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Abstract

We propose a novel statistical inference framework for streaming principal component analy-
sis (PCA) using Oja’s algorithm, enabling the construction of confidence intervals for individual
entries of the estimated eigenvector. Most existing works on streaming PCA focus on provid-
ing sharp sin-squared error guarantees. Recently, there has been some interest in uncertainty
quantification for the sin-squared error. However, uncertainty quantification or sharp error
guarantees for entries of the estimated eigenvector in the streaming setting remains largely un-
explored. We derive a sharp Bernstein-type concentration bound for elements of the estimated
vector matching the optimal error rate up to logarithmic factors. We also establish a Central
Limit Theorem for a suitably centered and scaled subset of the entries. To efficiently estimate
the coordinate-wise variance, we introduce a provably consistent subsampling algorithm that
leverages the median-of-means approach, empirically achieving similar accuracy to multiplier
bootstrap methods while being significantly more computationally efficient. Numerical experi-
ments demonstrate its effectiveness in providing reliable uncertainty estimates with a fraction
of the computational cost of existing methods.

1 Introduction

Principal Component Analysis (PCA) [Pearson, 1901, Ziegel, 2003| is a cornerstone for statistical
data analysis and visualization. Given a dataset {X;}!";, where each X; € R¢ is independently
drawn from a distribution P with mean zero and covariance matrix >, PCA computes the eigenvector
v1 of X that corresponds to the largest eigenvalue A1, and is the direction that explains the most
variance in the data. It has been established [Wedin, 1972, Jain et al., 2016, Vershynin, 2012] that
the leading eigenvector ¥ of the empirical covariance matrix 3= % Yoy Xz-Xl-T is a nearly optimal
estimator of v1 under suitable assumptions on the data distribution.

While theoretically appealing, computing the empirical covariance matrix by explicitly requires O(d?)
time and space, which is expensive in high-dimensional settings when both the sample size and the
dimension are large. Oja’s algorithm [Oja and Karhunen, 1985]— a streaming algorithm inspired
by Hebbian learning [Hebb, 2005]— has emerged as an efficient and scalable algorithm for PCA. It
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maintains a running estimate of v; similar to a projected stochastic gradient descent (SGD) update

»
i 4 uim1 + i Xi(X] uis1), w1 (1)
il
for ¢ € [n], where ug is a random unit vector and 7, > 0 is the learning rate. The algorithm is
single-pass, runs in time O(nd), and takes only O(d) space. We call the output wu, of the above
algorithm an Oja vector vgj,.

Oja’s algorithm has fueled significant research in theoretical statistics, applied mathematics, and
computer science [Jain et al., 2016, Allen-Zhu and Li, 2017, Chen et al., 2018, Yang et al., 2018,
Henriksen and Ward, 2019, Price and Xun, 2024, Lunde et al., 2021, Monnez, 2022, Huang et al.,
2021, Kumar and Sarkar, 2024a,b]. Despite the plethora of work on sharp rates for the sin-squared
error sin? (Vojas v1) == 1 — (U?Uoja)Q, entrywise uncertainty estimation for streaming PCA has re-
ceived only limited attention. Since the update rule in Oja’s algorithm is similar to a broad class
of important non-convex problems, uncertainty estimation for Oja’s algorithm has potential impli-
cations for matrix sensing |Jain et al., 2013|, matrix completion [Jain et al., 2013, Keshavan et al.,
2010], subspace estimation [Balzano, 2022], and subspace tracking [Balzano et al., 2010]. A notable
exception is Lunde et al. [2021], who show that sin? (veja, v1) := 1 — (v] voja)? behaves asymptotically
like a high-dimensional weighted chi-squared random variable. A main ingredient in their analysis
is the Hoeffding decomposition of the matrix product B,,. Their method takes O(bnd) time and
O(bd) space, where b is the number of bootstrap replicas. While Lunde et al. [2021] do uncertainty

estimation of the sin? error, we are interested in coordinate-wise uncertainty estimation.

In contrast, in offline eigenvector analysis, there has been a surge of interest for two-to-infinity
(l2—,00) error bounds for empirical eigenvectors and singular vectors of random matrices [Eldridge
et al., 2018, Mao et al., 2021, Abbe et al., 2020, Cape et al., 2019a, Abbe et al., 2022, Cape et al.,
2019b]. However, none of these apply directly to the matrix product structure that arises from the
Oja update in Eq (1). Recent advances on the concentration of matrix products [Huang et al., 2022,
Kathuria et al., 2020] only provide operator norm or the ¢, moment of the Schatten norm of the
deviation of a matrix product and do not provide non-trivial guarantees on the coordinates.

Our contributions:
In this paper, we obtain finite sample and high probability deviation bounds for elements of vo;s.

1. We show that the deviation of the elements of v, is governed by a suitably defined limiting
covariance matrix V. Furthermore, for a subset K of [d] of interest, the distribution of the coordinate
Uoja(k), when suitably centered and rescaled, is asymptotically normal with variance V.

2. We provide a sharp Bernstein-type concentration bound to show that uniformly over entries of

Voja, V k € [d],
e (veja = (F veja )] = O (\/ "n) . )

‘=Toja

where ej, denotes the k' standard basis vector. This is a surprising and sharp result because it
can be used (see Lemma 8) to recover the optimal sin? error up to logarithmic factors with high
probability.



3. We provide an algorithm that couples a subsampling-based O(nd) time and O(dlog(d/d)) space
algorithm with Median of Means [Nemirovskij and Yudin, 1983] to estimate the marginal variances
of the elements of 745 := vVgja — (v{voja)vl. Theorem 2 provides high-probability error bounds of
our variance estimator uniformly over Vk € [d].

4. We present numerical experiments on synthetic and real-world data to show the empirical per-
formance of our algorithm and also compare it to the multiplier bootstrap algorithm in Lunde et al.
[2021] to show that our estimator achieves similar accuracy in significantly less time.

The paper is organized as follows: Section 1.1 discusses related work on streaming PCA, entrywise
error bounds on eigenvectors, and statistical inference for Stochastic Gradient Descent. Section 2
provides our problem setup, assumptions, and necessary preliminaries. Section 3 provides our main
results regarding entrywise concentration, CLT and our variance estimation algorithm, Algorithm 1.
We provide proof sketches in Section 4 and experiments in Section 5.

1.1 Related Work

Streaming PCA. A crucial measure of performance for Oja’s algorithm is the sin? error, which

quantifies the discrepancy between the estimated direction and the principal eigenvector of ¥ (the
true population eigenvector, v1) and the Oja vector, voja. Notably, several studies [Jain et al., 2016,
Allen-Zhu and Li, 2017, Huang et al., 2021] have shown that Oja’s algorithm attains the same error
as its offline counterpart, which computes the leading eigenvector of the empirical covariance matrix
directly. More concretely, it has been shown that for an appropriately defined variance parameter
V (equation (3)),

v
. 9 L T 2 _
sin”(v1, Voja) := 1 — (v} Voja)” = O (Tl(/\1—)\2)2> .

ls error bounds. There is an extensive body of research on eigenvector perturbations of matrices.
Most traditional bounds [Davis and Kahan, 1970, Wedin, 1972, Stewart and Sun, 1990| measure error
using the f5 norm or other unitarily invariant norms. However, for machine learning and statistics
applications, element-wise error bounds provide a better idea about the error in the estimated
projection of a feature in a given direction. This area has recently gained traction for random
matrices. Eldridge et al. [2018], Abbe et al. [2020], Cape et al. [2019a], Abbe et al. [2022]| provide
ls_, o bounds for eigenvectors and singular vectors of random matrices with low-rank structure. Cape
et al. [2019a] show an f5_,~, norm for the error of the singular vectors of a covariance matrix formed
by n i.i.d. Gaussian vectors; as long as A1 — Ao > 0 and wv; satisfies certain incoherence conditions,
there exists a w € {—1,1} such that with probability 1 — d~2, the top eigenvector #; of the sample
covariance matrix satisfies, up to logarithmic factors,

Tr(Z) /M <max“/27i+x2> LT E) /N < L, >\2>

[v1 — wit]loo S

n VAL A1 Vd A1

The guarantees of Cape et al. [2019a] are offline and provide a common upper bound on all coordi-
nates. Our algorithm has error guarantees that scale with the variances of the coordinates.

Uncertainty estimation for SGD. For convex loss functions, the foundational work of Polyak and
Juditsky [1992], Ruppert [1988], Bather [1989] in Stochastic Gradient Descent (SGD) demonstrates



that averaged SGD iterates are asymptotically Gaussian. A significant body of research has focused
on the convex setting. These include notable works on covariance matrix estimation [Li et al.,
2018, Su and Zhu, 2018, Fang et al., 2018, Chen et al., 2020, Lee et al., 2022, Zhu et al., 2023].
In comparison, work on uncertainty estimation for nonconvex loss functions is relatively few [Yu
et al., 2021, Zhong et al., 2023|. Yu et al. [2021] establishes a Central Limit Theorem (CLT) under
relaxations of strong convexity assumptions. Zhong et al. [2023] weakens the conditions but relies
on online multiplier bootstrap methods to estimate the asymptotic covariance matrix. Existing
methods for estimating and storing the full covariance matrix suffer from numerical instability or
slow convergence rates (see Chee et al. [2023]). For convex functions and their relaxations, Zhu
et al. [2024], Carter and Kuchibhotla [2025] present computationally efficient uncertainty estimation
approaches that are related but different from ours.

In large-scale, high-dimensional problems, maintaining numerous bootstrap replicas is computation-
ally expensive. Chee et al. [2023] introduce a scalable method for confidence intervals around SGD
iterates, which are informative yet conservative under regularity conditions such as strong convexity
at the optima. In their setting, for an appropriate initial learning rate, the covariance matrix can
be approximated by a constant multiple of identity (see also Ljung et al. [1992]). In our setting,
such an approximation requires knowledge of all eigenvalues and eigenvectors of ».. The work most
relevant to ours is by Lunde et al. [2021]. They provide asymptotic distributions for the sin? error of
the Oja vector and an online multiplier bootstrap algorithm to estimate the underlying distribution.

Resampling Methods and Bootstrapping. Nonparametric bootstrap |[Efron, 1979, Hall, 1992,
Efron and Tibshirani, 1993| is a resampling method where b resamples of a given size n dataset
are drawn with replacement and treated as b independent samples drawn from the underlying
distribution. Of these varieties of bootstraps, the one widely used in SGD inference is the online
multiplier bootstrap, where multiple bootstrap resamples are updated in a streaming manner by
sampling multiplier random variables to emulate the inherent uncertainty in the data [Ramprasad
et al., 2023, Zhong et al., 2023, Lunde et al., 2021].

A major concern about the bootstrap is its computational bottleneck. Maintaining many bootstrap
replicates is computationally prohibitive if the number of data points n and the dimension d are large.
Some computationally cheaper alternatives to bootstrap are subsampling [Politis et al., 1999, Politis,
2023, Bertail et al., 1999, Levina and Priesemann, 2017, Chaudhuri et al., 2024, Chua et al., 2024]
and m-out-of-n bootstrap |Bickel et al., 1997, Bickel and Sakov, 2008, Sakov, 1998, Andrews and
Guggenberger, 2010] both of which rely on drawing o(n) with-replacement samples. These methods
are used in Kleiner et al. [2014] to create n with-replacement samples from smaller subsamples, but
require multiple bootstrap replicates and are not directly applicable to the streaming setting.

2 Problem Setup and Preliminaries

Notation. Let [n] = {1,...,n} for all positive integers n. For a vector v, ||v|| = ||v||2 denotes its lo
norm. For a matrix A, [|A[| = [|A[|,, is the operator norm, [|Al|p is the Frobenius norm, and [|A[|,, is
the Schatten p-norm of A, which is the £, norm of the vector of singular values of A. We define the
two-to-infinity norm [|Afly,_ := sup|,|,=1 [[Az|| . For a random matrix M and p,q > 1, we define

the norm |[[M]l, , :== [E[HMHZ]l/q. Let I € R™? be the identity matrix with i*" column e;. Define
the inner product of matrices as (A, B) = Tr(ATB). We use O and € for bounds up to logarithmic



factors and use a < b to mean a < Cb for some universal constant C. diag (a1, ...,aq) denotes the
diagonal matrix with entries ay,...,aq. For a vector v € R? and S C [d] with |S| = k, v[S] € R is
the “sub-vector” of v with its coordinates indexed by S.

Data. Let {X;},c,
from the distribution P over R? with covariance matrix ¥ := E [X,XzT] Let A; = XiXZ-T. Let

v1, V2, . ..,V denote the eigenvectors of ¥ with corresponding eigenvalues Ay > Ao > ... > A\;. Let
V9= [1)2,1)3, e ,Ud] S Réx(d=1),

] be independent and identically distributed (i.i.d. ) mean-zero vectors sampled

We operate under the following assumptions unless otherwise specified.

Assumption 1. For any X; ~ P, A; = XiXZ-T, we assume the following moment bounds, where

VV < Mgy < My:

( E [(AZ» - 2)2} <y (3)
op
1 1
2 4
E[l4-,]" s Mo E[JAi— 205 )" < Mo (4)
Assumption 2. There exists a universal constant k > 5 such that d = o(n") and logTEn) >
KQMglog(d)}
2max {/ﬁ;, S

Assumption 1 provides a suitable moment bound on the iterates A;, and Assumption 2 shows that
we can handle the dimension d growing polynomially with the sample size n, while requiring a mild
base number of samples for convergence. We note that the constraint x > 5 is arbitrary and our
algorithm works as long as d = poly(n). These assumptions are commonly used in the streaming
PCA literature (see for e.g. Jain et al. [2016]).

Oja’s Algorithm with constant learning rate. With a constant learning rate, n,, and initial
vector, ug, Oja’s algorithm [Oja, 1982| (denoted as Oja ({Xt}te[n] sy uo)) performs the updates in
Eq (1). Define Vt € [n],

t—1
By =] (T +mXiiXl;);  Bo=1 (5)
i=0

such that u; = Byug/ || Bruo||s-

3 Main Results

Recall the definition of Oja’s algorithm with a constant learning rate, as defined in Section 2. For
iid. data D, := {Xi; X; € [Rd}z'e[n]’ the learning rate 1, defined in Lemma 9, and a random initial

vector ug := g/ ||g|| where g ~ N(0,1), define the Oja vector
Voja (Dn) = O_]B(Dn, Tns uO)- (6)

This is a random vector, with randomness over the data D,, as well as the initial vector ug. While
there are a myriad of works on the sin-squared error 1 — (v{voja)z, there is, to our knowledge, no



existing analysis on the concentration of the elements of the recovered vector around their population
counterparts. One exception is [Kumar and Sarkar, 2024b|, who showed that for sparse PCA, the
elements of the Oja vector in the support of the true eigenvector are large, whereas those outside are
small. However, these guarantees do not show concentration in our setting. We start our analysis
with the Hoeffding decomposition of the matrix product (also see Lunde et al. [2021], van der Vaart
[2000]). The Hoeffding decomposition is a powerful tool that allows one to write the residual of the
Oja vector as

Toja = Uoja — (v]—voja> v1 = ¥y 1 + Res, (7)

where W, 1 is 7, times a sum of independent but non-identically distributed random vectors and
the residual Res,, is negligible compared to ¥, ; (see Lemma 2 for details).

First, we show that the covariance matrix E[W,, ; \Ifgl] of the dominant term in the residual converges
to V when suitably scaled. Later, in Proposition 1 we will show that the distribution of the entries
of roja is asymptotically normal with covariance matrix E[W,, ; \11271]/(7% (A1 — A2)).

Lemma 1 (Asymptotic variance). Let
M:=L [Vf (A — S)vrof (A - ) VL],

A1 — )\k+1>
dp =1— | —————— | np.
" ( 1 + nn)\l K

Then, the matriz R™ € RE-D*=1) with entries

m . My 1 — (dpdy)"
RET A peM)? 1 —dedy )

satisfies £ [\Iln,l\lfll] =2V, RV

Define the matrices Ry € RA=D*E=1) gnd v e RI*d g

R = s Vi= —V  RyVi. 8
(Ro)rs = o3 I N, VL (8)
then,
1 A\ M2
— L,y g MM (9)
N (A1 — A2) ’ (A=)

This shows that suitably scaled, [E[\I/ml\l'z’l] converges to the matrix V. Note that the scaling factor
M (A1 — A2) = % is independent of model parameters for the choice of 7, defined in Lemma 9.
The next result establishes a Central Limit Theorem (CLT) for the subset of elements in the residual
vector 745, with sufficiently large limiting variance.

Proposition 1 (CLT for a suitable subset of entries). Let {X;}!" ; be independent mean-zero random

vectors with covariance matrix 3 such that [E[exp(UTXl)] < exp("%ﬁm) for allv e R and o > 0
18 some constant.



For alli € [n], let
__sign (vf—uo)
T (1 + nn/\l)

Let b > 0 be a constant, and let J C [d] be the set of coordinates with Vj; > b. Let p :=|J|.

VATV (4 - D),

Let Y; € RP be independent mean-zero Gaussian vectors with covariance matriz

n
E[V;Y,"] = — E[H,[J)H, )],
A1 — A2
and let Sy := Y1 | Y;. Suppose the learning rate ny,, set according to Lemma 9, satisfies (/;\"%A;n)g <
1—A2

b. Then,

roialJ] Sy ‘ . ( My )1/3 . My \V?
P(—222 _ cA)-P(Z=ec4)|=0 64 = 8,
(e ) -r(Srea) o () e (325)

where A" is the collection of all hyperrectangles in RP, i.e, sets of the form A = {ueRP:q; <
uj < by forj =1,...,p} and each a; and b belongs to R U {—o00,00}. Here, O hides logarithmic
factors in n, d, and polynomial factors in b and in model parameters A1, \; — Aa, Mo, My.

sup
AeAre

Remark 1. Note that the first n=/6 term in the convergence rate arises from the high-dimensional
CLT result by Chernozhukov et al. [2017a] applied to ¥y, 1. The main bottleneck is the n=1/% term,
resulting from the higher-order terms of the Hoeffding decomposition (Res, in equation 7). We note
that the second term may be tightened by using better concentration bounds. We point the reader to
Proposition 2 in the Appendiz for a complete statement and proof.

Proposition 1 establishes a Gaussian approximation of suitably scaled roj[J], where J is a set
of elements with large enough asymptotic variance. Our proof uses results from Chernozhukov
et al. [2017b] on the Hajek projection (7) and bounds the effect of the remainder term by using
Nazarov’s Lemma |[Nazarov, 2003| (Theorem 4). We use this to derive concentration bounds for all
coordinates. The lower bound on the variance is crucial and comes from Nazarov’s inequality. It
is also a condition of the results in Chernozhukov et al. [2017b|. A simple observation here is that
when by, is zero, i.e. v1(k) = 1, then Vi = 0. Here, CLT may not hold since the Hajek projection is
zero, and the perturbation arises from some of the smaller error terms in the error decomposition.

Theorem 1. Let the learning rate n, be set according to Lemma 9. Further, for X; ~ P, A; =
X, X[, let ||A; — Ylop < M almost surely. Then, for by := HE;VL with probability at least 3/4,
uniformly for all k € [d],

>+

.
; 1
—‘ek roi| SV Viklog (d) 4+ Cbyyf oen
V1 (A1 — A2) n

where V is defined in Eq 8, and C is a constant that depends on A1, A1 — Ao, Mo, and M.

Remark 2. The limiting marginal variances Vi also appear in the finite-sample bound for the
elements of the residual vector. Estimating these variances enables us to quantify the uncertainty
associated with each component of 01, even when the sample size is finite.

In Appendix C, we provide a complete result with arbitrary failure probability ¢ in Lemma 28. The
above guarantee can be boosted to a high probability one using geometric aggregation (see e.g. Alg.
3 in Kumar and Sarkar [2024D]).



3.1 Uncertainty estimation

Proposition 1 shows that the asymptotic variance of elements of the residual rqj,(7) is governed by
the variance of the entries [E[(eiT\I'n’l)g] of ¥, 1. We cannot directly get to ¥,, ; since we only observe
Uoja- If we could estimate 75,, it would give us an idea of the error. However, we do not know w1,
and so cannot directly access rqj,. We alleviate this difficulty by using the following high-accuracy
estimate of vy constructed using N samples,

U 4 Oja(DNanN7u0)7 (10>

where N satisfies the bounds of Theorem 2.We now provide a subsampling-based approach (Alg. 1)
to estimate E[(el ¥, 1)?] with high probability, allowing us to provide confidence intervals around
the eigenvector elements. Algorithm 1 takes as input the data {X; € [Rd}ie[n], a failure probability
d, and the proxy unit vector . The n samples are split into m; batches with n/m; samples each.
Then, the ¢*" batch of n/m; samples is further split into ms batches of size B := n/(mjms) each.
Oja vectors {f)g’j}j cms) are computed on each of these my batches, and the variance of the kth
coordinate is estimated as

el (005 — (0T 0,.:)9))>
&276 — Z ( k ( 4,5 Tr(L ZJ) )) ) (11)
j€lma] 2

Algorithm 1 OjaVarEst({X; € [Rd}ie[n],é,f),)\l — A2)

1: Input: Data D,, :={X, € [Rd}z‘e[n], failure probability § € (0, 1), unit vector 0, eigengap A1 — Ao
2: Output: Estimates {Ji}ycrq of {Vir}rejg

3: my < 8log(d/d), ma < logn, B < n/(mims).
4: for ¢ € [ml] do

5: for j € [m2] do

6: Dej 4= { XB(mae-1)+G-1)+} ey

T g<—N(07[)7 u<—g/”g”2

8: @&j — Oja (Dk,j,nB,UO)

9: end for

10: for k € [d] do

11: a_?k « Zje[mz](el-cr (@::2—(17-'—1747]-)77))2

12: end for

13: end for

14: for k € [d] do

15: A, <— Median <{6l%k}ge[ ]> /nB(A1 — A2)
mi

16: end for
17: return {%}ke[d]

We will show that with a constant success probability, 6,3 ¢ is close to the true variance of the
corresponding coordinate. This is essentially the variance of a smaller dataset with scale np. To



obtain a bound over all coordinates with an arbitrary failure probability, we take a median of the m;
variances. For the final estimate of the diagonal elements Vi of V, the median is scaled by a factor
1/n5 (A1 — A2). In Theorem 2, we show that 4 concentrates around Vi (see (14)). For elements
with large Vi, appropriate sample size N and batch size B, Theorem 2 also provides multiplicative
error guarantees for the variance estimate (see (15)).

Remark 3. We are using an estimate of E[(elW,,1)?] to provide the confidence interval around
01(k). Algorithm 1 requires an estimate U of vy for computing the estimates 6gk i Line 11, which
is provided as an input to the algorithm and assumed to satisfy v < Qja (bN,nN,z/ lz]l5) for
z ~ N (0,I). For large N, this error of approzimating vy by ¥ is small. In our experiments, we
choose N =n and obtain v by running the algorithm on the entire data.

Theorem 2. Let K be the set of indices in [d] that satisfy

N=Q(B/c) and (12)
=0 <<ZZ> <)\1A:l2>\2>2> 0 ((Ck) <ﬁ2> " i ()\I\l— )\2)> ’ (13)

[E[(e;—\l/B,l)z] A1 —\ . .
, Cp = = 5\422, and B, N are respectively the batch size and the
2

number of samples used for the proxy estimate ¥ in Algorithm 1.

where by := He;VJ_

Then, with probability at least 1 — &, the output {'AYk}ke[d] of Algorithm 1 satisfies

. \% B 1
Wk—\/kk|,§\/k£+0<N Bl/2) Vk € [d], and (14)

A — Vil S 25 vk € [K]. (15)

Jm

Remark 4. The output of Algorithm 1 rescales the median of the variances by the quantity ng (A1 — Aa) =

%. This is consistent with the entrywise concentration bounds in Theorem 1 (which shows that

the error in the j* entry is \/nn (M — X\2) Vg, up to logarithmic terms) for a sufficiently large
sample size and with Proposition 1 and Lemma 1 (which show that the limiting variance of suitable
entries of Toja 5 Nn (A1 — A2) Vi)

Remark 5. Theorem 1 provides bounds about entries of the leading eigenvector. We believe our
techniques can be generalized to provide uncertainty estimates for entries of top-k eigenvectors using
deflation-based approaches (see e.g Jambulapati et al. [2024]).

Equation (14) holds for all coordinates k € [d] and we show in the Appendix (see Remark 7) that
1
N
any coordinate k for which equations (12) and (13) hold, the lower order terms of equation (14)
are O(Vgg/y/m). This implies an O(1/+/logn)-multiplicative guarantee on the error of 4y like

equation (15).

for the choice of B and N in Theorem 2, the higher order terms are indeed o . Moreover, for



4 Proof Techniques

Let voja ~ Oja (Dy j, M, up) for uniform unit vector ug and © ~ Oja (Dy ;,nn, uo). To estimator the
uncertainty of the estimator, the residual vector 7oja 1= Voja — (@Tvoja)ﬁ is decomposed as the sum
of five terms, as stated in Lemma 2. Proposition A.1 in Lunde et al. [2021] shows that B,,, defined
in (5), can be written as

n
Bn = ZTn,ka (16)
k=0
where
n
Toe:= > J[Msn1-i and (17)

SCinlIS|=k =1

n (XX, —X) ifies,
R (18)
I+nX ifi ¢ S.

The term 7}, 1 is called the H4jek projection of the random variable B,, on the random variables
Xi1,...,X,. Ty is the best approximation to B;,, among the estimators that can be written as the
sum of independent random vectors and satisfy certain integrability conditions. Moreover,

o T, 1 and T, ; are uncorrelated for all £ # j, and
e the summands in 7}, ;, are also pairwise uncorrelated.
We exploit this structure of the Hoeffding decomposition to decompose the residual vector 7;,.
Lemma 2. [Error Decomposition of voja| Let voja, U be defined as in (6) and (10) respectively. Then,
Voja — (0 Woja) 0 = W o+ Wpt + Wyo + Uy 3+ Uy g, (19)
where

U0 := (v]—voja)vl — (ﬁTvoja)ﬁ,

VoV, qvssign(v] ug)

U,y =

" (14 )"
U e Vivj(Zkzz Ty 1. )visign(v] uo)

n,2 - (1 T 77n)\1)n )

1 1

U,3:=V, VB - ;

s T P <||Bnuo||2 [o7 o] (1 +77/\1)">

VivI'B, v, v

V4= e AL (20)

T ofuo| (L)

We bound the variance of each of these terms separately. The dominating term V¥, ; corresponding
to the Hajek projection T}, 1 has the largest variance. Recall from Lemma 1 that

go(ﬂj)

. P
‘[E [(% ‘Pn,1> ] — A1 Vik

10



A finer analysis is needed for this term than the other residual terms in (20). To do this, we
bound the variance of (e;—\Iln’l)Q. Lemma 3 shows that |/ Var((e] ¥y, 1)?) is a constant factor within

El(ef ¥,1)?] = O(1/n) up to an additive error term O(1/n%?) which depends polynomially on
model parameters.

Lemma 3 (Variance of the Hajek projection). Let Wy, 1 be defined as in Lemma 2. Then,

V/Var (] 1)) < V2E [(eg\pn,l)Q] +0 (71;/2) .

The three terms ¥, 2, ¥, 3, and ¥, 4 are lower order terms.

Lemma 4 (Bound on lower order terms). Let W, 2, U, 3, and ¥, 4 be defined as in Lemma 2.

Then,
e[ (el 0a) + (e 00) 4+ (f00a) | =0 ().

The bound on the error term e;—\lln,g stems from a more general analysis of the terms T}, in the
Hoeffding decomposition of B,. Lemma 5 is shown by exploiting the Martingale structure of T}, j,
and using norm inequalities [Huang et al., 2022] to compare the operator norm with the ||.[[, ,
norm.

Lemma 5. Let T, be as defined in equation (17). Let for any 2 < q < 4logd, M, be defined

such that E[||A; — ZHq]l/q < My and nuMgy/nlogd S 1. Then, for any j € [n], § € (0,1), with
probability at least 1 — 0

3(1 + 7, M) (7. Mgy/AnTog d)’
Z Tn,k < 1

k>j ) 4logd

Proof sketch. Let S, be the set of subsets of [n] of size k.
Tn,k = (I + nnE)Tnfl,k + nn(An - Z:)Tnfl,kfl-
Proposition 4.3. of Huang et al. [2022] implies

Nkl < WCE A+ 10 E) T

|2
P9 — p,q
£ (0= Dlln(An — STacr silI2,,

as long as E [0, (A, — X)Th—1k—1|(I + 7n2)T5—1%) = 0, which is true due to Ay, As, ..., A, being
mutually independent. Solving the recurrence shows the bound. O

The term W, o arises in the decomposition (20) because we use ¢ as a proxy to v; in Algorithm 1.

Lemma 6 (Variance of Approximating v1). Let ¥,, o be defined as in Lemma 2. Then, E [(eglﬂn,o)z} =
0 (%), where © (Eq 10) uses N samples.

Theorem 2 follows by combining all these bounds. See Appendix B.2.6 for a complete argument.
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5 Experiments

In this section, we provide experiments on synthetic and real-world data to validate our theory.
For all experiments, we estimate variance of the entries of 74j, (see Eq 7) by scaling the output of
Algorithm 1 by np (A1 — A2).

5.1 Synthetic data experiments

We provide numerical experiments to compare Algorithm 1 (OjaVarEst) with the multiplier boot-
strap based algorithm proposed in Lunde et al. [2021]. As discussed in Section 3.1, given a dataset
Dy, := {Xi};e[)» We choose ¥ for OjaVarEst as ¥ := Oja (Dn,1mn, 2/ ||2l5) for z ~ N (0,1) and set
mi; = 3, mg = log(n), N = n. Given a variance estimate, ET%J-aVarEst, we construct a (1 — «)-
confidence interval as v + za 00jaVarEst-

For the bootstrap algorithm, using Algorithm 1 in the aforementioned paper, we use b bootstrap
samples to generate estimates v*(), ... v*(®) and measure the empirical variance by computing the
average squared residual with ©. Again, given a variance estimate, 6%00tstrapoja, we construct a
(1 — «av)-confidence interval as © + zg GBootstrapOja-

We also use the data generation process proposed in Lunde et al. [2021] for our experiments. Specif-
ically, we begin by generating independent samples Z;; ~ Uniform(—+/3,v/3) for indices i € [n] and
J € [d]. Next, we define a positive semidefinite matrix K with entries K;; = exp(—c|i — j|) using
the constant ¢ = 0.01. With this matrix, we construct a covariance matrix ¥ via ¥;; = K (4, j) 0, 05,
where the scaling factors are specified by o; = 5i77 for f € {0.2,1}. We finally transform the
samples as X; = EI/QZZ-.

Computation Time Comparison

—#-Bootstrap (b=1)
—+-Bootstrap (b=10)
25 Bootstrap (b=20)
i -#-Bootstrap (b=50)
+-OjaVarEst (Our Algorithm)

Time (seconds)

100 500 1000 1500 2000
Dimension d
Figure 1: Time taken by the bootstrap methods and the OjaVarEst algorithm. Experiments verify
that our proposed algorithm is as fast as bootstrap with b = 1.

The first experiment (see Figure 1) compares the computational performance of OjaVarEst with
bootstrap to measure variance, varying the number of bootstrap samples, b, and recording perfor-
mance for different values of d with a fixed n = 5000 and S = 1. We note that the performance of
our algorithm is computationally at par with bootstrap when using only 1 bootstrap sample, and
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is substantially better if the number of bootstrap samples increase. This is to be expected since for
our algorithm, only two passes over the entire dataset suffice, whereas for bootstrap, b bootstrap
vectors are required to be maintained, which slows computation by a factor of b. Furthermore, it
also requires b times as much space to maintain b different iterates, which may be costly in context
of training large models.

‘ Dist. 1 (8 =1), Coordinate 1 ‘ Dist. 1 (8 =1), Coordinate 2
(n,d) | OjaVarEst BS (b=1) BS(b=10) BS (b=20) | OjaVarEst BS (b=1) BS (b=10) BS (b= 20)
23, 2¢3 | 96.50% 65.00% 93.00% 95.00% 94.00% 69.50% 91.00% 91.50%
5e3, 2e3 | 95.50% 73.00% 91.50% 94.00% 95.50% 73.00% 89.00% 92.00%
led, 2¢3 | 96.00% 69.00% 93.50% 94.50% 96.00% 71.50% 93.50% 96.00%

| Dist. 2 (8 = 0.02), Coordinate 1 | Dist. 2 (8 = 2), Coordinate 2
(n,d) | OjaVarEst BS (b=1) BS (b=10) BS (b=20) | OjaVarEst BS (b=1) BS (b=10) BS (b= 20)
23, 2e3 | 94.50% 74.00% 87.00% 93.50% 94.00% 75.00% 86.50% 92.00%
5e3, 2e3 | 96.00% 71.00% 87.50% 92.00% 96.50% 72.50% 87.00% 93.00%
led, 2¢3 | 94.00% 65.00% 95.00% 94.00% 94.50% 66.50% 94.50% 93.50%

Table 1: Coverage statistics for our algorithm, OjaVarEst, and the Bootstrap(BS) estimator, with
varying bootstrap samples (b = 1,10,20), data distributions (§ = 1,0.02) and sample sizes (n =
2000, 5000, 10000) with a fixed dimension d = 2000.

The next experiment (Table 1) compares the quality of the variance estimates of our algorithm,
&%javarEst with that of bootstrap a—%ootstrapOja for different number of bootstrap samples, b, and
distributions, 8. We record the average coverage rate, which is the proportion of times the confidence
interval provided by the algorithm contains the coordinate of the true eigenvector, for a target
coverage probability of 95% for the first two coordinates of the eigenvector. OjaVarEst performs
similarly to Bootstrap with b = 20. However, as shown in Figure 1, the bootstrap method is 20
times slower. The time taken by bootstrap with b = 1 is similar to OjaVarEst but has a significantly
worse average coverage rate.

Our final experiment compares the Algorithm 1 with m; = 3 to using just the mean (m; = 1).
Even with the choice m; = 3, the uncertainty in variance estimation is reduced.

5.2 Real-world data experiments

We provide experiments on two real-world datasets in this section. For each dataset, we show the
95% confidence intervals and plot the top 20 coordinates of the true offline eigenvector (red dot),
used as a proxy for the ground truth.

Time series+missing data: The Human Activity Recognition (HAR) Dataset [Anguita et al.,
2013] contains smartphone sensor readings from 30 subjects performing daily activities (walking,
sitting, standing, etc.). Each data instance is a 2.56-second window of inertial sensor signals repre-
sented as a feature vector. Here, n = 7352 and d = 561. For each datum, we also replace 10% of
features randomly by zero to simulate missing data. Even in this setting, which we do not analyze
theoretically, most of the top 20 coordinates of the offline eigenvector are inside the 95% CI returned
by our algorithm (see Figure 3).
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Variance Estimates with m .= 1

%1078

25

==True Variance
OjaVarEst Uncertainty

~+QOjaVarEst Mean
Bootstrap Uncertainty

~e-Bootstrap Mean

Variance

0 T T T T T T T T T 1
1 2 3 4 5 6 7 8 9 10
Coordinate

(a) Mean (with m; = 1)

10 Variance Estimates with m = 3

~8=True Variance
OjaVarEst Uncertainty

-+QjaVarEst Mean
Bootstrap Uncertainty

-8-Bootstrap Mean

Variance

Coordinate

(b) Median (with m; = 3)

Figure 2: Comparison of Median and Mean in Algorithm 1 for n = 5000, d = 2000, 8 =1, b = 10.

Class 0 1 2 3 4 5 6 7 8 9
sin? error 0.12 0.07 0.18 0.32 0.53 0.18 0.08 0.09 0.20 0.17

Table 2: sin? of the angle between the offline eigenvector and the subsampling eigenvector output
by our algorithm, computed separately after filtering the MNIST data for each class.

Image data: We use the MNIST dataset [LeCun et al., 1998 of images of handwritten digits (0
through 9). Here, n = 60,000,d = 784, with each image normalized to a 28 x 28 pixel resolution.
We see (Figure 4) that for the classes where Oja’s algorithm converges (small sin? error in Table 2),
most of the top 20 coordinates are inside their confidence intervals (Cls). Notable exceptions are
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Figure 3: Uncertainty Estimation for HAR dataset (n = 7352,d = 561). The sin2 error of Oja’s
algorithm is equal to 0.057 for this dataset. (a) plot of the eigenvector with 95% confidence interval
for all coordinates and (b) the same plot zoomed in on indices 170-310 for exposition.

classes 3 and 4, where several of the top 20 coordinates are not contained inside the corresponding
ClIs. This is expected because our theory is applicable when Oja’s algorithm converges.

In this work, we develop a novel statistical inference framework for streaming PCA using Oja’s
algorithm. We derive finite-sample and high-probability deviation bounds for the coordinates of
the estimated eigenvector, establish a Bernstein-type concentration bound on the residual of the
Oja vector, establish a Central Limit Theorem for suitable subsets of entries, and devise an efficient
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Figure 4: Uncertainty Estimation for MNIST dataset.

class is provided in Table 2.
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The sin? error of Oja’s algorithm for each

subsampling-based variance estimation algorithm. By leveraging the structure of the Oja updates,
we provide entrywise confidence intervals, bypassing expensive resampling techniques such as boot-
strapping. Our theoretical results are supported by extensive numerical experiments, indicating
that our proposed estimator achieves accuracy similar to the multiplier bootstrap method while

requiring significantly less time.

We believe that our subsampling algorithm can be adapted to any SGD problem where the covari-
ance matrix of the estimator 6,, scales as ¢, times some scale-free matrix V, where ¢, is known. This
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structure aligns with subsampling and m-out-of-n bootstrap methods, where the variance estimated
from a subsample of size m is scaled by m/n to approximate the variance of the full sample esti-
mator. Our findings also highlight the potential for improved uncertainty quantification techniques
in streaming non-convex optimization problems beyond PCA, since Oja-type updates can be found
in many important non-convex optimization algorithms such as matrix sensing, matrix completion,
and subspace estimation. Further directions include deflation-based methods to apply our method
to variance estimation for top k eigenvectors.
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The Appendix is organized as follows:

1. Section A provides some useful results used in subsequent analyses

2. Section B has the Bias and Concentration calculation of our estimator designed in Algorithm 1
3. Section C provides high probability Entrywise Error Bounds on the entries of vy,
4

. Section D provides a Central Limit Theorem for the entries of the Oja vector, voj,, Which ties
the results developed in Section B to provide confidence intervals

A Utility Results

Lemma 7. For any integer n > 2, real € € (0,1), and reals {ai}iem,

2 n—1g 2 - 2 2 2(n - 1) ¢ 2
(1—e€)aj — Z%’S(Zai) §(1+e)a1+72ai.
¢ = i=1 ‘ i=2
Proof. We begin by writing
(al + Z ai) =al+ 2a1< ai) + ( ai> . (21)
i=2 i=2 i=2
By Cauchy-Schwarz inequality,
n 2 n
0< (Za) <mn-1)Y d. (22)
i=2 i=2

The cross-term can be bounded using the inequality

1 1
—ex2—7y2§2xy§6332+*y2
€ €

with = a; and y = Y " 5 a; to get

n n

1 2 -1
2a1 (Z ai> > —ea? — 7( ai> > —eat — n Z a?,
€ \4 €

=2 =2 =2

and

1=2 1=

- 2, 1y 2 o, n—1g~ o
2a1<2ai> <eaj + E(Zm) < eaj + 62%.
1=
The proof follows by using the above inequalities in (21) followed by another application of (22). [

Lemma 8. Let V be the asymptotic variance matriz defined in Lemma 1, and let vojy be the Oja
vector as defined in (6). If the coordinate-wise bound

A%
T T kk
€; (Uoja - (Ul Uoja) Ul) ‘ S Cd,n 7
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holds for every i € [d], where C’in hides logarithmic factors in d,n, then

$in2 (Vgja, V1) = Z (eiT (’Uoja - <U1TUoja) v1>)2 < Cin()\l_v/b)g,

ield) n

where V is the matrix variance statistic defined in Assumption 1.

Proof. By the definitions of V and Ry as in Lemma 1,

2 Tr (V) Ci, \Tr(Ry) ([ Ci, \1 My,
Z (eiT (Uoja — (UIUoja) 01)) N Cﬁ,n o < <)\1 _)\2> n = <>\1 W nZng()\l — )

i€[d] <k<

Cin TrEMVL(A-S) v (A-2)V/]])

N (/\1 - )\2)2 n
Ch, E[M(VE(A-S)vo (A-%)V])]
(A1 = A2)” n
_ Cin o[E[(A-2)ViV] (A-5)]u
(A1 = A2)? n
< Cg,n UI[E [(A B 2)2:| 1 < 02 v
= 2 = Ydn 2,
()\1 — /\2) n (/\1 — )\2) n
O
Lemma 9 (Choice of learning rate). Let n, := no(‘;\?g_(f\g) for a > 1. Then, under Assumptions 1

and 2
1. ndexp (—nyn (A1 — A2)) = o (1).
log(d M3
2. max {nn, A1g£A)2} )\173\277% =o0(1).

o2 (222 + M3) <1

Proof. The above conditions on 7, imply Corollary 1 in Lunde et al. [2021]. Let’s start with the
first condition. We have

d
ndexp (—nnn (A1 — A2)) < ndexp (—alog(n)) = = 0(1), using the bound on d

na—l

For the second condition, we first note that for n > alog (n) provided by Assumption 2,

log (d)
R sw )

Now for the second condition, we require,

a®> M3 log? (n)log (d)
TL2 ()\1 — )\2)4

=o(1)
which is again ensured by the condition on n in Assumption 2. O
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Lemma 10. Let t be a positive integer, § € (0,1), and let I be an interval in R. Suppose
ai,az, . ..,a; are independent random variables such that P (a; € I) > 3/4. Then, fort > 8log (1/6),

P (Median ({ai},eq) € 1) =216,

Proof. Since I is an interval, the median does lies in [ if at least half the a; are in I. Let b; be the
indicator that a; ¢ I, and let B = Zie[t] b;. Then, by, bs,...,b; are independent Bernoulli random
variables each with mean at most 1/4. By Hoeffding’s inequality,

P (Median ({ai}ie[ﬂ) ¢ I) < P(B>t/2) <exp(—-2(t/2—E[B])*/t) < exp(—t/8) < 4.

B Estimator Concentration

Lemma 2. [Error Decomposition of voja| Let voja, U be defined as in (6) and (10) respectively. Then,
Voja — (’DTvoja)'D = \I/n,O + \I/n,l + \Ijn,2 + \I/n,S + \Iln,4> (19)
where

U, := (v?voja)vl — (17Tvoja)f),

VLVan,lvlsign(vIuo)
\Iln,l =

(1 + 77”)\1)” ’
VAV (g Tk )ursign(v] uo)
n,2 «— (1 +77n>\1)n 5
1 1
W,3:= V.V Bug — ,
+ [ Bnuolly, v uo| (1 + nAr)"
T T
o ViV B,V V  ug (20)

n4d ‘= ‘UIUO‘ (1 +n)\1)n.

Proof. We have,

Voja = (0] Voja)v1 + VL V| voja
VJ_VJ_TBnuo
HBnUOHQ
VJ_VIBnuo
Cn
VLVIanlsign (Q}iruo)
(1 + nn)\l)n
ViV (B, — E[B,))visign(vy uo)

(1 + "7n>\1)”
VLVI(Zk21 Tn,k)vlsign(vruo)
(1 + )"
= (ﬁTvoja)TNJ + U0+ Vnt+ Uno+ Ups+ Uy

= (vlTvoja)vl +

= (U;rvoja)vl + + \Ijn,B

= (Uirvoja)vl + + \I’n,S + \Ijn,4

= (U;rvoja)vl + + \I]n,3 + ‘Ijn,4

+ U, 3+ U, 4, using Theorem A.1 Lunde et al. [2021]

= (UlT%J'a)Ul +
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Lemma 11. Let ¥, ; be as defined in Lemma 2. Then,

sign (vlTug)

n
Uiy =Y, for Yo=Y Xj' and X} == = nEwy
n

J=1

VATV (A - 2) v

1+nnXit1

where A € RU=D*=1) 45 o diagonal matriz with entries A, (i,1) = e vt

Let {Ai}z‘e[n] be symmetric independent matrices satisfying E [4;] = 3, ||E [(AZ — 2)2] H2 <V and

|A; — 2|5 < M. Define,

Vjen], X7 :=VIATIV] (4 —S)vy, and Yy, = Y X7
Jj€ln]

B.1 Estimator Bias

Proof of Lemma 1. Using the definitions of ¥, and X" from Lemma 11, we have

1 [\pn,qull] ~E [YnYnT} -3 E [X;?X,?T}
T jakelil
= Z E [X]’-”‘X;ﬁ} , since A;, Ay are independent for j # k
J€ln]
1 A A
= VIANTIVIE (A — 2)viv] (A =) | VATV ]
Ty 2 VAV [(4) = D)oo (4) = 2)| VATV
m S ATVE [ — ) vyo] (4 —2)} VoA | v
" J€[n]

=M

Recall R™ := AT IMA" and consider (k,1)™ entry of R(™).

1
(147A1)2 Zje{n

1 — & s 1 — 1—(dkdl)">
An IMA" e — M, dpd))" " = M ( .
ng[n] e klj;( kdi) M\ 14
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Let Ro(k, l) = MM/(Q)\l — A1 — )\g_,_l). Note that

M (2A1 = Ak = M) 1 (A1 = ) (A = At

L+ 1A (1+n))?
~ 0 (2A = A1 — Aig) [ (M= X)) (M= Aig) ]
N 14+ 7\ (T+nA1) (A1 — M1 + M1 — Ng1)
> M (221 = Ak = M) {1 o (A = M) (M — )\l+1):|

1 —dpd; =

- 1+nA (A1 = M1 + A1 — A1)
N (2A1 — Apg1 — Aig1) :
> 1- n - ) -
> 15 nhy [T —npmin {A1 — Agyp1, A1 — Ay )]
n (221 — A - A
> n ( 1 k+1 l+1) [1 - T]n>\1]
1+ 77)\1
> Nn (2A1 — M1 — A1) (1= O (A1)
Then,
(n) My (14 O(naA1)) My
R™ — Ro(k, 1) /n, = _
H olk: D/ M (20 = M1 = A1) (L4+901)° (@A = M1 — Aeg)
My My
P VRS S VR LAY LA R ) W S Wiy
My
M (2A1 = A1 — Aeg1) (A1)
So we have:
(n)
Uanl — Ro(k, l)
= O(np\
Finally, we have:
n)\ 5
I R™ — Rollp < ~ " || M| p /2
Al — Ag

Note that
1A% < E [[|(A: = Dyowe] (4; - D)|] <E[J14: - D7) < M3,

B.2 Estimator Concentration

In this section, we estimate the bias of the variance estimate output by Algorithm 1. In the entirety

2
of this section, we assume that the vector @ is “good”, i.e sin? (7, v1) < 10%5;/ 9) (Zfﬁs) , which happens

with probability at least 1 — 4. Recall that v <— Oja(Dn,nn, uo) is the high accuracy estimate of

v1. We present all results using a general n number of i.i.d. samples per split, which will later be

2
replaced by n/(mims) as required by Algorithm 1. We denote s, := logg}g/ 9) (:\7?%\22) to be the upper

2

bound on the sin® error of the Oja vector due to Jain et al. [2016]. While our results henceforth are
written using s, and s, is not guaranteed to be smaller than 1, it is straightforward to replace it
by min {s,, 1} since the sin? error between any two vectors is always at most 1.
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B.2.1 V¥, Tail Bound

Lemma 12. Let W, be defined as in Lemma 2 for veja defined in (6). Let {‘P(i)o}ie[m] and

n,

{Uc(’j;} ] be m #id instances of W, o and veja respectively. Then, for any k € [d],
em

Tg® )’
(ek \I’"v‘)) Clog (5) nvMj
Pl =% ) | 20

i€[m]
Proof. For any i € [m],

o)

= ‘e,;r <vlv;— — fﬁ)T) véj;

< Hvlvir —1717TH = V/2sin (3, v1)] .

The result now follows from Corollary 1 of Lunde et al. [2021], which states that with probability
at least 1 — ¢,

Clog (3) nvM3
2~ B 2
sin® (0,v1) < 5 =)

for some universal constant C > 0. O

B.2.2 V,; (Hajek Projection) Concentration

Lemma 13. Let ¥, 1 be defined as in Lemma 2 for ug = g/ || g, with g ~ N(0,14). Let {\If(i) } -
1€lm

n,1

and {g(i)}ie[m} be m iid. instances of ¥y, 1 and g respectively. Then, for any é € (0,1) and k € [d],
with probability at least 1 — ¢,

B (TH)” 1,9 < L0 - sbitstin
’ - mo

m

where by, 1= HerkHQ.

Proof. Recall the notations X7 = VJ_A?__jVI (Aj = X)vy and Yy, = 370, X7 from Lemma 1. Since
VIVIXP = X7 and Tp1 =m0 Yo1—y X[, €f W1 can be written as
n

Y ViV X7 =
j=1

e;VLVmelvlsign(vIuo) _ nnsign(vfuo)
(I +np )™ (14 nnA1)

. T
msign(vy uo) 7
—————€. Y. (23

T
ek \117%1 =

Next, we bound the variance of (e] Y;,)2.

vt =Y (dxp) 23 () (1 xp).

J=1 J<y’

Most pairs of summands are uncorrelated.
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3 Cov( )2, )2> = 0 for any distinct j,j’ € [n].

/—\

e Cov )2, )(eZX;?)) =0forany £ € [njand 1 <j < j' <n.

o Cov( X7), (e?X?)(eEXZ)) =0forany 1 <j<j <mand1l</¢</{ <nsuch
that ( ) 7é (ﬁ 7).
It follows that
Var ( ) Z\/ar ( ]”)2) +4 Z Var <(62X;L)(62X}3)> . (24)
J<j’
We bound both terms separately. By Lemma 1, the second term can be bounded as
43 Var ((egxy)(eng@)) =43 E [(e,jxjﬂ)?] E [@X}%)?}
i<J’ 1<y
~ T yn\2 T yn\2 T 2 2
§2ZZ[E[(eka) ] [E[(ekX ) } — oF [(ekY) ] . (25
j=1j=1

Next, we bound the first term of Equation (24). For any j € [n],

‘e;—X;L

- ‘ekTVLATjVI(A ) vl‘ < Hek VLH ‘

N\ VT (45 = Do | < brlla; -

which implies

ZV&r( ) Zn:[[ ”} [ﬁnAj—zHﬂgbﬁMin. (26)

J=1 J=1

3

Combining equations (24), (25), and (26) and using equality (23),

Var (e ) < 26 (6] 00)?)]" 4 2 pnatn

By Chebyshev’s inequality, for any ¢ > 0,

P (‘jﬂ S5 (1) [ ()]

T 2 212 2
The result follows by setting t = V2E[((ef q’?%i}%JrnnbkM‘l‘/ﬁ.
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Remark 6. Note that in Lemma 13, one can always provide a uniform bound on all elements using
a Bernstein-type tail inequality rather than a Chebyshev bound. This is possible because we can use
our concentration inequality in Lemma 26. However, there are two pitfalls of this approach; first, for
failure probability &, the errors of the lower order terms (¥, 2, Wy, 3, Uy, 4) still depend polynomially
on the 1/6 (see Lemma 17, 19, 21), which limits the sample complexity of our estimator to have a
poly(1/9) factor, and secondly, Lemma 26 requires a stronger a.s. upper bound on A; —X fori € [n].
Howewver, we can get both a uniform bound over all coordinates k € [d], and a log(1/0) dependence
on the sample complexity, using our median of means based algorithm (Algorithm 1).

B.2.3 V¥, tail bound

We start by providing a tail bound on higher order terms in the Hoeffding decomposition of B, —
E[B,], which may be of independent interest. Let S, 1 := {{i1,...,ix} : 1 < i1 < -+ <y < n}.
Consider a general product of n matrices, where all but k of the matrices are constant, and k indexed
by the subset S are mean zero independent random matrices. With slight abuse of notation, let
Mg ; denote a constant matrix M; with ||M;|| =: m; when ¢ ¢ S and W; when i € S, EW; = 0,
Wi, i=1,...,n are mutually independent.

Lok == Z HMS,n+1—i (27)

SeSnyk =1

Let T, be a scaled version of the k" term in the Hoeffding projection of the matrix product
By =1, (I + nnA;). Let W; = A; — 3. We want a tail bound for Zk22 T k-

Lemma 14. For S € S, i, denote a function Mg; = nn,(A; — X) when i € S and I + n,% when
i ¢ S. Suppose ¢ > 2 and M, are such that E[||A; — ZHq]l/q < My. Then, for any 1 < j <n and
any p 2 q,

o (M gy/mp\?
g TnJ < 2d1/p(1 +77n)\1) <771 T 1 B\ ) s
E>j v TinA1

2N Mgy/np <1

as long as Trmon
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Proof. We start by deriving a recurrence relation for 7}, . as follows:

n
Tk = Y [[Msnii

Ses,, ) i=1
n n
= Z H Msp1-i+ Z H Ms nq1-i
SES, xS i=1 S€S, pmes i=1
n n
= Y T+ ][[Monr—i+ D mnlAn =) [ Msnr1-iMspni1—i
SGSH,L]C =2 SeSn,l,k,l =2
n—1 n—1
= (I + nnz) Z H MS,n—i + nn(An - Z) Z H MS,n—i

SESn_Lk lzl SESH_L;@_I Z:1
= (I + nnz)Tn—l,k + nn(An - E)Crn—l,k—l-

Next, we apply Proposition 4.3. of Huang et al. [2022] to bound |HTn,k|||p o~ To apply the proposition,
we require E [, (Ap, — X)Th—1 k—1|(I + 7 X)T—1,%] = 0. Indeed, by independence of Ay, As, ..., Ay,

2 [nn<An - Z)Tnfl,kfl‘(l + nnZ)Tnfl,k] =L [nn(An - 2)] E [Tnfl,kfl‘(l + nnE)Tnfl,k} =0.
Therefore, the proposition implies that
2 2 2
Tkl g < IICE 4 10 E) T el o + (2 = Dl (An = E) Tt g1l -
From Equation 4.1. and Equation 5.3. of Huang et al. [2022],
I+ 70 =) Tl < 1T + 005l IT-14ll,,» and
17 (A = £) Tl < 1 (14w = SI9Y N D1l

Plugging these bounds into the recurrence yields

2 2 2 2
IT0ill?, < (14 md) 2 Tpr 2, + 2 AME(p = DE [ Ay = S99 1 Ty a2,

Letting fy, 1, == H]Tnkm; ;> We have the following recurrence for all n > k > 1:

foe < A+ M) fro1 e + M — 1) fam1 -1

. L fn,k
Defining an i := G S5 B pae e

we recover an inequality resembling Pascal’s identity:

Qn k < Qp—1,k + an—1,k—1-

Moreover, a, = 0 for all n < k and a0 = (1 + 9, A1) " 2"||(1 + nnE)”\H;q < d?/?. Inducting on n
and k shows
<a?r(").
Un ke = <k’
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Translating this back to the bound on the norm of T;, 1, we conclude

n _
1Tl < \/ (110200 (A3 = D) (1) < P15 ) M)

Mg/n
Since norms are sub-additive and nq qu T < 2,

Z Tk < Z dl/p(l + nnAl)n_k (Uan\/@)k

k>j k=j

: = dYP(1 + nu\)" Zn: < W)

—j 1+ nn)\l

J
< 2dYP(1 + )" (”Hf} V;"’) .
nAl

O

Lemma 15. For S € S, i, denote a function Mg; := n,(A; — X) when i € S and I + n,X when
1 €S. Then, for any 1 < j<n, and 2 < q <4logd,

ZT s 3(1 4+ npA)" (nn./\/lq\/éln logd)j

_1
J4logd

P

k>j
as long as 4n, Mgy/nlogd < 1.

Proof. Let p = 4logd; note that the assumption nfi\;qﬁ < 1 holds. By Markov’s inequality,

Equation 4.2. of Huang et al. [2022], and Lemma 14,

_ y
P Tos|| = (4 mad)"™ | < inf (14 mad)") 7 E | |3 T
k>j p= k>3
- >
. _pl
g;ng((lJrnn/\l)"t) E ZTn,k
= v.q
1p (Mg \ P 4logd
- 2d /p< THmaT ) ( (mMgy/Anlogd)’ ) o8
= t = t '

for all ¢ > 0. The lemma follows by setting ¢t = 3 (nnM v4nlog ) §1logd 41°gd

32



Lemma 16. Let W, o be as defined in Lemma 2 with uo = g/ ||g||y. Then, for any 6 € (0,1),

12ngM%nlogd) S1_4
— 5 )2 )

Proof. By Lemma 15, with probability at least 1 — ¢,

Pmeﬂs

ZT < 3(L+mpA1)" (%sz 4nlog d)2 < 12(1 + nn)\l)"n%./\/lgnlogd
k>2 k| = 5413gd \/g '

Conditioned on this event,

o HVLVI(Z;@ Tn,k)msign(vlTuo)H 3 ViVl Hz,@ T ‘ on |
A (L ) - (1 +mah)”
< HZ’“ZQ T"’k‘ < 12n2M3nlogd
B (1+77n)\1)n o \/S
O
Lemma 17. Let ¥y, 9 be defined as in Lemma 2 for ug = g/ ||gl|, with g ~ N(0,14). Let {\I'S)z} .
Jaglm

and {g(i)}ie[m] be m iid. instances of Wy, and g respectively, and let 6 € (0,1). Then, with
probability at least 1 — 9,

Tg® )’
Zz‘e[m} (ek ‘I'n,2) < 144bz77ffb/\/l‘21n2 log? d

m 1)

for all k € [d], where by, := HVIekHQ.

i

Proof. We have

‘e;—VLVI(ZkZQTn’k)vlsign(vfuo)‘ ‘e;VLVIVLVI(ZkZQTnvk)vlsign(vfuo)

(1 +77n)\1)n B (1 +77n)\1)n

bi HZk22 Tn,k ‘
(1 + 77n>\1)" .

T
‘ek \IITL,Q

Ty, T
== ‘ek Vj_ Viang

< [edvi] Iwnzll <

By Lemma 16, for each i € [m], with probability at least 1 — %,

T () 1202 M3nlog d
e, U < .
‘ k *n2| = \/W

By a union bound, the above holds for all ¢ € [m]| with probability at least 1 — 4. Under this event,

(i) 2 ' 12bn2 M3nlogd
Zze[m} (el—lc—\ljn,Z) < Eze[m] ( \Vo/m B 1441?%7]3/\/{%712 10g2d
m - m B ) '
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B.2.4 V¥, 3 tail bound

Lemma 18. Let ¥, 3 be as defined in Lemma 2 with ug = g/ ||g|ly- Let n, be set according to
Lemma 9. Fiz 6 € (0,1). Then for any € > 0 we have with probability at least 1 — ¢,

1
2

n M3

v < s + /sn,
[¥nslly S /5 63(1 — 0) log~*(1/9) 57
1
where s, 1= Cloé(“) (ZTMQ for a universal constant C > 0.

Proof. Let ¢, = (1 + nn/\l)"|ugv1|. We first note that

1 1 ViV Buug | Bruoll,
Uall, = VLV B U0<_) :HL e
” n ”2 1 n ||BnU0H2 Cp 2 ||BnUOH2 n 2
T
< ' VIV Bhug nol|o _ 1‘ _ (28)
HBnUOHQ tn

We bound each of the two multiplicands separately. The first term corresponds to the sin error
between vqj, and vy:

2
ViV Buug ? (v{ Bruo) . 9
= || =1— 3 = sin” (vgja, v1) .
HBnUUHQ HBnUOHQ
By Corollary 1 of Lunde et al. [2021],
2
ViV Bhug
P(||—L—"1 >s,]| =P (sin® (vja,v1) > sn) <. 29
O\&mm : (i e 01) > o) )

It follows that for any € > 0,

VoV Boug || B
P ([|Tnsll, > €y/5n) < P '“”“O > s +[P<’””“°”2—1’ >e> (30)
([ Bruoll, Cn

P [L o

To bound the second term, we adapt the proof of Lemma B.2 in Lunde et al. [2021]. Letting
a] = ‘Ul

N | Bn VLV uol|

‘IIBnUOI _ 1‘ < |[1Brvrar|| = [lar (I + 7 3)"v1 |

Cn, tn
MBmwwI+%m%w |BnViV o]
14+ npA)” Cn
HBn - [E[ n]”op + HBnVJ_VfUOH . (32)
(1 +77n)\1)n n
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For the first summand, using Eq 5.6 of Huang et al. [2022] with ¢ = 2 and by Markov’s inequality,

B, —E|[B, E|[|B, — E[Bn]|I2 20 M2 2
<|| [Balllop ) _ [ ) _ CgnrB(+ 0ga) )

(1 + nn)\l/n)n 5 (1 + 77n>\1)"62 N 62

For the second summand of equation (32), define the event

|BnViVTiuo|* _ Clog(1/d) T BT
G = { T2 < 52 trace (VIByB,Vi) ¢ .
By Proposition B.6 of Lunde et al. [2021], P(G) > 1 — ¢ where C' > 0 is some universal constant.
Since P(A|B)P(B) = P(AN B) < P(A), Markov’s inequality together with Lemma 5.2 of Jain
et al. [2016] with V < M3 yields

T
Cn, 2
1 € 52
<— Pt v,BIB, vy > — .~
=1-9 < race(VLB, BV 2 7 Clog(1/5)>
n M3 exp(nnZ (223 +M3))
o1 Cdexp (=2nan (A1 = A2) + mpn (A + M3)) + T=2 S B T o 35)
~1-6 €2621og™ 1 (1/6)
ennM?3
- 1 Cdexp (=2man (A1 — A2) + n2n (A 4+ M3)) + 2(217)\22) (36)
—1-9 €2621og™t (1/6) ’
where the last bound follows from Lemma 9.
Finally, define the error € as
1
5 N L
dexp (—2n,n (A1 — A2) + n2n (A2 + M3)) + 22\ 2 log (d
c= o ( ( 1 2)) (A1—A2) + nn\/ﬁMZ Og( ) (37)

53(1 — 0) log~*(1/4) 53

Substituting € in equations (36) and (33), and combining with equation (32),

| Bruo|| | BV VEug|| e [Bn —E[Bulllo, €
Pl|l——— —1 <P|—m—— — P — 38
<‘ n Z€)= Y R N CR T W TR (38)

<P (I!antz/fuoll . ;yg> PG 4P (H(lin;nfiinjz')"ip - ;) < 35
(39)
From equations (31) and (39), we conclude
P (| Vn3lly > ey/sn) < 40.
O
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Lemma 19. Let ¥, 3 be defined as in Lemma 2 for ug = g/ ||glls with g ~ N(0,14). Let n, be
set according to Lemma 9. Let {\I/ni)?,} ] and {g(i)}.e[ | be m ii.d. instances of V, 3 and g

> ieim i€m ’
respectively. Then for any § € (0, 1), with probability at least 1 — 6,

Zie[m] (eglpﬁ){%) i

m
M3
o gz [ [P (Z2mn = do) + i (7 + M) + 5 \ ynM3log? (d)
~ ok 53(1 — 6/m)log™ (m/5) 5
— VT _ Clog(§) naM3 ,
for all k € [d], where by, := HVJ_ ekHQ and sp = —53 (}\1_);) for a universal constant C' > 0.

Proof. Using Lemma 18, for any fixed ¢ € [m], with probability at least 1 — 0,

1
n M3 2
dexp (=2nan (A1 — A2) + nin (A + M3)) + (;71%22) i N Nnyv/nMazlog (d)

(#) ‘
\I[ < n B
H n3lg ~ Von 63(1 — 6)log=1(1/6) 62
(40)
Furthermore, note that
To® T T 1 1
v =le, V.V, B, —_— —
’€k n3ly = |Ck VLV Pnlio (HB’VLUOHQ Cn) )
1 1
T T T
= e, V.V, V. V| Bhu - —
LT <HBnuo||2 > :
< [ledvivl| |vavi B L
= P Lo | Bruoll,  cn 2
— by VLV Bg [ — 2| =t ‘xp(“ ‘ (41)
Lo [ Bruolly — en /|l w312
The result then follows by a union bound over all i € [m] for the event in (40) and using (41).
O

B.2.5 V¥, 4 tail bound

Lemma 20. Let U, 4 be defined as in Lemma 2 for ug = g/ ||glly with g ~ N(0,14). Let ny, be set
according to Lemma 9. For any ¢ € (0, 1), with probability at least 1 — 0,

1/2
1 eninM3 (1 + 2log (d))
Uoall < —= [ d —2nan (A1 — A 2n (A + M3 n_ 2 .
| ,4”—53/2< exp (—2n,n (M 2) + man (AT + 2))+2()\1_>\2)+77n(>\%_)\%_M%)

Proof. Recall that

_ VLV BV V | _ ViV B,V Vg
o1 wo| (1 + npAr)" vf gl(1+npA)™

[,
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To bound this quantity, we will bound its square instead. Using Markov’s inequality, with probability
at least 1 —0/2,

2 2
vl mvavTol < 2e{|vivisvivislf]

2
0
2 T
=T <E [(VLVjBnVLVfg) (vivi BV g) D
2
= F [Tr <VIB,LVLVIBJVL)} .
By Lemma B.3 of Lunde et al. [2021],

E [Tr (VEBHVJ_VIB;{VJ_)]
(1+ 77n)\1)2n

en3nM3 (1 + 2log (d))
(A = A2) + 1 (N = A3 = M)

< dexp (—2?7nn (A1 —A2) + 7772{” ()‘% + M%)) + 9

Also, with probability at least 1 — /2, vy g| > 6/2 (see Proposition 7 from Lunde et al. [2021] for
anticoncentration of gaussians). Combining the two bounds yields the result. O

Lemma 21. Let ¥, 4 be defined as in Lemma 2 for ug = g/ ||g|l, with g ~ N(0,13). Let n, be

set according to Lemma 9. Let {\112)4} ) and {g(i)}ie[m] be m iid. instances of ¥, 4 and g
7 Jigm

respectively. Fiz 0 € (0,1). Then, conditioned on &, with probability at least 1 — ¢,

Zie[m] <e;cr\1’£j,)4> i

m

< bim2
— 53(1-9)

snM3 (1 + 2log (d
(dexp (=2m0m (M = A2) +2m (A + M3)) + 5 ennMj (1 + 2log (d)) )

(A1 = A2) +1n (AT = A3 — M3)
for all k € [d], where by, := HVj—ekHQ.

Proof. Note that

2
o )2 v H2 [V BaVLV ol
<ek lp"’4) s Ve 2\ v uo| (14 npA1)”

P

Let @,(f ) correspond to the i*® instance of the random variable ®,,. Then, for any k € [d],

)
L5 (o) < el 5 g0 (12)

i€[m] i€[m]

Define the event & := {|v] g| > %} and let £@, i € [m] be the i*" instance of this event. First,
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observe that:
VjBnVLVfggTVLVIBIVL
2

(v 9)” (14 nuA1)?®

2
P —
= 02(1 4 M)
__m® E[Tr (VI B, V.VB V)]
- (52[P((€) (1 + 77”)\1)271

ijanjuoHQﬂ .

E|®,|€] =L
[ | ] (‘UIUO‘ (1+?7n/\1)n

E [VI B, ViV5%gg"ViVIBIV,

d

(43)

Now, using Markov’s inequality conditioned on ﬂie[m] E® we have with probability at least 1 —

1 .
(By i.i.d. nature of the instances) = E[E [fb(z)

£ = e@ile

" 5
__m’ E[Tr (VI B.ViV B V)] (44)
~ BP(E) (1+ nnAp)?"

The last step uses Eq 43. Using Lemma B.3 from Lunde et al. [2021], we have

E[Tr (VI BViVI B, V)] enynM3 (1 + 2log (d))

< dexp (—277nn (M = A2) +m2n ()‘% + M%)) + 9

(1+ 77n)\1)2" (A —X2) + 1 ()\% — )\% — M%)

(45)
Finally, we note that using Proposition 7 from Lunde et al. [2021], we have
C
. 5 . 1)
~ ) >1_ 9 o) | < 0y - v 0 _
Vze[m],[P(E )_1 ~ =P Q}g _;}Ha)_{;}m 5 (46)

The result follows by substituting (45) in (44) and then using (42), along with the union-bound
provided in (46). O

B.2.6 Total Variance Bound

We now put together the results from Lemmas 12, 13, 17, 19, and 21 to provide a high probability
bound on the error of the variance estimator Algorithm 1.

Figure 5 summarizes how the variance estimation algorithm works. The algorithm first computes
an Oja vector v using N samples. Then, n samples are divided into m; batches, with each batch
containing n/m4 samples. These n samples need not be disjoint from the N samples used to compute
the high-accuracy estimate . Then, the ¢! batch of n /my samples is split into m = mgy batches of
size B :=n/mima each. Oja vectors {9, }jE[mz] are computed on each of these mqy batches, and
T (4 =T V=) )2
5 (ex (95— (9705)0))
Groi= Y : (47)

’ ) ma
J€[ma]
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A . Coordinate-wise
Median(6y,1, 6k2, -+ Ok,m,) k | median

Figure 5: Schematic picture of Algorithm 1

for all k € [d]. The overall estimate for the variance of the k" coordinate is Median ({6“} Ee[m1]>'
Since this variance scales with the inverse of the learning parameter np, we define the scale-free
Ak = Median ({6';375}[&[7”1}) /(nB (A1 — A2)). For each k € [d], define the quantities

2
E(eF9s1)"] 5\ - 2
nB M3

by = He;—VL

) Cr =

Under this setting, we show that each &,% , approximates the true variance with at least 3/4 proba-
bility. We assume that the learning rate np satisfies
1 Al — A9

< — .
Y Y Ve

It can be verified that this assumption is satisfied by the bounds on B provided in (56).

(48)

Lemma 22. For any ¢ € [m1] and under assumption 48, with probability at least 3/4,

1 2 Rlog?B [ My \> logN [ M
6/%75773()‘1>‘2)611—W6k‘§8<+m>773()\1)\2)e;\/6k+0( k08 ( 4 ) + 0g < 2 >

Jm BY2mi2 \ A — o N O —x
L0 b2m? log? dlog* B < Moy )4 MMzZlog? B (49)
B? AL — Ao B2(M\ — X))

Proof. Drop the index ¢ for convenience of notation. Let dy := 1/20. By triangle inequality,

5']% — B ()\1 — /\2) ezvek‘ S

2 2
&i,z -L [(62‘113,1> } ‘ + ‘IE [(e{\l/m) } —n5 (M — A2) €] Ve
(50)

and by Lemma 1,
U%M%)\l < )\1./\/1% logQB

< < 3
A1—A2 T B2(\ — \o)

2
’[E [(e;—\IJBJ) ] —np (A1 — A2) e,;r\/ek

(51)
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By equation (19) and Lemma 7, for any € € (0,1),

2
62— [(e,jxpB,l) }

()
<010 Zje[m] (e;\lfé,l) T {(613‘1’3,1)2] b [(6;\1}371)2]

m

. (Tu) ¢ (cF0) + (cTo) (o) )
j€[m)]

+

m\oo

m
J

‘=€small

Set € = 2/4/m. By Lemmas 12,17, 19, and 21, along with Lemma 9 to bound nd exp (—n,n (A — A\2)) =
o (1), we have with probability at least 1 — 44y

Csmall nNM3 nsBM3logd

b2nEMaB%log? d + spbimnsBM3log? d + bym?

8/e ~ A — Ay 2()\1—)\2)+7]B(>\%—)\§—M§)
< log N My \? n b%m log? dlog* B My \? n bzm2 log dlog® B My \*
~ N AL — A9 B2 AL — Ag B2 M=)
(53)
where we used Assumption 48 to bound the last term. By Lemma 13, with probability 1 — d,
T )
Syem (L VE)) [ o] VEE [T Ws)?] + i MEVE
- (ek ‘I/BJ) <
m mdg
log?B [ My \>
< T 2} k
< 4¢E [(ek V)| + 517 <A1 = Az) (54)

We now combine equations (51), (52), (53), and (54) in (50) to conclude that with probability at
least 1 — 5dg = 3/4,

b2 log® B < My nE M3\
A

2
~92 T 2
Gre — 1B (A1 — A2) ¢ Vek‘ (1+e) (46773 (A — A2) e, Ve, + B \ o = >\2> > +(1+¢€)(1+ 46)7/\1 o

which simplifies to the lemma statement.

O
Next, assume that the following relations hold:
mB
N 2 55
logB 0g< logB) (55)
2
B >m? (’“) ( ) log® (B) log? (d) . (56)
/\/l4>4 9 m)\1 log B
B Zmax [m | — log” B, 54— | - 57
~ ( <0k> <M2 P a0 ) 57
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These assumptions on N and B subsume the assumption on the learning rate np in equation 48.

Using equation 51 and the relation

2
i [(elZ\IIBJ) } _ npc; M3
m a m )\1 — )\2'

(58)

and comparing it with each term in the smaller order error of Lemma 22 yields the following Lemma.

Lemma 23. Under assumptions 55, 56, and 57, we have the following upper bound on the R.H.S
of Eq 49 in Lemma 22.

10gN< Ms )2 bilog23< My >2+bimglog2dlog4B< M >4 M M3log? B

N \ A1 — X B3/2m1/2 \ \; — A B? AL — X B2 (A — \o)?
< nB ()\1 — )\2) 6;\/6]{
J— m .
(59)

It follows that a stronger multiplicative guarantee holds for any coordinate k that satisfies the above
assumptions:

Lemma 24. For any coordinate k that satisfies Lemma 22 and assumptions 55, 56, and 57,

nB (A1 — A2) e;\/ek
Vvm '

52— (A1 — A2) egvek) <0 <

Given a per-coordinate guarantee that succeeds with probability 3/4, we can boost the probability
of success and give a uniform guarantee over all coordinates k € [d] using the median procedure
described in Lemma 10.

Lemma 25. Let {Ai}yepq be the output of Algorithm 1. Under assumption (48), with probability
1 -4, for all k € [d],

1 2 logB [ My \?> BlogN [ My \?
Y — Vi <8 —=+ = | Vir + O | £
e = Vil < <\/7n+m) okt (wﬁmB <)\1—)\2) T Nlog B ()\1—)\2>
o b§m2log2dlog33< M, >4 MM3log B ‘
B AL — A2 B\ —Xo)?

Moreover, let K be the set of indices in [d] that satisfy assumptions (55), (56), and (57). Then, for
alk € K,

. Vik
‘Wk; — e,l—\/ek‘ =0 <\/ﬁ> .

Proof. By Lemma 22, the bound for any k € [d], the bound of equation (49) holds with probability
3/4. By Lemma 10 and the choice m; = 8log(d/J), the estimate 4 satisfies the equation with
probability at least 1 — §/d. The Lemma follows by a union bound over the indices in [d]. O
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Remark 7. The first term of the error of Lemma 25 is O (Vi //m), where m = logn. We verify
that the other terms are smaller asymptotically in n. Since m = logn and mo = 8log(20d) where

d = poly(n),

n n
B = = — .
mmy © <lognlog d>

Therefore, each summand with a /B or B in the denominator of the error of Lemma 25 is O(1/+y/n).
It suffices to show that ﬁ asymptotically dominates Blos N = Note that 1 < logd < 5logn, B =

~ Nlog B
©(n) and log B = ©(logn). Therefore,

Blog N  log B + logmj + logm < log B+mi1+m
NlogB mimlog B —  mymlogB

1 1 1 1 1
~ log Blogn + 8log nlog(20d) * 8log(20d) log B © <10g n> —° (ﬁ) ’

C Entrywise Error Bounds

Lemma 26. Let the learning rate, n,, be set according to Lemma 9. Further, for X; ~ P, A; =
X, X1, let ||A; — EHOp < M almost surely. Then, for § € (0,1), with probability at least 1 — §, we
have for all k € [d],

d d A d
el W] 5 \/ M (ef VLRoV " ex) log <5> + Mabi (M log <5> + Moy log <5>>
; ; T Vi T T T
where W, 1 is defined in Lemma 2, by, := ||V ey 0 M =T [VL (Aj = X) v, (45— %) VJ_:| and

Ry € REDX(d=1) with entires

My
Ro(k,l) = Vk,le|d—1
olk:1) 2A1 = M1 — A’ <l |

Proof. Using Lemma 11, we have
n .
egllln,l = nne;Yn = Znne;X?, where X7 := VJ_AT__'?VI(AJ' - )y
j=1

Let o == nnekTXj’?. Then, note that E[a;] = 0. Furthermore,

F (03] = 26l VIATIE [V (45 D) oo] (4~ )T Vo] ALV ex = el VAT TRIAT V] e = o,

|| =

el VAT IV (A = D)ot < mabic [AT7]| M < b M
op

Therefore, using the fact that «; are independent of each other, along with Bernstein’s inequality,
(see e.g. Proposition 2.14 and the subsequent discussion in Wainwright [2019]), we have with
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probability at least 1 — 6,

T
€L \I’n7]_

- 1 1
< Z a?k log (5> ~+ N Mbyg log <6>
j=1

Furthermore, considering a union bound over k € [d], we have for all k € [d],

T
‘ek \Iln’l

- d d
< Za]zk log <5> + npMlog <6>
j=1

Finally, using Lemma 1, we have

n n
Z sz-k =nle] Z VIATIMAT | Ve
j=1 J=1
= ngeZ[E [YnYnT} e
= nie;—VJ_ <R<”)) Vj—ek

R R,
= nie,;rVJ_ <0 + <R(") — 770)> Vj—ek

R
< mneg ViRV eg + niby |[R™) — 770
nIF
22\ M3
< el ViRoV er + ﬁ

which completes our proof.

O

Lemma 27. Let the learning rate, n,, be set according to Lemma 9. Then, for § € (0,1), with
probability at least 1 — &, we have

2 2
nMs5logd S nMo log (d
W+ Uy + Uy y], < 208 V/Snln/nMz log (d)

Vo Ve
g (1) M3 log (d)
T3 Vdexp (—nnn (A — X2)) + NIYEST
and for all k € [d],
en (Vo + Wy3+ \I/n,4)‘ < b |V + Vs + Wpall,
< bkﬁ%nM%IOgd n bk\/%%\/ﬁ/\/lglog (d)
log (5) Vm3nM3log (d)
+b Vdexp (=mpn (A — Ag)) + Y222
k53 P (—man (A1 — A2)) NEST
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. Clog(
where W, 9, V, 3, U, 4 are as defined in Lemma 2, by := HVEekHQ and s, = %(7”/\42) for a

universal constant C > 0.

Proof. We have

H\I/mz + \I/n73 + \I/n74H2 < ‘ekT\Ian + ’e,I\I/n73 + ‘62\1’7%4 (60)
Using Lemma 16, we have for all k € [d], with probability at least 1 — g,
122 M2nlogd _ 21n> M3nlogd

5/3 Vs

Using Lemma 18 | along with the definition of 7, in Lemma 9, with probability at least 1 — g,

suy/1og (5 n 0
[Wnslly < Lg(a) <\/gexp(—nnn (A1 — X)) + \/M) + \/anxf/\/lzl g (d)

53 VA= NG
Vioe (3) Clog(1/8) naM:  /imMalogd
< V- U7 _ N n/Viy n/V12 108
~ 5% \/gexp( NnM ()\1 )\2)) + 53 M m
1 1 / 21
S Og&,(f) <\/Eexp(—77nn (A1 — A2)) Ui /\M ;g ) : (62)
1

where the second inequality used s, < 1. Using Lemma 20, along with the definition of 7, in
Lemma 9, with probability at least 1 — g,

1 \/17 nM3log (d
Uoall, <= [ Vd —nan (A1 — A2) n 63
|| ,4”2 ~ 6% < exp( 77 n( 1= 2 m ( )

The first result follows by a union bound over (61), (62), (63) and substituting in (60). Finally,
note that using Lemma 2, Jz,, yn, 2n € R4—1 such that of V,0 = VJ_VI.T»,“ V,3 = VJ_VIxn,
V4= VLVI:cn. Therefore,

e;gr (\Iln,Q + \I}n,S + ‘Iln,4)‘ = e;ngJ_VLT (xn + yn + Zn)

= el VIVIVAVT (@0 + g+ 20)

< HegVLVf)L HVLVI (0 + Yo+ 20

= bk H\I/n,2 + \Ijn,S + \Iln,4H2

which completes the proof of the second result. O

Now we are ready to prove a detailed version of Theorem 1.
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Lemma 28. Let the learning rate, n,, be set according to Lemma 9. Further, for X; ~ P, A; =
X X,", let ||A; — ZHOP < M almost surely. Define rqja := Voja — (vlTvoja) v1. Then, with probability
at least 1 — ¢, for all k € [d],

d d [ A / d
< \/ n (e;—VLRijek) log <6> + N bg (M log <6> + Ms N _1)\2 log <5>>

4,8 (ﬁexp(—nnn(Al—Az)H VM3 log (d)>

T
‘Ck 'I"oja

§° VAL = A2
beminM3logd  biy/Sunny/nMalog (d)
Vs Vo
O, 1 —
where by, := Herk’ o Sn 1= Cl%(a)(z,;i\//(é)} M =L VI (A; =) v1v] (Aj — E)T VL} and Ry €

R(@=1)x(d=1) yith entires

k1) = k,leld—1

Proof. Using Lemma 2, we have
T T T T T
epToja =€ VUn1+e,Yuote, Vngt+e, ¥y

Therefore,

< ‘e;\yn,l

T T T T
‘ek Toja + ‘ek Voo +e,Wns+e,¥Yna

The result then following by a union bound over the events defined in Lemma 26 and Lemma 27. [

D Central Limit Theorem for entries of the Oja vector

We consider the following setup from Chernozhukov et al. [2017a]. Let A™ denote the class of all
hyperrectangles in RP. That is, A consists of all sets A of the form:

A={weRP:q; <wj<bjforallj=1,...,p} (64)
for some real values a; and b; satisfying —oo < a; < b; < oo for each j =1,...,p.
Consider . .
SX = 7 Z;X
where X;,i € [n] € RP are independent random vectors with E[X;;] = 0 and [E[ij] < oo, for

i € [n],j € [p]. Consider the following Gaussian approximation to S:X. Define the normalized sum
for the Gaussian random vectors:

1 &
\/ﬁi=1
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where Y7,...,Y,, be independent mean zero Gaussian random vectors in RP such that each Y; has
the same covariance matrix as X;. We are interested in bounding the quantity

pn (A™) := sup |P (S eA)-P(S) e A)|
AgAre

Let C,, > 1 be a sequence of constants possibly growing to infinity as n — oo, and let b,q > 0 be
some constants. Assume that X; satisfy,

(M1) n= ' 300 E[XE] > b forall j=1,...,p,

(M.2) n= 130 E[|X>T*] < Ck forall j=1,....,p and k = 1,2.

Further, the authors consider examples where one of the following conditions also holds:
(E.1) Elexp(|Xs]/Cr)] <2 foralli=1,....,nand j=1,...,p,

(E.2) E[(maxi<j<p|Xij|/Cn)l] <2 foralli=1,...,n

Let
PO _ (C;f 10g7(Pn)>1/6 D@ _ (C,% 10823(19”))1/3

Now we present Proposition 2.1 [Chernozhukov et al., 2017a].

Theorem 3 (Proposition 2.1 [Chernozhukov et al., 2017al). Suppose that conditions (M.1) and
(M.2) are satisfied. Then under (E.1), we have

pn(A™) < CDLY,
where the constant C depends only on b; while under (E.2), we have
re 1 2
pn(A”) < C{DY + D},

where the constant C' depends only on b and q.
Next, we will need the following result cited by Chernozhukov et al. [2017b].

Theorem 4 (Nazarov’s inequality [Nazarov, 2003|, Theorem 1 in [Chernozhukov et al., 2017al).
Let Y = (Y1,...,Y,)T be a centered Gaussian random vector in RP such that
[E[Y]?] >0%, forallj=1,...,p

)

for some constant o > 0. Then, for every y € RP and § > 0,

PY <y+d)—PY <y) g \/2log +2).

Here, for vector y € RP, y + § denotes the vector constructed by adding § to each entry of y.

Now we are ready to state our main result in Proposition 2,
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Proposition 2 (CLT for a suitable subset of entries). Suppose the learning rate ny, set according

2
% < % for some b > 0 and a small universal constant Cy. Let
1—A2

{X;}", € R? be i.i.d. mean-zero random vectors with covariance matriz ¥ such that for all vectors
v € R, we have

to Lemma 9, satisfies

2, T
E [exp (vTXl)] < exp (J Y EU) .

Let roja 1= Voja — (virvoja)vl. Consider the set J := {j : Vj; > b}, and let p := |J|. Let H; :=

H T .
MVLAﬁ_ZVI (XiXZT — E) vi. Let'Y; € RP be independent mean zero mormal vectors such

1+77n>\1
that n
E[V;YT) = " E[H;[J]H ()],
A1 — A2
Then,
To'a[J] (ZK ) 5 ( M4 >1/3 . ( MQ )1/2 B
Pl —22" ___cA|-P -~ cA)|l=0 /6, —_— 1/8 ,

Aselilpm ( (A1 = A2) 7, ) Vn P " A1 — A2 "

where O hides logarithmic factors in n, p, and constants depending on b.

Proof of Proposition 2. Consider the error decomposition of the Oja vector in Lemma 2. We have
Toja = Wni1 + Yno + Uz + W4, where U, 1, W, 0, W, 3, W, 4 are defined in Equation (19). Let
R:= \I/n,Q + \I/n,3 + \Iln,4~

For any § € (0,1), 3e > 0 such that from Lemma 27 we have,

P((gn (A1 — A2)) " V2||R|la > €) <6

we will specify € as needed in the proof.

For all i € [n], let

Ui = \/nnn/ ()\1 — )\2) HZ (65)

Cn

We show that Uy, Us, ..., U, satisfy conditions (M.1) and (M.2) with suitable constants.

For (M.1), using equation (19),

n
> H; =0, (66)
i=1
By Lemma 1 (equation (9)), there exists a universal constant Cj such that

[ M o~ . NuAT M3
e, E|HH | -V]e| < —222
J <)\1 - )\2 ; [ ] ) / Co ()\1 — )\2)2

Vi

27

b
< =<
=3 =
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for all j € J, where the last two inequalities follow by assumption and definition of J. This implies
forall j € J,

A S Z[E 2> V/2>0/2 = Z[EU2 > V,;;/2>b/2
1= A2

To show (M.2), by Lyapunov’s inequality and Assumption 1:
E U2 Hls] = E |2 Hy ] < 2(caMa)*

for k € {1,2}, where C), := 2¢, M.

We now check condition E.1. Now note that for any unit vector u € R%, «” H; is subexponential
with parameter o2\; (Proposition 2.7.1. of [Vershynin, 2018]). Hence, there exists a constant C' > 0
such that

Elexp(|Hij|/CAo?)] <2
Therefore,

Elexp(|U;j|/CAicnc?)] < 2.

Now we set C,, := max(2¢, M4, CA1c,0?).
Using Eq 66,

W] = v/ O = ) Y ) = jﬁ > vil]

(A1 = A2)mn

the random variables U;[J], i € [n] satisfy conditions (M.1), (M.2) and (E.1). By Theorem 3,

2 1og7<pn>>” °

n

p(A) < C (

Recall from the statement of the proposition that Y;,i € [n] are mean zero independent Gaussian
vectors in RP with the same covariance structure as U;[J], i.e, E[Y;Y;"] = E [U;[J]U;[J]T].

Let Sy be the random variable ), W; for any collection W of n random variables Wy, W, ..., W,,.
Consider the vector Syy[J] to be the projection of W on the set J, defined as e, Sy[J] = e, Sy for
ieJ.

Recall that

eTroJa = e ZnnH + R
7j=1

Let A := {u € [Rp|ui € [ai,bi],i S J} Let Az_ = {X|XZ € [ai—e, bi—l—e],i S [p]} and AE_ = {X|XZ S
[a; + €,b; —¢€],i € J}.
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Let Sg[J] :=>;c; €l Toja. Then, we have Sg[J] = n,Su[J] + R[J].
We will use the following identity for vectors G1, Gy € RP.

P(G1 € AZ,[[Gall <€) < P(G1+Ga € A, [|Gal < €) < P(G1 € AT, [|Ga]| < )

So,

P(G1+G2€ A) SP(Gre AL V[ <)+ P(|V] > ¢)
P(G1+ Gy € A) > P(Gy € A, ||G2] <€)

Using G1 = Sy[J]/v/n and G2 = (9, (A1 — A2)) /2R, we have:

P(((A = A2) 1)~ ?rojalJ] € A) — P(Sy /v/n € A)

< P(((M = A2) )™ ProjalJ] € A, (1 (A1 = X2))TV2IIR| < €) 4+ P((mn (M — A2)) 2| Rll2 > €)
—P(Sy/vn € A)

< P(SulJ)/vn € AF) +P((na (M = X2)) V2 R|l2 > €) = P(Sy /v/n € A) =i 7a.

Note that v4 can be written as
va < |P(SulJ]/vn € AD) = P(Sy/v/n € AD)| + [P(Sy/v/n € AL) = P(Sy /v/n € A)| + P((m (A = A2) "2 R|
Similarly,

(A1 = A2) 1) ™ Proja[J] € A) = P(Sy/vn € A) > wa,

where

wa = P(SylJ1/v/A € A7, (na (\ = 22)) V2[[RI| > ) — P(Sy /v € A)
> P(SylJ)/v/n € A7) = P((na (At = 22)) 2[RI =€) — P(Sy /v € A7) + P(Sy /v/n € A7) — P(Sy /v/n € A

Therefore, we have by Theorem 3 that for some constant C’ that depends only on b,

, ( C2log" (pn) \V/°
sup bl <€ (SR T jesy Ve an) - PisyvRE | 45 (o)
e Te
Similarly,
021 7 1/6
s foa] £ <i<p”>) LP(Sy /v € AT) — P(Sy/ve A +6  (68)
E re

For P(Sy/v/n € AF) — P(Sy/+/n € A), we will use Nazarov’s inequality (Lemma 4):

|P(Sy/vn e AY) —P(Sy/vn € A)| < b1/2  (\/2logp +2) (69)
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For bounding the terms concerning A_, we need to be a little careful because if b; — a; < 2¢, then
A7 has measure zero under the Gaussian distribution. If A_ is nonempty, then we have the same
bound as Eq 69. However, in case that is not true, note that there must be some i € [p| such that
b; — a; < 2¢e. Hence

‘[P(Sy/\/ﬁ € Ae_) — [P(Sy/\/EE A)‘ = I]D(Sy/\/ﬁ S A)

= P(Sy[i]/v/n € [ai, bi])
2¢

< NG (70)

So overall,

||P(Sy/\/ﬁ € AG_) — [P(Sy/\/ﬁ S A)‘ = [P(Sy/\/ﬁ €A
= P(Sy[i]/v/n € [ai, bi])

2¢
< max (fbl/T pi/2 (v2logp +2) ) (71)

Putting Eqs 67, 68, 69 and 71 together, we have, for some absolute constant Ci:

sup |P(((A1 — A2) nn)*l/Qroja[J] €A — [P(nil/QSy € A)| <max( sup |ya|, sup |wal)
AcAre AcAre AcAre

C2log (pn
< <()> b1/2 \/log +0 (72)

n
We invoke Lemma A.2.3 in Kumar and Sarkar [2024a] to see that: My < A\1+o2trace (). Therefore,

for some constant C” > 0,

Cy, = max(2¢, My, CAicpo?) < C” My

(A1 — >\2)

From Lemma 27 and the assumption on the learning rate (Lemma 9),

nnnMQIOgd VSntny/nMalog (d) +log() Vn3nM3log (d (73)
Vo Ve §* VAL — A2

M (A1 — A2)e S

Substituting the bound on € from equation (73) into equation (72) and optimizing over ¢ yields

= log p 1/8 Mo —1/8
5—O<< , ) /\1_)\211 . (74)

Substituting the choice of ¢ from equation (74) in (72), we conclude

s [P((O = %) )™ realJ] € A) = P(n~ Sy € )
e re

— 0 My e -1/6 Mo 2 -1/8
_O<max<<)\1_/\2> n Ao n
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