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Abstract

This paper investigates a hybrid learning frame-

work for reinforcement learning (RL) in which

the agent can leverage both an offline dataset

and online interactions to learn the optimal

policy. We present a unified algorithm and

analysis and show that augmenting confidence-

based online RL algorithms with the offline

dataset outperforms any pure online or of-

fline algorithm alone and achieves state-of-the-

art results under two learning metrics, i.e., sub-

optimality gap and online learning regret. Specif-

ically, we show that our algorithm achieves a

sub-optimality gap Õ(
√

1/(N0/C(π∗|ρ) +N1)),
where C(π∗|ρ) is a new concentrability coef-

ficient, N0 and N1 are the numbers of of-

fline and online samples, respectively. For re-

gret minimization, we show that it achieves

a constant Õ(
√

N1/(N0/C(π−|ρ) +N1)) speed-

up compared to pure online learning, where

C(π−|ρ) is the concentrability coefficient over all

sub-optimal policies. Our results also reveal an in-

teresting separation on the desired coverage prop-

erties of the offline dataset for sub-optimality gap

minimization and regret minimization. We further

validate our theoretical findings in several exper-

iments in special RL models such as linear con-

textual bandits and Markov decision processes

(MDPs).

1 INTRODUCTION

Sequential decision making [Lattimore and Szepesvári,

2020, Sutton and Barto, 1998, Bubeck and Cesa-Bianchi,

2012] is often cast as an online learning problem, where

an agent interacts with its environment and dynamically

*Equal contribution.

updates its policy based on the actions and feedback. The

fundamental challenge lies in the exploration-exploitation

tradeoff, requiring the agent to balance exploiting known

high-reward actions with exploring potentially beneficial

but uncertain alternatives. Although exploration is a must-

have for sequential decision making, there are unavoidable

costs, e.g., performance degradation, incurred by explo-

ration during the online learning process, which are often

undesirable in practical applications.

To overcome the drawbacks, offline policy learning has

been studied in both bandits [Li et al., 2022, Wang et al.,

2023, Oetomo et al., 2023, Zhang et al., 2019, Brandfon-

brener et al., 2021, Nguyen-Tang et al., 2021] and rein-

forcement learning [Hester et al., 2018, Nair et al., 2018,

2020, Rajeswaran et al., 2017, Lee et al., 2022, Xie et al.,

2021b, Song et al., 2022, Wagenmaker and Pacchiano,

2023, Agrawal et al., 2023, Li et al., 2023]. In this setting,

the agent attempts to learn an optimal policy based solely

on an offline dataset that was collected a priori by a behav-

ior policy, without any online interaction with the environ-

ment. This setting has attracted growing interest mainly be-

cause in many practical applications such as recommenda-

tion systems [Thomas et al., 2017], healthcare [Gottesman

et al., 2019], and wireless networking [Yang et al., 2023],

logged data is often available from prior tasks while acquir-

ing new data is costly. A critical challenge in offline policy

learning, however, is that its performance depends critically

on the quality of the dataset.

A natural solution that achieves the benefits of both online

and offline settings is hybrid learning, where the agent has

access to an offline dataset while also having the ability

to interact with the environment in an online fashion. A

number of works [Hester et al., 2018, Nair et al., 2018,

2020, Rajeswaran et al., 2017, Lee et al., 2022, Song et al.,

2022] have empirically demonstrated that offline datasets

can help online learning. However, there are only limited

studies that theoretically investigate the efficiency of hy-

brid learning [Xie et al., 2021b, Song et al., 2022, Wagen-

maker and Pacchiano, 2023, Agrawal et al., 2023, Li et al.,



2023]. It has been shown that in tabular MDPs, hybrid

learning can outperform pure offline RL and pure online

RL algorithms in terms of the sample complexity required

to identify an ϵ-optimal policy [Li et al., 2023]. Similar re-

sults have been obtained in linear MDPs [Wagenmaker and

Jamieson, 2022] and stochastic K-armed bandits [Agrawal

et al., 2023]. The benefit of utilizing offline datasets to re-

duce the online learning regret has been characterized for

RL with general function approximation in Tan and Xu

[2024]. A complete literature review can be found in Ap-

pendix A.

Despite the theoretical successes of hybrid learning in RL,

to the best of our knowledge, there is a lack of a unified

understanding regarding its benefits. The main question we

aim to answer is:

Can we develop a unified algorithm for hybrid RL and

characterize the fundamental impact of offline datasets?

In this work, we provide an affirmative answer to the above

question through a generic hybrid RL framework and two

lower bounds. In addition, by analyzing the benefits of hy-

brid RL through a unified analysis for sub-optimality gap

and regret, which are two key metrics measuring RL algo-

rithms, our findings also answer the following question af-

firmatively:

Do we need different offline datasets when we minimize

sub-optimality gap and regret in hybrid RL?

We summarize our contributions as follows.

• We first establish a framework based on a commonly

adopted notion in decision-making problems, namely

the uncertainty level. This framework is used to derive

a novel concentrability coefficient C(π|ρ) and to ana-

lyze the sub-optimality gap or regret of hybrid RL al-

gorithms. We show that if a confidence-based online RL

algorithm is augmented with the offline dataset, the sub-

optimality gap scales in the order Õ(1/
√

N0/C1 +N1)

and the regret scales in the order Õ(N1/
√

N0/C2 +N1),
where N0 is the size of the offline dataset, N1 is the

number of episodes during online learning, and C1 and

C2 are concentrability coefficients. Compared to the

sub-optimality gap Õ(1/
√
N1) and regret Õ(

√
N1) of

pure online learning, our results demonstrate a constant
√

N1/(N0/C+N1) speed-up compared to pure online

learning, where C is the concentrability coefficient that

depends on the problem. We also specialize our general

framework and results to linear contextual bandits and

Markov decision processes (MDPs) for a better under-

standing. A full comparison of our results with existing

results in the literature is provided in Table 1.

• Then, we derive lower bounds for both sub-optimality

gap and regret minimization problems. Specifically, we

show that any hybrid RL algorithm must incur a sub-

optimality gap that scales in Ω̃(1/
√

N0/C1 +N1) and re-

gret that scales in Ω̃(N1/
√

N0/C2 +N1). These results

show that initializing with an offline dataset as in the pro-

posed hybrid RL framework is order-wisely optimal in

terms of the number of samples and concentrability coef-

ficient.

• Our upper bound reveals the fundamental impact of the

behavior policy used to collect the offline dataset on the

performance of hybrid learning. In particular, for sub-

optimality gap minimization, our results show that if the

behavior policy has good coverage on the optimal policy,

the sub-optimality gap of hybrid learning can be very low.

On the other hand, for regret minimization, as long as

the behavior policy provides good coverage on any sub-

optimal policies, hybrid learning can help reduce the re-

gret. Such separation highlights the fundamental distinc-

tion between those two performance metrics, and invites

further investigation in the hybrid learning setting.

• Finally, we validate our findings in classic MDP exam-

ples such as linear contextual bandits and tabular MDPs.

The empirical results verify the theoretical benefit of hy-

brid learning and the impact of different offline behavior

policies, particular the aforementioned separation perfor-

mance of offline data under sub-optimality gap and regret

minimization problems.

2 PROBLEM FORMULATION

Notations. Throughout this paper, we use ∥x∥V to denote√
x⊺V x. The set of all probability distributions over a set

X is represented by ∆(X ). 1{·} stands for the indicator

function, and [H] = {1, 2, . . . , H} for H ∈ N.

2.1 PRELIMINARIES

Reinforcement Learning. We consider episodic Markov

decision processes in the form ofM = (X ,A, P,H,R, q),
where X is the state space and A is the action space, H is

the number of time steps in each episode, P = {Ph}Hh=1 is

a collection of transition kernels, and Ph(xh+1|xh, ah) de-

notes the transition probability from the state-action pair

(xh, ah) at step h to state sh+1 in the next step, r =
{rh}Hh=1 is a collection of reward functions of state-action

pairs, where rh : X × A → [0, 1], q ∈ ∆(X ) is the initial

state distribution.

A Markov policy π is a set of mappings {πh : X →
∆(A)}Hh=1. In particular, πh(a|s) denotes the probability of

selecting action a in state s at time step h. We denote the set

of all Markov policies by Π. For an agent adopting policy

π in an MDPM, at each step h ∈ [H], the agent observes

state xh ∈ X , and takes an action ah ∈ A according to π,

after which the agent receives a random reward rt ∈ [0, 1]
whose expectation is r(xt, at) and the environment transits



Table 1: Comparison of results on sub-optimality gap (SOG) and regret. All results omit the big-O notation and logarithm terms. Cw is

an all-policy concentrability coefficient (CE). Coff and Con are inversely related coefficients. Cl is a single-policy CE. C is a CE defined in

multi-armed bandits. C(π|ρ) is defined in Definition 3.2. In the 4-th row, offline indicates pure offline learning algorithms [Rashidinejad

et al., 2021, Xie et al., 2021b] and online indicates pure online algorithms [Lattimore and Szepesvári, 2020, Sutton and Barto, 1998]. In

the 5-th row, the orders apply to both lower and upper bounds. Our results match or outperform the SOTA and show clear differences

between SOG and regret minimization.

Algorithm Sub-optimality Gap Algorithm Regret

FTPEDAL 1√
N0/Cw(·|ρ)+N1

DISC-GOLF √
N1

√

CoffN1

N0
+
√
ConN1Wagenmaker and Pacchiano [2023] Tan and Xu [2024]

RAFT
√

Coff
N0+N1

+
√

Con
N1

MIN-UCB N1√
N0/C+N1Li et al. [2023] Cheung and Lyu [2024]

Offline & Online
√

Cl
N0

& 1√
N1

Online √
N1Uehara et al. [2021] Jin et al. [2020]

Ours 1√
N0/C(π∗|ρ)+N1

Ours N1√
N0/C(π−ε|ρ)+N1Theorems 3.1 and 5.1 Theorems 3.2 and 5.1

to the next state xh+1 with probability Ph(xh+1|xh, ah).
The episode ends after H steps.

Let V π
P be the value function of policy π un-

der the transition model P . Mathematically, V π
M :=

E

[

∑H
h=1 Rh(xh, ah)

∣

∣P, π, q
]

, where the expectation is

taken over all random variables including reward R, state

xh and action ah.

2.2 HYBRID LEARNING

Hybrid learning seeks to combine the advantages of both

online and offline learning. Specifically, the learning agent

has access to a finite offline dataset D0 ⊂ (X )H × (A)H ×
[0, 1]H with size N0. Each data point τ ∈ D0 has the

form τ = (x1, a1, r1, . . . , xH , aH , rH), also called a tra-

jectory, and is randomly sampled under a behavior pol-

icy ρ from the ground-truth MDP environment M∗ =
(X ,A, P ∗,H,R∗, q∗). Then, the agent performs online

learning with the knowledge of offline data. Let πt be the

policy chosen by the agent at episode t ≥ 1. Denote τt ∼
πt as the trajectory sampled from πt. Let Dt = {τt}ts=1

be the data collected in the online learning procedure after

episode t. In this paper, we consider two classical learning

objectives, as elaborated below.

Sub-optimality Gap Minimization. For this learning ob-

jective, the goal of the agent is to learn a policy π̂ from

both the offline datasetD0 and the online datasetDN1
such

that the sub-optimality gap of π̂, defined in Equation (1), is

minimized.

Sub-opt(π̂) = max
π∈Π

V π
M∗ − V π̂

M∗ . (1)

We remark that this objective is widely studied in both on-

line and offline RL literature [Li et al., 2022, Uehara et al.,

2021, Jin et al., 2021b].

Regret Minimization. For this learning objective, the

agent aims to minimize the regret during the online inter-

actions with horizon N1, as defined below:

Regret(N1) =

N1
∑

t=1

(

max
π∈Π

V π
M∗ − V πt

M∗

)

. (2)

Regret minimization has also been studied inten-

sively [Abbasi-Yadkori et al., 2011, Lattimore and

Szepesvári, 2020, Sharma et al., 2020, Silva et al., 2023,

Shivaswamy and Joachims, 2012].

3 A UNIFIED HYBRID RL

FRAMEWORK

In this section, we first present a unified framework for hy-

brid RL, and then analyze its performance under certain

general assumptions. We would like to emphasize that both

the learning framework and the analysis are quite universal

and can be applied to various MDP settings.

3.1 A UNIFIED HYBRID RL FRAMEWORK

Oracle Algorithm. The core of the hybrid RL framework

relies on an oracle algorithm, denoted as Alg. Alg takes a

dataset D sampled from an unknown environmentM∗ as

its input, and is able to output: (i) an estimator that esti-

mates the value function V π
M∗ for any policy π, denoted

as V̂ π
Alg; and (ii) an uncertainty function ÛπAlg that upper

bounds the estimation error in V̂ π
Alg with high probability,

i.e.,

ÛπAlg ≥
∣

∣

∣V π
M∗ − V̂ π

Alg

∣

∣

∣

with probability at least 1− ¶ for ¶ ∈ (0, 1).



In the following, we use (V̂ π
Alg(D), ÛπAlg(D)) to denote the

output of Alg for a given input D. We sometimes omit D
from the notation when it is clear from the context.

The Unified Hybrid RL Framework. With the pre-

selected oracle algorithm Alg, we are ready to present the

unified hybrid RL framework.

Specifically, at each online episode t ∈ [N1], we maintain

an online dataset Dt−1, which stores all trajectories col-

lected during the online learning so far. Instead of using

Dt−1 to find the next online policy, we augment Dt−1 with

the offline datasetD0 and feedD0∪Dt−1 to the oracle algo-

rithm Alg. With the output (V̂ π
Alg, Û

π
Alg), we then construct

the online policy πt following the optimism in face of un-

certainty principle. I.e., we set πt to be the policy that max-

imize the upper confidence bound (UCB) of the expected

return defined as V̂ π
Alg+ÛπAlg. We then collect the new trajec-

tory τt = (xt,1, at,1, rt,1, . . . , xt,H , at,H , rt,H) and update

Dt = Dt−1∪{τt}. Note that the regret during online learn-

ing is exactly the summation of the sub-optimality gaps of

{πt}t∈[N1].

For the learning objective of sub-optimality gap mini-

mization, the agent will need to output a near-optimal pol-

icy at the end of online learning phase. The policy is then

obtained by utilizing the well-known pessimism principle.

Specifically, the agent feeds D0 ∪ DN1
to Alg and obtains

(V̂ π
Alg, Û

π
Alg). Then, the lower confidence bound (LCB) of

the expected return can be expressed as V̂ π
Alg − ÛπAlg, and

the near-optimal policy is the one that maximizes the LCB.

The pseudo-code is presented in Algorithm 1.

Algorithm 1 Hybrid RL Framework

1: Input: Offline dataset D0, total online steps N1.

2: for t = 1, . . . , N1 do

3: (V̂ π
Alg, Û

π
Alg)← Alg(D0 ∪ Dt−1)

4: Execute policy πt = argmaxπ V̂
π
Alg + ÛπAlg.

5: Collect trajectory τt.
6: Update Dt = Dt−1 ∪ {τt}.
7: end for

8: if sub-optimality gap minimization: then

9: (V̂ π
Alg, Û

π
Alg)← Alg(D0 ∪ DN1

).

10: Output: π̂ = argmaxπ V̂
π
Alg − ÛπAlg.

11: end if

We remark that Algorithm 1 enjoys a clean structure where

we can utilize the online confidence-based algorithms by

simply augmenting with offline data. Such an approach is

more practically amenable compared with the much more

complicated hybrid RL algorithm design in Li et al. [2023],

Wagenmaker and Pacchiano [2023], Tan et al. [2024].

3.2 THEORETICAL ANALYSIS

In this section, we analyze the theoretical performance

of the unified hybrid RL framework presented in Algo-

rithm 1. Intuitively, the quality of the offline dataset D0

is of paramount importance for the hybrid learning perfor-

mance. To assess the quality of the behavior policy ρ and

the offline dataset D0, we first introduce several key con-

cepts and properties, including concentrability coefficient,

and Eluder-type condition.

Definition 3.1 (Uncertainty level). Let Alg0 be the best or-

acle algorithm that achieves the minimum estimation error

in the worst case, i.e.,

Alg0 = argmin
Alg

max
M

ED0∼(M,ρ)

[∣

∣

∣V π
M − V̂ π

Alg

∣

∣

∣

]

.

The uncertainty level of a policy π, denoted as

UM∗(π) : Π → R, is defined by UM∗(π) =

ED0∼(M∗,ρ)

[∣

∣

∣V π
M∗ − V̂ π

Alg
0

∣

∣

∣

]

.

The reason that we choose a minimax type definition is

that M∗ is unknown, and any learning algorithm should

prepare for the worst case. Moreover, UM∗(π) serves as

a lower bound of ED0∼(M∗,ρ)[Û
π
Alg(D0)]. Thus, UM∗(π)

is algorithm-independent and represents the essential hard-

ness of estimating the value V π
M∗ .

Definition 3.2 (Concentrability coefficient). Given a be-

havior policy ρ, the concentrability coefficient of a target

policy π is C(π|ρ) = (UM∗ (π)/UM∗ (ρ))
2 ∈ [1,∞].

Intuitively, the definition describes how much more effort

is needed to estimate V π
M∗ compared to estimating V ρ

M∗

from an offline dataset of size N0 sampled under ρ.

To enable efficient learning, it is necessary to impose cer-

tain conditions on the oracle algorithm Alg. We adopt an

Eluder-type condition, defined as follows. As we will show

later, this condition plays a crucial role in controlling explo-

ration and exploitation.

Definition 3.3 (Eluder-type condition). Let N1 be the to-

tal number of episodes during online learning. Fix an error

probability ¶. Let πt and Dt−1 be the policies and dataset

generated by an oracle algorithm Alg at episode t. We say

Alg satisfy Eluder-type condition if, with probability at

least 1− ¶,
∑N1

t=1 Û
πt

Alg(Dt−1)
2 ≤ C2

Alg.

At a high level, eluder-type condition is akin to the pigeon-

hole principle and the elliptical potential lemma widely

used in tabular MDPs [Azar et al., 2017, Ménard et al.,

2021] and linear bandits/MDPs [Abbasi-Yadkori et al.,

2011, Jin et al., 2020], respectively. Intuitively, Calg thus

depends on the complexity of estimating V π for all en-

countered policies and can be explicitly computed or upper-

bounded in certain classes of RL problems, such as tabular



MDPs or linear bandits. The constant exists for most theo-

retical online reinforcement learning algorithms. As proved

in Appendix C, this constant depends on the design of the

algorithm and the complexity of the environment. We will

show that the eluder-type condition holds for the specific

RL algorithms considered in this work (See Appendix C).

We further assume that with probability at least 1 − ¶,

ÛπAlg(D0) ≤ CAlgUM(π) holds for any M and D0. This

is a reasonable assumption, since ÛπAlg(D0) = O(1) and

maxM UM(π) has a lower bound. In Appendix C, we also

show how to find CAlg.

Theorem 3.1. Let Alg satisfy the condition Definition 3.3,

π̂ be the output policy of Algorithm 1. Suppose π∗ is an

optimal policy. Then, with probability at least 1 − O(¶),
the sub-optimality gap π̂ is

Sub-opt(π̂) = Õ

(

CAlg
√

N0/C(π∗|ρ) +N1

)

,

where N0 and N1 are the number of offline and online tra-

jectories, respectively, C(π∗|ρ) is the concentrability coeffi-

cient, and CAlg is defined in Definition 3.3.

Remark 3.1. We elaborate on the performance of the hy-

brid RL framework with respect to different qualities of the

behavior policy ρ and offline data as follows.

• When the behavior policy ρ is an optimal policy, we

have C(π∗|ρ) = 1. The sub-optimality gap of π̂ is

Õ(
√

1/(N0 +N1)). This strictly improves both pure

online and offline learning algorithms where the sub-

optimal gap scales in Õ(
√

1/N1) and Õ(
√

1/N0), re-

spectively.

• When the behavior policy ρ is extremely bad such that

C(π∗|ρ) = Ω(N0), Theorem 3.1 states that the sub-

optimality gap of π̂ is Õ(
√

1/N1), which recovers the

optimal pure online learning result.

• When the behavior policy ρ has partial coverage on the

optimal policy, we have C(π∗|ρ) ∈ (1, N0). Theorem 3.1

suggests that Algorithm 1 is equivalent to an online al-

gorithm with N0/C(π
∗|ρ) + N1 episodes, while it only

runs N1 episodes. Essentially, N0/C
γ(π∗|ρ) serves as the

number of effective episodes from the offline data.

Theorem 3.2. Let Alg satisfy the conditions in Defini-

tion 3.1 and Definition 3.3. Then, the regret of Algorithm 1

scales as

Regret(N1) = Õ

(

CAlg

√

N1

√

N1

N0/C(π−ε|ρ) +N1

)

,

where C(π−ε|ρ) is the maximum concentrability coefficient

of the sub-optimal policies whose sub-optimality gap is at

least ε, and ε = Õ(1/
√
N0 +N1).

Remark 3.2. The key observation from Theorem 3.2 is that

the regret does not depend on the concentrability coeffi-

cient over the optimal policy π∗. Rather, it depends on

the concentrability coefficient over sub-optimal policies,

which is in contrast to the case in sub-optimality gap mini-

mization problem. Thus, a behavior policy that achieves the

best sub-optimality gap may lead to poor performance for

regret minimization. This phenomenon is confirmed by our

experimental results (See Section 6).

Specifically, when the behavior policy ρ is an optimal pol-

icy, and the support of optimal policy does not overlap with

sub-optimal policies, i.e. C(π∗|ρ) = 1, but C(π−ε|ρ) = 0,

Theorem 3.2 suggests that the regret is Õ(
√
N1), which

recovers the pure online learning result. While the result

seems surprising, it reflects the essential challenge of re-

gret minimization: exploration-exploitation tradeoff. Be-

cause the offline policy ρ = π∗ encodes little exploration

information, the agent still needs to explore sub-optimal

policies to ensure there is no better policy. This procedure

incurs the same regret as pure online learning. One may

ask why we cannot use imitation learning in such case. It

is because, we do not know if the offline policy is the best

or not. Our goal is to develop a universal algorithm that is

guaranteed to have sub-linear regret in any case and thus

imitation learning would fail.

On the other hand, when the behavior policy ρ is ex-

ploratory such that C(π−ε|ρ) = O(1), Theorem 3.2 states

that the regret is Õ(
√
N1

√

N1/(N0 +N1)), which signif-

icantly improves the pure online learning by a factor of
√

N1/(N0 +N1).

Finally, in all cases, Theorem 3.2 proves that Algorithm 1

achieves a constant Θ(
√

N1/(N0/C(π−ε|ρ) +N1)) speed-

up compared with pure online learning.

4 EXAMPLES

In this section, we specialize Algorithm 1 to two classic

examples, namely, tabular MDPs and linear contextual ban-

dits, by specifying the corresponding oracle algorithm Alg

to obtain the estimator of the value function and the uncer-

tainty function.

4.1 TABULAR MDPS

Tabular MDPs assume that the state and action spaces

are finite. Provided a dataset D = {τt}, where τt =
(xt,1, at,1, . . . , xt,H , at,H) is a trajectory sampled from

M∗, a classic method to estimate the reward and transition

kernel is as follows:














r̂h(xh, ah) =

∑

t 1{(xt,h, at,h) = (xh, ah)}rt,h
Nh(xh, ah)

,

P̂h(xh+1|xh, ah) =
Nh(xh+1, xh, ah)

Nh(xh, ah)
,

(3)

where Nh(xh, ah) =
∑

t 1{(xt,h, at,h) = (xh, ah)}
and Nh(xh+1, xh, ah) =

∑

t 1{(xt,h+1, xt,h, at,h) =



(xh+1, xh, ah)}. Azar et al. [2017] has shown that the es-

timated model M̂ = {X ,A, P̂,H, r̂, q̂} satisfies

∣

∣V π
M∗ − V π

M̂
∣

∣ ≤ E

[

H
∑

h=1

´/
√

Nh(xh, ah)

∣

∣

∣

∣

∣

M̂, π

]

, (4)

for some ´ = Õ(H). Thus, we can use the RHS of Equa-

tion (4) as the uncertainty function ÛπAlg and V π
M̂ as the es-

timated value function. More importantly, the uncertainty

function satisfies the eluder-type condition. Then, we have

the following result.

Corollary 4.1. For tabular MDPs, under the hybrid RL

framework in Algorithm 1, using ÛπAlg defined in the RHS of

Equation (4), the regret scales in

Õ

(

√

H4|X ||A|N1

√

N1

N0/C(π−ε|ρ) +N1

)

;

and the sub-optimality gap is

Õ

(
√

H4|X ||A|
N0/C(π∗|ρ) +N1

)

.

Next, we analyze our concentrability coefficient in tabular

MDPs. It is shown [Azar et al., 2017] that using the RHS

of Equation (4) ÛAlg achieves the optimal order of |X ||A|
in learning regret, in the following, we use ÛAlg as a proxy

of the uncertainty level UM∗(π) defined in Definition 3.1.

Then, by defining the occupancy measure at step h as

dπh(x, a) = E[1{xh = x, ah = a}|M∗, π], we have

√

C(π|ρ) ≈

∑

h

∑

xh,ah
dπh(xh, ah)

1√
Nh(xh,ah)

∑

h

∑

xh,ah
dρh(xh, ah)

1√
Nh(xh,ah)

≤ max
h,xh,ah

dπh(xh, ah)

dρh(xh, ah)
,

where the RHS is widely adopted concentrability coeffi-

cient in tabular MDPs [Xie et al., 2021b, Li et al., 2024].

This inequality indicates that the concentrability coefficient

defined in definition 3.2 is lower than the existing definition

for tabular MDPs. Thus, our upper bounds are tighter than

the existing results [Xie et al., 2021b, Tan et al., 2024].

We remark that existing works [Li et al., 2023, Tan and

Xu, 2024, Tan et al., 2024] typically show a sub-optimality

gap scales in
√

Coff/(N0 +N1) +
√

Con/N1 and a regret

scales in
√
N1

(

√

CoffN1/N0 +
√
ConN1

)

where Coff and

Con are concentrability coefficients for separate state-action

spaces (e.g. Con = maxh max(sh,ah)∈G
dπ
h(sh,ah)

dρ

h
(sh,ah)

for some

set G). Besides it is hard to find the exact value of Coff , Con,

these results can only match with ours (otherwise are higher

than ours) under a strict condition Con = O(N1/(N0+N1))
and Coff = O(N0/(N0 +N1)), which is a rare occurrence.

Hence, our results are tighter and easier to interpret.

4.2 LINEAR CONTEXTUAL BANDITS

Linear contextual bandits is a special case of MDPs when

H = 1, and the reward admits a linear structure. While it

simplifies the transition kernel, the linearity captures a core

structure in many complex MDPs such as linear MDPs [Jin

et al., 2020] and low-rank MDPs [Uehara et al., 2021].

Specifically, each state-arm or context-arm pair (x, a) ∈
X × A is associated with a feature vector ϕ(x, a) ∈ R

d.

At episode t, the learning agent observes a context xt sam-

pled from q∗ and then pulls an arm at. By doing so, the

agent receives a reward rt = ϕ(xt, at)
⊺θ∗ + ξt, where ξt

is a random noise and θ∗ ∈ R
d is an unknown parame-

ter. Throughout the paper, we assume that ∥θ∗∥2 ≤ 1 and

∥ϕ(x, a)∥2 ≤ 1, ∀(x, a) ∈ X × A. We also assume that

ξt is an independent zero-mean sub-Gaussian noise with

parameter 1, i.e, E[exp(λξt)] ≤ exp(λ2/2).

Many classic algorithms of linear contextual bandits usu-

ally involve estimating the unknown parameter θ∗ based

on available data D := {(xt, at, rt)}t through the linear

regression defined as follows [Abbasi-Yadkori et al., 2011,

Lattimore and Szepesvári, 2020]:

θ̂ = argmin
θ

∑

(at,rt)∈D
(ϕ(xt, at)

⊺θ − rt)
2 + λ∥θ∥22, (5)

where λ > 0 is a given parameter. Let Λ̂ :=
λId +

∑

(xt,at)∈D ϕ(xt, at)ϕ(xt, at)
⊺. Then, the solu-

tion to Equation (5) can be expressed as θ̂ =
Λ̂−1

∑

(xt,at,rt)∈D rtϕ(xt, at). Furthermore, by choosing

λ = d, with high probability, the following inequalities

hold for any x, a (See Abbasi-Yadkori et al. [2011]):

|ϕ(x, a)⊺θ̂ − ϕ(x, a)⊺θ∗| ≤ ´∥ϕ(x, a)∥Λ̂−1 , (6)

where ´ = Õ(
√
d). Therefore, we can use

Ex∼q∗,a∼π(·|x)[ϕ(x, a)
⊺θ̂] as an estimated value func-

tion, and the RHS of Equation (6) as the uncertainty

function ÛAlg.

Linear contextual bandits. If we use V̂ π =
Ex∼q∗,a∼π(·|x)[ϕ(x, a)

⊺θ̂] as the estimator, and the

RHS of Equation (6) as the uncertainty function ÛAlg, the

corresponding algorithm is known as Lin-UCB [Abbasi-

Yadkori et al., 2011], which satisfies the Eluder-type

condition. Then, we have the following result.

Corollary 4.2. For linear contextual bandits, under the hy-

brid RL framework in Algorithm 1, using ÛAlg as defined in

Equation (6), the regret is

Õ

(

d
√

N1

√

N1

N0/C(π−ε|ρ) +N1

)

;

and the sub-optimality gap is

Õ

(

d

√

1

N0/C(π−ε|ρ) +N1

)

.



Since Lin-UCB is shown to be nearly minimax opti-

mal [Chu et al., 2011, He et al., 2022], we can use ÛAlg
as an approximate of the uncertainty level: UM∗(π) ≈
´∥Ex∼q∗Ea∼π(x)[ϕ(x, a)]∥Λ̂−1

0

. Therefore, we have

C(π|ρ) ≈
∥Ex∼q∗Ea∼π(x)[ϕ(x, a)]∥2Λ̂−1

0

∥Ex∼q∗Ea∼ρ(x)[ϕ(x, a)]∥2Λ̂−1

0

≤ max
w:∥w∥=1

w⊤
Ex∼q∗Ea∼π(x)[ϕ(x, a)ϕ(x, a)

⊺]w

w⊤Ex∼q∗Ea∼ρ(x)[ϕ(x, a)ϕ(x, a)⊺]w
,

where the RHS is widely adopted as a concentrability co-

efficient in linear MDPs or low-rank MDPs [Uehara et al.,

2021, Tan and Xu, 2024]. This inequality indicates that our

result is tighter than existing results, especially for prob-

lems with a linear structure.

We note that in multi-armed bandits, our regret can be

further simplified to Õ(N1/
√

N0 mina ρ(a) +N1), which

matches the result in Cheung and Lyu [2024] order-wisely.

5 LOWER BOUNDS

In this section, we provide a lower bound for hybrid RL.

The lower bound shows the tightness of Theorem 3.1 and

Theorem 3.2.

Theorem 5.1. There exists an MDP instance such

that any hybrid RL algorithm must incur a sub-

optimality gap in Ω

(

1√
N0/C(π∗|ρ)+N1

)

, and regret in

Ω

(

N1√
N0/C(π−ε|ρ)+N1

)

.

Proof sketch. Our proof is built upon a 2-arm linear contex-

tual bandit instance specified in He et al. [2022]. It has been

shown that the regret per episode or the sub-optimality gap

is determined by the estimation error of parameter θ∗. Then,

we show that the estimation error ∥θ̂ − θ∗∥22 = Uπ
∗

(D)2
scales in the order of Θ(1/ED[(ϕ(x, a)⊺θ∗⊥)

2]), whereD is

the available dataset, and θ∗⊥ is orthogonal to θ∗. By choos-

ing D = D0, we have Uπ
∗

(D0) = 1/ED0
[(ϕ(x, a)⊺θ∗⊥)

2].
Therefore, C(π∗|ρ) = N0/ED0

[(ϕ(x, a)⊺θ∗⊥)
2]. By choos-

ingD = D0∪Dt−1 at each episode t, we conclude that the

regret per episode scales in Ω(1/
√

N0C(π∗|ρ) + t).

6 EXPERIMENTAL RESULTS

In this section, we evaluate the performances of the pro-

posed algorithms in synthetic environments. Additional ex-

perimental results are provided in Appendix E, including

evaluations in a contextual linear bandit constructed from

the MovieLens dataset [Harper and Konstan, 2015] and a

tabular MDP discretized from the Mountain Car environ-

ment [Moore, 1990], implemented in Gymnasium [Towers

et al., 2024]. All of the experiments are conducted on a

server equipped with an AMD EPYC 7543 32-core proces-

sor and 256GB memory. No GPUs are used. We believe the

experiments are also easy to replicate on common PCs.

Environment. We consider two types of environments as

described in Section 4: linear contextual bandits and tabular

MDPs.

For the linear contextual bandits, we set |X | = 20, |A| =
100 and d = 10. At each episode {ϕ(x, a)}a∈A is randomly

drawn from the unit sphere Sd−1. We set θ∗ as a unit vector

with the first element being 1. In addition, the reward is

given by rt = ϕ(xt, at)
⊺θ∗ + ξt, where ξt ∈ [−1, 1] is

independently sampled from the uniform distribution.

For tabular MDPs, we set H = 3, |X | = 5 and |A| = 10.

The initial states are uniformly and randomly chosen at

each episode. The transition probability Ph(·|s, a) at each

step and state-action pair is uniformly sampled from the

probability simplex. The reward rh(s, a) is uniformly gen-

erated from [0, 1] and is assumed to be known to the agent

for simplicity.

Offline Dataset Collection. We adopt the Boltzmann pol-

icy [Szepesvári, 2022] as the behavior policy. Under the

Boltzmann policy, actions are taken randomly according

to ρh(a|x) = exp{kQh(x,a)}∑
a∈A

exp{kQh(x,a)} , where k ∈ R, and

Qh(x, a) is the optimal Q-value function starting from

(x, a) at time step h. Note that a larger k makes ρ closer

to the optimal policy, and therefore makes C(π∗|ρ) smaller.

In particular, Q1(x, a) = r(x, a) in linear contextual ban-

dits.

We consider three behavior policies, denoted as ρ1, ρ2, and

ρ3, by setting different k of the Boltzmann policy. In Fig-

ure 1(a) and (f), we list the values of k used to generate

the Boltzmann policy and the concentrability coefficient

C(π−ϵ|ρ) for the two environments. When k = ∞, ρ1 is

the optimal policy, so it has the best coverage of the op-

timal policy, and C(π∗|ρ) = 1. As k decreases, the pol-

icy becomes further away from the optimal policy, thus

C(π∗|ρ) increases. In addition, in both environments, we

ensure that ρ2 and ρ3 are sub-optimal polices and thus,

C(π−ε|ρ1) > C(π−ε|ρ2) > C(π−ε|ρ3).
Finally, in Figure 1b and Figure 1g, we fix the offline

dataset size N0 as 2000 and 1000, respectively. In Figure 1c

and Figure 1h, we fix the behavior policy as ρ2.

Results. We present the experiment results in Figure 1. For

both environments, we evaluate the sub-optimality gap and

the regret with different offline behavior policies and vary-

ing numbers of offline trajectories. For each environment,

we conduct 100 trials and plot the sample average sub-

optimality gap or regret as a function of online time steps

N1. The baseline is the pure UCB algorithm without any

offline dataset.



ρ C(π∗|ρ) k
ρ1 1.0 ∞
ρ2 1.7 5
ρ3 8.7 −10

(a) CE in Bandits (b) SOG v.s. ρ (c) SOG v.s. N0 (d) Regret v.s. ρ (e) Regret v.s. N0

ρ C(π∗|ρ) k
ρ1 1.0 ∞
ρ2 2.2 2
ρ3 4.8 0

(f) CE in MDPs (g) SOG v.s. ρ (h) SOG v.s. N0 (i) Regret v.s. ρ (j) Regret v.s. N0

Figure 1: Experimental results on sub-optimality gap (SOG) and regret for different behavior policies and N0. Figures

(a) and (f) show the concentrability coefficients (CE) of three different behavior policies in linear contextual bandits and

MDPs, respectively. Figures (b)-(e) are the results on linear contextual bandits. Figures (g)-(j) are results on tabular MDPs.

Sub-optimality gap. Our experimental results confirm our

theoretical findings in Theorem 3.1. Specifically, augmen-

tation using offline data exhibits superior performance than

pure online results in both environments. More importantly,

the smaller the concentrability coefficient C(π∗|ρ) (Fig-

ures 1b and 1g), or the larger the offline dataset size (Fig-

ures 1c and 1h), the smaller the sub-optimality gap under

the same amount online episodes.

Regret. We then compare the results of regret minimization

in both the contextual linear bandit and the tabular MDP.

Recall that while C(π∗|ρ1) < C(π∗|ρ2) < C(π∗|ρ3), we

have C(π−ε|ρ1) > C(π−ε|ρ2) > C(π−ε|ρ3). As a result,

Figures 1d and 1i shows that the regret decreases as the

C(π−ε|ρ) decreases and Figures 1e and 1j shows that larger

offline dataset size leads to smaller regret. These experi-

mental results align with our theoretical findings in Theo-

rem 3.2. Finally, we remark that in Figure 1i, the pure on-

line algorithm is slightly better than the hybrid algorithm

with offline policy being the optimal policy. This outcome

arises because the hybrid algorithm will prioritize explor-

ing actions that are less explored in the offline dataset.

When the offline dataset primarily consists of optimal ac-

tions, the hybrid algorithm takes sub-optimal actions more

frequently than pure online algorithms, leading to slightly

higher regret. Nevertheless, the performance is still compa-

rable with the baseline and aligns with Theorem 3.2.

Key insight. The contrasting performances of the same be-

havior policy under sub-optimality gap minimization and

regret minimization problems highlight the need for differ-

ent offline datasets for these two tasks. Specifically, if the

objective is to find a near-optimal policy and the cost of

online exploration is negligible, then an offline dataset that

focuses on covering the optimal policy is sufficient. How-

ever, if the goal is to minimize the regret, it is more effec-

tive to collect offline data using various sub-optimal poli-

cies rather than the optimal policy.

7 CONCLUSION

In our paper, we developed a general hybrid RL framework

to minimize the sub-optimality gap and the online learn-

ing regret. The framework achieves performance bounds of

Õ(1/
√

N0/C(π∗|ρ) +N1) for the sub-optimality gap and

Õ(
√
N1

√

N1/(N0/C(π−ε|ρ) +N1)) for the regret, where

C(π∗|ρ) and C(π−ε|ρ) are two concentrability coefficients

for optimal policy and sub-optimal policies, respectively.

Our results demonstrate the benefits of integrating offline

data with online interactions. More importantly, the same

behavior policy ρ leads to different performances in sub-

optimality gap and regret minimization. Our experimental

results corroborated our theoretical findings. In addition,

we particularized our framework to two specific settings:

the contextual linear bandit setting and the tabular MDP set-

ting. We also derived lower bounds for the hybrid RL prob-

lem, showing that our approach is nearly optimal. Our re-

sults highlight the advantages of leveraging offline datasets

for more efficient online learning and provide insights into

the selection of offline datasets and policies for different

online tasks.
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A RELATED WORKS

Offline Reinforcement Learning (RL). It has been known that the performance of offline RL depends critically on the

concept of “coverage”. Early works [Munos and Szepesvári, 2008, Ross and Bagnell, 2012, Chen and Jiang, 2019, Duan

et al., 2020] largely assume full coverage, which suggests that the data generated by offline policy can cover the data

distribution generated by any policy. This restriction has been alleviated by recent results [Kumar et al., 2020, Jin et al.,

2021b, Rashidinejad et al., 2021, Xie et al., 2021a, Zanette et al., 2021, Uehara and Sun, 2022]. These results provide a

better understanding of the pessimism principle under partial coverage assumption, which only requires the offline data to

cover the data distribution of the optimal policy or a comparator policy.

Hybrid RL. Several recent works have studied the hybrid policy learning problem for reinforcement learning. Xie et al.

[2021b] focus on the sample complexity improvement in episodic tabular MDPs when both offline and online datasets

are used. They show the single-policy concentrability coefficient C∗ between offline behavior policy and optimal policy

is crucial, and the sample complexity required to achieve an ϵ-optimal policy is Õ(H3Smin (A,C∗)/ϵ2), where H,S,A
are the episodic length, number of states, and number of actions of the MDPs, respectively. While it achieves the best

sample complexity in both offline and online RL, it requires the knowledge of the concentrability and the access of the

behavior policy. Li et al. [2023] also consider tabular MDPs with a fixed offline dataset and do not assume the knowledge

of C∗. They introduce a new single-policy partial concentrability coefficient C∗(σ) which generalizes the original C∗ by

allowing the behavior policy only cover a proportion σ of the state-action pairs. With the new concentrability coefficient

and an imitation approach, the show that an ϵ-optimal policy can be obtained if N0 +N1 ≥ Õ(H3SC∗(σ)/ϵ2) and N1 ≥
Õ(H3Smin(Hσ, 1)/ϵ2) for a σ ∈ [0, 1], where N0 and N1 are the numbers of offline and online samples, respectively. By

choosing proper σ ∈ [0, 1], such sample complexity outperforms pure online and offline RL algorithms.

Beyond the tabular setting, Wagenmaker and Pacchiano [2023] consider linear MDPs and also design a new online-to-

offline concentrability coefficient Co2o. Compared with the single-policy concentrability coefficient C∗, the coefficient

Co2o considers not only the coverage from the offline dataset but also the coverage of the potential online dataset. Under

the assumptions that the offline dataset has good coverage and the number of online samples is not large, they show the

leading term of the sample complexity can be reduced from Õ(1/ϵ2) to Õ(1/ϵ8/5).

There are also works on hybrid RL with general function approximation. Song et al. [2022] propose hybrid Q-learning,

which achieves regret in regret Õ(max{C, 1}
√
dN1) and shows empirical advantages in Atari environments. However,

when the offline dataset does not have good coverage, the coverage coefficient C will be much greater than 1 and the regret

could be worse than pure online learning, which is also mentioned in Wagenmaker and Pacchiano [2023]. Tan and Xu

[2024] study a Global Optimism based on Local Fitting (GOLF) Jin et al. [2021a]-based algorithm for hybrid RL with

general Q-function approximation, and show that it can achieve a regret of Õ(
√

dN2
1 /N2 +

√
dN1) in stochastic linear

bandits. We also note a concurrent work Tan et al. [2024] studied the sub-optimality gap and regret simultaneously in linear

*Equal contribution.
*Equal contribution.



MDPs. However, their results relies on all-policy concentrability coefficient and is less general than our results.

Online Bandits. The study of multi-armed bandit problems traces back to the original work by Thompson [1933] for

adaptive clinical trials. Many classical algorithms have been proposed, including Thompson Sampling [Chapelle and Li,

2011, Agrawal and Goyal, 2012], and the family of Upper Confidence Bound (UCB) algorithms [Lai and Robbins, 1985,

Auer et al., 2002, Audibert et al., 2009, Abbasi-Yadkori et al., 2011, Garivier and Cappé, 2011, Cappé et al., 2013]. These

algorithms balance the intrinsic exploration-exploitation tradeoff and achieve the optimal learning regret. The linear bandit

model, as a generalization of finite armed bandits with linear reward structure, has also been well studied. Auer et al. [2002]

extend the UCB algorithm to stochastic linear bandits problem and achieve regret Õ(
√
N1) over time horizon N1. Dani

et al. [2008], Abbasi-Yadkori et al. [2011] further match the lower bound Ω(d
√
N1) of Dani et al. [2008] up to logarithmic

factors, where d is the feature dimension. The celebrated LinUCB has been proposed and analyzed in Li et al. [2010],

which consider linear contextual bandits and achieve regret Õ(
√
KdN1) for K-armed disjoint linear model. Other than

UCB-type algorithms, Agrawal and Goyal [2013] use Thompson Sampling in linear contextual bandit and achieves regret

Õ(d2
√
N1). Additionally, Soare et al. [2014], Jedra and Proutiere [2020] use optimal design for best-arm identification

with Õ(d/ϵ2) samples. Yang and Tan [2022] and Wagenmaker et al. [2021] utilize optimal design in linear bandits to

achieve minimax optimal results for fixed-budget best-arm identification and regret minimization, respectively.

Offline Bandits. Research on offline bandits has been limited. Rashidinejad et al. [2021] develop a pessimism-based

algorithm and match their information-theoretic lower bound on the sub-optimality gap Ω
(

√

SC∗/N0

)

for finite-arm

finite-context bandits, where C∗ is the concentrability coefficient C∗ representing the coverage of the offline dataset on

the optimal policy, S is the number of the contexts and N0 is the size of the offline dataset. Li et al. [2022] propose a

family of pessimistic learning rules for offline linear contextual bandits and pprove that the suboptimality gap scales in

Õ(
√

dC⋆/N0) for fixed contexts.

Hybrid Bandits. Hybrid policy learning in bandits is related to the warm-start bandits problem. Several works [Li et al.,

2010, Sharma et al., 2020, Silva et al., 2023, Zhang et al., 2019] investigate utilizing the offline data to improve the

online performance under different settings. Shivaswamy and Joachims [2012] study stochastic bandit with finite arms,

where the offline dataset is utilized to approximate the confidence bound in UCB algorithms. It shows that the number

of pulling a sub-optimal arm a with reward gap ∆a scales as Õ(max(0, 8/∆2
a − N0,a)), where N0,a is the number of

times pulling arm a in the offline dataset. Oetomo et al. [2023] augment the existing Thompson Sampling algorithms

by initialing the covariance matrix and reward vector in linear contextual bandits using the offline data. They achieve

regret Õ(
√

N1 log((det(VN0+N1
))/ det(VN0

))), where VN0+N1
and VN0

are the covariance matrices constructed with both

online and offline datasets and offline dataset only, respectively. Since the improvement is logarithmic, the regret advantage

is marginal. Agrawal et al. [2023] study the lower bound of the ¶-correct best-arm identification in stochastic K-armed

bandits given the offline dataset generated by an unknown policy, and further design an algorithm whose instant-dependent

sample complexity matches the lower bound. Beyond these, Cheung and Lyu [2024] consider generalized hybrid learning

in tabular stochastic bandits where the offline dataset can have different reward distributions than the online environment.

When both distributions match, their result reduces to that of Shivaswamy and Joachims [2012], but the work demonstrates

the transferability of hybrid learning. Our paper focuses on the hybrid stochastic linear bandit problem, and we develop

algorithms that can simultaneously have better sub-optimality and regret than online or offline learning, which has not been

studied before.

B MISSING PROOFS OF MAIN RESULTS

In this work, our analysis is built upon high-probability bound. That is, all inequalities and equations hold with probability

at least 1− ¶, where ¶ > 0 can be arbitrarily small with a O(log(1/¶))-factor blow-up in inequalities.

In particular, by taking V̂ ρ = 1
|D0|

∑

τ∈D0

∑H
h=1 rh(τ), we obtain a near-optimal upper bound for U(ρ|D0) through Azuma-

Hoeffding inequality. Mathematically, the following inequality holds with probability at least 1− ¶.

U(ρ|D0) ≤
√

2 log(1/¶)

N0
= Õ(1/

√

N0).

Theorem B.1 (Restatement of Theorem 3.1). Let Alg be a confidence based algorithm and satisfy the conditions in



Definition 3.3, π̂ be the output policy of Algorithm 1. Suppose π∗ is an optimal policy. Then, the sub-optimality gap π̂ is

Sub-opt(π̂) = Õ

(

CAlg
√

N0/C(π∗|ρ) +N1

)

,

where N0 is the number of offline samples, N1 is the number of online samples, C(π∗|ρ) is the concentrability coefficient,

and CAlg is defined in Definition 3.3.

Proof. We have

Sub-opt(π̂) = V π∗

M∗ − V π̂
M∗

(a)

≤ V̂ π∗ − V̂ π̂ + ÛAlg(π
∗|D0 ∪ DN1

) + ÛAlg(π̂|D0 ∪ DN1
)

(b)

≤ 2ÛAlg(π
∗|D0 ∪ DN1

)

where (a) follows from the definition of confidence based algorithm, and (b) is due to the optimality of π̂.

By Definition 3.2, we have

ÛAlg(π
∗|D0 ∪ DN1

) ≤ ÛAlg(π
∗|D0)

≤ CAlgUM∗(π∗)

≤ CAlg

√

C(π∗|ρ)U(ρ|D0) ≤ Θ̃



CAlg

√

C(π∗|ρ)
N0



 ,

where the first inequality is due to the fact that ÛAlg(π|D) ≤ ÛALg(π|D′) if D′ ⊂ D.

On the other hand, we have

ÛAlg(π
∗|D0 ∪ DN1

) =
1

N1

N1
∑

t=1

ÛAlg(π
∗|D0 ∪ DN1

)

(a)

≤ 1

N1

N1
∑

t=1

Ûalg(π
∗|Dt−1)

(b)

≤ 1

N1

N1
∑

t=1

ÛAlg(πt|Dt−1)

(c)

≤ Õ

(

1

N1

√

N1C2
Alg

)

= Õ

(

CAlg

√

1

N1

)

,

where (a) is due to the fact that the uncertainty level decreases as the available dataset increases, (b) follows from the

optimality of πt, and (c) is due to the combination of the Cauchy’s inequality and eluder-type condition (Definition 3.3).

Therefore,

Sub-opt(π̂) ≤ Õ



CAlgmin







√

C(π∗|ρ)
N0

,

√

1

N1











= Õ

(

CAlg

√

min

{

C(π∗|ρ)
N0

,
1

N1

}

)

(a)

≤ Õ

(

CAlg

√

2

N0/C(π∗|ρ) +N1

)

where (a) is the harmonic mean.



Theorem B.2 (Restatement of Theorem 3.2). Let Alg be a confidence-based algorithm satisfying and Definition 3.3. Then,

the regret of Algorithm 1 is

Regret(N1) = Õ

(

CAlg

√

N1

√

N1

N0/C(π−ε|ρ) +N1

)

,

where C(π−ε|ρ) is the maximum concentrability coefficient of the sub-optimal policies whose sub-optimality gap is at least

ε, and ε = Õ(1/
√
N0 +N1).

Proof. Define Regt = V π∗

M∗ − V πt

M∗ , where π∗ is an optimal policy. We mainly consider t such that Regt > ε, where ε is

decided later. By the definition of Alg, we have

Regt = V π∗

M∗ − V πt

M∗

≤ V̂ π∗

+ ÛAlg(π
∗|D0 ∪ Dt−1)− V̂ πt + ÛAlg(πt|D0 ∪ Dt−1)

≤ 2ÛAlg(πt|D0 ∪ Dt−1)

By Definition 3.2, we have

ÛAlg(πt|D0 ∪ Dt−1) ≤ ÛAlg(πt|D0)

≤ CAlgU(πt)

≤ CAlg

√

C(πt|ρ)U(ρ|D0)

≤ Θ̃



CAlg

√

C(π−ε|ρ)
N0



 ,

where C(π−ε|ρ) = maxπ:V π

P∗<V π∗

P∗ −ε C(π|ρ). Therefore, by choosing ε = O(1/
√
N0 +N1), we have

Reg =

N1
∑

t=1

Regt

≤
N1
∑

t=1

max







Õ



min







CALg

√

C(π−ε|ρ)
N0

, ÛAlg(πt|Dt−1)









 , ε







≤ Õ

(

N1
∑

t=1

CALg

√

2

N0/C(π−ε|ρ) + C2
AlgÛAlg(πt|Dt−1)−2

)

+N1ε

= Õ



CALg

√

C(π−ε|ρ)
N0

N1
∑

t=1

√

1− 1

C−2
AlgÛAlg(πt|Dt−1)2N0/C(π−ε|ρ) + 1



+N1ε

(a)

≤ Õ



CALg

√

C(π−ε|ρ)
N0

√

N1

√

√

√

√N1 −
N1
∑

t=1

1

C−2
AlgÛAlg(πt|Dt−1)2N0/C(π−ε|ρ) + 1



+N1ε

(b)

≤ Õ



CALg

√

C(π−ε|ρ)
N0

√

N1

√

N1 −
N2

1

C−2
Alg

∑N1

t=1 ÛAlg(πt|Dt−1)2N0/C(π−ε|ρ) +N1



+N1ε

(c)

≤ Õ



CALg

√

C(π−ε|ρ)
N0

√

N1

√

N1 −
N2

1

N0/C(π−ε|ρ) +N1



+N1ε

= Õ

(

CALg

√

N1

√

N1

N0/C(π−ε|ρ) +N1

)

,

where (a) and (b) follow from the Cauchy’s inequality, and (c) is due to the eluder-type condition (Definition 3.3).



C MISSING PROOFS OF EXAMPLES

C.1 TABULAR MDPS

We first show that the algorithm proposed in Azar et al. [2017] satisfies the eluder-type condition.

Lemma C.1. The algorithm proposed in Azar et al. [2017] satisfies the eluder-type condition.

Proof. First, we introduce several additional notations. Given a dataset Dt, Let M̂t be the estimated model from Equa-

tion (3) and the corresponding counters are Nt,h(xh, ah). We define another uncertainty function Ũ(π|D) as

Ũ(π|D) = E

[

H
∑

h=1

´
√

Nh(xh, ah)

∣

∣M∗, π

]

,

where ´ = Õ(H). According to Section B in Azar et al. [2017], the difference of value functions under the true modelM∗

and the estimated model M̂ is also upper bounded by Ũ. Therefore,

N1
∑

t=1

ŨAlg(πt|Dt)
2 ≤ ´2

N1
∑

t=1

E

[

H
H
∑

h=1

1

Nt,h(xh, ah)

∣

∣

∣

∣

∣

M∗, πt

]

= ´2H

H
∑

h=1

∑

xh,ah

E

[

N1
∑

t=1

1{xt,h = xh, at,h = ah}
Nt,h(xh, ah)

]

= ´2H

H
∑

h=1

∑

xh,ah

E

[

N1
∑

t=1

Nt+1,h(xh, ah)−Nt,h(xh, ah)

Nt,h(xh, ah)

]

≤ ´2H2|X ||A| logN1

= Θ̃(H4|X ||A|).

While Lemma C.1 shows that the eluder-type condition is satisfied, the result upper bound is loose. To obtain a tighter

bound, we directly apply the inequalities in Azar et al. [2017] and prove Corollary 4.1.

Corollary C.1 (Restatement of Corollary 4.1). For tabular MDPs, under the hybrid RL framework in Algorithm 1, using

ÛAlg(π|D) defined in the RHS of Equation (4), the regret scales in

Õ

(

√

H4|X ||A|N1

√

N1

N0/C(π−ε|ρ) +N1

)

;

and the sub-optimality gap is

Õ

(
√

H4|X ||A|
N0/C(π∗|ρ) +N1

)

.

Proof. Due to Lemma C.1, we have that

N1
∑

t=1

ÛAlg(πt|Dt) ≤ Õ(
√

H4|X ||A|N1).

In addition, we show that
ÛAlg(π

∗)
UM∗ (π∗) ≤

√

|X ||A|.
By Theorem 3 in Xiong et al. [2022], there exists an MDPM∗ such that

min
Alg

ED0

[

|V π∗

M − V π∗

Alg

]

| ≥ Ω

(

√

|X ||A|Eπ∗

[

H
∑

h=1

1
√

N(sh, ah)

])



Thus, we have

ÛAlg(π
∗)

UM∗(π∗)
≤ Õ









Eπ∗

[

∑H
h=1

β√
N(sh,ah)

]

√

|X ||A|Eπ∗

[

∑H
h=1

1√
N(sh,ah)

]









= O(
H

√

|X ||A|
) = O(

√

H4|X ||A|)

Therefore, the regret of Algorithm 1 is

Regret(N1) = Õ



min







N1

√

C(π−ε|ρ)
N0

,
√

H4|X ||A|N1











≤ Õ

(

√

H4|X ||A|N1

√

1

N0/C(π−ε|ρ) +N1

)

.

For the sub-optimality gap, a straightforward modification of the proof in Azar et al. [2017] shows that
1
N1

∑N1

t=1 ÛAlg(πt|Dt) ≤ Õ(
√

H4|X ||A|/N1). Following the same proof in Theorem B.1 except without using the

Cauchy’s inequality, we complete the proof.

C.2 LINEAR CONTEXTUAL BANDITS

First, we show that Lin-UCB satisfies the eluder-type condition.

Lemma C.2. Lin-UCB satisfies the eluder-type condition.

Proof. Note that ÛAlg(π|D) ≤ ´Ex∼q∗∥Ea∼π(x)[ϕ(x, a)]∥Λ̂−1 according to Equation (6), where ´ = Õ(
√
d)

Therefore, by the elliptical potential lemma [Carpentier et al., 2020], we have

ÛAlg(πt|Dt)
2 ≤ ´2

E

[

N1
∑

t=1

∥ϕ(xt, at)∥2Λ̂−1

t−1

]

≤ ´2d logN1

= Θ̃(d2).

Combining Lemma C.2 and Theorems 3.1 and 3.2, we obtain the following corollary.

Corollary C.2 (Restatement of Corollary 4.2). For linear contextual bandits, under the hybrid RL framework in Algo-

rithm 1, using ÛAlg as defined in Equation (6), the regret is

Õ

(

d
√

N1

√

N1

N0/C(π−ε|ρ) +N1

)

;

and the sub-optimality gap is

Õ

(

d

√

1

N0/C(π−ε|ρ) +N1

)

.

D MISSING PROOFS IN SECTION 5

In this section, we provide the full analysis for lower bounds.



D.1 HARD INSTANCE

First, we introduce the notation of truncated Gaussian distributions. If a Gaussian random variable X ∼ N(0, Id) is

truncated to {x : ∥x∥2 ≤ r}, then we denote the truncated Gaussian distribution of X as N(0, Id|r).
In the lower bound analysis, we follow the setting in He et al. [2022], as specified below.

Arms and dimension: There are 2 arms: {1, 2}, and the feature dimension is 2.

Feature vectors and the context distribution: The feature vector of the second arm is always 0. For the feature vector

of the first arm, let the distribution of the context x satisfy that each ϕ(x, 1) ∈ R
2 is sampled from a truncated normal

N(0, I2|1).
Model parameter: The model parameter θ∗ ∈ R

2 is sampled uniformly from a sphere Sr = {x ∈ R
2 : ∥x∥ = r}, where

r ∈ [0, 1/
√
d]. The constraint on r is due to the boundedness assumption that ∥θ∗∥ ≤ 1.

Additional notations: Recall that Dt = {xτ , aτ , rτ}τ<t is the online dataset. Here rt is sampled from a sub-Gaussian

distribution with mean ϕ(xt, at)
⊺θ∗ and variance 1. We further denote that ϕ(xt, a) = xt,a. We re-parameterize θ∗ by its

angle, i.e. θ∗ = r(cos µ∗, sin µ∗)⊺, and µ∗ is sampled uniformly from the interval [0, 2π). We further denote e1 = (1, 0)
and e2 = (0, 1), which form the canonical basis of R2.

With the aforementioned setting, we present the generic regret lower bound modified from Proposition 3.5 in He et al.

[2022].

Theorem D.1. For the hard instance described in Appendix D.1, if available dataset is D, the sub-optimality gap is lower

bounded by

Ω

(

inf
θ∈F(D)

1

r
Ev

[

∥θ∗ − θ∥2
]

)

;

if D0 ∪ Dt is the available dataset at episode t, regret can be lower bounded by

Ω





∑

t∈[T ]

inf
θt∈F(D0∪Dt)

1

r
Ev

[

∥θ∗ − θt∥2
]



 .

D.2 PROOF OF LOWER BOUND

Equipped with Theorem D.1, we are able to lower bound the regret by the estimation error.

Proof Outline: Step 1 is to decompose the estimation error to the expectations a random variable Z which capture the

covariance of the estimator. Step 2 upper bounds E[Z]. Step 3 combines the previous steps to prove the results.

Step 1: Decompose the Estimation Error.

Lemma D.1 (Fingerprinting Lemma). Define random variables Z as follows.

Z = (θ̂ − θ∗)⊺(−e1 sin µ∗ + e2 cos µ
∗)(−e1 sin µ∗ + e2 cos µ

∗)⊺V̄ (θ̄ − θ∗),

where V̄ = Λ0 +
∑

τ<t ϕ(xτ , 1)ϕ(xτ , 1)
⊺, and θ̄ = V̄ †

(

∑

(x,a,r)∈D0
ϕ(x, a)r +

∑

τ<t ϕ(xτ , 1)rτ1{aτ = 1}
)

, and

recall that rτ is sampled from N (ϕ(xτ , aτ )
⊺θ∗, 1).

Then, we have

E

[

∥

∥

∥
θ∗ − θ̂

∥

∥

∥

2
]

= 2r2 − 2r2E[Z].



Proof. Due to ∥θ∗∥ = ∥θ̂∥ = r, it suffices to analyze the term E

[

θ̂⊺θ∗
]

. Note that θ∗ = r(cos µ∗, sin µ∗)⊺. Then, we have

E

[

θ̂⊺θ∗
]

=
r

2π

∫ 2π

0

e⊺1E[θ̂|µ∗] cos µ∗ + e⊺2E[θ̂|µ∗] sin µ∗dµ∗

=
r

2π

(

e⊺1E[θ̂|µ∗] sin µ∗ − e⊺2E[θ̂|µ∗] cos µ∗
)

∣

∣

∣

∣

γ∗=2π

γ∗=0

− r

2π

∫ 2π

0

e⊺1
∂

∂µ∗E[θ̂|µ
∗] sin µ∗ + e⊺2

∂

∂µ∗E[θ̂|µ
∗] cos µ∗dµ∗

= rEγ∗

[

(−e1 sin µ∗ + e2 cos µ
∗)⊺

∂

∂µ∗E[θ̂|µ
∗]

]

.

For the derivative, it is worth noting that E[θ̂|µ∗] = E

[

E

[

θ̂
∣

∣D0 ∪ Dt

]

∣

∣µ∗
]

. We have

∂

∂µ∗E[θ̂|µ
∗] =

∫

D0∪Dt

E

[

θ̂
∣

∣D0 ∪ Dt

] 1

(2π)(t−1)/2

∂

∂µ∗ exp



−1

2

∑

(x,a,r)∈D0∪Dt

(r − ϕ(x, a)⊺θ∗)2





= rE



E

[

θ̂|D0 ∪ Dt

]

(−e1 sin µ∗ + e2 cos µ
∗)⊺

∑

(x,a,r)∈D0∪Dt

ϕ(x, a)(r − ϕ(x, a)⊺θ∗)

∣

∣

∣

∣

θ∗





= rE
[

θ̂(−e1 sin µ∗ + e2 cos µ
∗)⊺V̄ (θ̄ − θ∗)

∣

∣θ∗
]

.

Combining with the fact that E[V̄ (θ̄ − θ∗)|θ∗, V̄ ] = 0, we have

E

[

θ̂⊺θ∗
]

= r2E
[

(−e1 sin µ∗ + e2 cos µ
∗)⊺
(

θ̂ − θ∗
)

(−e1 sin µ∗ + e2 cos µ
∗)⊺V̄ (θ̄ − θ∗)

]

= r2E[Z].

Therefore,

E

[

∥

∥

∥θ∗ − θ̂
∥

∥

∥

2
]

= 2r2 − 2E
[

θ̂⊺θ∗
]

= 2r2 − 2r2E[Z],

which completes the proof.

Step 2: Upper Bound Each E[Z].

Lemma D.2. Under the same setting as in Lemma D.1, we have

E[Z] ≤
√

(t− 1 +N0Ex∼q∗,a∼ρ(·|x)[(ϕ(x, a)⊺θ∗⊥)
2])E

[

∥θ̂ − θ∗∥2
]

. (7)

Proof. Recall that

Zi = (θ̂ − θ∗)⊺(−e1 sin µ∗ + e2 cos µ
∗)(−e1 sin µ∗ + e2 cos µ

∗)⊺
∑

(x,a,r)∈D0Dt

ϕ(x, a)(r − ϕ(x, a)⊺θ∗).



By the Cauchy’s inequality, we have

E[Z]2 ≤ E

[

∥θ̂ − θ∗∥2
]

E











(

− e1 sin µ
∗ + e2 cos µ

∗)⊺
∑

(x,a,r)∈D0∪Dt

ϕ(x, a)(r − ϕ(x, a)⊺θ∗)





2






= E

[

∥θ̂ − θ∗∥2
]

E





∑

(x,a,r)∈D0∪Dt

((

− e1 sin µ
∗ + e2 cos µ

∗)⊺ϕ(x, a)
)2





≤ (t− 1 +N0Ex∼q∗,a∼ρ(·|x)[(ϕ(x, a)
⊺θ∗⊥)

2])E
[

∥θ̂ − θ∗∥2
]

.

Step 3: Lower Bound the Total Regret.

Theorem D.2 (Restatement of Theorem 5.1). Under the instance described in Appendix D.1, any hybrid RL algorithm

must incur a sub-optimality gap in Ω

(

1√
N0/C(π∗|ρ)+N1

)

, and regret in Ω

(

N1√
N0/C(π−ε|ρ)+N1

)

.

Proof. Combine Step 1 (Lemma D.1) and Step 2 (Lemma D.2), we have

2r2 = E

[

∥θ̂ − θ∗∥2
]

+ 2r2E [Z]

≤ E

[

∥θ̂ − θ∗∥2
]

+ 2r2
√

(N0³+ t− 1)E
[

∥θ̂ − θ∗∥2
]

,

where ³ = Ex∼q∗,a∼ρ(·|x)[(ϕ(x, a)
⊺θ∗⊥)

2].

Therefore,

r2 ≥ E

[

∥θ̂ − θ∗∥2
]

≥ r2

4r2(N0³+ t− 1) + 4
.

Substituting the above result into the generic lower bound in Theorem D.1, and selecting r = 1/
√
N0³+N1, we conclude

that

Regret(T ) ≥ Θ





∑

t∈[T ]

r

4r2(N0³+ t− 1) + 4





= Θ

(

1

4r
log

(

1 +
r2N1

1 + r2N0³

))

= Θ

(

rN1

1 + r2N0³

)

= Θ

(

N1√
N0³+N1

)

.

To establish the relationship between ³ and the concentrability coefficient, we repeatedly apply Lemma D.1 and

Lemma D.2 on dataset D0. Then, we obtain

r2 ≥ E[∥θ̂ − θ∗∥2] ≥ r2

4r2N0³+ 4
.



By choosing r = 1/
√
N0³, we have 1

rE[∥θ̂ − θ∗∥2] = Θ(1/
√
N0³). Thus,

³−1 = Θ

(

1
rE[∥θ̂ − θ∗∥2]

1/
√
N0

)2

= Θ

(

U(π∗|D0)

U(ρ|D0)

)2

= C(π∗|ρ).

The proof is completed by noting that U(π∗|D0) = Θ(U(π−ε|D0)) for any ε = O(1/
√
N0 +N1) in the setting described

in Appendix D.1.

E ADDITIONAL EXPERIMENTS

In this section, we provide additional experimental results evaluating the performance of algorithms instantiated within our

proposed framework in more realistic environments. Specifically, we consider a contextual linear bandit constructed from

the MovieLens dataset [Harper and Konstan, 2015] and a tabular MDP discretized from the Mountain Car environment

[Moore, 1990] implemented in Gymnasium [Towers et al., 2024].

E.1 EXPERIMENTAL RESULTS WITH MOVIELENS DATASET

Environment. We construct our linear contextual bandit environment using the MovieLens-100K dataset [Harper and

Konstan, 2015], which provides sparse ratings from 943 users on 1682 movies. Following Bogunovic et al. [2021], we

first apply collaborative filtering [Morabia, 2019] to complete the partially observed rating matrix. We then factorize the

resulting rating matrix R = [ri,a] ∈ R
943×1682 using non-negative matrix factorization with 3 latent factors, yielding

R = XH . Here, X ∈ R
943×3 represents user feature vectors, and H ∈ R

3×1682 represents movie feature vectors. In

the linear contextual bandit framework, we treat each row in X (i.e., each users feature vector) as the context, denoted by

xi ∈ R
3 for the i-th user. The contexts are known in the contextual bandits. Meanwhile, we randomly select 20 columns of

H to serve as the arms (i.e., 20 movies for chosen), where each arms unknown parameter vector corresponds to a movies

feature vector that must be estimated from data, denoted as θa ∈ R
3. At each decision point, the linear contextual bandit

model randomly provides a user context and the agent predicts the expected reward for choosing arm a (i.e., recommending

a movie) based on observed context x.

Offline Dataset Collection. Similar to the offline data collection method in the main text, we adopt the Boltzmann pol-

icy [Szepesvári, 2022] as our behavior policy. Specifically, the policy chooses an action a according to

ρ(a|x) = exp{kr(x, a)}
∑

b∈A exp{kr(x, b)} ,

where k ∈ R, A is the set of all arms (movies), and r(x, a) denotes the true reward function. Under the Boltzman policy, a

larger k makes ρ closer to the greedy policy (i.e., always selecting the highest reward arm), whereas a smaller k makes the

policy more exploratory.

The three different behavior policies, ρ1, ρ2, and ρ3, are constructed in the same way introduced in the main text, each

defined by a distinct value of k in the Boltzmann distribution. As k decreases, the policys action deviates from the optimal

choice, increasing the concentrability coefficient C(π∗|ρ) and thus degrading coverage of the optimal policy. Figure 2(a)

provide the exact k values and the approximated C(π∗|ρ) in the environment.

In Figure 2b and Figure 2d, we fix the offline dataset size N0 to be 4000 and vary k to illustrate the impact of different levels

of coverage. In constrast, in Figure 2c and Figure 2e, we fix the behavior policy to be ρ2 while varying the offline dataset

size. This setup allows us to systematically examine how both the behavior policys level of optimality and the sample size

affect the performance of various learning algorithms.

Results. Figure 2 compares sub-optimality gaps and regrets under various offline behavior policies and dataset sizes, using

the pure UCB algorithm without offline data as the baseline. Overall, the results mirror the main texts theoretical and

empirical findings.



ρ C(π∗|ρ) k
ρ1 1.0 ∞
ρ2 2.43 5
ρ3 4.05 0

(a) CE in bandits (b) SOG v.s. ρ (c) SOG v.s. N0 (d) Regret v.s. ρ (e) Regret v.s. N0

Figure 2: Experimental results on sub-optimality gap (SOG) and regret for different behavior policies and N0. Figure (a)

shows the concentrability coefficients (CE) of three different behavior policies in MovieLens linear contextual bandits.

For gap minimization, policies with smaller concentrability coefficients C(π∗|ρ) or larger offline samples lead to tighter

gaps, reaffirming that offline data focused on covering optimal actions can greatly enhance efficiency.

In regret minimization, the algorithm benefits from the offline dataset. It benefit from the offline data more, if the offline

data has diverse offline coverage generated by larger C(π∗|ρ) and larger offline data size, as shown in Figure 2d and

Figure 2e. A slight exception occurs when the offline dataset is collected by optimal actions. In this case, the offline data

has very big C(π−ϵ|ρ) and may encourage the algorithm to explore the sub-optimal arms first. Nonetheless, the outcomes

are still consistent with theoretical predictions, highlighting the distinct offline data requirements for gap minimization

versus regret minimization.

E.2 EXPERIMENTAL RESULTS WITH MOUNTAIN CAR ENVIRONMENT

Environment. The Mountain Car environment[Moore, 1990] is a classic benchmark task in which an underpowered car

must drive up a steep slope, featuring a continuous state space over position [−1.2, 0.6] and velocity [−0.07, 0.07] and a

discrete action set for accelerating forward, backward and no acceleration. To model the Mountain Car environment and

implement a UCB-type algorithm, we first discretize the state space and apply the UCB algorithm on the tabular MDP.

Specifically, we designate any state with position exceeding 0.5 as the goal state, while all other states are formed by

uniformly discretizing the position range [−1.2, 0.5] and velocity range [−0.07, 0.07] into 30 equal intervals each, yielding

901 discrete states in total. The agent receives a reward of 1 only upon taking an action from the goal state; otherwise, the

reward is 0. After an action is taken in the goal state, the environment is reset to its start configuration, then follows the

original Mountain Car transition dynamics.

Offline Data Collection. Different from Boltzmann policy-based offline data collection, we use Algorithm 2, which itera-

tively interleaves exploration and exploitation to generate an offline dataset for the Mountain Car environment. Specifically,

at each iteration, a model P̂ is used to estimate two Q functions, Q̂b(s, a) and Q̂r(s, a). Here, b(s, a) is an exploration bonus

function akin to a UCB term [Auer et al., 2002], encouraging broader exploration, whereas r(s, a) is the known reward

function driving exploitation. These estimates yield two policies, exploration-focused π̂b and exploitation-focused π̂r. Tra-

jectories collected under these policies populate two datasets, D and D′, respectively. After each round of data collection,

both the model P̂ and the bonus function b(s, a) are updated, reflecting the optimism-in-the-face-of-uncertainty principle

characteristic of UCB-based methods. After 10,000 iterations, trajectories from D and D′ are combined using the offline

coefficient ³, thus balancing exploration and exploitation in the final offline dataset.

The motivation for this approach is that, in the Mountain Car environment, a purely uniform policy tends to remain con-

fined to the valley, failing to explore higher positions effectively. This leads to inadequate coverage of the state-action

space. By contrast, the pure online exploration policy π̂b naturally seeks out all state-action pairs and thereby achieves

broader coverage, populating D with a wide range of trajectories. Meanwhile, the pure exploitation policy π̂r focuses on

maximizing rewards and populates D′ with near-optimal behavior. Finally, the offline coefficient ³ determines how these

two datasets are combined into the final offline dataset D0, so Algorithm 2 can simulate the offline dataset with different

coverage for our hybrid learning. Higher ³ generates better coverage on the optimal policy and lower ³ generates better

coverage on all policies. Remarkably, this offline dataset collection method does not contradict our setting that the offline

data should be collected by one fixed policy. The offline dataset can be viewed as being collected by a mixture policy that

randomly samples {π̂i
b}i and {π̂i

r}i for N0 times. However, it is difficult to provide the estimated C(π∗|ρ) for each policy

or data distribution. Intuitively, a greater offline coefficient ³ results in smaller C(π∗|ρ) and greater C(π−ϵ|ρ); a smaller

offline coefficient ³ results in greater C(π∗|ρ) and smaller C(π−ϵ|ρ).



Algorithm 2 Mountain Car Offline Data Collection

1: Input: Coefficient ³ ∈ [0, 1], number of fffline trajectories N0 ≤ 10000, discount factor µ = 0.99.

2: Initialization: D ← ∅, D′ ← ∅, P̂ as a uniform transition model, b(s, a)← 1
3: for i = 1 to 10000 do

4: Estimate

Q̂b(s0, a0) = ÊP̂

[

∑

t

µtb(st, at) | s0, a0
]

,

Q̂r(s0, a0) = ÊP̂

[

∑

t

µtr(st, at) | s0, a0
]

5: Derive policies π̂i
b from Q̂b and π̂i

r from Q̂r

6: Collect trajectories τi under π̂i
b and τ ′i under π̂i

r

7: Update D ← D ∪ {τi} and D′ ← D′ ∪ {τ ′i}
8: Update P̂ and b(s, a) using D
9: end for

10: Sample ³N0 trajectories from D′ and (1− ³)N0 trajectories from D to form D0

11: Output: Offline dataset D0

(a) SOG v.s. α (b) SOG v.s. N0 (c) Regret v.s. α (d) Regret v.s. N0

Figure 3: Experimental results on sub-optimality gap (SOG) and regret for different offline coefficient ³ and number of

offline trajectories N0.

Results. We summarize our findings in Figure 3, where we experiment with various values of the offline coefficient ³ and

different sizes of the offline dataset in the Mountain Car environment. For each configuration, we conduct 10 independent

runs and track the mean sub-optimality gap or regret as a function of the online time horizon N1. The pure UCB method

without any offline data serves as our baseline. In Figure 3a and Figure 3c, the number of offline trajectories are 2000. In

Figure 3b and Figure 3d, ³ is 0.5.

For sub-optimality gap minimization, our results in Figure 3a and Figure 3b indicate that incorporating offline data sig-

nificantly improves performance compared to the pure online approach, validating the theoretical insights. In Figure 3a,

when ³ is larger, the offline dataset emphasizes more trajectories generated by the near-optimal policy, reducing the sub-

optimality gap more quickly. Also, in Figure 3b, increasing the size of the offline dataset further accelerates this reduction

in sub-optimality.

For regret minimization, the results also show the benefit of incorporating the offline dataset. As in other settings, an offline

dataset that prioritizes a near-optimal policy (i.e., higher ³) can sometimes lead to slightly higher regret in the experiments,

since the hybrid algorithm devotes exploration efforts to less-visited actions, which may be sub-optimal. Conversely, when

³ is smaller, the offline dataset covers a broader range of behaviors, leading to more informed exploration for regret

minimization as Figure 3c. Also, in Figure 3d, enlarging the offline dataset size lowers the regret curve in each case,

aligning with our theoretical predictions.


