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Abstract—This paper optimizes power allocation among charg-
ing electric vehicles (EVs) at a fast charging station (FCS) when
the available power is limited. Lyapunov optimization (LO) is
used to optimally distribute the limited power among EVs such
that the quality of service (QOS) is maximized, where maximizing
the QOS maximizes charging speed. Three case studies are
explored and verified via simulation and hardware-in-the-loop
tests. The first case study focuses on uniformly optimizing the
QOS for each customer using Jain’s fairness index. Subsequently,
the second case study integrates prioritization where EVs, who
pay more, are given precedence over others and can be charged
faster. Finally, the third case study optimizes the EV fast charging
profile in addition to optimizing power allocation at the FCS. In
this case, two LO problems work together to find the optimal
allocated power and charging profile in real-time. Each EV uses
the outcome of the allocated power to update its charging profile,
while the updated charging profile is used to re-update the
allocated power and so on. The results show that the proposed
approach reduces the increment in charging time by over 30%.

Index Terms—EV fast charging, Fast charging station, Lya-
punov optimization, Quality of service, Hardware in the loop.

I. INTRODUCTION

Electric vehicles (EVs) powered by renewable generation
are viewed as the primary solution to the emission mitiga-
tion of the transportation sector [1]. However, some of the
main challenges hindering EV development stem from the
limitations of fast charging stations (FCSs), ranging from
accessibility to power restrictions [2[]. The literature tackles
EV fast charging challenges in two aspects. Quite a few
papers have addressed the EV fast charging problem, focusing
on charging speed and degradation reduction. On the other
hand, researchers work on FCS management, minimizing
FCS operation costs and its strain on the power grid while
maximizing the quality of service (QOS). However, concur-
rently addressing both aspects is challenging, considering their
mutual impact on each other.

EV fast charging optimization approaches can be cate-
gorized into model-based and model-free strategies, where
model-free techniques use deep machine learning algorithms.
Further, the model-based methods use either battery electro-
chemical models or equivalent circuit models (ECMs). Ref.
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[1]] exploits model-free deep reinforcement learning (DRL) to
fast charge an EV battery pack as rapidly as possible while
maintaining a minimal aging. The authors in [3] explore trans-
fer learning DRL to fast charge EVs without needing to retrain
the RL agent from scratch when some environmental factors
change. A DRL agent is trained in [4]] to fast charge a single
cell within 15 minutes and keep the battery temperature under
70°C. In [3]], a personalized charging strategy is formulated
that incorporates user behavior. The problem is then solved
via DRL, adding 1.5 years to battery life.

Electrochemical battery models are precise but sophisticated
and are not currently used in practice due to their slow
computation [I]. In addition, ECMs boast straightforward
implementation but are bereft of internal battery states [6].
With the help of an ECM, Ref. [[7] exploits a material-agnostic
approach based on asymmetric temperature modulation to
achieve a 70%-75% state of charge within 12 minutes. In [8]],
a novel fast charging method is proposed where supercapac-
itors assist the Li-ion battery while charging. The proposed
approach models the battery using an ECM and yields 40%
longer battery life. A multi-stage constant current charging
protocol is designed using an electrochemical battery model
in [9]]. The proposed model is then solved by a nonlinear model
predictive control algorithm, which reduces charging time by
11.7% and enhances capacity loss by 59.4%.

DC FCS optimization is necessary to hedge against range
anxiety and enable long-mile travel [[10]. The FCS optimiza-
tion encompasses minimization of operation costs as well
as maximization of the QOS experienced by users. In the
scope of FCSs, QOS can be defined as delivering the required
energy to the customers, charging time, variations of charging
power, etc. [[11]]. In [2]], FCS QOS is maximized when power
demand exceeds the station’s power limit by dynamically
distributing the available power among charging EVs. The
optimal power allocation minimizes the increase of charging
time. Dynamic pricing is used to mitigate FCS operation costs
in [10]. The research in [12] factors the battery charging rate
and user decision in the FCS optimization problem. An FCS
aggregator’s participation in electricity markets is optimized
in [13]] considering numerous FCSs with renewable energy



sources (RESs). The results show a reduction in operating
costs and RES curtailment.

Simultaneous optimization of EV fast charging and FCS
QOS is challenging, considering their intertwined interaction.
Therefore, this paper first formulates the power allocation
among charging EVs at an FCS considering the power cap
at the station. Subsequently, it fuses the FCS power allocation
with EV fast charging optimization and solves both problems.

II. PROBLEM FORMULATION

The present work formulates the power distribution among
charging EVs at an FCS considering the power cap at the
station. The power cap may change throughout the day for
various reasons, such as electricity prices. The power alloca-
tion is done based on the required charging power of each
connected EV, which follows the EV’s charging profile. It is
not possible to know the charging profile of EVs in advance.
However, it is possible to know their current power require-
ment through built-in communication means at charging ports
(CPs). Consequently, LO is chosen to tackle the problem.
LO decomposes the problem into single-step subproblems and
solves each subproblem greedily. Yet, we prove the greedy or
local optimum solutions accumulate to a suboptimal solution
close to the global optimal solution [10]. This characteristic
of LO makes it suitable for FCS management problems that
are heavily influenced by user behavior randomness. Thus, the
problem is solved for each time step separately. At each time
step, connected EVs communicate their requested charging
power with the FCS, which is sufficient information for the
designed LO algorithm to optimize the problem.

The proposed LO algorithm distributes power among charg-
ing EVs by maximizing all customers’ QOS uniformly or pri-
oritizing those who pay more. Prioritization can also be used
to charge first responder vehicles quickly. Lastly, the devised
LO approach is fused with EV charging profile optimization.
The latter problem is also cast into the LO framework so
that two LO problems work together. At each time step, EVs
compute their optimal charging power using the second LO
algorithm and communicate it to the FCS. The station then
updates the power distribution among EVs via the first LO
algorithm. Then, the loop repeats indefinitely.

A. Case 1: Power Allocation Without Prioritization

Firstly, power allocation without prioritization is formulated.
In this regard, system time ratio (STR) is exploited to measure
QOS as follows [14]],
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where 2} indicates the STR at the i-th CP, .7;! and .7; denote
the remaining charging time with and without station power
cap, respectively, E} states the remaining energy needed to
finish charging, P} and P! express the charging power with
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and without FCS power limit, respectively, S; is QOS, and N
shows the total number of CPs. Note that PZ < Ptb, 0<S: <
1, and S; = 1 if all 2;'s are equal.

Accordingly, the optimal power allocation problem is [2],
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where Py is the FCS’s power limit, and Q = % 37 E{Q;}
represents the time average of (), defined as,

Qi1 = max [Q; — e, 0] + ay, €]

where Q; is the total unmet demand of EVs at the FCS, e,
presents the total energy delivered to EVs at ¢, and a; shows
the total energy demand added at ¢.

Define a Lyapunov function as L[Q] £ 1Q?, which is
zero if all EVs are charged [2]. Next, define the Lyapunov
drift as A[Q¢] £ E{L[Qs+1] — L[Q:]|Q¢}, which shows the
expected change of Lyapunov function over one time step [10].
Finally, the drift-plus-penalty term is A[Q:] — VE {S;|Q:}
[15]. Weight V' > 0 provides a trade-off between satisfied
demand and QOS.

According to the LO theory, the stability constraint (3d) is
met if an upper bound exists for the Lyapunov drift A[Q;] at
each time step. Besides, optimizing the penalty term minimizes
the time average of QOS, equivalent to optimizing (3a).
Theorem || derives the upper bound for the Lyapunov drift.

Theorem 1. At any time slot t, the Lyapunov drift-plus-penalty
function has the following upper bound,

AlQ:]| —VE{S:|Q+} < B+Q:E {as — ;| Q¢ } —VE {S:|Q+} ,
)

_ 1 (.2 2
where B = 3 (emax + amax).

Proof. Note that, the maximum possible value for e; is
emax = INPE*At, where P53 is a CP’s rating power.
Similarly, maximum of a; is amax = NC***, where C}"**
is the maximum EV battery capacity. It can be shown that
Q1 < Q7 +ef+ai+2Q; (ar — er) [2). Hence,

1
L[Qt*Fﬂ - L[Qt] < 5 (er2nax + a?nax) + Qt (a’t - et) .
By taking conditional expectations w.r.t (t), we obtain
1
A[Qt] < § (er2nax + a‘r2nax) + QtE{a’t - et‘Qt}'

By adding the penalty term to both hand sides of the inequality,

AlQi] = VE{S:|Q¢} < B +QiE{a; —e/|Q:} — VE{S;|Q+}.
|



Algorithm 1 QOS Optimization Algorithm
Inputs: V, P, At, a,
Outputs: P!
Initialization: Q < vazl Ei
: for t € [1,T] do

1

2 find P} by solvmg problem (6)
3 At SN P

4: update az

5 Q: + max[Qs — e4,0] + ay

6: end for

The upper bound of (3) can be iteratively minimized for
each time slot utilizing the following,

min Qi (ar —er) = VS, (6a)
P
subject to
N .
Y PP (6b)
i=1
0< Pl <P (6¢)

The iterative process of minimizing the upper bound of
(3) is presented in Algorithm Theorem 2] proves that
Algorithm [I] yields a suboptimal solution for (3)), which is
close to the true optimal solution.

Theorem 2. For all T > 0, has the following upper limit,
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where p* is the maximum value of % Zthl E{S:}.

Proof. Given enough time, the time-average of a(t) — e(t) is
zero. Assume that all EVs at each CP come and finish charging
during the period [1,T], i.e., no EV will come before ¢t = 1 or
finish charging after ¢t = T'. Since the total amount of energy
charged to the EVs is equal to the total amount of energy
required by the EVs at each CP, then for any k-th CP, with
ke{1,2,--- N}, Z?:l[af - 6?] =0.
By taking expectations from both sides of the inequality (3]
and summing over all time slots,
T
E{L[Qr]} — E{L[Q1]} -V > E{S;} <TB-VTp".
t=1
Additionally, L[Qr] is a positive-definite function; thus, we
can omit it from the left-hand side. By rearranging and
dividing by VT, we obtain

1« B 1
t=1

Theorems|I] and 2] prove that instead of solving problem (),
one can minimize the upper bound of the drift-plus-penalty
term for each time slot, yielding a suboptimal solution with at
most O(1/V') deviation from the global optimal point.

B. Case 2: Power Allocation With Prioritization

In order to prioritize EVs who pay more, a weighting
factor is added to (I), where w} oc i.e., w! is inversely

1
proportional to the purchasing price.
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Algorithm [T] is employed for this case as well. However, it

applies (8).

C. Case 3: Power Allocation And EV Charging Optimization

In this subsection, EV fast charging is formulated to be
solved by LO. We ultimately introduce an algorithm similar
to Algorithm [1| to optimize the EV charging profile iteratively.
The EV charging problem is as follows,

T
. 1 a2
n}in T ;E {al (zt —z ) + agAQ} At, (9a)
subject to
™ < I < 1™ (9b)
Vil < P, (9c)
9, < o, (9d)

where [; is EV’s charging current, a; and o are weights, z;
denotes battery state of charge (SOC), 2¢ is the desired SOC,
A(; shows battery degradation, and V; indicates battery’s
terminal voltage. Eq. imposes an FCS power limit on the
EV where P} presents the available power at the CP to which
the EV is connected. Moreover, 2; £ z%—z, is a virtual queue
that becomes zero when the battery is fully charged Since,
Ziy1 = 2+ & At then, 2,11 = 2, — —At = 9 + ¢y,
where C} is battery capacity. Further, A(; 1s defined as [1]],

E,
Al :Bexp{ RT. }A055

where E, = —31700 4 370.3C-rate is activation energy, R is
the universal gas constant, 7, states battery core temperature,
and A represents battery ampere-hour throughput.

Define a Lyapunov function as .#[2;] £ 1 22, Then, define
the Lyapunov drift as A[2;] £ E{L[2:11] — L[2:]|2;}.
Lastly, the drift-plus-penalty term is A[2:] — VE {u:|2:},
(al (zt - zd)2 + agACt> At.

Analogous to subsection two theorems are derived to
show the upper bound of the drift term and the objective in
(Oa)), respectively.

Theorem 3. At any time slot t, the EV Lyapunov drift-plus-
penalty function has the following upper bound,

where u; =

1
A2+ VE{wi|Qi} < 5 + 2B {6421} + VE {ue| 2}
(10)

Proof. Similar to Theorem |



Algorithm 2 EV Charging Profile Optimization
Inputs: V, z¢, C,, At

Outputs: I,

Initialization: 2; + 2% — z;

1: for t € [1,7] do

2 find I, by solving problem (TT)
3: d)t == —%At
4
5:

D~ 2.+
end for

Subsequently, the following optimization problem mini-
mizes the upper bound of (T0),

n}in Qste@t + Vut, (1 la)

subject to
Imin < It < ]max7 (llb)
ViI; < P (11c)

Problem (TT)) is solved for each time slot separately. Algo-
rithm [2] shows the said iterative process. Note that Algorithm 2]
is run for each EV independently. Theorem [] establishes that
Algorithm [2] results in a suboptimal solution for (@), which is
close to the global optimal solution.

Theorem 4. For all T > 0, (Qa)) has the following upper limit,

1 & B
7O Blu} < <5 +pi, (12)
t=1

where py is the minimum of Qd) and B, = 3+ +E {£[21]}.
Proof. Similar to Theorem [2] [ |

At every time step, each EV calculates its charging power,
Vily, via Algorithm |Z| and announces it to the FCS. The
FCS then computes the charging power for each EV, i.e., P},
through Algorithm [T] based on the reported required power of
EVs. In other words, in the FCS problem, we have Ptb = Vi1;.
At the next time step, EVs utilize their updated charging power
by the FCS to re-update their charging current.

III. RESULTS

This section evaluates the proposed approach in MATLAB
Simulink through simulation and HIL tests. The HIL tests are
executed on OPAL-RT. Battery specifications from [/1]] are used
for simulations, while three large Li-ion batteries are exploited
in the HIL tests, assuming each battery is a connected EV.

Case 1 simulation results, where QOS for all EVs is
equivalently maximized, are depicted in Fig. [T} We assume the
FCS can accommodate three EVs at a time. The assumption
is because we have three large batteries in our lab to run the
tests. In over 5000 (s), two sets of three EVs visit the FCS
with a period of having no customers in between. The FCS
power limit occurs while the first 3 EVs are in the middle
of their charging sessions and continues throughout the 5000
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Fig. 1. Case 1 (QOS optimization without prioritization) simulation results.

Battery #1 Battery #2 Battery #3

1000
" X 349
Y 833.053

= X262 = )

£ S grooy

5 S0 I —"“‘"T"“fJ“'

5 1
Fower

0 500 1000 1500 0 500 1000 1500 0 500 1000 1500
8 Time [s] Time [s]

X 905
Y 833.414

Fig. 2. Case 1 HIL results.

(s) horizon. The subplot on the right illustrates how the LO
results follow the CC-CV curve with a bit of delay.

The results in Fig. [I] are compared with a baseline power
allocation to demonstrate the effectiveness of the proposed
approach. In the baseline method, plotted in green, the power
allocation is not optimized, and the available power is equally
divided between charging EVs. We only showed the baseline
results for the second set of 3 EVs in Fig. [I] The EV in
charging port 1 does not finish its charging session by the end
of 5000 seconds, extending the charging time by over 800
(s) or 13 minutes. At charging port 2, the EV finishes the
charging process at 4037 (s), 4189 (s), and 4264 (s) under
CC-CV without power limit, the proposed approach, and the
baseline method, respectively. Hence, the proposed approach
reduces the increment in charging time by 33% in this case,
i.e., 100%(4264-4189)/(4264-4037). Similarly, charging port
3’s increment in charging time is reduced by 82 (s) or 36%.

Fig[)] illustrates the HIL results in case 1. The charging
profile is constant power for all EVs due to the power limit. All
EVs receive identical charging power share because no one is
prioritized; they have identical batteries and start their charging
session simultaneously and at similar SOCs. The fluctuations
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Fig. 3. Case 2 HIL results, where batteries 2 and 3 are prioritized.
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Fig. 4. Case 3 results, where batteries 2 and 3 are prioritized. Each EV uses
Algorithm [Z] to find its optimal charging current.

in batteries 2 and 3 are attributed to different ports of OPAL-
RT, as the calculated reference lines (in red) do not fluctuate.

Fig. [3| portrays the case 2 results where w} = 1.1, w? = 1,
and w] = 0.9. This means the first EV pays less than the
other two EVs, while the third EV pays a higher rate than
the second EV. Therefore, the first EV is allocated nearly 100
watts of charging power, and the other two are prioritized.
Interestingly, EVs 2 and 3 receive roughly equal share of the
available power as enough power is available to distribute
between them. Hence, the higher payment rate by EV 3 is
deemed unnecessary in this scenario. After just over 200 (s),
EV 3 finishes its charging session, and EV 1 receives a higher
share of the charging power (almost equal to EV 2’s share).

Fig. E] presents the outcome of case 3 with w} = 1.2,
w? = 1, and w} = 0.8. Since EV #3 pays the highest rate,
it receives higher charging power, followed by EVs #2 and
#1. Subplots (d)-(e) show EVs’ requested charging power
and FCS’s delivered power. In Figs. f{d)-(e), EVs do not
consider the FCS power limit to calculate their requested
power. However, they consider the FCS power limit when
calculating their charging current based on the available power.
In other words, at each time step, EVs run Algorithm E] twice,
once with the imposed FCS power limit and once without it.
The former is used to find their optimal charging power, while
the latter is utilized to submit their charging power demand.

It takes 799 (s) for EV #3 to finish its charging session,
while EVs #1 and #2 need 991 (s) and 931 (s), respectively.
Hence, EV #3 is charged 3.2 minutes faster than EV #I.
Additionally, after 931 (s), EV #l receives its requested
power without restriction as it is the only EV at the station.
Furthermore, the imposed charging power limit has led to
slight differences between cell capacity drop for each EV, as
Fig. @c) visualizes. Interestingly, EV #2 has the least capacity
drop despite being charged faster than EV #1. Nonetheless,
the differences in capacity loss of the EVs are minimal as
Algorithm [2| considers capacity loss.

IV. CONCLUSION

This paper formulates joint optimization of an FCS QOS
and EV fast charging. The FCS problem considers the power
cap at the station and distributes it optimally among connected
EVs. On the other hand, EVs optimize their charging current
according to their share of allocated power. Both FCS and EV
problems are solved via LO, as it enables real-time updates on
allocated power on the EV side and customer power demand
on the FCS side. Three case studies are examined. The first
case study optimizes power allocation in a fair manner, while
the second case study prioritizes those who pay more. The
third case study combines FCS QOS maximization with EV
fast charging optimization. The results show that, compared
to the baseline method, the proposed approach reduces the
increment in charging time by over 30%. The increment occurs
due to the limited power supply.
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