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Abstract

The assumption across nearly all language model (LM) tokenization
schemes is that tokens should be subwords, i.e., contained within word
boundaries. While providing a seemingly reasonable inductive bias, is this
common practice limiting the potential of modern LMs? Whitespace is not
a reliable delimiter of meaning, as evidenced by multi-word expressions
(e.g., by the way), crosslingual variation in the number of words needed to
express a concept (e.g., spacesuit helmet in German is Raumanzughelm), and
languages that do not use whitespace at all (e.g., Chinese). To explore the
potential of tokenization beyond subwords, we introduce a “superword”
tokenizer, SuperBPE, which incorporates a simple pretokenization curricu-
lum into the byte-pair encoding (BPE) algorithm to first learn subwords,
then superwords that bridge whitespace. This brings dramatic improve-
ments in encoding efficiency: when fixing the vocabulary size to 200k,
SuperBPE encodes a fixed piece of text with up to 33% fewer tokens than
BPE on average. In experiments, we pretrain 8B transformer LMs from
scratch while fixing the model size, vocabulary size, and train compute,
varying only the algorithm for learning the vocabulary. Our model trained
with SuperBPE achieves an average +4.0% absolute improvement over the
BPE baseline across 30 downstream tasks (including +8.2% on MMLU),
while simultaneously requiring 27% less compute at inference time. In
analysis, we find that SuperBPE results in segmentations of text that are
more uniform in per-token difficulty. Qualitatively, this may be because
SuperBPE tokens often capture common multi-word expressions that func-
tion semantically as a single unit. SuperBPE is a straightforward, local
modification to tokenization that improves both encoding efficiency and
downstream performance, yielding better language models overall.1

1 Introduction

Tokenizers are the lens through which language models (LMs) view data: they segment a
stream of bytes into a sequence of tokens in the LM vocabulary. In the era of transformer
LMs, tokenization is done at the level of subwords, meaning that tokens consist of parts
of words (including complete words), but cannot bridge whitespace. Intuitively, subword
tokens capture meaningful and composable semantic units.

While seemingly reasonable, is this common practice a good one? Whitespace is an unre-
liable delimiter of meaning (Martin, 2017)—many groups of words (e.g., a lot of or search
engine) function semantically as single units, and English speakers store thousands of such
multi-word expressions in their mental lexicon (Church, 2011; Contreras Kallens & Chris-
tiansen, 2022). Crosslingually, there is considerable variation in whether a given meaning is
conveyed by a single word or several words. At the extreme, languages such as Chinese
and Japanese do not use whitespace at all, so that tokens in these languages can span
multiple words or even entire sentences (e.g., in the tokenizers of GPT-4O [OpenAI, 2024]
or DEEPSEEKV3 [DeepSeek-AI et al., 2025]), yet this has seemingly not hindered LMs from

*Equal contribution.
1Code and artifacts are available at https://superbpe.github.io/.
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Figure 1: SuperBPE tokenizers encode text much more efficiently than BPE, and the
gap grows with larger vocabulary size. Encoding efficiency (y-axis) is measured with
bytes-per-token, the number of bytes encoded per token on average over a large corpus of text.
In the above text with 40 bytes, SuperBPE uses 7 tokens and BPE uses 13, so the methods’
efficiencies are 40/7 = 5.7 and 40/13 = 3.1 bytes-per-token, respectively. In the graph,
the encoding efficiency of BPE plateaus early due to exhausting the valuable whitespace-
delimited words in the training data. In fact, it is bounded above by the gray dotted line,
which shows the maximum achievable encoding efficiency with BPE, if every whitespace-
delimited word were in the vocabulary. On the other hand, SuperBPE has dramatically
better encoding efficiency that continues to improve with increased vocabulary size, as
it can continue to add common word sequences to treat as tokens to the vocabulary. The
different gradient lines show different transition points from learning subword to superword
tokens, which always gives an immediate improvement. SuperBPE also has better encoding
efficiency than a naive variant of BPE that does not use whitespace pretokenization at all.

performing well on these languages. Including multi-word tokens promises to be beneficial
in several ways: it can lead to shorter token sequences, lowering the computational costs of
LM training and inference, and may also offer representational advantages by segmenting
text into more semantically cohesive units (Salehi et al., 2015; Otani et al., 2020; Hofmann
et al., 2021).

In this work, we introduce a superword tokenization algorithm that produces a vocabulary of
both subword and “superword” tokens, which we use to refer to tokens that bridge more
than one word. Our method, SuperBPE, introduces a pretokenization curriculum to the popu-
lar byte-pair encoding (BPE) algorithm (Sennrich et al., 2016): whitespace pretokenization is
initially used to enforce learning of subword tokens only (as done in conventional BPE), but
is disabled in a second stage, where the tokenizer transitions to learning superword tokens.
Notably, SuperBPE tokenizers scale much better with vocabulary size—while BPE quickly
hits a point of diminishing returns and begins adding increasingly rare subwords to the
vocabulary, SuperBPE can continue to discover common word sequences to treat as single
tokens and improve encoding efficiency (see Figure 1).

In our main experiments, we pretrain English LMs at 8B scale from scratch. When fixing the
model size, vocabulary size, and training compute—varying only the algorithm for learning
the vocabulary—we find that models trained with SuperBPE tokenizers consistently and
significantly improve over counterparts trained with a BPE tokenizer, while also being 27–
33% more efficient at inference time. Our best SuperBPE model achieves an average +4.0%

2



Preprint

improvement over 30 downstream tasks, including +8.2% on MMLU, and wins on 25 of the
30 individual tasks (Table 1).

In analysis, we find that SuperBPE tokenizers produce segmentations that are more evenly
distributed in difficulty. This makes sense from a qualitative linguistic analysis: SuperBPE
tokens often correspond to multi-word expressions in English, i.e., word sequences that func-
tion as a single semantic unit (see Table 3 for examples). For instance, many prepositional
phrases (e.g., by accident or in the long run) are essentially fixed and require memorization.
The individual words in these expressions have very little possible variation in context,
leading to very low-loss predictions under BPE models.

SuperBPE is a straightforward and local modification to tokenization, requiring no changes
to the model architecture, training framework, or decoding strategy. Under the same
training setup, SuperBPE provides a remarkable boost in both encoding efficiency and
performance, yielding better language models overall.

2 SuperBPE

We first explain the standard byte-pair encoding (BPE; Sennrich et al., 2016) tokenization
algorithm (§2.1), then introduce SuperBPE, which extends BPE to superword tokens (§2.2).

2.1 Background on BPE

BPE is a tokenization algorithm that greedily learns a subword vocabulary given training
data.2 The algorithm takes a sample of text and a target vocabulary size T as input. Note
that although the creation of a tokenizer is referred to as “learning,” there are no parameters
involved in the case of BPE, and the algorithm is completely deterministic given the data.

The first step of BPE is pretokenization, which splits the text into chunks that limit the extent
of tokenization: merges cannot bridge these chunks, so the final learned tokens will be parts
of these chunks. Canonically, pretokenization in BPE consists of splitting on whitespace,
so that common word sequences do not become a single token. This made sense in the
historical context of Sennrich et al. (2016), which aimed to improve word-level tokenization
by segmenting words into morphologically meaningful subwords.

After pretokenization, the iterative learning algorithm begins. The training text is first split
into bytes; the starting vocabulary is the set of all bytes. Then, the frequencies of all pairs of
neighboring tokens are recorded, and the most frequent pair is merged into a single, new
token at every position in the text where it occurs. The newly merged token is added to the
vocabulary. For instance, if the merge is (t, he), then all instances of the token sequence [t,
he] will be replaced with the, which is added to the vocabulary. The token pair frequencies
are then updated, and the next most frequent pair is again merged into a new token. This
continues until vocabulary reaches the target size T.

2.2 SuperBPE tokenization

SuperBPE introduces a simple intervention on the pretokenization step, separating tokenizer
training into two discrete phases so that the tokenizer first learns subwords (by using
pretokenization to prevent merges across whitespace) and then superwords (by lifting this
restriction). Stage 1 is equivalent to regular BPE training and continues up to a certain
vocabulary size t, which we call the transition point (t < T). In stage 2, tokenizer training
resumes from the vocabulary learned so far, but this time whitespace pretokenization is
skipped. As a result, token pairs bridging whitespace are considered, making it possible for
superwords to be added to the vocabulary. Intuitively, we wish for our tokenizer to first
learn base units of semantic meaning, then combine these units into common sequences for a
much more efficient vocabulary. Note that t = T corresponds to BPE, and t = 0 corresponds
to a naive revision of BPE that foregoes whitespace pretokenization at any point in training.

2The algorithm originated in 1994 in the field of data compression (Gage, 1994).
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Category Task BPE SuperBPE ∆

Knowledge ARC-Easy (MC) 46.6 67.1 +20.5∗∗

ARC-Challenge (MC) 35.1 50.6 +15.5∗∗

Jeopardy (EM) 42.1 41.8 −0.3
MMLU (MC) 36.5 44.7 +8.2∗∗

OpenbookQA (MC) 33.2 54.4 +21.2∗∗

TriviaQA (EM) 60.6 61.3 +0.7
WikidataQA (EM) 69.7 70.9 +1.2∗

Math Arithmetic (EM) 54.8 59.3 +4.5∗∗

& Reasoning GSM8K (EM) 6.4 6.7 +0.3
LSAT-AR (MC) 21.3 23.0 +1.7
Operators (EM) 35.5 33.6 −1.9
Repeat-Copy-Logic (EM) 3.1 6.2 +3.1

Coding HumanEval (pass@10) 15.9 13.4 −2.5
MBPP (pass@10) 27.5 28.3 +0.8

Reading BoolQ (MC) 59.7 64.6 +4.9∗∗

Comprehension CoQA (EM) 12.6 13.2 +0.6
DROP (EM) 31.3 31.4 +0.1
HotpotQA (EM) 53.5 55.2 +1.7∗

SQuAD (EM) 75.1 75.8 +0.7

Commonsense CommonsenseQA (MC) 33.5 53.8 +20.3∗∗

COPA (MC) 77.0 85.8 +8.8∗∗

PIQA (MC) 55.2 59.8 +4.6∗

Winograd (MC) 50.4 53.1 +2.7
Winogrande (MC) 47.3 52.6 +5.3∗

Language HellaSwag (MC) 29.7 33.7 +4.0∗∗

Understanding LAMBADA (EM) 77.0 70.6 −6.4∗∗

Language Identification (EM) 8.8 9.0 +0.2

String CS Algorithms (EM) 46.1 48.6 +2.5
Manipulation CUTE (EM) 31.3 32.6 +1.3

Dyck-Languages (EM) 15.9 14.2 −1.7

Average 39.8 43.8 +4.0

Table 1: Performance of BPE and SuperBPE models (with transition point t = 180k) on
30 downstream tasks. The two models are fixed in model parameters (8B), vocabulary
size (200k), and training FLOPs (corresponding to ∼330B tokens), differing only in the
algorithm for learning the vocabulary. The SuperBPE model outperforms the baseline on
25 out of 30 tasks, while also requiring 27% less compute at inference time. See Figure 3
for the moving task average during pretraining and §A.3 for further evaluation details.
∗p < 0.05, ∗∗p < 0.005 under a McNemar test.

We note that training tokenizers requires more system memory and CPU time when done
without whitespace pretokenization (as in stage 2 of SuperBPE). This is because the training
data is typically represented by a dictionary of “words” along with their counts. With
whitespace pretokenization, the “words” are whitespace-separated chunks (e.g., common
words) stored once alongside a large count, granting substantial savings in memory. Without
whitespace pretokenization, the “words” are extremely long (e.g., entire training documents),
leading to minimal deduplication of the text and excessively large dictionaries. Fortunately,
tokenizer training must be done only once; in our experiments, SuperBPE tokenizers train
in a few hours on 100 CPUs, a negligible cost compared to LLM pretraining.

2.3 Encoding efficiency

A tokenizer’s encoding efficiency can be measured in bytes-per-token, i.e., how many UTF-8
bytes are encoded, on average, in each token over a large corpus of text (see calculation
in Figure 1). We train a series of tokenizers on a 10 GB subset of data from OLMO 2’s
pretraining corpus, and evaluate encoding efficiency on a held-out subset.
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Shown in Figure 1, SuperBPE scales much better with vocabulary size than BPE. BPE quickly
plateaus around a vocabulary size of ∼50K, achieving 4.45 bytes-per-token at a vocabulary
size of 200k. In fact, even with infinite vocabulary size (namely, if every whitespace-delimited
word were in the vocabulary), BPE cannot exceed 4.68 bytes-per-token, i.e., the average
word length in the held-out subset. SuperBPE exceeds this upper bound with a mere ∼12k
vocabulary size, and reaches 5.55 bytes-per-token at 50K and 6.63 at 200k.
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Figure 2: Encoding efficiency varies
smoothly with the choice of transi-
tion point t in SuperBPE’s pretok-
enization curriculum.

Perhaps surprisingly, SuperBPE is also more effi-
cient than BPE with whitespace pretokenization com-
pletely disabled. Since BPE is a greedy algorithm,
completely disabling whitespace pretokenization
may cause BPE to make highly suboptimal choices
early on. In particular, tokens in this setting often
consist of the end of the previous word and start of
the next word, as opposed to sequences of complete
words. By keeping whitespace pretokenization on
at the beginning, we can avoid suboptimal choices
while still obtaining a tokenizer with superwords.

Figure 2 shows how SuperBPE’s encoding efficiency
depends on the choice of transition point t. The re-
lationship is smooth, with t = 80k achieving the best
encoding efficiency. However, we will see in our ex-
periments that the optimal tokenizer for LM pretrain-
ing is not necessarily the most encoding-efficient.

3 Experiments

In our main experiments, we pretrain models from scratch while fixing the total training
FLOPs and vocabulary size, changing only the algorithm for learning the vocabulary.

3.1 Setup

We first pretrain 8B models with BPE and SuperBPE tokenizers. We use the OLMO2 7B
(OLMo et al., 2024) training configuration,3 including the model architecture, training
hyperparameters, and pretraining corpus, but reduce the total number of training steps to
correspond to ∼330B tokens (compared to 4T) for the sake of compute. Following prior
work (Pagnoni et al., 2024), we also fix the effective context size (measured in bytes) for each
model. This prevents SuperBPE models from gaining an advantage by seeing more textual
context for the same next-token prediction (Xiong et al., 2024). As more efficient models
will have a shorter context length in tokens, the training steps are adjusted accordingly to
match the total train FLOPs at the end of training.4 Note that in this setting, a same-sized
SuperBPE model uses fewer inference FLOPs compared to the BPE model.

We fix the vocabulary size of all tokenizers to 200,000 (in the same ballpark as e.g., GEMMA

at 250k [Google, 2024], GPT-4O at 200k, LLAMA3 at 130k [Meta, 2024]).5 We consider three
transition points for SuperBPE: t = 80k, which has the best encoding efficiency, and two
later transitions, t = 160k and t = 180k. All tokenizers are trained on the same 10 GB subset
of OLMO2’s pretraining mix. We provide further details about tokenizer training in §A.1.

We also train a slightly larger 11B SuperBPE model with t = 180k which approximately
matches the 8B BPE baseline in total bytes of training data seen as well as both train and
inference compute. See Table 2 for exact specifications for all runs.

3OLMO2 7B has 7.30B parameters while our 8B BPE and SuperBPE models have 8.12B parameters
due to their increased vocabulary size.

4In practice, models using our more efficient tokenizers could shift some or all of the “saved”
context FLOPs to longer effective contexts instead of more training steps.

5For 8B models, 200k vocabulary size is close to the recommendation of Tao et al. (2024) based on
primarily-English data. We fix the vocabulary size to simplify comparisons between models.
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Figure 3: Average task performance on 30 downstream tasks, evaluated at every 5000 steps
in model pretraining. We see that SuperBPE models consistently outperform the baseline
that uses a BPE tokenizer. All compared models share the same vocabulary size and train
budget; t denotes the transition point in SuperBPE’s pretokenization curriculum.

3.2 Results on downstream tasks

We evaluate on 30 benchmarks covering knowledge, math & reasoning, coding, reading
comprehension, commonsense, language understanding, and string manipulation. The full
evaluation suite is shown in Table 1; evaluation details can be found in §A.3.

Figure 3 shows the task average during pretraining. All SuperBPE models substantially
outperform the BPE baseline at the end of training. The strongest 8B SuperBPE model,
which has transition point t = 180k (the latest one we consider), outperforms the baseline
by 4.0% on average, and wins on 25 out of 30 individual tasks. Table 1 shows the per-task
performance for this model (see §A.3 for results for the other models). The largest gains
appear to be on multiple choice tasks; when considering these alone, the performance
improvement is +9.7%. The only task on which SuperBPE loses in a statistically significant
way is LAMBADA; here, we observe that SuperBPE is actually ahead for the majority of
training checkpoints, but accuracy dips at the end from 75.8% to 70.6% (see Figure 11).

Note that while the choice of transition point affects the performance of the resulting model,
all reasonable choices are significantly stronger than the baseline. When using the most
encoding-efficient transition point of t = 80k, we see a +3.1% task improvement over BPE
while reducing inference compute by 35%. Later transition points empirically give up some
gains in encoding efficiency in exchange for further improved performance.6

4 Analysis

4.1 Language modeling

Following prior work (Biderman et al., 2023; Xue et al., 2022; Yu et al., 2023; Wang et al.,
2024), we evaluate language modeling performance using bits-per-byte (BPB), which nor-
malizes the loss by the encoding efficiency of the tokenizer to fairly compare models
with different tokenizers. This is necessary because longer tokens, on average, contain
more information and therefore are more difficult to predict. Bits-per-byte is defined as
BPB(x) = LCE(x)/(ln(2) · nbytes) where nbytes is the length of the text in bytes and LCE(x)

6This finding adds to the ongoing debate about the relationship between tokenization compression
and LM performance (Gallé, 2019; Goldman et al., 2024; Schmidt et al., 2024), providing further
evidence that a higher compression does not necessarily lead to better performance.
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BPE 8B SuperBPE 8B SuperBPE 11B
SuperBPE transition point t = 80k t = 160k t = 180k t = 180k

Parameter count (billion) 8.12 8.12 8.12 8.12 11.30
Train steps 76,543 118,419 112,722 107,982 77,525

Average context length (bytes) 18,262 18,272 18,263 18,268 18,268
Vocabulary size 200k 200k 200k 200k 200k
Context length (tokens) 4,096 2,756 2,884 3,000 3,000
Encoding efficiency (bytes/token) 4.46 6.63 6.33 6.09 6.09

Train compute (1021 FLOPs) 17.2 17.2 17.2 17.2 17.2
Inference compute (109 FLOPs/byte) 3.75 2.42 2.54 2.65 3.75

Table 2: Training setup for the models we compare. We fix the vocabulary size and
effective context size (measured in bytes) that each model sees, and adjust the total number
of training steps accordingly so that each model has the same total train budget (in FLOPs).
The 8B SuperBPE models match the 8B BPE model in train compute while using less
inference compute; the 11B SuperBPE model matches the 8B baseline in both train and
inference compute. Numbers fixed across model settings are highlighted in the same color.

is the sum of the cross-entropy loss over the entire text.7 We find that BPE 8B, SuperBPE 8B
(t = 180k), and SuperBPE 11B attain 0.7465, 0.7482, and 0.7445 BPB, respectively, at the end
of training. Though the numbers are all close, the rankings of the models according to BPB
and downstream task performance are not consistent.

4.2 Fine-grained analysis of bits-per-byte

0 2 4 6 8
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Figure 4: Histogram of per-token losses
for both models from Table 1, measured
over a large corpus of text. We see the
SuperBPE model is a more consistent per-
former, making fewer predictions with
very high or very low loss.

Why does the SuperBPE 8B model achieve
slightly higher normalized language modeling
loss (§4.1) than the baseline BPE model, despite
outperforming it on a wide variety of down-
stream tasks (§3.2)? To investigate this, we plot
the distribution of per-token BPB8 for both mod-
els on data sampled from the pretraining data
mixture in Figure 4.

We see that, although the BPE and SuperBPE
models have very similar BPB on average, that
loss is distributed very differently over the train-
ing data. Compared to the baseline, the Su-
perBPE model makes fewer predictions with
either very high or very low loss.

Low-loss tokens. We find that the reduction in
low-loss tokens is attributable to a small set of
extremely common words that the BPE model can easily predict, but are not available to
SuperBPE as they are merged into larger superword tokens. For instance, the tokens the,
of, and to (the three most common words in the corpus) appear an order of magnitude

more often under BPE than SuperBPE in the same corpus of text. When excluding these three
token types alone, the BPB ranking reverses, with SuperBPE achieving 0.02 lower BPB than BPE.

The reduction in low-loss tokens also makes sense from a qualitative linguistic analysis
of SuperBPE tokens. In Table 3, we show the most common POS tags among superword
tokens in SuperBPE, along with random examples for each tag. The tokens often capture
common multi-word expressions (by accident, of course, for a living) that function as a single

7Bits-per-byte of different models are considered comparable because total cross-entropy loss is a
universal quantity representing the number of additional bits required to reconstruct the text given
the model. This quantity is normalized by the number of bytes for easier interpretation.

8The per-token BPB is the per-token loss (in bits) divided by the average encoding efficiency.
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POS tag # Example Tokens

NN, IN 906 case of, hint of, availability of, emphasis on, distinction between
VB, DT 566 reached a, discovered the, identify the, becomes a, issued a
DT, NN 498 this month, no idea, the earth, the maximum, this stuff
IN, NN 406 on top, by accident, in effect, for lunch, in front
IN, DT 379 on the, without a, alongside the, for each

IN, DT, NN 333 for a living, by the way, into the future, in the midst
NN, IN, DT 270 position of the, component of the, review of the, example of this
IN, DT, JJ 145 like any other, with each other, for a short, of the entire
VB, IN, DT 121 worked as a, based on the, combined with the, turned into a

IN, DT, NN, IN 33 at the time of, in the presence of, in the middle of, in a way that
,, CC, PRP, VB 20 , and it was, , but I think, , but I have, , but I am
IN, DT, JJ, NN 18 in the long run, on the other hand, for the first time, in the same way

Table 3: The most common POS tags for tokens of 2, 3, and 4 words in SuperBPE, along
with random example tokens for each tag. NN = noun, IN = preposition, VB = verb, DT =
determiner, CC = conjunction, JJ = adjective, PRP = pronoun.

semantic unit (Schneider et al., 2014). As an example, prepositions (IN) figure prominently
in superword tokens (e.g., depend on, distinction between) and require lexeme-specific memo-
rization. The individual words in these fixed expressions are often semantically vacuous
and have little possible variation in context, so they are easy to predict once memorized.

High-loss tokens. On the other hand, the much thinner tail of very high-loss tokens shows
that, in the worst case, the SuperBPE model consistently puts more probability mass on the correct
token. On average, we expect models to suffer high loss on tokens that are difficult to predict.
This may explain why SuperBPE can outperform BPE on downstream tasks while having
higher average BPB: the tokens that are scored in task evaluations tend to be among the
hardest to predict. This is consistent with prior findings that models generally continue to
improve in downstream tasks even as their overall loss plateaus, due to improving on a
narrow and difficult slice of the distribution (Liu et al., 2023).

4.3 Scaling

To characterize the scaling behavior of SuperBPE, we also perform experiments at smaller
scales.9 We train baseline models at 680M and 1.9B, and scale the base number of training
tokens proportionately to the number of parameters. We also perform runs at 0.5×, 2×, and
4× the base number of tokens to observe the trend with respect to training duration. Then,
we train two SuperBPE models that match the training budget of each baseline BPE model:
one that matches the baseline in parameter count (analogous to SuperBPE 8B), and a larger
model that matches in both train and inference compute (analogous to SuperBPE 11B). We
focus on the t = 180k tokenizer to reduce complexity.

We plot BPB at the end of training for each run in Figure 5. In the undertrained regime,
both SuperBPE models achieve lower BPB than the baseline. In the overtrained regime, the
ranking from worst to best is SuperBPE (matching parameter count), BPE, and SuperBPE
(matching inference compute). Additionally, the separation between the models increases
with further overtraining. We provide more results and comments on scaling in §B.3.

5 Related Work

Tokenization beyond subwords Prior work has explored processing text at multiple
levels of granularity (Lai et al., 2021; Zhang et al., 2021) or creating multi-word tokens
through frequency-based identification of n-grams (Gee et al., 2023; Kumar & Thawani,
2022). However, these were explored in limited experimental contexts (mainly for machine

9For scaling, we focus on BPB, since our downstream evals are too noisy for our small models to
make meaningful comparisons.
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Figure 5: Scaling results for 680M and 1.9B baseline model sizes. Compared to the BPE
baseline, SuperBPE with matching parameter count achieves lower BPB in the undertrained
regime, while SuperBPE with matching inference compute achieves lower BPB than the
baseline at every model size and every training budget tested. Note that BPB comparisons
between BPE and SuperBPE models do not track downstream task accuracy, due to differences in
how BPE and SuperBPE models distribute loss over tokens (§4.2).

translation) and had mixed effectiveness. Naively disabling pretokenization in BPE has been
found to severely hurt model performance (Dagan et al., 2024; Schmidt et al., 2024; Kudo,
2018), though it may be more promising for unigram tokenization (Kudo & Richardson,
2018), as adopted by JURASSIC (Lieber et al., 2021) and BLOOMBERGGPT (Wu et al., 2023).
In concurrent work, Huang et al. (2025) disentangle the input and output vocabulary,
expanding only the former to include n-gram tokens. Their method requires significant
modifications of the LM input component and considers fixed length of n-gram tokens.

Multi-token prediction Multi-token prediction (MTP) equips LMs with some extra pa-
rameters to predict multiple tokens in a single time step (Qi et al., 2020; Gloeckle et al.,
2024), and was recently adopted by DEEPSEEK-V3, though the MTP module is discarded at
inference-time. The effectiveness corroborates that LMs are capable of predicting more than
one subword in a forward pass. However, these approaches fix the number of tokens pre-
dicted in each time step and require modifications to the architecture and training objective.
Nonetheless, the benefits of MTP and superword tokens may be orthogonal.

Tokenizer-free language modeling Some works have explored the possibility of removing
tokenization entirely from LMs and directly modeling text as a sequence of bytes (Clark et al.,
2022; Xue et al., 2022; Wang et al., 2024). To overcome the increased compute requirement
due to expanded sequence lengths, alternative architectures have been proposed that either
segment bytes into fixed-length patches (Tay et al., 2022; Yu et al., 2023) or dynamically
predict patch boundaries with sub-modules (Nawrot et al., 2023; Pagnoni et al., 2024; Ahia
et al., 2024), increasing the complexity of the model.

6 Conclusion

Although tokenization lies at the foundation of language modeling—acting as the lens
through which models view text—the algorithms in use have remained largely unchanged
over the past decade. SuperBPE builds on the natural observation that tokens need not be
limited to subwords, extending the BPE algorithm to superword tokens. When replacing
subword BPE tokenizers with SuperBPE tokenizers in pretraining, we find that language
models achieve better performance over a large suite of downstream tasks, while also being
substantially more efficient at inference time. These benefits are achieved without modifying
the underlying model architecture, making SuperBPE a compelling alternative to BPE that
seamlessly integrates with modern language model ecosystems.
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A Experimental setup details

A.1 Tokenizer training

We use the HuggingFace tokenizers (Wolf et al., 2020) library for tokenizer training.

A.1.1 Tokenizer training data

We produce the tokenizer training data by sampling documents uniformly at random from
the OLMO2 stage 2 pretraining data, referred to as olmo-mix. We use a 10 GB subset because
early experiments showed that data beyond even ∼10 MB does not make a difference in the
resulting tokenizer’s encoding efficiency.

We found that olmo-mix had several extremely long documents, with the longest 1% of
documents making up 15% of the data. In particular, a full academic paper (specifically
Veluri et al., 2023) is duplicated 2,224 times back-to-back inside one document (as delimited
by special EOS tokens). Because our tokenizers are trained on small sets of data, these
extremely long documents can take up a large proportion of the data, resulting in unusual
tokens like chunk-based processing. To circumvent possible data duplication issues, we
truncate the longest 1% of documents in the tokenizer training data to the 99% percentile of
document lengths. As future practitioners train SuperBPE tokenizers, we encourage especial
attention to deduplication, which may have an outsized impact on SuperBPE tokenizers.

A.1.2 Limit on the size of superword tokens

Even after truncating the longest 1% of documents, we found that SuperBPE tok-
enizers can still have extremely long tokens consisting of highly duplicated boiler-
plate text such as the Project Gutenberg license or common internet phrases such as
You are commenting using your. This issue is already present in BPE tokenizers trained
on Chinese, which contain sentence-long tokens clearly taken from pornographic content.
For instance, tokens in GPT-4O’s tokenizer include最新高清无码 = latest HD uncensored and
娱乐网址 = entertainment website. To prevent concerns about the tokenizer directly revealing
parts of the training data (Hayase et al., 2024), we enforce an upper bound of 4 words in
our tokens. Empirically, we found that this had no measurable impact on the encoding
efficiency of the tokenizers or the resulting trained LMs.

A.1.3 Pretokenization rules

We implement whitespace pretokenization with the default regex string from tokenizers
which was adopted by the GPT-2 tokenizer.

?\p{L}+| ?[ˆ\s\p{L}\p{N}]+|\s+(?!\S)|\s+

Note that the original GPT-2 pretokenization regex string also splits on contractions, e.g.,
splitting I’m into [I, ’m]. Since this choice is not universal among commercial tokenizers and
is not related to whitespace pretokenization (and furthermore creates plenty of undesirable
edge cases [Land, 2024]), we do not include this rule.
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Independently of whitespace pretokenization (i.e., for both BPE and SuperBPE tokenizers),
we follow recent convention (as introduced by GPT-3.5 and borrowed by LLAMA3, OLMO2)
and pretokenize digits into blocks of 3. We make one modification, by grouping digits into
3 from the right rather than from the left, so that, e.g., 1000 would be pretokenized as [1,
000] instead of [100, 0]. This choice was recently found to yield improved performance on
math benchmarks, even when applied solely at inference time (Singh & Strouse, 2024). Digit
pretokenization is enforced with the following regex.

(?=(\d{3})+(?!\d))

A.1.4 Special casing of colon

In order to make our tokenizer compatible with the common question-answering format
where the prompt ends with a colon and the continuation is expected to start with a space,
we “special-case” colon by preventing the algorithm from learning any tokens that contain
“: ” as a substring. Without this fix, common question/answer prompts might produce
distorted distributions over completions. Please see §C.3 for further discussion. This affects
the resulting tokenizer minimally in terms of the learned vocabulary.

A.2 Scaling model configurations

When matching inference compute, the goal is to match the average flops per byte of
generated text between two models with different tokenizers. To do so, we scale the model
up to cancel the effect of longer tokens, which requires precise control over the model’s size.
To produce a model config with an arbitrary inference compute cost, we first represent the
inference flops per token as a polynomial in terms of the model dimension, MLP hidden
dimension, and number of layers. Conveniently, once the model dimension and number of
layers are chosen, the flops are affine in the MLP hidden dimension, so we can easily solve
for the MLP hidden dimension that gets us closest to the desired budget. We fix the head
dimension to that of the base model.

To find the best config overall, we grid search over the hidden dimension (which must
remain a multiple of the head dimension) and number of layers, solving for the MLP hidden
dimension at each step. We choose the config which expands the transformer by the most
uniform factors. This is measured by taking the ratios of the current parameters with the
base config’s parameters, applying the logarithm, and taking the standard deviation. While
prior work has explored the best way to scale transformer models (Tay et al., 2021; Petty
et al., 2023), we believe that scaling all parameters uniformly is reasonable since we are only
increasing the model size by a small amount.

We present the exact model hyperparameters for all model sizes used in our experiments in
Table 4.

680M 910M 1.9B 2.5B 8B 11B

Parameter count 678.2M 912.5M 1.893B 2.536B 8.115B 11.30B
Model dimension 1024 1,216 2,048 2,304 4,096 4,608
MLP hidden dimension 8,192 9,728 16,384 18,432 22,016 24,704
Head dimension 64 64 128 128 128 128
Number of heads 16 19 16 18 32 36
Number of layers 16 18 16 19 32 37
Vocabulary size 20,0005 20,0005 20,0005 20,0005 20,0005 20,0005

Table 4: Model parameters for all model sizes. Model sizes 910M, 2.5B, and 11B are scaled
versions of 680M, 1.9B, and 8B respectively. All other parameters match those of OLMO
300M (from the OLMO model ladder) for sizes 680M and 910M, OLMO 1B for sizes 1.9B and
2.5B, or OLMO2 7B for sizes 8B and 11B, respectively. Maximum sequence length values for
various tokenizers are listed in Table 2.
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A.3 Evaluation Suite

Our evaluation suite builds on DataComp-LM’s core evaluation of 22 tasks (Li et al., 2024),
which was found to provide low-variance signal of learning. We add 8 more popular tasks
(e.g., MMLU, GSM8K) while also covering string manipulation tasks (e.g., CUTE), which
are known to be challenging for LMs due to their tokenizers.

All evaluations are based on decoding from the model and scoring the generation by either
comparing it to the ground truth or evaluating its functional correctness (in the case of
coding tasks). For multiple choice (MC) tasks, we check whether the predicted answer
choice is an exact match (EM) to the target (we observe that effectively 100% of model
generations are valid answer choices, especially for later checkpoints). For open-ended
tasks, we check whether the generated output contains the ground truth answer exactly,
and for coding tasks, we report pass@10.

We provide 5 in-context examples for all tasks, except for CoQA, which naturally contains
in-context examples in the conversational context, and the coding tasks (HumanEval and
MBPP), which are evaluated zero-shot following prior work. We use a maximum of 5,000
examples from each dataset, though some datasets contain much fewer examples. BB below
stands for BIG-Bench.

ARC consists of 4-way MC questions from grades 3–9 science exams. It contains two splits,
ARC-Easy, which require knowledge of basic science, and ARC-Challenge, which require
some procedural reasoning (Clark et al., 2018).

Arithmetic contains simple arithmetic problems (Brown et al., 2020).10 We use the 2da,
2dm, and 2ds splits for addition, multiplication, and division of (up to) 2-digit numbers.

BoolQ contains naturally occurring yes/no questions paired with passages that provide
an answer (Clark et al., 2019).

CommonsenseQA contains 5-way MC questions that require commonsense knowledge
to answer (Talmor et al., 2019).

COPA contains two-way MC questions about cause and effect (Roemmele et al., 2011;
Kavumba et al., 2019).

CoQA consists of passages with a series of conversational questions about the passage
Reddy et al. (2019). Each question requires the prior conversational context, due to possible
coreference across questions. Because these contextual questions naturally serve as in-
context examples, we do not provide additional in-context examples.

BB CS Algorithms consists of two subtasks, determining whether a given series of paren-
theses is balanced and identifying the longest common subsequence in two letter strings
(BIG-bench, 2023).

CUTE contains questions that require the model to understand and manipulate spelling,
such as replacing all instances of a particular letter in a word with another letter (Edman
et al., 2024).

DROP contains questions about passages, potentially requiring reasoning over multiple
pieces of information in the passage (Dua et al., 2019).

BB Dyck Languages consists of a sequence of parentheses and requires the model to
predict the correct sequence of closing parentheses so that the entire sequence is well-
balanced.

10https://huggingface.co/datasets/EleutherAI/arithmetic
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GSM8K contains grade school math word problems that require between 2 and 8 steps to
solve. In the in-context examples, we provide the answer passage that contains intermediate
steps with calculator annotations removed. The model is expected to provide the final
numerical answer after four hashtags (####) that delimit the reasoning and final answer
(Cobbe et al., 2021).

HellaSwag contains 4-way MC questions which ask for the most natural continuation
given the context (Zellers et al., 2019).

HotpotQA contains questions along with a corresponding passage from Wikipedia con-
taining the answer (Yang et al., 2018).

HumanEval contains programming problems where the model is tasked with completing
a Python function given its docstring (Chen et al., 2021). We use “\nclass,” “\ndef,” “\n#,”
“\nif,” as stop tokens. Following the original paper, we sample 20 continuations with top
p = 0.95 and temperature = 0.8. Models are allowed to generate for a maximum of 128 new
tokens. The functional correctness of generations is automatically evaluated using test cases.
We use the 20 generation to make an unbiased estimate of the pass@10 rate, i.e., how likely
at least one of 10 sampled solutions for a problem is correct.

Jeopardy contains open-ended questions from the “Jeopardy!” quiz show. 11

Lambada contains narratives without the last word, which is inferrable given the context
(Paperno et al., 2016). This task requires models to attend to the full narrative instead of
only the local context.

BB Language Identification contains sentences in different languages, and the task is to
choose the language of the sentence from a long list of options.

LSAT-AR contains MC questions that evaluate the analytical reasoning (AR) ability of
LMs (Zhong et al., 2022; 2024). Test questions are drawn from the Law School Admission
Test (LSAT) from 1991 to 2016.

MBPP contains Python programming problems where the model is given a description
of the desired function and a series of unit tests. We use the same evaluation setup as
HumanEval.

MMLU contains 4-way MC questions covering 57 different domains, covering both world
knowledge and problem-solving abilities (Hendrycks et al., 2021). Note that we report a
straight average over the 5000-example sample, rather than a macro-average over subjects.

OpenbookQA contains 4-way MC questions that require multi-step reasoning and com-
monsense knowledge (Mihaylov et al., 2018).

BB Operators contains questions where the model is given a function definition and asked
to compute the output of that function given a particular input.

PIQA contains MC questions that require physical commonsense reasoning (Bisk et al.,
2020).

BB Repeat-Copy-Logic contains instructions that ask the model to produce a particular
string (Austin et al., 2021).

SQuAD contains passages paired with questions about the passage (Rajpurkar et al., 2016).
The answer is always a span from the passage.

11https://www.kaggle.com/datasets/tunguz/200000-jeopardy-questions
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Category Task BPE 8B SuperBPE 8B SuperBPE 11B
t = 80k t = 160k t = 180k

Knowledge ARC-Easy (MC) 46.6 60.8 63.6 67.1 60.6
ARC-Challenge (MC) 35.1 46.4 43.9 50.6 43.9
Jeopardy (EM) 42.1 40.2 41.8 41.8 42.2
MMLU (MC) 36.5 41.9 42.6 44.7 41.0
OpenbookQA (MC) 33.2 49.8 49.4 54.4 46.4
TriviaQA (EM) 60.6 59.7 61.9 61.3 62.3
WikidataQA (EM) 69.7 68.2 69.5 70.9 70.9

Math Arithmetic (EM) 54.8 63.2 58.6 59.3 56.9
& Reasoning GSM8K (EM) 6.4 6.9 6.7 6.7 7.4

LSAT-AR (MC) 21.3 23.9 24.3 23.0 20.9
Operators (EM) 35.5 32.2 35.5 33.6 37.9
Repeat-Copy-Logic (EM) 3.1 6.2 6.2 6.2 3.1

Coding HumanEval (pass@10) 15.9 15.0 14.4 13.4 15.9
MBPP (pass@10) 27.5 25.3 28.4 28.3 29.4

Reading BoolQ (MC) 59.7 65.2 62.3 64.6 64.7
Comprehension CoQA (EM) 12.6 12.8 12.5 13.2 13.1

DROP (EM) 31.3 28.6 32.8 31.4 33.1
HotpotQA (EM) 53.5 52.5 54.7 55.2 54.6
SQuAD (EM) 75.1 74.3 76.2 75.8 77.2

Commonsense CommonsenseQA (MC) 33.5 50.0 52.3 53.8 50.5
COPA (MC) 77.0 86.6 87.6 85.8 97.0
PIQA (MC) 55.2 57.7 61.8 59.8 59.2
Winograd (MC) 50.4 52.5 55.2 53.1 52.3
Winogrande (MC) 47.3 51.2 51.6 52.6 50.2

Language HellaSwag (MC) 29.7 31.2 30.3 33.7 36.6
Understanding LAMBADA (EM) 77.0 72.8 75.1 70.6 75.8

Language Identification (EM) 8.8 10.2 9.7 9.0 10.1

String CS Algorithms (EM) 46.1 47.3 42.6 48.6 49.1
Manipulation CUTE (EM) 31.3 32.2 32.8 32.6 35.7

Dyck-Languages (EM) 15.9 23.2 18.8 14.2 16.7

Average 39.8 42.9 43.4 43.8 43.8

Table 5: Performance of BPE and SuperBPE models on 30 downstream tasks. This is an
expansion of Table 1 with more models.

TriviaQA contains open-ended questions about world knowledge (Joshi et al., 2017).

BB WikidataQA require models to complete factual statements with the correct continua-
tion.

Winograd contains binary MC questions where the model is given a context and asked to
determine which entity a pronoun refers to, between two options (Levesque et al., 2012).
Correctly answer the question requires commonsense knowledge and contextual reasoning.

Winogrande contain questions with the same schema as Winograd, but increases both the
scale and difficulty of the dataset (Sakaguchi et al., 2021).

B Additional Results

B.1 Task evaluation

We report the individual task performance of BPE and all SuperBPE models in Table 5 (this
an expansion of Table 1). We also show a subset of task-specific performance curves during
pretraining in Figure 11.

B.2 BPB evaluation

See Figure 6 for the bits-per-byte during pretraining of all models we compare.
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Figure 6: Bits-per-byte of BPE and SuperBPE models during pretraining. The BPE 8B,
SuperBPE 8B (t = 180k), and SuperBPE 11B attain 0.7465, 0.7482, and 0.7445 BPB respectively
at the end of training.

B.3 Additional scaling experiments

Our tokenizer has several interesting interactions with LM scaling, purely due to its in-
creased efficiency. For the purpose of this section, let α denote the ratio of our tokenizer’s
efficiency to the efficiency of a normal BPE tokenizer. (For example, we have α ≈ 1.49 for
our most efficient tokenizer.)

The primary advantage of a more efficient tokenizer is a reduction of the context length (in
tokens) for the same effective context length (in bytes). All other things being equal, this
gives:

1. A 1/α2 reduction in attention compute.

2. A 1/α reduction in non-attention compute.

3. A 1/α reduction in activation memory during training and KV-cache size during
inference.

Thus, if the context length is short, the total compute savings will be close to 1/α. For longer
contexts, the compute savings may approach 1/α2. Given a fixed training budget, there are
two natural ways to convert these savings into improved performance.

B.3.1 Matching model parameter count

In many applications of language models, such as deployment to consumer or edge devices,
it is crucial to keep the model’s size under control. In this regime, we will assume the model
size fixed. This directly grants the aforementioned benefits, and we will turn to increasing
the number of training steps to match the training budget.

Since the amount of text seen per step is remains the same due to the fixed effective context
length, a more efficient tokenizer allows the model to see more text during training for
the same budget. This may lead to improved performance on downstream tasks since the
model is more likely to have seen relevant training examples during training. Additionally,
although the model is the same size, it requires less compute and memory at inference
time to perform the same tasks. In some settings, these gains can be used to amplify
inference-time scaling (Snell et al., 2024), leading to further potential gains.
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Figure 7: Results for scaling both model parameters and train tokens proportionally. Here
we see the spread between the three settings decreases with scale.

B.3.2 Matching inference compute

In other applications of language models, model size is less critical compared to inference
compute. In these situations, it may be more desirable to scale the model size up to absorb
the extra compute.

Changing the model size has a strong impact on scaling. Depending on the context length,
we may scale the model by a factor of anywhere between α and α2 in order to match
inference compute. Since each training step involves 1/α as many tokens, the ratio of tokens
to model parameters per step may be reduced by as much as 1/α3. Prior work on LM
scaling (Hoffmann et al., 2022; Kaplan et al., 2020) reports diminishing gains once the ratio
of the numbers of train tokens and model parameters becomes too large. An α times more
efficient tokenizer allows us to train for up to α3 times longer while maintaining the same
token/parameter ratio and without increasing inference compute, delaying the regime of
diminishing gains.

B.3.3 Experiments

We train 680M and 1.9B sized BPE models on various numbers of tokens—ranging from
≈ 20 to ≈ 80 tokens per parameter—to establish a baseline scaling trend. We then train two
models with SuperBPE tokenizers for each baseline model: one with matching parameter
count and one with matching inference compute cost.

There are a couple interesting ways to visualize these results: in Figure 5, we hold the model
size fixed and increase the number of training tokens, and in Figure 7, we hold the ratio of
train tokens to model parameters fixed (inference compute matched will be fixed 0.7 times
lower) and vary both the model size and the number of training tokens. The general trends
observed from these results are that matching inference compute is almost universally the
best, while matching parameter count tends to be worse than the baseline except in the
undertrained regime, where it is better than the baseline. The differences between the
different settings increases with overtraining, but decreases when scaling both model size
and training tokens at the same time.
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Figure 8: (Left) The number of superword tokens in a SuperBPE tokenizer, as a function
of the transition point. A superword token is any token that violates the whitespace
pretokenization rule from Stage 1. With an early transition point of t = 60K, about 85% of
the tokens learned in Stage 2 are superword tokens. For t > 100k, close to 100% of Stage
2 tokens are superwords. (Right) The distribution of superword token lengths in terms of
number of words, for t = 180k.

C Analysis of SuperBPE Tokenizers

C.1 Superword token analysis

How many superword tokens are in SuperBPE tokenizers? While the second stage of the
pretokenization curriculum allows learning of superword tokens, subword tokens can still
be learned. Shown in Figure 8a, for transition points t < 80k, the number of superword
tokens is relatively steady around 120k. Past t > 100k, almost all tokens learned in Stage 2
are superword tokens. Figure 8b shows the number of whitespace-delimited words in the
superword tokens of SuperBPE with t = 180k.

C.2 Analysis of token frequencies in encoding

We also analyze token frequency statistics under BPE versus SuperBPE tokenizers. Figure 9a
shows the relation between token rank (in frequency) and frequency. While tokens in
BPE demonstrate a standard Zipfian relation, the slope of SuperBPE curves have a more
shallow slope, meaning that the rate of decay in token frequency is smaller. The smaller
proportion of tokens with very low counts may reduce prevalence and severity of glitch
tokens (Rumbelow & Watkins, 2023; Land & Bartolo, 2024).

Figure 9b shows the minimum number of tokens from the vocabulary needed to cover any
given proportion of data. For BPE, the relation is striking—only 57% of tokens are needed to
encode 99% of the data! The remaining tokens make up a long tail of infrequent tokens. In
contrast, SuperBPE tokenizers make better use of the vocabulary. For t = 80k and t = 180k,
this statistic is 90% and 70% of tokens, respectively.

C.3 Distributional Distortion at the Prompt Boundary

Prior work (Lundberg, 2023; Phan et al., 2024) has shown that LMs using BPE tokenizers may
produce distorted generations due to the forced partition in tokenization between a prompt
and its completion. This issue stems from the fact that users typically desire completions
conditioned on a text prompt. The natural approach to obtaining such completions is to
take the prompt, tokenize it with the proper tokenizer, and then sample a completion of the
resulting token sequence from the LM.
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Figure 9: (Left) Token counts when ordered by frequency. The rate of decay in token
frequency is smaller. (Right) The minimum number of tokens needed to cover a given
proportion of the data. SuperBPE tokenizers make better use of the vocabulary, while BPE
tokenizers have a long tail of infrequent tokens.

For a simple example of how this can go wrong, consider a tokenizer with base vocabulary
of A and B and a single merge forming the token AB. Let’s suppose we trained a model using
this tokenizer on the strings “AA”, “AB”, and “BB” with equal proportions. If we condition
on the text prefix “A”, there are two equally probable continuations: “A” and “B”. However,
A is the only valid completion of the token prefix A, since the token B never follows the
token A during training. In other words, the prompt-completion pair (A, B) is canonically
tokenized using a token that crosses the boundary between the prompt and the completion.

While this problem is shared by all BPE tokenizers, it can be partially mitigated by pre-
tokenization: if the prompt and the completion are separated during the pretokenization
step, then it is impossible for a token to cross the boundary. This fix tends to work well for
English, where the completion is typically expected to begin with whitespace, so whites-
pace pretokenization would apply. However, there are many settings where whitespace
pretokenization cannot fix the underlying issue, including natural languages that do not
use whitespace to separate words (like Chinese and Japanese), programming languages,
and constrained generation (Lundberg, 2023; Ribeiro, 2023).

Several fixes for this issue have been proposed: at training time, token merges can be
randomly dropped (Provilkov et al., 2020; Sims et al., 2025; DeepSeek-AI et al., 2025) to
expose LMs to the internal makeup of tokens; at inference time, options include token
healing (Lundberg, 2023), algorithmic correction (Phan et al., 2024), and enumeration of all
relevant segmentations of the prompt (Vieira et al., 2024). We leave a detailed comparison
of these techniques to future work.

Additionally, the issue does not apply at all to models that separate the user’s input from
the model’s response using special tokens, as is typical for chat models.

D Other Related Work

Please see Mielke et al. (2021) for a survey of subword tokenization.

Pretokenization Pretokenization defines how the text is split in order to prevent certain
pairs of tokens from being merged. GPT-2 (Radford et al., 2019) introduced a regular
expression (regex) which defines the pretokenization pattern. These regex strings have
gained complexity over time; GPT-3.5 limits the number of digits in numerical tokens to
3, and allows single punctuation to be merged with the start of words (presumably to
accommodate code, as it allows .get to be a single token). Prior work has shown that, for
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Figure 10: Token counts when ordered by token ID, which reflects the order in which tokens
were learned in tokenizer training.

instance, digit pretokenization choices (Nogueira et al., 2021; Thawani et al., 2021; Singh
& Strouse, 2024) can significantly impact arithmetic performance. It is also likely that
pretokenization affects different languages differently (Velayuthan & Sarveswaran, 2025;
Ahia et al., 2023), due to natural statistics of the average word length, which acts as an upper
bound on encoding efficiency in that language under subword tokenization. Nonetheless,
the effectiveness of many pretokenization choices have not been thoroughly studied.

n-gram language models Our work is loosely related to n-gram LMs, which incorporate
n-gram statistics into the next-word prediction (Brants et al., 2007; Liu et al., 2024).

Internal representation of semantic units Previous work has showed that the early layers
of the LM may “aggregate” information over multi-token entities (e.g., [ New, York]) into
the last token’s (e.g., York) hidden representation (Meng et al., 2022; Kaplan et al., 2025;
Lad et al., 2024). This suggests that LMs naturally learn multi-word representations, and
segmentating text into more semantically cohesive units at the input level (e.g., having
New York as a single token) may simplify this process.
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Figure 11: Performance during pretraining for a subset of tasks in our evaluation suite.
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