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Abstract
Diffusion models are a remarkably effective way
of learning and sampling from a distribution p(x).
In posterior sampling, one is also given a mea-
surement model p(y | x) and a measurement y,
and would like to sample from p(x | y). Posterior
sampling is useful for tasks such as inpainting,
super-resolution, and MRI reconstruction, so a
number of recent works have given algorithms to
heuristically approximate it; but none are known
to converge to the correct distribution in poly-
nomial time. In this paper we show that poste-
rior sampling is computationally intractable: un-
der the most basic assumption in cryptography—
that one-way functions exist—there are instances
for which every algorithm takes superpolynomial
time, even though unconditional sampling is prov-
ably fast. We also show that the exponential-time
rejection sampling algorithm is essentially opti-
mal under the stronger plausible assumption that
there are one-way functions that take exponential
time to invert.

1. Introduction
Over the past few years, diffusion models have emerged as a
powerful way for representing distributions of images. Such
models, such as Dall-E (Ramesh et al., 2022) and Stable
Diffusion (Rombach et al., 2021), are very effective at learn-
ing and sampling from distributions. These models can then
be used as priors for a wide variety of downstream tasks,
including inpainting, superresolution, and MRI reconstruc-
tion.

Diffusion models are based on representing the smoothed
scores of the desired distribution. For a distribution p(x),
we define the smoothed distribution pσ(x) to be p convolved
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with N (0, σ2I). These have corresponding smoothed scores
sσ(x) := ∇ log pσ(x). Given the smoothed scores, the dis-
tribution p can be sampled using an SDE (Ho et al., 2020) or
an ODE (Song et al., 2021). Moreover, the smoothed score
is the minimizer of what is known as the score-matching
objective, which can be estimated from samples.

Sampling via diffusion models is fairly well understood
from a theoretical perspective. The sampling SDE and ODE
are both fast (polynomial time) and robust (tolerating L2

error in the estimation of the smoothed score). Moreover,
with polynomial training samples of the distribution, the
empirical risk minimizer (ERM) of the score matching ob-
jective will have bounded L2 error, leading to accurate sam-
ples (Block et al., 2020; Gupta et al., 2023). So diffusion
models give fast and robust unconditional samples.

But sampling from the original distribution is not the main
utility of diffusion models: that comes from using the mod-
els to solve downstream tasks. A natural goal is to sam-
ple from the posterior: the distribution gives a prior p(x)
over images, so given a noisy measurement y of x with
known measurement model p(y | x), we can in principle
use Bayes’ rule to compute and sample from p(x | y). Often
(such as for inpainting, superresolution, MRI reconstruction)
the measurement process is the noisy linear measurement
model, with measurement y = Ax+η for a known measure-
ment matrix A ∈ Rm×d with m < d, and Gaussian noise
η = βN (0, Im); we will focus on such linear measurements
in this paper.

Posterior sampling has many appealing properties for image
reconstruction tasks. For example, if you want to identify
x precisely, posterior sampling is within a factor 2 of the
minimum error possible for every measurement model and
every error metric (Jalal et al., 2021a). When ambiguities do
arise, posterior sampling has appealing fairness guarantees
with respect to sensitive attributes (Jalal et al., 2021b).

Given the appeal of posterior sampling, the natural ques-
tion is: is efficient posterior sampling possible given ap-
proximate smoothed scores? A large number of recent pa-
pers (Jalal et al., 2021a; Chung et al., 2023; Kawar et al.,
2021; Trippe et al., 2023a; Song et al., 2023; Kawar et al.,
2022; Dou & Song, 2024) have studied algorithms for pos-
terior sampling, with promising empirical results. But all
these fail on some inputs; can we find a better posterior
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sampling algorithm that is fast and robust in all cases?

There are several reasons for optimism. First, there’s the fact
that unconditional sampling is possible from approximate
smoothed scores; why not posterior sampling? Second, we
know that information-theoretically, it is possible: rejection
sampling of the unconditional samples (as produced with
high fidelity by the diffusion process) is very accurate with
fairly minimal assumptions. The only problem is that re-
jection sampling is slow: you need to sample until you get
lucky enough to match on every measurement, which takes
time exponential in m.

And third, we know that the unsmoothed score of the poste-
rior p(x | y) is computable efficiently from the unsmoothed
score of p(x) and the measurement model: ∇x log p(x |
y) = ∇ log p(x) +∇ log p(y | x). This is sufficient to run
Langevin dynamics to sample from p(x | y). Of course,
this has the same issues that Langevin dynamics has for
unconditional sampling: it can take exponential time to mix,
and is not robust to errors in the score. Diffusion models
fix this by using the smoothed score to get robust and fast
(unconditional) sampling. It seems quite plausible that a
sufficiently clever algorithm could also get robust and fast
posterior sampling.

Despite these reasons for optimism, in this paper we show
that no fast posterior sampling algorithm exists, even
given good approximations to the smoothed scores, under
the most basic cryptographic assumption that one-way func-
tions exist. In fact, under the further assumption that some
one-way function is exponentially hard to invert, there exists
a distribution—one for which the smoothed scores are well
approximated by a neural network so that unconditional
sampling is fast—that takes exponential in m time for pos-
terior sampling. Rejection sampling takes time exponential
in m, and so, one can no longer hope for much general
improvement over rejection sampling.

Precise statements. To more formally state our results,
we make a few definitions. We say a distribution is “well-
modeled” if its smoothed scores can be represented by a
polynomial size neural network to polynomial precision:
Definition 1.1 (C-Well-Modeled Distribution). For any
constant C > 0, we say a distribution p over Rd with
covariance Σ is “C-well-modeled” by score networks if
∥Σ∥ ≲ 1 and there are approximate scores ŝσ that satisfy

E
x∼pσ

[∥ŝσ(x)− sσ(x)∥2] <
1

dCσ2

and can be computed by a poly(d)-parameter neural net-
work with poly(d)-bounded weights for every 1

dC ≤ σ ≤
dC .

Throughout our paper we will be comparing similar distribu-
tions. We say distributions are (τ, δ) close if they are close

up to some shift τ and failure probability δ:

Definition 1.2 ((τ, δ)-Close Distribution). We say the dis-
tribution of x and x̂ are (τ, δ) close if they can be coupled
such that

Pr[∥x− x̂∥ > τ ] < δ.

An unconditional sampler is one that is (τ, δ) close to the
true distribution.

Definition 1.3 ((τ, δ)-Unconditional Sampler). A (τ, δ) un-
conditional sampler of a distribution D is one where its
samples x̂ are (τ, δ) close to the true x ∼ D.

The theory of diffusion models (Chen et al., 2023) says that
the diffusion process gives an unconditional sampler for
well-modeled distributions that takes polynomial time (with
the precise polynomial improved by subsequent work (Ben-
ton et al., 2024)).

Theorem 1.4 (Unconditional Sampling for Well-Modeled
Distributions). For an O(C)-well-modeled distribution p,
the discretized reverse diffusion process with approximate
scores gives a

(
1
dC ,

1
dC

)
-unconditional sampler (as defined

in Definition 1.3) for any constant C > 0 in poly(d) time.

But what about posterior samplers? We want that, for most
measurements y, the conditional distribution is (τ, δ) close
to the truth:

Definition 1.5 ((τ, δ)-Posterior Sampler). Let D be a dis-
tribution over X × Y with density p(x, y). Let C be an
algorithm that takes in y ∈ Y and outputs samples from
some distribution p̂|y over X . We say C is a (τ, δ)-Posterior
Sampler for D if, with 1− δ probability over y ∼ DY , p̂|y
and p(x | y) are (τ, δ) close.

As described above, we consider the linear measurement
model:

Definition 1.6 (Linear Measurement Model). In the linear
measurement model withm measurements and noise param-
eter β, we have for x ∈ Rd, the measurement y = Ax+ η
for A ∈ Rm×d normalized such that ∥A∥ ≤ 1, and
η = βN (0, Im).

One way to implement posterior sampling is by rejection
sampling. As long as the measurement noise β is much
bigger than the error τ = 1

poly(d) from the diffusion process,
this is accurate. However, the running time is exponentially
large in m:

Theorem 1.7 (Upper Bound). Let C > 1 be a constant.
Consider an O(C)-well-modeled distribution and a linear
measurement model with β > 1

dC . When δ > 1
dC , rejection

sampling of the diffusion process gives a ( 1
dC , δ)-posterior

sampler that takes poly(d)(O(1)

β
√
δ
)m time.

Our main result is that this is nearly tight:
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Theorem 1.8 (Lower Bound). Suppose that one-way func-
tions exist. Then for any m > d0.01, there exists a 10-
well-modeled distribution over Rd, and linear measure-
ment model with m measurements and noise parameter
β = Θ( 1

log2 d
), such that ( 1

10 ,
1
10 )-posterior sampling re-

quires superpolynomial time in d.

To be a one-way function, inversion must take superpoly-
nomial time on average. It is widely believed, including
for problems based on lattices (Aggarwal et al., 2023) and
elliptic curves (Zhandry, 2019), that many one-way func-
tion candidates need exponential time to invert. Under the
stronger assumption that there exist some one-way functions
that require exponential time to invert with non-negligible
probability, we can show that posterior sampling takes 2Ω(m)

time:

Theorem 1.9 (Lower Bound: Exponential Hardness). Sup-
pose that there exist one-way functions f : {±1}m →
{±1}m that require 2Ω(m) time to invert. Then for any
m ≤ O(d) and C > 1, there exists a C-well-modeled
distribution over Rd and linear measurement model with
m measurements and noise level β = 1

C2 log2 d
, such that

( 1
10 ,

1
10 )-posterior sampling takes at least 2Ω(m) time.

Assuming such strong one-way functions exist, then for the
lower bound instance, 2Ω(m) time is necessary and rejec-
tion sampling takes 2O(m log log d) poly(d) time. Up to the
log log d factor, this shows that rejection sampling is the
best one can hope for in general.

Remark 1.10. The lower bound produces a “well-modeled”
distribution, meaning that the scores are representable by a
polynomial-size neural network, but there is no requirement
that the network be shallow. One could instead consider
only shallow networks; the same theorem holds, except
that f must also be computable by a shallow depth network.
Many candidate one-way functions can be computed in NC0

(i.e., by a constant-depth circuit) (Applebaum et al., 2004),
so the cryptographic assumption is still mild.

2. Related Work
Diffusion models (Sohl-Dickstein et al., 2015; Dhariwal
& Nichol, 2021; Song & Ermon, 2019) have emerged as
the most popular approach to deep generative modeling of
images, serving as the backbone for the recent impressive
results in text-to-image generation (Ramesh et al., 2022;
Rombach et al., 2021), along with state-of-the-art results
in video (Blattmann et al., 2023; Ho et al., 2022) and au-
dio (Kong et al., 2021; Chen et al., 2021) generation.

Noisy linear inverse problems capture a broad class of ap-
plications such as image inpainting, super-resolution, MRI
reconstruction, deblurring, and denoising. The empirical
success of diffusion models has motivated their use as a

data prior for linear inverse problems, without task-specific
training. There have been several recent theoretical and em-
pirical works (Jalal et al., 2021a; Chung et al., 2023; Kawar
et al., 2021; Trippe et al., 2023a; Song et al., 2023; Kawar
et al., 2022; Dou & Song, 2024) proposing algorithms to
sample from the posterior of a noisy linear measurement.
We highlight some of these approaches below.

Posterior Score Approximation. One class of ap-
proaches (Chung et al., 2023; Kawar et al., 2021; Song
et al., 2023) approximates the intractable posterior score
∇ log pt(xt|y) = ∇ log pt(xt) + ∇ log pt(y|xt) at time t
of the reverse diffusion process, and uses this approxima-
tion to sample. Here, y = Ax0 + η is the noisy measure-
ment of x0 ∼ p0, where pt is the density at time t. For
instance, Chung et al. (2023) proposes the approximation
∇ log pt(y|xt) ≈ ∇ log p(x|E [x0|xt]), thereby incurring
error quantified by the so-called Jensen gap. (Song et al.,
2023) proposes an approximation based on the pseudoin-
verse of A, while (Kawar et al., 2021) proposes to use the
score of the posterior wrt measurement yt of xt.

Replacement Method. Another approach, first intro-
duced in the context of inpainting (Lugmayr et al., 2022),
replaces the observed coordinates of the sample with a noisy
version of the observation during the reverse diffusion pro-
cess. An extension was proposed for general noisy linear
measurements (Kawar et al., 2022). This approach essen-
tially also attempts to sample from an approximation to the
posterior.

Particle Filtering. A recent set of works (Trippe et al.,
2023a;b; Dou & Song, 2024) makes use of Sequential Monte
Carlo (SMC) methods to sample from the posterior. These
methods are guaranteed to sample from the correct distri-
bution as the number of particles goes to ∞. Our paper
implies a lower bound on the number of particles necessary
for good convergence. Assuming one-way functions exist,
polynomially many particles are insufficient in general, so
that these algorithms takes superpolynomial time; assuming
some one-way function requires exponential time to invert,
particle filtering requires exponentially many particles for
convergence.

To summarize, our lower bound implies that these ap-
proaches are either approximations that fail to sample from
the posterior, and/or suffer from prohibitively large runtimes
in general.

3. Proof Overview – Lower Bound
In this section, we give an overview of the proof of our main
Theorem 1.8, which states that there is some well-modeled
distribution for which posterior sampling is hard. The full
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proof can be found in the Appendix.

The core idea of our proof is that any general posterior
sampler would imply an algorithm that can invert a one-way
function. A one-way function is formally defined as follows:

Definition 3.1. A polynomial-time computable function f :
{−1, 1}∗ → {−1, 1}∗ is one-way if, for any polynomial-
time randomized algorithm A, any constant c > 0, and all
sufficiently large n,

Pr
x∼Un

[f(A(f(x))) = f(x)] < n−c

where Un is the uniform distribution over {−1, 1}n.

The function f is defined on inputs of arbitrary length; for
inputs of length n it can be assumed to have some fixed
polynomial output length m(n).

An initial attempt. Suppose we have a one-way function
f : {−1, 1}d → {−1, 1}d, and consider the distribution that
is uniform over (s, f(s)) ∈ {−1, 1}2d for all s ∈ {−1, 1}d.
This distribution is easy to sample from unconditionally:
sample s uniformly, then compute f(s). At the same time,
posterior sampling is hard: if you observe the last d bits, i.e.
f(s), a posterior sample should be from f−1(f(s)); and if
f is a one-way function, finding any point in this support is
computationally intractable on average.

However, it is not at all clear that this distribution is well-
modeled as per Definition 1.1; we would need to be able to
accurately represent the smoothed scores by a polynomial
size neural network. The problem is that for smoothing
levels 1 ≪ σ ≪

√
d, the smoothed score can have nontrivial

contribution from many different (s, f(s)); so it’s not clear
one can compute the smoothed scores efficiently. Thus,
while posterior sampling is intractable in this instance, it’s
possible the hardness lies in representing and computing
the smoothed scores using a diffusion model, rather than in
using the smoothed scores for posterior sampling.

However, for smoothing levels σ ≪ 1√
log d

, the smoothed
scores are efficiently computable with high accuracy. The
smoothed distribution is a mixture of Gaussians with very
little overlap, so rounding to a nearby Gaussian and taking
its score gives very high accuracy.

To design a better lower bound, we modify the distribution to
encode f(s) differently: into the phase of the discretization
of a Gaussian. At large smoothing levels, a discretized Gaus-
sian looks essentially like an undiscretized Gaussian, and
the phase information disappears. Thus at large smoothing
levels, the distribution is essentially like a product distri-
bution, for which the scores are easy to compute. At the
same time, conditioning on the observations still implies
inverting f , so this is still hard to conditionally sample; and

it’s still the case that small smoothing levels are efficiently
computable.

Based on the above, we define our lower bound instance
formally in Section 3.1. Then, in Section 3.2 we sketch a
proof of Lemma 3.5, which shows that it is impossible to
perform accurate posterior sampling for our instance, under
standard cryptographic assumptions. Section 3.3 shows that
our lower bound distribution is well-modeled by a small
ReLU network, which means that the hardness is not com-
ing merely from inability to represent the scores, and that
unconditional sampling is provably efficient. Finally, we
put these observations together to show the theorem.

3.1. Lower Bound Instance

We define our lower bound instance here formally. Let
wσ(x) denote the density of a Gaussian with mean zero and
standard deviation σ, and let combε denote the Dirac Comb
distribution with period ε, given by

combε(x) =
∞∑

k=−∞

δ(x− kε)

For any b ∈ {−1, 1}, let ψb be the density of a standard
Gaussian discretized to multiples of ε, with phase either 0
or ε

2 depending on b:

ψb(x) ∝ w1(x) · combε

(
x− ε/2 · 1− b

2

)
.

Definition 3.2 (Unscaled Lower Bound Distribution). Let
f : {±1}d → {±1}d′

be a given function. For R > 0 and
for any s ∈ {±1}d, define the product distribution gs over
x ∈ Rd+d′

such that

xi ∼ w1(xi −R · si) for i ≤ d

xi ∼ ψf(s)i−d
for i > d.

The unconditional distribution g we consider is the uniform
mixture of gs over s ∈ {±1}d.

We will have d′ = O(d) throughout. Figure 1 gives a
visualization of gs; the final distribution is the mixture of gs
over uniformly random s.

For ease of exposition, we will also define a scaled version
of our distribution g such that its covariance Σ has ∥Σ∥ ≲ 1.

Definition 3.3 (Scaled Lower Bound Distribution). Let
g̃(x) = Rd+d′

g(R · x) be the scaled version of the dis-
tribution with density g defined in Definition 3.2. Similarly,
let g̃s = Rd+d′

gs(R · x).

The measurement process then takes sample x ∼ g̃ and
computes Ax + η, where η = N (0, β2Id′) and A =(
0d

′×d Id′
)
. That is, we observe the last d′ bits of x, with

variance β2 Gaussian noise added to each coordinate.
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Figure 1: The distribution of each coordinate in gs, has independent coordinates. For any seed s ∈ {±1}d, the first d bits are normal
distributions whose mean is specified by si, and the last d′ bits are a discretized standard normal where the discretization is specified by
f(s)j . The full distribution g is a mixture over all seeds s of gs.

3.2. Posterior Sampling Implies Inversion

Below, we state the main result of this section, and give
a sketch of the proof. We show that given any function
f : Rd → Rm, if we can conditionally sample the above
measurement process, then we can invert f . For the sake
of exposition, we assume here that f has unique inverses; a
similar argument applies in general. The full proof of this
Lemma is given in the Appendix.

Lemma 3.4. For any function f , suppose C is an
(1/10, 1/10)-posterior sampler in the linear measurement
model with noise parameter β for distribution with density
g̃ as defined in Definition 3.3, with ε ≥ β

√
32 log d and

R ≥ 32
√
log d. If C takes time T to run, then there exists

an algorithm A that runs in time T +O(d) such that

Pr
s,A

[f(A(f(s))) ̸= f(s)] ≤ 3

4

Take some z ∈ {±1}d′
. Our goal is to compute f−1(z),

using the posterior sampler for g̃. To do this, we take a
sample zi ∼ ψzi ∗ N (0, β2) for i ∈ {1, . . . , d′}, and feed
in z into our posterior sampler, to output x̂. We then take
the first d bits of x̂, round each entry to the nearest ±1, and
output the result.

To see why this works, let’s analyze what the resulting con-
ditional distribution looks like. First, note that any sample
x ∼ g̃ encodes some (s, f(s)) coordinate-wise so that the
encoding of f(s) is one of two discretizations of a normal
distribution, with width ε, offset by ε/2 from each other (see
Figure 1). Furthermore, since β ≪ ε, these two encodings
are distinguishable with high probability even after adding
noise with variance β2. Therefore, with high probability, our
sample z, which is a noised and discretized encoding of the
input z we want to invert, will be such that each coordinate

is within ε/4 of the correct discretization. Consequently,
a posterior sample with this observation will correspond
to an encoding of (s, f(s)) where s = f−1(z), with high
probability. The first d bits of this encoding are just the bits
of f−1(z) smoothed by a gaussian with variance 1/R2, and
since R≫ 1, rounding these coordinates to the nearest ±1
returns f−1(z), with high probability.

So, we showed how to invert an arbitrary f using a posterior
sampler. The runtime of this procedure was just the runtime
of the posterior sampler, along with some small overhead.
In particular, if f were a one-way function that takes su-
perpolynomial time to invert, posterior sampling must take
superpolynomial time. Formally, we show the following:

Lemma 3.5. Suppose m ≥ d0.01 and one-way functions ex-
ist. Then, for g̃ as defined in Definition 3.3 with ε = 1

C
√
log d

and R = C log d, and linear measurement model with
noise parameter β = 1

C2 log2 d
and measurement matrix

A ∈ Rm×d, ( 1
10 ,

1
10 )-posterior sampling takes superpoly-

nomial time.

One minor detail is that a one-way function is defined to
map {0, 1}n → {0, 1}n′

for an unconstrained n′, while
we want one that maps {0, 1}d−m → {0, 1}m. Standard
arguments imply that we can get such a function from the
assumption; see Section G for details.

3.3. ReLU Approximation of Lower Bound Score

We have shown that our (scaled) lower bound distribution g̃
(as defined in Definition 3.3) is computationally intractable
to sample from. Now, we sketch our proof showing that g̃
is well-modeled: the σ-smoothed scores are well approx-
imated by a polynomially bounded ReLU network. The
main result of this section is the following.
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l1
sσ

(a) l1 is unbounded and has an unbounded number of pieces

l

sσ

(b) l is bounded, has a small number of pieces.

Figure 2: Piecewise-Linear Approximations of Score sσ

Corollary 3.6 (Lower Bound Distribution is Well-Mod-
eled). Let C be a sufficiently large constant. Given a
ReLU network f : {±1}d → {±1}d′

with poly(d) pa-
rameters bounded by poly(d) in absolute value, the dis-
tribution g̃ defined in Definition 3.3 for R = C log d and

1
poly(d) < ε < 1

C
√
log d

, is O(C)-well-modeled.

To show this, we will first show that the unscaled distribu-
tion g has a score approximation representable by a and
polynomially bounded ReLU net. Rescaling by a factor of
R = C log d then shows the above.

Notation. We will let h be the σ-smoothed version of g,
and hr be the σ-smoothed version of gr.

Strategy. We will first show how to approximate the score
of any σ-smoothed product distribution using a polynomial-
size ReLU network with polynomially bounded weights in
our dimension d, 1

σ and 1
γ for L2 error γ2.

Then, we will observe that when σ is large, so that
poly(d) ≥ σ ≫ ε

√
log d, h becomes very close to a mix-

ture of (1 + σ2)Id+d′-covariance Gaussians placed at the
vertices of a scaled hypercube (in the first d coordinates).
Since this is a product distribution, we can represent its
score using our ReLU construction.

On the other hand, when σ is small, for R ≫ log d and
1

poly(d) ≤ σ ≪ R√
log d

, the score of h at any point x is
well approximated by the distribution hr, where r ∈ {±1}d
represents the orthant containing the first d coordinates of x.
Since hr is a product distribution, our ReLU construction
applies.

Finally, we set R ≫ log d so that for any 1
poly(d) ≤ σ ≤

poly(d), there is a polynomially bounded ReLU net that
approximates the score of h. We now describe each of these
steps in more detail.

3.3.1. RELU APPROXIMATION FOR SCORE OF PRODUCT
DISTRIBUTION

We will show first how to construct a ReLU network ap-
proximating the score of a one-dimensional distribution –
the construction generalizes to product distributions in a
straightforward way.

Consider any one-dimensional distribution p with σ-
smoothed version pσ , and corresponding score sσ . Suppose
pσ has standard deviation m2. We will first construct a
piecewise-linear function l that approximates sσ in L2.

Since sσ is σ-smoothed, its value does not change much in
most σ-sized regions. More precisely, Lemma H.1 shows
that

E
x∼pσ

[
sup
|c|≤σ

s′σ(x+ c)2

]
≲

1

σ4

This immediately gives a piecewise linear-approximation
l1 with O(γσ2)-width pieces: By Taylor expansion, we can
write any sσ(x) = sσ(αx) + (x − αx)s

′
σ(ξ) for some ξ

between αx and x. Then, if αx is the largest discretization
point smaller than x (so that |x − αx| ≲ γσ2), this gives
that

E
[
(sσ(x)− sσ(αx))

2
]
≲ γ2σ4 E[sup

c
s′σ(x+ c)2] ≲ γ2

So, we can approximate every sσ(x) with sσ(αx), yielding
a piecewise-constant approximation. Then, we can similarly
obtain another piecewise-constant approximation by replac-
ing sσ(x) with sσ(βx) for βx the smallest discretization
point larger than x. By convexity, we can linearly interpolate
between sσ(αx) and sσ(βx) to obtain our piecewise-linear
approximation l1 (see Fig. 2).

Unfortunately, l1 suffers from two issues: 1) It is potentially
unbounded, and 2) It has an unbounded number of pieces.

For 1), since sσ is σ-smoothed, it is bounded by with high
probability, so that we can ensure that our approximation
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is also bounded without increasing its error much. For 2),
since pσ has standard deviation m2, Chebyshev’s inequality
gives that the total probability outside a radius m2

γσ2 region is
small, so that we can use a constant approximation outside
this region. This allows us to bound the number of pieces
by poly

(
m2

γσ

)
, yielding our final approximation l.

As is well-known, such a piecewise linear function can be
represented using a ReLU network with poly

(
m2

γσ

)
parame-

ters, and each parameter bounded by poly
(

m2

γσ

)
in absolute

value. For product distributions, we simply construct ReLU
networks for each coordinate individually, and then append
them, for bounds polynomial in d and 1/σ, 1/γ and m2. In
the remaining proof, whenever this construction is used, all
these parameters are set to polynomial in d, for final bounds
poly(d).

3.3.2. RELU APPROXIMATION FOR LARGE σ

−ε0 ε

ψ1

ψ−1

−ε0 ε

ψ1 ∗ N (0, σ2)

ψ−1 ∗ N (0, σ2)

Figure 3: ψ1 and ψ−1 are discretized Gaussians with discretization
width ε and phase 0 and ε/2 respectively. If we convolve with
N (0, σ2), we get a distribution close to Gaussian when σ ≥ ε for
each of ψ1, ψ−1.

Note that our lower bound distribution g is such that the
first d coordinates are simply a mixture of Gaussians placed
on the vertices of a (scaled) hypercube, while the last d′

coordinates are discretized Gaussians ψ1 or ψ−1, with the
choice of discretization depending on the first d coordinates.

The only reason g is not already a product distribution is that
ψ1 and ψ−1 are different. But for smoothing σ ≫ ε

√
log d,

a Fourier argument shows that the smoothed versions of ψ1

and ψ−1 are polynomially close to each other. See Figure 3
for an illustration.

3.3.3. RELU APPROXIMATION FOR SMALL σ

When σ ≪ R√
log d

and R ≫ log d, consider the density
h(x) for x1,...,d lying in the orthant identified by r ∈ {±1}d.
Recall that

h(x) =
1

2d

∑
s∈{±1}d

hs(x)

where hs is the product distribution that is Gaussian with
mean R · si in the first d coordinates and is a smoothed

discretized Gaussian with mean 0 in the remaining d′ coor-
dinates.

We first show that h(x) is approximated by hr(x)
2d

up to
small additive error. This is because every hs has radius at
most

√
1 + σ2 ≲ R√

log d
and there are ≈

(
d
k

)
points s ̸= r

with the mean of hs at least Ω(
√
kR) away from x. So, the

total contribution of all the terms involving hs(x) to h(x)
for s ̸= r is at most ≈ 1

2d
· 1
poly(d) . We can show that ∇h(x)

is approximated by ∇hr(x)
2d

in L2 up to similar additive error
in an analogous way.

We then show that the score of hr serves as a good approx-
imation to the score of h for all such points x such that
x1,...,d lies in the orthant identified by r. For x close to
the mean of hr (to within R/10, say), the above gives that
h(x) is approximated up to multiplicative error by hr(x)

2d
,

and ∇h(x) is approximated up to multiplicative error by
∇hr(x)

2d
. Together, this gives that the score of h at x, ∇h(x)

h(x)

is approximated by the score of hr at x up to 1
poly(d) error.

On the other hand, for x far from the mean of hr, since the
density itself is small, the total contribution of such points
to the score error is negligible.

Since the score of h is well-approximated by the score of
hr, and hr is a product distribution, we can essentially use
our ReLU construction for product distributions to represent
its score, after using a small gadget to identify the orthant
that x1,...,d lies in.

3.4. Putting it all Together

Lemma 3.5 shows that it is computationally hard to sample
from g̃ from the posterior of a noisy linear measurement
when f is a one-way funciton, while Corollary 3.6 shows
that g̃ has score that is well-modeled by a ReLU network
when f can be represented by a polynomial-sized ReLU
network. In Section G, we show that any one-way function
can be represented using a polynomial-sized ReLU network.
Thus, together, these imply our lower bound, Theorem 1.8.

Essentially the same argument holds under the stronger
guarantee that there exists a one-way function that takes
exponential time to invert, for a lower bound exponential in
the number of measurements m.

4. Proof Overview - Upper Bound
In this section, we sketch the proof of Theorem 1.7 in Sec-
tion E: the time complexity of posterior sampling by rejec-
tion sampling (Algorithm 1). For ease of discussion, we
only consider the case when δ = Θ(1). The proof overview
below will repeatedly refer to events as occurring with “ar-
bitrarily high probability”; this means the statement is true
for every constant probability p < 1. (Usually there will be

7
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Algorithm 1 Rejection Sampling Algorithm

Input: y ∈ Y
1: while True do
2: Sample x ∼ Dx

3: Compute q := e
−∥Ax−y∥2

2β2 (proportional to p(y | x))
4: Generate a random number r ∼ U(0, 1)
5: if r < q then
6: return x
7: end if
8: end while

a setting of constants in big-O notation nearby that depends
on p.)

Sampling Correctness With Ideal Sampler. To illustrate
the idea of the proof, we first focus on the scenario where
we can sample from the distribution of x perfectly. We aim
to show that rejection sampling perfectly samples x | y. To
prove the correctness of Algorithm 1, noting that each round
is independent, it suffices to verify that each round outputs
x with probability density proportional to p(x | y). We have

p(x | y) = p(y | x)p(x)
p(y)

∝ p(y | Ax)p(x) ∝ e
− ∥Ax−y∥

2β2 p(x).

Therefore, with a perfect unconditional sampler for Dx (sam-
pling x according to density p(x)), rejection sampling per-
fectly samples x | y.

Running time. Now we show that for linear measure-
ments y = Ax + βN (0, Id), with arbitrarily high proba-
bility over x ∼ D, the acceptance probability per round
is at least Θ(β)m; this implies the algorithm terminates in
(O(1)/β)m rounds with arbitrarily high probability. For a
given y, the acceptance probability per round is equal to

E
x

[
e
− ∥Ax−y∥2

2β2

]
≥ Pr

x

[
∥Ax− y∥ ≤ O(β

√
m)
]
· e−O(m).

We first focus on the case when m = 1. We aim to show
that with arbitrarily high probability over y,

Pr
x
[∥Ax− y∥ ≤ O(β)] ≥ β.

For well-modeled distributions, the covariance matrix of
x has constant singular values. Then with arbitrarily high
probability, x isO(1) in each direction. Since every singular
value of A is at most 1, the projection Ax onto R will
lie in [−C,+C] for some constant C with arbitrarily high
probability.

We divide [−C,+C] into N = 2C
β segments of length

β, forming set S. Now we only need to prove that with

arbitrarily high probability over y, there exists a segment
θ ∈ S satisfying for all x ∈ θ, |x − y| ≤ O(β) , and
Prx∼Dx [Ax ∈ θ] ≳ β. For any constant c > 0, define

S′ := {θ ∈ S | Pr
x∼Dx

[Ax ∈ θ] >
c

N
}.

Each segment in S′ has probability at least Ω(1/N) ≳ β to
be hit. Therefore, we only need to prove that, with arbitrarily
high probability, y = Ax+η satisfies these two independent
events simultaneously: (1) Ax lands in some segment θ ∈
S′; (2) η ≲ β.

By a union bound, the probability that Ax lies in a segment
in S \ S′ is at most N · c

N ≤ c. For sufficiently small c,
combining with the fact that Ax ∈ S with arbitrarily high
probability, we have (1) with arbitrarily high probability.
Since that η ∼ N (0, β2). By the concentration of Gaussian
distribution, (2) is satisfied with arbitrarily high probability.

For the general case when m > 1, with arbitrarily high
probability, Ax will lie in {x ∈ Rm | ∥x∥ ≤ C

√
m} for

some C > 0. Instead of segments, we use N = (O(1)
β )m

balls with radius β to cover {x ∈ Rm | ∥x∥ ≤ C
√
m}. Fol-

lowing a similar argument, we can prove that with arbitrarily
high probability over y,

Pr
x

[
∥Ax− y∥ ≤ O(β

√
m)
]
≥ Θ(β)m.

Diffusion as unconditional sampler. In practice, we do
not have a perfect sampler for Dx. Theorem 1.4 states that
for O(C)-well-modeled distributions, diffusion model gives
an unconditional sampler that samples from approximation
distribution D̂x satisfying that there exists a coupling be-
tween x ∼ Dx and x̂ ∼ D̂x such that with arbitrarily high
probability, ∥x− x̂∥ ≤ 1/d2C .

For (x, x̂) drawn from this coupling, we know from our pre-
vious analysis that rejection sampling based on x is correct.
But the algorithm only knows x̂, which changes its behavior
in two ways: (1) it chooses to accept based on p(y | x̂)
rather than p(y | x), and (2) it returns x̂ rather than x on
acceptance. The perturbation from (2) is easily within our
tolerance, since it is 1

d2C close to x with arbitrarily high
probability.

For (1), we can show when x and x̂ are close, these two
probabilities are nearly the same. When ∥x− x̂∥ ≤ 1

d2C ≤
o(β/

√
m), we have

∣∣∣∣log p(y | x̂)
p(y | x)

∣∣∣∣ =
∣∣∣∣∣∥Ax− y∥2

2β2
− ∥Ax̂− y∥2

2β2

∣∣∣∣∣ ≤ o(1).

This implies that p(y | x̂) = (1± o(1))p(y | x) and proves
Theorem 1.7.
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5. Conclusion and Future Work
We have shown that one cannot hope for a fast general al-
gorithm for posterior sampling from diffusion models, in
the way that diffusion gives general guarantees for uncon-
ditional sampling. Rejection sampling, slow as it may be,
is about the fastest one can hope for on some distributions.
However, people run algorithms that attempt to approxi-
mate the posterior sampling every day; they might not be
perfectly accurate, but they seem to do a decent job. What
might explain this?

Given our lower bound, a positive theory for posterior sam-
pling of diffusion models must invoke distributional assump-
tions on the data. Our lower bound distribution is derived
from a one-way function, and not very “nice”. It would be
interesting to identify distributional properties under which
posterior sampling is possible, as well as new algorithms
that work under plausible assumptions.
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A. Lower Bound instance
We first define our Lower Bound Distribution g (up to scaling). Let wσ(x) denote the density of a Gaussian with mean zero
and standard deviation σ, and let combε denote the Dirac Comb distribution with period ε, given by

combε(x) =
∞∑

k=−∞

δ(x− kε)

For any b ∈ {−1, 1}, let ψb be the density of a standard Gaussian discretized to multiples of ε, with phase either 0 or ε
2

depending on b:

ψb(x) ∝ w1(x) · combε

(
x− ε/2 · 1− b

2

)
.

Definition 3.2 (Unscaled Lower Bound Distribution). Let f : {±1}d → {±1}d′
be a given function. For R > 0 and for

any s ∈ {±1}d, define the product distribution gs over x ∈ Rd+d′
such that

xi ∼ w1(xi −R · si) for i ≤ d

xi ∼ ψf(s)i−d
for i > d.

The unconditional distribution g we consider is the uniform mixture of gs over s ∈ {±1}d.

We define our final Lower Bound distribution below, which is a scaled version of g.

Definition 3.3 (Scaled Lower Bound Distribution). Let g̃(x) = Rd+d′
g(R · x) be the scaled version of the distribution with

density g defined in Definition 3.2. Similarly, let g̃s = Rd+d′
gs(R · x).

B. Lower Bound – Posterior Sampling implies Inversion of One-Way Function
B.1. Notation

Let l := [d] = {1, 2, 3, . . . , d}, and let r := {d + 1, d + 2, . . . , d + d′}, so that for any x ∈ Rd+d′
, x[:d] ∈ Rd is a vector

containing the first d entries of x, and x[−d′:] ∈ Rd′
is a vector containing the last d′ entries of x.

Let RoundR : Rk → {±R}k be such that for all i ∈ [k],

RoundR(x)i = argmin
v∈{±R}

|xi − v| .

Let parity : Z → {−1,+1} be such that parity(2i) = −1, parity(2i + 1) = 1 for all i ∈ Z. Let Bitsε : Rk → {±1}k be
such that for all i ∈ [k],

(Bitsε(y))i = parity
(
argmin

i∈Z

∣∣∣i · ε
2
− yi

∣∣∣)
This function takes a value y and returns a guess for whether y comes from a smoothed distribution discretized to even
multiples of ε/2 or odd multiples of ε/2, based on which is closer.

Definition B.1 (Conditional Distribution). Let g be the distribution defined in 3.2, parameterized by a function f , and real
values R, ε > 0. For some noise pdf h, we define X h

f,R,ε to be the distribution over (x, y) where x ∼ g and y ∼ x[−d′:] + h.

We also explicitly define the two noise models we will be using for the lower bound: we take

X β
f,R,ε := Xwβ

f,R,ε, wβ = N(0, β2). (1)

Let (X β
f,R,ε)y denote the marginal over y. Further, X β,βmax

f,R,ε := X b
f,R,ε where b is a clipped normal distribution: b :=

clip(βmax, N(0, β2)).
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B.2. Inverting f via Posterior Sampling

Lemma B.2. Let βmax ≤ ε/4 and
√
32 log d

δ ≤ R. Then,

Pr
xb,yb∼Xβ,βmax

f,R,ε

[
f(RoundR(xb[:d])) = Bitsε(yb)

]
≥ 1− δ

Proof. Let xb, yb ∼ X β,βmax
f,R,ε . By definition, we know that yb ∼ xb[−d′:] + clip(βmax, N(0, β2). Further, for all indices i,

(xb[−d′:])i = jε/2 for some integer j. So, if βmax ≤ ε/4, then

Bitsε(yb) = Bitsε(xb[−d′:]). (2)

We know that xb is drawn from a uniform mixture over gs(x), as defined in 3.2. So, fixing an s ∈ {±1}d. We have that

Bitsε(xb[−d′:]) = s. (3)

On the other hand, x[:d] is a product of gaussians centered at Rsi in the ith coordinate. Therefore, for all i < d,

Pr
xb

[∣∣∣(xb[:d])i −Rsi

∣∣∣ ≤√2 log
d

δ

]
≥ 1− δ

d

Since
√
2 log d

δ ≤ R/4, we get that

Pr
xb

[
RoundR(xb[:d]) = s

]
≥ 1− δ. (4)

Putting together Equation (2), Equation (3), and Equation (4) we get

Pr
xb

[
RoundR(xb[:d]) = Bitsε(yb)

]
≥ 1− δ

Lemma B.3. Let C be a (τ, δ)-conditional sampling algorithm for X β
f,R,ε. If ε ≥ β

√
32 log d

δ , τ ≤ R/4, and 32 log d
δ ≤ R2,

then for y ∼ (X β
f,R,ε)y and x̂ ∼ C(y),

Pr[f(RoundR(x̂[:d])) ̸= Bitsε(y)] ≤ 5δ.

Proof. Let X β
f,R,ε have pdf pβ . Assume we have a (τ, δ)-posterior sampler over X β

f,R,ε that outputs sample from distribution

X̂ with distribution p̂. This means that with probability 1− δ over y, there exists a coupling P over (x, x̂) such that (x, x̂)
are (τ, δ)-close. Therefore, there exists a distribution P over (x, x̂, y) ∈ Rd+d′ × Rd+d′ × Rd′

with density pP such that
pP(x, y) = pβ(x, y), pP(x̂ | y) = p̂(x̂ | y), and

Pr
x,x̂∼P

[∥x− x̂∥2 ≤ τ ] ≥ 1− 2δ.

Now, let X β,βmax
f,R,ε have pdf pβ,βmax , with βmax = β

√
2 log 1

δ . We have

TV (X β
f,R,ε,X

β,βmax
f,R,ε ) ≲ e−β2

max/2β
2 ≤ δ

Therefore, building on P , we can construct a new distribution P ′ over (x, x̂, xb, y, yb) ∈ Rd+d′×Rd+d′×Rd+d′×Rd′×Rd′

with density pP
′

such that pP
′
(x, y) = pβ(x, y), pP

′
(x̂ | y) = p̂(x̂ | y), pP′

(xb, yb) = pβ,βmax(xb, yb), (x, y) = (xb, yb)
with probability 1− δ, and

Pr
x,x̂∼P′

[∥x− x̂∥2 ≤ τ ] ≥ 1− 2δ

13
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Therefore, under this distribution,
Pr

x̂,xb∼P′

[
∥x̂− xb∥2 ≤ τ

]
≥ 1− 3δ

In particular, we apply the fact that ∥x̂[:d] − xb[:d]∥∞ ≤ ∥x̂− xb∥∞ ≤ ∥x̂− xb∥2 to get

Pr
x̂,xb∼P′

[
∥x̂[:d] − xb[:d]∥∞ ≤ τ

]
≥ 1− 3δ. (5)

Now, by the definition of X β,βmax
f,R,ε , for all i < d, xbi is a mixture of variance 1 normal distributions centered at ±R. So, for

any i < d,

Pr
xb

[∣∣xbi − RoundR(xbi )
∣∣ ≥√2 log

d

δ

]
≤ δ

d

Applying a union bound over i ∈ [d] and putting this together with Equation (5),

Pr
x̂,xb∼P ′

[
∥x̂[:d] − RoundR(xb[:d])∥∞ ≤

√
2 log

1

δ
+ τ

]
≥ 1− 4δ

So, since
√
2 log d

δ + τ ≤ R
4 + R

4 = R
2 , and RoundR((xb[:d])i) ∈ ±R, we have

Pr
x̂,xb∼P ′

[
∥RoundR(x̂[:d])− RoundR(xb[:d])∥∞ ≤

√
2 log

d

δ
+ τ

]
≤ 1− 3δ

Again, the output of RoundR is always ±R, so this means

Pr
x̂,xb∼P ′

[
RoundR(x̂[:d]) = RoundR(xb[:d])

]
≥ 1− 3δ

Now, by Lemma B.2, since βmax < ε/4 and R ≥
√
32 log d

δ , we have

Pr
xb,yb∼P ′

[
f(RoundR(xb[:d])) = Bitsε(yb)

]
≥ 1− δ

Therefore,
Pr

x̂,yb∼P ′

[
f(RoundR(x̂[:d])) = Bitsε(yb)

]
≥ 1− 4δ

Finally, we know that y = yb with probability 1− δ. Therefore, we get

Pr
x̂,y∼P ′

[
f(RoundR(x̂[:d])) = Bitsε(y)

]
≥ 1− 5δ

Theorem B.4. For any function f , let C be a (R/4, δ)-posterior sampler (1.5) for X β
f,R,ε, as defined in (1), with ε ≥

β
√

32 log d
δ , and R ≥

√
32 log d

δ , that takes time T to run. Then, there exists an algorithm A that runs in time T +O(d)

such that
Pr
s,A

[f(A(f(s))) ̸= f(s)] ≤ 6δ

Proof. Sample y ∼ hf(r), where

hs(y) =

{
(w1(y) · combε(y))) ∗N(0, β2), si = 1(
w1(y) · combε

(
y − ε

2

))
∗N(0, β2) si = −1

14
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Now, since β ≤ ε√
32 log d

δ

, each coordinate of the noise, drawn from N(0, β2), is less than ε/4 with probability 1− δ/d.

Therefore,

Pr [Bitsε(y) = f(r)] ≥ 1− δ

By definition, hs is the same as the density of (X β
f,R,ε)y . So, by Lemma B.3, since R ≥ τ/4, R ≥

√
32 log d

δ , and we take
x̂ ∼ C(y), we have

Pr
x̂,y

[
f(RoundR(x̂[:d])) ̸= Bitsε(y)

]
≤ 5δ

Therefore,

Pr
x̂,y

[
f(RoundR(x̂[:d])) ̸= f(r)

]
≤ 6δ

So, our algorithm A can output RoundR(x̂l). All we had to do to run this algorithm was to sample d normal random
variables, and then run our posterior sampler. This takes T +O(d) time.

Lemma 3.4. For any function f , suppose C is an (1/10, 1/10)-posterior sampler in the linear measurement model with
noise parameter β for distribution with density g̃ as defined in Definition 3.3, with ε ≥ β

√
32 log d and R ≥ 32

√
log d. If C

takes time T to run, then there exists an algorithm A that runs in time T +O(d) such that

Pr
s,A

[f(A(f(s))) ̸= f(s)] ≤ 3

4

Proof. This follows from Theorem B.4, using the fact that after rescaling down by R, X β
f,R,ε as a distribution over (x, y) is

the same distribution as x ∼ g̃, with y = Ax+N(0, β2).

B.3. Inverting a One-Way function via Posterior Sampling

Lemma 3.5. Suppose m ≥ d0.01 and one-way functions exist. Then, for g̃ as defined in Definition 3.3 with ε = 1
C
√
log d

and R = C log d, and linear measurement model with noise parameter β = 1
C2 log2 d

and measurement matrix A ∈ Rm×d,
( 1
10 ,

1
10 )-posterior sampling takes superpolynomial time.

Proof. When m > d/2, we can add an arbitrary number of dummy observations which always observes 0. Posterior
sampling in this instance is identical to only observing the first d/2 coordinates. Therefore, we only need to consider the
case when m ≤ d/2.

When d0.01 < m < d/2, d and m are only polynomially separated. So, by G.1, we can construct a one-way function
f : {±1}d−m → {±1}m. By definition, we can see that g̃, with measurement noise β is the same distribution as X βR

f,R,ε,

scaled down by R. Therefore, by Theorem B.4, since R ≥ 32
√
log d

δ , ε ≥ βR
√

log d
δ , if we can run a posterior sampler in

time T , we can invert f with probability 1− 6δ in time T +O(m). So, if f takes time superpolynomial in m to invert, then
T +O(m) is superpolynomial. Since m > d0.01, this means that T itself is superpolynomial in d.

Lemma B.5. Suppose that there exist one-way functions f : {±1}m → {±1}m that require 2Ω(m) time to invert. Then, for
any m = O(d), for g̃ as defined in Definition 3.3 with ε = 1

C
√
log d

and R = C log d, and linear measurement model with

noise parameter β = 1
C2 log2 d

and measurement matrix A ∈ Rm×d, ( 1
10 ,

1
10 )-conditional sampling takes at least 2Ω(m)

time.

Proof. Similar to the proof of Lemma 3.5, we only need to consider the case when m ≤ d/2. By definition, we can see
that g̃, with measurement noise β is the same distribution as X βR

f,R,ε, scaled down by R. Therefore, by Theorem B.4, since
R ≥ 32

√
log d, ε ≥ βR

√
log d, if we can run a posterior sampler in time T , we can invert f with probability 0.4 in time

T +O(m). So, if f takes at least time 2Ω(m) to run, then we must have T +O(m) ≥ 2Ω(m), which means T ≥ 2Ω(m).
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C. Lower Bound – ReLU Approximation of Score
C.1. Piecewise Linear Approximation of σ-smoothed score in One Dimension

In this section, we analyze the error of a piecewise linear approximation to a smoothed score. We first show that for one
dimensional distributions, we can get good approximations, and later extend it to product distributions in higher dimensions.

First, we show that a piecewise linear approximation that discretizes the space into intervals of width γ has low error.

Lemma C.1. Let p be a distribution over R, and let pσ = p∗N(0, σ2) have score sσ . Let γ ≤ σ, and let Si = [iγ, (i+1)γ)
for all i ∈ Z. Define a piecewise linear function f : R → R so that: for all x, if i is such that Si ∋ x, then

f(x) =
((i+ 1)γ − x) · s(iγ) + (x− iγ) · s((i+ 1)γ)

γ
.

Then f is continuous and satisfies

E
[
(s(x)− f(x))2

]
≲
γ2

σ4

Proof. Define the left and right piecewise constant approximations l(x) = s(iγ), r(x) = s((i+ 1)γ) for all x ∈ Si.

We know that for any y ∈ Si, there is some y′ ∈ [iγ, y] such that s(y) = s(iγ) + (y − iγ)s′(y′). So, we get

∀y ∈ Si, s(y) ≤ s(iγ) + γ sup
z∈Si

s′(z) ≤ s(iγ) + γ sup
|c|≤γ

s′(y + c).

Therefore,

E
x∼p

[
(sσ(x)− l(x))2

]
≤ γ2 E

x∼p
[ sup
|c|≤γ

s′(y + c)2] ≲
γ2

σ4

By Lemma H.1. The same holds for r(x). Now, recall that f satisfies

∀i ∈ Z, ∀x ∈ Si, f(x) =
(i+ 1)γ − x

γ
· s(iγ) + x− iγ

γ
· s((i+ 1)γ).

The coefficients (i+1)γ−x
γ and x−iγ

γ sum to 1 and are within the interval [0, 1]. So, at each point, f is just a convex
combination of the two approximations l and r. Therefore, by convexity, for any Si, if x ∈ Si,

E
x∈Si

[(sσ(x)− f(x))2] ≤ E
x∈Si

[(sσ(x)− l(x))2] + E
x∈Si

[(sσ(x)− r(x))2] (6)

This immediately gives us that

E[(sσ(x)− f(x))2] ≤ E[(sσ(x)− l(x))2] + E[(sσ(x)− r(x))2] ≲
ε2

σ4

Within each interval, the function is linear and so it is continous. We just need to check continuity at the endpoints. However,
we can see that for any i ∈ Z, limx→iγ− = limx→iγ+ = s(iγ), and so we also have continuity.

Unfortunately, the above approximation has an infinite number of pieces. To handle this, we show that in regions far away
from the mean, a zero-approximation is good enough, given that the distribution has bounded second moment m2.

Lemma C.2. Let p be some distribution over R with mean µ, and let pσ = p ∗ N(0, σ2) have score sσ. Let m2
2 :=

Ex∼p

[
(x− µ)2

]
be the second moment of pσ . Further, let |φ| ≤ 1

σ log 1
δ be some constant. Then,

E
[
(sσ(x)− φ)2 · 1|x−µ|>m2√

δ

]
≲

√
δ

σ2

16
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Proof. We have

E
[
(sσ(x)− φ)2 · 1|x−µ|>m2√

δ

]
≲ E

[
sσ(x)

2 · 1|x−µ|>m2√
δ

]
+ E

[
φ2 · 1|x−µ|>m2√

δ

]
First, by Chebyshev’s inequality, we know that

Pr
[
|x− µ| ≥ m2

δ

]
≤ δ

Now, we use Cauchy Schwarz to bound the first term:

E
[
sσ(x)

2 · 1|x−µ|>m2√
δ

]
≤
√

E [sσ(x)4]E
[
1|x−µ|>m2√

δ

]
=

√
E [sσ(x)4] Pr

[
|x− µ| ≥ m2√

δ

]
=
√

E [sσ(x)4] · δ ≲
√
δ/σ4 =

√
δ/σ2

where the last line is by Corollary H.8. Finally, for the second term, we know that

E
[
φ2 · 1|x−µ|>m2√

δ

]
≤ E

[
1

σ2
log2

1

δ
· 1|x−µ|>m2√

δ

]
=

1

σ2
log2

1

δ
Pr

[
|x− µ| > m2√

δ

]
=

δ

σ2
log2

1

δ
≲

√
δ

σ2

The last line here uses the fact that for all x, x log2(1/x) ≤ 3
√
x. Summing the two terms gives the desired result.

Then, we show that neighborhoods where the magnitude of the score can be large are rare and can also be approximated by
the zero function. This allows us to control the slope of the piecewise linear approximation in each piece.

Lemma C.3. Let p be a distribution over R. Let pσ = p ∗ N(0, σ2) have score sσ. Let γ ≤ σ
2 , and let m(x) =

supy∈[x−γ,x+γ] s(x). Then,

E
[
s(x)2 · 1

m(x)>
log 1

δ
σ

]
≲

√
δ

σ2

Proof.

E
[
m(x)2 · 1

m(x)>
log 1

δ
σ

]
≤
√
E [m(x)4] · E

[
1
m(x)>

log 1
δ

σ

]
by Cauchy-Schwarz

≤

√√√√√E

( sup
y∈[x−γ,x+γ]

s(x)

)4
 · Pr

[
m(x) >

log 1
δ

σ

]

≲

√
1

σ4
· Pr

[
m(x) >

log 1
δ

σ

]
by Lemma H.8

≤
√
δ

σ2
by Lemma H.2

We put these lemmas together to show that a piecewise linear function with a bounded number of pieces and bounded slope
in each piece is a good approximation to the smoothed score.
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Lemma C.4. Let p be a distribution over R with mean µ, and let pσ = p ∗N(0, σ2) have score sσ and second moment m2
2.

Then, for any α ≤ 1/4 there exists a function l : R → R that satisfies

1. l is piecewise linear with at most Θ( m2

σκ3/2 ) pieces,

2. if x is a transition point between two pieces, then |x− µ| ≤ m2

κ

3. the slope of each piece is bounded by Θ
(

log 1
κ

σ2
√
κ

)
,

4. |l| ≲ 1
σ log 1

κ

5.
E

x∼p
[(l(x)− s(x))2] ≲

κ

σ2

Proof. First, we partition the real line into Si = [iγ, (i+1)γ) for all i ∈ Z, where γ < σ/2. Define the function l1 : R → R
so that if Si ∋ x, then

l1(x) =
((i+ 1)γ − x)s(iγ) + (x− iγ)s((i+ 1)γ)

γ
. (7)

As in Lemma C.1, this is the linear interpolation between s(iγ) and s((i+ 1)γ) on the interval [iγ, (i+ 1)γ). By Lemma
C.1, when γ < σ/2, we have

E
[
(s(x)− l1(x))

2
]
≲
γ2

σ4

Now, we define l2 : R → R. This function uses the piecewise linear l1 to create a linear approximation that has small slopes
on all of the pieces. Define first a set of “good” sets

G =

{
Si : sup

y∈Si

s(x) ≤ 1

σ
log

1

δ

}
.

These are the intervals on which the score is always bounded. Further, define two helper maps L(x) and U(x):

L(x) = the largest i such that iγ < x, Si−1 ∈ G

R(x) = the smallest i such that iγ ≥ x, Si ∈ G

These represent the nearest endpoint of a “good” interval to the left and right, respectively. We then interpolate linearly
between s(γL(x)) and s(γR(x)) to evaluate l2(x). That is,

l2(x) =
(γR(x)− x)s(γL(x)) + (x− γL(x))s(γR(x))

γ(R(x)− L(x))
(8)

Note that by assumption, we have that |s(γR(x))| , |s(γL(x))| ≤ 1
σ log 1

δ , and so |l2(x)| ≤ 1
σ log 1

δ . We now analyze the
error of l2 against s. First, we note that on the sets outside G, the error is bounded, using Lemma C.3:∑

Si ̸∈G

E
[
(s(x)− l2(x))

2
1x∈Si

]
≤ 2

∑
Si ̸∈G

(
E
[
s(x)21x∈Si

]
+ E

[
l2(x)

2
1x∈Si

])
≲

√
δ

σ2
+
∑
Si ̸∈G

E
[
1

σ2
log2

1

δ
1x∈Si

]
by Lemma C.3

=

√
δ

σ2
+

1

σ2
log2

1

δ
Pr [x ̸∈ G]

≤
√
δ

σ2
+

1

σ2
log2

1

δ
Pr

[
sup

y∈[x−γ,x+γ]

s(x) ≥ 1

σ
log

1

δ

]

≤
√
δ

σ2
+

δ

σ2
log2

1

δ
by Lemma H.2
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Further, if x is in a “good” interval, then L(x), R(x) are simply the left and right endpoints of the interval that x is in. This
means that l2(x) = l1(x). So,∑

Si∈G

E
[
(s(x)− l2(x))

2
1x∈Si

]
=
∑
Si∈G

E
[
(s(x)− l1(x))

2
1x∈Si

]
≤
∑
i

E
[
(s(x)− l1(x))

2
1x∈Si

]
≲

√
δ

σ2

Putting these two together, we get that

E
[
(l2(x)− s(x))2

]
≲

√
δ

σ2
+
γ2

σ4
+

δ

σ2
log2

1

δ

Now, define l3 : R → R as follows:

l3(x) =


l2(x) |x− µ| ≤ m2√

δ

l2

(
µ− m2√

δ

)
x < µ− m2√

δ

l2

(
µ+ m2√

δ

)
x > µ− m2√

δ

(9)

This takes our previous approximation l2 and holds it constant on values of x far away from the mean.

LetB be the integers i such that x ∈ Si =⇒ |x− µ| ≥ m2/
√
δ. In other words, the setB enumerates the intervals on which

l2 ̸= l1, and equivalently, l2 = 0. Note that since |l3(x)| ≤ 1
σ log 1

δ , we have in particular that
∣∣∣l3 (µ± m2√

δ

)∣∣∣ ≤ 1
σ log 1

δ .

Therefore, for some |φ| ≤ 1
σ log 1

δ , we have

E
[
(s(x)− l3(x))

2
]
=
∑
i

E
[
(s(x)− l3(x))

2
1x∈Si

]
=
∑
i∈B

E
[
(s(x)− l3(x))

2
1x∈Si

]
+
∑
i̸∈B

E
[
(s(x)− l3(x))

2
1x∈Si

]
=
∑
i∈B

E
[
(s(x)− φ)21|x−µ|≥m2/

√
δ

]
+
∑
i

E
[
(s(x)− l2(x))

2
1x∈Si

]
≲

√
δ

σ2
+
γ2

σ4

where this last line uses Lemma C.2.

Finally, each piece of l3 has slope at most Θ
(

log 1
δ

γσ

)
since the endpoints of each interval are bounded in magnitude by

1
σ log 1

δ and each interval is at least γ in width. Also, we can see that l3 has at most as many pieces as l2, which has Θ
(

m2

γ
√
δ

)
pieces, with each endpoint being within m2/

√
δ of the mean.

So, we take l to be l3 with δ = κ2, and γ = σ
√
κ. Note that when κ < 1/4, we have γ < σ/2. Plugging these in, and using

the fact that x log2(1/x) ≤ 3
√
x, we get that the number of pieces is Θ

(
m2

σκ3/2

)
, the slope of each piece is bounded by

Θ
(

log 1
κ2

σ2
√
κ

)
, the function itself is always bounded by 1

σ log 1
κ2 , and Ex∼p[∥l(x)− s(x)∥22] ≤ κ

σ2 .

Finally, we show that if we have a product distribution over d dimensions, we can simply use the product of the one
dimensional linear approximations along each coordinate to give a good approximation for the full score.

Lemma C.5. Let p be a product distribution over Rd, such that p(x) =
∏d

i=1 pi(xi). Let s : Rd → Rd be the score of p
and let si : R → R be the score of pi. If li : R → R is an approximation to si such that

E
xi∼pi

[
(li(xi)− si(xi))

2
]
≤ ε/d,

then the function l : Rd → Rd defined as l(x) = (li(xi)) satisfies

E
x∼p

[
∥l(x)− s(x)∥22

]
≤ ε
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Proof. We have

s(x)i = (∇ log p(x))i =
∂

∂xi
log

d∏
i=1

pi(xi) =
∂

∂xi

d∑
i=1

log pi(xi) =
∂

∂xi
log pi(xi) = si(xi).

Therefore,

E
x∼p

[
∥l(x)− s(x)∥22

]
= E

x∼p

[
d∑

i=1

∥li(xi)− si(xi)∥22

]

=
d∑

i=1

E
xi∼pi

[
∥li(xi)− si(xi)∥22

]
≤ d · ε/d = ε

C.2. Small noise level – Score of vertex distribution close to full score in vertex orthant

Lemma C.6 (Density gs(x) is close to g(x) for s ∈ {±1}d closest to x). Let d′ = O(d). Consider gs and g as in
Definition 3.2. We have that for x ∈ {±1}d such that s is closest to x1,...,d among points in {±1}d, for the σ-smoothed
versions hs = gs ∗ N (0, σ2Id+d′) of gs and h = g ∗ N (0, σ2Id+d′) of g, for R2

1+σ2 > C log d for sufficiently large constant
C, ∣∣∣∣ 12dhs (x)− h(x)

∣∣∣∣ ≲ 1

2d
· e−

R2

4(1+σ2)

Proof. We have that there are
(
d
k

)
vectors z ∈ {±1}d such that ∥R · z − x1,...,d∥2 ≥ kR2. For such a z,

hz(y) ≲ e
− kR2

2(1+σ2)

So,

∣∣∣∣ 12dhs (x)− h(x)

∣∣∣∣ =
∣∣∣∣∣∣ 12d

∑
r ̸=s

hr(x)

∣∣∣∣∣∣ ≲
∣∣∣∣∣ 12d

d∑
k=1

dke
−kR2

2(1+σ2)

∣∣∣∣∣ ≲ 1

2d
· e−

R2

4(1+σ2)

since R2

1+σ2 > C log d.

Lemma C.7 (Gradient of density gx(y) is close to g(y) for x ∈ {±1}d closest to y). Let d′ = O(d) and consider gs and g
as in Definition 3.2, and x ∈ Rd+d′

. We have that for s ∈ {±1}d such that s is closest to x1,...,d among points in {±1}d, for
σ ≥ τ , τ = 1

dC and ε > 1
poly(d) , for the σ-smoothed versions hs = gs ∗ N (0, σ2Id+d′) of gs and h = g ∗ N (0, σ2Id+d′)

of g, for R2

1+σ2 > C log d for sufficiently large constant C,

∥∥∥∥ 1

2d
∇hs(x)−∇h(x)

∥∥∥∥2 ≲
1

2d
· e−

R2

16(1+σ2)

Proof. We will let h̃s,i = g̃s,i ∗ N (0, σ2), where g̃s,i is defined in Definition 3.2. So, hs(x) =
∏d+d′

i=1 h̃s,i(xi). We have
that there are

(
d
k

)
vectors z ∈ {±1}d such that ∥R · z − x1,...,d∥2 ≥ kR2. So, for i ∈ [d], for such a z,

| (∇hz(x))i | ≲ e
− kR2

4(1+σ2)
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On the other hand, for i > d, by Lemma C.16, since σ > ε2 and ε > 1
poly(d) ,

∣∣∣h̃′z,i(xi)− w′√
σ2+1

(xi)
∣∣∣ ≲ e

− σ2

2ε2(1+σ2) +
∑
j>0

e
− j2σ2

2ε2(1+σ2)
+log j

ε(1+σ2)

≤ e
− τ2

2ε2(1+τ2) +
∑
j>0

e
− j2τ2

2ε2(1+τ2)
+log j

ε(1+τ2)

≲ ε

√
1 +

1

τ2

So, we have that for z ∈ {±1}d such that ∥R · z − x1,...,d∥2 > kR2, since ε > 1
poly(d) , τ = 1

poly(d) and R2

1+σ2 > C log d,

|(∇hz(x))i| ≲ ε

√
1 +

1

τ2
· e−

kR2

2(1+σ2) ≲ e
− kR2

4(1+σ2)

So, finally, for such z,

∥∇hz(x)∥2 ≲ e
− kR2

8(1+σ2)

Thus,

∥∥∥∥ 1

2d
∇hs(x)−∇h(x)

∥∥∥∥2 =

∥∥∥∥∥∥ 1

2d

∑
r ̸=s

∇hr(x)

∥∥∥∥∥∥
2

≲
1

2d

d∑
k=1

dke
− kR2

8(1+σ2) ≲
1

2d
· e−

R2

16(1+σ2)

Lemma C.8 (Score of mixture close to score of closest (discretized) Gaussian). Let d = O(d′), and consider gs, g as
in Definition 3.2 for any s ∈ {±1}d, with R2

1+σ2 > C log d for sufficiently large constant C. Let S ⊂ Rd be the orthant
containing s. Let σ ≥ τ for τ = 1

poly(d) , and let ε > 1
poly(d) . We have that, for the σ-smoothed scores sσ,s of gs and sσ of g,

E
x∼h

[
∥sσ,s(x)− sσ(x)∥2

∣∣∣1x1,...,d∈S

]
≲ e

−Ω
(

R2

1+σ2

)

where h is the σ-smoothed version of g, given by h = g ∗ N (0, σ2Id+d′).

Proof. Let hs be the σ-smoothed version of gs, given by hs = gs ∗ N (0, σ2Id+d′). Let s̃ ∈ Rd+d′
be such that the first d

coordinates are given by s, and the remaining d′ coordinates are 0. We have

E
x∼h

[
∥sσ,s(x)− sσ(x)∥2

∣∣∣1x1,...,d∈S

]
= E

x∼h

[
∥sσ,s(x)− sσ(x)∥2 · 1∥x−s̃∥≤R/10

∣∣∣1x1,...,d∈S

]
+ E

x∼h

[
∥sσ,s(x)− sσ(x)∥2 · 1∥x−s̃∥>R/10

∣∣∣1x1,...,d∈S

]
Note that when ∥x − s̃∥ ≤ R/10, by Lemma C.16, hs(x) ≳ e

− R2

64(1+σ2) since σ ≥ τ for τ = 1
poly(d) , ε > 1

poly(d) and

R2

1+σ2 > C log d. So, by Lemmas C.6 and C.7, h(x) = 1
2d
hs(x)

(
1 +O

(
e
− R2

8(1+σ2)

))
, and ∥∇h(x) − 1

2d
∇hs(x)∥2 ≲

1
2d
e
− R2

16(1+σ2) . Also note that by Lemma C.6, h(x|x1,...,d ∈ S) ≤ hs(x)+O(e
− R2

8(1+σ2) ) ≤ hs(x) ·
(
1 +O

(
e
− R2

32(1+σ2)

))
.
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So, for the first term,

E
x∼h

[
∥sσ,s(x)− sσ(x)∥2 · 1∥x−s̃∥≤ R

10

∣∣∣1x1,...,d∈S

]
= E

x∼h

∥∥∥∥∥ 1
2d
∇hs(x)
1
2d
hs(x)

− ∇h(x)
h(x)

∥∥∥∥∥
2

· 1∥x−s̃∥≤R/10

∣∣∣1x1,...,d∈S


≲ E

x∼h

 1
2d
e
− R2

16(1+σ2) + e
− R2

8(1+σ2) · 1
2d

· ∥∇hs(x)∥2
1
2d
hs(x)2

· 1∥x−s̃∥≤R/10

∣∣∣1x1,...,d∈S


≲ e

− R2

32(1+σ2) + e
− R2

8(1+σ2) · E
x∼hs

[∥∇hs(x)∥2
hs(x)2

]

≲ e
− R2

32(1+σ2) +
de

− R2

8(1+σ2)

σ2

≲ e
− R2

64(1+σ2)

since σ ≥ 1
poly(d) , ε > 1

poly(d) and R2

1+σ2 > C log d.

For the second term, by Cauchy-Schwarz,

E
x∼h

[
∥sσ,s(x)− sσ(x)∥2 · 1∥x−s̃∥> R

10

∣∣∣1x1,...,d∈S

]
≲

√(
E

x∼h

[
∥sσ,s(x)∥4 + ∥sσ(x)∥4

∣∣∣1x1,...,d∈S

])
· E
[
1∩∥x−s̃∥>R/10

∣∣∣1x1,...,d∈S

]
≲

√
R4

σ4
+

1

σ4
E
[
∥x∥4

∣∣∣1x1,...,d∈S

]
· e−Ω

(
R2

1+σ2

)

=
1

σ2

√
R4 + E

s∼{±1}d

[
E
[
∥x∥4

∣∣∣1x1,...,d∈S , x ∼ gs

]]
e
−Ω

(
R2

1+σ2

)

≲
R2

σ2
· e−Ω

(
R2

1+σ2

)

≲ e
Ω
(

R2

1+σ2

)
So, we have the claim.

C.3. ReLU Network approximation of σ-smoothed Scores of Product Distributions

Once we have this, we also need to go from being close to mixture of Gaussians to being close to mixture of discretized
Gaussians.
Lemma C.9. Let f : R → R be a continuous piecewise linear function with D segments. Then, f can be represented by a
ReLU network with O(D) parameters. If each segment’s slope, each transition point, and the values of the transition points
are at most β in absolute value, each parameter of the network is bounded by O(β) in absolute value.

Proof. Since f is piecewise linear, we can define f as follows: there exists −∞ = γ0 < γ1 < γ2 < · · · < γD−1 = γD =
+∞ such that

f(x) =


a1x+ b1, x ≤ γ1
a2x+ b2, γ1 < x ≤ γ2

...
aDx+ bD, γD−1 < x,

where akγk + bk = ak+1γk + bk+1 for each k ∈ [D − 1]. Now we will show that f(x) equals g(x) defined below:

g(x) := a1x+ b1 +
D∑
i=2

ReLU((ai − ai−1)(x− γi−1)).
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We observe that for γk−1 < x ≤ γk,

g(x) = a1x+ b1 +
k∑

i=2

(ai − ai−1)(x− γi−1) = akx−
k∑

i=2

(ai − ai−1)γi−1.

Then, when k > 1, for γk−1 < x ≤ γk, we have

g(x) = akx−
k∑

i=2

(ai − ai−1)γi−1

=

(
ak−1γk−1 −

k−1∑
i=2

(ai − ai−1)γi−1

)
+ akx− ak−1γk−1 − (ak − ak−1)γk−1

= g(γk−1) + akx− akγk−1.

Using these observations, we can inductively show that for each k ∈ [D], g(x) = f(x) holds for γk−1 < x ≤ γk. For
x ≤ γ1,

g(x) = a1x+ b1 = f(x).

Assuming for γk−2 < x ≤ γk−1, g(x) = f(x). Then g(γk−1) = f(γk−1) = akγk−1 + bk. Therefore, for γk−1 < x ≤ γk,
we have

g(x) = g(γk−1) + akx− akγk−1 = akx+ bk = f(x).

This proves that g(x) = f(x) for x ∈ R and we only need to design neural network to represent g. By employing one
neuron for a1x+ b1 and D − 1 neurons for ReLU((ai − ai−1)(x− γi−1)), and aggregating their outputs, we obtain the
function g. There are O(D) parameters in total, and each parameter is bounded by O(β) in absolute value.

Lemma C.10. Let f1, . . . , fk be functions mapping R to R. Suppose each fi can be represented by a neural network with p
parameters bounded by β in absolute value. Then, function g : Rk → Rk defined by

g(x1, . . . , xk) := (f1(x1), . . . , fk(xk))

can be represented by a neural network with O(pk) parameters bounded by β in absolute value.

Proof. We just need to deal with each coordinate separately and use the neural network representation for each fi. We just
need to concatenate each result of fi together as the final output.

Lemma C.11 (ReLU network implementing the score of a one-dimensional σ-smoothed distribution). Let p be a distribution
over R with mean µ, and let pσ = p ∗ N (0, σ2) have variance m2

2 and score sσ. There exists a constant-depth ReLU

network f : R → R with O( m2

γ3σ4 ) parameters with absolute values bounded by O( m2

σ2γ2 +
log 1

γ

σ3γ + |µ|) such that

E
x∼pσ

[
∥sσ(x)− f(x)∥2

]
≲ γ2

and

|f(x)| ≲ 1

σ
log

1

σγ

Proof. By Lemma C.4, there exists a continuous piecewise approximation of p with O( m2

σ3γ4 ) pieces with each segment’s
slope, each transition point, and function value all bounded in O( m2

σ2γ2 + 1
σ3γ log 1

σγ + 1
σ log 1

σγ + |µ|). Taking this into C.9
and we have the bound.

Lemma C.12. Let p be a product distribution over Rd such that p(x) =
∏d

i=1 pi(xi), and let pσ = p ∗ N (0, σ2Id) have
score sσ. Assume pσ has mean µ and variance m2

2 = Ep[∥x − µ∥22]. Then, there exists a constant-depth ReLU network
f : Rd → Rd with O( dm2

γ3σ4 ) parameters with absolute values bounded by O( dm2

σ2γ2 +
√
d

σ3γ log d
σγ + ∥µ∥1) such that

E
x∼pσ

[
∥sσ(x)− f(x)∥2

]
≲ γ2.
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and

|f(x)i| ≲
1

σ
log

1

σγ

Proof. Consider distribution pi : R → R and its σ-smoothed version piσ = pi ∗ N (0, σ2). Let µi and m2i be the mean
and the variance of pi respectively. Let sσi be the i-th component of sσ. Then, Lemma C.11 shows that for each i ∈ [d],
there exists a constant-depth ReLU network fi : R → R with O( m2i

γ3σ4 ) parameters with absolute values bounded by

O( dm2

σ2γ2 +
√
d

σ3γ log d
σγ + |µi|) such that

E
x∼pσi

[
∥sσi(x)− fi(x)∥2

]
≲
γ2

d
.

Then, we can use the product function f = (f1, . . . , fd) as the approximation for sσ . By Lemma C.5,

E
x∼pσ

[
∥sσ(x)− f(x)∥2

]
≲ γ2.

Taking the fact that
∑

i∈[d] |µi| = ∥µ1∥ and
∑

i∈[d]m2i ≤ dm2 into Lemma C.10, and we prove the statement.

C.4. ReLU network for Score at Small smoothing level

Lemma C.13 (Vertex Identifier Network). For any 0 < α < 1, there exists a ReLU network h : Rd → Rd with O(d/α)
parameters, constant depth, and weights bounded by O(1/α) such that

• If |xi| > α, for all i ∈ [d], then h(x)i = xi

|xi| for all i ∈ [d].

Proof. Consider the one-dimensional function

g(y) =


−1, y ≤ −α
y
α , −α < y < α

1, y ≥ α

This is a piecewise linear function, where the derivative of each piece is bounded by 1
α , the value of the transition points

are at most α in absolute value, and |h| itself is bounded by 1. Thus, by Lemma C.9, we can represent the function
h(x) = (g(x1), . . . , g(xd)) using O(d/α) parameters, with each parameter’s absolute value bounded by O(1/α). Moreover,
clearly h(x)i = xi

|xi| for all i ∈ [d] whenever |xi| ≥ 1
C .

Lemma C.14 (Switch Network). Consider any function switch : Rd+1 → Rd such that for x ∈ Rd, y ∈ R, with |xi| ≤ T
for all i ∈ [d],

switch(x, y) =

{
x if y = 1

0 if y = −1

switch can be implemented using a constant depth ReLU network with O(dT ) parameters, with each parameter’s absolute
value bounded by O(T ).

Proof. Consider the ReLU network given by

switch(x, y)i = ReLU((xi − 2T ) + 2T · y)− ReLU((−xi − 2T ) + 2T · y)

It computes our claimed function. Moreover, it is constant-depth, the number of parameters is O(dT ), and each parameter is
bounded by O(T ) in absolute value, as claimed.
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Lemma C.15. Let d′ = O(d). Given a constant-depth ReLU network representing a one-way function f : {−1, 1}d →
{−1, 1}d′

with poly(d) parameters, there is a constant-depth ReLU network h : Rd+d′ → Rd+d′
with poly

(
d
σγ

)
parameters with each parameter bounded in absolute value by poly

(
d
σγ

)
such that for the unconditional distribution g

defined in Definition 3.2 with σ-smoothed version gσ and corresponding score sσ, for τ = 1
dC and τ ≤ σ < R

C
√
log d

for
sufficiently large constant C, and R > C log d, ε > 1

poly(d) , γ > 1
dC/100

E
x∼gσ

[
∥sσ(x)− h(x)∥2

]
≲ γ2

Proof. We will let our ReLU network h be as follows. Let r be the ReLU network from Lemma C.13 that identifies the
closest hypercube vertex with any constant parameter α < 1.

For each i ∈ [d], we will let h̃i be the ReLU network that implements the approximation to the score of the one-dimensional
distribution w1(x) ∗ N (0, σ2) from Lemma C.11. By the lemma, it satisfies

E
x∼w√

σ2+1

[
(h̃i(x)−∇ logw√

σ2+1(x))
2
]
≲ γ2 (10)

For i ∈ d+ [d′], we will let h̃i,1 be the ReLU network that implements the approximation to the score s̃σ,i,−1 of g̃σ,i,−1 =

( w1·combε∫
w1(x)·combε(x)dx

)∗N (0, σ2), and we will let h̃i,−1 implement the approximation to the score of
(

w1(x)·combε(x−ε/2)∫
w1(x)·combε(x−ε/2)dx

)
∗

N (0, σ2), as given by Lemma C.11. By the Lemma, for every i ∈ d+ [d′] and j ∈ {±1}, we have

E
x∼g̃σ,i,j

[
(h̃i,j(x)− sσ,i,j(x))

2
]
≲ γ2 (11)

Note that each |h̃i| ≤ C
σ log 1

σγ for i ≤ d, and |h̃i,±1| ≤ C
σ log 1

σγ for i > d, for sufficiently large constant C.

Now let switch be the ReLU network described in Lemma C.14 for T = C
σ log 1

σγ .

Consider the network h : Rd+d′ → Rd+d′
given by

h(x)i =

{
h̃i(xi − r(x)i ·R) for i ≤ d

switch(h̃i,1(xi), f(r(x))i−d) + switch(h̃i,−1(xi),−f(r(x))i−d) for i > d

Note that h can be represented with poly
(

d
σγ

)
parameters with absolute value of each parameter bounded in poly

(
d
σγ

)
.

We will show that h approximates sσ well in multiple steps.

For r(x) ∈ {±1}d, consider the score sσ,r(x) of gσ,r(x), the σ-smoothed version of the distribution gr(x) centered at

r̃(x) ∈ Rd+d′
, as described in Definition 3.2, where r̃(x) has the first d coordinates given by r(x), and the remaining

coordinates set to 0.

Whenever r(x) = j ∈ {±1}d, h approximates sσ,j well over gσ,j . We will show that for fixed j ∈ {±1}d

E
x∼gσ,j

[
∥sσ,j(x)− h(x)∥2 · 1r(x)=j

]
≲ dγ2

First, note that for i ≤ d, by (10) and our definition of h,

E
x∼w√

σ2+1

[
(h(x)i −∇ logw√

σ2+1(x−R · j))2 · 1r(x)=j

]
≲ γ2

On the other hand, for i > d, by (11) and our definition of h,

E
x∼g̃σ,i,f(j)i−d

[
(h(x)i − sσ,i,f(j)i−d

)2 · 1r(x)=j

]
≲ γ2

Since by Definition 3.2, for j ∈ {±1}d, gσ,j(x) =
∏d

i=1 w
√
σ2+1(x) ·

∏d+d′

i=d+1 g̃σ,i,f(j)i−d
(x), we have by Lemma C.5,

E
x∼gσ,j

[
∥h(x)− sσ,j(x)∥2 · 1r(x)=j

]
≲ dγ2
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h approximates sσ,j exponentially accurately over gσ . By Lemma C.6, we have that for x such that r(x) = j,∣∣∣∣ 12d gσ,j(x)− gσ(x)

∣∣∣∣ ≲ 1

2d
· e−

R2

4(1+σ2) ≲
1

2d

for our choice of R, σ.

So, we have

E
x∼gσ

[
∥h(x)− sσ,j(x)∥2 · 1r(x)=j

]
≲
dγ2

2d

h approximates sσ well over gσ whenever r(x) ∈ {±1}d. Summing the above over j ∈ {±1}d gives

E
x∼gσ

[
∥h(x)− sσ,r(x)(x)∥2 · 1r(x)∈{±1}d

]
≲ dγ2

Moreover, by Lemma C.8, for r̄(x) = y where y ∈ {±1}d represents the orthant that x ∈ {±1}d belongs to,

E
x∼gσ

[
∥sσ,r̄(x) − sσ(x)∥2

]
≲ e

−Ω
(

R2

1+σ2

)
≲

1

dC2/10

So, by the above, we have that

E
x∼gσ

[
∥h(x)− sσ(x)∥2 · 1r(x)∈{±1}d

]
≲ dγ2 +

1

dC2/10

Contribution of x such that r(x) ̸∈ {±1}d is small. By the definition of r,

Pr
x∼gσ

[
r(x) ̸∈ {±1}d

]
≲ de−

(R−α)2

2 ≲ e−
R2

4

So, by Cauchy-Schwarz,

E
x∼gσ

[
∥sσ(x)∥2 · 1r(x) ̸∈{±1}d

]
≤
√

E
x∼gσ

[∥sσ(x)∥4] · Pr
x∼gσ

[r(x) ̸∈ {±1}d]

≲
1

σ2
e−

R2

4

≲ e−
R2

8

Similarly, since |h(x)i| ≤ C
σ log 1

σγ , we have

E
x∼gσ

[
∥h(x)∥2 · 1r(x)̸∈{±1}d

]
≲

1

σ2
log2

1

σγ
· e−R2

4 ≲ e−
R2

8

Thus, we have

E
x∼gσ

[
∥h(x)− sσ(x)∥2 · 1r(x) ̸∈{±1}d

]
≲ e−

R2

8 ≲
1

dC2/40

Putting it together. By the above, we have,

E
x∼gσ

[
∥h(x)− sσ(x)∥2

]
≲ dγ2 +

1

dC2/40

Reparameterizing γ and noting that γ > 1
dC/100 gives the claim.
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C.5. Smoothing a discretized Gaussian

Lemma C.16. For any ϕ, let g be the univariate discrete Gaussian with pdf

g(x) ∝ w1(x) · combε(x− ϕ)

Consider the ρ-smoothed version of g, given by gρ = g ∗ wρ. We have that∣∣∣gρ(x)− w√
ρ2+1

(x)
∣∣∣ ≲ e

− ρ2

2ε2(1+ρ2) · w√
ρ2+1

(x)

and ∣∣∣∣g′ρ(x)− w′√
ρ2+1

(x)

∣∣∣∣ ≲ e
− ρ2

2ε2(1+ρ2) · |w′√
ρ2+1

(x)|+
∑
j>0

e
− j2ρ2

2ε2(1+ρ)2 · j

ε(1 + ρ2)
· w√

ρ2+1
(x)

Proof. The Fourier transform of the combε distribution is given by 1
εcomb1/ε. So, for the discrete Gaussian g, we have that

its Fourier Transform is given by

ĝ(ξ) =

(
ŵ1 ∗

(
e−iξϕ

ε
comb1/ε

))
(ξ)

=
1

ε
·
∑
j∈Z

e−i j
εϕ · e−

(ξ− j
ε
)2

2

Then, for gρ, the ρ-smoothed version of g, we have that its Fourier Transform is

ĝρ(ξ) = (ĝ · ŵ1/ρ)(ξ)

=
1

ε

k∑
j=−k

e−
ij
ε ϕe−

ξ2ρ2

2 · e−
(ξ− j

ε )
2

2

So, we have that, by the inverse Fourier transform,

gρ(x) = w√
ρ2+1

(x) +
1

2π

∫ ∞

−∞
eiξx

∑
j ̸=0

e−
ij
ε ϕe−

ξ2ρ2

2 −
(ξ− j

ε
)2

2 dξ

= w√
ρ2+1

(x) +
1

2π

∫ ∞

−∞
eiξx · e−

j2

2ε2
+ j2

2ε2(ρ2+1)

∑
j ̸=0

e−
ij
ε ϕ · e−

ρ2+1
2

(
ξ− j

ε(ρ2+1)

)2

= w√
ρ2+1

(x) +
∑
j ̸=0

e−
ij
ε ϕ · e−

j2ρ2

2ε2(ρ2+1) e
ix j

ε(ρ2+1) · w√
ρ2+1

(x)

so that ∣∣∣gρ(x)− w√
ρ2+1

(x)
∣∣∣ ≤∑

j ̸=0

e
− j2ρ2

2ε2(ρ2+1)w√
ρ2+1

(x)

giving the first claim. For the second claim, note that the above gives

g′ρ(x) = w′√
ρ2+1

(x) +
∑
j ̸=0

e−
ijϕ
ε · e−

j2ρ2

2ε2(ρ2+1) e
ixj

ε(ρ2+1) ·
(

ij

ε(ρ2 + 1)
w√

ρ2+1
(x) + w′√

ρ2+1
(x)

)
So, ∣∣∣∣g′ρ(x)− w′√

ρ2+1
(x)

∣∣∣∣ ≲ e
− ρ2

2ε2(1+ρ2) ·
∣∣∣∣w′√

ρ2+1
(x)

∣∣∣∣+∑
j>0

e
− j2ρ2

2ε2(1+ρ2) · j

ε(1 + ρ2)
w√

ρ2+1
(x)
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C.6. Large Noise Level - Distribution is close to a mixture of Gaussians

Lemma C.17. Let C be a sufficiently large constant. Let gj(x) ∝∏d
i=1 w1(xi) ·

∏d′

i=d+1 w1(xi) · combε(xi − ϕi,j) be the
pdf of a distribution on Rd+d′

with shifts ϕi,j . Consider a mixture of discrete d-dimensional Gaussians, given by the pdf

h(x) =
k∑

j=1

βjg
j(x− µj)

Let hρ(x) = (h ∗ wρ)(x) be the smoothed version of h. Then, for the mixture of standard (d+ d′)-dimensional Gaussians
given by

fρ(x) =
k∑

j=1

βjw√ρ2+1
(x− µj)

for ρ2

ε2(1+ρ2) > C log d, we have that

E
x∼hρ

[∥∥∥∥∇hρ(x)hρ(x)
− ∇fρ(x)

fρ(x)

∥∥∥∥2
]
≲ e

− ρ2

2ε2(1+ρ2) ·
(
1 +m2

2 + sup
j

∥µj∥2
)
+
∑
j>0

e
− j2ρ2

2ε2(1+ρ2)
j

ε(1 + ρ2)

where m2
2 = Ex∼hρ

[
∥x∥2

]
.

Proof. We have that

hρ(x) =
k∑

i=1

βjg
j
ρ(x− µj)

where gjρ(x) = gj(x) ∗ wρ(x). By Lemma C.16, we have that for every i, j,∣∣∣(∇gjρ(x))i − (∇w√ρ2+1
(x)
)
i

∣∣∣
≲ de

− ρ2

2ε2(1+ρ2)

∣∣∣(∇w√
ρ2+1

(x)
)
i

∣∣∣+ d ·
∑
j>0

e
− j2ρ2

2ε2(1+ρ2) · j

ε(1 + ρ2)
· w√

ρ2+1
(x)

So, ∣∣(∇hρ(x))i − (∇fρ(x))i
∣∣

=

∣∣∣∣∣∣
k∑

j=1

βj ·
(
∇gjρ(x− µj)−∇w√

ρ2+1
(x− µj)

)
i

∣∣∣∣∣∣
≲ d

k∑
j=1

βj ·

e− ρ2

2ε2(1+ρ2)

∣∣∣∇(w√
ρ2+1

(x− µj)
)
i

∣∣∣+∑
j>0

e
− j2ρ2

2ε2(1+ρ2)
j

ε(1 + ρ2)
· w√

ρ2+1
(x)



Similarly, for the density, by Lemma C.16

∣∣∣gjρ(x)− w√
ρ2+1

(x)
∣∣∣ ≲ de

− ρ2

2ε2(1+ρ2)w√
ρ2+1

(x)
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So,

|hρ(x)− fρ(x)| =

∣∣∣∣∣∣
k∑

j=1

βj ·
(
gjρ(x− µj)− w√

ρ2+1
(x− µj)

)∣∣∣∣∣∣
≲ de

− ρ2

2ε2(1+ρ2)

k∑
j=1

βj · w√ρ2+1
(x− µj)

≲ de
− ρ2

2ε2(1+ρ2) fρ(x)

Thus, we have

E
x∼hρ

[(
(∇hρ(x))i
hρ(x)

− (∇fρ(x))i
fρ(x)

)2
]

≤ E
x∼hρ


 ∇hρ(x))i
fρ(x) ·

(
1 +O

(
de

− ρ2

2ε2(1+ρ2)

)) − (∇fρ(x))i
fρ(x)


2

≲ de
− ρ2

ε2(1+ρ2) · E
[(

(∇fρ(x) )i
fρ(x)

)2
]

+ d · E



∑k

j=1 βj ·
(
e
− ρ2

2ε2(1+ρ2)

∣∣∣∇w√
ρ2+1

(x− µj)
∣∣∣
i
+
∑

j>0 e
− j2ρ2

2ε2(1+ρ2) j
ε(1+ρ2) · w√ρ2+1

(x)

)
fρ(x)


2


≲
d

ρ2
e
− ρ2

ε2(1+ρ2) + d
∑
j>0

e
− j2ρ2

ε2(ρ2+1)
j

ε(1 + ρ2)
+ de

− ρ2

ε2(1+ρ2) · E


∑k

j=1 βj · |x− µj |i · w√ρ2+1
(x− µj)

fρ(x)

2


≲ de
− ρ2

ε2(1+ρ2) + d
∑
j>0

e
− j2ρ2

ε2(1+ρ2)
j

ε(1 + ρ2)
+ de

− ρ2

ε2(1+ρ2) · E
[
sup
j

|x− µj |2i
]

≲ de
− ρ2

ε2(1+ρ2)

(
1 + E

[
x2i
]
+ sup

j
|µj |2i

)
+ d

∑
j>0

e
− j2ρ2

ε2(1+ρ2)
j

ε(1 + ρ2)

Thus, we have

E
x∼hρ

[∥∥∥∥∇hρ(x)hρ(x)
− ∇fρ(x)

fρ(x)

∥∥∥∥2
]
≲ d2e

− ρ2

ε2(1+ρ2) ·
(
1 + E

[
∥x∥2

]
+ sup

j
∥µj∥2

)
+ d2

∑
j>0

e
− j2ρ2

2ε2(1+ρ2)
j

ε(1 + ρ2)

≲ e
− ρ2

2ε2(1+ρ2) ·
(
1 +m2

2 + sup
j

∥µj∥2
)
+
∑
j>0

e
− j2ρ2

2ε2(1+ρ2)
j

ε(1 + ρ2)

since ρ2

ε2(1+ρ2) > C log d

Corollary C.18. Let d′ = O(d), and let g be as defined in Definition 3.2, and let gρ = g ∗N (0, ρ2Id+d′) be the ρ-smoothed
version of g. Let fρ be the mixture of (d+ d′)-dimensional standard Gaussians, given by

fρ(y) =
1

2d

∑
x∈{±1}d

w√
ρ2+1

(y −R · x̃)
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where x̃ ∈ Rd+d′
has the first d coordinates given by x, and the last d′ coordinates 0. Then, for ρ2

ε2(1+ρ2) > C log d for
sufficiently large constant C, we have

E
x∼gρ

[
∥∇ log gρ(x)−∇ log fρ(x)∥2

]
≲ e

− ρ2

2ε2(1+ρ2) ·
(
1 +R2 + ρ2

)
+
∑
j>0

e
− j2ρ2

2ε2(1+ρ2)
j

ε(1 + ρ2)

Proof. Follows from the facts that m2
2 ≲ d

(
R2 + ρ2

)
and µ2

j ≲ dR2 for all j.

C.7. ReLU network for Score at Large smoothing Level

This section shows how to represent the score of the σ-smoothed unconditional distribution defined in Definition 3.2 for
large σ using a ReLU network with a polynomial number of parameters bounded by a polynomial in the relevant quantities.
We proceed in two stages – first, we show how to represent the score of a mixture of Gaussians placed on the vertices of
a scaled hypercube. Then, we show that for large σ, this network is close to the score of the σ-smoothed unconditional
distribution.
Lemma C.19 (ReLU network representing score of mixture of Gaussians on hypercube). For any σ > 0 and R > 1
consider the distribution on Rd with pdf

fσ(x) =
1

2d

∑
µ∈{±1}d

wσ(x−Rµ)

where wσ is the pdf of N (0, σ2Id).

There is a constant depth ReLU network h : Rd → Rd with O
(

dR
γ3σ4

)
parameters, with absolute values bounded by

O
(

dR
σ3γ2

)
such that

E
x∼fσ

[
∥∇ log fσ(x)− h(x)∥2

]
≲ γ2

Proof. Note that gσ is a product distribution. So, the claim follows by Lemma C.12.

Lemma C.20. Let d′ = O(d), and let R ≤ poly(d). Let g be the pdf of the unconditional distribution on Rd+d′
, as defined

in Definition 3.2, and let gσ be its σ-smoothed version with score sσ. For ε < 1
C
√
log d

, and σ > Cε
(√

log d+
√
log 1

ε

)
for sufficiently large constant C, there is a constant depth ReLU network h with O

(
dR

γ3σ4

)
parameters with absolute values

bounded by O
(

dR
σ3γ2

)
such that

E
x∼gσ

[
∥sσ(x)− h(x)∥2

]
≲ γ2 +

1

dC2/20

Proof. Let h be the ReLU network from Lemma C.19 for smoothing σ. It satisfies our bounds on the number of parameters
and the absolute values.

Note that for our setting of ε and σ, we have that

σ2

ε2(1 + σ2)
=

1

ε2
(
1 + 1

σ2

) > 1

ε2 + 1
C2 log d

>
1
2

C2 log d

>
C2 log d

2

and

σ2

ε2(1 + σ2)
>
C2(log d+ log 1

ε )

2
> log

1

ε(1 + σ2)

So, by Lemma C.18, for the mixture of Gaussians fσ as described in Lemma C.19, for R ≤ poly(d),

E
x∼gσ

[
∥sσ(x)−∇ log fσ(x)∥2

]
≲ e

− σ2

10ε2(1+σ2) ≲
1

dC2/20
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Also, by Lemma C.16,

|gσ(x)− fσ(x)| ≲
fσ(x)

dC2/20

So, by Lemma C.19,

E
x∼gσ

[
∥∇ log fσ(x)− h(x)∥2

]
≲ E

x∼fσ

[
∥∇ log fσ(x)− h(x)∥2

]
≲ γ2

So we have

E
x∼gσ

[
∥sσ(x)− h(x)∥2

]
≲ γ2 +

1

dC2/20

C.8. ReLU Network Approximating score of Unconditional Distribution

Theorem C.21 (ReLU Score Approximation for Lower bound Distribution). Let C be a sufficiently large constant,
and let d′ = O(d). Fix any σ ≥ τ for τ = 1

dC . Given a constant-depth ReLU network representing a function
f : {−1, 1}d → {−1, 1}d′

with poly(d) parameters, there is a constant-depth ReLU network h : Rd+d′ → Rd+d′
with

poly (d) parameters with each parameter bounded in absolute value by poly (d) such that for the unconditional distribution
g defined in Definition 3.2 with σ-smoothed version gσ and corresponding score sσ , forR > C log d, 1

poly(d) < ε < 1
C
√
log d

,

E
x∼gσ

[
∥sσ(x)− h(x)∥2

]
≲

1

dC/200

Proof. Follows by Lemmas C.15 and C.20.

Corollary 3.6 (Lower Bound Distribution is Well-Modeled). Let C be a sufficiently large constant. Given a ReLU network
f : {±1}d → {±1}d′

with poly(d) parameters bounded by poly(d) in absolute value, the distribution g̃ defined in
Definition 3.3 for R = C log d and 1

poly(d) < ε < 1
C
√
log d

, is O(C)-well-modeled.

Proof. Follows via reparameterization from the Theorem, and rescaling.

D. Lower Bound – Putting it all Together
Theorem 1.8 (Lower Bound). Suppose that one-way functions exist. Then for anym > d0.01, there exists a 10-well-modeled
distribution over Rd, and linear measurement model with m measurements and noise parameter β = Θ( 1

log2 d
), such that

( 1
10 ,

1
10 )-posterior sampling requires superpolynomial time in d.

Proof. First, by Lemma G.3, there exists a ReLU network that represents a one-way function f : {±1}m → {±1}m, with
constant weights, polynomial size, and parameters bounded in magnitude by poly(d).

Therefore, by Corollary 3.6, the distribution g̃ over Rd is aC-well-modeled distribution, if we takeR = C log d, ε = 1
C
√
log d

.
Further, if we take a linear measurement model with β = 1

C2 log2(d)
, then by Lemma 3.5, any (1/10, 1/10)-posterior sampler

for this distribution takes at least 2Ω(m) time to run.

Theorem 1.9 (Lower Bound: Exponential Hardness). Suppose that there exist one-way functions f : {±1}m → {±1}m
that require 2Ω(m) time to invert. Then for any m ≤ O(d) and C > 1, there exists a C-well-modeled distribution over Rd

and linear measurement model with m measurements and noise level β = 1
C2 log2 d

, such that ( 1
10 ,

1
10 )-posterior sampling

takes at least 2Ω(m) time.

Proof. First, by Lemma G.3, there exists a ReLU network that represents a one-way function f : {±1}m → {±1}m, with
constant weights, polynomial size, and parameters bounded in magnitude by poly(d).

Therefore, by Corollary 3.6, the distribution g̃ over Rd is aC-well-modeled distribution, if we takeR = C log d, ε = 1
C
√
log d

.
Further, if we take a linear measurement model with β = 1

C2 log2(d)
, then by Lemma B.5, any (1/10, 1/10)-posterior

sampler for this distribution takes at least 2Ω(m) time to run.
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E. Upper Bound
Lemma E.1. Let q be a distribution over Rm such that Ew∼q[∥w∥22] = O(m). Let w ∼ q and y = w + βN (0, Im). Then,
there exists a constant c > 0 such that

Pr
y

[
Pr
w

[
∥y − w∥ ≤ 10γ

√
m+ log(1/δ)

∣∣∣ y] ≥ (cγ)m · δm/2+1
]
≥ 1− δ.

Proof. Since Ew∼q[∥w∥22] ≲ m, there exists a constant C such that

Pr
w∼q

[
∥w∥22 >

Cm

δ

]
<
δ

3
.

Lemma H.10 shows that there exists a covering over {x ∈ Rm | ∥x∥2 ≤
√
Cm/δ} with N = O( 1√

δβ
)m balls of radius

β
√
m+ log(1/δ). Let S be the set of all the covering balls. This means that

Pr[∃θ ∈ S : w ∈ θ] ≥ 1− δ

3
.

Define

S′ := {θ ∈ S | Pr
w
[w ∈ θ] >

δ

3N
}.

Then we have that with high probability, w will land in one of the cells in S′:

Pr
w

[∀θ ∈ S′ : w /∈ θ] ≤ Pr[∀θ ∈ S : w /∈ θ] + Pr[
∨

θ∈S\S′

w ∈ θ] ≤ δ

3
+N · δ

3N
≤ 2δ

3
.

Moreover, we define

S+ := {y ∈ Rm | ∃θ ∈ S′, ∀w ∈ θ : ∥w − y∥ ≤ 10β

√
m+ log

1

δ
}.

By the sampling process of y, we have that

Pr
y

[
y ∈ S+

]
= Pr

w∼q,z∼N (0,Im)

[
w + βz ∈ S+

]
≥ Pr

w∼q,z∼N (0,Im)

[
(∃θ ∈ S′ : w ∈ θ) ∧ (∥z∥ ≤ 8

√
m)
]

≥ 1− Pr
w

[∀θ ∈ S′ : w /∈ θ]− Pr
z∼N (0,Im)

[
∥z∥2 > 64(m+ log

1

δ
)

]

By Lemma H.9, we have

Pr
z∼N (0,Im)

[
∥z∥2 > 64(m+ log

1

δ
)

]
<
δ

3
.

Therefore,
Pr
y

[
y ∈ S+

]
≥ 1− δ.

This implies that with 1− δ probability over y, there exists a cell θ ∈ S such that
∥∥y − t̃

∥∥ ≤ 10β and Prw[w ∈ θ] ≥ δ
3N ≥

δ ·Θ(
√
δβ)m.

Lemma E.2. Consider a well-modeled distribution and a linear measurement model. Suppose we have a (τ, δ)-unconditional
sampler for the distribution, where τ < cδβ√

m+log(1/δ)
for a sufficiently small constant c > 0. Then rejection sampling

(Algorithm 1) gives a (τ, 2δ)-posterior sampler using at most log(1/δ)
δ2 (O(1)

β
√
δ
)m samples .
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Proof. Let P be the distribution that couples true distribution D over (x, y) and the output distribution of the posterior
sampler p̂|y. Rigorously, we define P over (x, x̂, y) ∈ X × X × Y with density pP such that pP(x, y) = pD(x, y),
pP(x̂ | y) = p̂|y(x̂). Similarly, we let P̃ over (x, x̂, y) ∈ Rd × Rd × Rα be the joint distribution between the unconditional
sampler over (x, x̂) and the measurement process D over (x, y). Then by the definition of unconditional samplers, we have

Pr
x,x̂∼P̃

[∥x− x̂∥ ≥ τ ] ≤ δ.

Therefore, to prove the correctness of the algorithm, we only need to show that there exists a P̂ over (x, x̂, y) such that
P̃(x̂ | y) = p̂|y(x̂) and TV(P̂, P̃) ≤ δ. By Lemma H.9,

Pr
P̃′

[
∥Ax− y∥2 ≥ 4β2(m+ log

1

δ
)

]
≤ δ

4
.

Therefore, we define P̃ ′ as P̃ conditioned on ∥x− x̂∥ < τ and ∥Ax−y∥2

2β2 ≤ 2(m+ log 1
δ ). Then we have

TV(P̃, P̃ ′) ≤ 3δ

2
.

Algorithm correctness. We have

p̂|y(x̂) =
pP̃

′
(x̂) · e

−∥Ax̂−y∥2

2β2∫
pP̃′(x̂) · e

−∥Ax̂−y∥2
2β2 dx̂

=

∫
pP̃

′
(x, x̂) · e

−∥Ax̂−y∥2

2β2 dx∫
pP̃′(x̂) · e

−∥Ax̂−y∥2
2β2 dx̂

,

Then we define

r(x̂) :=

∫
pP̃

′
(x, x̂) · e

−∥Ax−y∥2

2β2 dx∫
pP̃′(x, x̂) · e

−∥Ax̂−y∥2
2β2 dx

.

Conditioned on ∥x− x̂∥ ≤ τ and ∥Ax−y∥2

2β2 ≤ 2(m+ log 1
δ ), we have

|log r(x̂)| ≤ sup
x

|∥Ax− y∥2 − ∥Ax̂− y∥2|
2β2

≤ τ2 ∥A∥22 + 2τ ∥A∥2 ∥Ax− y∥
2β2

≲
τ2

β2
+
τ
√
m+ log(1/δ)

β
.

By our setting of τ , we have 1− δ/8 < r(x̂) < 1 + δ/8.

So we have∫
pP̃

′
(x̂) · e

−∥Ax̂−y∥2

2β2 dx̂ =

∫
pP̃

′
(x, x̂) · e

−∥Ax̂−y∥2

2β2 dx dx̂ =

(
1± δ

8

)∫
pP̃

′
(x, x̂) · e

−∥Ax−y∥2

2β2 dx dx̂.

Hence,

p̂|y(x̂) =
r(x̂) ·

∫
pP̃

′
(x, x̂)e

−∥Ax−y∥2

2β2 dx

(1± δ
8 )
∫
pP̃′(x, x̂)e

−∥Ax−y∥2
2β2 dx dx̂

=
r(x̂) ·

∫
pP̃

′
(x, x̂)pP̃

′
(y | x) dx

(1± δ
8 )p

P̃′(y)

=

(
1± δ

4

)
r(x̂)

∫
pP̃

′
(x, x̂ | y) dx

=

(
1± δ

2

)
pP̃

′
(x̂ | y).
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Finally, we have∫ ∣∣∣pP̃′
(x̂ | y)− p̂|y(x̂)

∣∣∣ dx̂ dpP̃′
(y) =

∫ ∣∣∣∣(1± δ

2

)
pP̃

′
(x̂ | y)− pP̃

′
(x̂ | y)

∣∣∣∣ dx̂ dpP̃′
(y) ≤ δ

2
.

This implies that

TV(P̂x̂, P̃x̂) = TV(P̂x̂, P̃ ′
x̂) + TV(P̃ ′

x̂, P̃x̂) ≤
δ

4
+
δ

2
≤ 3δ

4
.

Hence,

Pr
x,x̂∼P̂

[∥x− x̂∥ ≥ τ ] ≤ 3δ

4
+ δ ≤ 7δ

4
.

Running time. Now we prove that for most y For y ∈ Y , for each round, the acceptance probability q(y) each round is
that

q(y) =

∫
pP̃

′
(x̂)e

− ∥y−Ax̂∥2

2γ2 dx̂

= (1± δ

8
)

∫
pP̃

′
(x, x̂) · e

−∥Ax−y∥2

2β2 dx dx̂

≥ 1

2

∫
pX (x) · e

−∥Ax−y∥2

2β2 dx

=
1

2
E

x∼X

[
e
− ∥Ax−y∥2

2β2

]
≥ 1

2
Pr
x∼X

[
∥Ax− y∥ ≤ 10

√
m+ log(1/δ)β

]
· e−

100(m+log(1/δ))β2

2β2

=
1

2
Pr
x∼X

[
∥Ax− y∥ ≤ 10

√
m+ log(1/δ)β

]
· δe−50m

By Lemma H.11, Ex∼X [∥Ax∥22] = O(m). By Lemma E.1, we have that for 1− δ/8 probability over y, for some c > 0,

Pr
x∼X

[
∥Ax− y∥ ≤ 10

√
m+ log(1/δ)β

]
≥ (cβ)m · δm/2+1.

Therefore, for some c > 0,

Pr
y∼Y

[
q(y) ≥ (cβ)m · δm/2+2

]
≥ 1− δ

8
.

Hence, for some C > 0,

Pr

[
Rejection sampling terminates in

log(1/δ)

δ2

(
C

β
√
δ

)m

rounds
]
≥ 1− δ

4
.

Theorem 1.7 (Upper Bound). Let C > 1 be a constant. Consider an O(C)-well-modeled distribution and a linear
measurement model with β > 1

dC . When δ > 1
dC , rejection sampling of the diffusion process gives a ( 1

dC , δ)-posterior
sampler that takes poly(d)(O(1)

β
√
δ
)m time.

Proof. Theorem 1.4 suggests that for an O(C)-well-modeled distribution, a poly(d) time ( 1
d3C ,

1
2dC )-unconditional sampler

exists. Since
1

d3C
< o

(
1

2dC · 1
dC√
d

)
< o

(
δβ2√

m+ log(1/δ)

)
.

By lemma E.2, a ( 1
d3C ,

1
dC )-posterior sampler exists using log(1/δ)

δ2 (O(1)

β
√
δ
)m ≤ poly(d)(O(1)

β
√
δ
)m samples. Since generating

each sample costs poly(d) time. The total time is poly(d)(O(1)

β
√
δ
)m.
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F. Well-Modeled Distributions Have Accurate Unconditional Samplers
Notation. For the purposes of this section, we let s̃t = sσ2 denote the score at time t.

Definition F.1 (Forward and Reverse SDE). For distribution q0 over Rd, consider the Variance Exploding (VE) Forward
SDE, given by

dxt = dBt, x0 ∼ q0

where Bt is Brownian motion, so that xt ∼ x0 +N (0, tId). Let qt be the distribution of xt.

There is a VE Reverse SDE associated with the above Forward SDE given by

dxT−t = s̃T−t(xT−t) + dBt (12)

for xT ∼ qT .

Theorem F.2 (Unconditional Sampling Theorem, Implied by (Benton et al., 2024), adapted from (Gupta et al., 2023)). Let q
be a distribution over Rd with second moment m2

2 = Ex∼q

[
∥x∥2

]
between 1

poly(d) and poly(d). Let qt = q ∗ N (0, tId) be

the
√
t-smoothed version of q, with corresponding score s̃t. Suppose T = dC . For any γ > 0, there existN = Õ

(
d
ε2 log

2 1
γ

)
discretization times 0 = t0 < · · · < tN ≤ T − γ such that, given score approximations hT−tk of s̃T−tk that satisfy

E
x∼qT−tk

[
∥s̃T−tk − hT−tk∥2

]
≲

ε2

C · (T − tk) · log d
γ

for sufficiently large constantC, then, the discretization of the VE Reverse SDE defined in (12) using the score approximations
can sample from a distribution ε+ 1

dC/2 close in TV to a distribution γm2-close in 2-Wasserstein to q in N steps.

Theorem 1.4 (Unconditional Sampling for Well-Modeled Distributions). For an O(C)-well-modeled distribution p, the
discretized reverse diffusion process with approximate scores gives a

(
1
dC ,

1
dC

)
-unconditional sampler (as defined in

Definition 1.3) for any constant C > 0 in poly(d) time.

Proof. The definition of a well-modeled distribution gives that, for every 1
dC < σ < dC there is an approximate score ŝσ

such that

E
x∼pσ

[
∥ŝσ(x)− sσ(x)∥2

]
<

1

dCσ2

and ŝσ can be computed by a poly(d)-parameter neural network with poly(d) bounded weights. Here pσ is the σ-smoothed
version of p with score sσ .

Then, by Theorem F.2, this means that the discretized reverse diffusion process can use the ŝσ to produce a sample x̂ from
a distribution p̂ that is 1

dC/3 close in TV to a distribution 1
dC/3 close in 2-Wasserstein. This means there exists a coupling

between x̂ ∼ p̂ and x ∼ p such that

Pr

[
∥x̂− x∥ > 1

dC/6

]
<

1

dC/6

The claim follows via reparameterization.

G. Cryptographic Hardness
Recall that a one-way function f is a function such that every polynomial-time algorithm fails to find a pre-image of a
random output of f with high probability.

Lemma G.1. If a one-way function f : {±1}n → {±1}m(n) exists, then for any 1
poly(n) ≤ l(n) ≤ poly(n), there exists a

one-way function g : {±1}n → {±1}l(n).

Proof. For l(n) > m(n), we just need to pad l(n)−m(n) 1’s at the end of the output, i.e.,

g(x) := (f(x), 1l(n)−m(n)).
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For 1
poly(n) ≤ l(n) < m(n), for each n, there exists a constant c < 1 such that l(n) = m(nc). Then we can satisfies the

requirement by defining
g(x) := f(first nc bits of x).

Lemma G.2. Every circuit f : {±1}n → {±1}m(n) of poly(n) size can be simulated by a ReLU network with poly(n)
parameters and constant weights.

Proof. In the realm of {+1,−1}, −1 corresponds to True and +1 corresponds to False. We can use a layer of neurons
to translate it to {0, 1} first, where 1 corresponds to True and −1 corresponds to False. We will translate {0, 1} back to
{+1,−1} when output.

Now we only need to show that the logic operation (¬, ∧, ∨) in each gate of the circuit can be simulated by a constant
number of neurons with constant weights in ReLU network when the input is in {0, 1}n:

• For each AND (∧) gate, we use ReLU(
∑

(yi − 1) + 1) to calculate
∧
yi.

• For each OR (∨) gate, we use ReLU(1− ReLU(1−∑ yi)) to calculate
∨
yi.

• For each NOT (¬) gate , we use ReLU(1− yi) to calculate ¬yi.

It is easy to verify that for {0, 1} input, the output of each neuron-simulated gate will remain in {0, 1}n and equal to the
result of the logical operation.

Then the next corollary directly follows.
Corollary G.3. Every one-way function can be computed by a ReLU network with poly(n) parameters, and constant
weights.

H. Utility Results
Lemma H.1. Let pσ be some σ-smoothed distribution with score sσ . For any ε ≤ σ,

E
x∼pσ

sup
|c|≤ε

s′σ(x+ c)2 ≲
1

σ4

Proof. Draw x ∼ pσ , and let z ∼ N(0, σ2) be independent of x. By Lemma H.3,

sσ(x) = E
z|x

[ z
σ2

]
.

Moreover, by Corollary H.4,

sσ(x+ c) =

Ez|x

[
e

2cz−c2

2σ2
(
z−c
σ2

)]
Ez|x

[
e

2cz−c2

2σ2

] =
Ez|x

[
ecz/σ

2 ( z−c
σ2

)]
Ez|x[ecz/σ

2 ]

Taking the derivative with respect to c, since (a/b)′ = (a′b− ab′)/b2,

s′σ(x+ c) =
Ez|x

[
ecz/σ

2
(

z2−zc−σ2

σ4

)]
Ez|x[e

cz/σ2

]− Ez|x

[
ecz/σ

2 ( z−c
σ2

)]
Ez|x

[
z
σ2 e

cz/σ2
]

Ez|x[ecz/σ
2 ]2

=
Ez|x

[
ecz/σ

2
(

z2−σ2

σ4

)]
Ez|x[e

cz/σ2

]− Ez|x

[
ecz/σ

2 z
σ2

]2
Ez|x[ecz/σ

2 ]2

≤ Ez|x[e
εz/σ2 z2

σ4 ]

Ez|x[eεz/σ
2 ]

(13)
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Now we take the supremum over all |c| ≤ ε, and take the expectation of this quantity over x to get the desired moment:

E
x

[
sup
|c|≤ε

s′σ(x+ c)2

]
≤ E

x

[
sup
|c|≤ε

Ez|x[e
cz/σ2 z2

σ4 ]
2

Ez|x[ecz/σ
2 ]2

]

≤ E
x

[(
sup
|c|≤ε

E
z|x

[
ecz/σ

2 z2

σ4

]2)(
sup
|c|≤ε

E
z|x

[
ecz/σ

2
]−2
)]

≤

√√√√E
x

[
sup
|c|≤ε

E
z|x

[
ecz/σ2 z2

σ4

]4]
E
x

[
sup
|c|≤ε

E
z|x

[
ecz/σ2

]−4

]
(14)

The last inequality here follows from Cauchy-Schwarz. For the first term of equation 14, we have

E
x

[
sup
|c|≤ε

E
z|x

[
ecz/σ

2 z2

σ4

]4]
≤ E

x
E
z|x

[
(eεz/σ

2

+ e−εz/σ2

)
z2

σ4

]
=: g(x)

We compute the 4th moment of this term directly:

E
x
[g(x)4] = E

x

[
E
z|x

[
(eεz/σ

2

+ eεz/σ
2

)
z2

σ4

]4]

≤ E
z

[
(eεz/σ

2

+ e−εz/σ2

)4
z8

σ16

]
≤
√

E
z
[(eεz/σ2 + e−εz/σ2)8]E

z

[
z16

σ32

]

≤
√

E
z
[28(e8εz/σ2 + e−8εz/σ2)]E

z

[
z16

σ32

]
≲

√
e32ε2/σ2 · 1

σ16
=
e16ε

2/σ2

σ8
(15)

For the second term of equation 14,

E
x

[
sup
|c|≤ε

E
z|x

[
ecz/σ

2
]−4
]
≤ E

x

[
sup
|c|≤ε

E
z|x

[
e−4cz/σ2

]]
by Jensen’s

≤ E
x

[
E
z|x

[
e4ε|z|/σ

2
]]

≤ E
z

[
e4εz/σ

2

+ e−4εz/σ2
]

= 2e
1
2σ

2·(4ε/σ2)2 = 2e8ε
2/σ2

(16)

So, putting equations 16 and 15 into equation 14, we get

E
x

[
sup
|c|≤ε

s′σ(x+ c)2

]
≤
√
2e8ε2/σ2 · e

16ε2/σ2

σ8

Now, by assumption, ε ≤ σ. So, we finally get that

E
x

[
sup
|c|≤ε

s′σ(x+ c)2

]
≲

√
1

σ8
=

1

σ4
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Lemma H.2. Let p be a distribution over R, and let pσ = p ∗N(0, σ2) have score sσ . If γ ≤ σ/4, then,

Pr

[
sup

y∈[x−γ,x+γ]

s(y) ≥ t

]
≤ e−σt

Proof. From Corollary H.8, we have

E

[
sup

y∈[x−γ,x+γ]

s(y)k

]
≤ kk15k

σk

So, we have

Pr

[
sup

y∈[x−γ,x+γ]

s(x)k ≥ tk

]
≤

E
[
supy∈[x−γ,x+γ] s(x)

k
]

tk
≤
(
15k

tσ

)k

Setting k = log 1
δ , we get

Pr

[
sup

y∈[x−γ,x+γ]

|s(x)| ≥ 15

eσ
log

1

δ

]
≤ δ

For the following Lemmas, If p is a distribution over R and has score s, define the Fisher information I as

I := E
x∼p

[s2(x)]

Lemma H.3 (Lemma A.1 from (Gupta et al., 2022)). Let p be a distribution over R, and let pσ = p ∗N(0, σ2) have score
sσ . Let (x, y, z) be the joint distribution such that y ∼ p, z ∼ N(0, σ2) are independent, and x = y + z. For all ε > 0,

p(x+ ε)

p(x)
= E

z|x

[
e

2εz−ε2

2σ2

]
and sσ(x) = E

z|x

[ z
σ2

]
Corollary H.4. Let p be a distribution over R, and let pσ = p ∗N(0, σ2) have score sσ .

sσ(x+ ε) =
Ez|x

[
eεz/σ

2 ( z−ε
σ2

)]
Ez|x[eεz/σ

2 ]

Proof. This proof is given in Lemma A.2 of (Gupta et al., 2022), and is reproduced here for convenience and completeness,
since a statement in the middle of their proof is what we use.

By Lemma H.3, we have
pσ(x+ ε)

pσ(x)
= E

z|x

[
e

2εz−ε2

2σ2

]
Taking the derivative with respect to ε, we have

p′σ(x+ ε)

pσ(x)
= Ez|x

[
e

2εz−ε2

2σ2

(
z − ε

σ2

)]
So,

sσ(x+ ε) =
p′σ(x+ ε)

pσ(x+ ε)
=
p′σ(x+ ε)

pσ(x)

pσ(x)

pσ(x+ ε)

=

Ez|x

[
e

2εz−ε2

2σ2
(
z−ε
σ2

)]
Ez|x

[
e

2εz−ε2

2σ2

] =
Ez|x

[
eεz/σ

2 ( z−ε
σ2

)]
Ez|x[eεz/σ

2 ]
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Lemma H.5 (Lemma 3.1 from (Gupta et al., 2022)). Let p be a distribution over R and let pσ = p ∗N(0, σ2) have Fisher
information Iσ . Then, Iσ ≤ 1

σ2 .

Lemma H.6 (Lemma B.3 from (Gupta et al., 2022)). Let p be a distribution over R and let pσ = p ∗N(0, σ2) have score
sσ and Fisher information Iσ . If |γ| ≤ σ/2, then

E[s2(x+ γ)] ≤ Iσ +O

(
γ

σ
Iσ
√

log
1

σ2Iσ

)
Lemma H.7 (Lemma A.6 from (Gupta et al., 2022)). Let p be a distribution over R and let pσ = p ∗N(0, σ2) have score
sσ and Fisher information Iσ . Then, for k ≥ 3 and |γ| ≤ σ/2,

E[|sσ(x+ γ)|k] ≤ k!

2
(15/σ)k−2 max

(
E[s2σ(x+ γ)], Iσ

)
Corollary H.8. Let p be a distribution over R and let pσ = p ∗N(0, σ2) have score sσ . Then, for k ≥ 3 and |γ| ≤ σ/2,

E[|sσ(x+ γ)|k] ≤
(
15k

σ

)k

Proof. Consider the continuous function f(x) = x
√
log 1

σ2x . This function is only defined on 0 < x ≤ 1/σ2. We have

f ′(x) =
2 log 1

σ2x − 1

2
√

log 1
σ2x

.

Setting this equal to zero gives x = 1
σ2

√
e
. f( 1

σ2
√
e
) = 1

σ2
√
2e

. Since f(1/σ2) = 0 and limx→0+ f(x) = 0, we have this
is the maximum value of the function. Further, we know by Lemma H.5 that Iσ ≤ 1/σ2. So, along with the fact that
|γ| ≤ σ/2, we have

γ

σ
Iσ

√
log

1

σ2Iσ
≲

1

σ2

Therefore, from Lemma H.6, and using Lemma H.5 again, we get

E[s2(x+ γ)] ≤ Iσ +O

(
γ

σ
Iσ

√
log

1

σ2Iσ

)
≲

1

σ2

Finally, we can plug this into Lemma H.7 to get

E[|sσ(x+ γ)|k] ≤ k!

2
(15/σ)k−2 max

(
E[s2σ(x+ γ)], Iσ

)
≲ kk

15k−2

σk−2
· 1

σ2
≤ kk

15k

σk

Lemma H.9 (Laurent-Massart Bounds(Laurent & Massart, 2000)). Let v ∼ N (0, In). For any t > 0,

Pr[∥v∥2 − n ≥ 2
√
nt+ 2t] ≤ e−t.

Lemma H.10 (See Mohri et al. (2018), Lemma 6.27). There exist Θ(R/ε)d d-dimensional balls of radius ε that cover
{x ∈ Rd | ∥x∥2 ≤ R}.

Lemma H.11. Let p be a distribution over Rd with covariance Σ such that ∥Σ∥ ≲ 1, and let A ∈ Rm×d be a matrix with
∥A∥ ≤ 1. Then

E
x∼p

[∥Ax∥2] ≲ m.
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Proof. Note the expectation of the squared norm ∥Ax∥2 can be expressed as:

Ex∼p[∥Ax∥2] = trace(ATAΣ).

Given that ∥A∥ ≤ 1, the singular values of A are at most 1. Hence, the matrix ATA, which represents the sum of squares of
these singular values, will have its trace (sum of eigenvalues) bounded by m:

trace(ATA) ≤ m.

Hence, given that ∥Σ∥ ≲ 1, we have :

Ex∼p[∥Ax∥2] = trace(ATAΣ) ≤ ∥Σ∥ · trace(ATA) ≲ m.

40


	Introduction
	Related Work
	Proof Overview – Lower Bound
	Lower Bound Instance
	Posterior Sampling Implies Inversion
	ReLU Approximation of Lower Bound Score
	ReLU Approximation for Score of Product Distribution
	ReLU Approximation for Large 
	ReLU Approximation for Small 

	Putting it all Together

	Proof Overview - Upper Bound
	Conclusion and Future Work
	Lower Bound instance
	Lower Bound – Posterior Sampling implies Inversion of One-Way Function
	Notation
	Inverting f via Posterior Sampling
	Inverting a One-Way function via Posterior Sampling

	Lower Bound – ReLU Approximation of Score
	Piecewise Linear Approximation of -smoothed score in One Dimension
	Small noise level – Score of vertex distribution close to full score in vertex orthant
	ReLU Network approximation of -smoothed Scores of Product Distributions
	ReLU network for Score at Small smoothing level
	Smoothing a discretized Gaussian
	Large Noise Level - Distribution is close to a mixture of Gaussians
	ReLU network for Score at Large smoothing Level
	ReLU Network Approximating score of Unconditional Distribution

	Lower Bound – Putting it all Together
	Upper Bound
	Well-Modeled Distributions Have Accurate Unconditional Samplers
	Cryptographic Hardness
	Utility Results

