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Abstract

Vision-language models are integral to computer vision research, yet many high-
performing models remain closed-source, obscuring their data, design and training
recipe. The research community has responded by using distillation from black-box
models to label training data, achieving strong benchmark results, at the cost of
measurable scientific progress. However, without knowing the details of the teacher
model and its data sources, scientific progress remains difficult to measure. In this
paper, we study building a Perception Language Model (PLM) in a fully open and
reproducible framework for transparent research in image and video understanding.
We analyze standard training pipelines without distillation from proprietary models
and explore large-scale synthetic data to identify critical data gaps, particularly
in detailed video understanding. To bridge these gaps, we release 2.8M human-
labeled instances of fine-grained video question-answer pairs and spatio-temporally
grounded video captions. Additionally, we introduce PLM—VideoBench, a suite for
evaluating challenging video understanding tasks focusing on the ability to reason
about “what”, “where”, “when”, and “how” of a video. We make our work fully
reproducible by providing data, training recipes, code & models.

GitHub: https://github.com/facebookresearch/perception_models

1 Introduction

Vision-language models (VLMs) are now a key part of computer vision research and are widely used
in both academia and industry. Many of the strongest performing VLMs are closed-source, meaning
their design, training methods, and the data they use are not publicly shared. To stay competitive,
the research community has started to catch up to the proprietary models by using a straightforward
approach — distillation from black-box models [1, 2, 3, 4, 5], where proprietary models are directly
used to label training data [3, 6, 7], directly leading to strong benchmark results.

Although distillation will unlock strong performance, there are two main issues for basic research.
First, it makes it hard to track scientific progress. Specifically, we cannot tell if better results on
benchmarks are due to advances in model design or training, or simply because the proprietary teacher
models were trained on the evaluation sets of widely used benchmarks or internal data collected to
resemble them — this information is not available. Second, the heavy reliance on distillation leads
to a fundamental misunderstanding of the effectiveness of current methods for training VLMs from
scratch. Several key questions remain unanswered, including the significance of each training stage,
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Figure 1: We introduce the largest collection of manually annotated fine-grained activity QA and spatiotemporal
captioning data (left panel). Together with this data, we train and release PLM —open and fully reproducible
models to facilitate research in vision-language model training (right panel).

the influence of synthetic data , the data gaps that the research community should prioritize, and
which of these gaps are currently being artificially addressed by distillation from proprietary models.

To better understand these challenges, we develop the Perception Language Model (PLM), a fully
open and reproducible model for transparent research in image and video understanding (Fig. 1
right). PLM consists of a vision encoder with a small scale (<8B parameters) LLM decoder. We
start by an analysis of standard training pipelines with available data, without any proprietary model
distillation. We investigate large-scale synthetic data and establish key scaling laws to identify critical
data gaps that limit video understanding performance, especially for spatio-temporal reasoning and
fine-grained understanding tasks.

To fill these gaps, we create 2.8M high-quality human-labeled instances of fine-grained video QA and
spatio-temporally grounded video captions, see Fig. 1. This release is nearly an order of magnitude
larger than the largest existing video datasets of each type [8, 9]. Our model, dataset and benchmark
push the boundaries of video understanding, and provide a foundation for reproducible and transparent
training and evaluation of VLM research. Across 40 image and video benchmarks, we achieve compa-
rable performance with existing state-of-the-art open-weight models (e.g., InternVL2.5 [10]), without
distilling from proprietary models, and greatly outperform fully open models (i.e., Molmo [11]).

2 Related Work

Vision-Language Models. Building on the strengths of large language models (LLMs), several
vision-language models (VLMs) have recently been proposed for image understanding [1, 12, 13,
14, 15, 16, 17, 18, 19], video understanding [20, 21, 22, 23, 24, 25, 26, 27] and joint understanding
of both images and videos [10, 28, 29, 30]. These works employ several modeling advancements
such as dynamic high resolution inputs [12], adaptive token compression [25, 31], and multimodal
positional embeddings [30].

Open source, open data VLMs. Training data is a key component in developing powerful VLMs.
Many existing approaches train on proprietary data that is not released to the community [32, 33, 34,
35, 36] or on data generated using proprietary models (e.g., GPT4o0) [3], effectively distilling the
closed models. Doing so make measuring scientific progress difficult and limits research on how to
train VLMs ground-up. Molmo [1 1] proposes a class of open-data models, however, they are image
VLMs trained on relatively small-scale data, limiting their performance as our experiments will show.

VLM Benchmarks. Several benchmarks have been proposed to assess the capabilities of VLMs.
Popular image benchmarks cover broad perception and reasoning [37, 38, 39, 40, 41, 42, 43, 44,
19, 45, 46, 47, 48] as well as capabilities like image captioning [49, 50, 51], document/diagram
understanding [52, 53, 54, 55, 56, 57, 58, 59, 60, 61], mathematical reasoning [62, 63, 64], visual
grounding [65, 66] and hallucination [67, 68]. Popular video benchmarks cover video question
answering [20, 8, 69, 70, 71, 72, 73, 74, 75,76, 77, 22,78, 79, 80], video captioning [81, 82, 83, 84,
85, 86, 87], and hallucination in videos [88, 89]. Many of these video benchmarks remain image-
centric — they have questions that can be answered with a few frames. Video-centric reasoning in
benchmarks has been relatively neglected with benchmarks proposed only recently for long video
understanding [90, 91, 92, 93, 94, 95, 96, 97, 98] and fine-grained, temporal reasoning [99, 100,
101, 102, 103]. We introduce PLM-VideoBench— a benchmark suite aimed at the core, video-



centric capabilities that current benchmarks neglect, namely fine-grained activity understanding and
spatio-temporally grounded reasoning.

3 PLM: Overview

In this section, we overview the model, training stages and training data involved in the development
of PLM. Please refer to Fig. 8 for a detailed overview and Appendix A for additional details.

Model. PLM consists of a vision encoder and

R Stage 1 Stage 2 Stage 3
lgnguage decoder, where a pre-trained Percep- Warmup Midtraining =
tion Encoder (PE) [104] is connected to the Modality Image  Image + Video Image + Video
Llama 3 [13] language decoder (1B, 3B, or 8B pata IM Synthetic ~ 72M Mix 19M Mix
parameters) with a 2-layer MLP projector. We  Training Projector Full Full
use PE L/14 for Llama3.2 1B and 3B, and PE  Downsampling - 2x2 2x2

Tiles/Frames 1/- 16/16 36/32

G/14 for Llama3.1 8B. For image input, PLM

incorporates dynamic tiling to support hi2gh €S- Table 1: Summary of three training stages to train PLM.
olution images for up to 36 tiles of 448 reso- See Appendix Table 7 and Table § for data splits.
lution, where each tile undergoes 2 x 2 average pooling to compress the visual tokens. For video

input, PLM uses 32 frames at 4482 resolution, where the same pooling is applied across the spatial
dimensions of each video frame.

Data. The data used to train the PLM consists of synthetic and human-annotated samples. Synthetic
data enhances the general capabilities of PLM, while human-annotated data broadens these capa-
bilities to encompass more complex tasks. Synthetic data is sourced from a diverse array of image
and video datasets, covering fundamental VLM capabilities such as OCR, chart/document/diagram
understanding, image/video captioning, and visual question answering.

We design data engines for each data modality (e.g., natural images, charts, documents, figures,
egocentric and exocentric videos) to efficiently scale up, creating ~66.1M samples (§4). The synthetic
data can be noisy, but is available at large scale; on the other hand, human-annotated data provides rich,
high-quality supervision for image and video tasks. Here, we combine existing human annotations of
diverse image and video sources, with our own collected human-annotated data, specifically geared
towards fine-grained video understanding and spatio-temporally grounded reasoning (§5).

Training stages. PLM trains in three stages:

1. Projector warm-up. First, we freeze the vision encoder and LLM and only train the vision
projector on a small amount of synthetic image data. This warms-up the newly initialized parameters
in the projector and improves stability for later stages. We use 1M images from SA-1B [105] with
the image captions generated by our data engine (§4).

2. Large-scale midtraining with synthetic data. Next,

. K R . A Samples Type Stage
we train PLM on d1v§rse domams‘of images and videos . pman-amnotated (2.87M)
at scale, using a maximum of 16 tiles for images and 16  PLM-FGQA 2.4M Fine-grained 3
frames for videos. PLM sees around 64.7M images and =~ PLM-STC 476.2KRMD)Cap +RTL 3

Our Synthetic (66.1M)

videos with synthetically generated captions and question-

. Wi | d . 1 Natural Images 15.9M Caption 1,2,3
answer pairs. We employ our data engine to scale Up  (parig & Documents 31.9M  Caption 2.3
synthetic data generation (see §4). Videos Mix 17.5M Mix. 23
. . . Ego4D 880K  Cap. + QA 2,3
3.. Supervnsed.ﬁne-tunlgg w!th hu_man-annotatled data. g0 Open Source (6.52M)
Finally, we train PLM with higher image resolutions and  Image (92 datasets) ~ 5.6M  Diverse 2,3
more video frames, using up to 36 tiles for images and ~ Video (27 datasets) 920K Diverse 2.3

32 frames for videos. In this stage, we tackle more chal-

Table 2: Summary of the data mix for train-

lenging video tasks, including fine-grained QA and spatio- ing PLM. See Table 9 for the full data blend.

temporally grounded reasoning.

Table 1 shows an overview of our training setup for each stage. Appendix A.l provides the complete
training recipe for each stage, including hyperparameters and data sources.



4 Synthetic Data Generation and Scaling

The predominant paradigm for VLM training is to generate synthetic annotations as cheap alternatives
to human-labeled data [1, 106, 30, 107, 10, 11, 15]. Although seemingly promising to get the best
results on benchmarks, the majority of such data shared in the community is derived from proprietary
models. This trend makes it hard to decouple scientific progress from proprietary distillation impact.
In this section, we explore the efficacy of the current paradigm for VLM training in a transparent
manner. We design our data engine entirely from open-source models and scale the synthetic data
generation to around 66.1M samples of images and videos. We establish the scaling laws of training
from synthetic data on standard VLM tasks, including image, OCR/document, and video tasks.

4.1 Data Engine

Our data engine is designed to target base capabilities of VLMs for image and video understanding.

Image Data Engine. We generate short and long captions, as well as question-answer pairs, for
natural images and those containing documents, diagrams, and text recognizable by optical character
recognition (OCR). We prompt openly accessible Llama 3 [13] model to produce factual, detailed
image captions while minimizing hallucinations. To create informative question-answer pairs, we
utilize OCR data, captions, and other metadata, which are fed into the prompt of a text-only LLM.

Video Data Engine. For videos, we first use an off-the-shelf scene detector [108] to extract video
clips of approximately 30 seconds duration. Then, we extract the keyframes and generate frame-level
captions using Llama 3, and video captions using our initial PLM trained with Stage 1 and Stage
3 data as shown in Table 2. We then employ an LLM to refine the frame-level and video captions
by incorporating existing video metadata (e.g., action labels, time tags) into a cohesive, detailed
video-level caption. Similarly, we generate question-answer pairs from the video-level captions.

The resulting synthetic data is large-scale and diverse — 66.1M samples carefully curated from a variety
of image and video sources including natural images, in-the-wild text, chart, figures, documents,
egocentric and exocentric videos. Additional details are in Appendix J.

4.2 Scaling Laws with Synthetic Data

We examine scaling properties of our synthetic data under controlled setup and establish scaling laws.
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Figure 2: Synthetic Scaling Plots. Relationship between Average Error across benchmarks and training
compute (in floating-point operations) for various PLM models. We report average errors across Video QA
tasks [75, 72,90, 8, 70, 71], OCR QA tasks [109, 53, 56, 57], and Natural Images tasks [45, 110, 111, 68, 40, 112].
Model’s performance using only human-labeled data subset are reported (No Syth.) as well as the actual
power-law fit of each subcategory.

Setup. To establish power-law relationship between compute and validation-set errors of down-
stream benchmarks, we vary the scale of synthetic data, language model decoders (1B, 3B, and 8B),
vision encoders (300M and 2B), and resolution/number of frames. For each configuration, we train
a model with the 66.1M synthetic data from our data engine and 6.5M publicly available human-
labeled data, following stage 2 training described in §3. At every 2M samples, we evaluate PLM on
three categories of downstream benchmarks (VideoQA, OCR QA, Natural QA), constructed from 20
vision-language understanding benchmarks that provide a comprehensive and general evaluation of



multi-modal large language models. We compute the pareto frontier of these data points and fit a
power law relationship: Err. = (8 x FLOP)“ and compare the exponents « of the power function as
scalability of each setup, where a smaller o implies better scaling.

Scaling with decoder size. Fig. 2 shows the scaling behavior of PLM across various LLM sizes.
We show validation-set errors and training compute on a logarithmic scale, with the black linear line
representing the power-law relationship between them. Different colors (green, turquoise, and blue)
represent different language model scales (1B, 3B, 8B) while keeping the vision encoder size constant
at 300M. As described in the setup section above, we show the power law fit of the pareto frontier
in each benchmark category. We also show the results of PLM only trained on 4M human-labeled
datasets as baselines, denoted with horizontal lines of each color. The gap from the horizontal line to
the data point marks the impact of the synthetic data. Interestingly, all three categories of benchmarks
demonstrate clear power-law relationship between compute and average benchmark errors, with the
power law exponent («) of —0.15, —0.20, and —0.11 for Video QA, OCR QA, and Natural Image
QA, respectively. In Appendix B, we provide more details and extend the analysis to (1) scaling the

encoder size, and (2) scaling the image resolution and vide
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Figure 3: Limitation of synthetic data.

Challenging video tasks (HardQA [97, 100,
89, 101, 99, 113, 92]) do not scale well with

effective for established, base tasks. Extending VLMs to  synthetic data.
these more challenging, complex tasks still remain unsolved. Next, we address this challenge with
high-quality human-annotated video data, PLM-FGQA and PLM-STC.

5 Human-annotated High Quality Data

As shown in Fig. 3, the current paradigm with synthetic data has run out of steam. Training from
tens of millions of synthetically annotated data hardly improves our model on new, challenging video
benchmarks. Beyond standard VLM tasks, these benchmarks focus on advanced capabilities such as
fine-grained activity understanding, temporal grounding, and long video understanding. Perhaps, the
knowledge that these benchmarks examine is simply not present in the initial training set of our data
engine nor in existing human-annotated data. Our community lacks high quality datasets for detailed
visual understanding to start from, that covers what, where, when, and how of activities in video. To
address this gap, we introduce two large-scale, human-annotated video datasets:

PLM-FGQA is a fine-grained video QA dataset collected by asking human annotators to watch a
short video segment and answer model-generated questions which focus on “what” activities humans
perform and “how” they perform these activities. Question types include fine-grained recognition
(action and object), fine-grained temporal perception (direction of movements, repetition counts,
hand pose etc.), and fine-grained spatial understanding (object locations and spatial relationships).
We use a multi-stage data engine to first extract video segments with salient actions from untrimmed
videos through temporal clustering and shot-detection. Next, we generate questions and answers
using either a text-only LLM or an early version of PLM. Finally, we refine the answers by asking
humans to verify or replace them if they are incorrect, resulting in a high-quality QA pairs.

Overall, we collect 2.4M question answer pairs from various open-access video datasets [114, 115,
116, 117, 118, 83] spanning over 780k unique video clips from diverse domains (e.g., cooking, DIY,
carpentry, automotive and bike repair) and viewpoints (egocentric and third-person); refer to Fig. 13
for domain statistics. This is nearly 8 times larger than the size of the largest existing human-annotated
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Existing QA Datasets PLM-FGQA (ours)

Action Rec. 2x
Object Rec. 7x
Mov. Direction 47x
Counting 9x
. . Obj. State. 47x
Question Question Pose 18x
How does the person hold the sandpaper? How many chakli snacks does the person flip?
Answer Answer Obj. Attributes 3x
Firmly with their right hand, between the right thumb The person flips three chakli snacks with a long metal Obj. Location 26x
on one side, fingers on the other side. skewer.
Spatial Rel. 30x
Question Question Speed / Force 58x
In which direction is the person moving the sandpaper? Where is the metal skewer located at the beginning? Action Seq o

Answer
Resting on top of the pan, which is positioned on the
left burner of the portable stove.

Answer
From the bottom of the baluster to the top in a vertical,
oscillating motion.

100K 200K 300K 400K
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Figure 4: Overview PLM-FGQA. Examples of question-answer pairs from PLM-FGQA, focusing
on fine-grained human activity understanding. PLM-FGQA is approximately 8 times larger than
the largest existing human-annotated video QA dataset and addresses a wide range of fine-grained
question types that are scarce in existing video QA datasets, such as ones that cover direction of
movement, object states, locations and spatial relations.

video QA dataset in the community [91]. Moreover, as illustrated by the breakdown of question
types' in Fig. 4 (top-right), PLM-FGQA contains a large number of annotations about fine-grained
details that have been largely missing in existing training video QA datasets [119, 69, 71, 76, 20, 120,
121, 122, 123]. Please refer to Table 16 for comparison with existing datasets Table 17 for dataset
examples and Appendix G for further details.

PLM-STC is a spatio-temporal video captioning dataset that offers detailed activity descriptions
for each video. It includes timestamps (‘“when’) of each activity and focuses on specific subjects
identified by a masklet (“where”). We employ a two-stage annotation process to improve efficiency
in collecting PLM-STC. In the first stage, annotators select interesting objects that exhibit significant
motion changes in the video and use SAM 2 [124] to generate initial mask tublets, which they then
refine to ensure high-quality spatial-temporal segmentation. For segments where the subject is out of
frame, we automatically supplement “out of frame” caption. In the second stage, a separate set of
annotators write temporally localized descriptions of the highlighted subject focusing on the changes
in action across time in relation to the whole video.

Spatio-temporal Captions (STC)

)

[0, 1] Out of frame.

[12, 67] The person wearing a jacket is running
on a snow covered ground. She stops and
turns to look the other person.

[0, 19] The man moves gracefully, using his
hand gestures that closely resemble a dance in
most of his actions.

[20, 31] The person moves from right to left.

[O, 81] A little girl moves back as a beluga
whale approaches her face.

L]
[82, 85] Out of frame.
|

[86, 98] She tries to feed the whale.

Figure 5: Overview of PLM-STC. Examples of spatio-temporally grounded captions from PLM-
STC, the first dataset to associate each caption both with a temporal interval as well as a high-fps
sequence of segmentation masks of the subject - i.e., masklets (compared to just a temporal interval
or a sparse sequence of bounding boxes).

Overall, we collect 194.2K spatio-temporal captions as the first existing large-scale dense video-region
captioning dataset. We convert these spatio-temporal captions into three tasks for training: RCap
(194.2K): Given the video region and timestamps, the model generates a caption; RTLoc (194.2K):
Given the video region and caption, the model localizes the action; and RDCap (122.3K): Given the
video region, the model generates dense, localized captions. In total, we construct 194.2K + 194.2K
+ 122.3K = 522.7K samples, of which 476.2K are used for training and the rest for constructing

!obtained with LLM-based tagging.



PLM-VideoBench. Please refer to Fig. 5 for dataset examples, Table 19 for comparison with existing
datasets, Table 20 for dataset statistics and Appendix H for further details.

5.1 PLM-VideoBench

Our high-quality human-annotated data offers VLMs to train for broader range of capabilities for
holistic video understanding. However, existing video benchmarks are not adequately equipped to
evaluate these. To this end, we introduce PLM-VideoBench, a novel benchmark focusing on specific
activities (what) and their execution details (how) within spatio-temporal contexts (where and when).

FGQA SGQA

»>

Question Question Question Question Question

How is the person Does this pasta look Describe all the Given the shaded Provide a dense caption for the region

moving the paintbrush strained enough? actions performed by region, when does “The indicated by the shaded mask with the

to paint the wall? the highlighted object cat gets up and moves start and end frames of all actions of
Choices Answer between frames [0, 31] in front, towards the the subject, along with a brief

(A) Vertically from top The pasta looks toy.” occur in the video. description of each action.

to bottom. perfectly strained, with Answer

(B) Horizontally from excess water removed. A black and white Answer Answer

left to right. dog runs towards the [55, 64] [0,1): The person to swing in the
Answer camera, spins around monkey bar.

(A) Vertically from top and runs back away [81,98] The person hang from the toller
to bottom. monkey bar.

Figure 6: PLM-Video Dataset includes fine-grained video QA (FGQA), open-ended QA in videos recorded
using smart glasses (SGQA), Spatio-Temporal Captions (STC) post-processed into video region captioning
(RCap), video region temporal localization (RTLoc) and video region dense captioning (RDCap) tasks.

Fine-Grained Question Answering (FGQA). In this task, a model must answer a multiple-choice
question (MCQ) that probes nuanced, fine-grained activity understanding (e.g., painting “vertically”
vs. “horizontally” in Fig. 6, first). We report multi-binary accuracy (MBAcc) [99] where each
question is split into multiple binary choice questions. Our test set consists of 4,371 question-answer
pairs. For more information, including statistics on video clips, segment duration, question types, and
benchmark construction, see Table 18 and §G.2.

Smart Glasses Question Answering (SGQA). In this task, a model must answer open-ended
questions about activities and objects visible in an egocentric video stream recorded by a smart-
glasses device (see Fig. 6, second). The questions are designed to simulate real-world scenarios
where a user would ask for assistance from their smart glasses. We manually collect the videos
using commercially available smart glasses, providing a completely new, unique dataset that reflects
modern use-cases such as online Al video assistance and activity coaching. For evaluation, we
use LLM-judge accuracy with an open-access model (Llama3.3 70B). The test set consists of 665
human-annotated question-answer pairs. See Appendix I for more details.

Video Region Captioning (RCap). In this task, a model must generate a detailed description of
an event involving a subject of interest in the video. Given a region masklet and a specified time
interval, the model is required to output a caption that accurately describes the event occurring within
that interval. Compared to traditional video captioning [125, 83, 84] where the aim is to generate
a video-level caption, the goal is to generate a region-level caption tied to a specific subject (e.g., a
person, object or animal) (see Fig. 6, third). The test set contains 10,060 human-annotated instances
and we report LLM-judge accuracy with Llama3.3 70B. See Appendix C.3 for details.

Region Temporal Localization (RTLoc). In this task, a model must identify the precise time
interval within the video when the specified event takes place for the given subject. Given a video,
a region masklet and a text description of the event, the model is required to output the start and
end timestamps that correspond to the occurrence of the event (see Fig. 6 fourth). Notably, this
task is the inverse of RCap — instead of generating the caption, the model receives it as input and
generates the corresponding time interval. We filter the test set to include only the captions that
are unambiguously localized, i.e., they map to a single time window in the video. As a result, the
test set size is reduced to 7,910 instances compared to RCap. We report average recall@1 over IoU
thresholds (0.3,0.5,0.7,0.9). See Appendix C.3 for details.



Region Dense Video Captioning (RDCap). In this task, a model must generate a detailed de-
scription of all events involving a specific subject of interest (e.g., person, animal, or object) in a
video. Given a video and a region masklet, the model must produce a sequence of (start, end,
caption) tuples that cover the entire duration of the video, including periods when the subject is
not visible (see Fig. 6, last). This task is a composition of RTLoc and RCap, requiring the model
to produce both temporal windows for events as well as captions directly from the video. The test
set contains 2,620 samples and we report the SODA score [126] which uses an LLM judge. See
Appendix C.3 for details.

6 Experiments

We first overview the baselines and evaluation setting (§6.1). We then compare benchmark results of
PLMs with the baselines on a broad collection of image (§6.2) and video (§6.3) tasks as well as on
our PLM-VideoBench (§6.4). Finally, we provide analyses on data and model ablations (§6.5).

6.1 Setup

We compare PLMs against the following two classes of baselines:

* Proprietary models such as GPT-40 [33] (gpt-40-2024-11-20), Gemini-Pro 1.5 [34] and
Gemini-Flash 2.0 [35]. We use API calls to evaluate these models.

* Open-access models such as Molmo-O [11], LLaVA-OneVision [28], Qwen2.5-VL [106] and
InternVL2.5 [10] — state-of-the-art open-access models, for which model scale, architecture and
inference code are available. We use the official inference code for all models.

Inference protocol. For mask inputs in PLM-VideoBench, we overlay a colored box on the video
frames to specify the regions. We report validation set performance unless specified (in brackets)
under the benchmark name. Metrics marked with 1 use LLM as a judge. Complete implementation
details including inference hyper-parameters, task prompts, judge prompts and proprietary model
evaluation protocol can be found in Appendix C.4.

6.2 Image Benchmark Results

We evaluate PLM on a total of 20 image benchmarks. Charts, Diagrams and Documents: answer
questions that require parsing images of documents and diagrams; Image Captioning: generate a
short/detailed caption, Perception and Reasoning: answer questions of varying difficulty about ob-
jects, actions, functional correspondence, multi-view reasoning, spatial layout etc. and Hallucination:
evaluate robustness to hallucinated details. More details are in Appendix C.1.

Table 3 shows our results. Overall, PLM shows strong performance on a wide spectrum of image
benchmarks with solely from open-access data with a white-box data engine. Additionally, we report

Charts, Diagrams and Documents Perception and Reasoning Hard Perception Halluc.
— = — <
@ 2 o = & g
3% 2 S5 <& fmic o3 R i- iz § =
g5 gi 84 35 of8 88 S S8 23 &2 2% - wg
Model 2% S5 By €3 8885 =3 s Ry 25 3s %% 5%
A US &8 52 <2503 =22 os >3 OS 8 >8 &S
GPT-40 [33] 92.8% 857% 753  80.7* 942* 810 70.7* 63.9 77.1%  68.0% 725 739 780 87.2*
Gemini 1.5 Pro [35] 940 842 748 81.0% 957 830 632 63.9 778 598 810 663 761  882*
Gemini 2.0 Flash [35] 93.0 84.8 802 81.0 94.0 792 69.9% 57.8 770 644 82 719 748
1B scale
Qwen2VL-2B [30] 90.1 753 803 655 84.6™ 809* 411* 80.0 597 674 729 444 173 626 73.0 872
InternVL2.5-1B [10]  84.8% 75.9% 72.0* 56.0* 77.8 785* 40.9* 722 515 474 713 424 421 583 654  90.2
PLM-1B 90.7 786 821 630 849 807 348 817 61.0 597 763 468 738 67.1 688 884
3B scale

Qwen2.5 VL-3B [106] 93.9% 83.1 79.3% 77.1% 902 797* 53.1* 808 632 719 731 47.6™ 544 654% 785 88.2
InternVL2.5-4B [10] 91.6* 84.0% 793  72.1% 90.5* 828" 523* 809 640 618 756 508 559 646 800 910

PLM-3B 93.8 84.3 84.3 74.6 90.9 830 41.2 84.3 66.8 64.0 78.5 554 814 724 80.4 88.7
8B scale
Molmo-7B-O [11] 90.8% 80.4* 80.4* 70.0* 90.7* - 39.3%  85.3* - - 67.5*

LLaVA-OV-7B [28] 86.7 80.0 773 688  90.1 656 489 835 696 634 764 494 750 667 8.1 89.2
Qwen2.5VL-7B [106] 95.7* 87.3* 84.9™ 82.6™ 93.0 864* 58.6% 70.1 61.0 735 732 564 119  69.8 80.3 872
InternVL2.5-8B [10]  93.0% 84.8% 793  77.6™ 92.8% 823  56.0* 80.6 692 643 77.6 548" 539 70.1% 80.0 90.6*
PLM-8B 946 855 865 809 927 870 46.1 856 696 670 793 560 813 750 828 899

Table 3: Image benchmarks. PLM versus proprietary models and open-access baselines of comparable scale.
Cells with * are reported numbers from literature, and the remaining are reproduced using official code.
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VCap. Video QA Fine-grained Video QA T.Loc Halluc
_ 22 = « =2

N m o = g2 = S = ‘Z o

z 5 < = £ o £s 57 2 28

=% &3 Oz =8 N S 28 £ sS 2% 3 "E
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. S B 52 S B8 g o & £ O = p o =

AR 58 z§8 &8 B8 B8 o 8 =] €3 O8 © S
Proprietary
GPT-40 [33] - 64.6%  79.1 - 704 71.9* 722% 385% 37.7% 559 745 58.3% 386 56.4  91.9*
Gemini 1.5 Pro [35] - 60.5* 81.6 659 - 75.0%  56.7* 712* 347 320 561 756 50.1* 342 560 809
Gemini 2.0 Flash [35] - 60.7 81.9 - - 70.3* - 71.5% 276 32.8 56.1 769  47.0% 29.8 60.1 81.6
1B scale

Qwen2VL-2B [30] 26.8 63.2% 764 53.9% 673 55.6% 384 27.0 13.1 257 46.9 62.3 42.8 0.3 349 59.9
InternVL2.5-1B [10] 27.7 64.8 74.3 59.4 73.0  503*  60.7 55.7 27.7 25.0 45.0 56.4 40.9 0.8 31.0 38.9
PLM-1B 343 70.1 80.3 72.7 83.7 49.2 62.5 60.4 18.2 25.5 52.2 64.6 43.6 55.2 49.2 79.5
3B scale

Qwen2.5 VL-3B [106] 20.3 67.0 76.8 66.9% 63.0 61.5% 592 64.8% 172 235 49.2 63.0 45.7 38.8% 452 535
InternVL2.5-4B [10] 29.2 71.7 82.5 67.9 772 62.3%  64.1 66.6 23.7 27.4 52.7 65.2 52.0 8.4 49.6 66.3
PLM-3B 374 74.7 834 79.3 84.8 54.9 66.2 66.9 234 30.9 60.4 69.3 47.2 57.7 55.5 76.5
8B scale

LLaVA-OV-7B [28] 28.0 57.1 81.0 58.1 66.0 57.7 60.5 454 19.5 27.6 53.7 67.8 41.2 12.1 34.7 61.1
Qwen2.5VL-7B [106] 23.3 69.6*  80.0 70.5*  68.1 65.5% 637 65.0% 245 24.6 51.1 71.7% 498 43.6*  50.1 61.1
InternVL2.5-8B [10] 28.5 72.6 85.5 68.9% 776  642* 66.1 66.2% 243 294 535 68.3% 53.1 14.3 57.1 60.2
PLM-8B 359 771 84.1 827 849 583 673 688 283 332 614 727 464 586 577 773

Table 4: Video benchmark results. PLM versus proprietary models and open-access baselines of comparable
scale. Cells with * are reported numbers from literature and the remaining are reproduced using official code.

Image Grounding task results on RefCOCO/+/g [65] datasets in Appendix Table 14, and show that
PLM outperforms both specialist models as well as the VLM baselines in all model scales.

6.3 Video Benchmark Results

We evaluate PLM on a total of 25 video benchmarks. We divide these into the following categories.
Video Captioning: generate a short caption for a video, or a dense description of all events; Short
video QA: answer a question about a short video (few seconds to a minute), either by selecting from
a list of options, or providing a free-form answer; Long video QA: answer a question as before,
about a much longer video (minutes to hours); Fine-grained QA: answer detailed questions about
spatial location, motion, temporal information etc.; and Hallucination: evaluate the robustness of
video models to hallucinated details about objects and events.

Table 4 shows video captioning, video QA, fine-grained video QA, and video hallucination results.
We achieve strong results on widely adopted benchmarks, despite only using open-access data mix
free from proprietary model artifacts, outperforming both the open-access and proprietary models.

Further, we achieve competitive performance on the majority of challenging benchmarks, such
as EgoSchema (68.8 %), MotionBench (61.4 %), TOMATO (33.2 %), TempCompass (72.7 %),
TemporalBench (28.3 &), Charades-STA (58.6 %), and more. All our model scales show strong
performance against both proprietary models as well as open-access baselines of same scale.

Lastly, we also show that PLMs at all scale greatly outperform existing approaches on captioning
tasks and hallucination detection tasks, owing to our focus on detailed, fine-grained spatio-temporal
annotations in our human-annotated data collection.

6.4 PLM-VideoBench Results

We report the result on our proposed benchmark <8 < 8% =% 8%
. : S5 8% 8BS &5 g3 @
PLM-VideoBench from §5.1 in Table 5. We  Model S 28 =28 =228 2% %
evaluate our PLM as well as (proprieta_ry and Human perf. 909 679 666 539 678 739
_ : 143 : Proprietary
open-access) baselines. In addition, we provide GPTto 120] siz @1 09 357 3 B

human performance of each subtask in the first  Gemini15Pro 351 571 499 144 331 276 440

Tow. The resu]ts ShOW a Signiﬁcant gap between gemini 2.0 Flash [35] 58.7 44.8 132 30.9 27.6 42.5
. . . pen-access

the baselines and PLM. Proprletary baselines and |/ U "ovos ps) 402 415 47 244 139 320

open-source baselines alike perform reasonably on  Qwen2VL-7B [30] 492 445 41 176 151 353

: : Qwen2.5VL-7B [106] 49.8 43.0 25 21.5 10.7 34.8

FGQA tasks, though still 6.5 points lower than InternVL2-8B [10] 477 459 12 215 116 350

PLM (61.2 vs 67.7). On SGQA, where the video  memvL2588 [10] 537 483 57 261 88 385
sources and the question-answer pairs are unseen ~ PLM:8B 67.7 462 528 466 591 HSS56

to all models, PLM performs reasonably well, Table 5: PLM-VideoBench results. We evaluate

yet 2.1 points short from open-access best (In- ppM against baselines and report breakdowns. We
ternVL2.5) and far from the best proprietary model  report human performance in the first row.




(GPT-40). On spatio-temporal tasks (RDCap, DCap, RTLoc), open source baselines are unable to
perform grounded reasoning and default to repeating the same caption for every time interval. Pro-
prietary models perform reasonably well, yet far from the human performance. In all sub-tasks of
PLM-VideoBench, PLM shows competitive performance compared to proprietary and open-access
baselines. Results for all model scales are in Appendix D.

Note that the human performance varies based on the nature of the task and evaluation metrics. For
example, FGQA human scores are naturally higher than RCap because the task is structured (select
the correct option vs. open-ended ) and the metric is objective (accuracy vs. LLM-judge accuracy).

6.5 Ablation Studies

Setup. We perform an ablation study to assess the importance of each of our proposed data, both
synthetic and human-annotated. We start with PLM 3B after stage 2 training, and finetune on 4M
short image and video SFT data mix ? for the data ablation. We evaluate and report average video
benchmark performance across five categories — video captioning, short video QA, fine-grained QA,
and video hallucination, as well as spatial and temporal tasks, PLM-VideoBench and three image
categories — image OCR, image captioning, and image perception. Full details are in Appendix A.3.

PLM-VideoBench Video Tasks Image Tasks

< 5o o s g0 o
oz g S S g 48
= < S < < 3 < SR s
T v 9 s g 9 £5 dx <8 S 0% g s 46 456
= = = E =23 =+ 55 8§ 835 S %3 IS “
=) =) =) 5 =8 28 4 £ B R TS g E= g 5
A A& & E AS AS An En 2Q Fn o oy S0 S B
X X X 485 397 344 6.6 422 240 675 649 506 760 643 633 § “
v X X 543 498 359 147 488 299 732 733 561 840 659 655 20l 6
v VX 579 499 362 421 486 323 739 742 629 838 675 650 =
v X V567 629 432 152 501 304 741 763 583 837 640 656 38
v v v 612 63.6 44.0 422 502 343 746 763 643 837 742 654 35

Table 6: Ablation. We show the impact of individual data components in PLM
training. For this ablation, we use a reduced the SFT datamix consists of 4M open-
access image and video data. Results are aggregated validation-set performance over Figure 7: HardQA im-
selected benchmarks in each category of tasks, details in Appendix A.3. proves with PLM data.

i___H N
w/o PLM data Full

Discussion. First, we observe that stage 2 synthetic data training boosts model performance across
the board. Moreover, adding our PLM-STC data further improves a variety of benchmarks, including
PLM-STC (+27.4 points), video captioning (+2.4 points), and most importantly, spatial and temporal
tasks (4-6.8 points). Adding our PLM-FGQA data improves a distinct set of categories for fine-grained
activity understanding; PLM-FGQA (+13.1 points), PLM-SGQA (4-7.3 points), Fine-grained video
tasks (+1.3 points), video hallucination tasks (+3.0 points), and spatial and temporal tasks (42.2
points). Using our human-annotated data altogether results in the best performance overall. Further in
Fig.7, we show that our human-annotated data improves upon HardQA [97, 100, 89, 101, 99, 113, 92],
effectively addressing the limitations of synthetic data discussed in §4.2.

7 Conclusion

This work presents Perception Language Model (PLM), a fully-reproducible vision-language model
to transparently tackle visual perception tasks without distillation of private black-box models. We
trained PLM using data from existing open-access datasets and synthetic samples generated by
our data engine. We identified gaps in detailed video understanding capabilities that cannot be
filled with synthetic data. In response, we collected 2.8M human-labels for fine-grained video
question answering and spatio-temporally grounded captioning, and created a new benchmark, PLM-
VideoBench, to evaluate these capabilities. We hope our open dataset, benchmark, and models will
foster transparent research in visual perception.

23 8M datamix: TextQA 500K, Image QA 2.8M, and Video QA 500K. Each detail can be found in Tab. 9.
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Figure 8: The figure provides an overview of the datasets used in the paper. PLM is trained with 47.8M
synthetic image and 18.4M synthetic video, and 2.9M human-labeled video samples. Our data enables PLM to
perform a variety of tasks, including standard tasks like Image, Multi-image, and Video QA, as well as new video
tasks such as Fine-grained QA (FGQA), Region Temporal Localization (RTLoc), Region Captioning (RCap),
and Region Detailed Captioning (RDCap).

In this section, we describe the training details of PLM. In §A.1 we describe exact details of training
setting such as hyper-parameters and implementation details. In §A.2 we describe our datamix for
both synthetically generated and human-annotated parts.

A.1 PLM Training Setting

For all three stages, we use AdamW optimizer [128] with weight decay of 0.05 and use FSDP [129]
with FlashAttention2 [130] for overall implementation based on PyTorch [131].

Stage 1 training. In stage 1, we use a subset of SA-1B [105] paired with detailed captions generated
by our data engine (§4.1). We use total 1M samples to train PLM with next token prediction loss, with
vision encoder and LLLM parameters frozen. This stage is commonly known as warm-up stage. We
use learning rate 1 x 10~ for all model scale with global batch size of 512 and 448 x 448 resolution.
We use the Perception Encoder [104] L/14 variant for the 1B and 3B PLM models, and the G/14
variant for the 8B PLM model.

Stage 2 training. In Stage 2, we train on a total of 72.5M samples. Of these, 66M consist of images
and videos with synthetically generated annotations produced by our data engine. The remaining
6.5M samples are a subset of human-annotated images and videos from open-source datasets, which
are included in our final datamix described in §A.2. We train with global batch size of 2048, learning
rate of 4 x 10~°, weight decay of 0.05 for the full set of parameters (vision encoder, projector, and
LLM). For both image and video input, we use 448 x 448 resolution for each tile/frame, which
effectively generate 1024 vision tokens. We apply 2 x 2 spatial average pooling to reduce this to 256.
We use dynamic tiling with a thumbnail to support any resolution and aspect ratio, similar to prior
work [12], and uniform sampling of video frames after preprocessing the videos to 1 fps. We set the
maximum number of tiles/frames to be 16, which results in maximum of (16 + 1) x 256 = 4352
and 16 x 256 = 4096 vision tokens respectively for images and videos. We train the model with a
sequence length of 6144 allowing a maximum of 2048 tokens for the text modality.

Stage 3 training. In stage 3, we use total of 19.1M high-quality datamix spanning over multiple
image, video, and text modalities. We describe this datamix in §A.2. In this stage, we use global
batch size of 1024, learning rate of 1 x 10~° for 8B and 4 x 10~° for 1B and 3B PLM models. We
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train the full set of parameters for all scales. Similar to stage 2, we adapt dynamic tiling and uniform
frame sampling for up to 36 tiles for image and 32 frames for video, with 2 x 2 spatial average
pooling, which generates (36 + 1) x 256 = 9472 vision tokens for image and 32 x 256 = 8192
vision tokens for video. For all modalities, we use 11264 maximum training sequence length.

A.2 PLM Training Datamix

Table 9 presents the full data mix used across all training stages apart from our manually collected
data in §5. This contains annotations from existing public datasets as well as synthetically generated
data (see §4). We filter and include a wide variety of existing datasets spanning across images
(captioning, QA, grounding), videos (captioning, QA, temporal localization, region captioning and
dense captioning) and text-only datasets to preserve the text-instruction following capabilities of
our model. Most importantly, we filter out every dataset that contains annotations generated by
proprietary models. Table 7 and Table 8 shows the exact number of samples for each datasets in Stage
2 and Stage 3 respectively. Marjory of the data in stage 2 are synthetic, with a focus on captioning
samples, since they carry the dense information about the image or video. In stage 3, we have one
third of the data, mostly focusing on human annotated samples, covering a large variety of tasks.

Dataset Num Samples  Type Dataset Num Samples Type
Image Synthetic Image Synthetic
PDFAcc (QA) [132] 12M QA PDFAcc (QA) [132] M QA
PDFAcc (Cap) [132] 12M Cap. ArxivCap [134] 1.5M Cap./QA
UCSF [133] 6M QA SA1B [105] 800K Cap.
ArxivCap [134] 1.8M Cap./QA  Object365 [135] 300K Cap.
SAIB [105] 10M Cap. Openlmages [136] 300K Cap.
Object365 [135] 3.5M Cap. DocVQA [53] 100K QA
Openlmages [136] 1.8M Cap. InfographicVQA [56] 50K QA
DocVQA [53] 50K QA PixmoCap [11] 500K Cap
InfographicVQA [56] 20K QA Video Synthetic
PixmoCap [11] 600K Cap YT-1B (QA) [137] 300K MCQA
Video Synthetic Ego4D (Cap.) [115] 180K Cap.
YT-1B (Cap.) [137] 14M Cap. Ego4D (QA) [115] 700K QA
YT-1B (QA) [137] 3M MCQA  Spoken Moments [138] 449K Cap.
Ego4D (Cap.) [115] 180K Cap. Charades [139] 8K Cap.
Ego4D (QA) [115] 700K QA Kinetics710 [121] 40K Cap.
Spoken Moments [138] 449K Cap. DiDeMo [140] 7.5K Cap.
Charades [139] 8K Cap. Text Synthetic
Kinetics710 [121] 40K Cap.  NaturalReasoning [141] IM QA
DiDeMo [140] 7.5K Cap. Human Annotated
Text Synthetic Image QA [9] 2.8M QA
NaturalReasoning [141] IM QA Image Cap [9] 36K QA
Human Annotated Image Grnd. [9] 1.4M QA
Image QA [9] 2.8M QA Image Misc. [9] 1.4M QA
Video QA [9] 570K QA Video QA [9] 570K QA
Video TL [9] 16K Temp. Loc. Video Cap. [9] 315K QA
Video Dense Cap. [9] 10K Dense Cap. Video TL [9] 16K TL
Text QA [9] M Mix Video Dense Cap. [9] 10K DCap.
Total 72.5M Video Region Captioning [9] 15K Cap.
Table 7: PLM Stage 2 training data mix. Text QA [9] 1.SM Mix
Human Annotated (Our)
PLM FGQA 2.4M QA
PLM STC 476K Cap./TL
Total 19.1M

Table 8: PLM Stage 3 training data mix.
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Image QA Grounding Video Temporal Loc

Dataset Size Dataset Size Dataset Size Dataset Size
DVQA [142] 222222 STAR [72] 3032 VisualGenome [66] 154792 HiREST [199] 7919
PlotQA [143] 157070 NEXT-QA [69] 3870 FLickr Entities [196] 296332 Charades [139] 7566
MapQA [144] 42761 VISION [180] 9900 DCI (Region Caption) [193] 304912 DiDeMo [140] 435
OCRVQA [145] 167646 3 FlintstonesSV [181] 22341 RefCOCO/g/+ [197] 212923 Total 15930
Localized Narratives [146] 199998 5 ImageCoDe [182] 16594 VCR [60] 855577 >
FigureQA [147] 119999 = VizWiz [40] 4900 ]

Hateful Memes [148] 9713 £ MIT-States (State Coherence) [183] 1900 Total 1398690 Video Region Captioning
CLEVR [149] 73181 2 MIT-States (Prop. Coherence) [183] 1900 o Dataset Size
CLEVR v1.0 [149] 70000 2 WebQA [184] 9338 mage Synth
TeonQA [150] 116514 = Birds-to-Words [185] 14281 Dataset Size eﬁfg\(ﬁ,{é‘fﬂbm) (23] ;%21
TextVQA [112] 21953 2 AESOP[186) 6915 DocVQA 53] 50170 —
GeomVerse [151] 11162 RecipeQA (Img. Coherence) [187] 8699 Infogray hlL:VQA 1561 él()f)ﬂ Total 15427
RobuT (wikisql) [152] 80757 CLEVR-Change [188] 3885 Braphe S
Wers s PDFAcc (Cap.) [132] 12024670 ]
‘ebSight [153] 10000 IEdit [189] 3456 PDFAcc (QA) [132 12024670 Video Dense Cap.
VisualTW [154] 15961 ce (QA) [132]
TallyQA [155] 100050 = ChartQA [109] 45820 UCSF [133] 5953490 Dataset Size
AYQA LIS 2 2 DocVQA [53] 69562 ArxivCap [134] 1859680 — >
Robut (WTQ) [152] S B VOA [56 act yerant 4573 ActivityNet [125] 8859
DaTikz [156] 47974 g InfographicVOA [56] SAIB [105] 9834573 YouCook [83] 1039
oA Lo prdas S TextVQA [112] 69170 Object365 [135] 3484584
Cg”{% A 1100 37395 5 TextCaps [167] 21324 OpenImages [136] 1740864 Total 9898
artQA [109] 8 VisuaMRC [171] 24456 PixmoCap [11] 584650
VQAV2[111] 82772 S5 WTQ[190] 16885 Vide ;
Chart2Text [158] 35046 Total 47579011 ideo Synth
VisText [159] 35995 HMEI100k [191] 74492 Dataset Size

= B chr Y1163

§ FinQA [160] 5276 chrome_writting [163] 8825 Video QA Spoken Moments [135] 229043

2 DocvQa 53] 12089 OK-VQA110] 27536 Dataset Size Charades [139] 7919

E STVOALl6] 18684 Geometry3k [174] 4802 . Kineties710 [121] 39949

:J) TAT-QA [162] 2199 VQA-RAD [172] 1793 EgoQA [119] 7813 DiDeMo []4(7]7 ’7566

£ RenderedText [163] 10435 - NEXT-QA (instruct) [69] 34114 <

13 Total 2796145 28 Cap.. 3029
RAVEN [164] 31418 otal 6 NEXT-QA (MCQ) [69] 34114 EgodD (Cap) [115] 183029

24 (MCQ EgodD (QA) [115] 703935
TAM [165] 7549 PerceptionTest [71] 2403 2
Image Cap. e . YT-1B (Cap.) [137] 14792983
A-OKVQA [39] 17720 I QA [76] 23530 YTIB QM) [137] 3383670
TabMWP [166] 45439 Dataset Size Videolnstruct (human) [20] 25803 - i
CocoQA [157] 9009 5 3 CLEVRER (MC) [120] 42620 Total 19568095
TextCaps [167] 21953 g?fﬁ{)% 21 ;%332 CLEVRER (QA) [120] 40000
Screen2Words [168] 16713 Altogether [194] 12166 Kinetics710 [121] 39949 Text-QA
VSR [169] 2157 SSv2 ) [122] 40000 Dataset Size
TQA [170] 9742 Total 36127 VidLN [123] 43126
Robut (SQA) [152] 12769 VidLN (QA) [123] 75090 no_robots [201] 9485
VisualMRC [171] 3027 Image Misc. How2QA [8] 45731 MathQA [202] 29837
ScienceQA [61] 9947 Dataset Size STAR [72] 35297 LIMA [203] 1030
VQA-RAD [172] 313 Memento [198] 40060 GSM8k (socratic) [204] 7473
InfographicVQA [56] 2118 AL2d [55] 12413 Memento-Multilmage [198] 40060 GSMB8K [204] 7473
Hitab [173] 4995 €OCO cap. [49] 414113 Total 69710 FLAN [205] 1386050
AI2D [55] 4863 GQA-Balanced [195] 943000 Dolly15k [206] 15011
Inter-GPS [174] 2555 Total 1369526 o Magpie Pro (MT) [207] 300000
diagram_image_to_text [175] 595 o Video Cay Magpie Pro [207] 300000
m]ll\/[vll-(l.-["l" (CGD) [176] Y(ﬁiz:z Dataset Size Total 2056359
AultiHiertt [177] 5233 VATEX (en caption) [84] 259910
NLVR2 [178] 136799 SN 9’
) Charades (caption) [139] 11593
RAVEN (Multi-image) [164] 56081 ActivityNet (aptions) [125] 33375
SpotTheDiff [179] 19340 ctvity Vet (captions) [1=5] 20272
P YouCook2 [83] 10337
Total 315215

Table 9: PLM training datamix. Our mix includes synthetic and manually annotated data across
a combination of image data (QA, captioning, OCR, Visual grounding), video data (captioning,
grounded captioning, dense captioning, temporal localization) and text-only data. Importantly, all
data is publicly accessible, and not generated by proprietary models.

A.3 Ablation Experiment Details

We provide additional details about the ablation experiment in §6.5. We report benchmark average
scores across 5 categories, along with the average across all of them. We select a representative set of
benchmarks from the full set of image and video benchmarks in §6.2 and §6.3 that report comparable
scores so the average results are meaningful. For Video captioning we select Dream 1K and report
the LLM-judge score with Llama3.3 70B as judge. for Short Video QA, and Finegrained QA, we
select benchmarks that report MCQ accuracy (and exclude open-ended QA). For Hallucination, we
include both benchmarks. For Spatial and Temporal tasks, we select BLINK, CVBench, VSR, and
Charades-STA. For Image Perception, we choose SEED, MMMU, VQAv2, OK-VQA, and VizWiz.
We train the ablation setup of SFT with the exactly matching hyperparameters as our final run; only
difference is the size of the SFT datamix.

B Synthetic Scaling Experiments

In this section we provide additional results to the synthetic scaling experiments in §4.2. We report
aggregate benchmark accuracies across three categories — Video QA, OCR QA and Image QA —
by selecting representative benchmarks from each category. For VideoQA, these are STAR [72],
EgoSchema [90], MVBench [70], VideoMME [75] and PerceptionTest [71]; For OCR QA, these are
ChartQA [109], DocVQA [53], InfographicsQA [56], TextVQA [112] and OCRBench [57]; and for
Natural Image QA, these are RealworldQA [45], OKVQA [110], VQAv2 [111], and VizWiz [40].

Scaling with encoder size. After investigating the impact of the LLM decoder in Fig. 2, we examine
the impact of increasing the vision encoder size from 300M (PE Large) to 2B (PE Giant) for each
language model scale next. In Fig. 9, we overlay the new power-law with the 2B vision encoder
(black dashed) line onto the 300M (red dashed) line. Notably, we find that the larger vision encoder
(300M — 2B) leads to greater scaling trend on video QA benchmarks. Quantitatively, the power law
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Figure 9: Scaling with encoder size. Scaling trends of PE-G vs. PE-L vision encoders. Larger encoders scale
better in Video QA tasks while similar scaling in OCR and Natural QA is seen.

fit has improved from —0.15 to —0.19. The two lines intersect around 8B scale with PE-G, proving
that 8B and larger PLM will benefit more with larger vision encoder. We use PE-L for 1B and 3B
LLM scale and PE-G for 8B scale by default.
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Figure 10: Scaling with input size. Scaling trends of training with 16 tiles/frames vs. 8 tiles/frames. Higher
input size scales better in Video QA and OCR QA tasks while similar trend is seen for Natural QA.

Scaling with input size. In Fig. 10, we show the impact of increasing the input size to VLM
through higher image resolution and more video frames. In this setting, each scale of PLM trains
with dynamic tiling for image input and uni form sampling for video input with maximum 8 or
16 tiles/frames per sample. In each plot, the average error of PLM trained with 16 tiles/frames are
plotted. All models use 2 x 2 spatial average pooling before input to LLM, and each tile/frame has
448 x 448 resolution. Similar to Fig. 2, we show power law fit with a black dashed line, and compare
to 8 tiles/frames training denoted with red dashed line. Notably, we find out that on Video QA and
OCR QA benchmarks, PLM shows better scalability with training with higher input size. This means
with the same FLOP counts at 10'3, training with 16 frames makes 2.0 points of metric error lower
than 8 frames counterpart (32.2 vs 30.2). Similar trends are observed with OCR QA going from 8
tiles max. to 16 tiles max. Notably, higher resolution did not make a difference for Natural QA tasks.
We chose the 16 max-tiles and frames to be our final training setting for stage 2 PLM.

In Fig. 11, we show the breakdown of the scaling trend shown in §4.2. “H” stands for human only
(i.e., no synthetic) baseline. From the breakdown, the most notable point is the the scalability in
OCR, Chart, Document QA tasks. In each benchmark, synthetic data makes more than 10 points of
improvement on every model scale, compared to “no synthetic” baselines. Moreover, there is no sign
of saturation; the performance will most likely improve with more synthetic data. We hypothesize
that OCR, Chart, Document QA tasks reduce to “translation” task — a set of pixels has one-to-one
mapping to text space. Remaining tasks exhibit clean power-law relationship between metric error
and FLOPs. The last plot shows scaling trend on average over all benchmarks, which shows a close
power-law relationship.
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Figure 11: Synthetic Scaling Plots. Relationship between Average Error and training compute (in floating-
point operations) for various 1B, 3B, 8B PLM with L14 vision encoder. Each plot reports the individ-
ual error in VideoMME [75], STAR [72], EgoSchema [90], How2QA [8], MVBench [70], Perception-
Test [71], ChartQA [109], DocVQA [53], InfoVQA [56], OCRBench [57], RealworldQA [45], OKVQA [110],
VQAV2 [111], VizWiz [40], and TextVQA [112]. Finally, we report Avg. All, which average over all the metrics.

C VLM Benchmark Details

In this section, we provide details about all the image and video benchmarks considered in §6
including composition and evaluation metrics for image benchmarks (§C.1), video benchmarks (§C.2)
and our PLM-VideoBench (§C.3. We also describe evaluation protocol for all these benchmarks
including inference parameters and prompts (§C.4). Pointers to evaluation code are linked where
available.

C.1 Image Benchmarks

Image captioning We evaluate on single image captioning and grounded image captioning bench-
marks like COCO [49], nocaps [50] and Flickr [51]. We report CIDEr as the evaluation metric.

Perception and reasoning We evaluate on broad, general purpose VQA benchmarks like
MMMU [37], VQAV2 [111], MMBench [38], OK-VQA [39], VizWiz [40] as well as hard per-
ception benchmarks like BLINK [44], CV-Bench [19], RealWorldQA [45], and VSR [127]. For all
MCQ benchmarks, we report accuracy of selecting the correct option.
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Charts, diagrams and documents We evaluate on benchmarks for reasoning over various types of
charts, graphs, diagrams, infographics etc. Specifically, DocVQA [53], ChartQA [54], TextVQA [52],
InfographicsVQA [56], AI2D [55], OCRBench [57], and SEED [58]. We report accuracy of selecting
the correct option.

Image Hallucination Finally, we evaluate on benchmarks that evaluate robustness of models to
hallucinated details in questions such as HallusionBench [67] and POPE [68]. For HallusionBench
we report the aAcc metric (code) which accounts for correctness and consistency using an LLM judge.

C.2 Video Benchmarks

Video captioning We evaluate on short-video captioning benchmarks, namely YouCook2 [83]
and VATEX [84] as well as recent detailed video captioning benchmarks — DREAM-1k [86] and
AuroraCap-VDC [87]. For YouCook?2 and VATEX, we report CIDEr score [208]. For DREAM-1k we
report AutoDQ F1-score (code) and for AuroraCap-VDC we report the VDC accuracy (code) following
the author’s proposed metric.

Short video QA We evaluate on multiple-choice (MCQ) benchmarks such as How2QA [8], NExt-
QA [69], PerceptionTest [71], STAR [72], TGIF-QA [73], TVQA [74], Video-MME [75] and
TVBench [80]. We report accuracy of selecting the correct option. We also evaluate on open-
ended question answering benchmarks (w/o options) such as ActivityNet-QA [76] (code), MMBench-
Video [79] (codey and VCGBench-Diverse [22]. We report LLM-judge scores/accuracies for these
benchmarks. For VCGBench-Diverse, we report the average of 5 LLM-judge scores (code).

Long video QA We evaluate on popular long-video benchmarks such as EgoSchema [90],
LVBench [92], LongVideoBench [94] and MLVU [96]. We report accuracy of selecting the correct
option.

Fine-grained video QA  We evaluate on benchmarks for fine-grained spatial, temporal and detail
reasoning in videos such as TemporalBench [99], TOMATO [100], MotionBench [101], TempCom-
pass [102] and CG-Bench [97]. We report accuracy of selecting the correct option. For Temporal-
Bench, we report the multi-binary accuracy (MBAcc) (code) proposed by the authors to reduce bias in
evaluation.

Hallucination We evaluate on benchmarks that evaluate robustness of models to hallucinated
details in questions such as VideoHallucer [88] and EventHallusion [89]. We report accuracy of
selecting the correct option.

C.3 PLM-VideoBench

We evaluate on our suite of benchmarks for fine-grained and spatio-temporal reasoning in videos.
These include:

Fine-grained QA (FGQA) We report multi-binary accuracy (MBAcc) following prior work [99].
In short, this entails presenting the model multiple independent, binary-choice questions about the
same video (in our case, three questions) and requiring the model to gets all of them correct, to count
towards accuracy. This sets a higher bar for models, and combats bias in multiple-choice question
benchmarks that prior work identifies.

SmartGlasses-QA (SGQA) We report LLM-judge accuracy of the predicted answer compared to
the ground truth answer. We follow existing LLM judge prompts from ActivityNetQA (code). The

prompt is repeated below for completeness.

Video Region Captioning (PLM-RCap) We use an LLM-judge to generate the similarity scores
between predicted and ground truth captions. The prompt is below.

Dense Video Region Captioning (PLM-RDCap) We adapt the SODA metric [126] from dense
video captioning literature for this task. To compute this metric, we use the same LLM-judge from
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above to generate the pairwise similiarity scores between predicted and ground truth captions, which
is then fed to the standard metric computation routine.

Region Temporal Localization (PLM-RTLoc) We report standard temporal localization metrics,
namely Mean Recall @1, averaged over a range of ToU thresholds [0.3,0.5,0.7,0.9].

C.4 Evaluation Protocols

Common evaluation protocol. For video benchmark evaluations, we sample 32 frames uniformly
from the full video unless otherwise specified. For uniformity and consistency across benchmarks,
we implement all LLM-judge evaluations using LLama3.3-70B-Instruct [13], following LLM judge
prompts from popular evaluation frameworks [209, 210] where available. Outputs from all models
are generated via greedy sampling (temperature 0).

You are an intelligent chatbot designed for evaluating the correctness of generative
outputs for question-answer pairs. Your task is to compare the predicted answer with
the correct answer and determine if they match meaningfully. Here’s how you can
accomplish the task:

#H#INSTRUCTIONS:

- Focus on the meaningful match between the predicted answer and the correct answer.

- Consider synonyms or paraphrases as valid matches.

- Evaluate the correctness of the prediction compared to the answer.

Please evaluate the following video-based question-answer pair:

Question: [question]

Correct Answer: [target]

Predicted Answer: [candidate]

Provide your evaluation only as a yes/no and score where the score is an integer value
between @ and 5, with 5 indicating the highest meaningful match. Please generate the
response in the form of a Python dictionary string with keys ’pred’ and ’score’, where
value of ’pred’ is a string of ’yes’ or ’no’ and value of ’score’ is in INTEGER, not
STRING. DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only provide the Python
dictionary string. For example, your response should look like this: {"pred”: "yes",
"score"”: 4.8%.

Your task is to compare a given pair of captions and provide a single score indicating
how correct the pred is compared to GT, on a scale from @ to 10. Focus on meaning
and context, not exact word matches. Penalize missing and incorrect information, with
lower scores for more significant errors. High scores require accurate conveyance of
all key GT information. Respond with only the score, starting your response with the
number and including no additional text. Output format: [score].

PLM-VideoBench inference prompts. Table 10 contains example inference prompt examples for
each PLM-VideoBench task. Note that some variation exists between instances in the benchmark. For
example, for RCap a prompt may be “What is happening to the subject in the region highlighted by the
red rectangle ...” instead of “Give a detailed description of the events occurring in the region marked
by the red rectangle ...”, however they convey the same underlying instruction and information.

Proprietary models like GPT-40 and Gemini require more careful prompting to ensure that the
output formatting is respected. For example, we append instructions to prevent model hallucinations
(e.g., ““You must use these frames to answer the question; do not rely on any external knowledge
or commonsense.”), to prevent refusals to answer (e.g., “Even if the information in these separate
frames is not enough to answer the question, please try your best to guess an answer which you
think would be the most possible one based on the question. Do not generate answer such as not
possible to determine’”) and in-context examples to help guide the model towards the correct output
format. Model- and benchmark-specific inference prompts will be released along with our code for
full reproducibility.

18



Task

FGQA | Question: [question] \n Options: \n (A) [option1] \n (B) [option2] \n Only give the best
option.

SGQA | The following question is asked by the camera wearer at the end of the video. Provide
a detailed answer even if unsure. Try to answer in around 20-30 words. Now answer
the following question based on the video content: [question]

RDCap | Create a dense caption of the subject’s actions within the red rectangles, including
action frames ids and brief descriptions. For each item use the format [start, end]:
[description] separated by a newline, where start and end are frame numbers between 0
and 31 in this 32 frame video.

RCap Give a detailed description of the events occurring in the region marked by the red
rectangle within frames ([start frame], [end frame]) in this 32 frame video

Prompt

RTLoc | Given the region marked by the red rectangle in the video, please provide the start and
end frame of when ’[event]’ happens. Use the format (start, end), where start and end
are frame numbers between 0 and 31 in this 32 frame video.

Table 10: PLM-VideoBench task prompts. Items in square brackets are placeholders filled in for
each benchmark instance.

D Additional PLM-VideoBench Results

We present benchmarking results across all model scales (1B, 3B, 8B) in Table 11, to supplement
the 8B model results in the main paper (Table 5). Our approach consistently outperforms baselines
across all scales, including proprietary models whose model scale is unknown.

8 ‘: é L%.é =% § E &
Model Eg 9 g @ 9 g ; E g é
Human perf. 90.9 67.9 66.6 539 67.8 70.9
Proprietary
GPT-40 [33] 61.2 63.7 20.9 35.7 33.1 51.6

Gemini 1.5 Pro [35] 57.1 49.9 144 331 27.6 440
Gemini 2.0 Flash [35] 58.7  44.8 132 309 276 425

1B scale

Qwen2VL-2B [30] 39.0 38.5 0.9 18.1 10.8 29.1
InternVL2-1B [10] 35.8 28.9 0.3 17.2 2.7 23.8
InternVL2.5-1B [10] 423 39.6 6.7 23.6 1.6 30.8
PLM-1B 57.6 40.9 50.3 40.9 57.7 49.4
3B scale

Qwen2.5 VL-3B [106] 43.7 45.1 0.3 17.2 139 33.1
InternVL2-4B [10] 432 41.7 0.5 19.9 9.6 30.3
InternVL2.5-4B [10] 50.0 49.2 4.9 259 15.4 353
PLM-3B 67.1 38.8 53.1 45.0 58.2 53.0
8B scale

LLaVA-OV-7B [28] 402 415 4.7 244 139 320
Qwen2VL-7B [30] 492 445 4.1 17.6 15.1 353
Qwen2.5VL-7B [106] 49.8  43.0 25 21.5 10.7 34.8

InternVL2-8B [10] 477 459 1.2 21.5 11.6 350
InternVL2.5-8B [10]  53.7 483 57 26.1 8.8 38.5
PLM-8B 677 462 528 466 59.1  55.6

Table 11: PLM-VideoBench results across all model scales to supplement results in Table 5.

E Baseline Implementation Details
We provide baseline-specific implementation details for all models in §6.1 of the main paper.

Proprietary baselines We evaluate the GPT and Gemini family of models. For GPT-40, we use the
GPT-40-2024-11-20 checkpoint . We feed 32 uniformly sampled frames regardless of video length,
loaded at high image quality setting. For Gemini, we evaluate Gemini-1.5-Pro and Gemini-2.0-Flash.
For VQA tasks, we input the video (without audio) which is processed internally at 1 fps. For
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spatio-temporal tasks (RCap, RDCap, and RTLoc) we use the same inputs as for open-source models
and GPT-40. We evaluate these models using API call.

Open-source models We evaluate InternVL, Qwen, Molmo and Llava-OV models. We follow
official implementation and preprocessing pipelines for each. Specifically, we evaluate InternVL2
and InternVL2.5 (code); QwenVL2 and QwenVL2.5 (code); Molmo-0-0924 (code) and Llava-OV (code).
For QwenVL, we sample frames at 1 fps from videos. For InternVL2, we use 12 tiles per image as
this more closely matches the reported results.

Human performance baseline. In Table 5, we report human performance on PLM-VideoBench.
For each task, we present annotators with the test sets and collect answers for each instance given the
standard task prompt. Given the difficulty of RDCap, we reuse our data annotation pipeline in §H to
collect new dense captions independently, rather than providing the standard task instruction.

F Additional Results

F.1 Comparison with LLaMA-3V

7 g

5S¢ B g

. B2 s =
@ 83 3 O3
Model < As =z > 2
LLaMA 3.2V (11B) [13] 73.0 884 507 752
LLaMA 3.2V (90B) [13] 76.6  90.1 60.3  78.1
PLM (1B) 67.1 907 348 817
PLM (3B) 744 938 412 843
PLM (8B) 762 946 46.1 856

Table 12: PLM versus LLaMA-3V on Image Benchmarks: Note that we use LLaMA-3V-90B [13] for
generating image captions in our synthetic data engine.

F.2 TImage Captioning

CIDEr [51]

Z

=
Model [
Proprietary
GPT-4o [33] 74.4 76.6 71.7
Gemini 1.5 Pro [35] 70.6 71.1 68.2
Gemini 2.0 Flash [35] 84.8 85.0 66.6
1B scale
Qwen2VL-2B [30] 107.1 1012 86.0
InternVL2.5-1B [10] 122.6 1105 86.1
PLM-1B 138.6 1242 100.5
3B scale
Qwen2.5 VL-3B [106] 101.7 1055 77.5
InternVL2.5-4B [10] 1254 117.1 87.4
PLM-3B 1449 1265 98.0
8B scale

LLaVA-OV-7B [28] 112.1 707  55.7
Qwen2.5VL-7B [106] 36.8 327 349
InternVL2.5-8B [10] 125.8 116.7 96.5
PLM-8B 146.7 1299 105.6

Table 13: Image Captioning benchmarks. PLM versus proprietary models and open-access baselines of
comparable scale on Image Captioning benchmarks.
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F.3 Image Grounding

+ + + ) )
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@] @] @) ] ) O @] @]
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] 2 €8 § s €32 8 Lo )
TS B3 B: B3 BE T T3 T 2
Model & X A - & 2 [~ [ & X & <
Specialists
GroundingDINO [211] 90.6 93.2 88.2 88.2 89.0 75.9 86.1 87.0 86.6
UNINEXT-H [212] 92.6 94.3 91.5 85.2 89.6 79.8 88.7 89.4 88.9

ONE-PEACE [213] 906 932 882 82 890 759 86.1 87.0  86.6

1B scale
PLM-1B 88.5 91.5 84.8 83.2 88.6 76.5 86.0 86.4 85.7
3B scale
Qwen2.5 VL-3B [106] 89.1 91.7 84.0 82.4 88.0 74.1 85.2 85.7 85.0
PLM-3B 933 949 895 898 936 842 908 909 909
8B scale
Cube-LLM [214] 90.9 92.6 87.9 83.9 89.2 714 86.6 87.2 87.0

Qwen2VL-7B [30] 91.7 936 813 858 905 795 873 818 87.9
Qwen2.5VL-7B [106] 89.1 91.7 840 824 880 741 852 857 850
InternVL2-8B [10] 87.1 91.1 80.7 798 879 714 827 827 829
InternVL2.5-8B [10] 903 945 859 852 915 788 867 87.6 87.6
PLM-8B 90.6  91.8 859 873 913 811 888 892 882

Table 14: Image Grounding results on RefCOCO/+/g. PLM performs competitively compared to
the baselines across all model scales, and outperforms specialist models for the image grounding task.

F.4 Long Video Understanding

Long Video QA

S _
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88 Z3 23
Model 2% g3 323
As A2 =23
Proprietary
GPT-4o [33] 372 66.7% 674
Gemini 1.5 Pro [35] 33.1%  64.0% 69.9
Gemini 2.0 Flash [35] - 61.6* 69.5
1B scale
Qwen2VL-2B [30] 42.0 479 62.7
InternVL2-1B [10] 314 433*% 520
InternVL2.5-1B [10] 353 47.9 57.3*
PLM-1B 40.0 523 58.9
3B scale
Qwen2.5 VL-3B [106]  43.3* 542% 682
InternVL2-4B [10] 34.0 53.0% 59.9*
InternVL2.5-4B [10] 40.1 563  68.3*
PLM-3B 40.4 579 65.0
8B scale
LLaVA-OV-7B [28] 38.8 55.7 64.6
Qwen2VL-7B [30] 46.0 55.8 69.8*
Qwen2.5VL-7B [106] 453% 56.0% 70.2*
InternVL2-8B [10] 370 554 64.0%
InternVL2.5-8B [10] 432%  60.0 68.9
PLM-8B 44.5 56.9 66.4

Table 15: Results on long video understanding tasks. We compare PLM with open-access baselines
and proprietary models of comparable scale, and report results over 3 long video QA benchmarks.
Cells with * are reported numbers from literature. The remaining are reproduced using official code.
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G PLM-FGQA: Fine-grained QA

We present PLM-FGQA Fine-grained QA (FGQA), a video dataset focused on “how” actions are
performed, capturing nuanced fine-grained details through specially designed questions and carefully
annotated answers. Due to the scarcity of fine-grained video Q&A data, see Table 16, we built a data
engine to enable the collection of our 2.4M Q&A dataset, PLM-FGQA.

Dataset Year #Q&As Dataset Year #Q&As
MovieQA 2016 6462 STAR 2021 60000
MSRVTT-QA 2017 243690 CLEVRER 2023 82620
TGIF-QA 2017 165165 EgoQA 2024 19000
MSVD-QA 2017 51000 PerceptionTest 2024 44146
TVQA 2018 152545 Videolnstruct 2024 25803
ActivityNetQA 2019 58000 MoVQA 2024 21953
How2QA 2020 44007 CinePile 2024 303828
NexT-QA 2021 52044 Sports-QA 2025 94000

PLM-FGQA 2025 2379067

Table 16: Comparison of our PLM-FGQA dataset with existing video-QA datasets.

G.1 Annotation process: Data Engine

Our data engine is built upon the following modules: (1) Temporal Segment Generation, (2) Question
Generation, (3) Answer Generation, (4) Human Annotation (answer verification/manual answer
annotation), (5) Quality Control, as illustrated in Figure 12. Next, we describe each module in detail,
and finally also provide additional details about the extra steps we took for forming the FG-QA
component of PLM—VideoBench out of these annotations.

Temporal Question Answer Human
Video - Segment — | Generation | — | Generation | — | Verification | — FGQA
Generation (LLM) (PLM) & Correction

Figure 12: Data engine used to collect the PLM-FGQA dataset.

G.1.1 Temporal Segment Generation

We source the video data that serves as a basis for our annotations from publicly available datasets.
Based on the video sources and the type of existing annotations, we split the videos into three distinct
categories.

Videos with existing ground-truth segment annotations: We directly adopt segments with
their human-annotated action annotations from the following datasets: Ego4d Goal-Step[215],
Ego4D Moments[115], EgoExo4D [116], HT-Step[216, 217], COIN [117], CrossTask [118], and
YouCook?2 [83]. All those sources provide video segment boundaries accompanied by some form of
textual action descriptions, and are therefore readily usable with the rest of the pipeline.

Unedited videos of physical activities: For physical activities videos (e.g. basketball, dancing, soc-
cer), actions are usually atomic and short (e.g. dribble, dance move, kick) and therfore reuqire precise
temporal localization. To source videos for these scenarios we used data from EgoExo4D [116]
that contains temporally well-aligned and precise narrations; we obtained segments of 2-3 seconds
centered around narration timings, and used the anchor narrations directly as the action description.

Raw, untrimmed videos in-the-wild without temporal segment annotations. We source a very
large part of our data from untrimmed instructional videos in the large-scale HT100M dataset [114]
which we first need to segment before use. The goal is to obtain video clips that contain meaningful,
salient actions, and also caption the resulting segments with concise but accurate action descriptions.
We describe the automatic segmentation and captioning module in the following.

The automatic segmentation and captioning pipeline involves the following three stages:
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Figure 13: Distribution of question types (left) and video sources (right) in the FGQA component of
PLM-VideoBench.

Temporal segment proposal. Given untrimmed long videos, the first step is to identify semantically
coherent segments within them. Inspired by prior work on unsupervised action proposal and seg-
mentation, we leverage visual feature clustering to generate temporal segment proposals, and use
shot-boundary detection results to further refine the segment boundaries. We extract clip-level visual
features[2 18] using a sliding window with temporal stride of 1 second. We then compute the pairwise
similarity between neighborhood features and detect the class-agnostic action boundaries using a
boundary detection kernel (similar to those used in literature[219, 220]). Finally, since the detected
segments are usually over-segmented, we perform a bottom-up agglomerate clustering approach to
group adjacent segments into clusters, using a segment duration prior of 10 seconds. We also leverage
shot boundary detection[221] to obtain precise moments of scene changes: we refine the boundaries
of the segment proposals by aligning them to the detected shot boundaries when they’re sufficiently
close (< 1 second).

Segment filtering and ranking. How-to videos often include a lot of content that is irrelevant to the
demonstration of the activity at hand, such as the instructor explaining what they are about to do or
showcasing tools and ingredients. It is therefore important to detect and filter segments with such
uninformative content. To that end we rank candidate segments according to relevance using a series
of heuristics and learned models, described bellow.

a. Talking head detection. A common mode in instructional videos is instructors talking into the
camera, describing objects or explaining actions they’re about to take. To detect and remove such
segments, we employ an Active Speaker Detection (ASD) pipeline[222], which we run densely on
every video and combine resulting talking head tracks, to produce an ASD score for every segment.

b. Hand-object interaction (HOI) detection. The presence of hand-object interaction (HOI) can be a
good indicator of visually groundable actions. We leverage the temporal selection strategy[223] to
filter out the segment proposals that contain hand-object interaction. We first employ an off-the-shelf
robust HOI detector[224] to densely extract HOI regions within a proposed segment. The HOI score
is then calculated by measuring the likelihood of hand-object interaction in the segment and the
averaged probability of all the detected hands.

c. ASR groundability. HT100M videos contain timestamped ASR captions, which are speech
transcriptions of the audio instructions. It is desirable to rank candidate segments based on how
likely their ASR content is to their video content. The hypothesis here is that segments containing
ASR transcriptions that align well to the video content, are more likely to be visual-information rich.
Moreover since the action labeling pipeline (described next) relies on ASR metadata for producing
descriptions, higher ASR groundability scores make it likelier to produce good quality segment
descriptions. For every candidate segment, we compute an ASR-groundability score by computing
video-text alignment scores[218] for each ASR caption within the segment and then averaging the
ones that are above a threshold (we use 0.5).

d. Relevance classification. The above heuristics work well for the clear-cut cases they are tailored for,
but in practice we found that they struggle with more nuanced segments (e.g. instructor fiddling with
an object and describing it rather than using it). To improve the detection of those cases, we manually
labelled a small amount of segments that passed through the other filters and trained a binary classifier
to classify them as “relevant” or “irrelevant”; to that end we trained a simple 2-layer MLP classifier
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on top of temporally pooled video representations with a logistic loss for binary classification. We
deployed the trained model to provide a relevance score for all the candidate segments.

We combined the scores resulting from all the modules described above and determined cutoff
thresholds, based on a small manually annotated validation set. In production, we keep all the
segments that have relevance scores above those thresholds.

Segment captioning We follow a two-step process to obtain action labels for each unlabeled segment:
In the first step, a collection of off-the-shelf perception models are used to extract individual image-
level captions, video-level captions, and object detections from the segment. The output of all
perception models is then fed as text into an LLM to generate long, fine-grained captions. At the
second step, the detailed captions are fused with the ASR content of the segment, to obtain a consice
action description. Specifically, we query an LLM (Llama 3.3 70B [13]) with the following prompt:

Detailed description: [fine grained caption] ASR transcription: [asr caption]. Given
the detailed description above, identify the specific action performed as part of the
activity [task name]. Your response must not be the same as the activity [task name]
and needs to be a specific substep within the activity [task name]. Please also supply
a rationale for your answer.

The extracted labeled video segments obtained through the above process serve as the foundation for
the subsequent Q&A generation.

G.1.2 Automatic Question Generation

We automatically generate questions about the fine-grained details of the way activities are executed
in the video. Our questions is generated with a variety of prompts and models which lead to increased
question diversity and specificity. In Table 17 we present the question types and sample questions
per question type. Here, we summarize how these questions are generated automatically with an
ensemble with models and prompts:

LLM-based action-conditioned question generation Given a segment, its action name (e.g., cut
potatoes), a task name (e.g., How to make sweet potato gratin) and optionally other metadata about
the segment (for example, recognized objects [? ]), we generate questions that can elicit descriptions
of fine-grained details by raters with an LLM. We use tailored prompts for generating questions that
cover how the activity is executed (tools, object locations, object states, direction of movements, hand
pose), and the spatial arrangement of objects.

I am learning how to [action name] while [task name]. Ask me [N] most relevant questions
that reveal the details of the way the step is executed in my environment, e.g., (a)
part location, (b) types of tools/ingredients used, (c) direction of movements, (d)
how are objects held, (e) object states at the beginning of the step, (f) object state
at the end of the step. The questions must be answerable by visually observing the
activity, without reading instructions or trying out. Please indicate the type of
question from (a) to (f) for each question asked at the beginning of the question.

Imagine I have no common sense or understanding of the 3D real world. I am trying to
[task name] and am at the step where I am [action name]. There’s [object list] when I’m
[action name]. Ask me [N] questions about the 3D position of objects, relative location
between objects, distance between objects, spatial relationship using prepositions like
above, below, next to, etc. that I might want to know. The questions must be answerable
by only visually observing me performing activity, without reading instructions or
trying out.

We explicitly encourage the LLM to provide questions that can be answered solely based on the video
frames, in contrast to questions that are focused on external knowledge or non-groundable concepts
or judging the execution of the step (e.g., avoid questions like is the pan hot enough to add the oil?,
what tool is typically used to loosen the axle nut). The rationale for this is to collect as many Q&A
pairs that a model cannot answer just based on external knowledge/language prior, but they rather
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require vision perception to be answered. Note that these questions are generated without visual
input, hence they are not instance-specific and might not be answerable given the video segment.

VLM-based instance-specific question generation After collecting a first set of Q&As using the
LLM-generated questions, we bootstrap a VLM Question Generator model, which takes as input the
video segment, question types and optionally the task name, and generates a set of instance-specific
visual questions. The VLM Question Generator model is obtained by supervised fine-tuning of
PLM with a question generation instruction-tuning dataset which consists of triplets (video, prompt,
response), where the prompt includes the instruction to generate questions based on question types
and the response includes example questions to be generated for the given video. Due to the lack
of such a dataset with fine-grained question, we synthetically generated it by utilizing the Q&A
pairs obtained based on the LLM-generated questions. Specifically, for each video segment, we use
an LLM to (1) decompose existing Q&A pairs into multiple Q&A pairs, with each new question
focusing on one detail of the original answer; (2) tag question types for the generated questions based
on an expanded list of question types; and (3) generate a (prompt, response) pair for the segment.
This resulted in ~ 600k training instances.

Generate 3 different questions that reveal the fine-grained details of the way the
activity is executed. In particular, focus on these question types: fine-grained object
locations, hand pose, object/repetition counts, generating at least one question per
type. Write each question in a separate line, e.g., Q1. first question.

Q2. second question.

ON. N-th question.

Response:

Q1. Where are the tomatoes positioned prior to being cut?

Q2. How is the person grasping the tomato with their left hand?
Q3. How many tomatoes did the person use in the segment?

LLM-based follow-up question generation This final set of questions aims to increase coverage of
video details and generate highly fine-grained questions by leveraging the already collected Q&A
pairs for each segment and feed them to an LLM that generates “follow-up” questions that are more
detailed and challenging than the initial questions.

I have the following information gathered about the video: [list of previous Q&A
samples] Utilizing information and details from all the provided Q&A pairs (make sure
to specialize questions based on the already corrected answers, e.g., using referring
expressions), ask [N] most relevant and interesting, visual questions that we can
ask annotators in order to reveal NEW, rich, additional fine-grained details about
the video that we don’t know yet, in particular about the following question types:
‘tools/ingredients’, ‘object counts’, ‘repetition counts’, ‘direction of movement’,
‘hand pose’, ‘fine-grained object locations’, ‘spatial relations’, ‘initial state/end
state’, ‘action happened before/after’, ‘clothes wearing’, ‘body pose’, ‘main action
in the video’, ‘temporal extent of action’, ‘sizes’. The questions should be specific
and have a specific answer. Avoid generic questions that can be very tedious to answer,
e.g., how many objects are there in the scene. Also, do not generate questions that
start with “Is ...” and then list options. Prefer open-ended questions, e.g., starting
with “How”. [... More examples & formatting ...]

G.1.3 Automatic Answer Generation

The next step of the data engine aims to produce correct and comprehensive answers to the generated
questions. We obtain automatic answers to the generated questions using a version of PLM that
has been fine-tuned with extra privileged information of various forms as input. The privileged
information includes textual annotations from the metadata available with the candidate training
videos and feature embeddings extracted from off-the-shelf models. Useful textual metadata include
the video title, ASR captions or written descriptions, video-level task name (infered by an LLM
using the title and captions), and any existing QAs for that video. Off-the-shelf embeddings include
frame-level features extracted denseley at 1 fps; we use an open-vocabulary object detection model,
OWLv2 [225], for embedding object detection information and CLIP ViT-L14 embeddings [226]
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Question Type Sample Questions

Action Recognition What is the process being performed on the sandpaper?
What is the action shown?

Action Sequence What does the person do after brewing the tea?
What does the person do before marking the vinyl with a pencil?

Counting Problems What is the quantity of universal down cleaner being poured into the task area?
How many branches does the person cut in total?
How many times does the person spray Greased Lightning onto the ketchup
spill?

Movement Direction In what direction is the black welding tool pointing while the person is working
on the metal joint?
How does the person chop the garlic with the knife?

Object Attributes What is the color of the seatpost shown in the video segment?
What is the shape of the tube at the end of the step?
What is the size of the knife being used to chop the spring onions?

Object Location Where does the person put the honey bottle away?
Where does the person position the clothes before ironing?

Object Recognition What type of roller and paint are being used?
What does the person place on top of the smooth half of the egg carton?
What was the person initially holding in their left hand?

Object State How would you describe the sink at the beginning of the cleaning process?
What is the state of the nematode after mixing it with water and sponge?

Other At what point in the video is the person seen holding the wires?

Pose How are the woman’s legs positioned while she is sitting?

How bent is the left elbow during the activity?

Spatial Relations How far is the bias tape maker from the right edge of the ironing board?
What is the spatial relationship between the bowls and the Brussels sprouts on
the kitchen countertop?

Speed/Force How would you describe the consistency of pressure applied during sanding?
How fast does the person initially push the stone?

Table 17: PLM-FGQA question types and sample questions

for scene classification information. We incorporate the textual annotations directly into language
prompts using the following template:

A video is showing a task [video level task namel], specifically the part where [ASR
caption]. Here is what we already know about the video: [existing question-answer
pairs]. Answer this question in detail: [question]

The off-the-shelf embeddings are incorporated into the PLM input via an additional Perceiver-10[227]
tokenizer, which summarizes the embeddings at the segment level.

We fine-tune the answer generator on 1M manually annotated QA pairs. After fine-tuning, we deploy
the trained answer generator with privillged information access on the unlabelled questions produced
in the previous step, to produce automatic answers.

G.1.4 Human Annotation

After obtaining segments and generating questions and automatic answers, we employ human
annotators to obtain high-quality answers. Our answer annotations include the following:

* Human-verified answers: Raters are provided with the model-generated answer and
are asked to accept or reject the answer. They can reject questions for being irrelevant
or unanswerable, and answers for being factually incorrect or lacking details. Accepted
question-answer pairs proceed without changes, while rejected ones are handled differently:
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question-related rejections (irrelevant or unanswerable) are discarded, whereas answer-
related rejections (factually incorrect or lacking details) are marked for correction in the
next phase. 17.8% of the total training samples are human-verified automatic answers.

* Human annotated answers: Raters answer the questions from scratch by ensuring to cover
all the relevant details within the temporal segment. They receive reference information, such
as video-level task names and ASR captions, and may use online resources like WikiHow
for additional context. Questions that cannot be answered based on the video segment (for
example, due to some false premise) are rejected (with an explanation). These manually
annotated answers make up 82.2% of the PLM-FGQA training split, and 100% of the
evaluation set.

Quality Control. Data quality is crucial for model success. We followed several strategies to
monitor and enhance annotation quality: annotation Certification - we reviewed a small sample of
annotations from each rater before they could work in production queues, ensuring that annotators met
high-quality standards before advancing to production; golden Examples - annotators were provided
with high-quality annotation examples, highlighting common error patterns and offering acceptable
answers. targeted and Dual QA - we conducted daily audits, including vendor auditing and our own
sampled quality control. In total, 13% of the training set was audited, and 100% of the samples in
PLM-VideoBench underwent quality control.

G.2 FGQA PLM-VideoBench Construction

Train Test
Sources stats
Total Videos 767k 3.6k
Unique Source Videos 251k 1.9
Average Duration (sec.) 9.8 12.3
Annotations stats
Number of QA Pairs 2.4M 4.2k
Number Question Types 12 12

Question Length (avg/max) 12/114 12.3/56
Answer Length (avg/max) 13.3/911 14.1/62
Annotation Type Human Human
Open-Domain Yes Yes

Table 18: Statistics of the PLM-FGQA training and test data. The test split refers to the FGQA
module of PLM-VideoBench.

The FG-QA component of PLM—-VideoBench is formed from a held-out portion of PLM-FGQA. We
refine this set and transform it into a challenging MCQ-based benchmark by (1) generating MCQs,
(2) filtering out samples that can be answered by text-only (blind) LLMs, (3) performing human
verification of negatives, and (4) balancing the distribution of question types and domains. The
statistics of the dataset are summarized in Table 18. In more detail the steps we followed are:

MCQ Generation: To transform QAs into challenging MCQs for evaluation, instead of generating
random incorrect answers, we prompt LL.Ms to produce hard negatives that are semantically close
to the correct answer. We use the following prompt which was designed to generate distractors that
differ from the correct answer by only a single detail. In effect this enables evaluation to assess
fine-grained reasoning about object attributes and tool distinctions.

Filtering Text-Only Answers: To ensure that video-based reasoning is required, we test whether
a text-only LLM can answer the question correctly without seeing the video. If a question can
be answered correctly from text alone, we remove or modify it to emphasize visual and temporal
grounding.

Human Verification of Negatives: Automatically generated negatives may sometimes be factually true
despite being labeled as incorrect. To address this, we perform human verification, where annotators
review distractors to confirm that they are both plausible yet definitively incorrect given the video
context. MCQs with ambiguous distractors are removed.
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Balancing Question Types: Finally, after the above postprocessing and filtering is done, we rebalance
the test set, to make sure that the question type and domain distributions are approximately uniform,
by undersampling over-represented qyestion types and domains.

Note on the evaluation metric. We report the multi-binary accuracy (MBAcc) [99] to evaluate on
the FG-QA task. This accuracy is calculated by comparing the correct answer to each distractor
individually. Specifically, for each question, we generate a series of binary questions, where the
correct answer is compared with one distractor at a time. A prediction is considered correct only if
the correct answer is consistently selected across all binary comparisons. We preferred this metric to
vanilla MCQ accuracy as it greatly reduces the predictability of automatically-generated MCQs.

Here is a question and answer pair about a video:

Q: [question]

A: [answer]

You need to transform this into a high-quality multiple-choice question. To do this,

first rephrase the given correct answer and then provide n distractor answers. The n

incorrect answers should be reasonable and valid responses to the question, but should

have a different meaning than the correct answer. You generate an incorrect answer

from the correct one by changing a single detail, e.g. an object or verb/action that

is relevant to what’s being asked. Make the incorrect answers realistic, plausible

and similar enough to the correct answer so that it is very difficult for someone to

distinguish between them with prior knowledge alone. Finding the correct answer should

also require visual information about the scene. The distractor answers should answer

the question, but should be incorrect but in a non-obvious way. When changing a single

detail to create the distractors, make sure that this detail is the main point of the

question. For example, if the question is about the color of an object, then the

distractor should change the color of the object and not the kind of object.

Here are some examples of good distractors (desired) and bad distractors (to be

avoided):

Q: What is the person wearing on their hands while applying varnish?

A: The person is wearing white gloves on their hands while applying varnish with a

brush.

Good distractors:

- The person is wearing black gloves on their hands while applying varnish with a brush.

Bad distractors:

- The person is wearing black gloves on their hands while applying paint with a roller.
More examples & formatting ...

H PLM-STC Details

We present PLM Spatio-Temporal Captions (PLM—-STC), a novel dataset aimed at training and
evaluating VLMs for spatial-temporal reasoning. We collected pairs of mask tublets for objects in
videos, along with their corresponding detailed temporal descriptions. The annotations are collected
on top of the SA-V [124] videos, which are diverse and high-quality. We excluded the test set videos
from SA-V, to avoid any data cross contamination. Table 20 provides statistics about the dataset,
such as number of total samples, training/val/test splits, object types, and time-segment duration.
PLM-STC, is not only novel, but also larger and higher quality compared to existing datasets, see
Table 19. In Fig. 5 (right), we show an example of our spatio-temporal captions, describing a little
girl (highlighted in blue): (frame 0-81): A little girl moves back as beluga whale approaches her
face. (frame 82-85): Out of frame. (frame 86-98): She tries to feed the whale.

We describe the overall annotation process in Appendix H.1, and how we build the three sub-tasks in
Appendix H.2.

H.1 Annotation Process
The annotation process is summarized in Figure 14. The annotation process involves three stages:

Object Selection and Tracking, Temporal Segmentation and Captioning and Verification and Quality
Control.
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Dataset

Spatial Type Year #Videos Regions Temp. Seg. Captions?

DAVIS16-RVOS [228] Segmentation 2018 50 50 - No
DAVIS17-RVOS [229] Segmentation 2018 90 205 - No
YouCook2-BB [83] BBox 2018 647 - 4.3K No
A2D Sentence [230] Segmentation 2018 3.7K 4.8K - No
J-HMDB Sentence [231] Segmentation 2018 928 928 - No
ActivityNet Entities [232] BBox 2019 14.3K 1.5M 52K No
VidSTG [9] BBox 2020 6.9K 44.8K - No
Refer-Youtube-VOS [233] | Segmentation 2020 3.9K 7.5K - No
HC-STVG [234] BBox 2021 16K 16K - No
VLN [123] Mouse Trace 2023 50K 43.1K 43.1K Yes
MeVis [235] Segmentation 2023 2K 8.8K - No
PLM-STC Segmentation 2025  45.7K 122.3K 194.2K Yes

Table 19: Spatio-Temporal-Captioning datasets comparison.

ﬁ Object Verification & Spatio
; Temporal Seg. i P
Video . Selection — | g Captioning — Quality B Temporal

& Tracking Control Captions

Figure 14: PLM-STC Annotation pipeline.

H.1.1 Object Selection and Tracking

Annotators select interesting objects with significant motion changes in the video and use SAM
2 [124] to generate initial mask tublets, which they then refine to ensure high-quality spatial-temporal
segmentation. We instructed the annotators by defining interesting regions in video footage as those
with the presence of significant, dynamic actions performed by subjects, which can be human, animal,
or object. These regions involve multiple major actions that evolve over time, rather than static
or insignificant actions. We provided annotators with examples of interesting regions, such as one
featuring a person making a sandwich, a dog chasing a cat, or a kite getting stuck in a tree. The goal
for the annotator is to identify regions with high delta, where the subject performs a sequence of
significant activities that change over time, such as a person entering a room, sitting down, and then
drinking from a glass. By focusing on these dynamic and evolving actions, annotators can effectively
select regions worthy of captioning. Finally, annotators are provided with several examples of good
and bad annotations.

H.1.2 Temporal Segmentation and Captioning

Based on the selected mask tublets, another set of annotators provides time segments for each
action and fills in the caption within each time segment. The annotators are instructed to focus on
capturing major actions, avoiding minor details or unnecessary movements. When writing captions
for each segment, they must ensure clarity in describing the subject’s movements and directionality.
Additionally, the annotators are advised to avoid making assumptions about the subject’s actions or
adding details not clearly visible, sticking only to what is directly observable in the frame. As in
the previous task, the annotators are provided with several examples of good and bad annotations to
guide their work.

H.1.3 Verification and Quality Control

A final set of annotators manually verifies the tublets and time-segment captions to ensure accuracy
and consistency. For mask refinement, we re-run the same pipeline as §H.1.1, while not letting the
annotators choose the interesting object, but only refine the quality of the mask. For captioning
refinement, the annotators are tasked with three objectives: 1) Redundancy: eliminate any repeating
or redundant information to ensure the caption is concise; 2) Accuracy: verify that every word in
the caption accurately describes a fact present in the video, correcting or removing any incorrect
information; and 3) Actions: add missing major action information to the caption while preserving
existing atomic actions, ensuring the caption effectively conveys the key events in the video.
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All Train Val Test

Dataset stats

Number of Videos 452K 420K 804 23K
Spatio Temporal Caption 127.8K - - -
Temporal Caption 198.7K - - -
Tube’s categories

Person 104.5K  99.6K 861 2.4K
Animal 168K 132K 550 1.7K
Object/things 6.4K 44K 436 1.2K
Temporal captions per Tube

1 caption per tube 789K 739K 842 24K
2 caption per tube 309K  27.8K 566 1.7K
3 or more Caption per tube 16.38K  14.15K 421 1.2K

Tasks stats

Region Detailed Captioning (RDCap) 1223K 1172K 25K 26K
Region Captioning (RCap) 1942K 179.5K 4.6K 10.1K
Region Temporal Localization (RTLoc) 192.0K 179.5K 4.6K 79K

Table 20: PLM-STC dataset statistics. Note the for RTLoc, we filter the test set to include only the
captions that are unambiguously localized, i.e., they map to a single time window in the video. As a
result, the test set size is reduced to 7,910 instances compared to RCap.

H.2 PLM-STC Benchmark

We utilize the collected data to train and evaluate the PLM on three challenging tasks that are essential
for video perception. Firstly, we created a balanced validation and test split by the combination of
tube categories and number of caption per tube while making sure no video overlaps with the training
set. This is done to make sure we evaluate all the categories presents in the dataset equally. Then, we
process the data for each task:

Dense Video Region Captioning (RDCap). This comprehensive task combines both “what” and
“when” aspects. The model takes the video and the tubelets as input and outputs the full time-segment
captions. We also assign an out of frame caption to temporal segments for which the subject does not
appear in the video to ensure dense temporal coverage of events across the video duration.

Video Region Captioning (RCap). This task involves describing “what” activities are performed
within a specific time frame by the objects in the tubelets. The model receives the video, the tubelets,
and the temporal region as input and outputs the corresponding captions. We filter out events that
refer to the subject when it is out-of-frame to avoid evaluating trivial captions.

Region Temporal Localization (RTLoc). This task requires the model to localize “when” specific
events occur in relation to a given tubelet. The input includes the video, the tubelet, and the caption,
while the output is the start and end frames indicating when the captioned event occurs. Like RCap,
we filter out out-of-frame events, as well as ambiguous events that may be be localized to multiple
time segments. For example, if the subject opens the door twice, the event text are guaranteed to
be unique (e.g., referring to the first and second time they opened the door) or dropped entirely if
ambiguous (e.g., if the text only mentions the action).

These tasks are designed to both improve and evaluate the model’s capabilities, with the same input-
output format applied during both training and evaluation. Figure 6 illustrate an examples of the task,
including the prompt used to train and evaluate the PLM.

I Smart Glasses Data

I.1 Data collection and annotation

We collected the source videos for PLM-SGQA using commercial smart glasses, which enable
participants to capture egocentric videos in a hands-free manner. Participants are presented with 14
categories of popular scenarios, such as shopping, cooking, and walking in a neighborhood, and are
instructed to ask questions about their surroundings as if interacting with a multi-modal assistant that
shares their visual perspective. Specifically, participants are asked to ask questions spontaneously,
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without delay, about the things they see and experience, and to focus on visual queries rather than
dynamic information that may change regularly. After recording the videos, participants annotate
the segments by marking the start and end points of the video relevant to each question, as well as
providing the ground-truth answer.

.2 SGQA Benchmark

To create the SGQA component of PLM—VideoBench we first filtered the Q&As using an LLM to
obtain a shortlist of questions that focus on human activity and also are perception-based rather than
based on general knowledge. This means that SGQA focus on questions that require good visual
understanding of the scene to be accurately answered. This process yields an evaluation set consisting
of 655 Q&As. For the resulting Q&As, we then trimmed the original videos to obtain clips within the
temporal boundary that the human wearer/annotator specified. As the annotated segments end at the
point where the smart-glass wearer asks the question, it is important for all evaluations to specify that
the question refers to the end of the video clip — e.g. see the prompt we used for PLM and baselines
evaluation in 10. We summarize the statistics of the SGQA test set in Figures 15 and 16.

Cooking o Shopping
Sources stats Sports
Total Videos 663
Average Duration (sec.) 29.4 Hobbies
Annotations stats

Ind. / Out. Act.

Number of QA Pairs 665 Home DIY n Ut Ac
Number Domains 14

Question Length (avg/max) 9.0/52 Fashion / Style

Answer Length (avg/max)  21.6/40
Annotation Type Human
Open-Domain Yes

Tourism Daily Activities

Dance / Exercise

Sightseeing

Figure 15: Statistics of the PLM-

SGQA test data. Figure 16: Domain distribution of video-clips in PLM-

SGOQA.
J Synthetic Data Engine

Our data engine targets base capabilities of VLMs: image captioning, visual question answering,
OCR, chart/diagram understanding, and video understanding. We developed different pipelines for
images and videos, and includes different levels of metadata to generate captions and QAs.

Image Captions: We caption high-quality images using Llama 3.1V 90B. An example is shown in
Figure 17. We use this pipeline to caption SA1B [105], Object365 [135], and Openlmages [136].

OCR QAs: We leverage pre-extracted OCR and use it as input for a LLM (i.e., Llama 3.3 70B) to
generate a set of five question-answer pairs. An example is shown in Figure 18. We use this pipeline
to generate QAs for PDFAcc [132], and UCSF [133].

Image Captioning plus QAs: In cases for which OCR does not provide enough information to
create questions (e.g., scientific figures), we futher caption the image using Llama 3.1V 90B. Then
we pass the caption with auxiliary metadata (e.g., OCR) to a LLM (i.e., Llama 3.3 70B) to generate
question-answers pairs. An example is shown in Figure 19). We use this pipeline to generate captions
and QAs for ArxivQA [59], DocVQA [53], InfoVQA [56] and Ai2d [55].

Video Captioning plus QAs: An image captioner is run on key-frames of the video, as well as a
video captioner on the overall video at 1 fps. The result captions are passed to a LLM (i.e., Llama
3.3 70B, or Llama 3 405B) with additional metadata (e.g., video title etc.), so to generate a detailed
caption and a multiple-choices question answers pair. An example is shown in Figure 20). We
use this pipeline to generate captions and QAs for YT-1B [236], Ego4d [115] 3 DiDeMo [140],
Charades [139], and Kinetics710 [121] .

3For this dataset we used Llama3 405B, rather than Llama 3.3 70B
“DiDeMo, Charades, Kinetics710 used a simpler pipeline where only frame captions were used, and a smaller
scale LLM (i.e., Llama 3.1 8B)
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Detailed Caption

The image depicts a yellow building with a red door and a sign that reads
"YOLCU SALONU" in black letters. The building has a gable roof and a
small window on the left side. There are two trees in front of the building,
one on each side of the entrance. The ground is wet, and there is snow on
the trees and the ground. In the background, there is a train station with
a train on the tracks. The sky is gray and overcast. The image appears
to be a photograph taken on a cold winter day. The presence of snow
and the gray sky suggest that it is a winter scene. The building and the
train station in the background suggest that it is a public place, possibly
a train station or a bus stop. The sign on the building reads "YOLCU
SALONU," which is Turkish for "Passenger Lounge." This suggests that
the building is a waiting area for passengers. Overall, the image depicts
a quiet and peaceful winter scene, with a focus on the building and the
surrounding environment.

Detailed

Image

Captioner

Captions

Figure 17: Detailed caption example, and the corresponding pipeline. The captioner (i.e., Llama 3V
90B) is prompted to generate the caption for the provided image.

OCR

Ladies Division Three

Ladies Division Three THIS ROUND TOTAL Dia-
mond CLUB RINKS WIN FOR AGAINST MARGIN
POINTS RINKS WINS FOR AGAINST MARGIN

Grs . POINTS Earned The Albert 2 0.5 57 570 6.5 10.54.5
"Chalicnge 315 276 39 36 525 Coolum Beach 1 0.5 57 5703.57.5

3.5312274 38 26 375 Mooloolaba2 17250227 7.5 2

Gré. L
Challenge CLUB MOOLOOLABA

Diamond “THIS ROUND
[ | —win | 7or | Acast] wAGw] Fon

239 238 1 24.5 375 Club Maroochy 000000 7 2 250

225 25 23 350 Nambour 1 0 50 72 -22 3 5 1 240 256

-16 16 250 Tewantin-Noosa 1 0 42 66 -24 3 4.5 0 197

D 273 -76 13.5 225 Buderim 2 1 66 42 24 7 3 2 218 229

Tarion -11 11 150 TOP 3 TEAMS FROM EACH SECTION
+ THE NEXT TWO HIGHEST TEAMS ON POINTS,
QUALIFY FOR FINALS

Question Answers

Q: How many teams qualify for the finals?
A: The top 3 teams from each section, plus the next two highest teams on points, qualify for the finals, making a

total of 5 teams.

Q: How many points has the Buderim team earned?
A: The Buderim team has earned 150 points.

Q: Which team is currently in the lead?

A: The Albert team is currently in the lead with 36 points and a margin of 39.

Q: What is the current margin of the Mooloolaba team?

A: The Mooloolaba team has a current margin of 1.

Q: What is the overall summary of the document?

A: The document appears to be a standings table for the Ladies Division Three of a bowling or lawn bowls
competition, showing the current standings of various teams, including their win-loss records, points, and

margins.

Pipeline

Image

OCR LLM VQAs

Figure 18: Visual Question Answering pairs and the corresponding pipeline. The OCR text is
extracted from the image, and passed to the LLM (i.e., Llama 3.3 70B) to generate QA pairs.
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OCR

11

10

SB 1011 10 Fraction of objects 0.2 0.1 0.0 0.01 0.1 1.0
10.0 erg sl

Fraction of objects

0.1 1.0 10.0
Lo [10* erg s]

Detailed Caption

The image depicts a histogram of the distribution of objects, with the x-axis labeled "Lsz[10*%ergs™']" and
the y-axis labeled "Fraction of objects." The x-axis ranges from 0.01 to 10.0, while the y-axis ranges from 0.0 to
0.2. The histogram is divided into bins of varying widths, with the first bin spanning from 0.01 to 0.1, the second
bin spanning from 0.1 to 1.0, and so on. Each bin contains a bar representing the fraction of objects within that
range. The bars are shaded in gray, with some bins having multiple bars. A key feature of the histogram is the
presence of a peak in the middle bin, which corresponds to an Lsp value of around 1.0. This suggests that the
majority of objects have an Lsp value close to this value. The histogram also shows a tail extending towards
higher Lsp values, indicating that some objects have significantly higher Lsp values than the majority. Overall,
the histogram provides a visual representation of the distribution of Lsp values among the objects being studied.
It allows for easy identification of patterns and trends in the data, such as the peak in the middle bin and the tail
towards higher Lsp values.

Multi-Choice Question Answer (MCQA)

What is the approximate Lsp value at which the majority of objects have their peak?
Options:

(A)0.1

B) 1.0

©)5.0

(D) 10.0

Answer: (B) 1.0.

Pipeline

Detailed
Image \ OCR LLM —— Captions LLM MCQAs

Captioner

Figure 19: Detailed Captions and Multi-Choice Question Answers (MCQAs) and the corresponding
pipeline. The OCR text is extracted from the image, and the caption is generated by the captioner
(i.e., Llama 3V 90B), which are all passed to the LLM (i.e., Llama 3.3 70B) to generate MCQAs.
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Metadata

Title: Lions VS Colts Highlights 2017 Preseason Game
Description: Comment suggestions for future videos and Enjoy!

Frame Caption

Frame 435: The image shows a man with dreadlocks standing in front of a crowd of people in a stadium. He
is wearing a white t-shirt and is surrounded by a group of people standing on the ground. On the left side of
the image, there is a table fan, bottles, and other objects placed on a table. In the background, there are people
sitting on chairs, stairs, railings, boards with text, lights, and the sky. The text on the boards reads "Indianapolis
Colts vs San Francisco 49ers

Frame 585: The image shows a football game being played on a TV screen, with a group of people on the
ground and a few people standing in the background. At the bottom of the image, there is text and numbers
indicating that the game is between the Indianapolis Colts and the Detroit Lions.

Frame 765: The image shows a group of people playing a game of football on a green field, with white lines
marking the boundaries of the field. At the bottom of the image, there is text and numbers indicating that the
game is between the Indianapolis Colts and the Detroit Lions.

Frame 945: The image shows a football game being played on a TV screen, with people wearing helmets and
playing on the ground. At the bottom of the image, there is text and numbers indicating that the game is between
the Detroit Lions and the Indianapolis Colts.

Video Caption

Football players wearing helmets, Detroit Lions vs Indianapolis Colts, player running with ball, falls down,
touchdown scored.

Detailed Caption

A football player is running with the ball and then falls down, the game is between the Detroit Lions and the
Indianapolis Colts, with players wearing blue and white uniforms and helmets, and people sitting in the stadium,
a watermark on the image shows the teams playing, one player is laying on the ground next to another player
wearing a white and blue jersey and a white helmet, a horseshoe-shaped object is on the grass, text on the image
indicates a touchdown, players are wearing helmets and playing on the ground, with watermarks in the bottom
left corner of the images, the game involves the Detroit Lions and the Indianapolis Colts, and also shows the
Colts playing against the New England Patriots and the Lions playing against the Dallas Cowboys.

Multi-Choice Question Answer (MCQA)

What is the outcome of the football player’s action?
Options:

(A) the player runs out of bounds

(B) the player scores a touchdown

(C) the player drops the ball

(D) the player falls down

(E) the player gets injured

Answer: (B) the player scores a touchdown.

Pipeline
- Video Detalled
Video Captioner Caption A Captions M Heans
) Frame - -
Captioner Captions
Metadata

Figure 20: Detailed Captions and Multi-Choice Question Answers (MCQAs) and the corresponding
pipeline. An LLM (i.e., Llama 3.3 70B) with a video caption, frame captions at 1 fps, and additional
metadata (e.g., video title etc.), generates a detailed caption and multiple-choices question answers
pair.
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Qualitative Results

Question: Provide a detailed description of the image.

Answer: The image is a pink postage stamp featuring a map of the
Grenadines of St. Vincent, with a red border and black text. The map
shows various locations on the island, including hotels, bays, and other
points of interest.

*Key Features:*

* *Map:* A pink map of the Grenadines of St. Vincent, with a red border
and black text.

* *Locations:* Various locations on the island are marked, including
hotels, bays, and other points of interest.

* *Scale:* A scale in miles is provided at the bottom of the map.

* *Denomination:* The denomination "30c" is printed in the bottom-right
corner of the stamp.

Musiyine * *Border:* The stamp has a red border with a serrated edge.

Island

*Qverall Impression:*

The image appears to be a vintage postage stamp from the Grenadines
of St. Vincent, featuring a map of the island and various locations of
interest. The stamp has a classic design and is likely from the mid-20th
century.

Figure 21: PLM-8B OCR examples.

Question: What does the
word say together from the
bikers?

Answer: The word says In-
dianapolis.

Question: How tall is the
kitty character in the image?
Answer: The kitty charac-
ter is approximately 100 cm
tall.

Figure 23: PLM-8B OCR in the wild examples.
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Question: What is inside
the oven?

Answer: There is a baking
sheet inside the oven.
Question: What tempera-
ture is the oven set to?
Answer: The oven is set to
200 degrees.

Question: What unit is the
oven’s temperature set to?
Answer: The oven’s tem-
perature is set to Celsius.

Figure 24: PLM-8B Natural image QA

Question: Describe the im-
age in details

Answer: A city skyline
with a large body of water
in the foreground. The city
skyline is made up of tall
buildings, some of which
are skyscrapers. The build-
ings are densely packed to-
gether and vary in height
and color. In the foreground,
there is a large body of wa-
ter that appears to be a har-
bor or bay. There are many
boats and ships in the water,
some of which are docked
at the shore while others are
sailing or anchored in the
middle of the water.

Figure 25: PLM-8B Captioning.
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Question: Describe the subject’s actions within the red rectangles, providing start and end frames ids and a brief
description for each action in a dense caption format. For each item use the format [start, end]: [description]
separated by a newline, where start and end are frame numbers between 0 and 31 in this 32 frame video.
Answer: Frame [0, 6]: Out of frame

Frame [6, 15]: A woman is walking towards the camera with a child. She is holding the child’s hand with her
right hand and carrying a bag in her left hand

Frame [16, 31]: Out of frame.

RCap

Question: What is happening to the subject in the region highlighted by the red rectangle during frames [6, 15]
in this 32 frame video?

Answer: a woman is walking on a muddy road with a child. she is holding the child’s hand with her right hand
and adjusting her saree with her left hand while walking

RTLoc

Question: Please provide the start and end frame of when ’an individual standing near a water body is drinking
a from a water from a bottle’ happens corresponding to the region marked by the blue rectangle. Use the format
[start, end] where start and end are frame numbers between 0 and 31 in this 32 frame video.

Answer: [23, 26]

Captioning

Question: Please describe the video in detail, focusing on actions.

Answer: This video features a group of people walking around a muddy area with a small bridge in the
background. The video is taken outdoors and the weather is sunny. The video starts with a man standing on the
left side of the frame, facing the camera. He is wearing a white shirt, a black vest, black trousers and white shoes.
He has a scarf around his neck. The camera pans to the right and shows a group of people walking around. The
video is taken from a low angle and the camera is handheld.

The video ends with a man walking towards the left side of the frame. He is wearing a blue shirt,
black trousers and brown shoes. He is holding a bottle in his right hand and is drinking from it.

Fine-grained QA

Question: Please explain what the man in blue t-shirt is pointing at in the video.
Answer: The man in blue t-shirt is pointing at the bridge.

Figure 26: PLM-8B Video Region Captioning, Grounding and Fine-grained QA.
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Question: Please give me a details of the video focusing on actions and interactions.

Answer: This video features a close up shot of a hand holding a plush toy mouse with a grey kitten standing
on a white chair, reaching out and touching the toy with its paws. In the beginning of the video, the kitten
is seen standing on the chair and reaching out with both paws to touch the toy mouse. The kitten then
withdraws its paws and sits back on the chair. The hand holding the toy mouse is seen moving the toy
closer to the kitten and then away from the kitten. The kitten then reaches out again and touches the toy
with its paws. The hand then moves the toy away from the kitten again and the kitten looks to the left of the frame.

This video is set against a white background.

Figure 27: PLM-8B Video Captioning

Question: What are the ingredients being thrown into the mixer?
Answer: Carrots, apples, and bananas.

Figure 28: PLM-8B Video QA
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L Limitations and Future Work

Our PLM models achieve strong performance against open-data baselines and proprietary models
alike, however there is still room for improvement in both modeling and data. On the model front,
we do not experiment extensively with long video modeling components (e.g., token compression,
dynamic temporal resolution). As a result, our performance on long video benchmarks [92, 94, 96]
is less competitive (see Table F). PLM is compatible with such newer advancements and can be
incorporated in future work.

Additionally, our results are sensitive to the characteristics of the base LLM. We see especially low
performance of PLM on benchmarks such as MMMU [37], MME [41] and Video-MME [75] (see
Tables 3 and 4), where the strongest baselines often rely on LLMs that are more verbose, but also have
a likely much larger language component (see the gap to proprietary models on some benchmarks).
We also note that our model performs relatively poorly on our SGQA task (Table 5), targeting a mix
of perception and knowledge based questions to smart glasses. Strong chatbot-focused systems like
GPT-40 excel at tasks that go beyond core perception.

On the data front, our mix focuses squarely on visual perception — it does not include for example,
multi-step reasoning, robotics or world-knowledge data. Despite these limitations, PLM contributes
new capabilities and strong benchmark results, and set a new standard for fully reproducible VLMs.

M Broader Impact

Our work aims to advance open and reproducible research in vision-language modeling by releasing
models, data, and benchmarks that support open research. By not having any distillation from
proprietary models, we hope to improve reproducible and transparent training and evaluation of VLM
research. However, like all MLLMs, our Perception Language Model (PLM) may have some risks.
Even by carefully selecting datasets and apply several mitigation (CSAM, NSFW, etc.), the model
may still contain hidden biases or generate inappropriate or harmful content. We took steps to reduce
these risks by teaching the model to refuse answering questions related to bias, harassment, or adult
content. We also remove all samples containing any mention of human faces from all the datasets.

We also annotate and release a large-scale dataset for fine-grained video question answering and
spatio-temporal grounding. This release has the potential to significantly advance research in image
and video understanding. Making the dataset openly available allows others to reproduce our work
and invites broader community involvement. This transparency supports safer and more accountable
progress, helping researchers better understand and address potential biases or limitations.

We believe that by openly sharing our models and data, while actively addressing ethical concerns,
our work can contribute positively to vision-language research.
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