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Abstract—The radio frequency (RF) spectrum is essential for
wireless communication but is becoming increasingly limited
due to the rapid growth in device usage. Real-time spectrum
sensing facilitates dynamic spectrum sharing, but conventional
methods face significant challenges, including the high power
consumption of analog-to-digital converters (ADCs) and the
computational demands of Fast Fourier Transforms (FFTs). To
address these limitations, prior work introduced a frequency-
domain analog signal processor. This processor includes a dig-
itally tunable narrow-bandpass filter implemented with pro-
grammable dispersion-engineered elements and a scalable path-
sharing delayed signal combiner. However, the naive spectrum
sweeping method employed in this design remains highly time-
and energy-intensive.

In this work, we improve the spectrum sensing efficiency of
the analog signal processor by co-designing a sensing matrix gen-
eration method with a decoder-based transformer for in-context
spectrum recovery. Specifically, we introduce a novel algorithm
for sensing matrix generation that leverages the hardware design
of the analog signal processor. We show that the generated sensing
matrices can be interpreted as part of the well-designed prompts
for a transformer with specifically designed parameter matrices
to solve the sparse spectrum sensing problem efficiently through
its in-context learning capability.

To characterize the efficiency of the in-context learning-
enabled spectrum sensing approach, we provide rigorous theoret-
ical guarantees on the in-context spectrum sensing and evaluate
the performances through empirical results. Compared to base-
line approaches, our method achieves significant improvements
in accuracy.

I. INTRODUCTION

As emerging applications in areas such as 5G commu-
nications and satellite links migrate toward millimeter-wave
(mmWave) frequencies, the need for broadband spectrum
sensing that can cover wide-range bands is becoming urgent.
However, implementing real-time wideband scanning using
conventional digital techniques presents fundamental chal-
lenges. These include the excessive power consumption and
complexity of high-speed analog-to-digital converters (ADCs)
and digital signal processing (DSP) circuits required to per-
form large-scale Fast Fourier Transforms (FFTs).

To address these challenges, a frequency-domain analog
processor has been recently proposed [1], offering an energy-
efficient solution for wideband spectrum sensing. This proces-
sor draws inspiration from frequency-scanned arrays and lever-
ages programmable dispersion-engineered elements to exploit
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frequency-dependent constructive and destructive interference.
At its core, the design incorporates an array of programmable
dispersive phase shifters, all sharing a common RF input.

Meanwhile, transformers have become the backbone of
various machine learning tasks, including natural language
processing [2], [3] and computer vision [4], [5], signifi-
cantly influencing subsequent research and applications. A
key strength of transformers is their strong performance in
in-context learning (ICL) [6], where they can perform new
inference tasks based on the contextual information embedded
in example input-output pairs provided in the prompt, without
requiring further parameter updates.

In this work, we leverage the ICL capabilities of transform-
ers to enhance the spectrum sensing efficiency of the ana-
log processor. Specifically, we demonstrate that a pre-trained
transformer can be deployed with the analog processor to
perform real-time spectrum sensing with provable performance
guarantees.

Our main contributions are as follows:

« First, we propose a sensing matrix generation algorithm,
together with a transformer parameter implementation,
to enable the transformer’s in-context sparse spectrum
sensing. The sensing matrix generation algorithm pro-
duces sensing matrices, which will be combined with the
corresponding output power of the analog signal proces-
sor to form the prompt for the transformer. The sensing
matrix generation algorithm is specifically designed to
enhance the transformer’s capacity for solving in-context
spectrum sensing problems. Additionally, the parameters
of the transformer are optimized to efficiently utilize the
generated prompts (sensing matrices) for ICL.

o Second, we theoretically characterize the performance
of the proposed in-context spectrum sensing approach.
More specifically, we show that when the number of
measurements is of the order O(S? log L), where S is the
sparsity of the power spectrum vector and L is the number
of subbands, the estimated power spectrum produced
by the transformer converges to the ground truth at a
rate linear in the depth of the transformer model. Such
results indicate that the proposed in-context spectrum
sensing can significantly reduces sensing time and energy
consumption.

o Third, we perform simulation experiments to validate
the efficiency of our algorithm and support our theoreti-



cal findings. The results demonstrate that the in-context
spectrum sensing method can achieve more accurate
estimation compared to classic baseline algorithms.

II. PRELIMINARIES AND PROBLEM FORMULATION

Notation. Bold uppercase letters (e.g., X) denote matrices,
and bold lowercase letters (e.g., x) denote vectors. The ¢,
norm of a vector x is denoted by |x|/,. The Hadamard
(element-wise) product is denoted by ®. The identity matrix
of size d x d is denoted by I;, while 1, x represents the all-1
matrix with dimensions M x N. The conjugate of a complex
number = € C is denoted by Z.

A. Frequency Domain Analog Processor

The algorithm design is abased on a recently proposed
frequency-domain analog signal processor [1] as depicted
in Figure 1(a). It consists of an array of N programmable
dispersion-engineered elements that share a common RF in-
put. Each dispersion-engineered element, labeled as k, k €
[0 : N — 1], is implemented with the combination of a
broadband phase shifter, which exhibits constant phase shift
kA¢ across frequency, and a fixed true-time delay line with
delay kAr. Therefore, for incoming signal at frequency w, it
will encounter a phase shift at each element k by 6x(w) =
k(Ap — AT - w).

Let ay represent the weight of each element, which is
controlled via the gain setting of the phase shifters. If a;, = 0,
element k is effectively turned off. Then, the array factor (AF),
defined as the frequency response of an N-element array, is
given by

N-1
- Z ay, - 30 (1)
k=0
M—1
AF(w) = Z ay, - eIFAI—AT W), 2)
k=0

Figure 1(b) shows the calculated frequency response of the
proposed spectrum sensor for a specific A¢, A7, and identical
ay, for all k. The response is similar to a band-pass filter, where
the maximum array factor (AF) is achieved when the signals
are combined in phase.

Let P(w) be the power spectrum density (PSD) function
of the input signal x(¢). Then, the power of the output signal
of the analog processor equals [ P(w)|AF (w)|*dw, which is
measured by an RF power detector.

Intuitively, by adjusting the analog processor configuration
{A¢p, AT, {ak}ff;ol} and measuring the corresponding output
power, the analog processor can obtain “sketches” of the
spectrum occupation, which can then be used to reconstruct
the entire spectrum.

B. Spectrum Estimation as Constrained Sparse Recovery

We cast the spectrum sensing problem into a sparse re-
covery problem as follows. We assume the spectrum can
be discretized uniformly into L subbands, where the cen-
tral frequency of the ¢-th subband is w;. We assume there
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Fig. 1: (a) Proposed frequency-domain analog processor. (b)
Simulated frequency response.

exists a w’ such that w, = ¢ - w for all £ € [L].
We assume P(w) can be approximated as a constant py
in each subband, and the corresponding AF(w) can be
approximated as AF(wy). Let p = [p1,p2,...,pr]T, and
h = [AF(w), AF(w2), ..., AF(wr)]T. Then, the measured
output power can be approximated as ¥y = (h ® h)'p + ¢,
where e represents the measurement noise.

Note that h depends on the chosen configuration
{A¢, AT, {a} . }. Assume we have M such configurations,
and correspondingly, we obtain {y;}},, where y; = (h; ®
h;)"p + ;. Assume there are at most S < L subbands
are occupied. Then, the spectrum estimation problem can be
formulated as a sparse recovery problem:

P — (
g&MZ

We denote the optimizer of P; as p*. Since solving P; is NP-
hard, a common relaxation is to consider the Least Absolute
Shrinkage and Selection Operator (LASSO) formulation:
1 & 2
in — h; oh;)Tp — ) Allplls.
£$M20<a>py + Alpll:

B)p-u) . stlpl<S.

Let fli =h;® Hi and
h/ Y1

Ym

Then, the LASSO formulation can be expressed as
Py:  min [Hp —y|* + Allp|:- 3)
pERL

Extensive research has been performed in the past years
to solve P, reliably and efficiently. For sensing matrices
H, random designs (e.g., Gaussian, sub-Gaussian, Bernoulli)
are widely used due to their strong recovery guarantees,
while structured designs (e.g., Fourier transforms, expander
graphs) are often employed for specific applications [7]. Ex-
isting results show that when the number of measurements
is O(Spolylog L), random matrices have strong recovery
guarantees typically based on properties like the Restricted
Isometry Property (RIP) and Null Space Property [8]-[10].
While for structured designs such as partial Fourier matrices,
theoretical studies show that if one forms H by selecting m



rows of a discrete Fourier matrix uniformly, then H satisfies
RIP with high probability when m = O(SpolylogL) [9],
[11].

Meanwhile, iterative algorithms, such as ISTA and LISTA,
are shown to achieve sublinear convergence rates [12]. Al-
ternatively, learning-to-optimize (L20) based solvers, such as
LISTA [13], LISTA-CP [14], and ALISTA [15], can achieve
linear convergence rates. However, these L20-based solvers
require retraining the solver model for each new sensing
matrix, which introduces additional computational overhead.

C. Transformer and In-context Learning

We consider a K-layer decoder-based transformer architec-
ture [16], where each transformer layer has an attention layer
masked by a decoder-based attention mask and followed by a
multi-layer perception (MLP) layer.

Masked Attention Layer. An P-head masked atten-
tion layer with parameters {(V.., Qm, K )me(p)} where
Vo, Q. K, € RPXP s denoted as Attngv,, Q. Km0
For an input sequence Z € RP*¥ its output is:

Attngv,, Q.. K.} (Z) 4)

P
—Z+ Y (VnZ) x mask(a((szf(QmZ))),
m=1
where mask(M) satisfies mask(M);,; = M, ; if i < j and
0 otherwise, and o(-) is the activation function. In this work,
o(-) is set as ReLU.

MLP Layer. An MLP layer with parameters W; &€
RP'XD W, ¢ RP*D' and b € RP', denoted as
MLP{w, w,,b}- Denote the output sequence of attention
layer as Z' = Attn(Z), the MLP layer maps each column
z) of Z' € RP*N as:

MLPw, w.b} (%) = 2; + Wao(W1z; +b). (5

In-Context Learning (ICL). For an ICL task, a trained
transformer is given an ICL instance 7 = (D, hps 1), where
D = {(h;,y;)}ie;m) and hpryq is a query. Here, h; € R?
is an in-context example, and y; is the corresponding label
for h;. We assume y; = fp(h;) + ¢;, where ¢; is an added
random noise, and f}, is a deterministic function parameterized
by p. Unlike conventional supervised learning, for each ICL
instance, p ~ P,, i.e., it is randomly sampled from a
distribution P,

To perform ICL in a transformer, we first embed the ICL
instance into an input sequence Z € RP*M_ The transformer
then generates an output sequence TF(Z) with the same size
as Z, based on which a prediction 75,11 is generated through
a read-out function F, i.e., Ypr+1 = F(TF(Z)). The objective
of ICL is then to ensure that /5711 closely approximates the
target value yar41 = fp(hary1)+enr41 for any ICL instance.

During the pre-training of a transformer for an ICL task, it
first samples a large set of ICL instances. For each instance,
the transformer generates a prediction 75,41 and calculates the
prediction loss by comparing it with ya;4+1 using a proper loss
function. The training loss is the aggregation of all prediction

losses for every ICL instance used in pre-training, and the
transformer is trained to minimize this training loss.

D. In-context Learning for Spectrum Estimation

Our objective is to leverage the ICL capability of transform-
ers to perform efficient spectrum sensing.

During the pre-training process, a set of in-context spectrum
sensing instances {(H’,y’, b}, 1, v}, +1)}§-V§1*" is generated
according to

y-z = (fli)—rpj —|—€g, ] S [Ntrain]7 1€ [M+ 1}7

where p’ ~ P, hg ~ Py, and e{ ~ P, are independently sam-
pled from their respective distributions. Based on this training
dataset, a pre-trained transformer is obtained by minimizing a
specified loss function.

After pre-training, during the inference process for ICL, a
spectrum sensing instance (H,y,hjps11) is randomly sampled
according to the same distributions as in the pre-training.
Different from conventional ICL where the objective is to
predict yp 11, our objective is to explicitly estimate the hidden
p based on the input (H,y,hp;11) without any further
parameter updates. As we will show in the subsequent section,
this can be achieved through a joint design of the configuration
of the analog processor and the transformer.

III. JOINT DESIGN AND ANALYSIS

To ensure the sensing matrices given by the analog pro-
cessor can theoretically guarantee a transformer can recover
sparse frequency spectrum in-context, we need to co-design
both the sensing matrix generation method and the transformer
implementation, i.e., {V,,, Qm, K} in the attention layers
and {W1, Wy, b} in the MLP layers.

A. Configuration of the Analog Processor

We start with the design of the configuration of the analog
processor to obtain the sensing matrices. In the literature on
compressive sensing, particularly those focused on the theoret-
ical performance analysis of compressive sensing algorithms,
it often assumes random sensing matrices, typically with i.i.d.
Gaussian entries. However, in the context of the proposed ana-
log processor-based spectrum estimation, the sensing matrix H
is inherently constrained by the array configurations, which are
determined by the physical properties of the system, including
structural and power limitations. Consequently, rather than
relying on generic random matrices, we focus on designing
structured, non-adaptive sensing schemes by strategically con-
trolling A¢, A7 and {ay}x to enable efficient and practical
spectrum estimation. Our method consists of four major steps:

a) Random Tuple Selection: From the set {1,2,..., N —
1}, randomly select an M-element tuple Z = [Z1,Z, . .., Zs].
Each element Z; represents a spacing parameter that will guide
the selection of element pairs.

b) Random Pair Selection: For each i € [M], randomly
select a pair of element indices {k; 1, k; 2} such that |k; 1 —
k; 2| = Z,. This pair corresponds to the array elements that
will be activated for the i-th measurement configuration.



Algorithm 1 Random Pair Activation

1. INPUT N, M.
2: Randomly select a tuple Z = [Z1,Zs,...,Zp] with
distinct elements of size M from {1,2,...,N —1}.
3: for i =1to M do
4:  Randomly sample an index pair {k;1,k;2} where
ki,l;ki,2 S {0, - N — 1} such that ki,l 7& ki’g and

ki1 —kio|l =Z;

5 for each element index k£ do
6 if k£ € {1%71, k’i,g} then
7: a,(;) —1
8 else
9: a,(;) «0
10: end if
11:  end for
122 AglW) + T Arl [M].
13: end for

c) Element Activation: We set a,(;) = 1if k €

{kia,kiz2}, and a( ) = 0 otherwise. Each configuration thus
activates exactly two elements, reducing power consumption
while still achieving sufficient measurement diversity.
d) Time-Delay and Phase Control: We set the time-delay
and phase as A7() = —y and Apl) = N
Ar) =z AG®H =

2M

B. Transformer Design

We set the number of heads P to 4, therefore the attention
layer contains four parameter matrices {Q;,K;, V;}, i €
{1,-1,2,—-2}. We set these parameter matrices as follows:

Q; = diag(0(L41)x (z+1), Irxr, —B), for i € {1},
Qi[L+ 1,20 +2] =i/2, forie {+1},
ViL+2:20+1,1: L] = sgn(i)ylxr, forie {£1,+2},

where sgn is the sign function and B, ~ are constants. The
parameter implementation for K; matrices follows the setup
described in Appendix C.1 of [17].

We note that the design of the transformer resembles that in
[17] for the general sparse recovery problem. However, there
exists a critical difference: in this work, all parameter matrices
in the attention layer are fixed, meaning they do not contain
any learnable parameters. Consequently, this fixed transformer
does not require learning those parameter matrices from pre-
training. This is because all sensing matrices generated by
Algorithm 1 possess the same statistical properties, such as
the concentration property of mutual coherence, which can be
calculated beforehand. As a result, these statistical properties
do not need to be learned from pre-training.

For the input data, we adopt a similar embedding structure
as in [17], [18]. Given an in-context sparse recovery instance

7 = (H,y), we embed the instance into an input sequence
Z() ¢ RELA2)XENH) a5 follows:

h, Iy hy  hy
0 Yo 0 YN

Z(l)(z): ~(1 ~(1 1 ~(1 )
pi” By o Bliy Pow
1 0 1 0

where pgl) € R are implicit parameter vectors initialized

as 04, and h; is the i-th sensing vector, the superscript (1)
denotes that it is the input sequence for the first layer.
Denote the output sequence of the K-layer Transformer
as Z(K+1) | During the inference, we obtain the estimated
spectrum Py, ) from ZED[L 422 2L +1,2M).

C. Theoretical Guarantee

In this section, we present a theoretical result that provides
a rigorous guarantee for using the transformer implementation
described in Section III-B and the sensing matrix generation
method outlined in Section III to solve the in-context spectrum
recovery problem. To establish this result, we first introduce
the following assumption, which has been adopted in similar
forms in recent works [17], [18].

Assumption 1. For each input signal, the total power is
bounded, i.e., there exists a positive constant E such that
Ipl1 < E.

The following theorem provides a rigorous theoretical guar-
antee for the performance of our proposed sensing scheme. In
essence, it shows that if we choose sufficiently many mea-
surement configurations, the resulting sensing matrix H will,
with high probability, preserve the structure of all sufficiently
sparse signals. This property ensures that the minimizer p* of
P, closely approximates the true sparse vector that we seek
to recover.

Theorem 1. Let § € (0,1), M > ¢1S*(log L + log S —
a=—log(1-2y+v(25- 1)\/l°gfﬂlfog5 + Sk,
c1, co and y are positive constants with 7 < 3 . For a K-layer
transformer model specified in Section III- B with any ran-
domly generated p satisfying Assumption 1 and any sensing
matrix generated by Algorithm 1, in the noiseless case, with
probability at least 1 — 0, we have Hp(K+1 —pH < Ee—onkK

log 0),
where

Proof Sketch. The proof of Theorem 1 proceeds in two steps.

Step 1 (Connection to DCT): We begin by linking the
sensing matrix generated by Algorithm 1 to the Discrete
Cosine Transform (DCT) matrix. By substituting the chosen
parameters {A7;, A¢; }; from Algorithm 1, we have

. , 7r
1 e J2Nn e—I(N=-1) 5%
apq

h; =

1 e dFEL=3) ... e=iFW-DEL-3)| [A(N-1)i

Wn

Since LNWN is closely related to the block Discrete
Fourier Transform (DFT) matrix, we can establish a direct



connection between l’li and DCI basis. Recall that H =
[hy---hy ] =[hy ®hy---hy @ hyy], we obtain the (7, £)-th
element of H as

H;, =24 2cos <7r

¢—1
x;[f] =24 2cos <7er(k?i,1 - k12)) 5

where i, ¢ € {1,---, N}. From this, we note that ﬁ(H—
20« r) can be seen as generated from the following proce-
dure: first randomly select M rows from a DCT matrix Cy
(except the first row), and then select the submatrix that only
contains the first L columns of the randomly generated matrix,
where the DCT matrix Cy is:

1

VN

%COS(%) %COS(W)

Step 2 (Linear convergence): Note that by constructing the
MLP layer, we show that the updating rule of the transformer
is equal to

. %‘H

Cy =

Bt = Sy (B — 5 H (EBY, ~3)), ©
where H = ﬁ(H—QMxL) and y :.\/%N - %. Utilizing
the orthonormal property of DCT matrix, similar to the proof
in compressive sensing [9], [10] showing the RIP of such
matrix, we show that for any sensing matrix H generated by
Algorithm 1, ﬁ(H — 2« 1) satisfies the mutual coherence
requirement given in Lemma 3 in [17] with high probability.
Therefore, utilizing Lemma 1 in [17] we can show the updating
rule in Equation (6) gives linear convergence rate.

Remark 1. In Theorem 1, the number of measurements M
is of the order O(S?log L). Moreover, it can be shown that
this M ensures the sensing matrix generated by Algorithm 1
satisfies RIP(2S,0) for a fixed 6 with high probability.
This guarantees that our sensing matrix generation method
produces matrices capable of accurate sparse recovery.

Remark 2. Theorem 1 shows that the number of measure-
ments M grows logarithmically with respect to L. Conse-
quently, when S is small, the number of measurements required
to accurately recover the sparse spectrum is O(S?logL),
which significantly reduces the number of measurements com-
pared to the naive spectrum sweeping method that requires
O(L) measurements.

IV. EXPERIMENTAL RESULTS

In our experiments, we adhere to the following steps to
generate in-context spectrum sensing instances. First, we set
p* as an L = 20 dimensional vector with the sparsity 3,
where 3 entries are randomly chosen and set to be 1. Next,
we generate two types of sensing matrices of H of dimension
10 x 20: the first type of sensing matrices is generated from
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Fig. 2: Accuracy of the in-context spectrum recovery problem
for different sensing matrix generation methods and solvers.

Algorithm 1, and the second type of sensing matrices is
generated by random sampling each entry from a standard

- normal distribution. We follow the noiseless setting in [17],

[18] for sparse recovery, i.e., y = Hp*.

We consider two types of solvers for solving the in-context
spectrum sensing problem. The first is the transformer with the
implementation introduced in Section III-B, and the other is
the ISTA algorithm [12]. Figure 2 shows the test accuracy
of the in-context spectrum recovery problem for different
sensing matrix generation methods and solvers. The accuracy
is defined as |INI*|/S, where I and I* represent the supports
of the prediction p and the ground truth p*, respectively.

In Figure 2, “Transformer-1" refers to using the transformer
as the solver with sensing matrices generated by Algorithm 1,
while “Transformer-2” refers to sensing matrices generated
from a standard Gaussian distribution. Similarly, “ISTA-1”
and “ISTA-2” indicate ISTA solvers with the same respective
sensing matrix generation methods.

Our results indicate that for both solvers, sensing ma-
trices generated by Algorithm 1 achieve slightly degraded
performance compared to standard Gaussian random matrices.
However, the results also show that the transformer recovers
the sparse spectrum with higher accuracy than ISTA under
the same number of layers (for the transformer) or iterations
(for ISTA), showcasing the efficiency of in-context learning
(ICL) for spectrum estimation. Additionally, our experimental
results demonstrate that when the number of transformer layers
is large (greater than 10), our co-designed sensing matrix
and transformer implementation provide relatively accurate
estimation with significantly fewer measurements (M = 10)
compared to the naive spectrum sweeping method, which
requires L = 20 measurements.

V. CONCLUSION

In this work, we investigated the joint design of the con-
figuration of an analog processor and a transformer to enable
efficient in-context spectrum sensing. We theoretically char-
acterized the superb performance of the proposed in-context
spectrum sensing method, and validated it through simulations.
Compared with traditional sublinear iterative algorithms, the
proposed in-context spectrum sensing approach achieves linear



convergence rate without retraining the transformer for differ-
ent sensing matrices.
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