
Stochastic Optimal Planning of Community-based
Microgrid Considering Energy Justice

Cong Bai1, Student Member, IEEE, Han Wang1, Zhaoyu Wang1, Senior Member, IEEE, and Yu Wang2
1Department of Electrical and Computer Engineering, 2Department of Political Science, Iowa State University, Ames, USA

congbai@iastate.edu, hanwang6@iastate.edu, wzy@iastate.edu, yuwang@iastate.edu

Abstract—Low-income households (LIH), exposed to the un-
certain modern grid, bear greater energy burdens and face
inequitable access to reliable power compared to high-income
households (HIH). This paper proposes a two-stage stochastic
community-based microgrid planning (CMP) framework to boost
energy justice within the system. To reduce the negative impact
of income levels, a weighted energy cost model for households
within the microgrid (MG) is designed. To address the multi-
source uncertainty during the operation period, a two-stage
stochastic framework is developed. Moreover, to assess the
proposed method, the unbalanced IEEE 123 node system is
employed and modified as an isolated MG. The analysis reveals
the proposed model can achieve a risk-averse solution while
economic optimality is guaranteed. Additionally, the designed
weighted method improves the LIH’s impact rate to 67.95% and
decreases the total planning cost by 22.43%.

Index Terms—Energy justice, Stochastic programming, Unbal-
anced power flow, Microgrid Planning

I. INTRODUCTION

The concept of energy justice has gained increasing at-
tention in the modern power grid as it aims to ensure that
all communities have equitable access to affordable, reliable,
and sustainable energy resources. Energy justice addresses the
disproportionate burden of energy costs and limited access
to clean energy faced by vulnerable groups, particularly low-
income households [1]. Additionally, fuel poverty, which refers
to the inability of households to afford adequate energy
services, disproportionately impacts low-income and minority
households, as these groups are often less energy efficient and
more vulnerable to energy poverty [2]. By highlighting the
importance of fairness in energy distribution, energy justice
advocates for policies that consider the diverse socioeconomic
conditions of different communities, fostering more inclusive
and resilient energy solutions [3].

Achieving a just, clean energy transition requires proactive
community engagement to ensure that benefits reach vulnera-
ble and underresourced households. Community-based micro-
grid planning (CMP) has emerged as an effective approach
to addressing energy justice by providing localized energy
solutions that enhance resilience and ensure equitable power
distribution [4]. Microgrids (MGs) are particularly well-suited
to serve vulnerable communities, as they can operate inde-
pendently of the larger grid, thereby improving energy access
and reducing dependency on centralized power systems [5],
[6]. To bridge the gap inside the communities that have long
faced energy injustices, three novel equity-oriented indices are
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introduced to establish a CMP framework [7]. To mitigate the
enormous overnight capital investment barriers in the plan-
ning process, a group of distributed energy resources (DER),
including photovoltaic (PV) systems and energy storage (ES)
systems, are integrated into a controllable entity to deploy
renewable energy to LIH [8]. By focusing on community needs
and involving local stakeholders, MG planning can incorporate
energy justice principles, ensuring that marginalized groups
are not left behind in transitioning to a sustainable energy
future.

Uncertainty is an inherent aspect of MG planning, par-
ticularly in the context of achieving energy justice. Factors
such as fluctuating energy demands, variability in renew-
able generation, and the changing socioeconomic status of
communities can significantly affect the performance and
feasibility of MGs [9]. Multi-source uncertainty, including
renewable energy sources (RES), such as PV, wind, tidal
sources, load demand, and electricity price, is handled by
Monte Carlo Simulation (MCS) to develop a stochastic energy
management system for MG planning [10]. Addressing these
uncertainties requires planning methodologies that integrate
stochastic optimization, ensuring that MGs are designed to be
adaptable and resilient in the face of diverse and unpredictable
conditions [11]. Incorporating uncertainty into CMP not only
enhances system reliability but also ensures that energy solu-
tions remain equitable under different future scenarios.

Therefore, in this paper, to address the uncertainty sources
during the CMP process and boost energy justice at the same
time, a full two-stage stochastic CMP model is proposed.
Summarily, The technical contributions of this work are as
follows:

• An income-based weighted household electricity cost
model is developed to boost energy justice within the
community-based MG.

• A two-stage stochastic framework is proposed to handle
the MG investment and operation considering the multi-
source uncertainties in different scenarios.

• The three-phase unbalanced IEEE 123 node feeder is
modified as an isolated MG to test and validate the
proposed planning model.

The rest of this paper is organized as follows. Section II
formulates the full two-stage stochastic CMP model. Sec-
tion III presents the simulation setup. And then, three cases
are designed and validated in Section IV. Finally, Section V
concludes the whole work.



II. MATHEMATICAL FORMULATION

In this section, a two-stage stochastic CMP model is pro-
posed. Firstly, the investment problem is established in the
first stage. Secondly, the scenario-based operation problem
considering weighted customers is formulated in the second
stage. Lastly, the full two-stage stochastic model is presented.

A. First Stage Investment Problem

The available DERs include ES, PV, and diesel generator
(DG), which is noted as D = {ES,DG,PV} and the candidate
buses set as Bcand, the investment problem in the first stage
can be written as follows:

min F IC, (1)

s.t. F IC = F IC,ins + F IC,dev, (2)
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where F IC, F IC,ins, F IC,dev are the investment cost (IC),
installation cost, and device cost, respectively. αχ

i is the
installation cost of device χ in bus i. yχi is the binary variable
to indicate whether install the device χ in bus i. βχ is the
rated power-based per unit price for device χ. Sχ

i,nom is the
planned rated power for the device χ in bus i. γES is the
energy-based per unit price for the ES. EES

i,nom is the planned
energy capacity for the ES in bus i. Sχ

min and Sχ
max are the

minimum and maximum rated power for single device χ. EES
min

and EES
max are the minimum and maximum energy capacities

for the single ES.

B. Second Stage Operation Problem

Given a finite set of stochastic scenarios S whose element s
defines a typical daily scene representing the whole year, the
scenario-based operation problem is presented as follows.

1) Modeling Net Present Value-based Operation Cost
Based on the income levels of different households, the

buses containing loads within the community-based MG are
partitioned into two sets, BH and BL, which represent the high-
income household (HIH) and low-income household (LIH)
customers, respectively. Assume the planning period is N and
the discount rate is ρ, the operation cost (OC), FOC

s , in the
scenario s is as follows [12], [13]:

FOC
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where T is the operation horizon for the typical daily scenario
s. ϵt,s is the per unit electricity price at time t in the scenario
s. ωH and ωL are the weights for the electricity cost of HIH
and LIH, respectively. Φi is a set including the phases of bus
i. | · | is an operator calculating the cardinality of a set. 1T

|Φi| is
the transpose of a column vector with all |Φi| elements being
one. pHIH

i,t,s and pLIH
i,t,s are the column vectors storing the active

load demands of HIH and LIH at bus i and time t in the
scenario s, separately.

2) Modeling Three Phases Unbalanced Linear Power Flow
Given the buses set of the system as B and the child buses

set of bus j as Bj , the nodal power balance constraints for all
bus j ∈ B can be written as follows:

pj,t,s =
∑
k∈Bj

(
1|Φij |×|Φjk|pjk,t,s

)
− pij,t,s, (8a)

qj,t,s =
∑
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(
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)
− qij,t,s, (8b)
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∑
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pχ
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∑
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qχ
j,t,s − qHIH

j,t,s − qLIH
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where pj,t,s and qj,t,s are the column vectors storing the
injection active and reactive power at bus i and time t in
the scenario s, respectively. Φij is a set including the phases
of line ij. 1|Φij |×|Φjk| is a matrix with |Φij | rows and |Φjk|
columns, whose all elements are one. pij,t,s and qij,t,s are the
column vectors storing the branch active and reactive power
at line ij and time t in the scenario s, respectively. pχ

j,t,s and
qχ
j,t,s are the active and reactive output of the device χ at bus

j and time t in the scenario s, separately. qHIH
i,t,s and qLIH

i,t,s are
the column vectors storing the reactive load demands of HIH
and LIH at bus i and time t in the scenario s, respectively.

Given the line set of the system as L, the phase voltages
located at the ends of a line are combined with the following
constraints:

vj,t,s = v
Φij

i,t,s − 2
(
rijpij,t,s + xijqij,t,s

)
∀ij ∈ L, (9)

where vj,t,s is a column vector storing the square of phase
voltages at bus j and time t in the scenario s. vΦij

i,t,s extracts
the phase voltages from vi,t,s related to Φij . rij and xij are
the matrices storing the resistance and reactance of line ij,
respectively, whose computations are shown in [14].

In addition, safe operation constraints guaranteeing the
steady work of the system are as follows:

−M |Φij | ≤ pij,t,s ≤ M |Φij | ∀ij ∈ L, (10a)

−M |Φij | ≤ qij,t,s ≤ M |Φij | ∀ij ∈ L, (10b)

vj,min ≤ vj,t,s ≤ vj,max ∀j ∈ B, (10c)

where M |Φij | is the column vector storing the maximum
allowable value for the pass power in the line ij. vj,min

and vj,max are the column vectors storing the minimum and
maximum of the square of the phase voltages at the bus j,
separately.



3) Modeling Energy Storage(ES) System
The planned ES system satisfies the following constraints

for each bus i ∈ Bcand:

max
n∈Φ

{(
pES
i,n,t,s

)2
+
(
qES
i,n,t,s)

2
)}
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(
1
3S
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, (11a)
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SoCmin ≤ SoCi,t,s ≤ SoCmax, (11c)

where pES
i,n,t,s and qES

i,n,t,s are the active and reactive output
of the n-th phase of the ES system at bus i and time t
in the scenario s, respectively. SoCi,t,s is the ES systems
state of charge (SoC) at bus i and time t in the scenario s
while SoCmin and SoCmax are the minimum and maximum
allowable SoC, respectively.

4) Modeling Diesel Generator(DG) System
As another flexible and controllable resource at bus i ∈

Bcand, the DG obeys the following constraints:

max
n∈Φi

{(
pDG
i,n,t,s

)2
+
(
qDG
i,n,t,s)

2
)}

≤
(
1
3S
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)2
, (12)

where pDG
i,n,t,s and qDG

i,n,t,s are the active and reactive output of
the n-th phase of the DG system at bus i and time t in the
scenario s, individually.

5) Modeling Behind-meter Photovoltaic(PV) System
The uncertain environment affects the behind-meter PV

system’s active output, while its reactive output is in a fixed
ratio to the former one. Given the PV systems output rate at
time t in the scenario s as ηt,s, for bus i ∈ Bcand, the PV
system follows the constraints:

pPV
i,t,s =

1
3S

PV
i,nomηt,s1|Φi| (13a)

qPV
i,t,s = 0.352pPV

i,t,s (13b)

6) Modeling Per Unit Electricity Price
Given the per unit operation cost of device χ as ϵχ, the

per unit electricity price at time t in the scenario s can be
calculated by dividing the total generation cost by the total
active output:

ϵt,s =

∑
i∈B

∑
χ∈D

(
ϵχ1T

|Φi|p
χ
i,t,s

)
∑

i∈B
∑

χ∈D
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χ
i,t,s

) . (14)

C. Full Formulation of Community-based Microgrid Planning
(CMP)

The full two-stage stochastic CMP problem is illustrated as
follows by collecting the above two parts of content:

min F IC +
∑
s∈S

πsF
OC
s , (15)

s.t. Investment Constraints: Eq. (2) ∼ (6), (16)
Operation Constraints: Eq. (7) ∼ (10), (14) (17)
Device Constraints: Eq. (11) ∼ (13), (18)

where πs is the probability of the scenario s.

III. MICROGRID (MG) FRAMEWORK AND SIMULATION
SETUP

In this section, the MG architecture and simulation configu-
ration are presented. Firstly, the IEEE 123 node system-based
isolated MG is illustrated. And then, the simulation parameters
are detailed. Finally, the typical scenarios used for the planning
problem are defined.

A. IEEE 123 Node System

The three-phase unbalanced IEEE 123 node feeder shown
in Fig. 1 is modified to form the isolated community-based
MG.
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Fig. 1. Modified IEEE 123 node feeder diagram.

The minimum and maximum limits for the phase voltage
are 0.95 and 1.05 per unit value, separately. The maximum
allowable pass power for the branch is chosen as 600 kW.
Left details about the feeder can be found in [15].

85 of the buses in the above system are connected with loads
divided into two sets, shown in Table I. The base values for
the weights of electricity price are ωH = 25% and ωL = 75%.
The system’s maximum total active and reactive load demands
are 3.49 MW and 1.99 MVar, respectively.

TABLE I
LOAD CLASSIFICATION

HIH Customers LIH Customers

7, 10, 2, 5, 6, 12, 34,
16, 17, 19, 20, 28, 29, 33,
35, 41, 42, 43, 45, 46, 49,
50, 51, 37, 38, 39, 62, 63,

65, 52, 60, 58, 59, 107, 109,
111, 112, 113, 114, 99, 100, 75,

76, 86, 80, 82, 84, 85, 90,
92, 94, 95

1, 9, 11, 4, 24, 22, 30,
31, 32, 47, 48, 64, 66, 53,

55, 56, 102, 103, 104, 106, 98,
68, 69, 70, 71, 73, 74, 77,

79, 83, 87, 88, 96

B. Model Parameters

Assuming the planning period N is 30 years and the
discount rate ρ is 6%, the device per unit price is collected in
Table II.



TABLE II
DEVICE PER UNIT PRICE

Device α(k$) β(k$/MW) γ(k$/MWh) ϵ($/kWh)

ES 100 1938.20 [16] 476.74 [16] 0.00
DG 100 2300.00 [17] / 0.18 [17]

PV 100 1551.27 [16] / 0.00

Sχ
min = 0.1 MVA and Sχ

max = 2 MVA for any single device
while EES

min = 0.4 MWh and EES
max = 4 MWh for single ES.

All three phases of buses in the system belong to the candidate
buses set, and the simulation time step is 1 h.

C. Defined Scenarios

Four typical daily scenarios with equal probability con-
taining the customers’ behaviors and fluctuations of the PV
systems are illustrated in Fig. 2.
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Fig. 2. Typical daily scenarios. (a) Total active load. (b) Total reactive load.
(c) Active output rate of PVs. (d) Reactive output rate of PVs.

IV. NUMERICAL RESULTS

In this section, three cases are designed to validate the
proposed planning method. Firstly, the risk-averse planning
solution is presented. Secondly, the system performance is
studied under the extreme scenario. Lastly, the sensitivity of
different household weights is analyzed.

A. Case 1: Risk-averse Planning Results

By solving the two-stage stochastic CMP model, the eco-
nomic optimal solution considering uncertainty is given in
Table III.

All three planned ES systems have a relatively higher energy
capacity than their nominal rated power, where the maximum
energy capacity in bus 105 is 3.3684 MWh. In contrast, PV
systems have the biggest nominal rated power among all
types of devices, which are 1.5293, 1.5551, and 1.5083 MW,
respectively.

Moreover, the itemized costs of each scenario are listed in
Table IV to compare with the stochastic planning result.

As shown in Table IV, the stochastic planning results handle
with the risks from all scenarios while the total cost is

TABLE III
RISK-AVERSE PLANNING RESULTS

No. Type Location Snom(MW) Enom(MWh) Price(k$)

1 ES 105 0.8380 3.3684 3230.06
2 ES 108 0.8181 3.3394 3177.67
3 ES 151 0.7322 2.9573 2829.01
4 DG 149 1.2777 / 2938.71
5 DG 151 1.0950 / 2518.50
6 PV 105 1.5293 / 2372.36
7 PV 108 1.5551 / 2412.38
8 PV 151 1.5083 / 2339.78

TABLE IV
ITEMIZED COST COMPARISON

Sce. F IC (k$)
FOC (k$) F IC + FOC (k$)

F IC,ins F IC,dev

1 800 22075.43 1972.26 24847.69
2 700 19422.00 4063.28 24185.28
3 700 21243.99 5264.83 27208.82
4 600 19430.60 20710.33 40740.93

Stoch. 800 21818.47 8980.93 31599.40

optimized. Compared with scenario 4, the total planning cost
is reduced by 22.43%.

B. Case 2: Extreme Scenario System Performance

The stochastic planning results obtained from case 1 in
Section IV-A are utilized to operate the microgrid under
scenario 4, which has the maximum average load demand
and minimum PV output, to validate the plan’s performance,
shown in Fig. 3.
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Fig. 3. System performance under extreme scenario. (a) ES active output at
bus 151. (b) DG active output at bus 151. (c) PV active output at bus 151.
(d) Per unit electricity price. (e) Load Demand. (f) Operation Cost.

As shown in Fig. 3 (a), one of the planned ES systems
with low nominal rater power but high energy capacity by
charging from 8:00 to 14:00 to move the high nominal rater
power PV system’s output to other operation time step. The
per unit electricity price increased from 0.1180 $/kWh at 16:00



to its peak value of 0.1436 $/kWh at 23:00, which matches
the change in ES system output.

The load demand levels of HIH and LIH customers shown in
Fig. 3 (e) present that the LIH customers are inferior during the
original two-stage planning problem. However, the big weight
of LIH’s electricity price makes LIH’s operation cost matter
during the planning process. The average percentage of LIH’s
operation cost is 67.95%.

In addition, the critical states of the MG, including phase
voltages and SoC, are depicted in Fig. 4.
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Fig. 4. System States. (a) Phase voltages. (b) State of Charge (SoC).

As illustrated in Fig. 4 (a), the phase voltages are always
controlled within the safe range as Eq. (10c) required. Mean-
while, the SoC of the installed ES systems during operation
is also restricted to 0.2∼1.0 as the Eq. (11c) asked.

C. Case 3: Sensitivity Analysis

Different pairs of (ωH, ωL) are adopted in the stochastic
CMP to test the cost sensitivity, which is shown in Fig. 5.
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As the value of ωL increases from 0 to 0.75, the total cost of
the planning problem decreases from 34133.10 k$ to 31599.40
k$, which is caused by the decreased operation cost, while
the investment cost is almost the same. The former four plans
present the same planning structure among the three types
of devices, where more ES systems and PV systems help
decrease LIH’s energy cost. Moreover, for the pair (ωH, ωL),
the higher weight on LIH means (0.25, 0.75) has the best
economic performance than other four pairs.

However, when the ωL keeps increasing to 1.0, the planning
structure is destroyed. The increased operation cost led by
more investment in DG systems burdens LIH’s energy cost, al-
though LIH’s low original load demand abnormally decreased
the total cost.

V. CONCLUSION

This study investigates energy justice’s impact on the CMP
problem with multi-source uncertainty. Firstly, a weighted

energy cost model is designed to consider the impact of
income levels. And then, a full two-stage stochastic CMP
model is established. Finally, the proposed method is assessed
on the modified IEEE 123 node system-based MG. The case
study analysis presents that the risk-averse plan improves the
LIH’s impact rate to 67.95% and reduces 22.43% of the total
cost.
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