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Abstract—The radio frequency (RF) spectrum is essential for
wireless communication but is becoming increasingly limited
due to the rapid growth in device usage. Real-time spectrum
sensing facilitates dynamic spectrum sharing, but conventional
methods face significant challenges, including the high power
consumption of analog-to-digital converters (ADCs) and the
computational demands of Fast Fourier Transforms (FFTs). To
address these limitations, prior work introduced a frequency-
domain analog signal processor. This processor includes a dig-
itally tunable narrow-bandpass filter implemented with pro-
grammable dispersion-engineered elements and a scalable path-
sharing delayed signal combiner. However, the naive spectrum
sweeping method employed in this design remains highly time-
and energy-intensive.

In this work, we improve the spectrum sensing efficiency of
the analog signal processor by co-designing a sensing matrix gen-
eration method with a decoder-based transformer for in-context
spectrum recovery. Specifically, we introduce a novel algorithm
for sensing matrix generation that leverages the hardware design
of the analog signal processor. We show that the generated sensing
matrices can be interpreted as part of the well-designed prompts
for a transformer with specifically designed parameter matrices
to solve the sparse spectrum sensing problem efficiently through
its in-context learning capability.

To characterize the efficiency of the in-context learning-
enabled spectrum sensing approach, we provide rigorous theoret-
ical guarantees on the in-context spectrum sensing and evaluate
the performances through empirical results. Compared to base-
line approaches, our method achieves significant improvements
in accuracy.

I. INTRODUCTION

As emerging applications in areas such as 5G commu-

nications and satellite links migrate toward millimeter-wave

(mmWave) frequencies, the need for broadband spectrum

sensing that can cover wide-range bands is becoming urgent.

However, implementing real-time wideband scanning using

conventional digital techniques presents fundamental chal-

lenges. These include the excessive power consumption and

complexity of high-speed analog-to-digital converters (ADCs)

and digital signal processing (DSP) circuits required to per-

form large-scale Fast Fourier Transforms (FFTs).

To address these challenges, a frequency-domain analog

processor has been recently proposed [1], offering an energy-

efficient solution for wideband spectrum sensing. This proces-

sor draws inspiration from frequency-scanned arrays and lever-

ages programmable dispersion-engineered elements to exploit
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frequency-dependent constructive and destructive interference.

At its core, the design incorporates an array of programmable

dispersive phase shifters, all sharing a common RF input.

Meanwhile, transformers have become the backbone of

various machine learning tasks, including natural language

processing [2], [3] and computer vision [4], [5], signifi-

cantly influencing subsequent research and applications. A

key strength of transformers is their strong performance in

in-context learning (ICL) [6], where they can perform new

inference tasks based on the contextual information embedded

in example input-output pairs provided in the prompt, without

requiring further parameter updates.

In this work, we leverage the ICL capabilities of transform-

ers to enhance the spectrum sensing efficiency of the ana-

log processor. Specifically, we demonstrate that a pre-trained

transformer can be deployed with the analog processor to

perform real-time spectrum sensing with provable performance

guarantees.

Our main contributions are as follows:

• First, we propose a sensing matrix generation algorithm,

together with a transformer parameter implementation,

to enable the transformer’s in-context sparse spectrum

sensing. The sensing matrix generation algorithm pro-

duces sensing matrices, which will be combined with the

corresponding output power of the analog signal proces-

sor to form the prompt for the transformer. The sensing

matrix generation algorithm is specifically designed to

enhance the transformer’s capacity for solving in-context

spectrum sensing problems. Additionally, the parameters

of the transformer are optimized to efficiently utilize the

generated prompts (sensing matrices) for ICL.

• Second, we theoretically characterize the performance

of the proposed in-context spectrum sensing approach.

More specifically, we show that when the number of

measurements is of the order O(S2 logL), where S is the

sparsity of the power spectrum vector and L is the number

of subbands, the estimated power spectrum produced

by the transformer converges to the ground truth at a

rate linear in the depth of the transformer model. Such

results indicate that the proposed in-context spectrum

sensing can significantly reduces sensing time and energy

consumption.

• Third, we perform simulation experiments to validate

the efficiency of our algorithm and support our theoreti-



cal findings. The results demonstrate that the in-context

spectrum sensing method can achieve more accurate

estimation compared to classic baseline algorithms.

II. PRELIMINARIES AND PROBLEM FORMULATION

Notation. Bold uppercase letters (e.g., X) denote matrices,

and bold lowercase letters (e.g., x) denote vectors. The ℓp
norm of a vector x is denoted by ∥x∥p. The Hadamard

(element-wise) product is denoted by ». The identity matrix

of size d×d is denoted by Id, while 1M×N represents the all-1
matrix with dimensions M ×N . The conjugate of a complex

number x ∈ C is denoted by x̄.

A. Frequency Domain Analog Processor

The algorithm design is abased on a recently proposed

frequency-domain analog signal processor [1] as depicted

in Figure 1(a). It consists of an array of N programmable

dispersion-engineered elements that share a common RF in-

put. Each dispersion-engineered element, labeled as k, k ∈
[0 : N − 1], is implemented with the combination of a

broadband phase shifter, which exhibits constant phase shift

k∆ϕ across frequency, and a fixed true-time delay line with

delay k∆Ä . Therefore, for incoming signal at frequency É, it

will encounter a phase shift at each element k by ¹k(É) =
k(∆ϕ−∆Ä · É).

Let ak represent the weight of each element, which is

controlled via the gain setting of the phase shifters. If ak = 0,

element k is effectively turned off. Then, the array factor (AF),

defined as the frequency response of an N -element array, is

given by

AF (É) =

N−1∑

k=0

ak · e
j¹k(É). (1)

AF (É) =

M−1∑

k=0

ak · e
jk(∆ϕ−∆Ä ·É). (2)

Figure 1(b) shows the calculated frequency response of the

proposed spectrum sensor for a specific ∆ϕ, ∆Ä , and identical

ak for all k. The response is similar to a band-pass filter, where

the maximum array factor (AF) is achieved when the signals

are combined in phase.

Let P (É) be the power spectrum density (PSD) function

of the input signal x(t). Then, the power of the output signal

of the analog processor equals
∫
É
P (É)|AF (É)|2dÉ, which is

measured by an RF power detector.

Intuitively, by adjusting the analog processor configuration

{∆ϕ,∆Ä, {ak}
N−1
k=0 } and measuring the corresponding output

power, the analog processor can obtain “sketches” of the

spectrum occupation, which can then be used to reconstruct

the entire spectrum.

B. Spectrum Estimation as Constrained Sparse Recovery

We cast the spectrum sensing problem into a sparse re-

covery problem as follows. We assume the spectrum can

be discretized uniformly into L subbands, where the cen-

tral frequency of the ℓ-th subband is Él. We assume there
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Fig. 1: (a) Proposed frequency-domain analog processor. (b)

Simulated frequency response.

exists a w′ such that wℓ = ℓ · w′ for all ℓ ∈ [L].
We assume P (É) can be approximated as a constant pℓ
in each subband, and the corresponding AF (É) can be

approximated as AF (Éℓ). Let p = [p1, p2, . . . , pL]
T , and

h = [AF (É1), AF (É2), . . . , AF (ÉL)]
T . Then, the measured

output power can be approximated as y = (h » h)¦p + ϵ,
where ϵ represents the measurement noise.

Note that h depends on the chosen configuration

{∆ϕ,∆Ä, {ak}
M
k=1}. Assume we have M such configurations,

and correspondingly, we obtain {yi}
M
i=1, where yi = (hi »

hi)
¦p + ϵi. Assume there are at most S j L subbands

are occupied. Then, the spectrum estimation problem can be

formulated as a sparse recovery problem:

P1 : min
p∈RL

1

M

M∑

i=1

(
(hi » hi)

¦p− yi

)2

, s.t. ∥p∥0 f S.

We denote the optimizer of P1 as p⋆. Since solving P1 is NP-

hard, a common relaxation is to consider the Least Absolute

Shrinkage and Selection Operator (LASSO) formulation:

min
p∈RL

1

M

M∑

i=1

(
(hi » hi)

¦p− yi

)2

+ ¼∥p∥1.

Let h̃i = hi » hi and

H =



h̃¦
i

...

h̃¦
i


 , y =



y1
...

yM


 .

Then, the LASSO formulation can be expressed as

P2 : min
p∈RL

∥Hp− y∥2 + ¼∥p∥1. (3)

Extensive research has been performed in the past years

to solve P2 reliably and efficiently. For sensing matrices

H, random designs (e.g., Gaussian, sub-Gaussian, Bernoulli)

are widely used due to their strong recovery guarantees,

while structured designs (e.g., Fourier transforms, expander

graphs) are often employed for specific applications [7]. Ex-

isting results show that when the number of measurements

is O(Spoly logL), random matrices have strong recovery

guarantees typically based on properties like the Restricted

Isometry Property (RIP) and Null Space Property [8]–[10].

While for structured designs such as partial Fourier matrices,

theoretical studies show that if one forms H by selecting m



rows of a discrete Fourier matrix uniformly, then H satisfies

RIP with high probability when m = O(Spoly logL) [9],

[11].

Meanwhile, iterative algorithms, such as ISTA and LISTA,

are shown to achieve sublinear convergence rates [12]. Al-

ternatively, learning-to-optimize (L2O) based solvers, such as

LISTA [13], LISTA-CP [14], and ALISTA [15], can achieve

linear convergence rates. However, these L2O-based solvers

require retraining the solver model for each new sensing

matrix, which introduces additional computational overhead.

C. Transformer and In-context Learning

We consider a K-layer decoder-based transformer architec-

ture [16], where each transformer layer has an attention layer

masked by a decoder-based attention mask and followed by a

multi-layer perception (MLP) layer.

Masked Attention Layer. An P -head masked atten-

tion layer with parameters {(Vm,Qm,Km)m∈[P ]} where

Vm,Qm,Km ∈ R
D×D, is denoted as Attn{(Vm,Qm,Km)}(·).

For an input sequence Z ∈ R
D×N , its output is:

Attn{(Vm,Qm,Km)}(Z) (4)

= Z+

P∑

m=1

(VmZ)×mask
(
Ã
(
(KmZ)¦(QmZ)

))
,

where mask(M) satisfies mask(M)i,j =
1
j
Mi,j if i f j and

0 otherwise, and Ã(·) is the activation function. In this work,

Ã(·) is set as ReLU.

MLP Layer. An MLP layer with parameters W1 ∈
R

D′×D, W2 ∈ R
D×D′

, and b ∈ R
D′

, denoted as

MLP{W1,W2,b}. Denote the output sequence of attention

layer as Z′ = Attn(Z), the MLP layer maps each column

z′i of Z′ ∈ R
D×N as:

MLP{W1,W2,b}(z
′
i) = z′i +W2Ã(W1z

′
i + b). (5)

In-Context Learning (ICL). For an ICL task, a trained

transformer is given an ICL instance I = (D, h̃M+1), where

D = {(h̃i, yi)}i∈[M ] and h̃M+1 is a query. Here, h̃i ∈ R
d

is an in-context example, and yi is the corresponding label

for h̃i. We assume yi = fp(h̃i) + ϵi, where ϵi is an added

random noise, and fp is a deterministic function parameterized

by p. Unlike conventional supervised learning, for each ICL

instance, p ∼ Pp, i.e., it is randomly sampled from a

distribution Pp.

To perform ICL in a transformer, we first embed the ICL

instance into an input sequence Z ∈ R
D×M ′

. The transformer

then generates an output sequence TF(Z) with the same size

as Z, based on which a prediction ŷM+1 is generated through

a read-out function F , i.e., ŷM+1 = F (TF(Z)). The objective

of ICL is then to ensure that ŷM+1 closely approximates the

target value yM+1 = fp(h̃M+1)+ϵM+1 for any ICL instance.

During the pre-training of a transformer for an ICL task, it

first samples a large set of ICL instances. For each instance,

the transformer generates a prediction ŷM+1 and calculates the

prediction loss by comparing it with yM+1 using a proper loss

function. The training loss is the aggregation of all prediction

losses for every ICL instance used in pre-training, and the

transformer is trained to minimize this training loss.

D. In-context Learning for Spectrum Estimation

Our objective is to leverage the ICL capability of transform-

ers to perform efficient spectrum sensing.

During the pre-training process, a set of in-context spectrum

sensing instances {(Hj ,yj , h̃j
M+1, y

j
M+1)}

Ntrain

j=1 is generated

according to

yji = (h̃j
i )

¦
p
j + ϵji , j ∈ [Ntrain], i ∈ [M + 1],

where pj ∼ Pp, h
j
i ∼ Ph, and ϵji ∼ Pϵ are independently sam-

pled from their respective distributions. Based on this training

dataset, a pre-trained transformer is obtained by minimizing a

specified loss function.

After pre-training, during the inference process for ICL, a

spectrum sensing instance (H,y, h̃M+1) is randomly sampled

according to the same distributions as in the pre-training.

Different from conventional ICL where the objective is to

predict yM+1, our objective is to explicitly estimate the hidden

p based on the input (H,y, h̃M+1) without any further

parameter updates. As we will show in the subsequent section,

this can be achieved through a joint design of the configuration

of the analog processor and the transformer.

III. JOINT DESIGN AND ANALYSIS

To ensure the sensing matrices given by the analog pro-

cessor can theoretically guarantee a transformer can recover

sparse frequency spectrum in-context, we need to co-design

both the sensing matrix generation method and the transformer

implementation, i.e., {Vm,Qm,Km} in the attention layers

and {W1,W2,b} in the MLP layers.

A. Configuration of the Analog Processor

We start with the design of the configuration of the analog

processor to obtain the sensing matrices. In the literature on

compressive sensing, particularly those focused on the theoret-

ical performance analysis of compressive sensing algorithms,

it often assumes random sensing matrices, typically with i.i.d.

Gaussian entries. However, in the context of the proposed ana-

log processor-based spectrum estimation, the sensing matrix H

is inherently constrained by the array configurations, which are

determined by the physical properties of the system, including

structural and power limitations. Consequently, rather than

relying on generic random matrices, we focus on designing

structured, non-adaptive sensing schemes by strategically con-

trolling ∆ϕ, ∆Ä and {ak}k to enable efficient and practical

spectrum estimation. Our method consists of four major steps:

a) Random Tuple Selection: From the set {1, 2, . . . , N−
1}, randomly select an M -element tuple I = [I1, I2, . . . , IM ].
Each element Ii represents a spacing parameter that will guide

the selection of element pairs.

b) Random Pair Selection: For each i ∈ [M ], randomly

select a pair of element indices {ki,1, ki,2} such that |ki,1 −
ki,2| = Ii. This pair corresponds to the array elements that

will be activated for the i-th measurement configuration.



Algorithm 1 Random Pair Activation

1: INPUT N , M .

2: Randomly select a tuple I = [I1, I2, . . . , IM ] with

distinct elements of size M from {1, 2, . . . , N − 1}.
3: for i = 1 to M do

4: Randomly sample an index pair {ki,1, ki,2} where

ki,1, ki,2 ∈ {0, · · · , N − 1} such that ki,1 ̸= ki,2 and

|ki,1 − ki,2| = Ii.
5: for each element index k do

6: if k ∈ {ki,1, ki,2} then

7: a
(i)
k ← 1

8: else

9: a
(i)
k ← 0

10: end if

11: end for

12: ∆ϕ(i) ← Ã
2N , ∆Ä (i) ← Ã

É′N
for all i ∈ [M ].

13: end for

c) Element Activation: We set a
(i)
k = 1 if k ∈

{ki,1, ki,2}, and a
(i)
k = 0 otherwise. Each configuration thus

activates exactly two elements, reducing power consumption

while still achieving sufficient measurement diversity.

d) Time-Delay and Phase Control: We set the time-delay

and phase as ∆Ä (i) = Ã
É′N

and ∆ϕ(i) = Ã
2N .

∆Ä (i) = Ã
É′M

, ∆ϕ(i) = Ã
2M .

B. Transformer Design

We set the number of heads P to 4, therefore the attention

layer contains four parameter matrices {Qi,Ki,Vi}, i ∈
{1,−1, 2,−2}. We set these parameter matrices as follows:

Qi = diag(0(L+1)×(L+1), iIL×L,−B), for i ∈ {±1},

Qi[L+ 1, 2L+ 2] = i/2, for i ∈ {±1},

Vi[L+ 2 : 2L+ 1, 1 : L] = sgn(i)µIL×L, for i ∈ {±1,±2},

where sgn is the sign function and B, µ are constants. The

parameter implementation for Ki matrices follows the setup

described in Appendix C.1 of [17].

We note that the design of the transformer resembles that in

[17] for the general sparse recovery problem. However, there

exists a critical difference: in this work, all parameter matrices

in the attention layer are fixed, meaning they do not contain

any learnable parameters. Consequently, this fixed transformer

does not require learning those parameter matrices from pre-

training. This is because all sensing matrices generated by

Algorithm 1 possess the same statistical properties, such as

the concentration property of mutual coherence, which can be

calculated beforehand. As a result, these statistical properties

do not need to be learned from pre-training.

For the input data, we adopt a similar embedding structure

as in [17], [18]. Given an in-context sparse recovery instance

I = (H,y), we embed the instance into an input sequence

Z(1) ∈ R
(2L+2)×(2N+1) as follows:

Z(1)(I) =




h̃1 h̃1 · · · h̃M h̃M

0 y1 · · · 0 yN

p̂
(1)
1 p̂

(1)
2 · · · p̂

(1)
2M−1 p̂

(1)
2M

1 0 · · · 1 0


 ,

where p
(1)
i ∈ R

L are implicit parameter vectors initialized

as 0d, and hi is the i-th sensing vector, the superscript (1)
denotes that it is the input sequence for the first layer.

Denote the output sequence of the K-layer Transformer

as Z(K+1). During the inference, we obtain the estimated

spectrum p̂
(K+1)
2M from Z(K+1)[L+ 2 : 2L+ 1, 2M ].

C. Theoretical Guarantee

In this section, we present a theoretical result that provides

a rigorous guarantee for using the transformer implementation

described in Section III-B and the sensing matrix generation

method outlined in Section III to solve the in-context spectrum

recovery problem. To establish this result, we first introduce

the following assumption, which has been adopted in similar

forms in recent works [17], [18].

Assumption 1. For each input signal, the total power is

bounded, i.e., there exists a positive constant E such that

∥p∥1 f E.

The following theorem provides a rigorous theoretical guar-

antee for the performance of our proposed sensing scheme. In

essence, it shows that if we choose sufficiently many mea-

surement configurations, the resulting sensing matrix H will,

with high probability, preserve the structure of all sufficiently

sparse signals. This property ensures that the minimizer p∗ of

P1 closely approximates the true sparse vector that we seek

to recover.

Theorem 1. Let δ ∈ (0, 1), M ≥ c1S
2(logL + logS − log δ),

α = − log
(

1− 2

3
γ+γ(2S−1)

√

log d−log δ

c2M
+
√

log S−log δ

c2M

)

, where

c1, c2 and µ are positive constants with µ f 3
2 . For a K-layer

transformer model specified in Section III-B, with any ran-

domly generated p satisfying Assumption 1 and any sensing

matrix generated by Algorithm 1, in the noiseless case, with

probability at least 1−¶, we have
∥∥p̂(K+1)

2M −p
∥∥ f Ee−³nK .

Proof Sketch. The proof of Theorem 1 proceeds in two steps.

Step 1 (Connection to DCT): We begin by linking the

sensing matrix generated by Algorithm 1 to the Discrete

Cosine Transform (DCT) matrix. By substituting the chosen

parameters {∆Äi,∆ϕi}i from Algorithm 1, we have

hi =




1 e−j π

2N · · · e−j(N−1) π

2N

...
...

. . .
...

1 e−j π

N
(L− 1

2 ) · · · e−j π

N
(N−1)(L− 1

2 )




︸ ︷︷ ︸
WN




a0i
...

a(N−1)i


 .

Since 1√
N
WN is closely related to the block Discrete

Fourier Transform (DFT) matrix, we can establish a direct



connection between hi and DCT basis. Recall that H =
[h̃1 · · · h̃M ] = [h1 » h1 · · ·hM » hM ], we obtain the (i, ℓ)-th
element of H as

Hi,ℓ = 2 + 2 cos

(
Ã
ℓ− 1

2

N
(ki,1 − ki,2)

)
,

xi[ℓ] = 2 + 2 cos

(
Ã
ℓ− 1

2

N
(ki,1 − ki,2)

)
,

where i, ℓ ∈ {1, · · · , N}. From this, we note that 1√
2N

(H−

2M×L) can be seen as generated from the following proce-

dure: first randomly select M rows from a DCT matrix CN

(except the first row), and then select the submatrix that only

contains the first L columns of the randomly generated matrix,

where the DCT matrix CN is:

CN =




1√
N

· · · 1√
N

...
. . .

...√
2
N
cos

(
Ã(N−1)

2K

)
· · ·

√
2
N
cos

(
Ã(N− 1

2 )(N−1)

N

)


 .

Step 2 (Linear convergence): Note that by constructing the

MLP layer, we show that the updating rule of the transformer

is equal to

p̂
(k+1)
2M = S¹(k)

(
p̂
(k)
2M −

1

2M
H̃¦(H̃p̂

(k)
2M − ỹ)

)
, (6)

where H̃ = 1√
2N

(H−2M×L) and ỹ = y√
2N
− E2K√

2N
. Utilizing

the orthonormal property of DCT matrix, similar to the proof

in compressive sensing [9], [10] showing the RIP of such

matrix, we show that for any sensing matrix H generated by

Algorithm 1, 1√
2N

(H−2M×L) satisfies the mutual coherence

requirement given in Lemma 3 in [17] with high probability.

Therefore, utilizing Lemma 1 in [17] we can show the updating

rule in Equation (6) gives linear convergence rate.

Remark 1. In Theorem 1, the number of measurements M
is of the order O(S2 logL). Moreover, it can be shown that

this M ensures the sensing matrix generated by Algorithm 1

satisfies RIP (2S, ¶) for a fixed ¶ with high probability.

This guarantees that our sensing matrix generation method

produces matrices capable of accurate sparse recovery.

Remark 2. Theorem 1 shows that the number of measure-

ments M grows logarithmically with respect to L. Conse-

quently, when S is small, the number of measurements required

to accurately recover the sparse spectrum is O(S2 logL),
which significantly reduces the number of measurements com-

pared to the naive spectrum sweeping method that requires

O(L) measurements.

IV. EXPERIMENTAL RESULTS

In our experiments, we adhere to the following steps to

generate in-context spectrum sensing instances. First, we set

p∗ as an L = 20 dimensional vector with the sparsity 3,

where 3 entries are randomly chosen and set to be 1. Next,

we generate two types of sensing matrices of H of dimension

10 × 20: the first type of sensing matrices is generated from
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Fig. 2: Accuracy of the in-context spectrum recovery problem

for different sensing matrix generation methods and solvers.

Algorithm 1, and the second type of sensing matrices is

generated by random sampling each entry from a standard

normal distribution. We follow the noiseless setting in [17],

[18] for sparse recovery, i.e., y = Hp∗.

We consider two types of solvers for solving the in-context

spectrum sensing problem. The first is the transformer with the

implementation introduced in Section III-B, and the other is

the ISTA algorithm [12]. Figure 2 shows the test accuracy

of the in-context spectrum recovery problem for different

sensing matrix generation methods and solvers. The accuracy

is defined as |Î∩I⋆|/S, where Î and I⋆ represent the supports

of the prediction p̂ and the ground truth p⋆, respectively.

In Figure 2, “Transformer-1” refers to using the transformer

as the solver with sensing matrices generated by Algorithm 1,

while “Transformer-2” refers to sensing matrices generated

from a standard Gaussian distribution. Similarly, “ISTA-1”

and “ISTA-2” indicate ISTA solvers with the same respective

sensing matrix generation methods.

Our results indicate that for both solvers, sensing ma-

trices generated by Algorithm 1 achieve slightly degraded

performance compared to standard Gaussian random matrices.

However, the results also show that the transformer recovers

the sparse spectrum with higher accuracy than ISTA under

the same number of layers (for the transformer) or iterations

(for ISTA), showcasing the efficiency of in-context learning

(ICL) for spectrum estimation. Additionally, our experimental

results demonstrate that when the number of transformer layers

is large (greater than 10), our co-designed sensing matrix

and transformer implementation provide relatively accurate

estimation with significantly fewer measurements (M = 10)

compared to the naive spectrum sweeping method, which

requires L = 20 measurements.

V. CONCLUSION

In this work, we investigated the joint design of the con-

figuration of an analog processor and a transformer to enable

efficient in-context spectrum sensing. We theoretically char-

acterized the superb performance of the proposed in-context

spectrum sensing method, and validated it through simulations.

Compared with traditional sublinear iterative algorithms, the

proposed in-context spectrum sensing approach achieves linear



convergence rate without retraining the transformer for differ-

ent sensing matrices.
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