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Nomenclature

o angle of the rectilinear path of vortex ring
af open area fraction

arg, open area fraction at the leading edge

ar open area fraction at the trailing edge

w vorticity, (wi,ws,ws)

T observer location, (z1,z2, x3)

Y projection of y on the (y1,y2)-plane

y source location, (y1,y2,ys)

0 Dirac delta function

€ intrinsic fluid loading parameter, psk/ mk%
T strength of vortex ring

g gamma function

u/k  nondimensional porosity parameter, ag K r/kR
w angular frequency

Kpr nondimensional Rayleigh conductivity, 2K /(7 R)
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nondimensional time, Ut/L

stream function

acoustic power

velocity potential

angle of incident plane wave

density perturbation

density, po + p’

mean density

fluid density

curl operator

divergence operator

vortex core radius

angle of observation

frequency-domain Green’s function for a semi-infinite impermeable elastic edge
frequency-domain Green’s function for incident field

frequency-domain Green’s function for a semi-infinite uniformly porous rigid edge
frequency-domain Green’s function for scattered field

vortex ring radius

speed of sound

temporal function of acoustic pressure for non-elastic edges

time-domain Green’s function for a semi-infinite impermeable elastic edge
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bo

time-domain Green’s function for incident field
time-domain Green’s function for a semi-infinite uniformly porous rigid edge
time-domain Green’s function for scattered field

acoustic intensity

wavenumber, w/c

in vacuo bending wavenumber

Rayleigh conductivity

nearest distance between the vortex ring path and the edge
temporal function of acoustic pressure for elastic edges
Mach number

pressure perturbation

total far-field noise, dB

pressure, pg + p’

mean pressure

radius of circular pore aperture

time

retarded time, t — x /¢y

Lighthill stress tensor

vortex ring speed

complex velocity in the & direction

magnitude of Y
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Abstract

The sound generated by an acoustic source near a semi-infinite edge with uniform pa-
rameters is studied theoretically. The acoustic emission of a vortex ring passing near a
semi-infinite porous or elastic edge with uniform properties is formulated as a vortex sound
problem and is solved using a Green’s function approach. The time-dependent pressure sig-
nal and its directivity in the acoustic far field are determined analytically for rigid porous
edges as a function of a single dimensionless porosity parameter. At large values of this
dimensionless parameter, the radiated acoustic power scales on the vortex ring speed U
and the nearest distance between the edge and the vortex ring L as UL~ in contrast
to the UL scaling recovered in the impermeable edge limit for small porosity values.
These analytical findings agree well with the results of a companion experimental cam-
paign conducted at the Applied Research Laboratories (ARL) at Penn State University. A
related theoretical analysis of the sound scattered by uniform, impermeable elastic edges
admits analytical results in a specific asymptotic limit, in which the acoustic power scales
on UTL75. In complement to the analysis of vortex ring sound from edges, the acoustic
scattering of a turbulent eddy near a finite edge with a graded porosity distribution is deter-
mined numerically and is validated against analytical acoustic directivity predictions from
the vortex-edge model problem for a semi-infinite edge in the appropriate high frequency
limit. The cardioid and dipolar acoustic directivity obtained in the vortex ring configura-
tion for low and high dimensionless porosity parameter values, respectively, are recovered
by the numerical approach. An imposed linear porosity distribution demonstrates no sub-

stantial difference in the acoustic directivity relative to the uniformly porous cases at high



porosity parameter values, where the local porosity parameter value at the edge determines
the scattered acoustic field. However, more modulated behavior of the acoustic directivity
is found at a relatively low frequency for the case of a finite edge with small graded porosity

distribution.



Chapter 1

Introduction

1.1 Background

The pioneering aeroacoustics analysis by Lighthill [46] first determined that isolated
turbulent eddies in low-speed flows produce sound in a quadrupolar directivity pattern with
an intensity that is proportional to U2 M5 or U®, where U and M are the characteristic flow
speed and Mach number, respectively. The close proximity of turbulence to a solid body
amplifies its acoustic intensity and changes the directivity pattern of the scattered sound:
Curle [21] showed that the radiated acoustic power of turbulence scattered by acoustically-
compact bodies scales on U®, which is a factor of M ~2 increase in magnitude for low Mach
number flows that is accompanied by a shift to dipolar directivity. Ffowcs Williams & Hall
[25] examined analytically a more efficient noise generation scenario of turbulent eddies near
a non-compact sharp edge, where the acoustic power scales on U?, i.e., M3 louder than
free-field turbulence; a cardioid directivity pattern for pressure accompanies this change in
acoustic intensity, which scales on the distance L between the turbulent eddy and the edge
as L™3. A sharp edge may be generalized geometrically into a wedge, where Crighton &
Leppington [20] showed that a finite opening angle weakens the acoustic field relative to the
US velocity scaling for classical trailing-edge noise.

The efficient conversion of turbulence energy into sound by rigid-impermeable edges



continues to motivate strategies to disrupt the noise-generation process through the mod-
ification of trailing edge material properties. Crighton & Leppington [19] carried out one
of the first such analytical investigations by imposing a point-reacting impedance condition
on a semi-infinite plate, where in certain parametric limits the plate may be considered as
either rigid or limp. The rigid limit recovers the results of Ffowcs Williams & Hall [25],
and the so-called ‘limp’ edge limit produces a U® power scaling and dipolar acoustic field
that would be expected for turbulence noise produced by a compact body or a solid body
without an edge. More sophisticated models including flexural waves in a compliant edge
that were not considered by Crighton & Leppington [19] have since been investigated to
study their effect on structural [15] and aerodynamic noise [6, 7, 32, 33, 34, 35], including
the influence of structural resonance on radiated sound for finite elastic sections [1, 2, 45].

Porosity is a common design approach to mitigate noise generation that manipulates the
edge boundary condition. Ffowcs Williams [24] determined that turbulence noise from an
infinite perforated screen scales on U® and has a dipolar directivity in a high-porosity limit,
which Nelson [52] corroborated experimentally for a porous surface away from its edges.
Howe [30] later examined the sound generation of a vortex passing near a semi-infinite
plate with a finite porous extension and showed that the porous section reduces the sound
level by relaxing the abrupt change in boundary conditions at the impermeable edge. Kisil
& Ayton [43] constructed an analysis procedure for this configuration and underscored
the importance of secondary scattering from the impermeable-porous junction for high-
frequency turbulence sources. In addition to these analytical works, the effect of porosity
on edge noise reduction has been investigated computationally [42] and experimentally
[26, 27], and has been reviewed recently by Jaworski & Peake [40].

Further research attention has been directed toward the combination of porosity and
elasticity reduces turbulence edge noise. Jaworski & Peake [39] analysed the scaling behav-
ior of turbulence sound radiated by semi-infinite poroelastic edges using the Wiener-Hopf
analysis technique. They recovered the US acoustic power scaling and the dipole direc-

tivity results of Ffowcs Williams [24] in the high-porosity limit for an infinite perforated



sheet, indicating that the effect of the edge on the acoustic scaling behavior is eliminated
in this case. In other words, the acoustical non-compactness of an impermeable edge is
disrupted by surface porosity, which permits near-field fluid motions through the edge that
are associated with an acoustic dipole.

Jaworski & Peake [39] also identified a new U7 velocity scaling for elastic edges un-
der specific fluid loading conditions. With the aim to relax the semi-infinite geometrical
restriction, Cavalieri et al. [8] developed a boundary element method to determine numeri-
cally how sound scatters from a finite poroelastic strip or flat-plate airoil. Porosity reduced
noise more effectively at low frequencies with wavelengths that are large relative to the
airfoil chord length, while elasticity was more effective at high-frequency noise reduction.
Therefore, poroelasticity may enable broadband noise reduction for finite edge sections or
airfoils. More recent investigations and extensions involving finite geometries include a fi-
nite one-dimensional rigid plate with a poroelastic extension [3], multiple finite plates with
various material properties [12, 13], and generalized two-dimensional poroelastic plates with

straight, swept, or serrated edges [54].

1.2 Major unresolved issues and technical approach

It is well-established [17] that the presence of a rigid and impermeable edge near a turbu-
lent region of fluid results in a significant increase in the noise generated by that turbulence
in low-Mach-number flows. Analytical and numerical results outlined in the previous sec-
tion suggest that this noise generation process may be mitigated by the modification of
edge material properties to make the edge porous, elastic, or poroelastic. The U® acoustic
power and cardioid directivity predictions by Ffowces William & Hall [25] for a rigid and
impermeable edge has been confirmed by the empirical study of Brooks & Hodgson [5] and
several other measurement campaigns [see 17]. However, direct experimental confirmation
of the US and U7 scalings for highly porous or elastic edges, respectively, is not likely pos-
sible in conventional aeroacoustic facilities due to secondary flow noise contributions that

may become as loud or louder than the edge noise itself. For example, turbulent boundary



layers present on wind tunnel walls and test article surfaces produce roughness noise [22]
with a dipolar directivity and an intensity that also scales on US [31]. Therefore, the mean
flow associated with the turbulent boundary layer that generates edge noise is also a source
of acoustic contamination relative to sound produced at porous or elastic edges: in a scal-
ing sense, edge noise in the high-porosity limit would be indistinguishable from roughness
noise, which would dominate all together the weaker U’ sound from elastic edges in the
appropriate parametric limit.

To circumvent this critical limitation, an alternative approach is proposed using a mov-
ing vortex ring as an acoustic source in an otherwise quiescent fluid. The replacement of the
turbulence source with a coherent vortex structure is motivated by the seminal analysis of
Crighton [16], which determined analytically that a line vortex moving round an edge that
produces the same U° intensity scaling determined by wave scattering analyses [25, 19],
where U is the vortex ring speed in this configuration. The matched asymptotic results
by Crighton [16] were further examined and verified by Howe [29] using a low-frequency
Green’s function and by Mohring [49] using a vector Green’s function. Kambe et al. [41]
validated the vortex sound approach by achieving the U® intensity scaling using a vortex
ring shot rectlinearly past a rigid, impermeable edge and confirmed its cardioid directivity.
Their analysis of vortex ring sound obtained an L% intensity scaling based on the mini-
mum distance between the vortex path and the edge, which is distinct from the scaling of
Ffowces Williams & Hall [25] for turbulence scattering and is particular to the vortex ring
configuration. Crucially, the vortex ring configuration of Kambe et al. [41] does not require
a background mean flow and therefore does not introduce flow noise sources that would
potentially corrupt an acoustic measurement of the edge noise emission.

In addition to this critical unresolved issue, it is worth noting that the numerical work
by Cavalieri et al. [8] identified a large performance difference in noise reduction between
low and high Helmholtz numbers, i.e., the product of the acoustic wavenumber (frequency)
and chord length. Therefore, it begs the question as for whether non-uniform distribution of

edge properties (such as graded porosity or elasticity) could possess a different and tunable



performance in noise reduction compared to the uniform edge case. Due to the fundamental
technical challenge that the traditional analytical approach cannot handle non-uniform edge
conditions, the corresponding acoustic problem for non-uniform edge properties is solved
numerically using the Mathieu function collocation approach of Colbrook & Priddin [14] for
finite panels, which allows arbitrary edge conditions and also permits a numerical verification

of findings from the uniform edge-noise analysis.

1.3 Statement of purpose

This dissertation pursues theoretical models of a vortex ring passing near a semi-infinite
porous or elastic edge to enable experimental validation of acoustic power scaling results
by analogy and confirmation of directivity shapes predicted by previous acoustic scattering
works for poroelastic edges. Analytical predictions are achieved in closed form or in partic-
ular parametric asymptotic limits to guide companion acoustic experiments at the Applied
Research Laboratory (ARL) at Penn State University, where the vortex ring analysis in the
time domain enables additional results of comparisons of the acoustic signal to constitute
a full validation. In addition to the associated experimental comparisons, this work also
seeks verification of the analytical results based on a novel numerical method proposed by
Colbrook & Priddin [14]. Furthermore, this dissertation explores how these acoustic scat-
tering results are modified by a spatial gradient in the porosity distribution near the edge

to motivate further experimental campaigns.

1.4 Dissertation outline

In pursuit of these goals, the present work seeks to address the following research ques-

tions.

e What are the findings (acoustic scaling, acoustic directivity, acoustic pressure wave-

forms, etc) on the vortex-edge acoustic model problem with uniform edge distribution?



e Does vortex-edge acoustic model recover the results of previous turbulence-edge acous-

tic models?
e What is the difference between the analytical model and the numerical model?

e What are the limitations of the numerical model in pursuit of the verification of

analytical results?
e What are the new findings of the numerical model?

e How does the modification of edge property affect the results for a trailing edge acous-

tic model problem?

The remainder of this dissertation is outlined as follows: Chapter 2 introduces briefly
the related acoustic theory and mathematical foundations used in this work. Chapter 3
outlines the vortex sound model and constructs the associated Green’s function to estimate
the acoustic emission of a vortex ring passing near a porous or elastic edge with uniform
properties, as well as discuss the numerical approach pursued for non-uniform properties.
Chapter 4 discusses results from the mathematical models in Chapter 3 in the context
of their parametric limits for different edge conditions, their influence on the directivity
and acoustic intensity scaling behaviors, and comparisons with associated experimental

measurements. Conclusions and final remarks are presented in Chapter 5.



Chapter 2
Mathematical foundations

2.1 Wave equation

Sound is longitudinal fluctuations in pressure that propagate through a medium, where
these fluctuations may be created by vibrating bodies, turbulent flows, or other unsteady
phenomena. It is often the case in acoustic applications that the pressure fluctuations associ-
ated with the acoustic waves are small relative to the mean undisturbed pressure. Therefore,
the equations of motion may be linearized and described by the linear wave equation for
sound propagation, where the sound is assumed to propagate through a stationary fluid of
uniform mean density pg and pressure pg. The wave equation for a stationary fluid may
also be used to describe the acoustics in a low-speed flow, where convective effects at small
Mach number would be a higher-order effect [37].

Let the linear perturbations of density and pressure from their mean values be denoted
by p" and p/, where p'/pg < 1, p'/po < 1. Linearizations of the inviscid momentum equation
and continuity equation yield [37, pp. 5 - 6]

(182 - VQ) p = pO@ —divF (2.1)
ct ot? ot ’
which describe the production of sound by a volume source g and a body force F', which is

herein neglected.



The unsteady motion can be described by a velocity potential ¢, which satisfies

0
v=Vo, o =pd= . (2.2)

Substitution (2.2) into (2.1) yields the linear wave equation,

S S PR (23

-5 — = —q(x,t). .
¢t ot? 0

Note that sound waves propagating outside the source region (where g(x,t) = 0) are gov-

erned by the homogeneous form of (2.3).

2.2 Helmholtz equation

The linearity of the wave equation allows acoustic solutions to be superposed for acoustic
sources with different frequency components, which permits the full solution to be expressed
as a Fourier series or integral.

Consider the sound propagated into an unbounded, stationary fluid from a time-harmonic
volume source g(x,t) = q(x,w)e ! of angular frequency w. The velocity potential gov-
erned by (2.3) should oscillate at the same frequency, that is ¢(x,t) = ¢(x,w)e L. The

linear wave equation in (2.3) may now be transformed into its frequency form, which is the

inhomogeneous Helmholtz equation:
(k2 + VQ) ¢ = q(w,w), (24)

where k = w/cy is the acoustic wavenumber, and the solution of velocity potential must

exhibit outgoing wave behavior.

10



2.3 Acoustic compactness

The acoustic energy produced by the sound source will behave differently depending on
the distance between the observer and an acoustic source. Therefore the acoustic field may
be separated into two regions, near field and far field. The acoustic compactness of the
source region itself is set by a dimensionless combination kl of the acoustic wavenumber
of radiated sound k = w/cp and the characteristic length of the source I. In the acoustic
near field where kl < 1, the source dimension is smaller than the wavelength of the sound
it emits, therefore the acoustic source is considered compact and point-like, which can be
treated as a simple monopole source. In the acoustic far field where kI > 1, the acoustic
source vibrates at a high frequency, which is considered a non-compact source. Similarly,
a scattering body is considered compact when its characteristic length is smaller than the

wavelengths of the sound it produces or with which it interacts.

2.4 Acoustic sources

Compact acoustic sources, whose acoustic wavelength is much greater than its feature
size (see §2.3), may be represented as a monopole, dipole or quadrupole, or higher-order
multipole, or as a combination of these sources. For example, a monopole source represents
a radially pulsating sphere in the limit of a vanishing radius, and the source strength is
uniform in all directions. The source distribution of a point monopole in the linear wave

equation in (2.3) is given by

q(z,t) = Q(t)d(z), (2.5)

where the source strength is denoted by Q(t), and d(x) represents the pulsating behavior.
For a unit-strength monopole, Q(t) = 1.

A point dipole is formed by two monopole sources of equal strength that are out of phase
and separated by a distance of less than an acoustic wavelength. In contrast to a single

monopole, there is no net introduction of fluid by a dipole, therefore a dipole is a weaker

11



radiator of sound than a monopole. It is the net force on the fluid which causes energy to
be radiated in the form of sound waves. The source distribution of a point dipole in the

linear wave equation in (2.3) can be represented by

q(z,t) = div[f(1)0(2)] = o— [fi(t)d(x)], (2.6)

where f(t) is a time-dependent vector, and the index j runs over Cartesian coordinates z;,
xj.

A quadrupole source consists of two identical dipoles, with opposite phase and separated
by small distance. In the case of the quadrupole, there is no net flux of fluid and no net force
on the fluid, the fluctuating stress on the fluid that generates the sound waves. However,
since fluids do not support shear stresses well, quadrupoles are poor radiators of sound. The
source distribution of a point quadrupole in the linear wave equation in (2.3) is generally

in the form

I (z,1), (2.7)

where Tj; is the second-order stress tensor, and the indices ¢, 7 run over Cartesian coordi-

nates x;, x;.

2.5 Free-space Green’s function

2.5.1 Time-domain representation

The free-space Green’s function G(x,y,t — 7) is the particular solution of the linear
wave equation (2.3) generated by an impulsive unit point source é(x — y)d(t — 7), located
at source point & = y at time ¢t = 7. Accordingly, the free-space Green’s function in time
domain is determined by

2
(Cl(%gﬂ_v2> Gz, y,t —7) =d(x —y)i(t — 1), 28

12



where G(xz,y,t —7) =0 for t < 7.
The acoustic solution of the linear wave equation for an impulsive point source at & and

at time ¢ is [37]

(1) = — 5(t—“”|>, (2.9)

which indicates that the sound wave vanishes everywhere for ¢ < 0 and exhibits outgoing
wave behavior.
Therefore, the solution for free-space Green’s function G(x,y,t — 7) in (2.8) is obtained

from (2.9) by replacing by @ —y and ¢ by t — T,

_ ! |z — Y|
G(m’y’t_T)_47r|:v—y]5<t_T_ o ), (2.10)

which represents an impulsive, spherically-symmetric wave prapagating away from the
source at y at the speed of sound ¢y, and the wave amplitude decreases with increasing

observer-source distance |z — y|.

2.5.2 Frequency-domain representation

The free-space Green’s function @(a:, y,w) in frequency domain is the solution for the

Helmholtz equation (2.4) for a unit point source ¢(x,w) = é(x — y),
(K +V?) G(z,y,w) = 6(x — y). (2.11)

Recalling the governing equation of the free-space Green’s function in the time domain

in (2.8), and applying the Fourier integral formula

St—r1)= 1 / e W) dg, (2.12)

27 J_ o

13



(2.8) becomes
S . .
(k:2 + V2) {/ G(x,y,t — T)e‘mdt} =—e“Tj(x —y). (2.13)
It is then straightforward to determine
G’ (z,y,w / G(xz,y,t —7)e iw(t=7)q¢, (2.14)

and the substitution of (2.10) into the integrand of (2.14) yields

1

EE—— 2.15
irlz —y|° (2.15)

é(ma va) = -

2.6 Reciprocal theorem

Solutions of the Helmholtz equation for point sources satisfy a reciprocal theorem, which
is a special case of a very general theorem of mechanics that was stated in the context of
acoustics by Lord Rayleigh [57].

Consider the two acoustic problems where sound is generated by two unit point sources
at € = x4 and « = xp in the presence of a solid body S. Let the velocity potentials of the

resulting acoustic fields be denoted as G (xr,x4,w) and é(w, xp,w), respectively, where

(K +V?) G(z,x4,0) = §(x — x4), (2.16)
(K +V?) G(x,2p,w) = d(z — xp). (2.17)
The reciprocal theorem states that

G(xa xp,w) = G(@p, Ta,w). (2.18)

That is, the acoustic solution observed at x4 produced by the point source at xp is equal

to the solution at xp produced by an equal point source at 4. This statement has a
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simple proof, which may be found in Rayleigh [57, pp. 145-148] or in other reference texts

on acoustics [23, 37, 51].

2.7 Acoustic power and intensity

The acoustic power II is the total acoustic energy radiated by a source or source distri-

bution, which is determined by the formula

2
= fpvrds = ¢ L qs, (2.19)
S S PoCo

where the integration is over the surface S of a large sphere of radius r centered on the
source region. The integral may be calculated easily if the pressure and velocity are known
to order 1/r on S, as the surface area is 47r2. Therefore, the formula v, = p/poco always
holds at large distances r from the center of the sphere (source region), where the wavefronts
may be locally regarded as planar.

The acoustic intensity I is defined as the acoustical energy carried by sound waves per
unit of area of the wavefront. For spherical waves on the surface of the large sphere of

radius r, the corresponding acoustic intensity I is

I =pv, = —. (2.20)

2.8 Vortex sound at low Mach numbers

2.8.1 Lighthill’s equation

The sound generated by flow-borne disturbance such as turbulence is termed aerody-
namic sound. The modern theory of aerodynamic sound was pioneered by Lighthill [46],
where in his study of sound generation by a turbulent nozzle flow, Lighthill transformed

the Navier-Stokes and continuity equations into an ezact (i.e., no assumption is made),
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inhomogeneous wave equation [46],

1 2\ 2 aQTij
- — = 2.21
(Cg o2~V ) = Bxi0m; (2:21)

where p’ is the fluid density fluctuation (p’ = p— pg), and ¢ is the isentropic speed of sound.

T;; is the so-called Lighthill stress tensor described by
T;; = pvv; + [(p — po) — c5(p — po)] 6ij — o35, (2.22)

which indicates that the sound generated by free turbulence is exactly equivalent to that
produced in the ideal, stationary fluid forced by a distribution of quadrupole sources.
2.8.2 Powell-Howe acoustic analogy

In the present work where the flow region is limited to low Mach numbers (M < 1) and

large Reynolds numbers, i.e,
2 ~ 272\ 2
p—po—cy(p—po) = (p—po)(1 —cy/c”) = O(M7), (2.23)

and viscous dissipation may be neglected. Therefore, T;; may be approximated by the
Reynolds stress term pv;v;.

By taking ¢ = ¢g and p = pg, the Lighthill’s equation may now be rearranged as

1 0? 0?v;v;
223y = L) 2.24
<c(2) ot? ) 0P = Po Ox;0x; (2:24)
However, it is still challenging to use (2.24) directly due to the nonlinear Reynolds stress
term on the right hand side of the corresponding equation.
For the present vortex-sound problem at low Mach numbers, the Biot-Savart induction
formula relates the vorticity and velocity fields:

_ w(y,t)d*y
v(x,t) = curl/ prp—y (2.25)
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where the integration over the entire spatial domain is implied.
The value of Lighthill’s quadrupole source distribution in (2.24) can be approximated

as

24y
00 gxféz = podiv (w x v), (2.26)

which is the principal source of sound at low Mach numbers. Substitution of (2.26) into

(2.24) yields

1 6° :
(c%@tQ — Vz) c2p' = podiv (w x v). (2.27)

Howe [29] reformulated (2.27) by taking the total enthalpy,

dp 1 5
B= | —+4 = 2.2
[ Z+5 (2:29)

as an independent acoustic variable to replace the pressure fluctuation term C(Z)p/ in (2.27)
to account for the role of vorticity in the production of sound.
The total enthalpy comes naturally from the Crocco’s form of the momentum equation
[37]
ov 4 .
i +wxv+VB=—v (curlw - 3V(d1vv)> , (2.29)

where the vector (w x v) is termed the Lamb vector [44].

In irrotational flow Crocco’s equation (2.29) reduces to
=~ 4 VB =0, (2.30)
which implies

B = —?;f in regions where w = 0. (2.31)
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¢ is the velocity potential that determines the whole motion in the irrotational regions of

the fluid. Therefore, B is constant in steady irrotational flow and may be represented by
B=2— (2.32)

if the mean flow is at rest in the acoustic far field.
Taking the time derivative of (2.28) and using Crocco’s equation (2.29) with (2.32) leads

to

10p DB

2.33
0 ot Dt’ ( )

where the viscous correction is ignored at high Reynolds numbers and ; denotes the total
derivative.

The governing equation of production of vortex sound at low Mach numbers (without
mean flow) is then further proposed by Howe in a simpler form [29],

1 0? 9 .
0752 —V* | B =div(w x v), (2.34)

where in the far field the acoustic pressure p(x,t) is given by the linearized approximation

p(x,t) = poB(x,t) = —po /// w xv)(y,T 8G(a: ({:)y?; )d3yd7 (2.35)

Note that the formula in (2.27) was first proposed by Powell [56] and later elaborated as
(2.34) by Howe [29], which is also known as Powell-Howe acoustic analogy. A detailed
derivation of this expression may be found in [29].

The significance of the Powell-Howe result (2.35) is that the far-field acoustic pressure
can be predicted based on the vorticity distribution in the field and a Green’s function for,
say, a solid boundary, without the need to know the Reynolds stress as is represented in the
Lighthill framework. The Powell-Howe result is used in the next chapter to determine the

sound of vortex rings passing near an edge that is porous and/or elastic.
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Chapter 3

Acoustic scattering from

poroelastic edges

This chapter studies the sound generation of an acoustic source near a semi-infinite
edge with constant or varying parameters by analytical or numerical methods. In §3.1, the
sound of a vortex ring passing near a semi-infinite uniformly poroelastic edge is investigated
analytically. The vortex sound problem is solved by using Powell-Howe acoustic analogy
[36], in which a Green’s function approach is introduced to determine the time-dependent
acoustic pressure and directivity pattern in the acoustic far field. The Green’s functions
for different edge properties are solved separately, and scaling laws of vortex ring speed U
and the nearest vortex-edge distance L are established using the classical theory of vortex
rings. In §3.2, the acoustic scattering of a turbulent eddy near a semi-infinite edge with
linearly-graded porosity distribution is considered numerically. The model problem is solved

by adapting the Mathieu function collocation method of Colbrook & Priddin [14].

3.1 Semi-infinite edge with uniform properties

The contents of this section are outlined as follows. In §3.1.1, the acoustic problem of a

vortex ring interacts with the edge of a semi-infinite poroelastic plate at low Mach numbers
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is formulated. In §3.1.2, the Green’s function and the vorticity distribution and motion
of the vortex ring for a uniformly-porous rigid edge are solved by adapting the previous
analyses of Kambe et al. [41] and Jaworski & Peake. [39]. In §3.1.3, the Green’s function
and the vorticity distribution and motion of the vortex ring for an impermeable elastic edge

are solved in a similar manner as §3.1.2.

3.1.1 Model problem

Consider a rigid, semi-infinite poroelastic plate with negligible thickness that lies in
the region —oco < z1,y1 < 0, z2,y20 = 0, —00 < z3,y3 < oo of the coincident Cartesian
coordinate systems {(z1,41), (z2,y2), (r3,y3)}, as shown in figure 3.1. The poroelastic plate
is immersed in an unbounded fluid at rest at infinity. The present research studies the
acoustic emission by a vortex ring source passing near the edge of a poroelastic half plane.
The Mach number M, defined by U/cy, is assumed to be much smaller than unity, where
U is the characteristic speed of the vortex ring and cg is the sound speed. In present work,
acoustic compactness requires [/\ < 1, where [ is the characteristic length of the vortex
ring and A is the wavelength of the emitted sound. The source region containing the vortex
ring and the edge is therefore considered to be acoustically compact, where the vortex ring
is compact, the semi-infinite plate, however is non-compact.

The sound resulting from the vortex ring interaction with a semi-infinite edge may be
described by the Powell-Howe acoustic analogy introduced in §2.8, i.e.,

19 9 .
8t2 — V) p=po div(w x v), (3.1)

which is a reformulation of Lighthill’s theory of aerodynamic sound [46]. Note that the
sound source term pg div (w X v) at low Mach number is directly related to the vorticity in
the flow field.

Equation (3.1) also admits a general solution in terms of a boundary integral,

(z,t) = —po // w xv)(y, T 6G(cc ;Jy’ )dydT (3.2)
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Figure 3.1: Schematic of the poroelastic half-plane and the coincident coordinate systems
for the compact vortex ring source y = (y1,y2,y3) and the observer at = (1, x2, x3).

Here p is the acoustic pressure, pg is the mean fluid density, w is the vorticity distribution
in an ideal fluid neglecting viscous dissipation, v is the vorticity convection velocity, and
G(x,y;t — 7) is the time-domain Green’s function. At sufficiently low Mach numbers,
G(zx,y;t—7) may be approximated by the compact Green’s function [29], which is described

in the following sections with different edge properties.

3.1.2 Porous edge

In this section, the acoustic emission of a vortex ring passing near a uniformly-porous
rigid edge is considered first, which is aim to verify the acoustic scaling and directivity results
of Jaworski & Peake [39] with the proposed vortex-ring approach introduced in Chapter 1.

In pursuit of an acoustic pressure prediction using (3.2), two unknown terms must be
determined. In §3.1.2.A, the Green’s function for a porous rigid edge is solved first. In
§3.1.2.B, the vorticity distribution and motion of the vortex ring is then determined using

the classical theory of vortex rings.
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A Green’s function for a porous edge

A Green’s function is now sought that produces the solution at distant point & =
(z1,22,23) due to an impulsive point source of unit strength at position y = (y1,y2,y3)
near the edge of a porous half plane (see figure 3.1). The Green’s function also must exhibit
outgoing wave behavior and satisfy [36, p. 39]

2
(;gt? —V2> Grp(x,y;t —7) =d(x —y)o(t — 1), (3.3)

where the right-hand side represents the impulsive point source.

The calculation of the compact Green’s function in (3.3) may be greatly simplified by
application of the reciprocal theorem in (2.18), which implies that the positions of source
y and observer  may be interchanged in present model problem (cf. figure 3.1), i.e., the
mathematical setup is identical to finding the sound field observed at a near point y due to
a monopole at a distant point . The problem thus converts to the solution for the Green’s
function G as a function of observer positions y close to the edge, which is a diffraction
problem that can be solved in the manner described, for example, by Crighton [19] or

Jaworski & Peake [39]. The linearity of (3.3) permits the solution to be written as
Grp(mv Y, t) = Grp(yv T, t) = GO(?J» €, t) + Gs(yv T, t)a (3.4)

where Go(y,x;t) and Gs(y,x;t) are the time-domain velocity potentials for the incident
field and the scattered field, respectively. The time-domain Green’s function G, (y, x;t) is

related to its Fourier transform @rp(y, x; k) by

+oo

~

Grp(y, z;t) = Grp(y, ke “dw. (3.5)

—5- N

It is convenient to decompose @Tp(y, x; k) into the linear sum @rp(y, x; k) = éo(y, x; k)+
és(y, x; k). The expressions for ao(y, x; k) in (A.3) and as(y, x; k) in (A.6) are determined

in appendix A using the Wiener-Hopf analysis of Jaworski & Peake [39]. Application of the
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Fourier inversion formula (3.5) to these results yields the time-domain Green’s functions
Go(y, z;t) and Gs(y, x;t), where Go(y, x;t) may be expanded in a series form by following
the procedure of Kambe et al. [41]. The essential results from the reciprocal problem after

reverting to the original configuration are:

1 -y (z-y)* o
)= — (6(t,) + —2Ds(t, D25(t,) + ... ), .
Gotw:0) = 7 (a6 + ZEDia(er) + LM vface) + (3.6)
n M,0).,
Gulomt) = o) ) (3.7
2m2cf x
where
—+00 . o
DI (t) = — —iw)me @y, Dy = —
Pon =5 [ (e e, D= 39
tr=t——, ti=1t——|x—yskl, (3.9)

x=|x|, y=ly|, k=1(00,1).

Here, ®(Y) = Y3 sing is the velocity potential about the edge, the projection of y onto
the (y1,y2)-plane, and Y = |Y'|. The fractional derivative D}" is used as a convenient and
equivalent means of writing the inverse Fourier transform of the Green’s function solution
of the scattered sound field. The variables m and n are the exponents of the wavenumber
k and the dimensional porosity parameter y = ay K g/R. In this parametric group, ay is
the open area fraction of the surface with pores of nominal radius R, and K = 2Kgr/(7R),
where Kr is the Rayleigh conductivity of the pore [36, 39]; the conditions that the surface
is weakly porous and has a pore feature size that is small relative to the acoustic wavelength
require ozlzq < 1 and kR < 1, respectively. The directivity function M (1), 0) depends on
the angular position of the observer. Note that both M (¢, 6) and the exponents m and n
vary on the dimensionless porosity parameter p/k, and must be determined numerically in
general. The details are presented in appendix A and are further discussed in §4.

If Go(y,=;t) in (3.6) is substituted into (3.2), the first two terms of the right-hand

side of (3.6) contribute nothing to the sound field due to the vanishing integral around the
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half-plane surface, as has been shown previously by Powell [56]. Therefore the total Green’s
function G,p,(y, x;t) = Go(y, x;t) + Gs(y, ;t) may be approximated to leading order by

Gs(y,x;t) only,

M oy M ) sy, (3.10)

G NRARS
(Y, ;1) ot .

provided that the third term of Go(y,=;t) in (3.6) remains subdominant. The form
of the Green’s function in (3.10) obviates that 0G,,(y,x;t)/0ys is indeed subdominant
to the magnitudes of the derivatives in other two directions, i.e., 0Gp(y,x;t)/0y1 and
0G,p(y,x;t)/Oy2. Therefore, the gradient of the Green’s function with respect to y,

0G,p(x,y;t) /0y, can be approximated by the two-dimensional vector

0 0
Dy (t) <8y1¢)(Y)7 £

oy 27r%cm

. n
x
Equation (3.11) may be reworked into a more useful form by introducing the stream

function ¥(Y),

U(Y) = —Y?2 cos % (3.12)

which is related to the velocity potential ®(Y’) by the Cauchy-Riemann equations,

) ) ) )
Gy 2Y) =5 UY), S B(Y) = — 5 W(Y), (3.13)

Note that the confirmation of (3.12) to satisfy (3.13) can be found in appendix E, using the
velocity potential U(Y') and stream function ¥(Y') on this edge configuration.

According to Mohring’s transformation procedure [49], (3.11) can be rewritten as

0Grp(y, x; 1)
p&iy = v X (0,0, Grp(y7m’t))

3
2m2cy Z

=V x [U(Y)k]

DTS(t,), (3.14)
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where k = (0,0, 1). By the substitution of (3.14) into (3.2), the acoustic pressure may be

expressed as,

p (@) = —po //(o,o, Gy, 251)) - V % (@ x 0)(y, 7) dy dr . (3.15)

The application of incompressible, inviscid vorticity equation [38, p. 158],

88‘;—1-V><(w><v):0, (3.16)

and an integration by parts determines the final expression of the acoustic pressure in the

far field:
p(z,t) = poD, / / wily, 7)F (@, Y)DJ'5(t, — 7)dydr,
— DIt [ nly.t) P Y )y, (3.17)
where
Fla,v) = 42 M©.0) gy, (3.18)

Note that t, has been replaced by ¢, =t — x/cp in (3.17) for a compact turbulence source.
Specific details on the compact vortex ring source and its trajectory are described in the

following section.

B Vorticity distribution and vortex ring motion

Consider a thin-cored vortex ring, whose center moves in a plane perpendicular to the
ys axis, as shown in figure 3.2. O is the coordinate origin located at the half-plane edge,
and L is the nearest distance of the vortex ring path to the edge. It is assumed that L is
larger than the vortex radius a such that the vortex does not collide with the edge. The
unit vector normal to the plane of the vortex ring lies in the (y1, y2)-plane, and the £ axis

denotes the vortex path direction. The 7 axis is taken to be perpendicular to the £ and y3
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Figure 3.2: Side view of the interaction between a semi-infinite porous plate and a vortex
ring convecting on a rectilinear path. The local coordinate system of the vortex ring is
illustrated on the right.

axes as illustrated, and the origin of the (&, 7, y3) coordinate system is located at the vortex
ring centre. The vorticity of the vortex ring is assumed to be concentrated on a circle of
radius a with a small vortex core of radius o, and o/a < 1. The vorticity components in

(&,m, y3)-system are therefore

(0,=I'6(£)6(¢ — a)sin g, I'5(£)d(¢ — a) cos @), (3.19)

where ( = \/m, I' is the fixed strength of the vortex ring, ¢ is the azimuthal angle
of the vortex center from the ys axis, and ( is the radial coordinate in the (7, y3)-plane.
This model setup is the same as Kambe et al. [41], which in this work permits parametric
comparisons against their analysis for an impermeable edge.

Equation (3.17) determines the sound produced by the vortex ring passing near an edge
provided that its strength and trajectory are known. Here it is assumed that the vortex

ring follows the rectilinear path shown in figure 3.2, which is justified on physical grounds
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in appendix C. Direct substitution of (3.19) into (3.17) yields

27
P (m + %) - porD;nH/o F(C=a,& = 0;C(t))acos pdo, (3.20)

where C(t) represents the position of the vortex centre at time ¢, and the dependence of
F on x has been suppressed here for simplicity. Following the procedure by Kambe et al.

[41], F may be approximated by the two-term Taylor expansion with respect to 7,

F((=a,£=0,C)= F(C)+ 6877F(C)a COS . (3.21)

Using (3.21), the integration in (3.20) produces

2m 2, n M 0

/ Facos¢pdp = FGQEF(C) = 7ra3,u Mvg(C), (3.22)

0 an 2r2c

where v¢ is the complex velocity of the flow in the ¢ direction,

0 0
= —V(C)==o(C). 3.23
v = 5W(0) = (C) (3.23)
Thus, the acoustic pressure expression is
Lu™ My, 0
D (a:,t + x) =0 SH W, )D;"H[wa%g((?)]. (3.24)
€0 2m2cyt T

Note that 7m2v5 is the volume flux of the irrotational flow around the edge passing through
the vortex ring [37]. It is now clear that the temporal profile of the acoustic pressure
signal is proportional to a fractional rate of change of the volume flux through the vortex
ring that depends on m. The fractional acceleration of the flow through the vortex ring
D7 [ra?ve(C)] must now be evaluated to furnish scaling estimates of the acoustic emission.

Recall that D" (C) = DJ*[Dyve(C)], and the dimensionless form of Dyve(C) may be
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adapted directly from Kambe et al. [41] (see derivation in appendix F),
1.3 -
D;ve(C) = UL 29 (), (3.25)

where t = Ut/L is the dimensionless time, and

_ ___3 3
g(t) =Y Zsin (29 - 2a), (3.26)
— Y _ 3 tsi
Y:f:(t2+1>2, O = tan~! [ WA T COSA) (3.27)
L tcosa £ sin o

It is clear from (3.25) that g (f) is proportional to the acceleration of fluid through the
vortex ring. Here the time origin ¢ = 0 denotes the time instant when the vortex ring is at
its nearest distance L to the edge.

Therefore, D%”'va(C) in (3.24) may now be expressed as
m 1 m 77)’7,7§ m n
D7 ug(C)) = U LET DY [0 (B)] (3.28)

and the substitution of (3.28), (3.26), and (3.27) into (3.24) yields the acoustic pressure,

B T 2, n m+1M _
p <a,-,t+ x) _ polaZp UM 0) o 1 )] (3.29)
€o 8%506”[/””5 z

The undetermined exponents may be shown to be coupled on dimensional grounds, where
n is eliminated here using n +m = % Also, the velocity U of a vortex ring is proportional

to its circulation I' [44, p. 224]:

I (mga - i) . (3.30)

4ma o

From (3.29), the far-field acoustic pressure radiated by a vortex ring passing near a
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porous edge scales on
p~ U™T2L2m (3.31)

and the corresponding acoustic power II is

p2
=" xU'L™", (3.32)

PoCo

where v = 2m + 4 and v = 2m + 3.

3.1.3 Elastic edge

The acoustic emission of a vortex ring passing near an impermeable rigid edge is now
considered, which aims to validate the acoustic scaling and directivity results of Jaworski
& Peake [39] with the proposed vortex-ring approach introduced in Chapter 1.

Similarly, the two unknown terms in (3.2) are determined following the procedures in
§3.1.2. In §3.1.3.A, the Green’s function for an impermeable elastic edge is determined first.
In §3.1.3.B, the vorticity distribution and motion of the vortex ring are then determined
using the classical vortex ring theory. It is worth noting that the mathematical derivations in
§3.1.3.A and §3.1.3.B are only valid in the asymptotic limit ke~ /2 < 1, as we only consider
the weakest radiated sound for the elastic edge noise problem identified by Jaworski & Peake

[39].

A Green’s function for an elastic edge (ke /2 < 1)

The Green’s function for the acoustic field scattered by the elastic edge in time domain
can be obtained by substituting the frequency domain result (B.2) from appendix B into
(3.5),

DY) —D26(t,), (3.33)
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where ®(Y') = Y3 sin g is the velocity potential about the edge, the projection of y onto the
(y1,12)-plane, and Y = |Y'|. This result is valid in the asymptotic limit ke~ /2 < 1, where
€ is the intrinsic fluid loading parameter [18, 36, 39] that depends only on the properties
of the structure and fluid (i.e., is frequency independent). By inspection, the total field

G. = Go+G; for the impermeable-elastic case can also be approximated by G in Eq. (3.33):

sinfsin __ 3

D7 8(t,), (3.34)

Ge(iﬂ, Yy; t) =

L a(Y)

|

1
2r2c €2x

such that the pressure observed in the acoustic far field is

3
pl@,t) = poDy / / ws(y, 7)F(x, Y)DP8(t, — 7)dy dr,

= ooDf [yt P Y )y, (3.35)
where
1  sinfsiny
Flxz,Y)=—5— T U(Y). (3.36)
2w2c2 ezx

Note that ¢, has been replaced by t, =t — x/c in (3.17) for a compact turbulence source.
Specific details on the compact vortex ring source and its trajectory are described in the

following section.

B Vorticity distrbution and vortex ring motion (ke /2 < 1)

Following the outline procedures by equations (3.19), (3.20), (3.21) and (3.23), the

acoustic pressure expression for the impermeable-elastic case is

r dnfsing s
p(az,t—i—%): Po Smeflef[m%g(C)], (3.37)

3 3 1
2m2c2 €2x

which enables an explicit determination of the temporal profile of the according acoustic

pressure. The acoustic pressure is represented by the time derivative, of the (5/2)th order,
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of the volume flux 7ra2v5 through the vortex ring.
5 1
Recall that DZv¢(C) = DZ? [Dive(C)], and D?v¢(C) may be derived in a dimensionless

form (see derivation in appendix F),
9 3 0, 5,
D2ve(C) = —<UL™3h (1), (3.38)

where ¢ = Ut/L is the dimensionless time, and

_ ___5 5
h (t) =Y 2sin (2@ — 3a>, (3.39)
— Y _ 3 tsi
Y:f:(t2+1>2, O = tan~! [ AT COSAN (3.40)
L tcoso £ sin o

Here the time origin ¢ = 0 denotes the time instant when the vortex ring is at its nearest
distance L to the edge.

5
Therefore, D2ve(C) in (3.37) may now be expressed as

5

D? [ma?v, (C)) = —SWCLQU%L_?’D% [AGIE (3.41)

and the substitution of (3.41), (3.39), and (3.40) into (3.37) yields the acoustic pressure,

- 2p0TU3 sin 0 si 1o
» <:c,t+ 9“) _ 30polUE sinfsintin 1, 7)) (3.42)
0 877'%63[/3 €2z

3.2 Semi-infinite edge with non-uniform properties

In this section, the acoustic scattering of a turbulent eddy near a semi-infinite edge with
non-uniform properties is considered. Due to the fundamental analytical challenge that the
traditional Wiener-Hopf approach is well-suited for problems with discontinuous boundary
condition but is unable to handle non-uniform edge conditions, we use a numerical approach

to solve the corresponding acoustic problem for non-uniform edge properties. Also, due
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to the technical challenge of modelling a semi-infinite plate in a numerical scheme using
finite-length elements, the acoustic problem of a turbulent eddy (i.e., quadrupole) acoustic
source near a finite plate setup is considered and presented in §3.2.1. This work employs
a novel Mathieu function collation method of Colbrook & Priddin [14] described briefly in
§3.2.2, which provides a general solution procedure for finite-length edge acoustic scattering
problem with arbitrary boundary conditions. Section 3.2.3 solves the acoustic problem with

particular kinematic boundary condition for a rigid porous edge.

3.2.1 Model problem

Consider the acoustic scattering problem of a quadrupole sound source close to the
edge of a finite graded-porosity plate that lies in the region —1 < z1,y1 < +1, x9,y2 = 0,
—00 < 13, y3 < 00 of the coincident Cartesian coordinate systems {(x1, 1), (z2,y2), (x3,y3)}
(see. figure 3.3), where lengths have been nondimensionalized by the semi-chord of the plate.
The scattered field is denoted by ¢ with suppressed time factor e ! satisfies the Helmholtz

equation
(K*+V?) ¢ =0. (3.43)

The velocity potential ¢ for a quadrupole sound source may be determined by

ik?
G0(y1.2) = 5 (1 = y10)(u2 = y20) Hy (ko). (3.44)
0

where (y1,,¥2,) is the quadrupole source location, 7o(y1,y2) = /(1 — ¥15)? + (Y2 — ¥2,)?
is the distance between the source and observer, and H,(LI) are Hankel functions of the first
kind.

Note that large wavenumber k is used in current finite plate setup to minimize backscat-
tering effects from the leading edge [50], and furnish an indirect comparison against the

analytical semi-infinite plate setup.
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Figure 3.3: Schematic of the finite graded-porous plate and the coincident coordinate sys-
tems for the source y = (y1, 92, y3) and the observer at = (1, x2, x3).

3.2.2 Mathieu function collocation method

The Mathieu function collocation method of Colbrook & Priddin [14] introduces elliptic
coordinates via y; = cosh vy cosve, yo = sinh v sinv,, where the appropriate domain be-
comes v > 0 and v» € [0, 7]. The Helmholtz equation (3.43) along |y1]| > 1, y2 = 0 and the

scattered field at infinity become

h (2v1)—cos (2
cosh V1)2 o5 VQ)k'Q + v317V2¢(V1’ VQ) - O’

¢|1/2=0 = ¢\u2=7r = 07 (345)

limy, o0 72 (a% . ik;) $(v1,v2) = 0.

Separation of variables for solutions of the form V()W (v2) leads to a regular Sturm-

Liouville eigenvalue problem:

W’ (1) + (A — ’“2—2 cos (2v2))W (va) = 0,
(3.46)
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The solutions of (3.46) are sine-elliptic functions, denoted by
sen(12) ZB( ) gin (lve), (3.47)

where the Fourier series converges absolutely and uniformly on all compact sets of the
complex plane [53], and the coefficients Bl(n) may be found via a simple approximation of
Galerkin’s method.

The corresponding V' (v1) with the Sommerfeld condition at infinity are given by the

Mathieu-Hankel functions
Hse, (v1) = Jsen(v1) + iYse,(v1). (3.48)

These Mathieu-Hankel functions can be expanded in a series using Bessel functions [48, 53].
The full general solution of the acoustic scattering problem for any boundary condition

on the finite thin plate can be written as

d(v1,10) = Zansen(l/g)Hsen(Vl), (3.49)

n=1

where a,, are unknown coefficients which must be determined by applying the appropriate
boundary condition along the plate.

The far-field directivity D(6) may be directly computed from the expansion of those
Mathieu-Hankel functions (3.48). In the appropriate limit, v9 becomes the polar angle 6,

and v becomes cosh™! r, which leads to

\/* ZanB(n [ 2pn4—3) 1} sen(6). (3.50)
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3.2.3 Kinematic boundary condition

The kinematic boundary condition at a non-uniform porous finite thin plate requires

¢ n 0o

373/2 C{Tyz = p(y1)[8](v1), (3.51)

where [¢](y1) = (é(y1,07,y3) — P(y1,07, y3)) denotes the velocity potential difference across
the plate [28, 39]. Note that in §3.1, u(y1) = 4 = agKr/R is a constant parameter that
permits a uniformly-porous edge condition. To achieve a non-uniformly porous condition
along the plate in current acoustic problem, it is straightforward to let p vary along the
chord, i.e., 1(y1), which may be achieved through the variation of the pore aperture radius
R, or the variation of open area ratio ay, or a combination of varying both R and ajy.
However, it is only the overall variation of p(y;) that truly matters in the model. Thus, we
only let apr vary along the chord rather than both variations of ay and R, for simplicity.

The undetermined coefficient a,, is now determined in the expansion of (3.49) with the
particular kinematic boundary condition (3.51). The approximate value of coefficients a,
is calculated by adopting a spectral collocation method [14], denoted by a,.

Substitution of the general solution (3.49) truncates N terms into (3.51) yields,

N
~ 0
Z anSen (cos_1 yl) [1 — 2Hsen(0),u(y1)\/1 — y%} + \/1 — y%£ =0. (3.52)

n=1

Here a, is evaluated at chosen Chebyshev points in Cartesian coordinates and equally-

spaced collocation points in elliptic coordinates [4, 59], which is determined by

2t —1
Y1 = cos <Z2NW>, i=1,...,N. (3.53)

The approximated coefficients a, are now evaluated by solving an N x N linear system.
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Chapter 4

Results

4.1 Uniformly-porous rigid edge

The acoustic power scalings on the vortex ring velocity U and the nearest distance
of the vortex ring from the edge L depend on the value of m, which is a function of
the dimensionless porosity parameter p/k. Note that m must be evaluated numerically in
general but may be determined analytically for special cases of low and high porosity limits.
Complementary numerical analysis in appendix A demonstrates that the edge is effectively
impermeable for p/k < O(1072), and achieves its high porosity limit for u/k > O(10).
Acoustic results for these two special cases and for the general case of arbitrary porosity
value are provided in §4.1.1, 4.1.2, and 4.1.3, respectively. In §4.1.4, the experimental results
from Applied Research Laboratory (ARL) at the Pennsylvania State University are briefly

introduced.

4.1.1 Impermeable limit

The edge becomes effectively impermeable in the low porosity limit where p/k is asymp-

totically small. By inspection of (A.9), it is easily found that m = %, n = 0, and
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M (%, 0) = /2sin %(sin w)% In this case, (3.29) and (3.32) become:

3 Q- 1

o pol'a?U2 sinf(siny)z 1 = _

p<x,t+c) = — = " D2 [g(7)], (4.1)
0 4\/§7r§c§L2

0
IT oc UL~ sin? 2 (4.2)

which agree with the analytical solution of Kambe et al. [41] and recover the U® scaling law
for radiated sound power and cardioid acoustic directivity of Ffowes Williams & Hall [25].
Equation (4.1) obviates the acoustic pressure dependence on DE% [g (E)] in the high porosity
limit, i.e., is proportional to the time derivative of the %th order of the volume flux through

the vortex ring, which may be determined by [47]:

D/ s (1) = | ) g, (4.3)

—co (t — 8)2

where ¢(s) represents the first time derivative of g(s).

Representative time histories of ¢ (f) and ¢ (f) are provided in figure 4.1 for five recti-
linear paths of the vortex ring past the porous edge, o = 0, —7 /4, —7 /2, —37 /4, —m. Figure
4.1 (top left) together with (4.3) indicates that the acoustic pressure for each path changes
rapidly near ¢ = 0, where the vortex ring passes closest to the edge. Note in figure 4.1 (top
left) how the acoustic pressure amplitude is significantly affected in the impermeable rigid

edge by the vortex path angle a.

4.1.2 High-porosity limit

The edge becomes acoustically transparent in the high porosity limit of asymptotically
large 11/k values, where (A.9) provides m = 1, n = —1, and M(¢,6) = sinfsintp. The

far-field acoustic pressure and acoustic power scaling behavior are:

-z pol'a?U?  sinfsin _
P (a:,t + > =— 51 D; [g (t)] , (4.4)
o 8mzcol2 2 €
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Figure 4.1: Time histories of acoustic pressure Df [g (t)] (top left), acceleration of volumet-

ric flux through the vortex ring g (Z) (top right) and ¢ (f) (bottom center) for the imperme-
able rigid edge. Results are plotted for vortex path angles o = 0, —7w/4, —7/2, =37 /4, —7
1

relative to the rigid edge. The heavy line corresponds to —7 /2. D; [g (E)] is the dimension-
less acoustic pressure and shows an intermediate behavior between that of g (f) and ¢ (f)
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IT ox USL ™5 sin? @), (4.5)

which recovers the US scaling law and the dipolar acoustic directivity sin®#6 by Jaworski
& Peake [39]. Equation (4.4) obviates that the acoustic pressure in the high-porosity limit
depends on Dy [g (f)] , 1.e., is proportional to the acceleration of the fluid through the vortex

ring:
D;lg(D)] =9 () = —g?_% sin <2@ — 3a>, (4.6)

which was determined by Chen & Jaworski [10].

Representative time histories of g () and ¢ (f) are provided in figure 4.2 for five recti-
linear paths of the vortex ring past the porous edge, « = 0, —7/4, —7/2, —3w /4, —m. Figure
4.2 (right) together with (4.4) indicates that the acoustic pressure for each path changes
rapidly near ¢ = 0, where the vortex ring passes closest to the edge. Note in figure 4.2
(right) how the acoustic pressure amplitude is weakly affected in the high-porosity limit by
the vortex path angle . Also, the acoustic waveform in the high porosity limit described
by ¢ () is symmetric (a ‘W’ shape) about £ = 0 for a vortex ring passing perpendicular to

the plane of the edge, o = —7/2.

4.1.3 General porosity case

The acoustic pressure solution (3.17) for arbitrary values of the dimensionless porosity
parameter 1/k requires numerical evaluation. We now consider the case of arbitrary porosity
effects, where the acoustic pressure is strictly determined by (3.29). The waveform of the
acoustic pressure is directly determined by fractional derivative D3 [g (f)], which can be

evaluated in the Caputo sense [55]:

400 o
DF g ()] =55 [ (-i)"g(w)e

2 J_

1 bgs)
- s /_oo s (4.7)
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Figure 4.2: Time histories of volumetric flux through the vortex ring g (f) (left) and asso-
ciated acoustic pressure ¢ (f) (right) in the limit of high porosity, pu/k > 1. Results are
plotted for vortex path angles a = 0, —7/4, —7 /2, —3mw /4, —m relative to the porous edge.
The heavy line corresponds to —m/2.

The full expression for §(s) is given in appendix B, and G is the well-known gamma func-
tion. The value of parameter m for the leading solution term follows (A.11) and varies on
the dimensionless porosity parameter u/k, and this dependence is plotted in figure A.1 in
appendix A.

Figure 4.3 plots the acoustic directivity and the corresponding time-dependent pressure
waveforms of the noise emitted by a vortex ring passing near a semi-infinite porous edge,
as a function of the dimensionless porosity parameter. appendix A details the evaluation of
M4, 0) for ¢ = 7 /2. The transition of acoustic directivity from a cardioid to a dipole occurs
smoothly with increasing values of the porosity parameter. Figure 4.3(b) illustrates how the
asymmetric pressure waveform for impermeable edges found in §4.1.1 becomes increasingly
symmetric as the porosity parameter increases, where the direction of the vortex ring relative
to the porous edge affects the waveform shape.

The dependence of the acoustic power scalings v and v on u/k, readily obtained from
(3.32) and (A.11), are illustrated in figure 4.4. Both exponent values vary monotonically be-
tween the formal asymptotic limits of low porosity (p/k < 1) and high porosity (u/k > 1).

Figure 4.4 indicates that these limits may be refined by numerical computation, where the
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Figure 4.3: Acoustic directivity and corresponding acoustic pressure waveforms due to a
vortex ring passing near a semi-infinite porous edge with various values and limits of the
dimensionless porosity parameter p/k. The vortex path angle is & = —7/2. (a) Acoustic
pressure directivity; (b) far-field pressure waveforms represented by D7 [g (f)] in (4.7).

edge is effectively impermeable for p/k < O(1072) and the high-porosity limit is achieved
for pu/k > O(10).

4.1.4 Comparison with experimental measurements from ARL

In this section, we briefly review the associated experiments conducted in ARL Penn
State regarding the acoustic measurements of a vortex ring passing near an impermeable
edge or a uniformly-porous rigid edge. A schematic of the experimental setup is presented in
figure 4.5. A complete description of the experimental methods and measurement results to
data are found in Yoas [60] where results are reproduced here with permission. The principal
scaling and directivity results for a rigid, uniformly-porous edge are herein compared against

out theoretical model predictions.

A Acoustic power scaling on vortex ring velocity

First, the effects of acoustic radiation power scaling with characteristic velocity U was
measured and processed, where the comparison against present research is presented in

figure 4.6. For the rigid impermeable edge (1/k = 0), measured acoustic power scales
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Figure 4.4: Dependence of scaling exponents v and v on dimensionless porosity parameter
u/k. Acoustic power is proportional to UYL™".
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Figure 4.5: Schematic of a vortex ring convecting near a A) rigid impermeable plate and

B) semi-infinite rigid plate with uniform porosity. Figure reproduced from Yoas [60, figure
2.3] with permission.

on the vortex ring speed as U%%8, in close agreement with the theoretical prediction U®.
As the porosity porosity parameter increases to pu/k = 0.49, the acoustic power scales on
US32, as compared to the predicted U®3Y in present work (cf. figure 4.4). For the high-
porosity case (u/k = 58.9), the measured acoustic power scaling scales on U which is
also in excellent agreement with the theoretical prediction of US. It is worth noting that
the theoretical acoustic power scaling for intermediate value p/k = 3.10 is overpredicted
as U%94 compared to the measured U 72, which needs further investigation. However, it is

noted in this region that small changes to u/k lead to large changes in the scaling exponent.

B Acoustic directivity

Second, the comparison of acoustic directivity between theoretical prediction in the
present work and experimental measurements for the rigid impermeable edge and highly-

porous edge are shown in figures 4.7 and 4.8, respectively. The directivity measurements
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Figure 4.6: Comparison of predicted values of sound power law exponent n (solid line) to
measurement (four markers with various symbols). The shaded regions blue, green, and
red represent the p/k ranges for p/k = 0.49, u/k = 3.10, u/k = 58.9, respectively. The
symbols indicate a) circle: p/k =0 and n = 4.98, b) diamond: p/k = 0.49 and n = 5.32, ¢)
triangle: pu/k = 3.10 and n = 5.72, d) square: p/k = 58.9 and n = 5.99. Figure reproduced
from Yoas [60, figure 4.4] with permission.
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Figure 4.7: Impermeable rigid edge (u/k = 0): measured normalized acoustic directivity

versus varying observation angle 6 € (—180°,180°) at different vortex ring speed. The solid

line represents the cardioid pressure directivity sin g in (4.2). Figure reproduced from Yoas

[60, figure 4.5 (a)] with permission.

of both two edge cases match well with their theoretical predictions in §§4.1.1 and 4.1.2.
Additional acoustic directivity measurements at different dimensionless porosity parameter

values (u/k) are found in Yoas [60].

C Acoustic power scaling on vortex-edge distance

Third, the effect of acoustic power scaling with offset distance L between the vortex ring
path and the edge is now discussed. Table 4.1 shows the acoustic power scaling exponents m
at difference observation angles 6. For the impermeable edge (11/k = 0), the acoustic power
exponent averaged across all angles shown in table 4.1(a) is ™ = —4.04 (i.e., L=*%)  which
agrees closely with the predicted L~ in (4.2). For the highly-porous edge (u/k = 58.9), the
averaged acoustic power across all angles in table 4.1(b) scales as m = —4.94 (i.e., L=%%),
which is also close to the theoretical prediction of L=° in (4.5). The reader might notice
that different observation angles are selected for the calculation of the averaged acoustic
power scaling exponent 7, which is due to the fact that the radiated noise decreases at
angles close to the nulls. Thus, only data points with high acoustic signal-to-noise ratios

are used.
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Figure 4.8: Highly-porous edge (u/k = 58.9): measured normalized acoustic directivity
versus varying observation angle 6 € (—180°,180°) at different vortex ring speed. The solid
line represents the predicted dipolar pressure directivity sin 6 in (4.5). Figure reproduced
from Yoas [60, figure 4.5 (d)] with permission.

Table 4.1: Radiated acoustic power scaling as a function of offset distance L with selected
varying observation angle 6: (a) mavg = —4.04 and (b) maye = —4.94. (Yoas [60, table 4.2])

(a) Impermeable edge (u/k = 0) (b) Highly-porous edge (u/k = 58.9)
0 m 0 m
-170  -4.21 -100 -4.88
-130  -3.92 -70  -4.93
130 -3.97 70  -5.00
170 -4.04 100 -4.96
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D Temporal profile of acoustic pressure

Last, the results for the dimensionless waveforms of acoustic pressure in time are now
discussed and compared. The temporal acoustic pressure waveform is estimated from mi-

crophone measurements using the following equations:

pl) = Dt - )56, (4.9

Di(t) = ;Z;Spi <t+%) (4.9)

Dayg(t) = erniCEf.V:"fCDi(t), (4.10)
D = Day(t)/U"?, (4.11)

where 1/4mr; accounts for spherical propagation of the sound wave, D;(t—r;/c) is the acoutic
source strength, and 3(6;) is the directivity pattern of the acoustic pressure (sin(6/2) for a
rigid impermeable edge, sin @ for a highly-porous edge). The subscripts ¢ refers to different
angular position of the microphone. Note that the temporal pressure waveforms at different
values of dimensionless porosity parameter p/k in present work are determined by (4.7),
which is different from the nondimensionalization process in experiments using (4.11). Thus,
the shapes of temporal pressure waveforms for different porosity parameter values is the
primary concern here.

Figure 4.9 shows the temporal pressure waveform for the rigid impermeable edge (u/k =
0). The acoustic pressure increases monotonically with time and reaches the peak at time
7 = 0 due to the strong vortex-edge interaction as the vortex ring approaches the edge. After
the edge encounter, the pressure decays with time as the vortex ring moves away from the
edge. The waveforms elongate with decreasing vortex ring speed, which may be associated
to the longer interaction time between the vortex ring and edge. The source waveforms at
different vortex ring speeds overlap into a shape that agrees with the theoretical prediction
of the temporal acoustic pressure profile in figure 4.3.

Figure 4.10 shows the temporal pressure waveform for the highly-porous edge (u/k =

58.9). The acoustic pressure increases monotonically with time and reaches the peak at
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Figure 4.9: Impermeable rigid edge (p/k = 0): measured dimensionless pressure waveforms
D at different vortex ring speed. Figure reproduced from Yoas [60, figure 4.7 (a)] with
permission.

time 7 = 0 due to the strong vortex-edge interaction as the vortex ring approaches the
edge. After the edge encounters, the pressure decays decays with time as vortex ring moves
far away from the edge. Similar to the results in figure 4.9, elongated waveforms are also
observed at smaller vortex ring speeds due to the longer interaction time between the vortex
ring and edge. It is worth noting that the pressure waveforms at different vortex ring speeds
overlap into a ‘W’ shape, which agree with the theoretical prediction of temporal acoustic

pressure profile in figure 4.3.

4.2 Impermeable elastic edge

Similarly, this section seeks to find the acoustic power scalings on the vortex ring velocity
U and the nearest distance of the vortex ring from an impermeable elastic edge L, which is

~1/2

valid for small k£ in the sense that ke < 1. Acoustic results for this special asymptotic

limit are provided in the following section.
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Figure 4.10: Highly-porous edge (u/k = 58.9): measured dimensionless pressure waveforms
D at different vortex ring speed. Figure reproduced from Yoas [60, figure 4.7 (d)] with
permission.

4.2.1 Asymptotic limit ke /% <« 1

The scaling law and directivity of radiated acoustic power for a vortex ring passing
near an impermeable elastic edge are now determined. From (3.30), it is a straightforward
matter to find that the corresponding far-field acoustic pressure radiated by a vortex ring

passing near an impermeable-elastic edge (kefl/ 2 < 1) becomes like
pocUzL™3, (4.12)

and the corresponding acoustic power II is

p2
M= "— xU'L7C (4.13)

PoCo

The directivity has the same sin # dependence as that of the edge case with high porosity
identified in (4.5).
As is shown in (3.41), the temporal profile of the acoustic pressure is represented by

5 1 _
Df v¢(C'), which has been rearranged in the form of D{2 [m (t)] The purpose of this refor-
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mulation is that we may now use the definition of the (1/2)th derivative of m (%) directly,

1 +oo 1~ . t . S
D? [h (f)} 1 / (—iw)2h(w)e “dw :/ ,h(i)d& (4.14)

T/ oo (T - 8)]

[N

where the derivation can be found in [47]. This relation was previously adapted by Kambe
et al. [41] for the acoustic problem of a rigid edge interacts with a vortex ring. Note that
(4.14) may also be derived from (4.7) when m = 1/2.

Representative time histories of DZ% [h(t)], h () and h (¢) are provided in figure 4.11 for
five rectilinear paths of the vortex ring past the porous edges, « = 0, —7/4, —7/2, =37 /4, —7.
Figure 4.11 (top left) together with (3.42) indicates that the acoustic pressure for each path
changes rapidly near ¢ = 0, where the vortex ring passes closest to the edge. Note in
figure 4.11 (top left) how the acoustic pressure amplitude is weakly affected in the given
asymptotic limit by the vortex path angle c.

It is worth noting that Kambe et al. [41] identified a symmetric acoustic pressure signal
(proportional to D{% [h (f)]) for a rigid, impermeable edge when o = 0. However, the
temporal curves of acoustic pressure profile shown in figure 4.2 (left) and 4.11 (top left)
show that symmetric pressure signals occur for vortex path angles « = —7/2 and o = —7

for the high-porosity case and the specific asymptotic limit of the elastic case, respectively.

4.3 Semi-infinite edge with non-uniform properties

In this section, we discuss the results of present edge-noise problem with non-uniform
edge conditions. A special case with uniform-porosity is first considered numerically and
compared against previous analytical results to furnish a numerical verification in section
4.3.1. Section 4.3.2 discusses the effects of non-uniform porosity on the corresponding

acoustic results.
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FR
Figure 4.11: Time histories of acoustic pressure Df [h (t)] (top left), acceleration of volu-
metric flux through the vortex ring & (£) (top right) and h (t) (bottom center) in the limit
of ke~1/2 <« 1. Results are plotted for vortex path angles a@ = 0, — /4, —7/2, =37 /4, —7
1

relative to the porous edge. The heavy line corresponds to —7/2. D? [h (5)] is the dimen-
sionless acoustic pressure and shows an intermediate behavior between that of h (Z) and

(7).
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Table 4.2: Different values of porosity u/k calculated from different values of fractional
open area ay and wavenumber k, and a constant pore radius R.

k R amg H w/k ‘

100 0.001 0.0057 || 0.2
100 0.001 0.0257 1
100 0.001 0.1257

60°
150° # 30°
m analytical u/k = 0.2
numerical p/k = 0.2
R R == analytical p/k =1
+180 0 numerical p/k =1
== analytical pu/k =5
numerical u/k =5
—150° -30°
—60°

Figure 4.12: Comparison of acoustic directivity for analytical solution based on Wiener-
Hopf technique and numerical solution based on Mathieu function collocation method with
various values and limits of the dimensionless porosity parameter p/k.

4.3.1 Numerical verification for uniformly-porous rigid edge

In this section, we explore the numerical performance of the Mathieu function collocation
method with constant porosity parameter p/k, and compared the numerical results with
the theoretical predictions in §4.1.

Figure 4.12 shows the comparison of acoustic directivity for the analytical results in
figure 4.3 and the Mathieu function collocation method, where different values of porosity
parameter p/k are used and shown in table 4.2. The source location is fixed at (1,0.0001)
near the edge of the plate. To guarantee a non-compact (i.e., localized) source region near
the trailing edge of the plate (to minimize the effect of the leading edge), the wavenumber

k is set to 100 and the radius of the pore is set to 0.001.
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Table 4.3: Averaged values of graded porosity p/k calculated from different values of frac-
tional open area at trailing edge ap and constant pore radius R and wavenumber k.

k R or, or H (/) avg ‘

100 0.001 0 0.0057 0.1
100 0.001 0 0.0257 0.5
100 0.001 0 0.1257 2.5

4.3.2 Graded porous rigid edge

This section investigates the effect of the nonuniform distributions of porosity on trailing-
edge noise. Graded porosity along a flat plate is now considered through the mathematical
expression

(ar —ar)

5 (@+1), (4.15)

ap(y1) =ar +

where oy, and ap are the open area ratios at the leading and trailing edge, respectively.
We consider a graded porosity distribution along the plate where porosity increases linearly
from the leading edge to the trailing edge, where oy < ap hold for all cases. Hold fixed
are the wavenumber k, source location, and dimensionless pore radius are used as that in
§4.3.1 unless otherwise specified. Consider three nonuniform cases with the same open area
ratio at the leading edge o, = 0, and with three different open area ratio at the trailing
edge ar = 0.0057,0.0257 and 0.1257, the averaged values of the porosity distribution value
along the plate may also be calculated, and are indicated in table 4.3. The graded porosity
cases have the same ap as that of the uniform cases to furnish a direct comparison.
Figure 4.13 plots and compares the far-field acoustic directivities with different values of
porosity parameter i /k between the uniform and nonuniform (graded) porosity cases at high
frequency (k = 100), where the backscattering effects from the leading edge may be largely
minimized, and the plate is considered to be non-compact. First, figure 4.13 shows that
the far-field acoustic directivity magnitude decreases from low porosity to high porosity for

the uniform and graded porosity cases, respectively, which validates the effects of porosity
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Figure 4.13: Comparison of the acoustic pressure field (not normalized) for uniformly poros-
ity and nonuniform porosity cases, where the nonuniform cases consider graded porosity
distribution along the plate with the same open area ratios at the trailing edge ar as the
uniform case

in noise reduction. Second, figure 4.13 also shows that the far-field acoustic directivity
patterns for uniform and graded porosity cases overlap at the same porosity parameter p/k
at the trailing edge, regardless of whether the leading edge of the plate has zero porosity
or not, which indicates that only the local porosity parameter value at the trailing edge
dominates the acoustic directivity. It is worth noting that the acoustic directivity pattern
becomes more modulated at the low porosity value for the graded porosity case when the
leading edge is rigid (o, = 0), as compared to the uniform porosity case where the leading
edge has the same porosity value as trailing edge (ap = ag). This modulated behavior of
acoustic directivity may be due to backscattering effects [50] from the rigid leading edge,
which still exist at high frequency but may be mitigated by increasing the porosity at the
leading edge, as shown in figure 4.13.

Figure 4.14 plots and compares the far-field acoustic directivities with different values
of porosity parameter p/k between two different frequency regimes, k = 20 and k£ = 100.
Similar to the case with £ = 100, the far-field acoustic directivity magnitude at & = 20
decreases from low porosity to high porosity. For the acoustic directivity results at k = 20,

the cardioid or dipolar shape holds at low or high dimensionless porosity parameter u/k, thus
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Figure 4.14: Comparison of unnormalized acoustic directivity for the graded porosity cases
with different values of dimensionless porosity parameter p/k at k = 20 and k = 100

the plate is still considered to be semi-infinite. It is also shown that the acoustic directivity
patterns still overlap at medium or high porosity parameter value u/k at a relatively smaller
frequency (k = 20). However, increased modulation of the acoustic directivity is observed
at k = 20 at small porosity parameter value (u/k) compared to the result at & = 100.

In all, the present verification of the numerical scheme of Colbrook & Priddin [14] using
a finite-length plate in the appropriate parametric limits of a semi-infinite edge support the

further exploration of realistic porosity designs for target noise reduction and/or directivity.
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Chapter 5

Conclusions

An analytical framework is developed in the time domain to estimate the sound in the
acoustic far-field resulting from a vortex ring passing near a rigid-porous or an impermeable-
elastic edge with uniform properties. We adapt the work of Kambe et al. [41] for an
impermeable-rigid edge condition, which permits a parametric check and direct comparisons
on this analysis of different edge conditions. The time-domain Green’s functions for the
porous and elastic cases are developed in this work by extending the vortex-ring analysis
procedure by Kambe et al. [41] and integrating with it the asymptotic results for turbulence
edge scattering for poroelastic plates by Jaworski & Peake [39].

In contrast to the U® acoustic power scaling law and cardioid directivity for turbulence
and vortex sources near a rigid half plane, the present analysis identifies a U® scaling in
a highly-porosity limit (u/k > 1) and a U7 scaling for an elastic case under a specific
limit of fluid loading condition (k:e_l/ 2 < 1) in agreement with the scattering analysis for
poroelastic edges by Jaworski & Peak [39]. Both cases yield a dipolar directivity of acoustic
pressure, sin 6. Furthermore, new scalings on the minimum distance of the vortex ring from
the edges are established, where L™ and L~% dependencies occur for the porous and elastic
cases, respectively. The time-dependent component of the scattered field depends strongly
on the orientation of the vortex path relative to the edge, where the particular impermeable,

porous, and elastic cases examined each yield symmetric waveforms along different vortex-
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ring paths. The time-dependent waveforms and accompanying scaling trends of acoustic
power on both the vortex ring speed U and offset distance from the edge L establish a basis
for experimental validation of poroelastic-edge noise suppression in particular parametric
limits.

The acoustic emission by a turbulent eddy source near a semi-infinite edge with graded
porosity is then studied numerically using Mathieu function collocation approach of Col-
brook & Priddin [14] adapted for the current trailing-edge noise model problem. We compare
the numerical results of the acoustic directivity with the analytical predictions of vortex-edge
model problem, and find close agreement across different values of dimensionless porosity
parameter p/k, in addition to the modulated directivity pattern at low porosity (small p/k)
that are expected by the backscattering effect by the plate leading edge. Furthermore, we
study the effects of a graded porosity distribution on the acoustic directivity, where the
graded porosity is modeled in the format of increasing porosity from the plate leading edge
to the trailing edge. We compare the acoustic directivity results with that of uniform poros-
ity cases and find no significant difference at high frequency (k = 100), as only the local
porosity parameter value at the trailing edge influences the acoustic results. This finding
holds even at relatively-low frequency (k = 20) for the edges with medium to high average
porosity parameter values across the chord. However, increased modulation of the acoustic
directivity pattern occurs at k = 20 for the edge with a lower porosity average value com-
pared to that at k& = 100, which is likely due to the increasing strong backscattering effect

of the leading edge.
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Appendix A

Green’s function for a

uniformly-porous edge

Application of the Fourier inversion formula (3.5) to (3.3) yields
(V2 4 12) Gy, w3 b) = b(z — ), (A1)

where k = w/¢p is the wavenumber and w is the angular frequency. = (x1,x2,x3) and
vy = (1,2, y3) represent the positions of the observer and the source, respectively.
By appeal to the reciprocal theorem [57], the positions of observer and source may

be interchanged without modifying the Green’s function, i.e., @rp(a:,y; k) = Grp(y, z; k).

Therefore, the Green’s function may be expressed as:
Grp(a, y; k) = Go(y, z; k) + Gi(y, ; k), (A.2)

where CAJU (y,z; k) is the incident spherical wave generated by point source x in free space,

~ 1

Go(y,x; k) = elkle—yl (A.3)

_47r\a: —y|

and G s(x,y; k) is the scattered solution due to the interaction of the incident field @0 and
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the solid body (edge). At large distances of the source from the edge, where z = || — oo,

@0 can be expressed asymptotically as

~

Go(w, Y; k‘) ~ A exp[—ik(aﬁyl + i%QyQ)], (A.4)

where
A=— ! (ikx — ik A5
= mexplx 1x3y3), ()

and the direction of the source x is denoted by
T = a:/x = (@1,.@2,@‘3),

T1 =sinygcosby, o =sinygsinfy, T3 = cosy.

From the result of the scattered field for a porous edge by Jaworski & Peake [39], the

corresponding Green’s function for the scattered field may be determined:

. 1 g exp [ikz — ik + T
Gy w:k) = —5iVin 1B singexp [tk 1 ;OWO% il sy oo, (A.6)

where Y = (y? + y%)% is the projection of y on the (y1, y2)-plane. Here B is a variable that
depends on the wavenumber k, the properties of the porous edge, and the directivity of the

incident field:

o kSiHI/J() sinHo
K (ksingcosfp)’

B (A7)

where K (ksinygcosbp) is the ‘plus’ function of the associated Wiener-Hopf kernel K («)
after multiplicative factorization, denoted K. («) by Jaworski & Peake [39, (4.12)].
The kernel function K (a) can be rewritten as K (a) = (a + k)?(a — k)'/2.J(a), where

(o & k)12 are regular in the upper/lower half planes of complex variable a and J(a) — 1
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as |a| — oo. Therefore,

Ky (o) = (a+ k)T (),

where

J. () :exp[ ! / log‘](@dg]. (A.8)

%cf—a

The integration contour C is chosen and extend from —oco to 400 on the real axis to avoid
the branch cuts from +k to £k=+ico. Note that K («) must be determined numerically, but
may be evaluated asymptotically in the limits of low or high edge porosity. At this point
the reciprocal theorem is evolved to revert to the original source-observer configuration,
which removes the subscripts on the angular positions. The analytical expressions for B
have been determined by Jaworski & Peake [39] for two asymptotic limits of low and high
effective porosity:

(2k)/2sin & (siny) /2, p/k < 1,
B~ ? (A.9)

12k sin @ sin 1, w/k > 1,
where p/k = agKr/kR is the dimensionless porosity parameter.

For the purpose of investigating acoustic pressure directivity and scaling behaviors, it

is convenient to express B as
B =M@, 0)E™u", (A.10)

where m and n are the exponents of the wavenumber k and the parameter 4 = agyKg/R
composed of porosity of the half plane, respectively, as described in detail in Section 3.1.2.A.
The far-field directivity in this reciprocal problem for the scattered field follows from eval-
uating M (v, 0) for fixed ¢ and varying 6 from —m to w. Note that both M (v, 6) and m

vary with the porosity parameter p, and must be determined numerically in general.
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Figure A.1: Dependence of wavenumber parameter m on the dimensionless porosity param-

eter u/k.

Equations (A.7) and (A.10) permit m to be computed as

_ Olog[K (kcos0)]

=1
" dlogk ’

(A.11)

for ¢ = 7/2 and p = 1. Figure A.1 plots the dependence of m on pu/k for 6 = 7 /4, whose

value does not affect these results.
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Appendix B

Green’s function for an

uniformly-elastic edge

For the impermeable-elastic case (ke /2 < 1, € = pok/(mpk%)), the variable B in (A.6)
can be simplified as

k sin g sin G k3 sin 1 sin 6

B. =
Ky (ksin g cos ) €3

, (B.1)

where the subscripts on the angular positions are reverted to the original source-observer
configuration, and € is the intrinsic fluid loading parameter [18, 36, 39] that depends only
on the properties of the structure and fluid, m,, is the plate mass, and kp is the in vacuo
bending wavenumber.

By substitution of (B.1) into (A.6), the scattered field for the impermeable-elastic case

can be represented by

~ 1 0 si in 6
Gs(y,z; k) = §iY%(7rco)_%Y% sian(—iw)% exp (ikz — ikyscosvy), (B.2)
€2

where Y = (y3 + yg)% is the projection of y on the (y1,y2)-plane, and w = ck.
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Appendix C

First derivative of the temporal

function of acoustic pressure, §(s)

Equations (3.26) and (3.27) yield,

2 _3 . |3,  _{(ssinaFcosa
= (s> +1)"1sin | St SERATSA) _a]. C.1
g(s)=(s"+1)7¥sin [2 an <s cosa £ Sina> oz} (C.1)

The first derivative of g (s) is obtained by direct application of the chain rule,

. 3 9 _7 . |3, _{[ssinaFcosa
= —— 1 4 —t _— _2
9(s) 28(8 +1) 7 sin [2 an <scosa:|:sina “

3, 5 _z 3.  _y(ssinaTFcosa
+- 1)71 —t —_— | =2 C.2
2(8 1) cos [2 o (scosa:tsina “ (G-2)

where the upper sign holds for 0 < o < 7, and the lower sign holds for —7m < a < 0. Note

that (C.2) is used for the evaluation of integral in (4.7) and is equivalent to (4.6).
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Appendix D

Estimate of vortex-edge interaction

time

Kambe et al. [41, figure 6] and Yoas [60, figure 4.1] indicate experimentally that the
path of a vortex ring near a porous edge is not perfectly rectilinear due to its hydrodynamic
interaction with the edge, where the change in path becomes more pronounced with increas-
ing vortex ring speed (or circulation, cf. (3.30)). Figure D.1 illustrates an idealisation of
the modified path, where the vortex ring approaches along a straight path, turns by angle
B toward the edge along a circular arc of radius L, and leaves along a different straight
path. The model developed in §2 for a single rectilinear vortex ring path is justified if the
duration of time over which the path turns is small relative to the period of the acoustic
waveform.

Here it is conservatively assumed that the vortex ring maintains the same speed U in
the circular arc as is does on the rectilinear segments. The dimensionless traverse time of

the vortex ring in the arc segment may be estimated as

_ Ut
tg=—2

= (D.1)

a

where t, = (L5)/U, B is the turning angle of the vortex path, and a is the radius of the

64



Y

Semi-infinite / ’
porous plate "
L1 E1 L1 1 ]
\
\
\
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Figure D.1: Schematic of a vortex ring path (blue) affected by hydrodynamic interactions
with a semi-infinite porous edge. The vortex path is idealized as three continuous segments:
two rectilinear segments and one circular arc with a radius of L. The turning angle of the
vortex path is denoted as f.

vortex ring. In [60], L = 9.8 mm and a = 6.5 mm, and the maximum value of the turning
angle [ is approximately 13.3°. Furthermore, figure 4.3(b) suggests a dimensionless acoustic
waveform period of approximately 8. Therefore, the ratio of the vortex-edge interaction
time and the effective period of the waveform is approximately t,/8 = 4.4%. Therefore,
the influence of the path turning due to the vortex-edge interaction on the entire pressure

waveform is marginal and may be neglected in the present work.
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Appendix E

Analyticity of the proposed stream

function

Given the velocity potential ®(Y) = Y3 sin %0, supposing that the stream function is
U(Y) = ~Y'2 cos %0, the Cauchy-Riemann equations in (3.13) must be satisfied, where
Y =|Y|= (43 +y3)? and 6 = tan"1 2.

0 0 1 tan~1 L2

—®Y) = — 2 Nigin— YL
8y1 ( ) ayl ((yl + y2) Sm 9
1 s, tan 122 .1 tan~l2 Yo y?
= 7(y% + y%)_z sin YLy — (y% + yg)if COS Y1 <> 1
2 2 2 2 yi) yi+us
1 ; tan—1 ¥2 tan—1 £2
= —(u —l—y%)_% yy sin ———% — g5 cos ———%4 (E.1)
2 2 2
0 0 1 tan~1 12
—®Y) = — 2 2V1ginp —— YL
ay2 ( ) ay2 <(y1 + y2) Sin 9
1 3 . tan_l Y2 11 tan—l Y2 1 2
= QWi+ i R+ (g g eos o (m) -
1 2
1 tan~—! 2 tan~! &2
= 5(2/% +y3)71 <y1 cos ——— + yp sin ——— (E.2)
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0 0 1 tan~! 2
— (Y — 2 (a2 2\ 7 . Y1
o0 (Y) oY1 ( (1 +y2)400572
-1 y2 —1 Y2
L o 2\—2 tan—" 2 o1l tan o Sy, yi
= gl s R = ) sin T (g ) e
1 3 tan~! 2 tan! 2
= —Q(y%er%) g (yl COSTyl—FyQ smTy1 (E.3)
9 d . tanT'#2
—y(Yy) = — |- 2 2\ Y1
9 (Y) 8y2< (1 +y2)4c0372
-1 92 —1 y2
L o 2\—2 tan—" 7 2 o1l tanun /] yi
= Wit reos Rk () sin 5 () e
1 3 ~ tan!#2 tan~1 42
= i(y% +y3)"1 (yl smTy1 — Y2 COS Tyl (E.4)
It is easy to find by examining (E.1) and (E.3), (E.2) and (E.4) that,
0 0
—d(Y)= —VU(Y), E.5
0 0

Therefore, Cauchy-Riemann equations in (3.13) are given for the velocity potential ®(Y")

and stream function ¥(Y).
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Appendix F

Derivations of derivatives of vortex

ring speed: Dsv¢(C) and D%vg(C)

Suppose that the vortex ring moves rectilinearly with velocity Ue, where e is a unit
vector with components (cos «,sina) in the (yi,y2)-plane (cf. figure 3.2) and the vortex
path is sufficiently distant from the edge (L > a). This assumption of the rectilinear vortex
motion has been shown to be valid by Kambe et al. [41] for the sound problem of a vortex
ring near an impermeable-rigid plane.

From (3.23) we notice

= (e-V)®(C) (F.1)
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Therefore the first derivative of v¢(C) is

Dive(C) = v¢(C) - Vue(C)

= Ue-V)*®(Y). (F.2)

It is convenient to introduce the complex variable z = y; + iys = Ye'©, where the

complex potential function f = ®(Y) +i¥(Y) = —iz2. Since

df
_ i J F.
ve(C) Re{e dz}’ (F.3)
therefore,
i 1 1
ve(C) = Re{e (—1)52’ 2}
i 1,1 19
= Re ea(—l)§Y 2e” 2
1,1 . (1 A1 (1
= Re{—2Y 2 sin (2@—a> —1§Y 2 sin (2®—a>}
1_ 1 1
= —§Y 2 sin <2®—a>, (F.4)
and
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Therefore,
1 _3 . 3
Dive(C) = ZUY 2 sin (2@ - 2a), (F.6)

Let the time origin to be the instant when the vortex ring is nearest to the edge with

the distance Y = L. The vortex position at time ¢ can then be represented by
(Ycos®, Ysin®)= (Utcosa=+ Lsina,Utsina F Lcosa), (F.7)

where the upper sign holds for 0 < a < 7, and the lower sign holds for 0 > a > —.

From (F.7), we get

Y = \/Y20052@+Y2sin2®

= \/(Utcosa:l:Ls.inoz)2 + (Utsina T Leos a)?

= VU2 + L2

1

= L <%2 + 1)§ : (F.8)

and

tan~! Utsina + L cosa
an
Utcosa + Lsina

— o <tsina$cosa> ’ (F.9)

tcosa =+ sin «

where t = Ut/L is defined as the dimensionless time.

Equation (F.6) now may be rearranged in dimensionless form,

D;ue(C) = %UY’% sin <g@ - 2a>

1.3 /9 -4 . (3
= ZUL 2 (t —|—1> sin (2@—2a>

1 3
— ZUL Qg(t)’ (F.10)
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where

1
g(f) =Y 2sin (2@2a>, Y= % = (#+1)", (F.11)

The second derivative of v¢(C') is now determined from (F.2),

D%’Ug(C) = ’Ué(C)-VDt’Ué'(C)

= U%(e-V)?3(Y), (F.12)

and

3\ B 5 3,5 . 5
= Re{1 <_8> Y "2 cos <3a — 2@) + gY 2 sin (3& — 2@)}

= —%Y—% sin (2@ - 3a>. (F.13)
Therefore,
D2v¢(C) = —%UQY‘g sin <2@ - 3a), (F.14)

which may also be rearranged non-dimensionally,

Dtgvg(C) = —SUQY_gsin (;@—304)
. 3 2,5 (32 7% . )
= _éU L2 (t +1) sin (2@—3a>
3 0, 5 -
= Ul 2m (2), (F.15)
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where

1
m (f) =Y ? sin <Z®3a>, ?:%: (#+1)". (F.16)

72



Bibliography

1]

I. D. Abrahams. Scattering of sound by a heavily loaded finite elastic plate. Proceedings
of the Royal Society of London A, 378(1772):89-117, 1981.

I. D. Abrahams. Scattering of sound by an elastic plate with flow. Journal of Sound
and Vibration, 89(2):213-231, 1983.

L. J. Ayton. Acoustic scattering by a finite rigid plate with a poroelastic extension.

Journal of Fluid Mechanics, 791:414-438, 2016.
J. Boyd. Chebyshev and Fourier spectral methods, courier corporation, 2001.

T. F. Brooks and T. H. Hodgson. Trailing edge noise prediction from measured surface

pressures. Journal of Sound and Vibration, 78(1):69-117, 1981.

P. A. Cannell. Edge scattering of aerodynamic sound by a lightly loaded elastic half-
plane. Proceedings of the Royal Society of London A, 347(1649):213-238, 1975.

P. A. Cannell. Acoustic edge scattering by a heavily loaded elastic half-plane. Proceed-
ings of the Royal Society of London A, 350(1660):71-89, 1976.

A. V. G. Cavalieri, W. R. Wolf, and J. W. Jaworski. Numerical solution of acoustic
scattering by finite perforated elastic plates. Proceedings of the Royal Society of London
A, 472(2188):20150767, 2016.

H. Chen and J. Jaworski. Noise generation by a vortex ring near porous edges: Theory.

In APS Division of Fluid Dynamics Meeting Abstracts, pages E03-013, 2020.

73



[10]

[11]

[14]

[18]

H. Chen and J. W. Jaworski. Noise generation by a vortex ring near porous and elastic

edges. 2020. In ATAA Awiation 2020 Forum. Virtual Event: Paper ATAA-2020-2526.

H. Chen, Z. W. Yoas, J. W. Jaworski, and M. H. Krane. Acoustic emission of a vortex

ring near a porous edge. Part 1: theory. Journal of Fluid Mechanics, 941:A28, 2022.

M. J. Colbrook and L. J. Ayton. A spectral collocation method for acoustic scattering

by multiple elastic plates. Journal of Sound and Vibration, 461:114904, 2019.

M. J. Colbrook and A. Kisil. A Mathieu function boundary spectral method for scat-
tering by multiple variable poro-elastic plates, with applications to metamaterials and

acoustics. Proceedings of the Royal Society of London A, 476(2241):20200184, 2020.

M. J. Colbrook and M. J. Priddin. Fast and spectrally accurate numerical methods for
perforated screens (with applications to Robin boundary conditions). IMA J. Appl.
Math., 85(5):790-821, 2020.

D. G. Crighton. Acoustic edge scattering of elastic surface waves. Journal of Sound

and Vibration, 22(1):25-32, 1972.

D. G. Crighton. Radiation from vortex filament motion near a half plane. Journal of

Fluid Mechanics, 51(2):357-362, 1972.

D. G. Crighton. Airframe noise. In H. H. Hubbard, editor, Aerodynamic Theory: A
General Review of Progress. Volume 1: Noise Sources. NASA Langley Research Center,
1991.

D. G. Crighton and D. Innes. The modes, resonances and forced response of elastic
structures under heavy fluid loading. Philosophical Transactions of the Royal Society

of London A, 312(1521):295-341, 1984.

D. G. Crighton and F. G. Leppington. Scattering of aerodynamic noise by a semi-
infinite compliant plate. Journal of Fluid Mechanics, 43(4):721-736, 1970.

74



[20]

21]

23]

[24]

D. G. Crighton and F. G. Leppington. On the scattering of aerodynamic noise. Journal
of Fluid Mechanics, 46(3):577-597, 1971.

N. Curle. The influence of solid boundaries upon aerodynamic sound. Proceedings of

the Royal Society of London A, 231(1187):505-514, 1955.

W. Devenport, N. Alexander, S. Glegg, and M. Wang. The sound of flow over rigid
walls. Annual Review of Fluid Mechanics, 50:435-458, 2018.

A. P. Dowling, M. M. Sevik, and J. Ffowcs Williams. Sound and sources of sound. The
American Society of Mechanical Engineers (ASME), 1984.

J. E. Ffowes Williams. The acoustics of turbulence near sound-absorbent liners. Journal

of Fluid Mechanics, 51(4):737-749, 1972.

J. E. Ffowces Williams and L. E. Hall. Aerodynamic sound generation by turbulent flow
in the vicinity of a scattering half plane. Journal of Fluid Mechanics, 40(4):657-670,
1970.

M. R. Fink and D. A. Bailey. Airframe noise reduction studies and clean-airframe
noise investigation. United Technologies Research Center, (NASA Contractor Report
159311), 1980.

T. Geyer, E. Sarradj, and C. Fritzsche. Measurement of the noise generation at the

trailing edge of porous airfoils. Ezperiments in Fluids, 48(2):291-308, 2010.

M. Howe, M. Scott, and S. Sipcic. The influence of tangential mean flow on the rayleigh
conductivity of an aperture. Proceedings of the Royal Society of London. Series A:

Mathematical, Physical and Engineering Sciences, 452(1953):2303-2317, 1996.

M. S. Howe. Contributions to the theory of aerodynamic sound, with application to
excess jet noise and the theory of the flute. Journal of Fluid Mechanics, 71(4):625-673,
1975.

75



[30]

[39]

[40]

M. S. Howe. On the added mass of a perforated shell, with application to the generation
of aerodynamic sound by a perforated trailing edge. Proceedings of the Royal Society
of London A, 365(1721):209-233, 1979.

M. S. Howe. On the generation of sound by turbulent boundary layer flow over a rough

wall. Proceedings of the Royal Society of London A, 395(1809):247-263, 1984.

M. S. Howe. Sound produced by an aerodynamic source adjacent to a partly coated,
finite elastic plate. Proceedings of the Royal Society of London A, 436(1897):351-372,
1992.

M. S. Howe. The compact Green’s function for a semi-infinite elastic plate, with
application to trailing edge noise and blade—vortex interaction noise. The Journal of

Acoustical Society of America, 94(4):2353-2364, 1993.

M. S. Howe. Structural and acoustic noise produced by turbulent flow over an elastic

trailing edge. Proceedings of the Royal Society of London A, 442(1916):533-554, 1993.

M. S. Howe. Structural and acoustic noise generated by turbulent flow over the edge
of a coated section of an elastic plate. Journal of Sound and Vibration, 176(1):1-18,

1994.

M. S. Howe. Acoustics of fluid-structure interactions. Cambridge University Press,

1998.
M. S. Howe. Theory of vortex sound. Cambridge University Press, 2003.

M. S. Howe. Acoustics and aerodynamic sound. Cambridge University Press, United

Kingdom, 2014.

J. W. Jaworski and N. Peake. Aerodynamic noise from a poroelastic edge with impli-

cations for the silent flight of owls. Journal of Fluid Mechanics, 723:456-479, 2013.

J. W. Jaworski and N. Peake. Aeroacoustics of silent owl flight. Annual Review of

Fluid Mechanics, 52:395-420, 2020.

76



[41]

[42]

[43]

T. Kambe, T. Minota, and Y. Ikushima. Acoustic wave emitted by a vortex ring

passing near the edge of a half-plane. Journal of Fluid Mechanics, 155:77-103, 1985.

M. R. Khorrami and M. M. Choudhari. Application of passive porous treatment to
slat trailing edge noise. NASA Technical Report, 2003. TM-2003-212416.

A. Kisil and L. J. Ayton. Aerodynamic noise from rigid trailing edges with finite porous

extensions. Journal of Fluid Mechanics, 836:117-144, 2018.
H. Lamb. Hydrodynamics. Cambridge University Press, 1924.

F. G. Leppington. Scattering of sound waves by finite membranes and plates near
resonance. Quarterly Journal of Mechanics and Applied Mathematics, 29(4):527-546,

1976.

M. J. Lighthill. On sound generated aerodynamically. I. General theory. Proceedings
of the Royal Society of London A, 211(1107):564-587, 1952.

M. J. Lighthill. Waves in fluids. Cambridge University Press, 2001.
N. W. McLachlan. Theory and application of Mathieu functions. 1951.

W. Moéhring. On vortex sound at low Mach number. Journal of Fluid Mechanics,

85(4):685-691, 1978.

S. Moreau and M. Roger. Back-scattering correction and further extensions of Amiet’s
trailing-edge noise model. Part II: Application. Journal of sound and vibration, 323(1-

2):397-425, 20009.
P. M. Morse and K. U. Ingard. Theoretical acoustics. Princeton University Press, 1986.

P. A. Nelson. Noise generated by flow over perforated surfaces. Journal of Sound and

Vibration, 83(1):11-26, 1982.

F. W. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark. NIST Handbook of

Mathematical Functions. Cambridge University Press, 2010.

77



[54] C. Pimenta, W. R. Wolf, and A. V. G. Cavalieri. A fast numerical framework to
compute acoustic scattering by poroelastic plates of arbitrary geometry. Journal of

Computational Physics, 373:763-783, 2018.
[55] 1. Podlubny. Fractional differential equations. Elsevier, 1998.

[56] A. Powell. Theory of vortex sound. The Journal of Acoustical Society of America,
36(1):177-195, 1964.

[57] L. Rayleigh. The theory of sound, volume 2. Dover, 1945.

[58] M. Swann, Z. Yoas, P. Trzcinski, H. Chen, M. Krane, and J. Jaworski. Aeroacoustics

of porous trailing edges. In APS Division of Fluid Dynamics Meeting Abstracts, 2021.
[59] L. N. Trefethen. Spectral methods in MATLAB. STAM, 2000.

[60] Z. W. Yoas. Passive trailing edge noise attenuation with porosity, inspired by owl

plumage. Master’s thesis, Pennsylvania State University, August 2021.

78



Biography

Huansheng Chen graduated with a Bachelor of Engineering degree in Aeronautical and
Astronautical Engineering at Beihang Univeristy (previously known as Beijing University
of Aeronautics and Astronautics) in China. In August 2016, he came to Lehigh to pursue
graduate study and started to do research in fluid-structure interactions with Dr. Justin W.
Jaworski in Feburary 2017, and completed a Master’s degree in May 2018. As a graduate
student, Huansheng has published two journal papers (JFS & JFM) and six conference
preceedings and been supported by external grants from the Air Force Office of Scientific
Research (AFOSR) and National Science Foundation (NSF) to support his research activi-
ties. He was awarded various fellowship at Lehigh such as the J. David A. Walker and M.
Elizabeth Walker Endowed Fellowship, Rossin College Doctoral Fellowship Award and the
department of Mechanical Engineering and Mechanics Fellowship. He was also awarded the
Doctoral Travel Grant for Global Opportunities (DTG-GO) in 2019 to support his inter-
national trip to the 23rd International Congress on Acoustics. Huansheng is a member of

ATAA and APS.

79



	Acknowledgements
	Declaration
	Nonmenclature
	List of Tables
	List of Figures
	Abstract
	Introduction
	Background
	Major unresolved issues and technical approach
	Statement of purpose
	Dissertation outline

	Mathematical foundations
	Wave equation
	Helmholtz equation
	Acoustic compactness
	Acoustic sources
	Free-space Green's function
	Time-domain representation
	Frequency-domain representation

	Reciprocal theorem
	Acoustic power and intensity
	Vortex sound at low Mach numbers
	Lighthill's equation
	Powell-Howe acoustic analogy


	Acoustic scattering from poroelastic edges
	Semi-infinite edge with uniform properties
	Model problem
	Porous edge
	Elastic edge

	Semi-infinite edge with non-uniform properties
	Model problem
	Mathieu function collocation method
	Kinematic boundary condition


	Results
	Uniformly-porous rigid edge
	Impermeable limit
	High-porosity limit
	General porosity case
	Comparison with experimental measurements from ARL

	Impermeable elastic edge
	Asymptotic limit 

	Semi-infinite edge with non-uniform properties
	Numerical verification for uniformly-porous rigid edge
	Graded porous rigid edge


	Conclusions
	Green's function for a uniformly-porous edge
	Green's function for an uniformly-elastic edge
	First derivative of the temporal function of acoustic pressure, 
	Estimate of vortex-edge interaction time
	Analyticity of the proposed stream function
	Derivations of derivatives of vortex ring speed:  and 
	Biography

