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Abstract

A core component present in many successful neural network architectures, is an MLP block of two

fully connected layers with a non-linear activation in between. An intriguing phenomenon observed

empirically, including in transformer architectures, is that, after training, the activations in the

hidden layer of this MLP block tend to be extremely sparse on any given input. Unlike traditional

forms of sparsity, where there are neurons/weights which can be deleted from the network, this

form of dynamic activation sparsity appears to be harder to exploit to get more efficient networks.

Motivated by this we initiate a formal study of PAC learnability of MLP layers that exhibit

activation sparsity. We present a variety of results showing that such classes of functions do lead

to provable computational and statistical advantages over their non-sparse counterparts. Our hope

is that a better theoretical understanding of sparsely activated networks would lead to methods that

can exploit activation sparsity in practice.

Keywords: Multilayer Perceptrons, PAC Learning, Activation Sparsity, Rademacher Complexity

1. Introduction

In recent years, transformer based deep neural networks (Vaswani et al., 2017) and the subsequent

development of large language models have marked a paradigm shift in the fields of natural language

processing and computer vision (Brown et al., 2020; Chowdhery et al., 2022; Chen et al., 2022b;

Dosovitskiy et al., 2020). These models have significantly improved performance across various

tasks, setting new benchmarks and enabling previously unattainable breakthroughs. However, the

computational cost of training and deploying these models, especially the largest variants, presents a

significant challenge. A notable portion of these models’ computational and parameter overhead is

attributed to the Multi-Layer Perceptron (MLP) layers. These layers are integral to the transformer

architecture, playing a crucial role in its ability to solve many different tasks.

Despite their efficacy, the resource-intensive nature of these models has spurred a wave of re-

search focused on enhancing their efficiency (Banner et al., 2019; Frankle and Carbin, 2018; Gholami et al.,

2022; Hinton et al., 2015; Anil et al., 2018; Harutyunyan et al., 2023). Among the various strate-

gies explored for improving the inference efficiency of large transformers, attempting to sparsify

the transformer is a promising approach.

A motivation for exploiting sparsity is rooted in an intriguing empirical observation made in

recent works (Li et al., 2023) regarding the behavior of MLP layers within large transformer models.

Post-training, these layers tend to exhibit a high degree of sparsity in their activations; often each
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input activates as low as 3% of the neurons in the MLP layers, suggesting a natural emergence of

sparsity in activations. This leads to these MLP layers behaving like key-value lookups (Geva et al.,

2020). The extremely low sparsity (3%) suggests that there might be significant room to sparsify the

MLP layers leading to both training and inference efficiency. In addition, such sparsity also helps

with interpretability of transformers by disentangling neurons corresponding to distinct concepts

(Elhage et al., 2022). Moreover, through extensive ablation studies Li et al. (2023) observe that this

phenomenon is highly prevalent. It occurs in convolutional networks (CNNs), as well as in vanilla

fully connected feedforward networks.

Despite the potential benefits, effectively harnessing dynamic sparsity has proven challenging.

Although, there have been many recent efforts (Li et al., 2023; Grimaldi et al., 2023; Liu et al.,

2023; Dong et al., 2023; Csordás et al., 2023; Mirzadeh et al., 2023), they have led to limited suc-

cess. None of the approaches achieve speedups (either in training or in inference) anywhere close

to the the potential factor of 33x that is suggested by 3% sparsity. Moreover, by explicitly enforcing

sparsity via methods such as choosing only the top-k activations, the quality of the model degrades

in some cases.

A key reason for the hardness in exploiting activation sparsity is that this form of sparsity is

dynamic in nature and is input-dependent (i.e., not a fixed pattern). While each input example

activates a small number of neurons, the overall sparsity pattern cannot be localized to a small

subset of the model weights. For instance, the dynamic nature precludes the use of typical weight

quantization or pruning based methods to exploit sparsity empirically. On the other hand, having a

non-localized sparsity pattern is crucial in ensuring the model has rich expressiveness.

The above observations suggest that post-training, large transformer networks belong to an in-

triguing function class that is highly expressive yet exhibits high sparsity. Given the challenges in

exploiting this behavior in practical settings, in this work, we initiate a theoretical study of the sta-

tistical and computational properties of such functions in the probably approximately correct (PAC)

learning framework (Valiant, 1984).

We introduce the class of sparsely activated MLPs. We focus on the case of depth-1 MLPs with

n input units and s hidden units with the standard ReLU activations. We define the class Hn,s,k

as the class of depth-1 ReLU networks in n-dimensions with the promise that on each input in the

support of the data distribution, at most k of the s hidden units are active:

Definition 1 (Sparsely Activated Networks) Let σ(·) denote the ReLU activation, namely σ(z) :=
max{z, 0}. The class Hn,s,k consists of hypotheses of the form h(x) =

∑s
j=1 ujσ(〈wj , x〉−bj) with

the property that for all x in the support of the distribution, it holds that |{j : 〈wj , x〉−bj > 0}| ≤ k.

Note that this sparsity differs from dead sparsity, where some neurons are never active on any of

the inputs, and consequently, can be deleted from the network without impacting its functionality.

The form of dynamic sparsity we study can be crucial for the networks to be more expressive. We

provide a couple of examples of useful functions represented using sparsely activated networks here:

• Junta functions: The class of functions on n variables which depend on only a p-sized subset

(p < n) of the variables is known as p-junta functions. Sparse parities are a canonical example

of junta functions. We show in Theorem 13 that we can represent log(s)-juntas using Hn,s,1.

• Indexing function: Consider the function Indexb : {−1, 1}b+2b → {0, 1}, where Indexb(z) is

the x-th bit of y (−1 mapped to 0), where x is the integer represented by the first b bits of z in
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binary representation, and y is the remaining 2b bits vector. This can be represented as a 1-sparse

activation network of size 2b (i.e., in Hb+2b,2b,1): Indexb((x, y)) =
∑

α∈{−1,1}b σ(〈wα, z〉−b+ 1
2 )

where the first b coordinates of wα are α and the α-th coordinate among the last 2b coordinates

is 1
2 . On input z = (x, y), only the neuron corresponding to α = x is activated, and the output is

precisely 1
2yx +

1
2 .

In both the examples presented above, removing any of the s neurons will change the functionality

of the network. However, each weight vector wi is quite sparse. In Appendix A, we present an

example of a sparsely activated network where even the weight vectors wi are not sparse. Hence,

in general, it is not clear if sparsely activated networks can be represented with fewer neurons or

sparse weight vectors.

In order to provide learning guarantees, we have to assume an upper bound on the scale of u,

wj’s and bj’s. We will use the following natural scaling for the paper:

Definition 2 Let HW,B
n,s,k ⊆ Hn,s,k consisting of h given as h(x) =

∑s
j=1 ujσ(〈wj , x〉 − bj),

satisfying ‖u‖∞ ·maxj∈[s] ‖wj‖2 ≤ W and ‖u‖∞ ·maxj∈[s] |bj | ≤ B.

We then consider the problem of learning sparsely activated networks efficiently. We consider

the domain to be the Boolean hypercube X = {1,−1}n as a natural first-step and as a domain where

sparsely activated networks can compute non-trivial functions. The Boolean hypercube provides a

setting where the function can be sparse everywhere in the domain while maintaining expressive-

ness; this appears harder in the continuous setting. For instance, if the inputs are Gaussian over Rn,

one likely needs the biases in the ReLU units to be very large to enforce 1-sparsity. This suggests

that, in the continuous domain, more non-standard distributions are likely necessary to obtain a rich

class of functions which are sparse everywhere in the domain. Hence for theoretical simplicity we

focus on functions on the Boolean hypercube.

Even with the sparsity assumption, the class Hn,s,1 is likely hard to learn in polynomial time

(or even quasi-polynomial time) under an arbitrary distribution on the hypercube. In particular, we

show that parities on the hypercube on k variables can be computed by Hk2,2k,1, with coefficient

vectors of norm at most O(k). Thus, Hn,O(
√
n),1 need 2Ω(

√
n) queries in the powerful Statistical

Queries (SQ) model (see Section 4 for details). We also show cryptographic hardness results for

learning Hn,s,1 under generic distributions on the hypercube.

Theorem 3 (Informal; see Section 4) Any SQ algorithm for learning HO(n0.75),O(n)

n,O(
√
n),1

under arbi-

trary distributions over the hypercube either requires 2−Ω(
√
n) tolerance or 2Ω(

√
n) queries.

Assuming the hardness of learning with rounding problem with polynomial modulus, there is no

poly(n, s,W,B, 1/ε) run-time algorithm to (ε, δ)-PAC learn HW,B
n,s,1.

Learning under uniform distribution. Given the above hardness results, it is natural to consider

distributional assumptions as is often done for related classes in learning theory (e.g., Klivans et al.

(2004); Kane (2014) etc.). Our main result is that when the input distribution is uniform over the

n-dimensional hypercube, {1,−1}n, the class HW,B
n,s,k can be learned in time npoly(k log(ns)):

Theorem 4 (Informal; see Theorem 8) There exists an (ε, δ)-PAC learning algorithm for HW,B
n,s,k

with respect to the uniform distribution over {1,−1}n that has sample complexity and run-time

npoly(k log(ns))/ε2 log(1/δ)/ε (suppressing dependence on W,B).
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As our learning algorithm works by performing linear regression over low-degree monomial basis

(a.k.a. the low-degree algorithm), the guarantees work even in the agnostic or non-realizable setting

by standard arguments (e.g., Klivans et al. (2004)). For simplicity, we focus on the realizable setting

as the algorithm and analysis do not change for the agnostic case.

For sparsity k = 1, the above run-time is nO(poly(log(ns))/ε2). As we showed above, Hn,s,1 can

simulate juntas of size log2 s over n variables. Thus, a quasi-polynomial run-time is the best we can

do under a widely believed conjecture on the hardness of learning juntas.

The guarantee above is in stark contrast to what is achievable for general one-layer size s ReLU

networks under the uniform distribution over the hypercube. One-layer size-s networks can simulate

parities on min(n, s) variables. They thus cannot be learned even under the uniform distribution

on the hypercube by SQ algorithms with less than 2Ω(min(n,s)) queries. Further, even for non-SQ

algorithms, as shown in (Chen et al., 2022a), quasi-polynomial run-time with respect to the uniform

distribution on the hypercube is impossible under widely studied cryptographic assumptions.

The proof of Theorem 4 is via Fourier analysis and the low-degree algorithm. The main ingre-

dient is to show that the average-sensitivity of functions in Hn,s,k is at most O(k4(
√
n log(ns))).

We then use this bound the noise-sensitivity of functions in Hn,s,k. The latter implies the existence

of a low-degree approximation by exploiting Klivans et al. (2004) which is enough to obtain the

theorem. See Section 3 for details.

Learning under general distributions. We also show that HW,B
n,s,k can be learnt under general

distributions with smaller sample complexity than would be required without the sparsity condition,

in the case when s ≫ kn. In particular, we show the following.

Theorem 5 (Informal; see Theorem 17) There exists an (ε, δ)-PAC learning algorithm for HW,B
n,s,k

over {1,−1}n that has sample complexity Õ
(
ksn/ε2

)
(suppressing dependence on W,B, δ).

By contrast, the class HW,B
n,s,s (that is, size-s networks without activation sparsity) requires a

sample complexity of Ω(s2/ε2). To prove the above, we provide a bound on the Rademacher

complexity of the class HW,B
n,s,k that has an improved dependence on s.

Taken together, our results demonstrate that leveraging dynamic activation sparsity is theoreti-

cally possible for both computational and statistical benefits. We hope that further theoretical study

of the class of sparsely activated networks could pave the way for more efficient training and in-

ference methods for deep architectures, including transformer-based models where these sparsely

activated networks have been observed to arise in practice.

1.1. Related Work

Our work is motivated by recent empirical observations on the extreme sparsity observed in the

MLP layers of trained transformer models (Li et al., 2023; Shen et al., 2023). The works of Li et al.

(2023); Peng et al. (2023) propose theoretical explanations of why this phenomenon occurs. How-

ever, ours is the first work to formally study sparsely activated networks in the PAC learning setup

and quantify their computational and statistical advantages. Motivated by the observation on spar-

sity, recent work has also studied the connections between the MLP layers and key-value memory

lookups (Sukhbaatar et al., 2019; Lample et al., 2019; Geva et al., 2020).

There have also been recent works on designing networks with explicitly enforced sparsity struc-

ture. One such line of work concerns mixture of experts models (Shazeer et al., 2017; Fedus et al.,
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2022) where each input is independently routed to one or two MLP blocks among a set of experts.

An alternate way to enforce sparsity is to introduce a top-k operation after each MLP layer that

zeros out most of the activations (Csordás et al., 2023; Li et al., 2023). In particular, Li et al. (2023)

propose a top-k transformer along these lines. However, due to the top-k operation being relatively

slow on accelerator hardware, this technique does not yield wall-clock speedup for either training

or inference.

In another recent work Liu et al. (2023) propose to train a small predictor network to predict the

activated indices at each MLP layer. There has also been work to explore enforcing block sparsity

constraints and weight tying in the model weights themselves (Dong et al., 2023), as well as efforts

to enforce static sparsity that is not input dependent (Frantar and Alistarh, 2023). However such

methods haven’t been effective for language modeling via transformer models and have been much

more successful in classification domains that have a small number of output labels.

Significantly more attention has been given to sparsifying attention layer computation (Zaheer et al.,

2020; Choromanski et al., 2020; Wang et al., 2020; Gu and Dao, 2023). Instead, our focus in this

work here is understanding the sparsity behavior of the MLP layer.

2. Preliminaries

We consider the problem of learning real-valued functions over the input space X = {−1, 1}n,

to small expected ℓ2-squared error, namely for the underlying distribution D over (x, y) ∈ X ×
R, our goal is the minimize the population loss of a predictor f : X → R given as LD(f) :=

E(x,y)∼D ℓ(f(x), y) where ℓ(ŷ, y) := 1
2(ŷ − y)2. For any dataset S ∈ (X × R)∗, we denote the

empirical loss as LS(f) :=
1
|S|

∑
(x,y)∈S ℓ(f(x), y).

For any hypothesis class H ⊆ R
X , we say that D is H-realizable, if there exists h⋆ ∈ H such

that h⋆(x) = y holds with probability 1 for (x, y) ∼ D. Following the standard definition of

probably approximately correct (PAC) learning (Valiant, 1984), we say that a learning algorithm

A (ε, δ)-PAC learns H with sample complexity m(ε, δ) if for all H-realizable distributions D over

X ×R, and for S ∼ Dm(ε,δ), it holds with probability at least 1−δ that LD(A(S)) ≤ ε. We say that

a learning algorithm A (ε, δ)-PAC learns H under distribution P (over X ) if the learning guarantee

holds for all H-realizable D with the marginal over X being P . In particular, we use U to denote

the uniform distribution over X .

2.1. Fourier Analysis and the Low-Degree Algorithm

Any function f : {−1, 1}n → R, has a unique Fourier representation given as
∑

T⊆[n] f̂(T )χT (x)

where χT (x) :=
∏

j∈T xi. The degree of f , denoted deg(f), is the largest k such that f̂(T ) 6= 0

for some T with |T | = k. The ℓ2 norm of f under the uniform distribution is defined as ‖f‖22 :=

Ex∼U f(x)2 (O’Donnell, 2014).

We define the ℓ2 sensitivity of f at x as senf (x) := 1
4

∑
i∈[n](f(x) − f(x⊕i))2, where x⊕i

is x with the i-th bit flipped; the scaling factor of 1/4 means that for f : {−1, 1}n → {−1, 1},

sensitivity can be interpreted as senf (x) = |{i : f(x) 6= f(x⊕i)}|. The average ℓ22 sensitivity

AS(f) is defined as Ex∼U [senf (x)]. For any x, let Nρ(x) denote the distribution obtained by

flipping each coordinate of x with probability (1− ρ)/2. The ρ-noise sensitivity of f is NSρ(f) :=

Ex∼U ,y∼Nρ(x)
1
4(f(x)− f(y))2.

5
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A connection between noise sensitivity and Fourier concentration was first observed in Klivans et al.

(2004). We state this connection below, along with other basic facts about Fourier coefficients.

Claim 2.1 [See Klivans et al. (2004)] The following properties hold for all f : {−1, 1}n → R:

• ‖f‖22 =
∑

T⊆[n] f̂(T )
2, and

• NSρ(f) =
∑

T⊆[n]
1
2(1− ρ|T |)f̂(T )2, and hence

∑
T :|T |>d f̂(T )

2 ≤ 2 · NSρ(f)/(1 − ρd).

We also need a bound on the average sensitivity of a single halfspace which is known to be

O(
√
n). We require a more fine-grained version from Kane (2014) which quantifies the dependence

on the bias of the halfspace.

Lemma 6 (Kane (2014)) Let g : X → {0, 1} be a halfspace: g(x) = 1{〈w, x〉 ≤ b} and E[g] =
p. Then, AS(g) = O(p

√
n log(1/p)).

Proof Without loss of generality, we can assume that the coefficients of w are positive. This makes

g a monotone function which is non-decreasing in each coordinate. Now, for i ∈ [n], and x ∼ U ,

E[xig(x)] =
1

2

∑

x∈X

(
xig(x) − xig(x

⊕i)
)
= E[(g(x) − g(x⊕i))2],

where the second equality is due to the non-decreasing nature of g and that g(x) takes values in

{0, 1}. Therefore,

AS(g) = 1
4 Ex [g(x)

∑n
i=1 xi] ,

the claim now follows from Lemma 6 of Kane (2014).

Low-degree algorithm. We recall the standard low-degree algorithm and its guarantees for learn-

ing hypothesis classes that exhibit low-degree Fourier concentration (see e.g., Klivans et al. (2004)

for details). For any hypothesis class H ⊆ (X → R), let CH := suph∈H,x∈X h(x).

Lemma 7 For hypothesis class H ⊆ (X → R) such that
∑

T :|T |>d ĥ(T )
2 ≤ ε for all h ∈ H,

there exists an (O(ε), δ)-PAC learning algorithm for H with O(ndC2
H log(1/δ)/ε) sample and time

complexity.

The algorithm operates by performing polynomial regression, that is, linear regression in the basis

of monomials of degree at most d. The algorithm achieves the desired error because g(x) :=∑
T :|T |≤d ĥ(T )χT (x) is such that ‖g − h‖22 =

∑
T :|T |>d ĥ(T )

2 ≤ ε/2, and hence there exists a

good solution to the polynomial regression problem.

3. Learning over Uniform Distribution

In this section we provide a learning algorithm for k-sparsely activated networks under the uniform

distribution.

Theorem 8 There exists an (ε, δ)-PAC learning algorithm for HW,B
n,s,k with respect to the uniform

distribution over X that has sample complexity and run-time O(ndk2(W
√
n+B)2 log(1/δ)/ε) for

d = Θ((k8W 4 log(ns)4 + k6B4 log s)/ε2)

6
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At a high level, we show that all hypotheses in HW,B
n,s,k exhibit low-degree Fourier concentration

and hence can be learned over the uniform distribution using the low-degree algorithm (Lemma 7).

To show Fourier concentration, we bound the noise sensitivity of sparse-activated networks by first

showing a bound on the average sensitivity and then converting this to a bound on noise sensitivity.

Lemma 9 For all h ∈ HW,B
n,s,k, it holds that AS(h) ≤ O

(
k4W 2√n log(ns) + k3B2

√
log s

)
.

Proof Consider h ∈ HW,B
n,s,k given as h(x) =

∑s
j=1 ujσ(〈wj, x〉 − bj). For any R ⊆ [s], let

ℓR(x) =
〈
wR, x

〉
− bR for wR :=

∑
j∈R ujwj and bR :=

∑
j∈R ujbj . Since maxj |uj| ·

maxj ‖wj‖ ≤ W and maxj |uj | ·maxj |bj | ≤ B, it follows that ‖wR‖ ≤ |R| ·W and |bR| ≤ |R| ·B.

For any x ∈ X , let Rx ⊆ [s] be defined as Rx := {j ∈ [s] : 〈wj , x〉 > bj}. Since h is k-sparse, we

have that |Rx| ≤ k and hence ‖wRx‖ ≤ kW and |bRx | ≤ kB. It is easy to see that for h ∈ HW,B
n,s,k

it holds that h(x) = ℓRx(x) for all x ∈ X .

The average sensitivity of h is given as

AS(h) = Ex

[∑n
i=1

1
4

(
h(x)− h(x⊕i

)2]

= Ex

[∑n
i=1

1
4

(
h(x)− h(x⊕i)

)2 · 1{Rx = Rx⊕i}
]

(U)

+ Ex

[∑n
i=1

1
4

(
h(x)− h(x⊕i

)2 · 1{Rx 6= Rx⊕i}
]

(V)

We bound term (U) as,

(U) = Ex

[∑n
i=1

1
4

(
ℓRx(x)− ℓRx(x

⊕i)
)2 · 1{Rx = Rx⊕i}

]

≤ Ex

[∑n
i=1

1
4

(
wRx

i

)2
]

= Ex

[
1
4‖wRx‖2

]
≤ k2W 2

4 .

We bound term (V) as follows using the inequality (a− b)2 ≤ 2(w2 + b2),

(V) = nEx,i

[
1
4

(
h(x)− h(x⊕i

)2 · 1{Rx 6= Rx⊕i}
]

≤ nEx,i

[
1
2

(
h(x)2 + h(x⊕i)2

)
· 1{Rx 6= Rx⊕i}

]

= nEx,i

[
h(x)2 · 1{Rx 6= Rx⊕i}

]
(by symmetry)

For gj(x) := 1{〈wj , x〉 > bj}, we have that

Pr
x,i
[Rx 6= Rx⊕i ] ≤ 1

n

∑s
j=1

∑n
i=1 Prx[gj(x) 6= gj(x

⊕i)] = 1
n

∑s
j=1 AS(gj)

Note that
∑s

j=1 gj(x) ≤ k (by k-sparsity), and hence for pj = Ex[gj(x)], we have that
∑s

j=1 pj ≤
k. From Lemma 6, we have that AS(gj) ≤ pj

√
n log(1/pj). Thus,

Pr
x,i
[Rx 6= Rx⊕i ] ≤ 1

n

s∑

j=1

pj

√
n log(1/pj) ≤ k

√
log(s/k)√

n

7
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where we use concavity of p
√
log(1/p) for p ∈ (0, 1). For each R ⊆ [s] with |S| ≤ k, we have by

Hoeffding bound that for some sufficiently large c and t = ckW
√

log(nks) + kB,

Pr
x∼U

[
∃R ⊆ [s] : |R| ≤ k and

∣∣〈wR, x
〉
− bR

∣∣ > t
]

≤ Pr
x∼U

[
∃R ⊆ [s] : |R| ≤ k and

∣∣〈wR, x
〉∣∣ > t−

∣∣bR
∣∣]

≤ 2nk exp

(−(t− |bR|)2
2‖wR‖2

)
≤ 1

(ns)4
,

Hence, in particular we have that

Pr
x
[|ℓRx(x)| ≥ ck1.5W

√
log(ns) + kB] ≤ 1

n4s4

And for all x, we also have that |ℓRx(x)| ≤ kW
√
n + kB holds with probability 1. Thus, we can

upper bound (V) as,

(V) ≤ n ·
[(

k
√

log(s/k)√
n

− 1
(ns)4

)
(ck1.5W

√
log(ns) + kB)2 + 1

(ns)4
· (kW√

n+ kB)2
]

≤ O
(
k4W 2√n log(ns) + k3B2

√
log s

)

Combining the bounds on (U) and (V) completes the proof.

Next, we can use the bound on average sensitivity to bound the noise sensitivity of functions in

HW,B
n,s,k. To do so we use an argument attributed to Peres for converting bounds on average sensitivity

to bounds on noise sensitivity, allowing us to get better low-degree approximations.

Lemma 10 For any h ∈ HB
n,s,k,

NSρ(h) =
√

(1− ρ) · O(k4W 2 log2(ns/(1− ρ)) + k3B2
√

log s).

The proof of Lemma 10 is provided in Appendix B.

Proof of Theorem 8 We combine Claim 2.1, Lemma 7 and Lemma 10. Fix an error parameter ε.

Then, by Lemma 10, there is a constant c > 0, such that for

1− ρ = cε2 ·min

{
log(knsW 2/ε)

k8W 4 log4(ns)
,

1

k6B4 log s

}

any h ∈ HW,B
n,s,k, satisfies

NSρ(h) ≤ ε/3

Thus, we can choose a suitable d = Θ((k8W 4 log(ns)4 + k6B4 log s)/ε2), such that by

Claim 2.1, ∑
T :|T |>d f̂(T )

2 ≤ ε
3(1−ρd)

≤ ε
d(1−ρ) ≤ ε .

Finally, note that CHW,B
n,s,k

= k(W
√
n + B); since at most k neurons are active on any input, and

each neuron can at most contribute W
√
n+B. Thus, the theorem now follows from combining the

above with Lemma 7. The run-time and sample complexity will be O(nd log(1/δ)/ε) where d is as

above.
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Remark 11 Theorem 8 can be extended to hold in case of the hypothesis class where k-sparsity

need not hold for all inputs x ∈ X , but holds with probability at least 1 − 1/poly(n, s) over the

input distribution, that is, Prx∼U [#{i ∈ [s] : 〈wi, x〉 + bi > 0} > k] ≤ 1/poly(n, s). This is by

decomposing AS(h) into (U), (V) and a third term handling x for which the k-sparsity is violated.

4. Lower Bounds for Learning Hn,s,1

Note that the previous section implies a quasi-polynomial time learning algorithm for the class

Hn,s,1 of 1-sparsely activated networks. We next show that a quasi-polynomial run-time is likely

necessary for learning Hn,s,1 under the uniform distribution and stronger lower bounds under arbi-

trary distributions.

Sparse Activations Can Simulate Juntas We first show that our proposed learning algorithms for

the case of the uniform distribution have near-optimal runtime under a widely believed conjecture

on the hardness of learning juntas. Let Jn,p denote the set of Boolean functions f : {1,−1}n →
{−1, 1} that only depend on at most p variables.

Conjecture 12 (Hardness of learning Juntas) (see e.g. Mossel et al. (2003); Feldman et al. (2011))

There is no (ε, δ)-PAC learning algorithm for learning Jn,p under the uniform distribution on the

hypercube that runs in time no(p).

The conjecture implies that there is no learning algorithm for Hn,s,1 that runs in no(log s) time.

Theorem 13 Assuming Conjecture 12, there is no (ε, δ)-PAC learning algorithm for HW,B
n,s,1 for

W =
√

log2 s and B = log2 s over U that runs in no(log s) time.

Proof We show that H
√
p,p

n,s,1 ⊇ Jn,p for all p ≤ ⌊log2 s⌋, that is, for p ≤ ⌊log2 s⌋ any p-junta

f ∈ Jn,p can be expressed as
∑

j∈[s] ujσ(〈wj, x〉 + bj) where ‖u‖∞ ≤ 1 and ‖wj‖2 ≤
√

log2 s.

Suppose w.l.o.g. that f depends on x1, . . . , xp. Let w1, . . . w2p be distinct vectors that take all

possible ±1 values in the first p coordinates, and are 0 on other coordinates. Let uj = f(x) for any

x such that xi = wji for all i ∈ [p] and j ∈ [2p]. Let wj = 0 and uj = 0 for all j > 2p. It is now

easy to verify that for all x ∈ X ,

f(x) =
∑

j∈[2p] ujσ(〈wj , x〉 − p+ 1), since σ(〈wj , x〉 − p+ 1) = 1{xi = wji for all i ∈ [p]}

Thus, the theorem follows under the assumption of Conjecture 12.

Hardness Under Arbitrary Distributions We next show that one-sparse activation networks

over {1,−1}n can simulate parities of size Ω(
√
n). Fix an integer m, and for S ⊆ [m], let

χS : {1,−1}m → {0, 1} be defined by χS(y) = 1 if and only if
∑

i∈S yi is even. Now, we

can use the following simple identity (similar identities were used for similar purposes for example

in Klivans and Sherstov (2006))

χS(y) =
∑

a∈{−m,...,m}:a even 2σ
(
1
2 −

(∑
i∈S yi − a

)2)
.

Note that for any y ∈ {1,−1}m, at most one ReLU node is active. This is not quite enough to

capture Hn,s,1 as the function inside the ReLUs are not linear. To fix this, we linearize the quadratic

9
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function by increasing the dimension. For y ∈ {1,−1}m, let x(y) ∈ {1,−1}m×m be defined as

follows:

x(y)ij =

{
yi if i = j

yiyj if i 6= j
.

Let n = m2 and identify {1,−1}n with {1,−1}m×m in the natural way. Observe that for any

S ⊆ [m], a ∈ [−m,m], there exists a vector wS,a ∈ R
n, bS,a ∈ R such that

1
2 −

(∑
i∈S yi − a

)2
= 〈wS,a, x(y)〉 − bS,a.

In particular, we can take bS,a = |S| + a2 − 1/2, and wS,a[i, j] = −1 if i 6= j ∈ [m] and

wS,a[i, i] = 2a. Note that ‖wS,a‖2 = O(m1.5) = O(n3/4) and |bS,a| = O(m2) = O(n).

In summary, there exists a distribution D on {1,−1}m×m such that learning parities over

{1,−1}m under the uniform distribution is implied by learning HO(m1.5),O(m2)
m2,2m,1

under the distribu-

tion D. The first part of Theorem 3 now follows from standard lower bounds for learning parities.

SQ Hardness Consider a class of functions, denoted by C , that maps R
n to R, and let D be a

distribution over Rn.

In the Statistical Query (SQ) model, as described by Kearns (1998), the learner interacts with the

data through an SQ oracle. For a bounded query function φ : Rn×R → [−1, 1] and a tolerance τ >
0, the oracle can return any value v such that the absolute difference |v − Ex∼D[φ(x, f(x))]| ≤ τ .

The goal in SQ learning is to learn an approximation to the unknown concept only using few queries

as above with reasonable tolerance. We will use the following classical theorem:

Theorem 14 ((Blum et al., 1994)) Any SQ algorithm for learning the class of parities over {1,−1}m
within error 1/3 under the uniform distribution over the hypercube with tolerance τ requires Ω(2mτ2)
queries.

The first part of Theorem 3 follows immediately from the above and the fact that parities on m

variables can be computed in HO(m1.5),O(m2)
m2,O(m),1

as described.

Cryptographic Hardness We sketch the argument here. Following Chen et al. (2022a), our start-

ing point will be the Learning with Rounding (LWR) problem (Banerjee et al., 2012):

Definition 15 For moduli p, q ∈ N, w ∈ Z
m
q , let fw : Zm

q → Zp by fw(y) := (〈w, y〉 mod q)
mod p.

In the LWRp,q,m problem the secret w ∈ Z
m
q is drawn uniformly at random and we are given

samples of the form (y, fw(y)) where y is uniform over Zm
q . The goal is to output a hypothesis that

achieves a small error in predicting the label fw(·). It is conjectured that there is no poly(m, p, q)
algorithm for LWRp,q,m.

Conjecture 16 (See Banerjee et al. (2012)) There is no poly(p, q,m) run-time algorithm to solve

the LWRp,q,m with probability at least 2/3 (over the random choice of w and the samples).

10
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We show that an efficient algorithm for Hn,s,1 functions under arbitrary distributions on the

hypercube will contradict this assumption.

Consider an instance of the LWRp,q,m problem. First, map y ∈ Z
m
q to z(y) ∈ {1,−1}r for

r = O(m log q) by considering the binary representation of the integers in y. Next, let λ : [q2m] →
[p] be such that λ(i) = (i mod q) mod p. Note that for every w ∈ Z

m
q , we can find a vector

v(w) ∈ R
r such that 〈v(w), z(y)〉 = 〈w, y〉. Then,

fw(y) = λ(〈v(w), z(y)〉).

Now, observe that we can write

λ(〈v(w), z(y)〉) = ∑
a∈[q2m] 2λ(a)σ

(
1
2 − (〈v(w), z(y)〉 − a))2

)
.

Note that in the conversion z(y) ∈ {1,−1}r and v(w) ∈ R
r. Further, for any input y, only

one of the ReLUs will be active. However, the above is not quite in Hn,s,1 as we have a quadratic

function inside the ReLU. Just as we did for parities, we can fix this issue by linearizing the quadratic

form. Let n = r2, and define x(y) ∈ {1,−1}r×r by setting x(y)ij = z(y)iz(y)j if i 6= j and

x(y)ii = z(y)i. Then, just as in our argument for parities, there exists a lifted weight vector Ww,a ∈
{1,−1}n and bw,a such that

1

2
− (〈v(w), z(y)〉 − a))2 = 〈Ww,a, x(y)〉 − bw,a.

In addition, it is easy to check that ‖Ww,a‖2, |bw,a| = poly(q,m). In particular, we get that for

every w ∈ Z
m
q , there exists a function Fw in Hr2,O(q2m),1 such that for every y ∈ Z

m
q ,

fw(y) = Fw(x(y)),

where x(y) ∈ {1,−1}r2 is the embedding as defined above and in showing SQ hardness. The

second part of Theorem 3 now follows from the conjectured hardness of LWRp,q,m; we omit the

minor details.

5. Learning under General Distributions

We now show the statistical advantage associated with sparsely activated neural networks over gen-

eral distributions. In particular, we show that

Theorem 17 There exists a (ε, δ)-PAC learning algorithm for any HW,B
n,s,k with sample complexity

m(ε, δ) = O
(
(WR+B)2ksn log(k(R+B)

ε
)+log( 1

δ
)

ε2

)
.

This result even holds in a more general setting where the input space X ⊂ R
n and ‖x‖ ≤ R

for all x ∈ X . To begin with we will again consider the class of 1-sparsely activated networks, i.e.,

HW,B
n,s,1. We will discuss extensions to HW,B

n,s,k towards the end of the section.

We use Rademacher complexity to establish the bound in Theorem 17. Given a set of exam-

ples S = {x1, x2, . . . , xm} the empirical Rademacher complexity (Shalev-Shwartz and Ben-David,

2014) is defined as RH(S) := Eζ

[
maxh∈H

1
m

∑m
i=1 ζih(xi)

]
, where ζ1, . . . , ζm are {−1,+1}

valued Rademacher random variables. For H, let CH := suph∈H,x∈X h(x).

11
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Lemma 18 (see Shalev-Shwartz and Ben-David (2014)) For any class H mapping X to R, there

exists an (ε, δ)-PAC learning algorithm for H with sample complexity m(ε, δ) equal to the smallest

m such that for a large enough constant c, it holds that

c ·
(
CHES[RH(S)] +

√
log(1/δ)

m

)
≤ ε .

Theorem 17 will follow from bounding the Rademacher complexity RH(S). Recall that in

the absence of any sparsity assumption, existing results (Anthony et al., 1999) on the Rademacher

complexity of 1-hidden layer ReLU networks with input dimensionality n and s hidden units lead

to a bound of
(WR+B)s√

m
.1 We will show that the main statistical advantage that comes from sparsity

is that the dependence on the number of hidden units s can be made sub-linear, albeit at the expense

of an explicit dependence on the input dimensionality n. In particular we will prove the following

theorem.

Theorem 19 It holds that

RHW,B
n,s,1

(S) ≤ (WR+B)
√

sn log(m(R +B))√
m

. (1)

Proof For a given hypothesis u,w1, . . . , ws ∈ HW,B
n,s,1 and for any j ∈ [s], let Ij be the subset of the

m examples that activate neuron j, i.e., Ij = {i ∈ [m] : 〈wj , xi〉 − bj ≥ 0}. Since each Ij is deter-

mined by a halfspace in n dimensions, by the Sauer-Shelah lemma (Shalev-Shwartz and Ben-David,

2014) there can be at most O(mn) such subsets.

Next, we have

RHW,B
n,s,1

(S) := Eζ

[
max

u,w1,...,ws∈HW,B
n,s,1

1
m

∑m
i=1 ζi

∑s
j=1 ujσ(〈wj , xi〉 − bj)

]
(2)

= Eζ

[
max

u,w1,...,ws∈HW,B
n,s,1

1
m

∑s
j=1

∑
i∈Ij ζiuj(〈wj , xi〉 − bj)

]
(3)

≤ Eζ

[
max

u,w1,...,ws∈HW,B
n,s,1

1
m

∑s
j=1

∑
i∈Ij ζiuj 〈wj , xi〉

]

+ Eζ

[
max

u,w1,...,ws∈HW,B
n,s,1

1
m

∑s
j=1

∑
xi∈Ij ζiujbj

]
(4)

We will bound the above two terms separately via standard concentration inequalities. For the

second term note that for any fixed Ij , the random variable
∑

i∈Ij ζi is sub-Gaussian with norm

O(
√

|Ij |). Hence we for any fixed Ij the following holds (Vershynin, 2018)

P

[∣∣∣
∑

i∈Ij ζi
∣∣∣ > t

√
|Ij|

]
≤ 2e−

t2

c , (5)

where c > 0 is an absolute constant. Via the union bound we get that with probability at least

1−O(mne−t2/c), all sets Ij simultaneously satisfy the above inequality.

Hence we get the following bound on the second term.

Eζ


 max
u,w1,...,ws∈HW,B

n,s,1

1

m

s∑

j=1

∑

xi∈Ij
ζiujbj


 ≤ 1

m

s∑

j=1

t|ujbj|
√

|Ij|+O(mne−t2/c)
1

m

s∑

j=1

|ujbj||Ij |.

(6)

1. Better bounds are possible under stronger assumptions on the network weights (Wei et al., 2019).
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From the fact that the activations are 1-sparse we get that
∑s

j=1 |Ij | = m. This implies that∑s
j=1

√
|Ij| ≤

√
sm. Furthermore, using the fact that maxj |ujbj | ≤ B we get

Eζ


 max
u,w1,...,ws∈HW,B

n,s,1

1

m

s∑

j=1

∑

xi∈Ij
ζiujbj


 ≤ 1√

m
tB

√
s+O(mne−t2/c)B. (7)

Setting t = 2
√

nc log(mB) we get that the second term is bounded by

Eζ


 max
u,w1,...,ws∈HW,B

n,s,1

1

m

s∑

j=1

∑

xi∈Ij
ζiujbj


 ≤ 4B

√
snc log(mB)√

m
. (8)

Similarly, we next bound the first term. Note that for any fixed Ij , and any coordinate p ∈ [n],
sub-Gaussian concentration (Vershynin, 2018) implies that

P



∣∣∣
∑

i∈Ij
ζixi,p

∣∣∣ > t

√∑

i∈Ij
x2i,p


 ≤ 2e−

t2

c . (9)

Via a union bound over all the n coordinates and all possible subsets Ij we get that with probability

at least 1− 2nmne−
t2

c , all sets Ij simultaneously satisfy

∥∥∥∥∥∥

∑

i∈Ij
ζixi

∥∥∥∥∥∥
≤ tR

√
|Ij |. (10)

Using the above we can bound the first term as

Eζ


 max
u,w1,...,ws∈HW,B

n,s,1

1

m

s∑

j=1

∑

xi∈Ij
ζiuj 〈wj , xi〉


 ≤ Eζ


 max
u,w1,...,ws∈HW,B

n,s,1

1

m

s∑

j=1

〈
ujwj,

∑

i∈Ij
ζixi

〉


(11)

≤ 1

m

s∑

j=1

|uj |‖wj‖Eζ




∥∥∥∥∥∥

∑

i∈Ij
ζixi

∥∥∥∥∥∥


 (12)

≤ W

m

s∑

j=1

(
tR

√
|Ij |+ 2nmne−

t2

c R|Ij |
)
. (13)

Recall from above that
∑s

j=1

√
|Ij| ≤

√
sm. Furthermore, setting t = 2

√
n log(mR) we get

that the first term is bounded by

Eζ


 max
u,w1,...,ws∈HW,B

n,s,1

1

m

s∑

j=1

∑

i∈Ij
ζiuj 〈wj, xi〉


 ≤ 4

WR
√

ns log(mR)√
m

. (14)

Combining the bounds for the first and the second terms, we get the desired claim.
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Generalization to k-sparsely activated networks. The above analysis extends in a straightfor-

ward manner to the class Hn,s,k, i.e., the class of networks where each input activates at most k
hidden units.

To extend the bound in Theorem 19 we note that using the fact that k-sparsity implies that∑
j∈[s] |Ij| ≤ km we get that

RHW,B
n,s,k

(S) ≤ (WR+B)
√

snk log(km(R +B))√
m

. (15)

Note that in contrast to the classical bounds on Rademacher complexity of general norm bounded

1-layer neural networks the bound in Theorem 19 above has a sub-linear dependence on s. However

we incur an explicit dependency on the input dimensionality.

We suspect that this is a limitation of our proof technique and conjecture that the right depen-

dence should not have any explicit dependence on the input dimension n.

Conjecture 20 The class HW,B
n,s,k of k-sparsely activated neural networks satisfies

RHW,B
n,s,k

(S) ≤ (WR+B)
√
sk√

m
. (16)

6. Discussion & Future Directions

Motivated by the empirical phenomenon of activation sparsity in MLP layers of large transformer

models, in this work we proposed and studied the problem of PAC learning the class of sparsely

activated neural networks. This is a novel concept class with many interesting properties. The

form of input-dependent sparsity present in this class of functions makes it distinct from the typical

sparse function classes studied in literature. The main conceptual insight from our work is that

despite the empirical challenges in leveraging sparsity, activation sparsity can provably provide

both computational and statistical benefits.

Several open questions come out of our work. While we provide algorithms with near optimal

running time for the case of the uniform distribution, it would be interesting to design learning

algorithms under arbitrary distributions that are provably better than the O((ns)n)-time algorithms

that exist for general 1-layer ReLU networks (Goel et al., 2020). As mentioned in Section 5 we

strongly suspect that the dependence on the input dimension n in the Rademacher complexity bound

of Theorem 19 is suboptimal. While we primarily considered networks that are sparsely activated

for all inputs, it might be interesting to also consider sparsely activated with high probability over

input distributions, as we briefly alluded to in Remark 11 although in that case, the probability of

not being sparsely activated was very small. Finally, it would be interesting to explore practical

algorithms for leveraging sparsity based on our theoretical insights.
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Appendix A. Example of a Sparsely Activated Network without Weight Sparsity

There are interesting functions (beyond juntas/parities) that are sparsely activated but do not have

weight sparsity. E.g.: suppose log2 s < n. Consider b = log2 s, q = n − b, and look at F :
{−1, 1}b×{−1, 1}q → R, of the form

∑
α∈{1,−1}b σ(〈wα, y〉+Γ · (〈x, α〉− b)), where the input is

(x, y). When Γ =
√
q, this network is 1-sparsely activated for all inputs, and when Γ = Θ(

√
log s),

the function is 1-sparse with probability 1−1/poly(s) under the uniform distribution on {−1, 1}b+q .

Remark 11 shows that our results continue to hold in such a setting. Intuitively, such functions are

similar to Indexing; they return the function σ(〈wx, y〉) for all (or most) of the input space, where

wx can depend arbitrarily on the x part of the input.

Appendix B. Proof of Lemma 10

Proof of Lemma 10 Given a ρ ∈ [−1, 1], let r = ⌊2/(1 − ρ)⌋. We describe an alternate way to

sample (x,Nρ(x)). First sample z ∈ {±1}n uniformly at random and partition the n coordinates

of z into the r buckets {Ae ⊆ [n]}re=1 at random (each coordinate is included in exactly one of

these buckets uniformly and independently). For each Ae, sample ve ∈ {±1} uniformly at random.

Multiply the coordinates of Ae by ve and concatenate all the buckets to get x. Choose one bucket b
at random and flip vb to get v⊕b. Multiply the coordinates of Ae by v⊕b to get y. Observe that (x, y)
are distributed exactly the same as (x,Nρ(x)). Now, given h(x) =

∑s
j=1 ujσ(〈wj , x〉− bj), define

Hz(v) =
s∑

j=1

ujσ(
〈
w′
j, v

〉
− bj),

where w′
je =

∑
l∈Ae

wjlzl. Clearly h(x) = Hz(v). Hence,

NSρ(h) = E[(h(x) − h(y))2]

=
1

r
E

z,{Ae}

(
r∑

b=1

E
v
(Hz(v) −Hz(v

⊕b))2

)

=
1

r
E

z,{Ae}
[AS(Hz)]. (17)

From Lemma 9,

AS(Hz) ≤ O
(
k4W ′2√r log(rs) + k3B2

√
log s

)
,

where W ′ := max
j∈[s]

|uj| · ‖wj‖.

To bound W ′ we need to bound

maxj∈[s] ‖w′
j‖22 = maxj∈[s]

∑r
e=1

(∑
i∈Ae

wjizi
)2

.

For any j ∈ [s], we have from measure concentration

Prz
[∣∣∑

i∈Ae
wjizi

∣∣ > t
]
≤ 2 exp

(
− t2

4
∑

i∈Ae
w2

ji

)

=⇒ Prz

[∣∣∑
i∈Ae

wjizi
∣∣ > 2

√
2 log(nsr)

∑
i∈Ae

w2
ji

]
≤ 1

(nsr)2
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Now we use that
∑r

e=1

∑
i∈Ae

w2
ji = ‖wj‖22.

=⇒ Prz

[∑r
e=1

(∑
i∈Ae

wjizi
)2

> 8 log(nsr)‖wj‖22
]
≤ 1

n2s2r

=⇒ Pr
z

[
∀j ∈ [s], ‖w′

j‖22 ≤ 8 log(nsr)‖wj‖22
]
≥ 1− 1

n2sr
.

Combining with the fact that ‖w′
j‖ is always at most W

√
n, we get that

E
z

[
max
j∈[s]

‖w′
j‖22

]
≤ O(log nsr)‖wj‖22.

Combining the above with (17), we get

NSρ(h) =
1

r
E

z,{Ae}
[AS(Hz)] ≤

O(W 2k4 log2(nrs)2 + k3B2
√
log s)√

r

=
√

(1− ρ)O(k4W 2 log2(ns/(1− ρ)) + k3B2
√

log s).

The claim now follows.
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