∥2 +O

(
r3.5 + log3.5(m/δ1)

2r
√
d

+
√
dϵ

)
∥Ŵ∥2 (128)

= O

(
r3.5 + log3.5(m/δ1)

2r
√
d

+
√
dϵ

)(
1 +

√
log(1/δ2)√

m̂

)
(129)

where ϵ = O

(
dlog(dTn2/δ1)√

Tn2

(
1 +

√
log(T/δ1)√

n1

)
+

√
dr log(dm/δ1)√

T

)
, (123) and (124) follow since σ() is

1-Lipschitz and by the Cauchy-Schwarz Inequality, (127) follows by the Cauchy-Schwarz Inequality,
(128) follows with probability at least 1− δ1 by Proposition A.18, and (129) follows with probability
at least 1− δ2 over the random selection of Ŵ. Setting δ1, δ2 = Θ(δ) completes the proof.

Step 5: Downstream embedding linearly separates the two classes. Now we reason that ϕ
linearly separates the two classes with high probability.

Lemma B.4. Suppose the same conditions as Lemma B.3 hold. Additionally, suppose
d = Ω(log7(m) exp(cr5 log6(r) log(log(r)/δ))), T = Ω(d2r log2(dm/δ) exp(cr5 log6(r) log(log(r)/δ))),
and Tn2 = log2(dTn2/δ)(1 +

log(T/δ)
n1

)Ω(d3 exp(cr5 log6(r) log(log(r)/δ))) for an absolute constant
c and δ ∈ (0, 0.05] such that δ = Ω(e−min(d,m̂)). Consider any function g : Hr → {−1, 1}. With
probability at least 1− δ, ϕ makes the classes V+ := {v = Mz⊤+M⊤

⊥ξ : z ∈ Hr, ξ ∈ Hd−r, g(z) = 1}
and V− := {v = Mz⊤ +M⊤

⊥ξ : z ∈ Hr, ξ ∈ Hd−r, g(z) = −1} linearly separable with margin

µ = exp(−O(r5 log6(r) log(log(r)/δ)))

i.e. there exists a vector a ∈ Rm̂ with ∥a∥2 = 1 and bias τ ∈ R such that for all v ∈ Hd,

g(v) = 1 =⇒ a⊤ϕ(v) + τ > µ

g(v) = −1 =⇒ a⊤ϕ(v) + τ < −µ

Proof. The proof follows from Lemmas B.2 and B.3. In particular, for any point v = Mz⊤ +M⊤
⊥ξ :

z ∈ Hr, ξ ∈ Hd−r, from Lemma B.2 we have with probability at least 1− δ, for absolute constants
c, c′, there exists a ∈ Rm̂ with ∥a∥2 = 1 and τ ∈ R such that

g(z) = 1 =⇒ a⊤ϕ̃(v) + τ > exp(−cr5 log6(r) log(log(r)/δ))
=⇒ a⊤ϕ(v) + τ > exp(−cr5 log6(r) log(log(r)/δ))

− c′
(
r3.5 + log3.5(m/δ)

2r
√
d

+
√
dϵ

)(
1 +

√
log(1/δ)√
m̂

)
(130)

=⇒ a⊤ϕ(v) + τ > exp(−O(r5 log6(r) log(log(r)/δ))) (131)

where ϵ = O

(
dlog(dTn2/δ)√

Tn2

(
1 +

√
log(T/δ)√

n1

)
+

√
dr log(dm/δ)√

T

)
, (130) follows with probability at least

1− δ by Lemma B.3 and a union bound, and (131) follows since d, T , Tn2, n1 and m̂ are sufficiently
large. Note that the input to ϕ̃(·) is effectively r-dimensional since the first-layer weights immediately
project the input onto an r-dimensional subspace. Repeating the same argument for the case
g(z) = −1 with the same a, τ completes the proof.

51

Step 6: Complexity of learning the linear head. Now that we have shown that for any
binary function on the r-dimensional hypercube, g makes its inverse sets linearly separable with high
probability, we complete the proof by bounding the sample complexity of finding a linear separator.
For convenience, we restate the theorem here in full detail.

Theorem B.5 (End-to-end Guarantee). Consider a downstream task with labeling function gT+1.
Construct the two-layer ReLU embedding ϕ : Rd → Rm̂ using the rescaled W1 for first layer weights
as in (121), and train the task-adapted head (aT+1, τT+1) using N i.i.d. samples from the downstream
task, as described in Section 2, with regularization parameter λ̂a = exp(−cr5 log6(r) log(log(r)/δ))
for an absolute constant c. Further, suppose Assumption 2.1 holds, m = Ω(r5 log8(r)log(1/δ)),
m̂ = exp (Ω (m)), d = Ω(log7(m/δ) exp(cr5 log6(r) log(log(r)/δ))),
T = Ω(d2r log2(d/δ) exp(cr5 log6(r) log(log(r)/δ))), and
Tn2 = Ω(log2(dTn2/δ)(1 + log(T/δ)

n1
)d3 exp(cr5 log6(r) log(log(r)/δ))), and set γ = Θ(

√
r log(r)),

γ̂ = Θ(r3 log4(r)), η = Θ(1), νw = O(d−5/4(m log(T/δ))−1/2), and λw = 1/η + η/(2r+1π).

Then for any δ ∈ (0, 0.05], with probability at least 1− δ over the random initializations, draw of T
pretraining tasks, draw of n1 + n2 samples per task, and draw of N downstream samples, we have

Leval
T+1 =

exp(−O(r5 log6(r) log(log(r)/δ)))√
N

. (132)

Proof. By standard Gaussian matrix concentration, we have that with probability at least 1 −

δ1, ∥α̂W0M⊤∥2 = O

(√
r+
√

log(1/δ1)√
m

)
. Similarly, with probability at least 1 − δ2, ∥Ŵ∥2 =

O

(
1 +

√
log(1/δ2)√

m̂

)
. Let δ3 := δ1 + δ2. Thus, by Lemma B.3 and the triangle inequality, for

any v ∈ V(M) := {M⊤z+M⊤
⊥ξ : z ∈ Hr, ξ ∈ Hd−r}, we have

∥ϕ(v)∥2 ≤ 2∥ϕ̃(v)∥2

≤ 2c

∥∥∥∥Ŵσ

(
2√
mνw

W0M⊤Mv + b

)
+ b̂

∥∥∥∥
2

≤ 4c
∥∥∥Ŵ∥∥∥

2

∥∥∥∥ 1√
mνw

W0M⊤Mv + b

∥∥∥∥
2

+ 2cγ̂

≤ 4c

(
1 +

√
log(1/δ3)√

m̂

)(
r +

√
r log(1/δ3)√
m

+ γ

)
+ 2cγ̂

≤ c′
√
r log(r)

√
log(1/δ3)√

m̂
+ c′

√
r log(1/δ3)√

m̂m
+ c′r2.5 log4(r) (133)

=: ι

for absolute constants c and c′, where (133) follows by choice of γ and γ̂.

Let (a∗T+1, τ
∗
T+1) be the linear head that separates the inverse sets of gT+1 with margin µ :=

exp(−O(r5 log6(r) log(log(r)/δ))), whose existence is guaranteed with high probability by Lemma
B.4. We have |τ∗T+1| ≤ maxv∈Hd |(a∗)⊤ϕ(v)| ≤ ι. Thus,

√
∥a∗T+1∥22 + (τ∗T+1)

2 ≤
√
2ι =: B. Since

(a∗T+1, τ
∗
T+1) linearly separates the two inverse sets with margin µ, (a∗T+1/µ, τ

∗
T+1/µ) linearly separates

52

them with margin 1. Define J := {(a, τ) : a ∈ Rm̂, τ ∈ R,
√
∥a∗T+1∥22 + (τ∗T+1)

2 ≤ B/µ}.

L∗
T+1 := min

(a,τ)∈J

1

2d

∑
v∈V(M)

ℓ(fT+1(Mv), a⊤ϕ(v) + τ)

≤ 1

2d

∑
v∈V(M)

ℓ((a∗T+1)
⊤ϕ(v)/µ+ τ∗T+1/µ, gT+1(Mv))

= 0 (134)

where ℓ is the hinge loss, as usual. Recall that

(aT+1, τT+1) ∈ argmin
a∈Rm̂,τ∈R

1

n

n∑
l=1

ℓ(a⊤ϕ(vl) + τ, gT+1(Mvl)) +
λ̂a
2
(∥a∥22 + τ2) (135)

for a set of N random samples {vl, fT+1(vl)}Nl=1, where each vl is drawn by independently sampling
zl ∼ Unif(Hr) and ξl ∼ Unif(Hd−r). Equivalently, for λ̂a = µ/B we have

(aT+1, τT+1) ∈ argmin
(a,τ)∈J

1

n

n∑
l=1

ℓ(a⊤g(vl) + τ, gT+1(Mvl)) (136)

Thus, by applying a standard generalization bound for 1-Lipschitz loss functions [42], we obtain, for
an absolute constant C,

Leval
T+1 :=

1

2d

∑
v∈V(M)

ℓ(a⊤T+1ϕ(v) + τT+1, gT+1(Mv))

≤ L∗
T+1 + C

B
√

log(1/δ4)

µ
√
N

= C
B
√
log(1/δ4)

µ
√
N

= O

(
exp(O(r5 log6(r) log(log(r)/δ5)))√

N

√
log(1/δ4)

)
. (137)

with probability at least 1− δ4 − δ5 where δ5 ≥ δ3, and where we have used the lower bound on µ
from Lemma B.4 and the choice of λ̂a (which determines the choice of B). Setting δ = δ4 + δ5 for
some δ ∈ (0, 0.05] completes the proof.

To conclude, we state and prove a corollary of Theorem B.5.

Corollary B.6 (Generalization to set of tasks). Consider a set of possible downstream tasks Seval

with cardinality |Seval| = D. Construct the two-layer ReLU embedding ϕ : Rd → Rm̂ using the
re-scaled W1 for first layer weights as in (121), and train the task-adapted head (aT+1, τT+1) using N
i.i.d. samples from the downstream task, as described in Section 2, with regularization parameter λ̂a =
exp(−cr5 log6(r) log(D log(r)/δ)) for an absolute constant c. Further, suppose Assumption 2.1 holds,
m = Ω(r5 log8(r)log(D/δ)), m̂ = exp (Ω (m)), d = Ω(log7(mD/δ) exp(cr5 log6(r) log(D log(r)/δ))),
T = Ω(d2r log2(Dd/δ) exp(cr5 log6(Dr) log(D log(r)/δ))), and
Tn2 = Ω(log2(DdTn2/δ)(1 +

log(DT/δ)
n1

)d3 exp(cr5 log6(Dr) log(D log(r)/δ))), and set

53

γ = Θ(
√
r log(Dr)), γ̂ = Θ(r3 log4(Dr)), η = Θ(1), νw = O(d−5/4(m log(DT/δ))−1/2), and λw =

1/η + η/(2r+1π).

Then with probability at least 1− δ, any task T + 1 in Seval satisfies

Leval
T+1 =

exp(O(r5 log6(r) log(D log(r)/δ)))√
N

, (138)

Proof. Note that in the proof of Theorem B.5, δ upper bounds the probability of a bad event
occurring that depends on the choice of downstream task. Thus, setting δnew = δ/D applying a
union bound over all tasks implies

Leval
T+1 =

exp(O(r5 log6(r) log(log(r)/δnew)))√
N

=
exp(O(r5 log6(r) log(D log(r)/δ)))√

N

for all tasks T + 1 ∈ T eval with probability at least 1− δnewD = 1− δ, as desired.

54

C Negative Results

The proof of Theorem 3.6 follows directly from Theorem 5 in [12]. We formally re-state and prove
Theorem 3.7 below.

Theorem C.1. Consider any algorithm A that takes as input infinite samples from any single
task in Ts.p.(M) and returns an m̂-dimensional representation Ψ : Hd → Rm̂. Then there exists an
M ∈ Or×d

{0,1} such that for any k ∈ [r], with probability at least 1 − 2−r
∑r

j=k

(
r
j

)
over the draw of

a single training task f1 ∼ Ts.p.(M), the representation Ψf1 := A(f1) satisfies that for any ϵ > 0,
m̂B2 > ϵ2

(
d−k+1
r−k+1

)
is necessary to obtain

min
a2:∥a2∥2≤B

Ev∼Unif(Hd)[ℓ(a
⊤
2 Ψf1(v), f2(v))] ≥ 1− ϵ.

Proof. The proof is an extension of the argument in Section 4 of [43] to the case wherein the
representation is not fixed, but depends on a training task that provides partial information about
the target (test) task. First, we establish notations.

Recall that any task f ∈ Ts.p.(M), satisfies that for all v ∈ Hd, f(v) = g(Mv) where g(Mv) =∏
i∈S(Mv)i where S ⊆ [r]. Thus, sampling f ∼ Ts.p.(M) is equivalent to sampling S ∼ Unif(P([r]))

where P([r]) is the power set on [r] and Unif(P([r])) is the uniform distribution over P([r]).

We condition on S being a strict subset of [r]. In particular, for any k ∈ {1, . . . , r}, define
the set Sk := {S ⊂ r : |S| < k}. Note that |Sk| =

∑k−1
j=1

(
r
j

)
. Thus, for S ∼ Unif(P([r])),

PS(S ∈ Sk) = 2−r
∑k−1

j=1

(
r
j

)
= 1− 2−r

∑r
j=k

(
r
j

)
. In the following, we assume S ∈ Sk unless stated

otherwise.

Next, recall that the algorithm A maps infinite training samples from a single training task f to a
representation Ψ : Hd → [−1, 1]m̂. Thus, the choice of training task (equivalently, the choice of M
and S) determines the resulting representation. Let fM,S denote the task in Ts.p.(M) with support
S, and ΨM,S := A(fM,S) denote the resulting representation.

The test task is taken to be the parity task on all r bits specified by M, i.e. fM,[r]. For ease of
notation, we write this task as f̄M, and for for any representation Ψ : Hd → [−1, 1]m̂, define

LM(a,Ψ) := Ev∼Ud [ℓ(a⊤Ψ(v), f̄M(v))] (139)

where ℓ : R → R≥0 is the hinge loss and Ud is the uniform distribution over the d-dimension
Rademacher hypercube Hd := {−1, 1}d. We need to lower bound this loss for all a ∈ Rm̂ : ∥a∥2 ≤ B
some representation resulting from single-task training.

To do so, we now follow a similar argument as in Section 4.1 in [43]. Consider any M ∈ Or×d
{0,1},

S ∈ Sk, and resulting representation ΨM,S : Hd → [−1, 1]m̂. Since the hinge loss is convex, for any
a ∈ Rm̂ such that ∥a∥2 ≤ B, we have:

LM(a,ΨM,S) ≥ LM(0,ΨM,S) + ⟨∇LM(0,ΨM,S), a⟩
≥ 1−B∥∇LM(0,ΨM,S)∥2 (140)

55

where (140) follows by the Cauchy-Schwarz inequality and the fact that LM(0,Ψ) = 1 for all Ψ.
Next, we motivate considering random M. We have

max
M∈Od×r

{0,1}

min
a:∥a∥2≤B

LM(a,ΨM,S) ≥ EM∼Md
r

[
min

a:∥a∥2≤B
LM(a,ΨM,S)

]
(141)

where Md
r denotes the uniform distribution over all

(
d
r

)
possible choices of M ∈ Od×r

{0,1}. It remains
to lower bound the RHS of (141). For ease of notation, we write EM := EM∼Md

r
. Using (140), we

obtain

EM

[
min

a:∥a∥2≤B
LM(a,ΨM,S)

]
≥ 1−B EM[∥∇aLM(0,ΨM,S)∥2]. (142)

The crux of the proof is to upper bound EM[∥∇aLM(0,ΨM,S)∥2]. Note that

EM

[
∥∇aLM(0,ΨM,S)∥22

]
= EM,S

 m̂∑
j=1

(Ev∼Ud [f̄M(v)ΨM,S(v)j])
2


=

m̂∑
j=1

EMEv∼UdEv′∼Ud

[
f̄M(v)f̄M(v′)ΨM,S(v)jΨM,S(v

′)j
]

=
m̂∑
j=1

EMEv,v′

[(
r∏

i=1

(Mv)i(Mv′)i

)
ΨM,S(v)jΨM,S(v

′)j

]
(143)

where (Mv)i and Ψ(v)j are the i-th and j-th elements of Mv and Ψ(v), respectively. Next, let
MS denote the rows of M picked out by S, and M\S denote the remaining rows. Further, let
vM,S = MSv ∈ {−1, 1}|S| denote the bits in v specified by MS , let vM,\S = M\Sv ∈ {−1, 1}r−|S|

denote the bits specified by M\S . Also let v\(M,S) ∈ {−1, 1}d−|S| denote the bits in v not specified
by MS . We have, for any j ∈ [m̂],

EMEv,v′

[(
r∏

i=1

(Mv)i(Mv′)i

)
ΨM,S(v)jΨM,S(v

′)j

]

= EMS ,vM,S ,v
′
M,S

[(|S|∏
i=1

(vM,S)i(v
′
M,S)i

)

× EM\S ,v\(M,S),v
′
\(M,S)

[(
r−|S|∏
i=1

(vM,\S)i(v
′
M,\S)i

)
ΨM,S(v)jΨM,S(v

′)j

]]
(144)

Note that for fixed S, MS , and vM,S , ΨM,S(v)j is a function of v\(M,S), namely ΨM,S,vM,S (v\(M,S))j .
For ease of notation, denote this function as ψ(v\(M,S)). We have:

EM\S ,v\(M,S),v
′
\(M,S)

[(
r−|S|∏
i=1

(vM,\S)i(v
′
M,\S)i

)
ΨM,S(v)jΨM,S(v

′)j

]

= EM\S ,v\(M,S),v
′
\(M,S)

[(
r−|S|∏
i=1

(vM,\S)i(v
′
M,\S)i

)
ψ(v\(M,S))ψ(v

′
\(M,S))

]

56

= EM\S ,v\(M,S),v
′
\(M,S)

[
hM,\S(v\(M,S))hM,\S(v

′
\(M,S))ψ(v\(M,S))ψ(v

′
\(M,S))

]

= E
B∼Md−|S|

r−|S|,u∼Ud−|S|,u′∼Ud−|S|

[
hB(u)hB(u

′)ψ(u)ψ(u′)

]
= E

B∼Md−|S|
r−|S|

[
⟨hB, ψ⟩2Ud−|S|

]
(145)

where hM,\S is the sparse parity task on input bits specified by M\S , hB is the sparse parity task
on input bits specified by B ∈ O(d−|S|)×(r−|S|)

{0,1} , and

⟨hB, ψ⟩Ud−|S| := Eu∼Ud−|S| [hB(u)ψ(u)] (146)

Note that (145) is exactly the variance of the task distribution Md−|S|
r−|S| with respect to the function

ψ. Since Md−|S|
r−|S| is a uniform distribution over

(d−|S|
r−|S|

)
orthonormal tasks, and supu |ψ(u)| ≤ 1, we

have by Parseval’s identity:

E
B∼Md−|S|

r−|S|

[
⟨hB, ψ⟩2Ud−|S|

]
=

1(d−|S|
r−|S|

) ∑
B∈O(d−|S|)×(r−|S|)

{0,1}

⟨hB, ψ⟩Ud−|S| ≤
supu |ψ(u)|(d−|S|

r−|S|
) ≤ 1(d−|S|

r−|S|
) (147)

Please see Section 4.1 of [43] for more details. Now combining (147) with (145) and (144), we obtain
via Cauchy-Schwarz:

EMEv,v′

[(
r∏

i=1

(Mv)i(Mv′)i

)
ΨM,S(v)jΨM,S(v

′)j

]2

≤ EMS ,vM,S ,v
′
M,S

[(|S|∏
i=1

(vM,S)i(v
′
M,S)i

)2]

× EMS ,vM,S ,v
′
M,S

[(
EM\S ,v\(M,S),v

′
\(M,S)

[(
r−|S|∏
i=1

(vM,\S)i(v
′
M,\S)i

)
ΨM,S(v)jΨM,S(v

′)j

])2]

≤ EMS ,vM,S ,v
′
M,S

[(|S|∏
i=1

(vM,S)i(v
′
M,S)i

)2]
× 1(d−|S|

r−|S|
)2

≤ 1(d−|S|
r−|S|

)2
Therefore, returning to (143), we obtain

EM

[
∥∇aLM(0,ΨM,S)∥22

]
≤ m̂(d−|S|

r−|S|
)2 (148)

thus

EM [∥∇aLM(0,ΨM,S)∥2] ≤
√
m̂(d−|S|

r−|S|
) ≤

√
m̂(

d−k+1
r−k+1

) (149)

57

where the last inequality follows since S ∈ Sk. Combining this with (141) and (142) yields that for
any S ∈ Sk,

max
M∈Od×r

{0,1}

min
a:∥a∥2≤B

LM(a,ΨM,S) ≥ 1−
√
m̂B(

d−k+1
r−k+1

) , (150)

completing the proof.

58

D Distributions That Satisfy Assumption 2.1

Lemma D.1. The task link function distribution Tall satisfies Assumption 2.1.

Proof. The set of all functions Tall := {g : Hr → {−1, 1}} has a bijection with the power set
on Hr, denoted by P2r , where each element of P2r is paired with the positive inverse set (i.e.
{z ∈ Hr : g(z) = 1}) for some function g ∈ Tall. So, sampling uniformly from Tall is equivalent
to sampling uniformly from P2r , which is equivalent to the following procedure: for all z ∈ Hr,
independently assign z to Bin 1 (the ‘keep’ set) with probability 0.5 and Bin 2 (the ‘discard’ set)
with probability 0.5. If z ̸= z′, it is equally likely that z and z′ are in the same bin as they are in
different bins, completing the proof.

Lemma D.2. The task link function distribution Ts.p. satisfies Assumption 2.1.

Proof. First note that there are
(
r
0

)
subsets of [r] of size 0,

(
r
1

)
subsets of [r] of size 1, and so on, thus

there are
(
r
0

)
+
(
r
1

)
+ · · ·+

(
r
r

)
= 2r sparse parity tasks in total. Let dH(v,v′) =

∑r
i=1 χ{vi ̸= v′

i}
be the Hamming distance between two Boolean vectors of length r. If dH(v,v′) = 0, then clearly
gi(v) = gi(v

′) for all gi ∈ T .

On the other hand, if dH(v,v′) = γ for any γ ∈ {1, . . . , r}, then v and v′ share the same values
for r − γ coordinates, so must share the same label on all sparse parity tasks on subsets of these
coordinates, of which there are 2r−γ = 2r−γ

(
γ
0

)
. Next, there are 2r−γ ×

(
γ
1

)
sparse parity tasks on

one coordinate on which v and v′ differ and other coordinates on which v and v′ agree. Since
these tasks are sparse parities on a set of coordinates on which v and v′ differ on an odd number of
coordinates, gi(v) ̸= gi(v

′) for each of these 2r−γ ×
(
γ
1

)
tasks. Similarly, there are 2r−γ ×

(
γ
2

)
tasks

on two coordinates on which v and v′ differ, and since two is even, gi(v) = gi(v
′) for all such tasks.

Extrapolating this argument, if γ is even, then there are 2r−γ(
(
γ
0

)
+
(
γ
2

)
+ · · ·+

(
γ
γ

)
) = 2r−γ2γ−1 = 2r−1

tasks for which gi(v) = gi(v
′), and 2r−γ(

(
γ
1

)
+
(
γ
3

)
+ · · ·+

(
γ

γ−1

)
) = 2r−γ2γ−1 = 2r−1 tasks for which

gi(v) ̸= gi(v
′). Likewise, if γ is odd, there are 2r−γ(

(
γ
0

)
+
(
γ
2

)
+ · · ·+

(
γ

γ−1

)
) = 2r−1 tasks for which

gi(v) = gi(v
′), and 2r−γ(

(
γ
1

)
+
(
γ
3

)
+ · · ·+

(
γ

γ−1

)
) = 2r−1 tasks for which gi(v) ̸= gi(v

′).

59

E Informal Extension to Regression

In this section, we show informally that our insights also apply to multi-task regression. In the
regression setting, the global loss is given by (consider infinite samples per task, and ignore the bias
parameters for simplicity):

Lreg(W,a1, . . . , aT) :=
1

2T

T∑
i=1

Ex[(a
⊤
i σ(Wx)− fi(x))

2] +
λW
2

||W||2F

For any fixed W, the optimal ai is a∗i (W) = Ex[σ(Wx)σ(Wx)⊤]−1Ex[fi(x)σ(Wx)], which is an
average of the current features weighted by labels (as in the classification case we study), that is now
additionally multiplied by the normalizing matrix Ex[σ(Wx)σ(Wx)⊤]−1. Note that this optimal
a∗i (W) can be attained by one step of gradient descent.

Let ΣW := Ex[σ(Wx)σ(Wx)⊤]. Substituting the optimal a∗i (W)’s from above into the loss, we
have

L̃reg(W) :=
1

2T

T∑
i=1

Ex

[(
Ex[fi(x)σ(Wx)]⊤Σ−1

Wσ(Wx)− fi(x)
)2]

+
λW
2

||W||2F

=
1

2T

T∑
i=1

Ex[fi(x)σ(Wx)]⊤Σ−1
WEx[σ(Wx)σ(Wx)⊤]Σ−1

WEx[fi(x)σ(Wx)]

−2Ex[fi(x)σ(Wx)]⊤Σ−1
WEx[fi(x)σ(Wx)] + Ex[f

2
i (x)] +

λW
2

||W||2F

=
1

2T

T∑
i=1

−Ex[fi(x)σ(Wx)]⊤Σ−1
WEx[fi(x)σ(Wx)] + Ex[f

2
i (x)] +

λW
2

||W||2F

= −1

2
Ex,x′

[
β(x,x′)σ(Wx)⊤Σ−1

Wσ(Wx′)
]
+
λW
2

||W||2F + c

where, as in the classification case, β(x,x′) := 1
T

∑T
i=1 fi(x)fi(x

′), and here, c := 1
2T

∑T
i=1 Ex[f

2
i (x)]

is a constant independent of W . This loss is very similar in form to the pseudo-contrastive loss we
derived in (11) for the classification case: we again have the negative average of β(x,x′) times a
proxy for the similarities between the representations of x and x′. For L̃reg to encourage learning
the ground-truth features, β(x,x′) must be a proxy for the similarity of the ground-truth features of
x and x′.

This is a reasonable condition for the following reason: suppose the tasks are normalized such
that Ef∼T [f(x)] = 0 and Ef∼T [f

2(x)] = ν2 for all x. Then in the limit T → ∞, β(x,x′) =
ν2Ef∼T [f(x)f(x

′)] is proportional to the correlation between the labels of x and x′, which we expect
to be a proxy for the similarity between the ground-truth features of x and x′. Intuitively, inputs
with similar ground-truth features should have more correlated labels (across tasks) than inputs
with dissimilar ground-truth features.

Consider for example f(x) = sin(h⊤ Mx
||Mx||2) (the following argument would also hold analogously

for f(x) = sin(h⊤sign(Mx)), where f ∼ T is induced by drawing h ∼ N (0r, Ir). Then for all x,

60

Ef∼T [f(x)] = 0 and Ef∼T [f
2(x)] = ν2 for some ν > 0, and, with T = ∞,

β(x,x′) = ν2Ef∼T

[
sin

(
h⊤ Mx

||Mx||2

)
sin

(
h⊤ Mx′

||Mx′||2

)]
=

ν2

2
Eh

[
cos

(
h⊤
(

Mx

||Mx||2
− Mx′

||Mx′||2

))
− cos

(
h⊤
(

Mx

||Mx||2
+

Mx′

||Mx′||2

))]
=

ν2

2
Ez∼N (0,1)

[
cos

(∥∥∥∥ Mx

||Mx||2
− Mx′

||Mx′||2

∥∥∥∥
2

z

)
− cos

(∥∥∥∥ Mx

||Mx||2
+

Mx′

||Mx′||2

∥∥∥∥
2

z

)]
a
=

ν2

4

(
exp

(
−
∥∥∥∥ Mx

||Mx||2
− Mx′

||Mx′||2

∥∥∥∥2
2

/2

)
− exp

(
−
∥∥∥∥ Mx

||Mx||2
+

Mx′

||Mx′||2

∥∥∥∥2
2

/2

))
b
=

ν2e

4

(
exp

(
cossim(Mx,Mx′)

)
− exp

(
−cossim(Mx,Mx′)

))
where a follows by a Gaussian integral calculation.

Observe that the expression in the RHS of b is monotonically increasing in the cosine similarity of
the ground-truth features of x and x′, as desired. Therefore, L̃reg encourages aligning the normalized
representations of pairs of inputs (i.e., making σ(Wx)⊤Σ−1

Wσ(Wx′) large) that have similar ground-
truth features (cossim(Mx,Mx′) ≈ 1), and encourages the normalized representations of pairs of
points with dissimilar ground-truth features (cossim(Mx,Mx′) ≈ −1) to also be dissimilar (i.e.,
making σ(Wx)⊤Σ−1

Wσ(Wx′) small). The same intuitions hold if Ef∼T [f(x)] = µ ̸= 0 for all x.
So just as in the classification setting, L̃reg(W) again behaves as a pseudo-contrastive loss that
encourages recovering the ground-truth representation. Here, since β(x,x′) is smooth, we may refer
to L̃reg as a “soft” contrastive loss.

Please see Tables 1 and 2 in Section F for empirical results verifying this conclusion.

61

0 200 400 600 800 1000 1200 1400 1600
Number of Iterations

10 1

100

101

102

m
ax

(W
M

)
m

in
(W

M
)

Representation Learning Error vs # Tasks
T = 1
T = 4
T = 16
T = 64

0 200 400 600 800 1000 1200 1400 1600
Number of Iterations

100

101

m
ax

(W
M

)
m

in
(W

M
)

Role of Task Distribution Imbalance

Skewed Distribution
Uniform Distribution

Figure 2: Representation learning error. (Left) Version of Figure 1 showing the benefit of
pretraining with additional tasks that includes the standard deviations (shaded regions) of each
statistic around the plotted means over 10 trials. Note that d = 32, r = 3 and all cases use the same
total number of samples. (Right) Representation learning error vs number of training iterations
when tasks are sampled from either Ts.p. (‘Uniform Distribution’) or a skewed distribution over the
support of Ts.p. (‘Skewed Distribution’). In this case d = 32, r = 4 and T = 32.

F Numerical Simulations

In this section we verify our analysis with numerical simulations. We aim to both confirm that the
alternating stochastic-gradient descent algorithm for multi-task pretraining that we study recovers
the ground-truth representation and further explore the mechanisms by which it does so. To this
end, all experiments are conducted on synthetic data generated according to the model described in
Section 2. To generate M, we sample each of its elements independently from the standard normal
distribution, then orthonormalize its rows via a QR decomposition. All experiments use Ts.p. as
the distribution over task link functions. The pretraining algorithm is the pretraining algorithm
described in Section 2 but repeated for many iterations.

Benefit of training with many tasks. Figure 1 in Section 1 shows that increasing the number of
pretraining tasks improves representation learning, even though all cases in this experiment use the
same total number of samples. In particular, for each number of pretraining tasks T , gradients for
each task are computed with n1 = n2 = 1024/T fresh samples per iteration, so the more tasks, the
fewer samples per task. Representation learning error is measured using the metric from Theorem
3.2: ρ(M,W) :=

σ1(WM⊤
⊥)

σr(WM⊤)
. This metric captures the extent to which the row space of W covers

that of M (measured by σr(WM⊤)) and the extent to which the row space of W lies only in that of
M (measured by σ1(WM⊤

⊥)). Figure 1 shows the mean values of ρ(Wt,M) across 10 independent
random trials, including independently sampled sets of pretraining tasks; Figure 2(Left) plots the
same results plus shaded regions indicating ± one standard deviation across the 10 trials. Here
d = 32, r = 3, and m = 16.

Role of task distribution diversity. Figure 2(Right) motivates Assumption 2.1 by demonstrating
that the quality of the learned representation degrades with the diversity, or balancedness, of the
task distribution. Here we use d = 32, r = 4, T = 32, m = 16 and n1 = n2 = 16 (so larger r and
fewer total samples than in Figure 2(Left). ‘Uniform Distribution’ means the task link functions

62

10 20 30 40 50 60
Ambient dimension d

0.0

0.1

0.2

0.3

0.4

0.5

%
 o

f m
isc

la
ss

ifi
ed

 te
st

 sa
m

pl
es

Performance After Linear Probing
Single task pretraining
Multitask pretraining
No pretraining

20 40 60 80 100 120
N

0.00

0.05

0.10

0.15

0.20

0.25

0.30

%
 o

f m
isc

la
ss

ifi
ed

 te
st

 sa
m

pl
es

Role of # of downstream training samples N

Figure 3: Downstream task performance. (Left) Downstream task performance for multi-task
pretrained, single task, and random (‘No pretrained’) representations W with varying dimension d.
Unlike single task pretrained and the non-pretrained representations, the downstream performance
of representations trained with multiple tasks does not degrade with d. Note that for multi-task,
T = 16 + d and n1 = n2 = 16 and for single task, n1 = n2 = 16 × (16 + d), and r = 4 and
m = 16 in all cases. (Right) Downstream task performance for multi-task-trained representation
with T = 32, d = 32, r = 3, n1 = n2 = 16 and m = 16, and with m̂ = 32 for downstream linear
probing, with varying number of downstream training samples N .

are sampled from Ts.p. as usual, and ‘Skewed Distribution’ means the link functions are sampled
from a non-uniform distribution over the set sparse parity tasks on r inputs as follows: (1) sample
|Si| from {0, 1, ..., r}, weighted by the number of sparse parity tasks on support sets of that size,
i.e. proportionally to the binomial coefficients (same as in sampling from Ts.p.), (2) sample |Si|
elements without replacement from {1, . . . , r} weighted by [0.3, 0.3, 0.3, 0.1], noting that r = 4 (this
step differs from sampling from Ts.p., which would apply uniform weights to the r features). We
see that sampling tasks from the uniform distribution leads to much smaller representation learning
error than sampling from the skewed distribution, since the skewed distribution de-emphasizes one
feature ground-truth feature. Again the experiment is repeated over 10 independent random trials
and means and standard deviations are shown.

Generalization to downstream tasks. We also investigate whether learning an approximation
of the ground-truth representation leads to strong downstream performance. To evaluate the
downstream performance of a learned representation, we follow the same procedure from Section 2
by first randomly sampling m̂ neuron weights Ŵ from the multivariate standard normal distribution
and b and b̂ from the uniform distribution on [−10−3, 10−3]. Then, we run gradient descent on the
regularized empirical hinge loss on a fixed set of N samples to learn the last layer head, i.e. linear
probing. We run this gradient descent with step size η = 0.1 and ℓ2−regularizer λ̂a = 0.01. After
this linear probing on N samples, we evaluate the performance of the returned classifier on a distinct
set of 1000 test samples for each task.

Figure 3(Left) plots the number of misclassified test samples after this linear probing with N = 32
training samples averaged across 10 randomly drawn tasks from Ts.p.(M) with varying d. In particular,
for each value of d, we randomly generate an M, execute multi-task and single task pretraining on
task(s) drawn from Ts.p.(M) to learn W, then execute linear probing with N = 32 samples for 100
iterations on the head of the random ReLU network with m̂ = 128 second-layer neurons generated

63

0 5 10 15

0

5

10

15

T=1

0 5 10 15

T=5

0 5 10 15

T=25

0 5 10 15

T=125

0.00

0.01

0.02

0.03

Figure 4: More tasks isolate important features. From the discussion in Section 4, the
loss induced by multi-task training with task-specific heads as a function of the representation is
approximately L(W) ≈ −Ex,x′ [β(x,x′)σ(Wx)⊤σ(Wx′)], where β(x,x′) = Ei[fi(x)fi(x

′)] is the
average product of the labels of two points across tasks. This loss is pseudo-contrastive in that it
encourages representations of two points to be similar if and only if they share the same label on
most tasks (β(x,x′) ≈ 1), which is equivalent to saying that they share important features. Here
we consider the gradient of L(W) with respect to one neuron weight wj . The gradient takes the
form −Awj , and we plot finite-task and finite-sample approximations of A. We set d = 16 and the
ground-truth features to be the first r = 4 coordinates of the data, i.e. M = [I4,04×12]. Roughly
speaking, if the finite-task approximation of β(x,x′), namely 1

T

∑T
i=1 fi(x)fi(x

′), serves as a proxy
for whether x and x′ share ground-truth features, as does Ei[fi(x)fi(x

′)], then the terms with x and
x′ having the same ground-truth features will dominate the loss, and these features themselves will
dominate A. The above plots confirm this; as the number of tasks T increases and 1

T

∑T
i=1 fi(x)fi(x

′)
approaches Ei[fi(x)fi(x

′)], A becomes dominated by its top 4-by-4 submatrix, i.e. A ≈ cM⊤M for a
scalar c. So, A behaves more like a projection onto the row space of M, as desired.

from these trained W’s, as well as a randomly generated W (‘No pretraining’), on each of 10 new
downstream tasks sampled from Ts.p., and save the average percentage of misclassified samples. We
repeat this process end-to-end 10 times, and plot mean and standard deviations across these 10
trials. Again we use m = 16 neurons and execute pretraining for 1600 rounds. To mitigate the effect
of representation learning error, we scale T with d for multi-task pretraining, specifically T = 16 + d.
For fair comparison with single task pretraining, we scale n1 and n2 with d for the single task case,
specifically n1 = n2 = 16 × (16 + d) for single task, whereas n1 = n2 = 16 for multi-task. While
the percentage of misclassified samples grows with d for single and no pretraining, it does not for
multi-task pretraining. This confirms that multi-task pretraining reduces the effective dimension
of the downstream task from d to r, unlike single task pretraining, which effectively confers no
downstream benefit as it performs similarly to no pretraining.

Figure 3(Right) explores the role of N in downstream performance. Here we pretrain a single W on
T = 32 tasks from Ts.p. for 1600 rounds with d = 32, r = 3, n1 = n2 = 16, and m = 16. Then we
execute linear probing for 200 iterations on the random three-layer ReLU network with first-layer
weights W. We fix either m̂ = 32 and vary N . The results shown are the mean and standard
deviation of the percentage of misclassified test samples across 25 tasks drawn from Ts.p., with 5000
test samples used per task. The classification accuracy improves with N , as predicted by Theorem
3.3, and even reaches perfect test classification accuracy (when N = 128).

The role of head updates. Next, we explore why multi-tasking leads to better feature learning. We

64

are motivated by our discussion in Section 4 regarding the similarity of the multi-task loss induced
from updating the task-specific heads to a constrastive loss [14], which encourages representations that
align points sharing semantic meanings and dis-align arbitrary points. Recall that in the population
setting, the multi-task loss is approximately of the form of −Ex,x′

[
β(x,x′)σ(W0x′)⊤σ(W0x)

]
,

where β(x,x′) = Ei[fi(x)fi(x
′)] is a scalar that either encourages the representation to align x and

x′ (if β(x,x′) ≈ 1) or not (if β(x,x′) ≪ 1). The intuition is that β(x,x′) ≈ 1 if and only if x
and x′ share the same label on most tasks and thereby share important features. The gradient of
Ex,x′

[
β(x,x′)σ(W0x′)⊤σ(W0x)

]
with respect to one neuron weight wj is of the form Awj where

A = Ex,x′ [β(x,x′)σ′(w⊤
j x)σ

′(w⊤
j x

′)x(x′)⊤].

See Appendix A for a rigorous derivation. In Figure 4 we plot finite-sample estimates of A with
varying numbers of tasks T drawn from Ts.p.(M), where here M = [I4,04×12] for ease of visualization.
We use d = 16, r = 4 and n1=n2=100. We repeated each computation 10 times for each value T ,
each with independent draws of wj , T tasks, and n1+n2 samples per task, and plotted the matrix

A matrix that achieved the smallest value of ρ(A,M) =
σ1(AM⊤

⊥)

σr(AM⊤)
among these 10 trials. Figure 4

shows that as the number of tasks increases, the finite-task approximation of β(x,x′) increasingly
acts like an indicator for whether x and x′ share the same ground-truth features, evidenced by A
approaching M⊤M = [I4,04×12;012×4,012×12] . Thus, A acts increasingly like a projection onto the
row space of M as T increases.

To further assess the importance of adapting the heads to each task, Figure 5(Left) compares
the representation learning performance of the multi-task pretraining algorithm we study along
with a modified version that learns only one shared head across all tasks. In particular, W and a
are updated simultaneously on each iteration by averaging the task-specific gradients. Since this
algorithm does not involve task-specific head adaptation prior to the update of the representation,
it does not induce a feature-learning-encouraging contrastive loss, and therefore does not lead to
learning the ground-truth features. In this case d = 16, r = 2,m = 8, n1 = n2 = 16, and νw = 0.001
(note increasing νw does not improve the performance of single-head training).

Finally, Figure 5(Center) plots the dynamics of Mwj for four neuron weights wj during multi-task
pretraining with T = 25, r = 2, d = 8, m = 4 (and task-specific heads). The projections Mwj fan
outwards from the origin and remain roughly isotropic in the row space of M. Conversely, Figure
5(Right) shows that the projections of wj onto the first two rows of M⊥ contract towards the origin
for each of the four neurons, as desired.

Extension to relaxed version of Assumption 2.1 and regression. We empirically verify that
the special cases of the new, weaker condition discussed above result in learning the ground-truth
features. We also evaluate whether optimizing the loss derived in the regression setting also leads
to recovering the features. All cases consider T = ∞ for simplicity. In particular, the settings we
consider are:

1. The standard hinge-loss classification setting with

β(x,x′) =

{
1 if sign(Mx) = sign(Mx′)

δ o/w
, (151)

for various choices of δ.

65

0 200 400 600 800
Number of Iterations

10 1

100

101

102

m
ax

(W
M

)
m

in
(W

M
)

Importance of Task-Specific Heads

Single head
Task-specific heads

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
M1 wj

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

M
2

w
j

Ground-truth features during pretraining
t=1600
t=0

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
MT

, 1wj

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

M
T

,2
w

j

Spurious features during pretraining
t=1600
t=0

Figure 5: (Left) Training with a single head, i.e. a1 = a2 = ... = aT = a, fails to recover the
ground-truth representation, as this does not induce an appropriate contrastive loss. (Center)
During multi-task pretraining with task-specific heads, the projection of four neurons onto the
r=2-dimensional ground-truth subspace fan outwards from the origin such that they remain large
and isotropic in this space, whereas (Right) their projections onto the spurious subspace contract
towards the origin.

2. The standard hinge-loss classification setting with

β(x,x′) = 1− 2

π
arccos

(
cossim(Mx,Mx′)

)
.

3. The regression setting from Section E with

β(x,x′) = exp
(
cossim(Mx,Mx′)

)
− exp

(
−cossim(Mx,Mx′)

)
.

To focus on the role of β(x,x′), we run SGD with a batch size of 10 (x,x′) pairs on the loss L̃ for the
classification cases, and SGD with a batch size of 10 (x,x′) pairs on the loss L̃reg for the regression
case. We set d = 10, r = 2, M = [I2,02×8], and m = 6. In the regression case, we used 10 i.i.d.
samples each round to approximate ΣW. We do not differentiate through functions of W that arise
from solving for the optimal a∗i (W)’s. We use the same hyperparameters in all cases (learning rate
= 0.005, regularization parameter = 0.1). We evaluate σ1(Wt(Id−M⊤M))

σr(WtM⊤M)
and σ1(WtM⊤M)

σr(WtM⊤M)
every 5000

rounds of training over 20000 rounds. All values are means plus or minus standard deviation over 5
independent random trials.

We can see that in all cases, Wt becomes approximately a rank-r matrix whose row space aligns with
the row space of M, and whose projection onto the row space of M is well-conditioned, confirming
recovery of the ground-truth features. As expected, the convergence is slower for larger values
of δ in Case 1, since the loss L̃(W) puts lets of an incentive on increasing the representation
similarity of positive pairs ((x,x′) : sign(Mx) = sign(Mx′)) relative to the similarity of negative
pairs. Nevertheless, all values of δ result in a representation tending towards the ground-truth.

We can see that in all cases, Wt becomes approximately a rank-r matrix whose row space aligns with
the row space of M, and whose projection onto the row space of M is well-conditioned, confirming
recovery of the ground-truth features. As expected, the convergence is slower for larger values
of δ in Case 1, since the loss L̃(W) puts lets of an incentive on increasing the representation
similarity of positive pairs ((x,x′) : sign(Mx) = sign(Mx′)) relative to the similarity of negative
pairs. Nevertheless, all values of δ result in a representation tending towards the ground-truth.

66

Table 1: Subspace learning error (σ1(Wt(Id−M⊤M))
σr(WtM⊤M)

) vs number of training iterations t. All values
are means plus or minus standard deviation over 5 independent random trials.

t = 0 t = 200 t = 400 t = 600 t = 800

(1) δ = 0 2.29± 0.72 0.784± 0.26 0.242± 0.089 0.0947± 0.029 0.796± 0.025
(1) δ = 0.1 2.29± 0.72 0.879± 0.29 0.308± 0.11 0.116± 0.031 0.0825± 0.018
(1) δ = 0.5 2.29± 0.72 1.35± 0.38 0.807± 0.23 0.450± 0.12 0.250± 0.60
(2) Linear Tasks 2.29± 0.72 0.323± 0.11 0.0761± 0.021 0.0665± 0.031 0.0581± 0.012
(3) Regression 2.95± 0.89 0.382± 0.23 0.268± 0.080 0.218± 0.038 0.421± 0.266

Table 2: Condition number of Wt in ground-truth subspace (σ1(WtM⊤M)
σr(WtM⊤M)

) vs number of training
iterations t. All values are means plus or minus standard deviation over 5 independent random trials.
The closer the condition number is to 1, the better.

t = 0 t = 200 t = 400 t = 600 t = 800

(1) δ = 0 1.45± 0.28 1.37± 0.23 1.34± 0.22 1.30± 0.25 1.29± 0.33
(1) δ = 0.1 1.45± 0.28 1.38± 0.23 1.35± 0.30 1.30± 0.20 1.24± 0.22
(1) δ = 0.5 1.45± 0.28 1.40± 0.21 1.41± 0.14 1.34± 0.14 1.25± 0.12
(2) Linear Tasks 1.45± 0.28 1.43± 0.25 1.44± 0.24 1.45± 0.29 1.45± 0.29
(3) Regression 1.83± 0.41 1.05± 0.041 1.07± 0.031 1.03± 0.011 1.11± 0.11

Separation between training with a fully-informative single task and multi-tasking.
Finally, we empirically verify the improved sample complexity of multi-tasking vs single-tasking in
the same setting as Figure 1 (whose full version is Figure 2 in this Appendix F) with T ∈ {1, 16},
but always using the full sparse parity task as the single training task in the T = 1 case, unlike
the figure in in the paper, in which tasks were drawn from Ts.p. in all cases. In each case we vary
n = n1 = n2, where n1 is the number of samples used per batch to compute the gradient with
respect to the head a and n2 is the number of samples used per batch compute the gradients with
respect the neuron weights W and bias b. We use d = 32, r = 3 and m = 16 neurons. All cases
use Gaussian initialization. We alternate between updates of the head and representation, as we
did not observe any significant change in performance by running simultaneous updates of the
head and representation for the single-task case. Learning rates and regularization parameters were
tuned separately for T = 1 and T = 16, resulting in (η = 0.01, λw = 0.05, λa = 0.5) for T = 1 and
(η = 0.5, λw = 0.05, λa = 0.5) for T = 16. We run 5 independent random trials for 800 iterations
and plot means plus or minus standard deviations. As in Tables 1 and 2, we evaluate the subspace
learning error σ1(Wt(Id−M⊤M))

σr(WtM⊤M)
in Table 3 and the condition number of the learned representation in

the ground-truth subspace σ1(WtM⊤M)
σr(WtM⊤M)

in Table 4. We can see that for all n, multi-tasking leads
to a representation that is much closer to a projection onto the ground-truth subspace, achieving
10− 100× smaller subspace learning error and approximately 5× smaller condition number in the
ground-truth subspace than single-task training on the full parity task.

Additional hyperparameters. Unless otherwise noted, we used λw = 0.05, λa = 0.5 and η = 0.1
(learning rate for both ai and W). after tuning each parameter in the set {0.01, 0.05, 0.1, 0.5, 1},
separately for single task and multi-task cases, unless r = 4. We tuned νw ∈ {0.001, 0.01, 0.1, 1}, and

67

Table 3: Subspace learning error (σ1(Wt(Id−M⊤M))
σr(WtM⊤M)

) vs number of training iterations t. All values
are means plus or minus standard deviation over 5 independent random trials.

t = 0 t = 200 t = 400 t = 600 t = 800

T = 1, n = 8 2.89± 0.36 2.86± 0.36 2.80± 0.39 2.81± 0.38 2.86± 0.37
T = 1, n = 64 2.89± 0.36 2.87± 0.37 2.81± 0.37 2.80± 0.37 2.84± 0.34
T = 1, n = 512 2.89± 0.36 2.86± 0.36 2.80± 0.37 2.79± 0.37 2.83± 0.35
T = 16, n = 8 2.89± 0.36 0.50± 0.33 0.27± 0.03 0.26± 0.02 0.27± 0.03
T = 16, n = 64 2.89± 0.36 0.23± 0.14 0.08± 0.01 0.08± 0.01 0.08± 0.01
T = 16, n = 512 2.89± 0.36 0.11± 0.07 0.03± 0.01 0.03± 0.01 0.03± 0.01

Table 4: Condition number of Wt in ground-truth subspace (σ1(WtM⊤M)
σr(WtM⊤M)

) vs number of training
iterations t. All values are means plus or minus standard deviation over 5 independent random trials.
The closer the condition number is to 1, the better.

t = 0 t = 200 t = 400 t = 600 t = 800

T = 1, n = 8 1.72± 0.25 1.91± 0.13 2.60± 0.36 3.94± 1.08 6.72± 2.81
T = 1, n = 64 1.72± 0.25 1.92± 0.13 2.59± 0.35 3.98± 1.08 6.70± 2.61
T = 1, n = 512 1.72± 0.25 1.92± 0.13 2.57± 0.36 3.93± 1.08 6.61± 2.63
T = 16, n = 8 1.72± 0.25 2.63± 1.89 1.31± 0.22 1.27± 0.18 1.27± 0.19
T = 16, n = 64 1.72± 0.25 3.38± 2.68 1.31± 0.28 1.25± 0.21 1.23± 0.18
T = 16, n = 512 1.72± 0.25 3.38± 2.69 1.32± 0.30 1.26± 0.23 1.24± 0.20

used νw = 0.01 for r ≤ 3, unless otherwise noted. For r = 4, we found that setting λw = 0.1 and
νw = 0.001 improved performance, but did not see improvement by changing the other parameters,
so kept them the same. We used a smaller learning rate of 0.001 for the bias in all cases, although
we reset the bias randomly before downstream evaluation.

68

	Introduction
	Related Work

	Formulation
	Pretraining tasks and data generating model
	Learning model and loss
	Algorithm

	Theoretical Results
	Negative Results

	Proof Sketch
	Conclusion
	Proofs of Proposition 3.1 and Theorem 3.2
	General lemmas
	Finite-task and finite-sample concentration results
	Analysis of the population gradient
	Full results

	Proof of Downstream Guarantees
	Negative Results
	Distributions That Satisfy Assumption 2.1
	Informal Extension to Regression
	Numerical Simulations

