
TinySense: A Lighter Weight and More Power-efficient Avionics System
for Flying Insect-scale Robots

Zhitao Yu→,1,3, Joshua Tran→,2, Claire Li2, Aaron Weber1, Yash P.Talwekar1, Sawyer Fuller1,2

Abstract— In this paper, we introduce advances in the sensor
suite of an autonomous flying insect robot (FIR) weighing less
than a gram. FIRs, because of their small weight and size,
offer unparalleled advantages in terms of material cost and
scalability. However, their size introduces considerable control
challenges, notably high-speed dynamics, restricted power, and
limited payload capacity. While there have been advancements
in developing lightweight sensors, often drawing inspiration
from biological systems, no sub-gram aircraft has been able
to attain sustained hover without relying on feedback from
external sensing such as a motion capture system. The lightest
vehicle capable of sustained hovering—the first level of “sensor
autonomy”—is the much larger 28 g Crazyflie. Previous work
reported a reduction in size of that vehicle’s avionics suite to
187 mg and 21 mW. Here, we report a further reduction in mass
and power to only 78.4 mg and 15 mW. We replaced the laser
rangefinder with a lighter and more efficient pressure sensor,
and built a smaller optic flow sensor around a global-shutter
imaging chip. A Kalman Filter (KF) fuses these measurements
to estimate the state variables that are needed to control hover:
pitch angle, translational velocity, and altitude. Our system
achieved performance comparable to that of the Crazyflie’s
estimator while in flight, with root mean squared errors of 1.573
deg, 0.186 m/s, and 0.136 m, respectively, relative to motion
capture.

I. INTRODUCTION

Insect-scale robots have the potential to be deployed in
the thousands or millions to perform “fast, cheap, and out of
control” space missions, collective assembly tasks, or hazard
detection, owing to their small size and low materials cost.
Recent incarnations of sub-gram aircraft have demonstrated
controlled flight [1], [2], as well as electromagnetically-
mediated power delivery [3], [4], [5]. But sensor autonomy,
that is, the ability to hover without external feedback, has
not yet been demonstrated below 10 g, never mind 1 g.
A central question is “What are the minimum sensor suite
and computation resources needed for the task of flight con-
trol?” Of particular concern when designing such a control
architecture is how the physics of scale affects sensing and
control. The paper [6] serves as a step toward a missing but
complementary analysis to previous work that has largely
focused on scaling effects on actuation and mechanics in
small robots [7], [8], [9], [10].
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Fig. 1: The TinySense sensor suite shown next to a U.
Washington Robofly and a standard pencil for scale. The
width of the sensor suite board is approximately 12 mm and
its mass is 78.4 mg.

Insect-scale robots have extreme size, speed, weight, and
power (SSWaP) constraints. “Sensor autonomy” including
stable hovering, represents the first level of autonomy in the
hierarchy proposed in [11], and is the foundation upon which
higher level capability is built. We impose a requirement that
sensing and computation take no more than 10% of the power
required to stay in the air; any more than this and flight
time is severely impacted. This factor holds for important
examples of autonomous drones, such as the 1.5 kg system
in [12] and the 30 g system in [13]. This suggests a power
budget of →20 mW for a 150 mg Robofly (Figure 1) that
consumes 100 mW to fly (about 200 mW after losses from
a 50% efficient boost converter are factored in).

Large drones can carry larger sensor payloads such as
light-based ranging systems (LIDAR) and the global posi-
tioning system (GPS). However, GPS does not work well
in indoor environments [14] and small robots are not able
to hold emissive sensors due to constraints in size, speed,
weight, and power consumption (SSWaP). Recent work
has introduced a 187 mg avoinics suite that consumes
21 mW [15], considered gyroscope-free avionics [6], and
has investigated the effect of wing-induced vibrations [16].

In this paper, we introduce a new avionics system for
autonomous hovering flight that is even better tailored in
mass and energy consumption for an insect-scale robot
(Fig. 3) than previous work [15]. To do so, we made two
key refinements to lower power and mass. First, we replaced
the power-hungry laser rangefinder with a pressure sensor.
In recent years, these have attained sufficient precision to be
used for the purpose of altitude estimation and control, even



Fig. 2: Forces and state variables of a small hovering Flying
Insect Robot (FIR).

for insect-scale robots. Second, we replaced the optic flow
sensor with a global shutter camera and computed optic flow
on a microcontroller, resulting in a reduction in weight from
97 mg to 44 mg. As in [15], this new sensor suite is able to
estimate the crucial variables that are needed for controlled
flight: pitch angle, translational velocity, and altitude.

Our contributions, in order of importance, are:
1) A reduction in weight of the sensor suite to 78.4 mg

which is less than half of the previous lightest sensor
suite [15].

2) Demonstration of accurate estimates of the state vari-
ables pitch angle, translational velocity, and altitude
using data collected wirelessly from this sensor suite
while mounted on a drone.

3) Optic flow estimation on a microcontroller.
Subsequent sections elaborate on the dynamics, sensor

configurations and measurement models, and validate our
findings with data acquired wirelessly from our sensor suite,
which is then analyzed on a desktop computer.

II. METHODOLOGY

A. Dynamics

The basic dynamics of most small hovering devices are
unstable in pitch angle and position. This was true for the first
robotic flies [17] and EHD thruster actuated robots [18], as
well as larger aircraft such as the tailless Delfly Nimble [19].
Techniques to stabilize them passively through modification
of wing configuration [20] or using air dampers [21] are
either unproven or result in undesirable steady-state oscilla-
tions, respectively. Our approach in this work is to first use
linearized dynamics and observation models from which we
can construct a Kalman observer of these unstable states so
that they can be controlled.

Fig. 2 depicts forces acting on a flapping-wing robot such
as a gnat robot or the Robofly, but the proposed model can
apply to almost any small flying aircraft, including EHD-
based thrusters [22]. Near hover, the vehicle’s dynamics are
well approximated by a linear state-space model [23], [24],
[21] of the form q̇ = Aq+Bu+Gw, where w is the process
noise, assumed to be zero-mean Gaussian white noise with
known covariance. Process noise w is included because it is
a necessary consideration for the design of the estimator.

To simplify the analysis, we restrict our attention to motion
in the x-z plane; the dynamics in the y-z plane are very simi-
lar. We choose a minimal state vector q = [ω, vx, z]T , where

ω is the pitch angle (rad), vx is the vehicle’s translational
velocity in the world x-direction (m/s), and z is its vertical
position or altitude (m) as illustrated in Fig. 2. When the
nonlinear Euler-Lagrange equation dynamics are linearized
by taking the Jacobian at ω = 0, thrust force ft = mg (N),
and z = zd, where zd is the desired altitude (m), the
dynamics matrices are given by:

A =




0 0 0
g ↑ b

m 0
0 0 0



 , B =




1
0
0



 , (1)

where m is the vehicle’s mass (kg), and b is the vehicle’s
translational drag proportionality constant (Ns/m) [24]. Note
that because we are concerned in this paper about only
estimation, we ignore inputs from the motor, and instead
use the measurements of the gyroscope u = [εm] (rad/s) as
the only input. This is discussed further in Section V.

III. SENSOR SUITE AND MEASUREMENTS

Next we consider the sensor suite and state estimator. Our
interest is in sensors that are either available commercially
off-the-shelf, nearly so, or can be fabricated using the same
tools that have been successful building insect robots such as
the Robofly [25] and Robobee [26], [1]. A further constraint
is that they require extremely low power for both the sen-
sor itself and subsequent transduction and processing. This
largely eliminates sensors that emit power, such as radar,
sonar, depth cameras that emit structured light, and scanning
laser rangefinders [27], but permits passive sensing such
as vision. The global positioning system is largely denied
indoors and does not provide enough resolution anyway (1–
10 m), and, further, requires significant power for signal
processing. A lightweight and low-power sensing modality
that can provide the necessary information to hover is “optic
flow,” which is defined as the velocity of the image (in rad/s)
across the camera imager [28], [29], [30]. In tandem with
other sensors, optic flow can be used to estimate the distance
to obstacles as the imager translates through space [31].
Methods for estimating optic flow include calculating lu-
minance gradients locally [32] (Lucas-Kanade), or image-
wide [33], as well as iterative search for matching blocks of
pixels [34]. Distances can also be estimated with a second
camera and stereo vision using line matching [35], but this
requires a second camera and a long “baseline” between
cameras for accuracy, which adds excessive weight.

Given these constraints, we propose the following set of
onboard sensors: An optical sensor, a pressure sensor, and a
gyroscope. We designed a customized microcircuit with the
three sensors. (Fig. 3)

A. Camera and optic flow
The system employs an optical sensor, the PAG7920LT

(PixArt Imaging, Inc., Taiwan), to capture 160↓120 QQVGA
images with a 120↑ field of view at 100 Hz over a 32 MHz
SPI connection, with which the microcontroller computes
optic flow via the Lucas-Kanade Method. The reason we
select this camera is that, to our knowledge, it is the only



Fig. 3: Sensor suite (PAG7920LT optical sensor, ICM42688-
P IMU, BMP388 pressure sensor) next to US 1 cent coin.

global shutter camera that provides an SPI interface to
transmit the image data. Other global shutter cameras require
a special interface called MIPI (mobile industry processor
interface), which is not available for any microcontroller.
The majority of cameras employ a “rolling shutter” in which
pixel rows are captured at sequential periods of time. A
global shutter camera, by contrast, captures that all pixels
at the same time, which ensures an accurate optic flow
measurement.

To minimize the data transmitted wirelessly over Bluetooth
from our TinySense sensor suite, it is necessary to perform all
optic flow calculations onboard. We wrote a Lucas-Kanade
algorithm using the Arduino development environment in
C++ to run on NRF52-based Adafruit Express board, chosen
for its low size and weight.

The Lucas-Kanade algorithm is performed by calculating
the following quantities:

J =





Ix(p1) Iy(p1)
Ix(p2) Iy(p2)
... ...

Ix(pn) Iy(pn)



 ,v =

[
Vx

Vy

]
, b =





↑It(p1)
↑It(p2)

...

↑It(pn)



 ,

where p1, p2, . . . , pn are the pixels in the image, v is the
image flow in pixels per frame, and Ix(pi), Iy(pi), It(pi) are
the image’s horizontal, vertical, and temporal (time) partial
derivatives respectively, at pixel pi. Then, the optic flow is
estimated (in pixels/frame) by taking the pseudoinverse v =
(JT

J)↓1
J
T
b.

To minimize computation for the limited microcontroller
resources, we reduced the image resolution by a factor of 4
(producing a 40↓ 30 resolution) by skipping pixels.

The two most expensive operations involve computing
J
T
J and J

T
b. A 40↓ 30 image produces an J matrix with

(40↑2)↓(30↑2) = 1064 rows and 2 columns and a b matrix
with 1064 rows and 1 column. Multiplying two matrices of
size k ↓ l and l ↓m requires at worst kml multiplications.
Thus, computing J

T
J and J

T
b require 4256 and 2128 multi-

plications, respectively. We neglect the additional operations
required to compute their product (2 multiplications) and the

2↓2 matrix inverse (6 multiplications and one divide), giving
a total operations count of 6384.

We additionally implemented a form of sparse optic flow
in which flow vectors were computed for twelve 10 ↓ 10
patches, which are averaged to produce a final estimate.
A 10 ↓ 10 image produces an J matrix with (10 ↑ 2) ↓
(10 ↑ 2) = 64 rows and 2 columns and a b matrix with 64
rows and 1 column. Thus, computing J

T
J and J

T
b require

approximately 256 and 128 multiplications, respectively.
With twelve matrices of size 10 ↓ 10, the total number of
multiplication is 12↓(256+128) = 4608. This is a reduction
of approximately 28%.

To convert the optic flow from pixels/frame to angular
velocity (rad/s), we found the calibration constant ϑ =
↑0.027 (rad/pixel) by rotating the TinySense by hand and
performing a linear regression against its gyroscope readings.

B. Pressure sensor
Altitude measurements were conducted by a Bosch

BMP388 pressure sensor. This sensor estimates altitude as
a proportion of the difference between the air pressure and
sea level. We set it for 2↓ pressure oversampling and an IIR
filter coefficient of 3 to maximize resolution. To compensate
for variations in local pressure causing inaccurate altitude
measurements, the sensor was assigned a bias equal to the
average of the first 25 measurements where the sensor system
was grounded; this bias was subtracted from every reading.

C. Gyroscope
For the onboard inertial measurement unit (IMU), we

chose the TDK ICM42688-P because it is a recent model that
is available in the smallest commercially-available package
size of 2.5 ↓ 3 mm. It includes both a 3-axis gyroscope and
a 3-axis accelerometer. In this work, we used only the gyro-
scope, which measures angular velocity through the detection
of Coriolis forces within an electromechanical resonator.
We configured the sensor to have a ±2000 degrees/s full-
scale (FS) range and enabled the sensor-provided low-noise
mode to improve the sensitivity and minimize noise. During
initial experiments, we noticed that the gyroscope’s signal
was noisier than expected and differed significantly from
the Crazyflie’s gyroscope, even after applying a digital low-
pass filter. In handheld, non-flying experiments, however, the
gyroscope proved accurate. We hypothesized that vibrations
from the spinning propellers, which were at a higher fre-
quency than the 100 Hz sampling rate, were introducing
aliasing. We enabled the sensor’s anti-aliasing low-pass filter
with a cutoff frequency of 42 Hz, which is well below
the Nyquist frequency associated with the 100 Hz sampling
rate. We found that this setting significantly reduced the
gyroscope’s noise and error.

IV. STATE ESTIMATION

To implement a Kalman Filter, we must first ascertain
whether our system is observable at equilibrium. To show
this, we linearize the observation model for the task of
hovering. Note that the gyroscope provides a low-noise



TABLE I: Comparison between TinySense and prior work

component size mass power
(mm) (mg) (mW)

prior work [15]

IMU 2.5→3→0.91 14 3
rangefinder 4.9→2.5→1.56 16 5
optical flow 5→5→3.08 97 12

board/discretes – 60 –
total – 187 21

TinySense

IMU 2.5→3→0.91 14 3
pressure 2.0→2.0→0.75 14 2.6

camera chip 2.2→2.7→6.9 24 10
lens 3.8→3.8→1.95 20 –

board/discretes – 26.4 –
total – 78.4 15.6

measurement of angular velocity ω. In cases like this in
which the sensor provides more precise information than
can be derived knowing the system’s actuated inputs (e.g.
torque applied by the aircraft’s rotors or wings), it is common
practice to reformulate the Kalman Filter to use the sensor’s
readings as “input” u, and to ignore actual system input.
This has an additional advantage that one less state variable
is required for each such measurement. Our system includes
gyroscope readings as one of its inputs and hence angular
velocity ε does not appear among the state variables. Our
observation model for the suite of sensors is:

y =

[
!m + no

zm + np

]
, (2)

where !m is the optic flow measurements (rad/s) from optic
flow sensor, zm is the measurement (m) from the pressure
sensor, and no and np are the noise terms for the two sensors.
We assume noise terms are zero-mean Gaussian white noise,
a standard assumption in sensor noise modeling to simplify
the analysis. The measurement model for the optic flow in
the x direction, as measured by the optic flow camera is a
nonlinear function of the state [6]:

!m = εm ↑ vx

z
, (3)

where εm is the angular velocity measurement (rad/s) from
gyroscope. The optic flow measurement depends on z. We
can take the Jacobian linearization at a desired altitude zd:

!m(z) = !m(zd) +O(z) = εm ↑ vx

zd
+O(z). (4)

With this linearization, our measurement model can be cast
into the Kalman Filter model, y = Cq +Du+ n, where

C =

[
0 ↑ 1

zd
0

0 0 1

]
, D =

[
1
0

]
. (5)

The observability matrix [C; CA] is full rank, meaning
that a Kalman Filter will be able to estimate the system’s
state using the measurements given in Eq. (5).

The Kalman Filter observer estimates q̂ by numerically
integrating the system:

˙̂q = Aq̂ +Bu+K(y ↑ Cq̂ ↑Du), (6)

where K is the Kalman gain.
We calculated optic flow variance Rn1 to be 0.017 by

subtracting its value from that predicted by mocap using
Eq. (3) during a constant-velocity horizontal translational

flight. We calculated the variance of the pressure sensor Rn2

to be 0.0055 by taking measurements while holding it at a
constant altitude for 60 seconds:

Rn = diag(Rn1, Rn2) = diag(0.017, 0.0055).

To estimate the process noise covariance matrix Qn, we
employed a hybrid optimization approach, combining grid
search for coarse parameter initialization, gradient descent
for fine-tuning, and manual adjustment to minimize the
RMSE between TinySense state estimates and mocap ground
truth:

Qn = diag(0.01242, 0.0012, 0.222).

For the process noise (disturbance) matrix G, we assumed
that the noise enters the system as white noise disturbance
adding to the derivatives of the three states ω, vx, and z.
Based on these, the Kalman gain K was computed using the
lqe command in python-control [36]:

G =




1 0 0
0 1 0
0 0 1



 , K =




0.095 0
↑1.32 0

0 3



 .

We implemented the Kalman Filter offline in Python by
iteratively computing the state estimates q̂i+1 according to
q̂i+1 = q̂i + ˙̂qi · dt.

V. EXPERIMENTS

A. Robot platform
We performed experiments using Crazyflie 2.0, a palm-

sized quadrotor by Bitcraze (Sweden), in wind-free condi-
tions in an indoor environment. In addition to its built-in
gyroscope, the Crazyflie was equipped with the Flow deck
v2 consisting of a downward-facing optic flow sensor and
a laser rangefinder; it uses an Extended Kalman Filter to
estimate its state in flight [37].

B. Motion capture system
To provide a ground-truth comparison for the sensors,

we used a twelve-camera OptiTrack Flex 13 motion capture
arena, with spatial accuracy ± 0.20 mm. The Crazyflie drone
was fitted with four retro-reflective motion capture markers
and its position and orientation were recorded at 120 Hz.
Velocity was estimated by taking the numerical derivative of
the position data in post-processing.

C. Experiment
We connected our sensor suite to an NRF52840 Express

(Adafruit), a board which supports data transmission through
UART and 2.4 GHz Bluetooth Low Energy compatibility. We
mounted the board as close to the geometrical center of the
Crazyflie as possible to maintain a reasonable center of mass
and minimize vibration interference to the IMU from the
propellers. Power was supplied from the Crazyflie’s 250 mAh
Lithium Polymer (LiPo) battery.

Each trial consisted of commanding the robot to rise to an
altitude of 1 m, translate forward 1 m at 1 m/s, and then de-
scend back to the ground. We ran this experiment three times.
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Fig. 4: Sensor measurements from the onboard gyroscope, optic flow sensor, and pressure sensor of TinySense are compared
with those from the Crazyflie for three different flight experiments (a), (b), and (c); trajectories are described in the main text
and corresponding state estimates in Fig. 5. In the altitude plots, altitude is measured by the Crazyflie’s laser rangefinder,
while the TinySense uses a pressure sensor; mocap data is also included for comparison.

We collected measurements from the TinySense’s sensors on
a laptop as they were transmitted over Bluetooth at 100 Hz
as binary data. Simultaneously, a second computer captured
motion capture data at 120 Hz and used a Python-based script
to capture sensor measurements and state estimates transmit-
ted from the Crazyflie over Bluetooth at its maximum rate
of 30 Hz. Each receiving device independently recorded a
UTC timestamp, which was used to synchronize the data.
The sensor measurements from the TinySense compared
with the Crazyflie, and the motion capture (mocap) system’s
measurement for altitude are shown in Fig. 4.

D. Computational load
Table II provides an estimate of the power consumption

of the optic flow algorithm, by calculating the number
of clock cycles needed for each operation. Our estimate
includes the matrix operations described in Section III-A,
as well as additional housekeeping operations, and is based
on ARM Cortex-M4 instruction timings for addition, sub-
traction, multiplication, and memory read/write operations;
integer divisions require 12 cycles at most and floating-point
divisions require 14 cycles. Given that in our current system
all sensors update at a rate of 100 Hz, we estimated that
the total number of needed cycles per second is →25.0 Mhz.
Operating the nRF52840 with an efficiency of 52 µA/MHz
and a battery-powered voltage of 4.2 V, we estimate the
power usage of the optic flow algorithm to be 5.5 mW.

E. Results and discussion
Fig. 5 compares our sensor suite’s state estimate to that

of the Crazyflie’s built-in estimator. States derived from the
mocap system are considered to be ground truth. For the state

estimator, time t = 0 corresponds to when the gyroscope
reading becomes significantly different from zero, indicating
liftoff. Fig. 4 shows that a pressure increase occurs when
the propellers first turn on, which can be observed as a drop
in measured altitude. To mitigate unwanted effects of this
in the Kalman Filter, we ignored (set to zero) altitude mea-
surements zm during the first 1.8 s after liftoff. Nevertheless,
once it is in the air, the altitude measurement matches quite
closely with the laser rangefinder on the Crazyflie, though
with slightly more noise.

Our system’s estimate compares well with the Crazyflie’s,
despite receiving gyroscope readings at only 100 Hz, which
is ten times slower [37]. The key metric of pitch angle RMSE
is approximately equal (Table III). Large errors in transla-
tional velocity vx appear around t = 5 and t = 6. These
occur after sudden changes in attitude, during which angular
velocity exceeds 3 rad/s (Fig. 4). At these moments, we
observed that TinySense optic flow readings are consistently
lower than those of the Crazyflie. Lucas-Kanade cannot
detect motion accurately if the displacement between frames
is greater than a half pixel between image frames [38]. This
limits optic flow measurement to !m < 0.5ϑF = 1.4 rad/s,
where ϑ=0.027 is the angular increment between pixels
and F=100 is the frame rate (Hz). We believe that the
lateral velocity estimate diverges during these fast maneuvers
because it depends on erroneous optic flow readings.

VI. CONCLUSION

In the present study, we introduce a new sensor suite with
dramatically reduced mass, and associated optic flow and
state estimation software that is compatible with the com-
putational constraints of an onboard microcontroller small
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Fig. 5: Comparison between state estimates from TinySense’s Kalman Filter, Crazyflie, and mocap. We conducted three
flight experiments (a), (b), and (c), with the Kalman filter estimates starting at time zero. Pressure sensor measurements
were ignored during the first 1.8 s because pressure changes due to the ground effect at takeoff confound readings.

TABLE II: Estimate of optic flow algorithm power use
update

frequency (Hz)
occurences/

update task
single-cycle
operations

int division
operations

floating-point
division operations

total
cycles/update

total
cycles/s (Mhz)

estimated
power (mW)

100
1 skip frame 8493 0 8

249781 25.0 5.512 LK OF 18434 128 2
1 copy data 1200 0 0

TABLE III: Root Mean Squared Error (RMSE) of estimates
relative to mocap system

velocity vx pitch angle ω altitude z
(m/s) (deg) (m)

Crazyflie 0.075 ± 0.009 1.619 ± 0.267 0.021 ± 0.001
TinySense 0.186 ± 0.015 1.573 ± 0.166 0.136 ± 0.026

enough to fly aboard flying insect robots (FIRs) weighing
less than a gram. Our proposed avionics suite diverges in
two important ways from the 28 g Crazyflie helicopter,
the lightest vehicle yet to perform controlled hovering, and
previous work [15]. First, we replaced a power-hungry laser
rangefinder with a much more efficient (and slightly less
ideal) and lighter pressure sensor. Second, we replaced an
off-the-shelf optic flow sensor, which is available only in rel-
atively heavy packages, with a custom camera with a global
shutter and a custom-written Lucas-Kanade-based optic flow
algorithm running onboard a 10 mg microcontroller small
enough to fly onboard an FIR. We estimate the compute
power usage is about 5 mW. Our system uses a linear Kalman
Filter to estimate pitch angle, translational velocity, and
altitude. This can be readily adapted to a nonlinear extended
Kalman Filter for more generality [15].

The cumulative weight of this sensor suite is only 78.4 mg,
rather less than the 187 mg of previous work [15]. With
the addition of a 30 mg microcontroller and crystal, the
overall system remains well within the 252 mg payload

limit of the 143 mg robotic platform reported in [20]. Our
system demonstrates average RMSE values of 0.186 m/s
for velocity, 1.573 deg for pitch angle, and 0.136 m for
altitude when compared to the motion capture system. In
comparison, the Crazyflie platform achieves RMSE values
of 0.075 m/s, 1.619 deg, and 0.021 m for the same states
during similar flight maneuvers. This shows that our system
performs closely to the state-of-the-art Crazyflie in these
scenarios. The pressure sensor showed negligible drift over
a 60-second period, providing a usable altitude estimate
as long as its output during takeoff is ignored. Future
improvements include mitigating the lateral velocity errors
that occur during rapid rotations that exceed the limit of
Lucas-Kanade estimation (Section V-E) by increasing the
frame rate or image blurring. Additionally, our patch-based
optic flow estimation (Section III-A) may allow outliers to be
rejected based on their eigenvalues to eliminate low-contrast
patches, reducing noise [38].

Future work will integrate TinySense along with a micro-
controller and power hardware onto insect-scale robots such
as the Robofly [39] to perform visual navigation [40]. The
Robofly performs faster accelerations than the Crazyflie and
is a different vibration environment, but is otherwise similar.
Previous work shows vibrations do not confound gyroscope
readings [41], [16]. Algorithmic changes in optic flow may
be needed to accommodate vibration, but our choice of a
global shutter camera will mitigate tearing artifacts.
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