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Nomenclature

α angle of the rectilinear path of vortex ring

αH open area fraction

αL open area fraction at the leading edge

αT open area fraction at the trailing edge

ω vorticity, (ω1, ω2, ω3)

x observer location, (x1, x2, x3)

Y projection of y on the (y1, y2)-plane

y source location, (y1, y2, y3)

δ Dirac delta function

ϵ intrinsic fluid loading parameter, ρfk/mk
2
B

Γ strength of vortex ring

G gamma function

µ/k nondimensional porosity parameter, αHKR/kR

ω angular frequency

KR nondimensional Rayleigh conductivity, 2KR/(πR)
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t nondimensional time, Ut/L

Φ stream function

Π acoustic power

Ψ velocity potential

ψ angle of incident plane wave

ρ′ density perturbation

ρ density, ρ0 + ρ′

ρ0 mean density

ρf fluid density

curl curl operator

div divergence operator

σ vortex core radius

θ angle of observation

Ĝe frequency-domain Green’s function for a semi-infinite impermeable elastic edge

Ĝ0 frequency-domain Green’s function for incident field

Ĝrp frequency-domain Green’s function for a semi-infinite uniformly porous rigid edge

Ĝs frequency-domain Green’s function for scattered field

a vortex ring radius

c0 speed of sound

g(t) temporal function of acoustic pressure for non-elastic edges

Ge time-domain Green’s function for a semi-infinite impermeable elastic edge

ix



G0 time-domain Green’s function for incident field

Grp time-domain Green’s function for a semi-infinite uniformly porous rigid edge

Gs time-domain Green’s function for scattered field

I acoustic intensity

k wavenumber, ω/c0

kB in vacuo bending wavenumber

KR Rayleigh conductivity

L nearest distance between the vortex ring path and the edge

m(t) temporal function of acoustic pressure for elastic edges

M Mach number

p′ pressure perturbation

P total far-field noise, dB

p pressure, p0 + p′

p0 mean pressure

R radius of circular pore aperture

t time

tr retarded time, t− x/c0

Tij Lighthill stress tensor

U vortex ring speed

vξ complex velocity in the ξ direction

Y magnitude of Y
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Abstract

The sound generated by an acoustic source near a semi-infinite edge with uniform pa-

rameters is studied theoretically. The acoustic emission of a vortex ring passing near a

semi-infinite porous or elastic edge with uniform properties is formulated as a vortex sound

problem and is solved using a Green’s function approach. The time-dependent pressure sig-

nal and its directivity in the acoustic far field are determined analytically for rigid porous

edges as a function of a single dimensionless porosity parameter. At large values of this

dimensionless parameter, the radiated acoustic power scales on the vortex ring speed U

and the nearest distance between the edge and the vortex ring L as U6L−5, in contrast

to the U5L−4 scaling recovered in the impermeable edge limit for small porosity values.

These analytical findings agree well with the results of a companion experimental cam-

paign conducted at the Applied Research Laboratories (ARL) at Penn State University. A

related theoretical analysis of the sound scattered by uniform, impermeable elastic edges

admits analytical results in a specific asymptotic limit, in which the acoustic power scales

on U7L−6. In complement to the analysis of vortex ring sound from edges, the acoustic

scattering of a turbulent eddy near a finite edge with a graded porosity distribution is deter-

mined numerically and is validated against analytical acoustic directivity predictions from

the vortex-edge model problem for a semi-infinite edge in the appropriate high frequency

limit. The cardioid and dipolar acoustic directivity obtained in the vortex ring configura-

tion for low and high dimensionless porosity parameter values, respectively, are recovered

by the numerical approach. An imposed linear porosity distribution demonstrates no sub-

stantial difference in the acoustic directivity relative to the uniformly porous cases at high
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porosity parameter values, where the local porosity parameter value at the edge determines

the scattered acoustic field. However, more modulated behavior of the acoustic directivity

is found at a relatively low frequency for the case of a finite edge with small graded porosity

distribution.
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Chapter 1

Introduction

1.1 Background

The pioneering aeroacoustics analysis by Lighthill [46] first determined that isolated

turbulent eddies in low-speed flows produce sound in a quadrupolar directivity pattern with

an intensity that is proportional to U3M5 or U8, where U andM are the characteristic flow

speed and Mach number, respectively. The close proximity of turbulence to a solid body

amplifies its acoustic intensity and changes the directivity pattern of the scattered sound:

Curle [21] showed that the radiated acoustic power of turbulence scattered by acoustically-

compact bodies scales on U6, which is a factor of M−2 increase in magnitude for low Mach

number flows that is accompanied by a shift to dipolar directivity. Ffowcs Williams & Hall

[25] examined analytically a more efficient noise generation scenario of turbulent eddies near

a non-compact sharp edge, where the acoustic power scales on U5, i.e., M−3 louder than

free-field turbulence; a cardioid directivity pattern for pressure accompanies this change in

acoustic intensity, which scales on the distance L between the turbulent eddy and the edge

as L−3. A sharp edge may be generalized geometrically into a wedge, where Crighton &

Leppington [20] showed that a finite opening angle weakens the acoustic field relative to the

U5 velocity scaling for classical trailing-edge noise.

The efficient conversion of turbulence energy into sound by rigid-impermeable edges
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continues to motivate strategies to disrupt the noise-generation process through the mod-

ification of trailing edge material properties. Crighton & Leppington [19] carried out one

of the first such analytical investigations by imposing a point-reacting impedance condition

on a semi-infinite plate, where in certain parametric limits the plate may be considered as

either rigid or limp. The rigid limit recovers the results of Ffowcs Williams & Hall [25],

and the so-called ‘limp’ edge limit produces a U6 power scaling and dipolar acoustic field

that would be expected for turbulence noise produced by a compact body or a solid body

without an edge. More sophisticated models including flexural waves in a compliant edge

that were not considered by Crighton & Leppington [19] have since been investigated to

study their effect on structural [15] and aerodynamic noise [6, 7, 32, 33, 34, 35], including

the influence of structural resonance on radiated sound for finite elastic sections [1, 2, 45].

Porosity is a common design approach to mitigate noise generation that manipulates the

edge boundary condition. Ffowcs Williams [24] determined that turbulence noise from an

infinite perforated screen scales on U6 and has a dipolar directivity in a high-porosity limit,

which Nelson [52] corroborated experimentally for a porous surface away from its edges.

Howe [30] later examined the sound generation of a vortex passing near a semi-infinite

plate with a finite porous extension and showed that the porous section reduces the sound

level by relaxing the abrupt change in boundary conditions at the impermeable edge. Kisil

& Ayton [43] constructed an analysis procedure for this configuration and underscored

the importance of secondary scattering from the impermeable-porous junction for high-

frequency turbulence sources. In addition to these analytical works, the effect of porosity

on edge noise reduction has been investigated computationally [42] and experimentally

[26, 27], and has been reviewed recently by Jaworski & Peake [40].

Further research attention has been directed toward the combination of porosity and

elasticity reduces turbulence edge noise. Jaworski & Peake [39] analysed the scaling behav-

ior of turbulence sound radiated by semi-infinite poroelastic edges using the Wiener-Hopf

analysis technique. They recovered the U6 acoustic power scaling and the dipole direc-

tivity results of Ffowcs Williams [24] in the high-porosity limit for an infinite perforated
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sheet, indicating that the effect of the edge on the acoustic scaling behavior is eliminated

in this case. In other words, the acoustical non-compactness of an impermeable edge is

disrupted by surface porosity, which permits near-field fluid motions through the edge that

are associated with an acoustic dipole.

Jaworski & Peake [39] also identified a new U7 velocity scaling for elastic edges un-

der specific fluid loading conditions. With the aim to relax the semi-infinite geometrical

restriction, Cavalieri et al. [8] developed a boundary element method to determine numeri-

cally how sound scatters from a finite poroelastic strip or flat-plate airoil. Porosity reduced

noise more effectively at low frequencies with wavelengths that are large relative to the

airfoil chord length, while elasticity was more effective at high-frequency noise reduction.

Therefore, poroelasticity may enable broadband noise reduction for finite edge sections or

airfoils. More recent investigations and extensions involving finite geometries include a fi-

nite one-dimensional rigid plate with a poroelastic extension [3], multiple finite plates with

various material properties [12, 13], and generalized two-dimensional poroelastic plates with

straight, swept, or serrated edges [54].

1.2 Major unresolved issues and technical approach

It is well-established [17] that the presence of a rigid and impermeable edge near a turbu-

lent region of fluid results in a significant increase in the noise generated by that turbulence

in low-Mach-number flows. Analytical and numerical results outlined in the previous sec-

tion suggest that this noise generation process may be mitigated by the modification of

edge material properties to make the edge porous, elastic, or poroelastic. The U5 acoustic

power and cardioid directivity predictions by Ffowcs William & Hall [25] for a rigid and

impermeable edge has been confirmed by the empirical study of Brooks & Hodgson [5] and

several other measurement campaigns [see 17]. However, direct experimental confirmation

of the U6 and U7 scalings for highly porous or elastic edges, respectively, is not likely pos-

sible in conventional aeroacoustic facilities due to secondary flow noise contributions that

may become as loud or louder than the edge noise itself. For example, turbulent boundary
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layers present on wind tunnel walls and test article surfaces produce roughness noise [22]

with a dipolar directivity and an intensity that also scales on U6 [31]. Therefore, the mean

flow associated with the turbulent boundary layer that generates edge noise is also a source

of acoustic contamination relative to sound produced at porous or elastic edges: in a scal-

ing sense, edge noise in the high-porosity limit would be indistinguishable from roughness

noise, which would dominate all together the weaker U7 sound from elastic edges in the

appropriate parametric limit.

To circumvent this critical limitation, an alternative approach is proposed using a mov-

ing vortex ring as an acoustic source in an otherwise quiescent fluid. The replacement of the

turbulence source with a coherent vortex structure is motivated by the seminal analysis of

Crighton [16], which determined analytically that a line vortex moving round an edge that

produces the same U5 intensity scaling determined by wave scattering analyses [25, 19],

where U is the vortex ring speed in this configuration. The matched asymptotic results

by Crighton [16] were further examined and verified by Howe [29] using a low-frequency

Green’s function and by Möhring [49] using a vector Green’s function. Kambe et al. [41]

validated the vortex sound approach by achieving the U5 intensity scaling using a vortex

ring shot rectlinearly past a rigid, impermeable edge and confirmed its cardioid directivity.

Their analysis of vortex ring sound obtained an L−4 intensity scaling based on the mini-

mum distance between the vortex path and the edge, which is distinct from the scaling of

Ffowcs Williams & Hall [25] for turbulence scattering and is particular to the vortex ring

configuration. Crucially, the vortex ring configuration of Kambe et al. [41] does not require

a background mean flow and therefore does not introduce flow noise sources that would

potentially corrupt an acoustic measurement of the edge noise emission.

In addition to this critical unresolved issue, it is worth noting that the numerical work

by Cavalieri et al. [8] identified a large performance difference in noise reduction between

low and high Helmholtz numbers, i.e., the product of the acoustic wavenumber (frequency)

and chord length. Therefore, it begs the question as for whether non-uniform distribution of

edge properties (such as graded porosity or elasticity) could possess a different and tunable
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performance in noise reduction compared to the uniform edge case. Due to the fundamental

technical challenge that the traditional analytical approach cannot handle non-uniform edge

conditions, the corresponding acoustic problem for non-uniform edge properties is solved

numerically using the Mathieu function collocation approach of Colbrook & Priddin [14] for

finite panels, which allows arbitrary edge conditions and also permits a numerical verification

of findings from the uniform edge-noise analysis.

1.3 Statement of purpose

This dissertation pursues theoretical models of a vortex ring passing near a semi-infinite

porous or elastic edge to enable experimental validation of acoustic power scaling results

by analogy and confirmation of directivity shapes predicted by previous acoustic scattering

works for poroelastic edges. Analytical predictions are achieved in closed form or in partic-

ular parametric asymptotic limits to guide companion acoustic experiments at the Applied

Research Laboratory (ARL) at Penn State University, where the vortex ring analysis in the

time domain enables additional results of comparisons of the acoustic signal to constitute

a full validation. In addition to the associated experimental comparisons, this work also

seeks verification of the analytical results based on a novel numerical method proposed by

Colbrook & Priddin [14]. Furthermore, this dissertation explores how these acoustic scat-

tering results are modified by a spatial gradient in the porosity distribution near the edge

to motivate further experimental campaigns.

1.4 Dissertation outline

In pursuit of these goals, the present work seeks to address the following research ques-

tions.

• What are the findings (acoustic scaling, acoustic directivity, acoustic pressure wave-

forms, etc) on the vortex-edge acoustic model problem with uniform edge distribution?
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• Does vortex-edge acoustic model recover the results of previous turbulence-edge acous-

tic models?

• What is the difference between the analytical model and the numerical model?

• What are the limitations of the numerical model in pursuit of the verification of

analytical results?

• What are the new findings of the numerical model?

• How does the modification of edge property affect the results for a trailing edge acous-

tic model problem?

The remainder of this dissertation is outlined as follows: Chapter 2 introduces briefly

the related acoustic theory and mathematical foundations used in this work. Chapter 3

outlines the vortex sound model and constructs the associated Green’s function to estimate

the acoustic emission of a vortex ring passing near a porous or elastic edge with uniform

properties, as well as discuss the numerical approach pursued for non-uniform properties.

Chapter 4 discusses results from the mathematical models in Chapter 3 in the context

of their parametric limits for different edge conditions, their influence on the directivity

and acoustic intensity scaling behaviors, and comparisons with associated experimental

measurements. Conclusions and final remarks are presented in Chapter 5.

8



Chapter 2

Mathematical foundations

2.1 Wave equation

Sound is longitudinal fluctuations in pressure that propagate through a medium, where

these fluctuations may be created by vibrating bodies, turbulent flows, or other unsteady

phenomena. It is often the case in acoustic applications that the pressure fluctuations associ-

ated with the acoustic waves are small relative to the mean undisturbed pressure. Therefore,

the equations of motion may be linearized and described by the linear wave equation for

sound propagation, where the sound is assumed to propagate through a stationary fluid of

uniform mean density ρ0 and pressure p0. The wave equation for a stationary fluid may

also be used to describe the acoustics in a low-speed flow, where convective effects at small

Mach number would be a higher-order effect [37].

Let the linear perturbations of density and pressure from their mean values be denoted

by ρ′ and p′, where ρ′/ρ0 ≪ 1, p′/p0 ≪ 1. Linearizations of the inviscid momentum equation

and continuity equation yield [37, pp. 5 - 6]

(
1

c20

∂2

∂t2
−∇2

)
p′ = ρ0

∂q

∂t
− divF , (2.1)

which describe the production of sound by a volume source q and a body force F , which is

herein neglected.
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The unsteady motion can be described by a velocity potential ϕ, which satisfies

v = ∇ϕ, p′ = ρ′c20 = −ρ0
∂ϕ

∂t
. (2.2)

Substitution (2.2) into (2.1) yields the linear wave equation,

(
1

c20

∂2

∂t2
−∇2

)
ϕ = −q(x, t). (2.3)

Note that sound waves propagating outside the source region (where q(x, t) = 0) are gov-

erned by the homogeneous form of (2.3).

2.2 Helmholtz equation

The linearity of the wave equation allows acoustic solutions to be superposed for acoustic

sources with different frequency components, which permits the full solution to be expressed

as a Fourier series or integral.

Consider the sound propagated into an unbounded, stationary fluid from a time-harmonic

volume source q(x, t) = q(x, ω)e−iωt of angular frequency ω. The velocity potential gov-

erned by (2.3) should oscillate at the same frequency, that is ϕ(x, t) = ϕ(x, ω)e−iωt. The

linear wave equation in (2.3) may now be transformed into its frequency form, which is the

inhomogeneous Helmholtz equation:

(
k2 +∇2

)
ϕ = q(x, ω), (2.4)

where k = ω/c0 is the acoustic wavenumber, and the solution of velocity potential must

exhibit outgoing wave behavior.
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2.3 Acoustic compactness

The acoustic energy produced by the sound source will behave differently depending on

the distance between the observer and an acoustic source. Therefore the acoustic field may

be separated into two regions, near field and far field. The acoustic compactness of the

source region itself is set by a dimensionless combination kl of the acoustic wavenumber

of radiated sound k = ω/c0 and the characteristic length of the source l. In the acoustic

near field where kl ≪ 1, the source dimension is smaller than the wavelength of the sound

it emits, therefore the acoustic source is considered compact and point-like, which can be

treated as a simple monopole source. In the acoustic far field where kl ≫ 1, the acoustic

source vibrates at a high frequency, which is considered a non-compact source. Similarly,

a scattering body is considered compact when its characteristic length is smaller than the

wavelengths of the sound it produces or with which it interacts.

2.4 Acoustic sources

Compact acoustic sources, whose acoustic wavelength is much greater than its feature

size (see §2.3), may be represented as a monopole, dipole or quadrupole, or higher-order

multipole, or as a combination of these sources. For example, a monopole source represents

a radially pulsating sphere in the limit of a vanishing radius, and the source strength is

uniform in all directions. The source distribution of a point monopole in the linear wave

equation in (2.3) is given by

q(x, t) = Q(t)δ(x), (2.5)

where the source strength is denoted by Q(t), and δ(x) represents the pulsating behavior.

For a unit-strength monopole, Q(t) = 1.

A point dipole is formed by two monopole sources of equal strength that are out of phase

and separated by a distance of less than an acoustic wavelength. In contrast to a single

monopole, there is no net introduction of fluid by a dipole, therefore a dipole is a weaker
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radiator of sound than a monopole. It is the net force on the fluid which causes energy to

be radiated in the form of sound waves. The source distribution of a point dipole in the

linear wave equation in (2.3) can be represented by

q(x, t) = div [f(t)δ(x)] =
∂

∂xj
[fi(t)δ(x)] , (2.6)

where f(t) is a time-dependent vector, and the index j runs over Cartesian coordinates xi,

xj .

A quadrupole source consists of two identical dipoles, with opposite phase and separated

by small distance. In the case of the quadrupole, there is no net flux of fluid and no net force

on the fluid, the fluctuating stress on the fluid that generates the sound waves. However,

since fluids do not support shear stresses well, quadrupoles are poor radiators of sound. The

source distribution of a point quadrupole in the linear wave equation in (2.3) is generally

in the form

q(x, t) =
∂2Tij
∂xi∂xj

(x, t), (2.7)

where Tij is the second-order stress tensor, and the indices i, j run over Cartesian coordi-

nates xi, xj .

2.5 Free-space Green’s function

2.5.1 Time-domain representation

The free-space Green’s function G(x,y, t − τ) is the particular solution of the linear

wave equation (2.3) generated by an impulsive unit point source δ(x− y)δ(t− τ), located

at source point x = y at time t = τ . Accordingly, the free-space Green’s function in time

domain is determined by

(
1

c20

∂2

∂t2
−∇2

)
G(x,y, t− τ) = δ(x− y)δ(t− τ), (2.8)
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where G(x,y, t− τ) = 0 for t < τ .

The acoustic solution of the linear wave equation for an impulsive point source at x and

at time t is [37]

ϕ(x, t) =
1

4π|x|δ
(
t− |x|

c0

)
, (2.9)

which indicates that the sound wave vanishes everywhere for t < 0 and exhibits outgoing

wave behavior.

Therefore, the solution for free-space Green’s function G(x,y, t− τ) in (2.8) is obtained

from (2.9) by replacing x by x− y and t by t− τ ,

G(x,y, t− τ) =
1

4π|x− y|δ
(
t− τ − |x− y|

c0

)
, (2.10)

which represents an impulsive, spherically-symmetric wave prapagating away from the

source at y at the speed of sound c0, and the wave amplitude decreases with increasing

observer-source distance |x− y|.

2.5.2 Frequency-domain representation

The free-space Green’s function Ĝ(x,y, ω) in frequency domain is the solution for the

Helmholtz equation (2.4) for a unit point source q(x, ω) = δ(x− y),

(
k2 +∇2

)
Ĝ(x,y, ω) = δ(x− y). (2.11)

Recalling the governing equation of the free-space Green’s function in the time domain

in (2.8), and applying the Fourier integral formula

δ(t− τ) =
1

2π

∫ ∞

−∞
e−iω(t−τ)dω, (2.12)
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(2.8) becomes

(
k2 +∇2

){∫ ∞

−∞
G(x,y, t− τ)eiωtdt

}
= −eiωτδ(x− y). (2.13)

It is then straightforward to determine

Ĝ(x,y, ω) = −
∫ ∞

−∞
G(x,y, t− τ)eiω(t−τ)dt, (2.14)

and the substitution of (2.10) into the integrand of (2.14) yields

Ĝ(x,y, ω) = − 1

4π|x− y|e
ik|x−y|. (2.15)

2.6 Reciprocal theorem

Solutions of the Helmholtz equation for point sources satisfy a reciprocal theorem, which

is a special case of a very general theorem of mechanics that was stated in the context of

acoustics by Lord Rayleigh [57].

Consider the two acoustic problems where sound is generated by two unit point sources

at x = xA and x = xB in the presence of a solid body S. Let the velocity potentials of the

resulting acoustic fields be denoted as Ĝ(x,xA, ω) and Ĝ(x,xB, ω), respectively, where

(
k2 +∇2

)
Ĝ(x,xA, ω) = δ(x− xA), (2.16)(

k2 +∇2
)
Ĝ(x,xB, ω) = δ(x− xB). (2.17)

The reciprocal theorem states that

Ĝ(xA,xB, ω) = Ĝ(xB,xA, ω). (2.18)

That is, the acoustic solution observed at xA produced by the point source at xB is equal

to the solution at xB produced by an equal point source at xA. This statement has a

14



simple proof, which may be found in Rayleigh [57, pp. 145-148] or in other reference texts

on acoustics [23, 37, 51].

2.7 Acoustic power and intensity

The acoustic power Π is the total acoustic energy radiated by a source or source distri-

bution, which is determined by the formula

Π =

∮
S
pvrdS =

∮
S

p2

ρ0c0
dS, (2.19)

where the integration is over the surface S of a large sphere of radius r centered on the

source region. The integral may be calculated easily if the pressure and velocity are known

to order 1/r on S, as the surface area is 4πr2. Therefore, the formula vr = p/ρ0c0 always

holds at large distances r from the center of the sphere (source region), where the wavefronts

may be locally regarded as planar.

The acoustic intensity I is defined as the acoustical energy carried by sound waves per

unit of area of the wavefront. For spherical waves on the surface of the large sphere of

radius r, the corresponding acoustic intensity I is

I = pvr =
p2

ρ0c0
. (2.20)

2.8 Vortex sound at low Mach numbers

2.8.1 Lighthill’s equation

The sound generated by flow-borne disturbance such as turbulence is termed aerody-

namic sound. The modern theory of aerodynamic sound was pioneered by Lighthill [46],

where in his study of sound generation by a turbulent nozzle flow, Lighthill transformed

the Navier-Stokes and continuity equations into an exact (i.e., no assumption is made),
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inhomogeneous wave equation [46],

(
1

c20

∂2

∂t2
−∇2

)
c20ρ

′ =
∂2Tij
∂xi∂xj

, (2.21)

where ρ′ is the fluid density fluctuation (ρ′ = ρ−ρ0), and c is the isentropic speed of sound.

Tij is the so-called Lighthill stress tensor described by

Tij = ρvivj +
[
(p− p0)− c20(ρ− ρ0)

]
δij − σij , (2.22)

which indicates that the sound generated by free turbulence is exactly equivalent to that

produced in the ideal, stationary fluid forced by a distribution of quadrupole sources.

2.8.2 Powell-Howe acoustic analogy

In the present work where the flow region is limited to low Mach numbers (M ≪ 1) and

large Reynolds numbers, i.e,

p− p0 − c20(ρ− ρ0) ≈ (p− p0)(1− c20/c
2) ≈ O(M 2 ), (2.23)

and viscous dissipation may be neglected. Therefore, Tij may be approximated by the

Reynolds stress term ρvivj .

By taking c = c0 and ρ = ρ0, the Lighthill’s equation may now be rearranged as

(
1

c20

∂2

∂t2
−∇2

)
c20ρ

′ = ρ0
∂2vivj
∂xi∂xj

. (2.24)

However, it is still challenging to use (2.24) directly due to the nonlinear Reynolds stress

term on the right hand side of the corresponding equation.

For the present vortex-sound problem at low Mach numbers, the Biot-Savart induction

formula relates the vorticity and velocity fields:

v(x, t) = curl

∫
ω(y, t)d3y

4π|x− y| , (2.25)
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where the integration over the entire spatial domain is implied.

The value of Lighthill’s quadrupole source distribution in (2.24) can be approximated

as

ρ0
∂2vivj
∂xi∂xj

= ρ0 div (ω × v), (2.26)

which is the principal source of sound at low Mach numbers. Substitution of (2.26) into

(2.24) yields

(
1

c20

∂2

∂t2
−∇2

)
c20ρ

′ = ρ0 div (ω × v). (2.27)

Howe [29] reformulated (2.27) by taking the total enthalpy,

B =

∫
dp

ρ
+

1

2
v2, (2.28)

as an independent acoustic variable to replace the pressure fluctuation term c20ρ
′ in (2.27)

to account for the role of vorticity in the production of sound.

The total enthalpy comes naturally from the Crocco’s form of the momentum equation

[37]

∂v

∂t
+ ω × v +∇B = −ν

(
curlω − 4

3
∇(div v)

)
, (2.29)

where the vector (ω × v) is termed the Lamb vector [44].

In irrotational flow Crocco’s equation (2.29) reduces to

∂v

∂t
+∇B = 0, (2.30)

which implies

B = −∂ϕ
∂t

in regions where ω = 0. (2.31)
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ϕ is the velocity potential that determines the whole motion in the irrotational regions of

the fluid. Therefore, B is constant in steady irrotational flow and may be represented by

B =
p

ρ0
(2.32)

if the mean flow is at rest in the acoustic far field.

Taking the time derivative of (2.28) and using Crocco’s equation (2.29) with (2.32) leads

to

1

ρ0

∂p

∂t
=
DB

Dt
, (2.33)

where the viscous correction is ignored at high Reynolds numbers and D
Dt denotes the total

derivative.

The governing equation of production of vortex sound at low Mach numbers (without

mean flow) is then further proposed by Howe in a simpler form [29],

(
1

c20

∂2

∂t2
−∇2

)
B = div(ω × v), (2.34)

where in the far field the acoustic pressure p(x, t) is given by the linearized approximation

p(x, t) = ρ0B(x, t) = −ρ0
∫∫∫

(ω × v)(y, τ) · ∂G(x,y, t− τ)

∂y
d3y dτ . (2.35)

Note that the formula in (2.27) was first proposed by Powell [56] and later elaborated as

(2.34) by Howe [29], which is also known as Powell-Howe acoustic analogy. A detailed

derivation of this expression may be found in [29].

The significance of the Powell-Howe result (2.35) is that the far-field acoustic pressure

can be predicted based on the vorticity distribution in the field and a Green’s function for,

say, a solid boundary, without the need to know the Reynolds stress as is represented in the

Lighthill framework. The Powell-Howe result is used in the next chapter to determine the

sound of vortex rings passing near an edge that is porous and/or elastic.
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Chapter 3

Acoustic scattering from

poroelastic edges

This chapter studies the sound generation of an acoustic source near a semi-infinite

edge with constant or varying parameters by analytical or numerical methods. In §3.1, the

sound of a vortex ring passing near a semi-infinite uniformly poroelastic edge is investigated

analytically. The vortex sound problem is solved by using Powell-Howe acoustic analogy

[36], in which a Green’s function approach is introduced to determine the time-dependent

acoustic pressure and directivity pattern in the acoustic far field. The Green’s functions

for different edge properties are solved separately, and scaling laws of vortex ring speed U

and the nearest vortex-edge distance L are established using the classical theory of vortex

rings. In §3.2, the acoustic scattering of a turbulent eddy near a semi-infinite edge with

linearly-graded porosity distribution is considered numerically. The model problem is solved

by adapting the Mathieu function collocation method of Colbrook & Priddin [14].

3.1 Semi-infinite edge with uniform properties

The contents of this section are outlined as follows. In §3.1.1, the acoustic problem of a

vortex ring interacts with the edge of a semi-infinite poroelastic plate at low Mach numbers
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is formulated. In §3.1.2, the Green’s function and the vorticity distribution and motion

of the vortex ring for a uniformly-porous rigid edge are solved by adapting the previous

analyses of Kambe et al. [41] and Jaworski & Peake. [39]. In §3.1.3, the Green’s function

and the vorticity distribution and motion of the vortex ring for an impermeable elastic edge

are solved in a similar manner as §3.1.2.

3.1.1 Model problem

Consider a rigid, semi-infinite poroelastic plate with negligible thickness that lies in

the region −∞ < x1, y1 ≤ 0, x2, y2 = 0, −∞ < x3, y3 < ∞ of the coincident Cartesian

coordinate systems {(x1, y1), (x2, y2), (x3, y3)}, as shown in figure 3.1. The poroelastic plate

is immersed in an unbounded fluid at rest at infinity. The present research studies the

acoustic emission by a vortex ring source passing near the edge of a poroelastic half plane.

The Mach number M , defined by U/c0, is assumed to be much smaller than unity, where

U is the characteristic speed of the vortex ring and c0 is the sound speed. In present work,

acoustic compactness requires l/λ ≪ 1, where l is the characteristic length of the vortex

ring and λ is the wavelength of the emitted sound. The source region containing the vortex

ring and the edge is therefore considered to be acoustically compact, where the vortex ring

is compact, the semi-infinite plate, however is non-compact.

The sound resulting from the vortex ring interaction with a semi-infinite edge may be

described by the Powell-Howe acoustic analogy introduced in §2.8, i.e.,

(
1

c20

∂2

∂t2
−∇2

)
p = ρ0 div (ω × v), (3.1)

which is a reformulation of Lighthill’s theory of aerodynamic sound [46]. Note that the

sound source term ρ0 div (ω× v) at low Mach number is directly related to the vorticity in

the flow field.

Equation (3.1) also admits a general solution in terms of a boundary integral,

p (x, t) = −ρ0
∫∫

(ω × v)(y, τ) · ∂G(x,y; t− τ)

∂y
dy dτ . (3.2)
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Figure 3.1: Schematic of the poroelastic half-plane and the coincident coordinate systems
for the compact vortex ring source y = (y1, y2, y3) and the observer at x = (x1, x2, x3).

Here p is the acoustic pressure, ρ0 is the mean fluid density, ω is the vorticity distribution

in an ideal fluid neglecting viscous dissipation, v is the vorticity convection velocity, and

G(x,y; t − τ) is the time-domain Green’s function. At sufficiently low Mach numbers,

G(x,y; t−τ) may be approximated by the compact Green’s function [29], which is described

in the following sections with different edge properties.

3.1.2 Porous edge

In this section, the acoustic emission of a vortex ring passing near a uniformly-porous

rigid edge is considered first, which is aim to verify the acoustic scaling and directivity results

of Jaworski & Peake [39] with the proposed vortex-ring approach introduced in Chapter 1.

In pursuit of an acoustic pressure prediction using (3.2), two unknown terms must be

determined. In §3.1.2.A, the Green’s function for a porous rigid edge is solved first. In

§3.1.2.B, the vorticity distribution and motion of the vortex ring is then determined using

the classical theory of vortex rings.
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A Green’s function for a porous edge

A Green’s function is now sought that produces the solution at distant point x =

(x1, x2, x3) due to an impulsive point source of unit strength at position y = (y1, y2, y3)

near the edge of a porous half plane (see figure 3.1). The Green’s function also must exhibit

outgoing wave behavior and satisfy [36, p. 39]

(
1

c2
∂2

∂t2
−∇2

)
Grp(x,y; t− τ) = δ(x− y)δ(t− τ), (3.3)

where the right-hand side represents the impulsive point source.

The calculation of the compact Green’s function in (3.3) may be greatly simplified by

application of the reciprocal theorem in (2.18), which implies that the positions of source

y and observer x may be interchanged in present model problem (cf. figure 3.1), i.e., the

mathematical setup is identical to finding the sound field observed at a near point y due to

a monopole at a distant point x. The problem thus converts to the solution for the Green’s

function G as a function of observer positions y close to the edge, which is a diffraction

problem that can be solved in the manner described, for example, by Crighton [19] or

Jaworski & Peake [39]. The linearity of (3.3) permits the solution to be written as

Grp(x,y; t) = Grp(y,x; t) = G0(y,x; t) +Gs(y,x; t), (3.4)

where G0(y,x; t) and Gs(y,x; t) are the time-domain velocity potentials for the incident

field and the scattered field, respectively. The time-domain Green’s function Grp(y,x; t) is

related to its Fourier transform Ĝrp(y,x; k) by

Grp(y,x; t) = − 1

2π

∫ +∞

−∞
Ĝrp(y,x; k)e

−iωtdω. (3.5)

It is convenient to decompose Ĝrp(y,x; k) into the linear sum Ĝrp(y,x; k) = Ĝ0(y,x; k)+

Ĝs(y,x; k). The expressions for Ĝ0(y,x; k) in (A.3) and Ĝs(y,x; k) in (A.6) are determined

in appendix A using the Wiener-Hopf analysis of Jaworski & Peake [39]. Application of the
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Fourier inversion formula (3.5) to these results yields the time-domain Green’s functions

G0(y,x; t) and Gs(y,x; t), where G0(y,x; t) may be expanded in a series form by following

the procedure of Kambe et al. [41]. The essential results from the reciprocal problem after

reverting to the original configuration are:

G0(y,x; t) =
1

4πx

(
δ(tr) +

x · y
c0x

Dtδ(tr) +
(x · y)2
2c20x

2
D2

t δ(tr) + . . .

)
, (3.6)

Gs(y,x; t) =
µn

2π
3
2 cm0

Φ(Y )
M(ψ, θ)

x
Dm

t δ(t∗), (3.7)

where

Dm
t δ(t) =

1

2π

∫ +∞

−∞
(−iω)me−iωtdω, Dt =

∂

∂t
, (3.8)

tr = t− x

c0
, t∗ = t− 1

c0
|x− y3k|, (3.9)

x = |x|, y = |y|, k = (0, 0, 1).

Here, Φ(Y ) = Y
1
2 sin θ

2 is the velocity potential about the edge, the projection of y onto

the (y1, y2)-plane, and Y = |Y |. The fractional derivative Dm
t is used as a convenient and

equivalent means of writing the inverse Fourier transform of the Green’s function solution

of the scattered sound field. The variables m and n are the exponents of the wavenumber

k and the dimensional porosity parameter µ = αHKR/R. In this parametric group, αH is

the open area fraction of the surface with pores of nominal radius R, and KR = 2KR/(πR),

where KR is the Rayleigh conductivity of the pore [36, 39]; the conditions that the surface

is weakly porous and has a pore feature size that is small relative to the acoustic wavelength

require α2
H ≪ 1 and kR ≪ 1, respectively. The directivity function M(ψ, θ) depends on

the angular position of the observer. Note that both M(ψ, θ) and the exponents m and n

vary on the dimensionless porosity parameter µ/k, and must be determined numerically in

general. The details are presented in appendix A and are further discussed in §4.

If G0(y,x; t) in (3.6) is substituted into (3.2), the first two terms of the right-hand

side of (3.6) contribute nothing to the sound field due to the vanishing integral around the
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half-plane surface, as has been shown previously by Powell [56]. Therefore the total Green’s

function Grp(y,x; t) = G0(y,x; t) + Gs(y,x; t) may be approximated to leading order by

Gs(y,x; t) only,

Grp(y,x; t) ≈
µn

2π
3
2 cm0

Φ(Y )
M(ψ, θ)

x
Dm

t δ(t∗), (3.10)

provided that the third term of G0(y,x; t) in (3.6) remains subdominant. The form

of the Green’s function in (3.10) obviates that ∂Grp(y,x; t)/∂y3 is indeed subdominant

to the magnitudes of the derivatives in other two directions, i.e., ∂Grp(y,x; t)/∂y1 and

∂Grp(y,x; t)/∂y2. Therefore, the gradient of the Green’s function with respect to y,

∂Grp(x,y; t)/∂y, can be approximated by the two-dimensional vector

∂Grp(y,x; t)

∂y
=

µn

2π
3
2 cm

M(ψ, θ)

x
Dtδ(t∗)

(
∂

∂y1
Φ(Y ),

∂

∂y2
Φ(Y ), 0

)
. (3.11)

Equation (3.11) may be reworked into a more useful form by introducing the stream

function Ψ(Y ),

Ψ(Y ) = −Y 1
2 cos

θ0
2
, (3.12)

which is related to the velocity potential Φ(Y ) by the Cauchy-Riemann equations,

∂

∂y1
Φ(Y ) =

∂

∂y2
Ψ(Y ),

∂

∂y2
Φ(Y ) = − ∂

∂y1
Ψ(Y ). (3.13)

Note that the confirmation of (3.12) to satisfy (3.13) can be found in appendix E, using the

velocity potential Ψ(Y ) and stream function Ψ(Y ) on this edge configuration.

According to Möhring’s transformation procedure [49], (3.11) can be rewritten as

∂Grp(y,x; t)

∂y
= ∇× (0, 0, Grp(y,x; t))

= ∇× [Ψ(Y )k]
µn

2π
3
2 cm0

M(ψ, θ)

x
Dm

t δ(t∗), (3.14)
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where k = (0, 0, 1). By the substitution of (3.14) into (3.2), the acoustic pressure may be

expressed as,

p (x, t) = −ρ0
∫∫

(0, 0, Grp(y,x; t)) · ∇ × (ω × v)(y, τ) dy dτ . (3.15)

The application of incompressible, inviscid vorticity equation [38, p. 158],

∂ω

∂t
+∇× (ω × v) = 0, (3.16)

and an integration by parts determines the final expression of the acoustic pressure in the

far field:

p(x, t) = ρ0Dt

∫∫
ω3(y, τ)F (x,Y )Dm

t δ(t∗ − τ)dydτ,

= ρ0D
m+1
t

∫
ω3(y, tr)F (x,Y )dy, (3.17)

where

F (x,Y ) =
µn

2π
3
2 cm0

M(ψ, θ)

x
Ψ(Y ). (3.18)

Note that t∗ has been replaced by tr = t− x/c0 in (3.17) for a compact turbulence source.

Specific details on the compact vortex ring source and its trajectory are described in the

following section.

B Vorticity distribution and vortex ring motion

Consider a thin-cored vortex ring, whose center moves in a plane perpendicular to the

y3 axis, as shown in figure 3.2. O is the coordinate origin located at the half-plane edge,

and L is the nearest distance of the vortex ring path to the edge. It is assumed that L is

larger than the vortex radius a such that the vortex does not collide with the edge. The

unit vector normal to the plane of the vortex ring lies in the (y1, y2)-plane, and the ξ axis

denotes the vortex path direction. The η axis is taken to be perpendicular to the ξ and y3
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Figure 3.2: Side view of the interaction between a semi-infinite porous plate and a vortex
ring convecting on a rectilinear path. The local coordinate system of the vortex ring is
illustrated on the right.

axes as illustrated, and the origin of the (ξ, η, y3) coordinate system is located at the vortex

ring centre. The vorticity of the vortex ring is assumed to be concentrated on a circle of

radius a with a small vortex core of radius σ, and σ/a ≪ 1. The vorticity components in

(ξ, η, y3)-system are therefore

(0,−Γδ(ξ)δ(ζ − a) sinϕ,Γδ(ξ)δ(ζ − a) cosϕ), (3.19)

where ζ =
√
η2 + y23, Γ is the fixed strength of the vortex ring, ϕ is the azimuthal angle

of the vortex center from the y3 axis, and ζ is the radial coordinate in the (η, y3)-plane.

This model setup is the same as Kambe et al. [41], which in this work permits parametric

comparisons against their analysis for an impermeable edge.

Equation (3.17) determines the sound produced by the vortex ring passing near an edge

provided that its strength and trajectory are known. Here it is assumed that the vortex

ring follows the rectilinear path shown in figure 3.2, which is justified on physical grounds
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in appendix C. Direct substitution of (3.19) into (3.17) yields

p
(
x, t+

x

c

)
= ρ0ΓD

m+1
t

∫ 2π

0
F (ζ = a, ξ = 0;C(t))a cosϕ dϕ, (3.20)

where C(t) represents the position of the vortex centre at time t, and the dependence of

F on x has been suppressed here for simplicity. Following the procedure by Kambe et al.

[41], F may be approximated by the two-term Taylor expansion with respect to η,

F (ζ = a, ξ = 0;C) ≈ F (C) +
∂

∂η
F (C)a cosϕ. (3.21)

Using (3.21), the integration in (3.20) produces

∫ 2π

0
Fa cosϕ dϕ = πa2

∂

∂η
F (C) =

πa2µn

2π
3
2 cm0

M(ψ, θ)

x
vξ(C), (3.22)

where vξ is the complex velocity of the flow in the ξ direction,

vξ =
∂

∂η
Ψ(C) =

∂

∂ξ
Φ(C). (3.23)

Thus, the acoustic pressure expression is

p

(
x, t+

x

c0

)
=
ρ0Γµ

n

2π
3
2 cm0

M(ψ, θ)

x
Dm+1

t [πa2vξ(C)]. (3.24)

Note that πa2vξ is the volume flux of the irrotational flow around the edge passing through

the vortex ring [37]. It is now clear that the temporal profile of the acoustic pressure

signal is proportional to a fractional rate of change of the volume flux through the vortex

ring that depends on m. The fractional acceleration of the flow through the vortex ring

Dm+1
t [πa2vξ(C)] must now be evaluated to furnish scaling estimates of the acoustic emission.

Recall that Dm+1
t vξ(C) = Dm

t [Dtvξ(C)], and the dimensionless form of Dtvξ(C) may be
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adapted directly from Kambe et al. [41] (see derivation in appendix F),

Dtvξ(C) =
1

4
UL− 3

2 g
(
t
)
, (3.25)

where t = Ut/L is the dimensionless time, and

g
(
t
)
= Y

− 3
2 sin

(
3

2
Θ− 2α

)
, (3.26)

Y =
Y

L
=
(
t
2
+ 1
) 1

2
, Θ = tan−1

(
t sinα∓ cosα

t cosα± sinα

)
. (3.27)

It is clear from (3.25) that g
(
t
)
is proportional to the acceleration of fluid through the

vortex ring. Here the time origin t = 0 denotes the time instant when the vortex ring is at

its nearest distance L to the edge.

Therefore, Dm+1
t

vξ(C) in (3.24) may now be expressed as

Dm+1
t

[vξ(C)] =
1

4
Um+1L(−m− 3

2
)Dm

t

[
g
(
t
)]
, (3.28)

and the substitution of (3.28), (3.26), and (3.27) into (3.24) yields the acoustic pressure,

p

(
x, t+

x

c0

)
=
ρ0Γa

2µnUm+1

8π
1
2 cm0 L

m+ 3
2

M(ψ, θ)

x
Dm

t

[
g
(
t
)]
. (3.29)

The undetermined exponents may be shown to be coupled on dimensional grounds, where

n is eliminated here using n+m = 1
2 . Also, the velocity U of a vortex ring is proportional

to its circulation Γ [44, p. 224]:

U =
Γ

4πa

(
ln

8a

σ
− 1

4

)
. (3.30)

From (3.29), the far-field acoustic pressure radiated by a vortex ring passing near a
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porous edge scales on

p ∼ Um+2L− 3
2
−m, (3.31)

and the corresponding acoustic power Π is

Π =
p2

ρ0c0
∝ UγL−υ, (3.32)

where γ = 2m+ 4 and υ = 2m+ 3.

3.1.3 Elastic edge

The acoustic emission of a vortex ring passing near an impermeable rigid edge is now

considered, which aims to validate the acoustic scaling and directivity results of Jaworski

& Peake [39] with the proposed vortex-ring approach introduced in Chapter 1.

Similarly, the two unknown terms in (3.2) are determined following the procedures in

§3.1.2. In §3.1.3.A, the Green’s function for an impermeable elastic edge is determined first.

In §3.1.3.B, the vorticity distribution and motion of the vortex ring are then determined

using the classical vortex ring theory. It is worth noting that the mathematical derivations in

§3.1.3.A and §3.1.3.B are only valid in the asymptotic limit kϵ−1/2 ≪ 1, as we only consider

the weakest radiated sound for the elastic edge noise problem identified by Jaworski & Peake

[39].

A Green’s function for an elastic edge (kϵ−1/2 ≪ 1)

The Green’s function for the acoustic field scattered by the elastic edge in time domain

can be obtained by substituting the frequency domain result (B.2) from appendix B into

(3.5),

Gs(x,y; t) =
1

2π
3
2 c

3
2
0

Φ(Y )
sin θ sinψ

ϵ
1
2x

D
3
2
t δ(t∗), (3.33)
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where Φ(Y ) = Y
1
2 sin θ

2 is the velocity potential about the edge, the projection of y onto the

(y1, y2)-plane, and Y = |Y |. This result is valid in the asymptotic limit kϵ−1/2 ≪ 1, where

ϵ is the intrinsic fluid loading parameter [18, 36, 39] that depends only on the properties

of the structure and fluid (i.e., is frequency independent). By inspection, the total field

Ge = G0+Gs for the impermeable-elastic case can also be approximated by Gs in Eq. (3.33):

Ge(x,y; t) =
1

2π
3
2 c

3
2

Φ(Y )
sin θ sinψ

ϵ
1
2x

D
3
2
t δ(t∗), (3.34)

such that the pressure observed in the acoustic far field is

p(x, t) = ρ0Dt

∫∫
ω3(y, τ)F (x,Y )D

3
2
t δ(t∗ − τ)dy dτ,

= ρ0D
5
2
t

∫
ω3(y, tr)F (x,Y )dy, (3.35)

where

F (x,Y ) =
1

2π
3
2 c

3
2

sin θ sinψ

ϵ
1
2x

Ψ(Y ). (3.36)

Note that t∗ has been replaced by tr = t − x/c in (3.17) for a compact turbulence source.

Specific details on the compact vortex ring source and its trajectory are described in the

following section.

B Vorticity distrbution and vortex ring motion (kϵ−1/2 ≪ 1)

Following the outline procedures by equations (3.19), (3.20), (3.21) and (3.23), the

acoustic pressure expression for the impermeable-elastic case is

p
(
x, t+

x

c

)
=

ρ0Γ

2π
3
2 c

3
2

sin θ sinψ

ϵ
1
2x

D
5
2
t [πa

2vξ(C)], (3.37)

which enables an explicit determination of the temporal profile of the according acoustic

pressure. The acoustic pressure is represented by the time derivative, of the (5/2)th order,
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of the volume flux πa2vξ through the vortex ring.

Recall that D
5
2
t vξ(C) = D

1
2
t [D

2
t vξ(C)], and D2

t vξ(C) may be derived in a dimensionless

form (see derivation in appendix F),

D2
t vξ(C) = −3

8
U2L− 5

2h
(
t
)
, (3.38)

where t = Ut/L is the dimensionless time, and

h
(
t
)
= Y

− 5
2 sin

(
5

2
Θ− 3α

)
, (3.39)

Y =
Y

L
=
(
t
2
+ 1
) 1

2
, Θ = tan−1

(
t sinα∓ cosα

t cosα± sinα

)
. (3.40)

Here the time origin t = 0 denotes the time instant when the vortex ring is at its nearest

distance L to the edge.

Therefore, D
5
2

t
vξ(C) in (3.37) may now be expressed as

D
5
2

t
[πa2vn(C)] = −3

8
πa2U

5
2L−3D

1
2

t

[
h
(
t
)]
, (3.41)

and the substitution of (3.41), (3.39), and (3.40) into (3.37) yields the acoustic pressure,

p

(
x, t+

x

c0

)
= −3a2ρ0ΓU

5
2

8π
1
2 c

3
2
0 L

3

sin θ sinψ

ϵ
1
2x

D
1
2

t

[
h
(
t
)]
. (3.42)

3.2 Semi-infinite edge with non-uniform properties

In this section, the acoustic scattering of a turbulent eddy near a semi-infinite edge with

non-uniform properties is considered. Due to the fundamental analytical challenge that the

traditional Wiener-Hopf approach is well-suited for problems with discontinuous boundary

condition but is unable to handle non-uniform edge conditions, we use a numerical approach

to solve the corresponding acoustic problem for non-uniform edge properties. Also, due
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to the technical challenge of modelling a semi-infinite plate in a numerical scheme using

finite-length elements, the acoustic problem of a turbulent eddy (i.e., quadrupole) acoustic

source near a finite plate setup is considered and presented in §3.2.1. This work employs

a novel Mathieu function collation method of Colbrook & Priddin [14] described briefly in

§3.2.2, which provides a general solution procedure for finite-length edge acoustic scattering

problem with arbitrary boundary conditions. Section 3.2.3 solves the acoustic problem with

particular kinematic boundary condition for a rigid porous edge.

3.2.1 Model problem

Consider the acoustic scattering problem of a quadrupole sound source close to the

edge of a finite graded-porosity plate that lies in the region −1 < x1, y1 ≤ +1, x2, y2 = 0,

−∞ < x3, y3 <∞ of the coincident Cartesian coordinate systems {(x1, y1), (x2, y2), (x3, y3)}

(see. figure 3.3), where lengths have been nondimensionalized by the semi-chord of the plate.

The scattered field is denoted by ϕ with suppressed time factor e−iωt satisfies the Helmholtz

equation

(
k2 +∇2

)
ϕ = 0. (3.43)

The velocity potential ϕ0 for a quadrupole sound source may be determined by

ϕ0(y1, y2) =
ik2

4r20
(y1 − y10)(y2 − y20)H

(1)
2 (kr0), (3.44)

where (y10 , y20) is the quadrupole source location, r0(y1, y2) =
√

(y1 − y10)
2 + (y2 − y20)

2

is the distance between the source and observer, and H
(1)
n are Hankel functions of the first

kind.

Note that large wavenumber k is used in current finite plate setup to minimize backscat-

tering effects from the leading edge [50], and furnish an indirect comparison against the

analytical semi-infinite plate setup.
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x2, y2
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Figure 3.3: Schematic of the finite graded-porous plate and the coincident coordinate sys-
tems for the source y = (y1, y2, y3) and the observer at x = (x1, x2, x3).

3.2.2 Mathieu function collocation method

The Mathieu function collocation method of Colbrook & Priddin [14] introduces elliptic

coordinates via y1 = cosh ν1 cos ν2, y2 = sinh ν1 sin ν2, where the appropriate domain be-

comes ν1 ≥ 0 and ν2 ∈ [0, π]. The Helmholtz equation (3.43) along |y1| ≥ 1, y2 = 0 and the

scattered field at infinity become



cosh (2ν1)−cos (2ν2)
2 k2 +∇2

ν1,ν2ϕ(ν1, ν2) = 0,

ϕ|ν2=0 = ϕ|ν2=π = 0,

limν1→∞ ν
1/2
1

(
∂

∂ν1
− ik

)
ϕ(ν1, ν2) = 0.

(3.45)

Separation of variables for solutions of the form V (ν1)W (ν2) leads to a regular Sturm-

Liouville eigenvalue problem:


W

′′
(ν2) + (λ− k2

2 cos (2ν2))W (ν2) = 0,

W (0) =W (π) = 0.

(3.46)
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The solutions of (3.46) are sine-elliptic functions, denoted by

sen(ν2) =
∞∑
l

B
(n)
l sin (lν2), (3.47)

where the Fourier series converges absolutely and uniformly on all compact sets of the

complex plane [53], and the coefficients B
(n)
l may be found via a simple approximation of

Galerkin’s method.

The corresponding V (ν1) with the Sommerfeld condition at infinity are given by the

Mathieu-Hankel functions

Hsen(ν1) = Jsen(ν1) + iYsen(ν1). (3.48)

These Mathieu-Hankel functions can be expanded in a series using Bessel functions [48, 53].

The full general solution of the acoustic scattering problem for any boundary condition

on the finite thin plate can be written as

ϕ(ν1, ν2) =

∞∑
n=1

ansen(ν2)Hsen(ν1), (3.49)

where an are unknown coefficients which must be determined by applying the appropriate

boundary condition along the plate.

The far-field directivity D(θ) may be directly computed from the expansion of those

Mathieu-Hankel functions (3.48). In the appropriate limit, ν2 becomes the polar angle θ,

and ν1 becomes cosh−1 r, which leads to

D(θ) =

√
2

kπ

∞∑
n=1

anB
(n)
1

Cn
exp

[
(2pn − 3)π

4
i

]
sen(θ). (3.50)
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3.2.3 Kinematic boundary condition

The kinematic boundary condition at a non-uniform porous finite thin plate requires

∂ϕ

∂y2
+
∂ϕ0
∂y2

= µ(y1)[ϕ](y1), (3.51)

where [ϕ](y1) = (ϕ(y1, 0
+, y3)−ϕ(y1, 0−, y3)) denotes the velocity potential difference across

the plate [28, 39]. Note that in §3.1, µ(y1) = µ = αHKR/R is a constant parameter that

permits a uniformly-porous edge condition. To achieve a non-uniformly porous condition

along the plate in current acoustic problem, it is straightforward to let µ vary along the

chord, i.e., µ(y1), which may be achieved through the variation of the pore aperture radius

R, or the variation of open area ratio αH , or a combination of varying both R and αH .

However, it is only the overall variation of µ(y1) that truly matters in the model. Thus, we

only let αH vary along the chord rather than both variations of αH and R, for simplicity.

The undetermined coefficient an is now determined in the expansion of (3.49) with the

particular kinematic boundary condition (3.51). The approximate value of coefficients an

is calculated by adopting a spectral collocation method [14], denoted by ãn.

Substitution of the general solution (3.49) truncates N terms into (3.51) yields,

N∑
n=1

ãnsen
(
cos−1 y1

) [
1− 2Hsen(0)µ(y1)

√
1− y21

]
+
√

1− y21
∂ϕ0
∂y2

= 0. (3.52)

Here ãn is evaluated at chosen Chebyshev points in Cartesian coordinates and equally-

spaced collocation points in elliptic coordinates [4, 59], which is determined by

y1 = cos

(
2i− 1

2N
π

)
, i = 1, ..., N. (3.53)

The approximated coefficients ãn are now evaluated by solving an N ×N linear system.
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Chapter 4

Results

4.1 Uniformly-porous rigid edge

The acoustic power scalings on the vortex ring velocity U and the nearest distance

of the vortex ring from the edge L depend on the value of m, which is a function of

the dimensionless porosity parameter µ/k. Note that m must be evaluated numerically in

general but may be determined analytically for special cases of low and high porosity limits.

Complementary numerical analysis in appendix A demonstrates that the edge is effectively

impermeable for µ/k < O(10−2), and achieves its high porosity limit for µ/k > O(10).

Acoustic results for these two special cases and for the general case of arbitrary porosity

value are provided in §4.1.1, 4.1.2, and 4.1.3, respectively. In §4.1.4, the experimental results

from Applied Research Laboratory (ARL) at the Pennsylvania State University are briefly

introduced.

4.1.1 Impermeable limit

The edge becomes effectively impermeable in the low porosity limit where µ/k is asymp-

totically small. By inspection of (A.9), it is easily found that m = 1
2 , n = 0, and
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M(ψ, θ) =
√
2 sin θ

2(sinψ)
1
2 . In this case, (3.29) and (3.32) become:

p

(
x, t+

x

c0

)
=

ρ0Γa
2U

3
2

4
√
2π

1
2 c

1
2
0 L

2

sin θ
2(sinψ)

1
2

x
D

1
2

t

[
g
(
t
)]
, (4.1)

Π ∝ U5L−4 sin2
θ

2
, (4.2)

which agree with the analytical solution of Kambe et al. [41] and recover the U5 scaling law

for radiated sound power and cardioid acoustic directivity of Ffowcs Williams & Hall [25].

Equation (4.1) obviates the acoustic pressure dependence on D
1
2

t

[
g
(
t
)]

in the high porosity

limit, i.e., is proportional to the time derivative of the 1
2th order of the volume flux through

the vortex ring, which may be determined by [47]:

D
1
2

t

[
g
(
t
)]

=

∫ t

−∞

ġ(s)

π(t− s)
1
2

ds, (4.3)

where ġ(s) represents the first time derivative of g(s).

Representative time histories of g
(
t
)
and ġ

(
t
)
are provided in figure 4.1 for five recti-

linear paths of the vortex ring past the porous edge, α = 0,−π/4,−π/2,−3π/4,−π. Figure

4.1 (top left) together with (4.3) indicates that the acoustic pressure for each path changes

rapidly near t = 0, where the vortex ring passes closest to the edge. Note in figure 4.1 (top

left) how the acoustic pressure amplitude is significantly affected in the impermeable rigid

edge by the vortex path angle α.

4.1.2 High-porosity limit

The edge becomes acoustically transparent in the high porosity limit of asymptotically

large µ/k values, where (A.9) provides m = 1, n = −1
2 , and M(ψ, θ) = sin θ sinψ. The

far-field acoustic pressure and acoustic power scaling behavior are:

p

(
x, t+

x

c0

)
=

ρ0Γa
2U2

8π
1
2 c0L

5
2µ

1
2

sin θ sinψ

x
Dt

[
g
(
t
)]
, (4.4)
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Figure 4.1: Time histories of acoustic pressure D
1
2

t

[
g
(
t
)]

(top left), acceleration of volumet-

ric flux through the vortex ring g
(
t
)
(top right) and ġ

(
t
)
(bottom center) for the imperme-

able rigid edge. Results are plotted for vortex path angles α = 0,−π/4,−π/2,−3π/4,−π
relative to the rigid edge. The heavy line corresponds to −π/2. D

1
2

t

[
g
(
t
)]

is the dimension-

less acoustic pressure and shows an intermediate behavior between that of g
(
t
)
and ġ

(
t
)
.
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Π ∝ U6L−5 sin2 θ, (4.5)

which recovers the U6 scaling law and the dipolar acoustic directivity sin2 θ by Jaworski

& Peake [39]. Equation (4.4) obviates that the acoustic pressure in the high-porosity limit

depends on Dt

[
g
(
t
)]
, i.e., is proportional to the acceleration of the fluid through the vortex

ring:

Dt

[
g
(
t
)]

≡ ġ
(
t
)
= −3

2
Y

− 5
2 sin

(
5

2
Θ− 3α

)
, (4.6)

which was determined by Chen & Jaworski [10].

Representative time histories of g
(
t
)
and ġ

(
t
)
are provided in figure 4.2 for five recti-

linear paths of the vortex ring past the porous edge, α = 0,−π/4,−π/2,−3π/4,−π. Figure

4.2 (right) together with (4.4) indicates that the acoustic pressure for each path changes

rapidly near t = 0, where the vortex ring passes closest to the edge. Note in figure 4.2

(right) how the acoustic pressure amplitude is weakly affected in the high-porosity limit by

the vortex path angle α. Also, the acoustic waveform in the high porosity limit described

by ġ
(
t
)
is symmetric (a ‘W’ shape) about t = 0 for a vortex ring passing perpendicular to

the plane of the edge, α = −π/2.

4.1.3 General porosity case

The acoustic pressure solution (3.17) for arbitrary values of the dimensionless porosity

parameter µ/k requires numerical evaluation. We now consider the case of arbitrary porosity

effects, where the acoustic pressure is strictly determined by (3.29). The waveform of the

acoustic pressure is directly determined by fractional derivative Dm
t

[
g
(
t
)]
, which can be

evaluated in the Caputo sense [55]:

Dm
t

[
g
(
t
)]

=
1

2π

∫ +∞

−∞
(−iω)mĝ(ω)e−iωtdω,

=
1

G(1−m)

∫ t

−∞

ġ(s)

(t− s)m
ds. (4.7)
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Figure 4.2: Time histories of volumetric flux through the vortex ring g
(
t
)
(left) and asso-

ciated acoustic pressure ġ
(
t
)
(right) in the limit of high porosity, µ/k ≫ 1. Results are

plotted for vortex path angles α = 0,−π/4,−π/2,−3π/4,−π relative to the porous edge.
The heavy line corresponds to −π/2.

The full expression for ġ(s) is given in appendix B, and G is the well-known gamma func-

tion. The value of parameter m for the leading solution term follows (A.11) and varies on

the dimensionless porosity parameter µ/k, and this dependence is plotted in figure A.1 in

appendix A.

Figure 4.3 plots the acoustic directivity and the corresponding time-dependent pressure

waveforms of the noise emitted by a vortex ring passing near a semi-infinite porous edge,

as a function of the dimensionless porosity parameter. appendix A details the evaluation of

M(ψ, θ) for ψ = π/2. The transition of acoustic directivity from a cardioid to a dipole occurs

smoothly with increasing values of the porosity parameter. Figure 4.3(b) illustrates how the

asymmetric pressure waveform for impermeable edges found in §4.1.1 becomes increasingly

symmetric as the porosity parameter increases, where the direction of the vortex ring relative

to the porous edge affects the waveform shape.

The dependence of the acoustic power scalings γ and υ on µ/k, readily obtained from

(3.32) and (A.11), are illustrated in figure 4.4. Both exponent values vary monotonically be-

tween the formal asymptotic limits of low porosity (µ/k ≪ 1) and high porosity (µ/k ≫ 1).

Figure 4.4 indicates that these limits may be refined by numerical computation, where the
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Figure 4.3: Acoustic directivity and corresponding acoustic pressure waveforms due to a
vortex ring passing near a semi-infinite porous edge with various values and limits of the
dimensionless porosity parameter µ/k. The vortex path angle is α = −π/2. (a) Acoustic
pressure directivity; (b) far-field pressure waveforms represented by Dm

t

[
g
(
t
)]

in (4.7).

edge is effectively impermeable for µ/k < O(10−2) and the high-porosity limit is achieved

for µ/k > O(10).

4.1.4 Comparison with experimental measurements from ARL

In this section, we briefly review the associated experiments conducted in ARL Penn

State regarding the acoustic measurements of a vortex ring passing near an impermeable

edge or a uniformly-porous rigid edge. A schematic of the experimental setup is presented in

figure 4.5. A complete description of the experimental methods and measurement results to

data are found in Yoas [60] where results are reproduced here with permission. The principal

scaling and directivity results for a rigid, uniformly-porous edge are herein compared against

out theoretical model predictions.

A Acoustic power scaling on vortex ring velocity

First, the effects of acoustic radiation power scaling with characteristic velocity U was

measured and processed, where the comparison against present research is presented in

figure 4.6. For the rigid impermeable edge (µ/k = 0), measured acoustic power scales
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Figure 4.4: Dependence of scaling exponents γ and υ on dimensionless porosity parameter
µ/k. Acoustic power is proportional to UγL−υ.
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2.4.2.2 Turbulence Interacting With Non-Compact Rigid Impermeable Plate

Since the theoretical predictions and experimental findings for this condition have largely

been discussed in Chapter 1 a brief overview will be presented here. Theoretical predictions

for aerodynamic noise generated by turbulent fluid motion interacting with a non-compact

body were first made by Ffowcs-Williams and Hall [2]. This condition is observed in Figure

2.3 a). Here, as mentioned in Chapter 1, the sound power scales as U5L−4. Furthermore, it

has been shown in the aforementioned section that the acoustic directivity for this condition

is in the form of a sin2(θ/2) or cardioid. This radiation directivity is shown in Figure 2.4.

The amplification of the noise from the vortex passing near the non-compact rigid plate

arises from the rigid impermeable plate baffling the near field of the edge dipole.

Figure 2.3: Schematic of a compact acoustic source, in the form of a vortex ring convecting
near a A) rigid impermeable plate and B) non-compact rigid porous plate.

Figure 4.5: Schematic of a vortex ring convecting near a A) rigid impermeable plate and
B) semi-infinite rigid plate with uniform porosity. Figure reproduced from Yoas [60, figure
2.3] with permission.

on the vortex ring speed as U4.98, in close agreement with the theoretical prediction U5.

As the porosity porosity parameter increases to µ/k = 0.49, the acoustic power scales on

U5.32, as compared to the predicted U5.39 in present work (cf. figure 4.4). For the high-

porosity case (µ/k = 58.9), the measured acoustic power scaling scales on U5.99, which is

also in excellent agreement with the theoretical prediction of U6. It is worth noting that

the theoretical acoustic power scaling for intermediate value µ/k = 3.10 is overpredicted

as U5.94 compared to the measured U5.72, which needs further investigation. However, it is

noted in this region that small changes to µ/k lead to large changes in the scaling exponent.

B Acoustic directivity

Second, the comparison of acoustic directivity between theoretical prediction in the

present work and experimental measurements for the rigid impermeable edge and highly-

porous edge are shown in figures 4.7 and 4.8, respectively. The directivity measurements
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Figure 4.4: Comparison of predicted values of sound power law exponent n̄ to measurement.
The shaded regions blue, green, and red represent the µ/k ranges for µ/k = 0.49, µ/k =
3.10, and µ/k = 58.9, respectively. The symbols indicate a) © µ/k = 0 and n̄ = 4.94, b) �
µ/k = 0.49 and n̄ = 5.32, c) 5 µ/k = 3.10 and n̄ = 5.70, and d) � µ/k = 58.9 and n̄ = 5.99.

Figure 4.6: Comparison of predicted values of sound power law exponent n (solid line) to
measurement (four markers with various symbols). The shaded regions blue, green, and
red represent the µ/k ranges for µ/k = 0.49, µ/k = 3.10, µ/k = 58.9, respectively. The
symbols indicate a) circle: µ/k = 0 and n = 4.98, b) diamond: µ/k = 0.49 and n = 5.32, c)
triangle: µ/k = 3.10 and n = 5.72, d) square: µ/k = 58.9 and n = 5.99. Figure reproduced
from Yoas [60, figure 4.4] with permission.
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4.4 Acoustic Directivity

An overview of the directivity β(θ) of the vortex ring / plate source interaction for the plates

tested will now be discussed. These results are shown in Figure 4.5. The radial distance

in the polar plots represent (∆pi/U
n̄/2) normalized by the maximum at each ensembled-

averaged condition. For Figure 4.5 a) and d), the directivity is known as sin(θ/2) and

sin(θ), respectively. The β(θ) for intermediate cases in b) and c), were predicted numerically

by collaborators Dr. Justin Jaworski and Huansheng Chen at µ/k = 0.46 and 3.55 for

experimental mean values of µ/k = 0.49 and 3.10, respectively.

b)a)

c) d)

Figure 4.5: Normalized directivity (∆pi/U
n̄/2) versus θ. For (a) µ/k = 0, where ©, �, �,

4, O are 39 m/s, 51 m/s, 62 m/s, 72 m/s, and 81 m/s, respectively. For b) µ/k = 0.49,
where ©, �, �, 4, O, unfilled �, and unfilled � are 45 m/s, 50 m/s, 59 m/s, 66 m/s, 74
m/s, 79 m/s, and 86 m/s respectively. For c) µ/k = 3.10, where ©, �, �, 4, O, unfilled �,
and unfilled �, and unfilled . are 41 m/s, 49 m/s, 57 m/s, 62 m/s, 66 m/s, 73 m/s, 79 m/s,
and 83 m/s respectively. For d) µ/k = 58.9, where ©, �, �, 4, O, unfilled �, and unfilled
� are 54 m/s, 59 m/s, 65 m/s, 71 m/s, 78 m/s, 81 m/s, and 86 m/s respectively. The solid
lines represent the theoretical directivity for each case.

Directivity measurements for the rigid impermeable plate are shown in Figure 4.5 a). The

baseline case is consistent with previous findings [2;11], and predictions for porous plates [33;34;1]

agree well with our measurements. The cardioid directivity, as sin(θ/2), shows that the

impermeable plate effectively baffles the directivity of the source interaction at ±170◦.

Figure 4.7: Impermeable rigid edge (µ/k = 0): measured normalized acoustic directivity
versus varying observation angle θ ∈ (−180◦, 180◦) at different vortex ring speed. The solid
line represents the cardioid pressure directivity sin θ

2 in (4.2). Figure reproduced from Yoas
[60, figure 4.5 (a)] with permission.

of both two edge cases match well with their theoretical predictions in §§4.1.1 and 4.1.2.

Additional acoustic directivity measurements at different dimensionless porosity parameter

values (µ/k) are found in Yoas [60].

C Acoustic power scaling on vortex-edge distance

Third, the effect of acoustic power scaling with offset distance L between the vortex ring

path and the edge is now discussed. Table 4.1 shows the acoustic power scaling exponents m

at difference observation angles θ. For the impermeable edge (µ/k = 0), the acoustic power

exponent averaged across all angles shown in table 4.1(a) is m = −4.04 (i.e., L−4.04), which

agrees closely with the predicted L−4 in (4.2). For the highly-porous edge (µ/k = 58.9), the

averaged acoustic power across all angles in table 4.1(b) scales as m = −4.94 (i.e., L−4.94),

which is also close to the theoretical prediction of L−5 in (4.5). The reader might notice

that different observation angles are selected for the calculation of the averaged acoustic

power scaling exponent m, which is due to the fact that the radiated noise decreases at

angles close to the nulls. Thus, only data points with high acoustic signal-to-noise ratios

are used.
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4.4 Acoustic Directivity

An overview of the directivity β(θ) of the vortex ring / plate source interaction for the plates

tested will now be discussed. These results are shown in Figure 4.5. The radial distance

in the polar plots represent (∆pi/U
n̄/2) normalized by the maximum at each ensembled-

averaged condition. For Figure 4.5 a) and d), the directivity is known as sin(θ/2) and

sin(θ), respectively. The β(θ) for intermediate cases in b) and c), were predicted numerically

by collaborators Dr. Justin Jaworski and Huansheng Chen at µ/k = 0.46 and 3.55 for

experimental mean values of µ/k = 0.49 and 3.10, respectively.

b)a)

c) d)

Figure 4.5: Normalized directivity (∆pi/U
n̄/2) versus θ. For (a) µ/k = 0, where ©, �, �,

4, O are 39 m/s, 51 m/s, 62 m/s, 72 m/s, and 81 m/s, respectively. For b) µ/k = 0.49,
where ©, �, �, 4, O, unfilled �, and unfilled � are 45 m/s, 50 m/s, 59 m/s, 66 m/s, 74
m/s, 79 m/s, and 86 m/s respectively. For c) µ/k = 3.10, where ©, �, �, 4, O, unfilled �,
and unfilled �, and unfilled . are 41 m/s, 49 m/s, 57 m/s, 62 m/s, 66 m/s, 73 m/s, 79 m/s,
and 83 m/s respectively. For d) µ/k = 58.9, where ©, �, �, 4, O, unfilled �, and unfilled
� are 54 m/s, 59 m/s, 65 m/s, 71 m/s, 78 m/s, 81 m/s, and 86 m/s respectively. The solid
lines represent the theoretical directivity for each case.

Directivity measurements for the rigid impermeable plate are shown in Figure 4.5 a). The

baseline case is consistent with previous findings [2;11], and predictions for porous plates [33;34;1]

agree well with our measurements. The cardioid directivity, as sin(θ/2), shows that the

impermeable plate effectively baffles the directivity of the source interaction at ±170◦.

Figure 4.8: Highly-porous edge (µ/k = 58.9): measured normalized acoustic directivity
versus varying observation angle θ ∈ (−180◦, 180◦) at different vortex ring speed. The solid
line represents the predicted dipolar pressure directivity sin θ in (4.5). Figure reproduced
from Yoas [60, figure 4.5 (d)] with permission.

Table 4.1: Radiated acoustic power scaling as a function of offset distance L with selected
varying observation angle θ: (a) mavg = −4.04 and (b) mavg = −4.94. (Yoas [60, table 4.2])

(a) Impermeable edge (µ/k = 0)

θ m

-170 -4.21
-130 -3.92
130 -3.97
170 -4.04

(b) Highly-porous edge (µ/k = 58.9)

θ m

-100 -4.88
-70 -4.93
70 -5.00
100 -4.96
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D Temporal profile of acoustic pressure

Last, the results for the dimensionless waveforms of acoustic pressure in time are now

discussed and compared. The temporal acoustic pressure waveform is estimated from mi-

crophone measurements using the following equations:

pi(t) =
1

4πri
Di(t−

ri
c
)β(θi), (4.8)

Di(t) =
4πri
β(θi)

pi

(
t+

ri
c

)
, (4.9)

Davg(t) =
1

Nmic
ΣNmic
i=1 Di(t), (4.10)

D = Davg(t)/U
n/2, (4.11)

where 1/4πri accounts for spherical propagation of the sound wave, Di(t−ri/c) is the acoutic

source strength, and β(θi) is the directivity pattern of the acoustic pressure (sin(θ/2) for a

rigid impermeable edge, sin θ for a highly-porous edge). The subscripts i refers to different

angular position of the microphone. Note that the temporal pressure waveforms at different

values of dimensionless porosity parameter µ/k in present work are determined by (4.7),

which is different from the nondimensionalization process in experiments using (4.11). Thus,

the shapes of temporal pressure waveforms for different porosity parameter values is the

primary concern here.

Figure 4.9 shows the temporal pressure waveform for the rigid impermeable edge (µ/k =

0). The acoustic pressure increases monotonically with time and reaches the peak at time

τ = 0 due to the strong vortex-edge interaction as the vortex ring approaches the edge. After

the edge encounter, the pressure decays with time as the vortex ring moves away from the

edge. The waveforms elongate with decreasing vortex ring speed, which may be associated

to the longer interaction time between the vortex ring and edge. The source waveforms at

different vortex ring speeds overlap into a shape that agrees with the theoretical prediction

of the temporal acoustic pressure profile in figure 4.3.

Figure 4.10 shows the temporal pressure waveform for the highly-porous edge (µ/k =

58.9). The acoustic pressure increases monotonically with time and reaches the peak at
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Figure 4.7: Nondimensionalized source waveforms, D, versus nondimensionalized time, τ for
(a) µ/k = 0, (b) µ/k = 0.49, (c) µ/k = 3.10, and (d) µ/k = 58.9. Line color and type
indicate vortex ring speed shown in legends.

Figure 4.9: Impermeable rigid edge (µ/k = 0): measured dimensionless pressure waveforms
D at different vortex ring speed. Figure reproduced from Yoas [60, figure 4.7 (a)] with
permission.

time τ = 0 due to the strong vortex-edge interaction as the vortex ring approaches the

edge. After the edge encounters, the pressure decays decays with time as vortex ring moves

far away from the edge. Similar to the results in figure 4.9, elongated waveforms are also

observed at smaller vortex ring speeds due to the longer interaction time between the vortex

ring and edge. It is worth noting that the pressure waveforms at different vortex ring speeds

overlap into a ‘W’ shape, which agree with the theoretical prediction of temporal acoustic

pressure profile in figure 4.3.

4.2 Impermeable elastic edge

Similarly, this section seeks to find the acoustic power scalings on the vortex ring velocity

U and the nearest distance of the vortex ring from an impermeable elastic edge L, which is

valid for small k in the sense that kϵ−1/2 ≪ 1. Acoustic results for this special asymptotic

limit are provided in the following section.
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Figure 4.7: Nondimensionalized source waveforms, D, versus nondimensionalized time, τ for
(a) µ/k = 0, (b) µ/k = 0.49, (c) µ/k = 3.10, and (d) µ/k = 58.9. Line color and type
indicate vortex ring speed shown in legends.

Figure 4.10: Highly-porous edge (µ/k = 58.9): measured dimensionless pressure waveforms
D at different vortex ring speed. Figure reproduced from Yoas [60, figure 4.7 (d)] with
permission.

4.2.1 Asymptotic limit kϵ−1/2 ≪ 1

The scaling law and directivity of radiated acoustic power for a vortex ring passing

near an impermeable elastic edge are now determined. From (3.30), it is a straightforward

matter to find that the corresponding far-field acoustic pressure radiated by a vortex ring

passing near an impermeable-elastic edge (kϵ−1/2 ≪ 1) becomes like

p ∝ U
7
2L−3, (4.12)

and the corresponding acoustic power Π is

Π =
p2

ρ0c0
∝ U7L−6. (4.13)

The directivity has the same sin θ dependence as that of the edge case with high porosity

identified in (4.5).

As is shown in (3.41), the temporal profile of the acoustic pressure is represented by

D
5
2

t
vξ(C), which has been rearranged in the form of D

1
2

t

[
m
(
t
)]
. The purpose of this refor-
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mulation is that we may now use the definition of the (1/2)th derivative of m
(
t
)
directly,

D
1
2

t

[
h
(
t
)]

=
1

2π

∫ +∞

−∞
(−iω)

1
2 ĥ(ω)e−iωtdω =

∫ t

−∞

ḣ(s)

[π(t− s)]
1
2

ds, (4.14)

where the derivation can be found in [47]. This relation was previously adapted by Kambe

et al. [41] for the acoustic problem of a rigid edge interacts with a vortex ring. Note that

(4.14) may also be derived from (4.7) when m = 1/2.

Representative time histories of D
1
2

t

[
h
(
t
)]
, h
(
t
)
and ḣ

(
t
)
are provided in figure 4.11 for

five rectilinear paths of the vortex ring past the porous edges, α = 0,−π/4,−π/2,−3π/4,−π.

Figure 4.11 (top left) together with (3.42) indicates that the acoustic pressure for each path

changes rapidly near t = 0, where the vortex ring passes closest to the edge. Note in

figure 4.11 (top left) how the acoustic pressure amplitude is weakly affected in the given

asymptotic limit by the vortex path angle α.

It is worth noting that Kambe et al. [41] identified a symmetric acoustic pressure signal

(proportional to D
1
2

t

[
h
(
t
)]
) for a rigid, impermeable edge when α = 0. However, the

temporal curves of acoustic pressure profile shown in figure 4.2 (left) and 4.11 (top left)

show that symmetric pressure signals occur for vortex path angles α = −π/2 and α = −π

for the high-porosity case and the specific asymptotic limit of the elastic case, respectively.

4.3 Semi-infinite edge with non-uniform properties

In this section, we discuss the results of present edge-noise problem with non-uniform

edge conditions. A special case with uniform-porosity is first considered numerically and

compared against previous analytical results to furnish a numerical verification in section

4.3.1. Section 4.3.2 discusses the effects of non-uniform porosity on the corresponding

acoustic results.
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Figure 4.11: Time histories of acoustic pressure D
1
2

t

[
h
(
t
)]

(top left), acceleration of volu-

metric flux through the vortex ring h
(
t
)
(top right) and ḣ

(
t
)
(bottom center) in the limit

of kϵ−1/2 ≪ 1. Results are plotted for vortex path angles α = 0,−π/4,−π/2,−3π/4,−π
relative to the porous edge. The heavy line corresponds to −π/2. D

1
2

t

[
h
(
t
)]

is the dimen-

sionless acoustic pressure and shows an intermediate behavior between that of h
(
t
)
and

ḣ
(
t
)
.
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Table 4.2: Different values of porosity µ/k calculated from different values of fractional
open area αH and wavenumber k, and a constant pore radius R.

k R αH µ/k

100 0.001 0.005π 0.2

100 0.001 0.025π 1

100 0.001 0.125π 5

Figure 4.12: Comparison of acoustic directivity for analytical solution based on Wiener-
Hopf technique and numerical solution based on Mathieu function collocation method with
various values and limits of the dimensionless porosity parameter µ/k.

4.3.1 Numerical verification for uniformly-porous rigid edge

In this section, we explore the numerical performance of the Mathieu function collocation

method with constant porosity parameter µ/k, and compared the numerical results with

the theoretical predictions in §4.1.

Figure 4.12 shows the comparison of acoustic directivity for the analytical results in

figure 4.3 and the Mathieu function collocation method, where different values of porosity

parameter µ/k are used and shown in table 4.2. The source location is fixed at (1, 0.0001)

near the edge of the plate. To guarantee a non-compact (i.e., localized) source region near

the trailing edge of the plate (to minimize the effect of the leading edge), the wavenumber

k is set to 100 and the radius of the pore is set to 0.001.
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Table 4.3: Averaged values of graded porosity µ/k calculated from different values of frac-
tional open area at trailing edge αT and constant pore radius R and wavenumber k.

k R αL αT (µ/k)avg

100 0.001 0 0.005π 0.1

100 0.001 0 0.025π 0.5

100 0.001 0 0.125π 2.5

4.3.2 Graded porous rigid edge

This section investigates the effect of the nonuniform distributions of porosity on trailing-

edge noise. Graded porosity along a flat plate is now considered through the mathematical

expression

αH(y1) = αL +
(αT − αL)

2
(x+ 1), (4.15)

where αL and αT are the open area ratios at the leading and trailing edge, respectively.

We consider a graded porosity distribution along the plate where porosity increases linearly

from the leading edge to the trailing edge, where αL ≤ αT hold for all cases. Hold fixed

are the wavenumber k, source location, and dimensionless pore radius are used as that in

§4.3.1 unless otherwise specified. Consider three nonuniform cases with the same open area

ratio at the leading edge αL = 0, and with three different open area ratio at the trailing

edge αT = 0.005π, 0.025π and 0.125π, the averaged values of the porosity distribution value

along the plate may also be calculated, and are indicated in table 4.3. The graded porosity

cases have the same αT as that of the uniform cases to furnish a direct comparison.

Figure 4.13 plots and compares the far-field acoustic directivities with different values of

porosity parameter µ/k between the uniform and nonuniform (graded) porosity cases at high

frequency (k = 100), where the backscattering effects from the leading edge may be largely

minimized, and the plate is considered to be non-compact. First, figure 4.13 shows that

the far-field acoustic directivity magnitude decreases from low porosity to high porosity for

the uniform and graded porosity cases, respectively, which validates the effects of porosity
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Figure 4.13: Comparison of the acoustic pressure field (not normalized) for uniformly poros-
ity and nonuniform porosity cases, where the nonuniform cases consider graded porosity
distribution along the plate with the same open area ratios at the trailing edge αT as the
uniform case

in noise reduction. Second, figure 4.13 also shows that the far-field acoustic directivity

patterns for uniform and graded porosity cases overlap at the same porosity parameter µ/k

at the trailing edge, regardless of whether the leading edge of the plate has zero porosity

or not, which indicates that only the local porosity parameter value at the trailing edge

dominates the acoustic directivity. It is worth noting that the acoustic directivity pattern

becomes more modulated at the low porosity value for the graded porosity case when the

leading edge is rigid (αL = 0), as compared to the uniform porosity case where the leading

edge has the same porosity value as trailing edge (αL = αT ). This modulated behavior of

acoustic directivity may be due to backscattering effects [50] from the rigid leading edge,

which still exist at high frequency but may be mitigated by increasing the porosity at the

leading edge, as shown in figure 4.13.

Figure 4.14 plots and compares the far-field acoustic directivities with different values

of porosity parameter µ/k between two different frequency regimes, k = 20 and k = 100.

Similar to the case with k = 100, the far-field acoustic directivity magnitude at k = 20

decreases from low porosity to high porosity. For the acoustic directivity results at k = 20,

the cardioid or dipolar shape holds at low or high dimensionless porosity parameter µ/k, thus
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Figure 4.14: Comparison of unnormalized acoustic directivity for the graded porosity cases
with different values of dimensionless porosity parameter µ/k at k = 20 and k = 100

the plate is still considered to be semi-infinite. It is also shown that the acoustic directivity

patterns still overlap at medium or high porosity parameter value µ/k at a relatively smaller

frequency (k = 20). However, increased modulation of the acoustic directivity is observed

at k = 20 at small porosity parameter value (µ/k) compared to the result at k = 100.

In all, the present verification of the numerical scheme of Colbrook & Priddin [14] using

a finite-length plate in the appropriate parametric limits of a semi-infinite edge support the

further exploration of realistic porosity designs for target noise reduction and/or directivity.
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Chapter 5

Conclusions

An analytical framework is developed in the time domain to estimate the sound in the

acoustic far-field resulting from a vortex ring passing near a rigid-porous or an impermeable-

elastic edge with uniform properties. We adapt the work of Kambe et al. [41] for an

impermeable-rigid edge condition, which permits a parametric check and direct comparisons

on this analysis of different edge conditions. The time-domain Green’s functions for the

porous and elastic cases are developed in this work by extending the vortex-ring analysis

procedure by Kambe et al. [41] and integrating with it the asymptotic results for turbulence

edge scattering for poroelastic plates by Jaworski & Peake [39].

In contrast to the U5 acoustic power scaling law and cardioid directivity for turbulence

and vortex sources near a rigid half plane, the present analysis identifies a U6 scaling in

a highly-porosity limit (µ/k ≫ 1) and a U7 scaling for an elastic case under a specific

limit of fluid loading condition (kϵ−1/2 ≪ 1) in agreement with the scattering analysis for

poroelastic edges by Jaworski & Peak [39]. Both cases yield a dipolar directivity of acoustic

pressure, sin θ0. Furthermore, new scalings on the minimum distance of the vortex ring from

the edges are established, where L−5 and L−6 dependencies occur for the porous and elastic

cases, respectively. The time-dependent component of the scattered field depends strongly

on the orientation of the vortex path relative to the edge, where the particular impermeable,

porous, and elastic cases examined each yield symmetric waveforms along different vortex-
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ring paths. The time-dependent waveforms and accompanying scaling trends of acoustic

power on both the vortex ring speed U and offset distance from the edge L establish a basis

for experimental validation of poroelastic-edge noise suppression in particular parametric

limits.

The acoustic emission by a turbulent eddy source near a semi-infinite edge with graded

porosity is then studied numerically using Mathieu function collocation approach of Col-

brook & Priddin [14] adapted for the current trailing-edge noise model problem. We compare

the numerical results of the acoustic directivity with the analytical predictions of vortex-edge

model problem, and find close agreement across different values of dimensionless porosity

parameter µ/k, in addition to the modulated directivity pattern at low porosity (small µ/k)

that are expected by the backscattering effect by the plate leading edge. Furthermore, we

study the effects of a graded porosity distribution on the acoustic directivity, where the

graded porosity is modeled in the format of increasing porosity from the plate leading edge

to the trailing edge. We compare the acoustic directivity results with that of uniform poros-

ity cases and find no significant difference at high frequency (k = 100), as only the local

porosity parameter value at the trailing edge influences the acoustic results. This finding

holds even at relatively-low frequency (k = 20) for the edges with medium to high average

porosity parameter values across the chord. However, increased modulation of the acoustic

directivity pattern occurs at k = 20 for the edge with a lower porosity average value com-

pared to that at k = 100, which is likely due to the increasing strong backscattering effect

of the leading edge.
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Appendix A

Green’s function for a

uniformly-porous edge

Application of the Fourier inversion formula (3.5) to (3.3) yields

(
∇2 + k2

)
Ĝrp(x,y; k) = δ(x− y), (A.1)

where k = ω/c0 is the wavenumber and ω is the angular frequency. x = (x1, x2, x3) and

y = (y1, y2, y3) represent the positions of the observer and the source, respectively.

By appeal to the reciprocal theorem [57], the positions of observer and source may

be interchanged without modifying the Green’s function, i.e., Ĝrp(x,y; k) = Ĝrp(y,x; k).

Therefore, the Green’s function may be expressed as:

Ĝrp(x,y; k) = Ĝ0(y,x; k) + Ĝs(y,x; k), (A.2)

where Ĝ0(y,x; k) is the incident spherical wave generated by point source x in free space,

Ĝ0(y,x; k) = − 1

4π|x− y|e
ik|x−y|, (A.3)

and Ĝs(x,y; k) is the scattered solution due to the interaction of the incident field Ĝ0 and
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the solid body (edge). At large distances of the source from the edge, where x = |x| → ∞,

Ĝ0 can be expressed asymptotically as

Ĝ0(x,y; k) ∼ A exp[−ik(x̂1y1 + x̂2y2)], (A.4)

where

A = − 1

4πx
exp(ikx− ikx̂3y3), (A.5)

and the direction of the source x is denoted by

x̂ = x/x = (x̂1, x̂2, x̂3),

x̂1 = sinψ0 cos θ0, x̂2 = sinψ0 sin θ0, x̂3 = cosψ0.

From the result of the scattered field for a porous edge by Jaworski & Peake [39], the

corresponding Green’s function for the scattered field may be determined:

Ĝs(y,x; k) = −1

2
iY

1
2π−

3
2B sin

θ

2

exp
[
ikx− ik cosψ0y3 +

π
4 i
]

x
as Y → 0, (A.6)

where Y = (y21 + y22)
1
2 is the projection of y on the (y1, y2)-plane. Here B is a variable that

depends on the wavenumber k, the properties of the porous edge, and the directivity of the

incident field:

B =
k sinψ0 sin θ0

K+(k sinψ0 cos θ0)
, (A.7)

where K+(k sinψ0 cos θ0) is the ‘plus’ function of the associated Wiener-Hopf kernel K(α)

after multiplicative factorization, denoted K+(α) by Jaworski & Peake [39, (4.12)].

The kernel function K(α) can be rewritten as K(α) = (α+ k)1/2(α− k)1/2J(α), where

(α ± k)1/2 are regular in the upper/lower half planes of complex variable α and J(α) → 1
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as |α| → ∞. Therefore,

K+(α) = (α+ k)1/2J+(α),

where

J+(α) = exp

[
1

2πi

∫
C

logJ(ξ)

ξ − α
dξ

]
. (A.8)

The integration contour C is chosen and extend from −∞ to +∞ on the real axis to avoid

the branch cuts from ±k to ±k±i∞. Note that K+(α) must be determined numerically, but

may be evaluated asymptotically in the limits of low or high edge porosity. At this point

the reciprocal theorem is evolved to revert to the original source-observer configuration,

which removes the subscripts on the angular positions. The analytical expressions for B

have been determined by Jaworski & Peake [39] for two asymptotic limits of low and high

effective porosity:

B ∼


(2k)1/2 sin θ

2(sinψ)
1/2, µ/k ≪ 1,

µ−1/2k sin θ sinψ, µ/k ≫ 1,
(A.9)

where µ/k = αHKR/kR is the dimensionless porosity parameter.

For the purpose of investigating acoustic pressure directivity and scaling behaviors, it

is convenient to express B as

B =M(ψ, θ)kmµn, (A.10)

where m and n are the exponents of the wavenumber k and the parameter µ = αHKR/R

composed of porosity of the half plane, respectively, as described in detail in Section 3.1.2.A.

The far-field directivity in this reciprocal problem for the scattered field follows from eval-

uating M(ψ, θ) for fixed ψ and varying θ from −π to π. Note that both M(ψ, θ) and m

vary with the porosity parameter µ, and must be determined numerically in general.
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Figure A.1: Dependence of wavenumber parameter m on the dimensionless porosity param-
eter µ/k.

Equations (A.7) and (A.10) permit m to be computed as

m = 1− ∂ log[K+(k cos θ)]

∂ log k
, (A.11)

for ψ = π/2 and µ = 1. Figure A.1 plots the dependence of m on µ/k for θ = π/4, whose

value does not affect these results.
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Appendix B

Green’s function for an

uniformly-elastic edge

For the impermeable-elastic case (kϵ−1/2 ≪ 1, ϵ = ρ0k/(mpk
2
B)), the variable B in (A.6)

can be simplified as

Be =
k sinψ0 sin θ0

K+(k sinψ0 cos θ0)
∼ k

3
2 sinψ sin θ

ϵ
1
2

, (B.1)

where the subscripts on the angular positions are reverted to the original source-observer

configuration, and ϵ is the intrinsic fluid loading parameter [18, 36, 39] that depends only

on the properties of the structure and fluid, mp is the plate mass, and kB is the in vacuo

bending wavenumber.

By substitution of (B.1) into (A.6), the scattered field for the impermeable-elastic case

can be represented by

Ĝs(y,x; k) =
1

2
iY

1
2 (πc0)

− 3
2Y

1
2 sin

θ

2

sinψ0 sin θ0

ϵ
1
2x

(−iω)
3
2 exp (ikx− iky3 cosψ0) , (B.2)

where Y = (y21 + y22)
1
2 is the projection of y on the (y1, y2)-plane, and ω = ck.
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Appendix C

First derivative of the temporal

function of acoustic pressure, ġ(s)

Equations (3.26) and (3.27) yield,

g (s) = (s2 + 1)−
3
4 sin

[
3

2
tan−1

(
s sinα∓ cosα

s cosα± sinα

)
− 2α

]
. (C.1)

The first derivative of g (s) is obtained by direct application of the chain rule,

ġ(s) = −3

2
s(s2 + 1)−

7
4 sin

[
3

2
tan−1

(
s sinα∓ cosα

s cosα± sinα

)
− 2α

]
±3

2
(s2 + 1)−

7
4 cos

[
3

2
tan−1

(
s sinα∓ cosα

s cosα± sinα

)
− 2α

]
, (C.2)

where the upper sign holds for 0 ≤ α ≤ π, and the lower sign holds for −π ≤ α ≤ 0. Note

that (C.2) is used for the evaluation of integral in (4.7) and is equivalent to (4.6).
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Appendix D

Estimate of vortex-edge interaction

time

Kambe et al. [41, figure 6] and Yoas [60, figure 4.1] indicate experimentally that the

path of a vortex ring near a porous edge is not perfectly rectilinear due to its hydrodynamic

interaction with the edge, where the change in path becomes more pronounced with increas-

ing vortex ring speed (or circulation, cf. (3.30)). Figure D.1 illustrates an idealisation of

the modified path, where the vortex ring approaches along a straight path, turns by angle

β toward the edge along a circular arc of radius L, and leaves along a different straight

path. The model developed in §2 for a single rectilinear vortex ring path is justified if the

duration of time over which the path turns is small relative to the period of the acoustic

waveform.

Here it is conservatively assumed that the vortex ring maintains the same speed U in

the circular arc as is does on the rectilinear segments. The dimensionless traverse time of

the vortex ring in the arc segment may be estimated as

ta =
Uta
a

=
L

a
β, (D.1)

where ta = (Lβ)/U , β is the turning angle of the vortex path, and a is the radius of the
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Figure D.1: Schematic of a vortex ring path (blue) affected by hydrodynamic interactions
with a semi-infinite porous edge. The vortex path is idealized as three continuous segments:
two rectilinear segments and one circular arc with a radius of L. The turning angle of the
vortex path is denoted as β.

vortex ring. In [60], L = 9.8 mm and a = 6.5 mm, and the maximum value of the turning

angle β is approximately 13.3◦. Furthermore, figure 4.3(b) suggests a dimensionless acoustic

waveform period of approximately 8. Therefore, the ratio of the vortex-edge interaction

time and the effective period of the waveform is approximately ta/8 = 4.4%. Therefore,

the influence of the path turning due to the vortex-edge interaction on the entire pressure

waveform is marginal and may be neglected in the present work.
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Appendix E

Analyticity of the proposed stream

function

Given the velocity potential Φ(Y ) = Y
1
2 sin θ0

2 , supposing that the stream function is

Ψ(Y ) = −Y 1
2 cos θ0

2 , the Cauchy-Riemann equations in (3.13) must be satisfied, where

Y = |Y | = (y21 + y22)
1
2 and θ0 = tan−1 y2

y1
.

∂

∂y1
Φ(Y ) =

∂

∂y1

(
(y21 + y22)

1
4 sin

tan−1 y2
y1

2

)

=
1

2
(y21 + y22)

− 3
4 sin

tan−1 y2
y1

2
y1 − (y21 + y22)

1
4
1

2
cos

tan−1 y2
y1

2

(
y2
y21

)
y21

y21 + y22

=
1

2
(y21 + y22)

− 3
4

(
y1 sin

tan−1 y2
y1

2
− y2 cos

tan−1 y2
y1

2

)
(E.1)

∂

∂y2
Φ(Y ) =

∂

∂y2

(
(y21 + y22)

1
4 sin

tan−1 y2
y1

2

)

=
1

2
(y21 + y22)

− 3
4 sin

tan−1 y2
y1

2
y2 + (y21 + y22)

1
4
1

2
cos

tan−1 y2
y1

2

(
1

y1

)
y21

y21 + y22

=
1

2
(y21 + y22)

− 3
4

(
y1 cos

tan−1 y2
y1

2
+ y2 sin

tan−1 y2
y1

2

)
(E.2)
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∂

∂y1
Ψ(Y ) =

∂

∂y1

(
−(y21 + y22)

1
4 cos

tan−1 y2
y1

2

)

= −1

2
(y21 + y22)

− 3
4 cos

tan−1 y2
y1

2
y1 − (y21 + y22)

1
4
1

2
sin

tan−1 y2
y1

2

(
y2
y21

)
y21

y21 + y22

= −1

2
(y21 + y22)

− 3
4

(
y1 cos

tan−1 y2
y1

2
+ y2 sin

tan−1 y2
y1

2

)
(E.3)

∂

∂y2
Ψ(Y ) =

∂

∂y2

(
−(y21 + y22)

1
4 cos

tan−1 y2
y1

2

)

= −1

2
(y21 + y22)

− 3
4 cos

tan−1 y2
y1

2
y2 + (y21 + y22)

1
4
1

2
sin

tan−1 y2
y1

2

(
1

y1

)
y21

y21 + y22

=
1

2
(y21 + y22)

− 3
4

(
y1 sin

tan−1 y2
y1

2
− y2 cos

tan−1 y2
y1

2

)
(E.4)

It is easy to find by examining (E.1) and (E.3), (E.2) and (E.4) that,

∂

∂y1
Φ(Y ) =

∂

∂y2
Ψ(Y ), (E.5)

∂

∂y2
Φ(Y ) = − ∂

∂y1
Ψ(Y ). (E.6)

Therefore, Cauchy-Riemann equations in (3.13) are given for the velocity potential Φ(Y )

and stream function Ψ(Y ).
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Appendix F

Derivations of derivatives of vortex

ring speed: Dtvξ(C) and D2
t
vξ(C)

Suppose that the vortex ring moves rectilinearly with velocity Ue, where e is a unit

vector with components (cosα, sinα) in the (y1, y2)-plane (cf. figure 3.2) and the vortex

path is sufficiently distant from the edge (L > a). This assumption of the rectilinear vortex

motion has been shown to be valid by Kambe et al. [41] for the sound problem of a vortex

ring near an impermeable-rigid plane.

From (3.23) we notice

vξ(C) =
∂

∂ξ
Φ(C)

= (0, 1) · ( ∂
∂η
,
∂

∂ξ
)Φ(C)

= (e · ∇)Φ(C) (F.1)
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Therefore the first derivative of vξ(C) is

Dtvξ(C) = vξ(C) · ∇vξ(C)

= Ue · ∇vξ(C)

= U(e · ∇)2Φ(C)

= U(e · ∇)2Φ(Y ). (F.2)

It is convenient to introduce the complex variable z = y1 + iy2 = Y eiΘ, where the

complex potential function f = Φ(Y ) + iΨ(Y ) = −iz
1
2 . Since

vξ(C) = Re

{
eiα

df

dz

}
, (F.3)

therefore,

vξ(C) = Re

{
eiα(−i)

1

2
z−

1
2

}
= Re

{
eiα(−i)

1

2
Y − 1

2 e−i 1
2
Θ

}
= Re

{
−1

2
Y − 1

2 sin

(
1

2
Θ− α

)
− i

1

2
Y − 1

2 sin

(
1

2
Θ− α

)}
= −1

2
Y − 1

2 sin

(
1

2
Θ− α

)
, (F.4)

and

(e · ∇)2Φ(Y ) = Re

{
ei2α

d2f

dz2

}
= Re

{
ei2α(−i)(−1

4
)z−

3
2

}
= Re

{
ei2α(−i)(−1

4
)Y − 3

2 e−i 3
2
Θ

}
= Re

{
i
1

4
Y − 3

2 cos

(
2α− 3

2
Θ

)
+

1

4
Y − 3

2 sin

(
3

2
Θ− 2α

)}
=

1

4
Y − 3

2 sin

(
3

2
Θ− 2α

)
. (F.5)
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Therefore,

Dtvξ(C) =
1

4
UY − 3

2 sin

(
3

2
Θ− 2α

)
, (F.6)

Let the time origin to be the instant when the vortex ring is nearest to the edge with

the distance Y = L. The vortex position at time t can then be represented by

(Y cosΘ, Y sinΘ) = (Ut cosα± L sinα,Ut sinα∓ L cosα), (F.7)

where the upper sign holds for 0 ≤ α ≤ π, and the lower sign holds for 0 ≥ α ≥ −π.

From (F.7), we get

Y =
√
Y 2 cos2Θ+ Y 2 sin2Θ

=

√
(Ut cosα± L sinα)2 + (Ut sinα∓ L cosα)2

=
√
U2t2 + L2

= L
(
t
2
+ 1
) 1

2
, (F.8)

and

Θ = tan−1

(
Ut sinα∓ L cosα

Ut cosα± L sinα

)
= tan−1

(
t sinα∓ cosα

t cosα± sinα

)
, (F.9)

where t = Ut/L is defined as the dimensionless time.

Equation (F.6) now may be rearranged in dimensionless form,

Dtvξ(C) =
1

4
UY − 3

2 sin

(
3

2
Θ− 2α

)
=

1

4
UL− 3

2

(
t
2
+ 1
)− 3

4
sin

(
3

2
Θ− 2α

)
=

1

4
UL− 3

2 g
(
t
)
, (F.10)
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where

g
(
t
)
= Y

− 3
2 sin

(
3

2
Θ− 2α

)
, Y =

Y

L
=
(
t
2
+ 1
) 1

2
. (F.11)

The second derivative of vξ(C) is now determined from (F.2),

D2
t vξ(C) = vξ(C) · ∇Dtvξ(C)

= U2(e · ∇)3Φ(Y ), (F.12)

and

(e · ∇)3Φ(Y ) = Re

{
ei3α

d3f

dz3

}
= Re

{
ei3α(−i)(

3

8
)z−

5
2

}
= Re

{
ei3α(−i)(

3

8
)Y − 5

2 e−i 5
2
Θ

}
= Re

{
i

(
−3

8

)
Y − 5

2 cos

(
3α− 5

2
Θ

)
+

3

8
Y − 5

2 sin

(
3α− 5

2
Θ

)}
= −3

8
Y − 5

2 sin

(
5

2
Θ− 3α

)
. (F.13)

Therefore,

D2
t vξ(C) = −3

8
U2Y − 5

2 sin

(
5

2
Θ− 3α

)
, (F.14)

which may also be rearranged non-dimensionally,

D2
t vξ(C) = −3

8
U2Y − 5

2 sin

(
5

2
Θ− 3α

)
= −3

8
U2L− 5

2

(
t
2
+ 1
)− 5

4
sin

(
5

2
Θ− 3α

)
= −3

8
U2L− 5

2m
(
t
)
, (F.15)
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where

m
(
t
)
= Y

− 5
2 sin

(
5

2
Θ− 3α

)
, Y =

Y

L
=
(
t
2
+ 1
) 1

2
. (F.16)
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