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Abstract

We propose a novel statistical inference framework for streaming principal component analy-
sis (PCA) using Oja’s algorithm, enabling the construction of confidence intervals for individual
entries of the estimated eigenvector. Most existing works on streaming PCA focus on provid-
ing sharp sin-squared error guarantees. Recently, there has been some interest in uncertainty
quantification for the sin-squared error. However, uncertainty quantification or sharp error
guarantees for entries of the estimated eigenvector in the streaming setting remains largely un-
explored. We derive a sharp Bernstein-type concentration bound for elements of the estimated
vector matching the optimal error rate up to logarithmic factors. We also establish a Central
Limit Theorem for a suitably centered and scaled subset of the entries. To efficiently estimate
the coordinate-wise variance, we introduce a provably consistent subsampling algorithm that
leverages the median-of-means approach, empirically achieving similar accuracy to multiplier
bootstrap methods while being significantly more computationally efficient. Numerical experi-
ments demonstrate its effectiveness in providing reliable uncertainty estimates with a fraction
of the computational cost of existing methods.

1 Introduction

Principal Component Analysis (PCA) [Pearson, 1901, Ziegel, 2003] is a cornerstone for statistical
data analysis and visualization. Given a dataset {Xi}ni=1, where each Xi ∈ Rd is independently
drawn from a distribution P with mean zero and covariance matrix Σ, PCA computes the eigenvector
v1 of Σ that corresponds to the largest eigenvalue λ1, and is the direction that explains the most
variance in the data. It has been established [Wedin, 1972, Jain et al., 2016, Vershynin, 2012] that
the leading eigenvector v̂ of the empirical covariance matrix Σ̂ = 1

n

∑n
i=1XiX

⊤
i is a nearly optimal

estimator of v1 under suitable assumptions on the data distribution.

While theoretically appealing, computing the empirical covariance matrix Σ̂ explicitly requires O(d2)
time and space, which is expensive in high-dimensional settings when both the sample size and the
dimension are large. Oja’s algorithm [Oja and Karhunen, 1985]— a streaming algorithm inspired
by Hebbian learning [Hebb, 2005]— has emerged as an efficient and scalable algorithm for PCA. It
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maintains a running estimate of v1 similar to a projected stochastic gradient descent (SGD) update

ui ← ui−1 + ηnXi(X
T
i ui−1), ui ←

ui
∥ui∥2

(1)

for i ∈ [n], where u0 is a random unit vector and ηn > 0 is the learning rate. The algorithm is
single-pass, runs in time O(nd), and takes only O(d) space. We call the output un of the above
algorithm an Oja vector voja.

Oja’s algorithm has fueled significant research in theoretical statistics, applied mathematics, and
computer science [Jain et al., 2016, Allen-Zhu and Li, 2017, Chen et al., 2018, Yang et al., 2018,
Henriksen and Ward, 2019, Price and Xun, 2024, Lunde et al., 2021, Monnez, 2022, Huang et al.,
2021, Kumar and Sarkar, 2024a,b]. Despite the plethora of work on sharp rates for the sin-squared
error sin2 (voja, v1) := 1 − (vT1 voja)

2, entrywise uncertainty estimation for streaming PCA has re-
ceived only limited attention. Since the update rule in Oja’s algorithm is similar to a broad class
of important non-convex problems, uncertainty estimation for Oja’s algorithm has potential impli-
cations for matrix sensing [Jain et al., 2013], matrix completion [Jain et al., 2013, Keshavan et al.,
2010], subspace estimation [Balzano, 2022], and subspace tracking [Balzano et al., 2010]. A notable
exception is Lunde et al. [2021], who show that sin2 (voja, v1) := 1−(vT1 voja)2 behaves asymptotically
like a high-dimensional weighted chi-squared random variable. A main ingredient in their analysis
is the Hoeffding decomposition of the matrix product Bn. Their method takes O(bnd) time and
O(bd) space, where b is the number of bootstrap replicas. While Lunde et al. [2021] do uncertainty
estimation of the sin2 error, we are interested in coordinate-wise uncertainty estimation.

In contrast, in offline eigenvector analysis, there has been a surge of interest for two-to-infinity
(ℓ2→∞) error bounds for empirical eigenvectors and singular vectors of random matrices [Eldridge
et al., 2018, Mao et al., 2021, Abbe et al., 2020, Cape et al., 2019a, Abbe et al., 2022, Cape et al.,
2019b]. However, none of these apply directly to the matrix product structure that arises from the
Oja update in Eq (1). Recent advances on the concentration of matrix products [Huang et al., 2022,
Kathuria et al., 2020] only provide operator norm or the ℓq moment of the Schatten norm of the
deviation of a matrix product and do not provide non-trivial guarantees on the coordinates.

Our contributions:

In this paper, we obtain finite sample and high probability deviation bounds for elements of voja.

1. We show that the deviation of the elements of voja is governed by a suitably defined limiting
covariance matrix V. Furthermore, for a subset K of [d] of interest, the distribution of the coordinate
voja(k), when suitably centered and rescaled, is asymptotically normal with variance Vkk.

2. We provide a sharp Bernstein-type concentration bound to show that uniformly over entries of
voja, ∀ k ∈ [d],

|e⊤k (voja − (vT1 voja)v1︸ ︷︷ ︸
:=roja

)| = Õ

(√
Vkk

n

)
. (2)

where ek denotes the kth standard basis vector. This is a surprising and sharp result because it
can be used (see Lemma 8) to recover the optimal sin2 error up to logarithmic factors with high
probability.
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3. We provide an algorithm that couples a subsampling-based O(nd) time and O(d log(d/δ)) space
algorithm with Median of Means [Nemirovskij and Yudin, 1983] to estimate the marginal variances
of the elements of roja := voja − (vT1 voja)v1. Theorem 2 provides high-probability error bounds of
our variance estimator uniformly over ∀k ∈ [d].

4. We present numerical experiments on synthetic and real-world data to show the empirical per-
formance of our algorithm and also compare it to the multiplier bootstrap algorithm in Lunde et al.
[2021] to show that our estimator achieves similar accuracy in significantly less time.

The paper is organized as follows: Section 1.1 discusses related work on streaming PCA, entrywise
error bounds on eigenvectors, and statistical inference for Stochastic Gradient Descent. Section 2
provides our problem setup, assumptions, and necessary preliminaries. Section 3 provides our main
results regarding entrywise concentration, CLT and our variance estimation algorithm, Algorithm 1.
We provide proof sketches in Section 4 and experiments in Section 5.

1.1 Related Work

Streaming PCA. A crucial measure of performance for Oja’s algorithm is the sin2 error, which
quantifies the discrepancy between the estimated direction and the principal eigenvector of Σ (the
true population eigenvector, v1) and the Oja vector, voja. Notably, several studies [Jain et al., 2016,
Allen-Zhu and Li, 2017, Huang et al., 2021] have shown that Oja’s algorithm attains the same error
as its offline counterpart, which computes the leading eigenvector of the empirical covariance matrix
directly. More concretely, it has been shown that for an appropriately defined variance parameter
V (equation (3)),

sin2(v1, voja) := 1− (vT1 voja)
2 = O

(
V

n(λ1 − λ2)2

)
.

ℓ∞ error bounds. There is an extensive body of research on eigenvector perturbations of matrices.
Most traditional bounds [Davis and Kahan, 1970, Wedin, 1972, Stewart and Sun, 1990] measure error
using the ℓ2 norm or other unitarily invariant norms. However, for machine learning and statistics
applications, element-wise error bounds provide a better idea about the error in the estimated
projection of a feature in a given direction. This area has recently gained traction for random
matrices. Eldridge et al. [2018], Abbe et al. [2020], Cape et al. [2019a], Abbe et al. [2022] provide
ℓ2→∞ bounds for eigenvectors and singular vectors of random matrices with low-rank structure. Cape
et al. [2019a] show an ℓ2→∞ norm for the error of the singular vectors of a covariance matrix formed
by n i.i.d. Gaussian vectors; as long as λ1 − λ2 > 0 and v1 satisfies certain incoherence conditions,
there exists a w ∈ {−1, 1} such that with probability 1− d−2, the top eigenvector v̂1 of the sample
covariance matrix satisfies, up to logarithmic factors,

∥v1 − wv̂1∥∞ ≲

√
Tr (Σ) /λ1

n

(
maxi

√
Σii√

λ1
+

λ2

λ1

)
+

Tr (Σ) /λ1

n

(
1√
d
+

√
λ2

λ1

)
.

The guarantees of Cape et al. [2019a] are offline and provide a common upper bound on all coordi-
nates. Our algorithm has error guarantees that scale with the variances of the coordinates.

Uncertainty estimation for SGD. For convex loss functions, the foundational work of Polyak and
Juditsky [1992], Ruppert [1988], Bather [1989] in Stochastic Gradient Descent (SGD) demonstrates
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that averaged SGD iterates are asymptotically Gaussian. A significant body of research has focused
on the convex setting. These include notable works on covariance matrix estimation [Li et al.,
2018, Su and Zhu, 2018, Fang et al., 2018, Chen et al., 2020, Lee et al., 2022, Zhu et al., 2023].
In comparison, work on uncertainty estimation for nonconvex loss functions is relatively few [Yu
et al., 2021, Zhong et al., 2023]. Yu et al. [2021] establishes a Central Limit Theorem (CLT) under
relaxations of strong convexity assumptions. Zhong et al. [2023] weakens the conditions but relies
on online multiplier bootstrap methods to estimate the asymptotic covariance matrix. Existing
methods for estimating and storing the full covariance matrix suffer from numerical instability or
slow convergence rates (see Chee et al. [2023]). For convex functions and their relaxations, Zhu
et al. [2024], Carter and Kuchibhotla [2025] present computationally efficient uncertainty estimation
approaches that are related but different from ours.

In large-scale, high-dimensional problems, maintaining numerous bootstrap replicas is computation-
ally expensive. Chee et al. [2023] introduce a scalable method for confidence intervals around SGD
iterates, which are informative yet conservative under regularity conditions such as strong convexity
at the optima. In their setting, for an appropriate initial learning rate, the covariance matrix can
be approximated by a constant multiple of identity (see also Ljung et al. [1992]). In our setting,
such an approximation requires knowledge of all eigenvalues and eigenvectors of Σ. The work most
relevant to ours is by Lunde et al. [2021]. They provide asymptotic distributions for the sin2 error of
the Oja vector and an online multiplier bootstrap algorithm to estimate the underlying distribution.

Resampling Methods and Bootstrapping. Nonparametric bootstrap [Efron, 1979, Hall, 1992,
Efron and Tibshirani, 1993] is a resampling method where b resamples of a given size n dataset
are drawn with replacement and treated as b independent samples drawn from the underlying
distribution. Of these varieties of bootstraps, the one widely used in SGD inference is the online
multiplier bootstrap, where multiple bootstrap resamples are updated in a streaming manner by
sampling multiplier random variables to emulate the inherent uncertainty in the data [Ramprasad
et al., 2023, Zhong et al., 2023, Lunde et al., 2021].

A major concern about the bootstrap is its computational bottleneck. Maintaining many bootstrap
replicates is computationally prohibitive if the number of data points n and the dimension d are large.
Some computationally cheaper alternatives to bootstrap are subsampling [Politis et al., 1999, Politis,
2023, Bertail et al., 1999, Levina and Priesemann, 2017, Chaudhuri et al., 2024, Chua et al., 2024]
and m-out-of-n bootstrap [Bickel et al., 1997, Bickel and Sakov, 2008, Sakov, 1998, Andrews and
Guggenberger, 2010] both of which rely on drawing o(n) with-replacement samples. These methods
are used in Kleiner et al. [2014] to create n with-replacement samples from smaller subsamples, but
require multiple bootstrap replicates and are not directly applicable to the streaming setting.

2 Problem Setup and Preliminaries

Notation. Let [n] = {1, . . . , n} for all positive integers n. For a vector v, ∥v∥ = ∥v∥2 denotes its ℓ2
norm. For a matrix A, ∥A∥ = ∥A∥op is the operator norm, ∥A∥F is the Frobenius norm, and ∥A∥p is
the Schatten p-norm of A, which is the ℓp norm of the vector of singular values of A. We define the
two-to-infinity norm ∥A∥2←∞ := sup∥x∥2=1 ∥Ax∥∞. For a random matrix M and p, q ≥ 1, we define
the norm |||M |||p,q := E[∥M∥qp]1/q. Let I ∈ Rd×d be the identity matrix with ith column ei. Define
the inner product of matrices as ⟨A,B⟩ = Tr(ATB). We use Õ and Ω̃ for bounds up to logarithmic
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factors and use a ≲ b to mean a ≤ Cb for some universal constant C. diag (a1, . . . , ad) denotes the
diagonal matrix with entries a1, . . . , ad. For a vector v ∈ Rd and S ⊆ [d] with |S| = k, v[S] ∈ Rk is
the “sub-vector” of v with its coordinates indexed by S.

Data. Let {Xi}i∈[n] be independent and identically distributed (i.i.d. ) mean-zero vectors sampled
from the distribution P over Rd with covariance matrix Σ := E

[
XiX

T
i

]
. Let Ai := XiX

⊤
i . Let

v1, v2, . . . , vd denote the eigenvectors of Σ with corresponding eigenvalues λ1 > λ2 ≥ . . . ≥ λd. Let
V⊥ := [v2, v3, . . . , vd] ∈ Rd×(d−1).

We operate under the following assumptions unless otherwise specified.

Assumption 1. For any Xi ∼ P , Ai = XiX
⊤
i , we assume the following moment bounds, where√

V ≤M2 ≤M4: ∥∥∥E [(Ai − Σ)2
]∥∥∥

op
≤ V (3)

E
[
∥Ai − Σ∥2op

] 1
2 ≤M2 E

[
∥Ai − Σ∥4op

] 1
4 ≤M4. (4)

Assumption 2. There exists a universal constant κ > 5 such that d = o (nκ) and n
log(n) ≥

2max
{
κ,

κ2M4
2 log(d)

(λ1−λ2)
4

}
.

Assumption 1 provides a suitable moment bound on the iterates Ai, and Assumption 2 shows that
we can handle the dimension d growing polynomially with the sample size n, while requiring a mild
base number of samples for convergence. We note that the constraint κ > 5 is arbitrary and our
algorithm works as long as d = poly(n). These assumptions are commonly used in the streaming
PCA literature (see for e.g. Jain et al. [2016]).

Oja’s Algorithm with constant learning rate. With a constant learning rate, ηn, and initial
vector, u0, Oja’s algorithm [Oja, 1982] (denoted as Oja

(
{Xt}t∈[n] , ηn, u0

)
) performs the updates in

Eq (1). Define ∀t ∈ [n],

Bt :=
t−1∏
i=0

(
I + ηnXt−iX

T
t−i
)
; B0 = I. (5)

such that ut = Btu0/ ∥Btu0∥2.

3 Main Results

Recall the definition of Oja’s algorithm with a constant learning rate, as defined in Section 2. For
i.i.d. data Dn :=

{
Xi;Xi ∈ Rd

}
i∈[n], the learning rate ηn defined in Lemma 9, and a random initial

vector u0 := g/ ∥g∥ where g ∼ N (0, Id), define the Oja vector

voja(Dn) := Oja(Dn, ηn, u0). (6)

This is a random vector, with randomness over the data Dn as well as the initial vector u0. While
there are a myriad of works on the sin-squared error 1 − (vT1 voja)

2, there is, to our knowledge, no
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existing analysis on the concentration of the elements of the recovered vector around their population
counterparts. One exception is [Kumar and Sarkar, 2024b], who showed that for sparse PCA, the
elements of the Oja vector in the support of the true eigenvector are large, whereas those outside are
small. However, these guarantees do not show concentration in our setting. We start our analysis
with the Hoeffding decomposition of the matrix product (also see Lunde et al. [2021], van der Vaart
[2000]). The Hoeffding decomposition is a powerful tool that allows one to write the residual of the
Oja vector as

roja := voja −
(
v⊤1 voja

)
v1 = Ψn,1 + Resn (7)

where Ψn,1 is ηn times a sum of independent but non-identically distributed random vectors and
the residual Resn is negligible compared to Ψn,1 (see Lemma 2 for details).

First, we show that the covariance matrix E[Ψn,1Ψ
T
n,1] of the dominant term in the residual converges

to V when suitably scaled. Later, in Proposition 1 we will show that the distribution of the entries
of roja is asymptotically normal with covariance matrix E[Ψn,1Ψ

T
n,1]/(ηn (λ1 − λ2)).

Lemma 1 (Asymptotic variance). Let

M̃ := E
[
V ⊤⊥ (A1 − Σ) v1v

⊤
1 (A1 − Σ)V⊥

]
,

dk := 1−
(
λ1 − λk+1

1 + ηnλ1

)
ηn.

Then, the matrix R(n) ∈ R(d−1)×(d−1) with entries

R
(n)
k,l :=

M̃kl

(1 + ηnλ1)2

(
1− (dkdl)

n

1− dkdl

)
,

satisfies E
[
Ψn,1Ψ

⊤
n,1

]
= η2nV⊥R

(n)V ⊤⊥ .

Define the matrices R0 ∈ R(d−1)×(d−1) and V ∈ Rd×d as

(R0)k,l :=
M̃kℓ

2λ1 − λk+1 − λℓ+1
; V :=

1

λ1 − λ2
V⊥R0V

T
⊥ . (8)

then, ∥∥∥∥ 1

ηn (λ1 − λ2)
E[Ψn,1Ψ

T
n,1]− V

∥∥∥∥
F

≲
ηnλ1M2

2

(λ1 − λ2)
2 . (9)

This shows that suitably scaled, E[Ψn,1Ψ
T
n,1] converges to the matrix V. Note that the scaling factor

ηn (λ1 − λ2) =
α logn

n is independent of model parameters for the choice of ηn defined in Lemma 9.

The next result establishes a Central Limit Theorem (CLT) for the subset of elements in the residual
vector roja with sufficiently large limiting variance.

Proposition 1 (CLT for a suitable subset of entries). Let {Xi}ni=1 be independent mean-zero random
vectors with covariance matrix Σ such that E

[
exp(v⊤X1)

]
≤ exp

(
σ2 v⊤Σ v

2

)
for all v ∈ Rd and σ > 0

is some constant.
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For all i ∈ [n], let

Hi :=
sign

(
v⊤1 u0

)
(1 + ηnλ1)

V⊥ Λ
n−i
⊥ V ⊤⊥

(
Ai − Σ

)
v1,

Let b > 0 be a constant, and let J ⊆ [d] be the set of coordinates with Vjj ≥ b. Let p := |J |.

Let Yi ∈ Rp be independent mean-zero Gaussian vectors with covariance matrix

E[YiY
⊤
i ] =

nηn
λ1 − λ2

E[Hi[J ]Hi[J ]
⊤],

and let SY :=
∑n

i=1 Yi. Suppose the learning rate ηn, set according to Lemma 9, satisfies M
2
2λ1ηn

(λ1−λ2)
2 ≲

b. Then,

sup
A∈Are

∣∣∣∣P( roja[J ]√
(λ1 − λ2) ηn

∈ A
)
− P

( SY√
n
∈ A

)∣∣∣∣ = Õ

((
M4

λ1 − λ2

)1/3

n−1/6 +

(
M2

λ1 − λ2

)1/2

n−1/8

)
,

where Are is the collection of all hyperrectangles in Rp, i.e, sets of the form A = {u ∈ Rp : aj ≤
uj ≤ bj for j = 1, . . . , p} and each aj and bj belongs to R ∪ {−∞,∞}. Here, Õ hides logarithmic
factors in n, d, and polynomial factors in b and in model parameters λ1, λ1 − λ2,M2,M4.

Remark 1. Note that the first n−1/6 term in the convergence rate arises from the high-dimensional
CLT result by Chernozhukov et al. [2017a] applied to Ψn,1. The main bottleneck is the n−1/8 term,
resulting from the higher-order terms of the Hoeffding decomposition (Resn in equation 7). We note
that the second term may be tightened by using better concentration bounds. We point the reader to
Proposition 2 in the Appendix for a complete statement and proof.

Proposition 1 establishes a Gaussian approximation of suitably scaled roja[J ], where J is a set
of elements with large enough asymptotic variance. Our proof uses results from Chernozhukov
et al. [2017b] on the Hájek projection (7) and bounds the effect of the remainder term by using
Nazarov’s Lemma [Nazarov, 2003] (Theorem 4). We use this to derive concentration bounds for all
coordinates. The lower bound on the variance is crucial and comes from Nazarov’s inequality. It
is also a condition of the results in Chernozhukov et al. [2017b]. A simple observation here is that
when bk is zero, i.e. v1(k) = 1, then Vkk = 0. Here, CLT may not hold since the Hájek projection is
zero, and the perturbation arises from some of the smaller error terms in the error decomposition.

Theorem 1. Let the learning rate ηn be set according to Lemma 9. Further, for Xi ∼ P , Ai =
XiX

⊤
i , let ∥Ai − Σ∥op ≤ M almost surely. Then, for bk :=

∥∥e⊤k V⊥∥∥2, with probability at least 3/4,
uniformly for all k ∈ [d], ∣∣e⊤k roja∣∣√

ηn (λ1 − λ2)
≲
√

Vkk log (d) + Cbk

√
log n

n
,

where V is defined in Eq 8, and C is a constant that depends on λ1, λ1 − λ2,M2, and M4.

Remark 2. The limiting marginal variances Vkk also appear in the finite-sample bound for the
elements of the residual vector. Estimating these variances enables us to quantify the uncertainty
associated with each component of v̂1, even when the sample size is finite.

In Appendix C, we provide a complete result with arbitrary failure probability δ in Lemma 28. The
above guarantee can be boosted to a high probability one using geometric aggregation (see e.g. Alg.
3 in Kumar and Sarkar [2024b]).

7



3.1 Uncertainty estimation

Proposition 1 shows that the asymptotic variance of elements of the residual roja(i) is governed by
the variance of the entries E[(eTi Ψn,1)

2] of Ψn,1. We cannot directly get to Ψn,1 since we only observe
voja. If we could estimate roja, it would give us an idea of the error. However, we do not know v1,
and so cannot directly access roja. We alleviate this difficulty by using the following high-accuracy
estimate of v1 constructed using N samples,

ṽ ← Oja(DN , ηN , u0), (10)

where N satisfies the bounds of Theorem 2.We now provide a subsampling-based approach (Alg. 1)
to estimate E[(eTi Ψn,1)

2] with high probability, allowing us to provide confidence intervals around
the eigenvector elements. Algorithm 1 takes as input the data {Xi ∈ Rd}i∈[n], a failure probability
δ, and the proxy unit vector ṽ. The n samples are split into m1 batches with n/m1 samples each.
Then, the ℓth batch of n/m1 samples is further split into m2 batches of size B := n/(m1m2) each.
Oja vectors {v̂ℓ,j}j∈[m2]

are computed on each of these m2 batches, and the variance of the kth

coordinate is estimated as

σ̂2
k,ℓ :=

∑
j∈[m2]

(
e⊤k
(
v̂ℓ,j − (ṽ⊤v̂ℓ,j)ṽ

))2
m2

. (11)

Algorithm 1 OjaVarEst({Xi ∈ Rd}i∈[n], δ, ṽ, λ1 − λ2)

1: Input: Data Dn := {Xi ∈ Rd}i∈[n], failure probability δ ∈ (0, 1), unit vector ṽ, eigengap λ1−λ2

2: Output: Estimates {γ̂k}k∈[d] of {Vkk}k∈[d]
3: m1 ← 8 log(d/δ), m2 ← log n, B ← n/(m1m2).
4: for ℓ ∈ [m1] do
5: for j ∈ [m2] do
6: Dℓ,j ←

{
XB(m2(ℓ−1)+(j−1))+t

}
t∈[B]

7: g ← N (0, I), u← g/ ∥g∥2
8: v̂ℓ,j ← Oja (Dℓ,j , ηB, u0)
9: end for

10: for k ∈ [d] do

11: σ̂2
ℓ,k ←

∑
j∈[m2]

(e⊤k (v̂ℓ,j−(ṽ
⊤v̂ℓ,j)ṽ))

2

m2

12: end for
13: end for
14: for k ∈ [d] do

15: γ̂k ← Median

({
σ̂2
ℓ,k

}
ℓ∈[m1]

)
/ηB(λ1 − λ2)

16: end for
17: return {γ̂k}k∈[d]

We will show that with a constant success probability, σ̂2
k,ℓ is close to the true variance of the

corresponding coordinate. This is essentially the variance of a smaller dataset with scale ηB. To
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obtain a bound over all coordinates with an arbitrary failure probability, we take a median of the m1

variances. For the final estimate of the diagonal elements Vkk of V, the median is scaled by a factor
1/ηB (λ1 − λ2). In Theorem 2, we show that γ̂k concentrates around Vkk (see (14)). For elements
with large Vkk, appropriate sample size N and batch size B, Theorem 2 also provides multiplicative
error guarantees for the variance estimate (see (15)).

Remark 3. We are using an estimate of E[(eTkΨn,1)
2] to provide the confidence interval around

v̂1(k). Algorithm 1 requires an estimate ṽ of v1 for computing the estimates σ̂2
ℓ,k in Line 11, which

is provided as an input to the algorithm and assumed to satisfy ṽ ← Oja (DN , ηN , z/ ∥z∥2) for
z ∼ N (0, I). For large N , this error of approximating v1 by ṽ is small. In our experiments, we
choose N = n and obtain ṽ by running the algorithm on the entire data.

Theorem 2. Let K be the set of indices in [d] that satisfy

N = Ω̃
(
B/c2k

)
and (12)

B = Ω̃

((
bk
ck

)2( M2

λ1 − λ2

)2
)

+ Ω̃

((
bk
ck

)4(M4

M2

)4

+
λ1

c2k (λ1 − λ2)

)
, (13)

where bk :=
∥∥e⊤k V⊥∥∥, ck :=

√
E
[
(e⊤k ΨB,1)

2
]

ηB
λ1−λ2

M2
2

, and B,N are respectively the batch size and the
number of samples used for the proxy estimate ṽ in Algorithm 1.

Then, with probability at least 1− δ, the output {γ̂k}k∈[d] of Algorithm 1 satisfies

|γ̂k − Vkk| ≲
Vkk√
m

+ Õ

(
B

N
+

1

B1/2

)
∀k ∈ [d], and (14)

|γ̂k − Vkk| ≲
Vkk√
m
∀k ∈ [K]. (15)

Remark 4. The output of Algorithm 1 rescales the median of the variances by the quantity ηB (λ1 − λ2) =
α logB

B . This is consistent with the entrywise concentration bounds in Theorem 1 (which shows that
the error in the jth entry is

√
ηn (λ1 − λ2)Vkk, up to logarithmic terms) for a sufficiently large

sample size and with Proposition 1 and Lemma 1 (which show that the limiting variance of suitable
entries of roja is ηn (λ1 − λ2)Vkk).

Remark 5. Theorem 1 provides bounds about entries of the leading eigenvector. We believe our
techniques can be generalized to provide uncertainty estimates for entries of top-k eigenvectors using
deflation-based approaches (see e.g Jambulapati et al. [2024]).

Equation (14) holds for all coordinates k ∈ [d] and we show in the Appendix (see Remark 7) that
for the choice of B and N in Theorem 2, the higher order terms are indeed o

(
1√
m

)
. Moreover, for

any coordinate k for which equations (12) and (13) hold, the lower order terms of equation (14)
are O(Vkk/

√
m). This implies an O(1/

√
log n)-multiplicative guarantee on the error of γ̂k like

equation (15).
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4 Proof Techniques

Let voja ∼ Oja (Dℓ,j , ηn, u0) for uniform unit vector u0 and ṽ ∼ Oja (Dℓ,j , ηN , u0). To estimator the
uncertainty of the estimator, the residual vector r̃oja := voja − (ṽ⊤voja)ṽ is decomposed as the sum
of five terms, as stated in Lemma 2. Proposition A.1 in Lunde et al. [2021] shows that Bn, defined
in (5), can be written as

Bn =

n∑
k=0

Tn,k, (16)

where

Tn,k :=
∑

S⊆[n],|S|=k

n∏
i=1

MS,n+1−i, and (17)

MS,i :=

{
ηn
(
XiX

⊤
i − Σ

)
if i ∈ S,

I + ηnΣ if i /∈ S.
(18)

The term Tn,1 is called the Hájek projection of the random variable Bn on the random variables
X1, . . . , Xn. Tn,1 is the best approximation to Bn among the estimators that can be written as the
sum of independent random vectors and satisfy certain integrability conditions. Moreover,

• Tn,k and Tn,j are uncorrelated for all k ̸= j, and

• the summands in Tn,k are also pairwise uncorrelated.

We exploit this structure of the Hoeffding decomposition to decompose the residual vector r̃oja.

Lemma 2. [Error Decomposition of voja] Let voja, ṽ be defined as in (6) and (10) respectively. Then,

voja − (ṽ⊤voja)ṽ = Ψn,0 +Ψn,1 +Ψn,2 +Ψn,3 +Ψn,4, (19)

where

Ψn,0 := (v⊤1 voja)v1 − (ṽ⊤voja)ṽ,

Ψn,1 :=
V⊥V

⊤
⊥ Tn,1v1sign(v

⊤
1 u0)

(1 + ηnλ1)n
,

Ψn,2 :=
V⊥V

⊤
⊥ (
∑

k≥2 Tn,k)v1sign(v
⊤
1 u0)

(1 + ηnλ1)n
,

Ψn,3 := V⊥V
⊤
⊥ Bnu0

(
1

∥Bnu0∥2
− 1∣∣v⊤1 u0∣∣ (1 + ηλ1)n

)
,

Ψn,4 :=
V⊥V

⊤
⊥ BnV⊥V

⊤
⊥ u0∣∣v⊤1 u0∣∣ (1 + ηλ1)n

. (20)

We bound the variance of each of these terms separately. The dominating term Ψn,1 corresponding
to the Hájek projection Tn,1 has the largest variance. Recall from Lemma 1 that∣∣∣∣E [(e⊤k Ψn,1

)2]
− ηnλ1Vkk

∣∣∣∣ ≤ Õ

(
1

n2

)
.

10



A finer analysis is needed for this term than the other residual terms in (20). To do this, we

bound the variance of
(
e⊤k Ψn,1

)2. Lemma 3 shows that
√

Var((e⊤k Ψn,1)2) is a constant factor within

E[(e⊤k Ψn,1)
2] = Õ(1/n) up to an additive error term Õ(1/n3/2) which depends polynomially on

model parameters.

Lemma 3 (Variance of the Hájek projection). Let Ψn,1 be defined as in Lemma 2. Then,√
Var

(
(e⊤k Ψn,1)2

)
≤
√
2E

[(
e⊤k Ψn,1

)2]
+ Õ

(
1

n3/2

)
.

The three terms Ψn,2,Ψn,3, and Ψn,4 are lower order terms.

Lemma 4 (Bound on lower order terms). Let Ψn,2, Ψn,3, and Ψn,4 be defined as in Lemma 2.
Then,

E

[(
e⊤k Ψn,2

)2
+
(
e⊤k Ψn,3

)2
+
(
e⊤k Ψn,4

)2]
= Õ

(
1

n2

)
.

The bound on the error term e⊤k Ψn,2 stems from a more general analysis of the terms Tn,k in the
Hoeffding decomposition of Bn. Lemma 5 is shown by exploiting the Martingale structure of Tn,k

and using norm inequalities [Huang et al., 2022] to compare the operator norm with the |||.|||p,q
norm.

Lemma 5. Let Tn,k be as defined in equation (17). Let for any 2 ≤ q ≤ 4 log d, Mq be defined
such that E [∥Ai − Σ∥q]1/q ≤ Mq and ηnMq

√
n log d ≲ 1. Then, for any j ∈ [n], δ ∈ (0, 1), with

probability at least 1− δ ∥∥∥∥∥∥
∑
k≥j

Tn,k

∥∥∥∥∥∥ ≤ 3(1 + ηnλ1)
n
(
ηnMq

√
4n log d

)j
δ

1
4 log d

Proof sketch. Let Sn,k be the set of subsets of [n] of size k.

Tn,k = (I + ηnΣ)Tn−1,k + ηn(An − Σ)Tn−1,k−1.

Proposition 4.3. of Huang et al. [2022] implies

|||Tn,k|||2p,q ≤ |||(I + ηnΣ)Tn−1,k|||2p,q
+ (p− 1)|||ηn(An − Σ)Tn−1,k−1|||2p,q.

as long as E [ηn(An − Σ)Tn−1,k−1|(I + ηnΣ)Tn−1,k] = 0, which is true due to A1, A2, . . . , An being
mutually independent. Solving the recurrence shows the bound.

The term Ψn,0 arises in the decomposition (20) because we use ṽ as a proxy to v1 in Algorithm 1.

Lemma 6 (Variance of Approximating v1). Let Ψn,0 be defined as in Lemma 2. Then, E
[(
e⊤k Ψn,0

)2]
=

Õ
(
1
N

)
, where ṽ (Eq 10) uses N samples.

Theorem 2 follows by combining all these bounds. See Appendix B.2.6 for a complete argument.
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5 Experiments

In this section, we provide experiments on synthetic and real-world data to validate our theory.
For all experiments, we estimate variance of the entries of roja (see Eq 7) by scaling the output of
Algorithm 1 by ηB (λ1 − λ2).

5.1 Synthetic data experiments

We provide numerical experiments to compare Algorithm 1 (OjaVarEst) with the multiplier boot-
strap based algorithm proposed in Lunde et al. [2021]. As discussed in Section 3.1, given a dataset
Dn := {Xi}i∈[n], we choose ṽ for OjaVarEst as ṽ := Oja (Dn, ηn, z/ ∥z∥2) for z ∼ N (0, I) and set
m1 = 3, m2 = log (n), N = n. Given a variance estimate, σ̂2

OjaVarEst, we construct a (1− α)-
confidence interval as ṽ ± zα

2
σ̂OjaVarEst.

For the bootstrap algorithm, using Algorithm 1 in the aforementioned paper, we use b bootstrap
samples to generate estimates v∗(1), · · · , v∗(b) and measure the empirical variance by computing the
average squared residual with ṽ. Again, given a variance estimate, σ̂2

BootstrapOja, we construct a
(1− α)-confidence interval as ṽ ± zα

2
σ̂BootstrapOja.

We also use the data generation process proposed in Lunde et al. [2021] for our experiments. Specif-
ically, we begin by generating independent samples Zij ∼ Uniform(−

√
3,
√
3) for indices i ∈ [n] and

j ∈ [d]. Next, we define a positive semidefinite matrix K with entries Kij = exp(−c |i − j|) using
the constant c = 0.01. With this matrix, we construct a covariance matrix Σ via Σij = K(i, j)σi σj ,
where the scaling factors are specified by σi = 5 i−β for β ∈ {0.2, 1}. We finally transform the
samples as Xi = Σ1/2Zi.

Figure 1: Time taken by the bootstrap methods and the OjaVarEst algorithm. Experiments verify
that our proposed algorithm is as fast as bootstrap with b = 1.

The first experiment (see Figure 1) compares the computational performance of OjaVarEst with
bootstrap to measure variance, varying the number of bootstrap samples, b, and recording perfor-
mance for different values of d with a fixed n = 5000 and β = 1. We note that the performance of
our algorithm is computationally at par with bootstrap when using only 1 bootstrap sample, and
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is substantially better if the number of bootstrap samples increase. This is to be expected since for
our algorithm, only two passes over the entire dataset suffice, whereas for bootstrap, b bootstrap
vectors are required to be maintained, which slows computation by a factor of b. Furthermore, it
also requires b times as much space to maintain b different iterates, which may be costly in context
of training large models.

Dist. 1 (β = 1), Coordinate 1 Dist. 1 (β = 1), Coordinate 2

(n, d) OjaVarEst BS (b = 1) BS (b = 10) BS (b = 20) OjaVarEst BS (b = 1) BS (b = 10) BS (b = 20)

2e3, 2e3 96.50% 65.00% 93.00% 95.00% 94.00% 69.50% 91.00% 91.50%
5e3, 2e3 95.50% 73.00% 91.50% 94.00% 95.50% 73.00% 89.00% 92.00%
1e4, 2e3 96.00% 69.00% 93.50% 94.50% 96.00% 71.50% 93.50% 96.00%

Dist. 2 (β = 0.02), Coordinate 1 Dist. 2 (β = 2), Coordinate 2

(n, d) OjaVarEst BS (b = 1) BS (b = 10) BS (b = 20) OjaVarEst BS (b = 1) BS (b = 10) BS (b = 20)

2e3, 2e3 94.50% 74.00% 87.00% 93.50% 94.00% 75.00% 86.50% 92.00%
5e3, 2e3 96.00% 71.00% 87.50% 92.00% 96.50% 72.50% 87.00% 93.00%
1e4, 2e3 94.00% 65.00% 95.00% 94.00% 94.50% 66.50% 94.50% 93.50%

Table 1: Coverage statistics for our algorithm, OjaVarEst, and the Bootstrap(BS) estimator, with
varying bootstrap samples (b = 1, 10, 20), data distributions (β = 1, 0.02) and sample sizes (n =
2000, 5000, 10000) with a fixed dimension d = 2000.

The next experiment (Table 1) compares the quality of the variance estimates of our algorithm,
σ̂2
OjaVarEst with that of bootstrap σ̂2

BootstrapOja for different number of bootstrap samples, b, and
distributions, β. We record the average coverage rate, which is the proportion of times the confidence
interval provided by the algorithm contains the coordinate of the true eigenvector, for a target
coverage probability of 95% for the first two coordinates of the eigenvector. OjaVarEst performs
similarly to Bootstrap with b = 20. However, as shown in Figure 1, the bootstrap method is 20
times slower. The time taken by bootstrap with b = 1 is similar to OjaVarEst but has a significantly
worse average coverage rate.

Our final experiment compares the Algorithm 1 with m1 = 3 to using just the mean (m1 = 1).
Even with the choice m1 = 3, the uncertainty in variance estimation is reduced.

5.2 Real-world data experiments

We provide experiments on two real-world datasets in this section. For each dataset, we show the
95% confidence intervals and plot the top 20 coordinates of the true offline eigenvector (red dot),
used as a proxy for the ground truth.

Time series+missing data: The Human Activity Recognition (HAR) Dataset [Anguita et al.,
2013] contains smartphone sensor readings from 30 subjects performing daily activities (walking,
sitting, standing, etc.). Each data instance is a 2.56-second window of inertial sensor signals repre-
sented as a feature vector. Here, n = 7352 and d = 561. For each datum, we also replace 10% of
features randomly by zero to simulate missing data. Even in this setting, which we do not analyze
theoretically, most of the top 20 coordinates of the offline eigenvector are inside the 95% CI returned
by our algorithm (see Figure 3).
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(a) Mean (with m1 = 1)

(b) Median (with m1 = 3)

Figure 2: Comparison of Median and Mean in Algorithm 1 for n = 5000, d = 2000, β = 1, b = 10.

Class 0 1 2 3 4 5 6 7 8 9

sin2 error 0.12 0.07 0.18 0.32 0.53 0.18 0.08 0.09 0.20 0.17

Table 2: sin2 of the angle between the offline eigenvector and the subsampling eigenvector output
by our algorithm, computed separately after filtering the MNIST data for each class.

Image data: We use the MNIST dataset [LeCun et al., 1998] of images of handwritten digits (0
through 9). Here, n = 60, 000, d = 784, with each image normalized to a 28 × 28 pixel resolution.
We see (Figure 4) that for the classes where Oja’s algorithm converges (small sin2 error in Table 2),
most of the top 20 coordinates are inside their confidence intervals (CIs). Notable exceptions are
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(a)

(b)

Figure 3: Uncertainty Estimation for HAR dataset (n = 7352, d = 561). The sin2 error of Oja’s
algorithm is equal to 0.057 for this dataset. (a) plot of the eigenvector with 95% confidence interval
for all coordinates and (b) the same plot zoomed in on indices 170-310 for exposition.

classes 3 and 4, where several of the top 20 coordinates are not contained inside the corresponding
CIs. This is expected because our theory is applicable when Oja’s algorithm converges.

6 Conclusion

In this work, we develop a novel statistical inference framework for streaming PCA using Oja’s
algorithm. We derive finite-sample and high-probability deviation bounds for the coordinates of
the estimated eigenvector, establish a Bernstein-type concentration bound on the residual of the
Oja vector, establish a Central Limit Theorem for suitable subsets of entries, and devise an efficient
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(0) (1) (2)

(3) (4) (5)

(6) (7) (8)

(9)

Figure 4: Uncertainty Estimation for MNIST dataset. The sin2 error of Oja’s algorithm for each
class is provided in Table 2.

subsampling-based variance estimation algorithm. By leveraging the structure of the Oja updates,
we provide entrywise confidence intervals, bypassing expensive resampling techniques such as boot-
strapping. Our theoretical results are supported by extensive numerical experiments, indicating
that our proposed estimator achieves accuracy similar to the multiplier bootstrap method while
requiring significantly less time.

We believe that our subsampling algorithm can be adapted to any SGD problem where the covari-
ance matrix of the estimator θ̂n scales as cn times some scale-free matrix V, where cn is known. This
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structure aligns with subsampling and m-out-of-n bootstrap methods, where the variance estimated
from a subsample of size m is scaled by m/n to approximate the variance of the full sample esti-
mator. Our findings also highlight the potential for improved uncertainty quantification techniques
in streaming non-convex optimization problems beyond PCA, since Oja-type updates can be found
in many important non-convex optimization algorithms such as matrix sensing, matrix completion,
and subspace estimation. Further directions include deflation-based methods to apply our method
to variance estimation for top k eigenvectors.
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The Appendix is organized as follows:

1. Section A provides some useful results used in subsequent analyses

2. Section B has the Bias and Concentration calculation of our estimator designed in Algorithm 1

3. Section C provides high probability Entrywise Error Bounds on the entries of voja

4. Section D provides a Central Limit Theorem for the entries of the Oja vector, voja, which ties
the results developed in Section B to provide confidence intervals

A Utility Results

Lemma 7. For any integer n ≥ 2, real ϵ ∈ (0, 1), and reals {ai}i∈[n],

(1− ϵ)a21 −
n− 1

ϵ

n∑
i=2

a2i ≤
( n∑
i=1

ai

)2
≤ (1 + ϵ)a21 +

2(n− 1)

ϵ

n∑
i=2

a2i .

Proof. We begin by writing(
a1 +

n∑
i=2

ai

)2
= a21 + 2a1

( n∑
i=2

ai

)
+
( n∑
i=2

ai

)2
. (21)

By Cauchy-Schwarz inequality,

0 ≤
( n∑
i=2

ai

)2
≤ (n− 1)

n∑
i=2

a2i . (22)

The cross-term can be bounded using the inequality

−ϵx2 − 1

ϵ
y2 ≤ 2xy ≤ ϵx2 +

1

ϵ
y2

with x = a1 and y =
∑n

i=2 ai to get

2a1

( n∑
i=2

ai

)
≥ −ϵa21 −

1

ϵ

( n∑
i=2

ai

)2
≥ −ϵa21 −

n− 1

ϵ

n∑
i=2

a2i ,

and

2a1

( n∑
i=2

ai

)
≤ ϵa21 +

1

ϵ

( n∑
i=2

ai

)2
≤ ϵa21 +

n− 1

ϵ

n∑
i=2

a2i .

The proof follows by using the above inequalities in (21) followed by another application of (22).

Lemma 8. Let V be the asymptotic variance matrix defined in Lemma 1, and let voja be the Oja
vector as defined in (6). If the coordinate-wise bound∣∣∣e⊤i (voja − (v⊤1 voja) v1)∣∣∣ ≲ Cd,n

√
Vkk

n
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holds for every i ∈ [d], where C2
d,n hides logarithmic factors in d, n, then

sin2 (voja, v1) =
∑
i∈[d]

(
e⊤i

(
voja −

(
v⊤1 voja

)
v1

))2
≲ C2

d,n

V
(λ1 − λ2)

2 n
,

where V is the matrix variance statistic defined in Assumption 1.

Proof. By the definitions of V and R0 as in Lemma 1,

∑
i∈[d]

(
e⊤i

(
voja −

(
v⊤1 voja

)
v1

))2
≲ C2

d,n

Tr (V)
n
≤

(
C2
d,n

λ1 − λ2

)
Tr (R0)

n
=

(
C2
d,n

λ1 − λ2

)
1

n

∑
2≤k≤d

M̃kk

2 (λ1 − λk)

≤
C2
d,n

(λ1 − λ2)
2

Tr
(
E
[
V⊥ (A− Σ) v1v

⊤
1 (A− Σ)V ⊤⊥

])
n

=
C2
d,n

(λ1 − λ2)
2

E
[
Tr
(
V⊥ (A− Σ) v1v

⊤
1 (A− Σ)V ⊤⊥

)]
n

=
C2
d,n

(λ1 − λ2)
2

v⊤1 E
[
(A− Σ)V⊥V

⊤
⊥ (A− Σ)

]
v1

n

≤
C2
d,n

(λ1 − λ2)
2

v⊤1 E
[
(A− Σ)2

]
v1

n
≤ C2

d,n

V
(λ1 − λ2)

2 n
.

Lemma 9 (Choice of learning rate). Let ηn := α log(n)
n(λ1−λ2)

for α > 1. Then, under Assumptions 1
and 2

1. nd exp (−ηnn (λ1 − λ2)) = o (1).

2. max
{
ηn,

log(d)
λ1−λ2

}
M4

2
λ1−λ2

η2n = o (1).

3. nη2n(2λ
2
1 +M2

2) ≤ 1

Proof. The above conditions on ηn imply Corollary 1 in Lunde et al. [2021]. Let’s start with the
first condition. We have

nd exp (−ηnn (λ1 − λ2)) ≤ nd exp (−α log (n)) =
d

nα−1 = o(1), using the bound on d

For the second condition, we first note that for n ≥ α log (n) provided by Assumption 2,

ηn ≤
log (d)

(λ1 − λ2)

Now for the second condition, we require,

α2M4
2 log

2 (n) log (d)

n2 (λ1 − λ2)
4 = o(1)

which is again ensured by the condition on n in Assumption 2.
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Lemma 10. Let t be a positive integer, δ ∈ (0, 1), and let I be an interval in R. Suppose
a1, a2, . . . , at are independent random variables such that P (ai ∈ I) ≥ 3/4. Then, for t ≥ 8 log (1/δ),

P
(
Median

(
{ai}i∈[t]

)
∈ I
)
≥ 1− δ.

Proof. Since I is an interval, the median does lies in I if at least half the ai are in I. Let bi be the
indicator that ai /∈ I, and let B =

∑
i∈[t] bi. Then, b1, b2, . . . , bt are independent Bernoulli random

variables each with mean at most 1/4. By Hoeffding’s inequality,

P
(
Median

(
{ai}i∈[t]

)
/∈ I
)
≤ P (B > t/2) ≤ exp

(
−2(t/2− E [B])2/t

)
≤ exp (−t/8) ≤ δ.

B Estimator Concentration

Lemma 2. [Error Decomposition of voja] Let voja, ṽ be defined as in (6) and (10) respectively. Then,

voja − (ṽ⊤voja)ṽ = Ψn,0 +Ψn,1 +Ψn,2 +Ψn,3 +Ψn,4, (19)

where

Ψn,0 := (v⊤1 voja)v1 − (ṽ⊤voja)ṽ,

Ψn,1 :=
V⊥V

⊤
⊥ Tn,1v1sign(v

⊤
1 u0)

(1 + ηnλ1)n
,

Ψn,2 :=
V⊥V

⊤
⊥ (
∑

k≥2 Tn,k)v1sign(v
⊤
1 u0)

(1 + ηnλ1)n
,

Ψn,3 := V⊥V
⊤
⊥ Bnu0

(
1

∥Bnu0∥2
− 1∣∣v⊤1 u0∣∣ (1 + ηλ1)n

)
,

Ψn,4 :=
V⊥V

⊤
⊥ BnV⊥V

⊤
⊥ u0∣∣v⊤1 u0∣∣ (1 + ηλ1)n

. (20)

Proof. We have,

voja = (v⊤1 voja)v1 + V⊥V
⊤
⊥ voja

= (v⊤1 voja)v1 +
V⊥V

⊤
⊥ Bnu0

∥Bnu0∥2

= (v⊤1 voja)v1 +
V⊥V

⊤
⊥ Bnu0
cn

+Ψn,3

= (v⊤1 voja)v1 +
V⊥V

⊤
⊥ Bnv1sign(v

⊤
1 u0)

(1 + ηnλ1)n
+Ψn,3 +Ψn,4

= (v⊤1 voja)v1 +
V⊥V

⊤
⊥ (Bn − E [Bn])v1sign(v

⊤
1 u0)

(1 + ηnλ1)n
+Ψn,3 +Ψn,4

= (v⊤1 voja)v1 +
V⊥V

⊤
⊥ (
∑

k≥1 Tn,k)v1sign(v
⊤
1 u0)

(1 + ηnλ1)n
+Ψn,3 +Ψn,4, using Theorem A.1 Lunde et al. [2021]

= (ṽ⊤voja)ṽ +Ψn,0 +Ψn,1 +Ψn,2 +Ψn,3 +Ψn,4.
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Lemma 11. Let Ψn,1 be as defined in Lemma 2. Then,

Ψn,1 := ηnYn, for Yn :=
n∑

j=1

Xn
j and Xn

j :=
sign

(
v⊤1 u0

)
1 + ηnλ1

V⊥Λ
n−j
⊥ V ⊤⊥ (Aj − Σ) v1

where Λ⊥ ∈ R(d−1)×(d−1) is a diagonal matrix with entries Λ⊥(i, i) =
1+ηnλi+1

1+ηnλ1
.

Let {Ai}i∈[n] be symmetric independent matrices satisfying E [Ai] = Σ,
∥∥∥E [(Ai − Σ)2

]∥∥∥
2
≤ V and

∥Ai − Σ∥2 ≤M. Define,

∀j ∈ [n], Xn
j := V⊥Λ

n−j
⊥ V ⊤⊥ (Aj − Σ) v1, and Yn :=

∑
j∈[n]

Xn
j

B.1 Estimator Bias

Proof of Lemma 1. Using the definitions of Yn and Xn
j from Lemma 11, we have

1

η2n
E
[
Ψn,1Ψ

⊤
n,1

]
= E

[
YnY

⊤
n

]
=
∑
j,k∈[i]

E
[
Xn

j X
n⊤
k

]
=
∑
j∈[n]

E
[
Xn

j X
n⊤
j

]
, since Aj , Ak are independent for j ̸= k

=
1

(1 + ηnλ1)
2

∑
j∈[n]

V⊥Λ
n−j
⊥ V ⊤⊥ E

[
(Aj − Σ) v1v

⊤
1 (Aj − Σ)

]
V⊥Λ

n−j
⊥ V ⊤⊥

=
1

(1 + ηnλ1)
2V⊥

∑
j∈[n]

Λn−j
⊥ V ⊤⊥ E

[
(Aj − Σ) v1v

⊤
1 (Aj − Σ)

]
V⊥︸ ︷︷ ︸

:=M̃

Λn−j
⊥

V ⊤⊥ .

Recall R(n) := 1
(1+ηnλ1)

2

∑
j∈[n] Λ

n−j
⊥ M̃Λn−j

⊥ and consider (k, l)th entry of R(n).

R
(n)
kl =

1

(1 + ηnλ1)
2 e
⊤
k

∑
j∈[n]

Λn−j
⊥ M̃Λn−j

⊥ el =
1

(1 + ηnλ1)
2 M̃kl

n∑
j=1

(dkdl)
n−j =

1

(1 + ηnλ1)
2 M̃kl

(
1− (dkdl)

n

1− dkdl

)
.
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Let R0(k, l) = M̃kℓ/(2λ1 − λk+1 − λℓ+1). Note that

1− dkdl =
ηn (2λ1 − λk+1 − λl+1)

1 + ηλ1
− η2n (λ1 − λk+1) (λ1 − λl+1)

(1 + ηλ1)
2

=
ηn (2λ1 − λk+1 − λl+1)

1 + ηλ1

[
1− ηn (λ1 − λk+1) (λ1 − λl+1)

(1 + ηλ1) (λ1 − λk+1 + λ1 − λl+1)

]
≥ ηn (2λ1 − λk+1 − λl+1)

1 + ηλ1

[
1− ηn (λ1 − λk+1) (λ1 − λl+1)

(λ1 − λk+1 + λ1 − λl+1)

]
≥ ηn (2λ1 − λk+1 − λl+1)

1 + ηλ1
[1− ηnmin {λ1 − λk+1, λ1 − λl+1}]

≥ ηn (2λ1 − λk+1 − λl+1)

1 + ηλ1
[1− ηnλ1]

≥ ηn (2λ1 − λk+1 − λl+1) (1−O (ηnλ1))

Then,

R
(n)
kl −R0(k, l)/ηn =

M̃kℓ

ηn(2λ1 − λk+1 − λℓ+1)

(1 +O(ηnλ1))

(1 + ηnλ1)
2 −

M̃kℓ

ηn(2λ1 − λk+1 − λℓ+1)

=
M̃kℓ

ηn(2λ1 − λk+1 − λℓ+1)
(1 +O(ηnλ1))−

M̃kℓ

ηn(2λ1 − λk+1 − λℓ+1)

=
M̃kℓ

ηn(2λ1 − λk+1 − λℓ+1)
O(ηnλ1)

So we have:

ηnR
(n)
kl −R0(k, l)

R0(k, l)
= O(ηnλ1)

Finally, we have:

∥ηnR(n) −R0∥F ≤
ηnλ1

λ1 − λ2
∥M̃∥F /2

Note that

∥M̃∥2F ≤ E
[∥∥∥(Ai − Σ)v1v

⊤
1 (Ai − Σ)

∥∥∥] ≤ E
[
∥Ai − Σ∥2

]
≤M2

2.

B.2 Estimator Concentration

In this section, we estimate the bias of the variance estimate output by Algorithm 1. In the entirety
of this section, we assume that the vector ṽ is “good”, i.e sin2 (ṽ, v1) ≲

log(1/δ)
δ3

ηNM2
2

(λ1−λ2)
, which happens

with probability at least 1 − δ. Recall that ṽ ← Oja(DN , ηN , u0) is the high accuracy estimate of
v1. We present all results using a general n number of i.i.d. samples per split, which will later be
replaced by n/(m1m2) as required by Algorithm 1. We denote sn := log(1/δ)

δ3
ηnM2

2
(λ1−λ2)

to be the upper
bound on the sin2 error of the Oja vector due to Jain et al. [2016]. While our results henceforth are
written using sn and sn is not guaranteed to be smaller than 1, it is straightforward to replace it
by min {sn, 1} since the sin2 error between any two vectors is always at most 1.
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B.2.1 Ψn,0 Tail Bound

Lemma 12. Let Ψn,0 be defined as in Lemma 2 for voja defined in (6). Let
{
Ψ

(i)
n,0

}
i∈[m]

and{
v
(i)
oja

}
i∈[m]

be m iid instances of Ψn,0 and voja respectively. Then, for any k ∈ [d],

P

∑
i∈[m]

(
e⊤k Ψ

(i)
n,0

)2
m

≤
C log

(
1
δ

)
δ3

ηNM2
2

(λ1 − λ2)

 ≥ 1− δ.

Proof. For any i ∈ [m],∣∣∣e⊤k Ψ(i)
n,0

∣∣∣ = ∣∣∣e⊤k (v1v⊤1 − ṽṽ⊤
)
v
(i)
oja

∣∣∣ ≤ ∥∥∥v1v⊤1 − ṽṽ⊤
∥∥∥ =
√
2 |sin (ṽ, v1)| .

The result now follows from Corollary 1 of Lunde et al. [2021], which states that with probability
at least 1− δ,

sin2 (ṽ, v1) ≤
C log

(
1
δ

)
δ3

ηNM2
2

(λ1 − λ2)
.

for some universal constant C > 0.

B.2.2 Ψn,1 (Hajek Projection) Concentration

Lemma 13. Let Ψn,1 be defined as in Lemma 2 for u0 = g/ ∥g∥2 with g ∼ N (0, Id). Let
{
Ψ

(i)
n,1

}
i∈[m]

and
{
g(i)
}
i∈[m]

be m i.i.d. instances of Ψn,1 and g respectively. Then, for any δ ∈ (0, 1) and k ∈ [d],
with probability at least 1− δ,∣∣∣∣∣∣∣

∑
i∈[m]

(
e⊤k Ψ

(i)
n,1

)2
m

− E

[(
e⊤k Ψn,1

)2]∣∣∣∣∣∣∣ ≤
√
2E
[(
e⊤k Ψn,1

)2]
+ η2nb

2
kM2

4

√
n

√
mδ

.

where bk :=
∥∥V ⊤⊥ ek

∥∥
2
.

Proof. Recall the notations Xn
j = V⊥Λ

n−j
⊥ V ⊤⊥ (Aj − Σ) v1 and Yn =

∑n
j=1X

n
j from Lemma 1. Since

V⊥V
⊤
⊥ Xn

j = Xn
j and Tn,1 = ηn

∑n
i=1X

n
j , e⊤k Ψn,1 can be written as

e⊤k Ψn,1 =
e⊤k V⊥V

⊤
⊥ Tn,1v1sign(v

⊤
1 u0)

(1 + ηnλ1)n
=

ηnsign(v
⊤
1 u0)

(1 + ηnλ1)

n∑
j=1

e⊤k V⊥V
⊤
⊥ Xn

j =
ηnsign(v

⊤
1 u0)

1 + ηnλ1
e⊤k Yn. (23)

Next, we bound the variance of (e⊤k Yn)
2.

(e⊤k Yn)
2 =

n∑
j=1

(
e⊤k X

n
j

)2
+ 2

∑
j<j′

(
e⊤k X

n
j

)(
e⊤k X

n
j′

)
.

Most pairs of summands are uncorrelated.
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• Cov
(
(e⊤k X

n
j )

2, (e⊤k X
n
j′)

2
)
= 0 for any distinct j, j′ ∈ [n].

• Cov
(
(e⊤k X

n
ℓ )

2, (e⊤k X
n
j )(e

⊤
k X

n
j′)
)
= 0 for any ℓ ∈ [n] and 1 ≤ j < j′ ≤ n.

• Cov
(
(e⊤k X

n
j )(e

⊤
k X

n
j′), (e

⊤
k X

n
ℓ )(e

⊤
k X

n
ℓ′)
)
= 0 for any 1 ≤ j < j′ ≤ n and 1 ≤ ℓ < ℓ′ ≤ n such

that (j, j′) ̸= (ℓ, ℓ′).

It follows that

Var
(
(e⊤k Yn)

2
)
=

n∑
j=1

Var
(
(e⊤k X

n
j )

2
)
+ 4

∑
j<j′

Var
(
(e⊤k X

n
j )(e

⊤
k X

n
j′)
)
. (24)

We bound both terms separately. By Lemma 1, the second term can be bounded as

4
∑
j<j′

Var
(
(e⊤k X

n
j )(e

⊤
k X

n
j′)
)
= 4

∑
i<j

E
[
(e⊤k X

n
j )

2
]
E
[
(e⊤k X

n
j′)

2
]

≤ 2
n∑

j=1

n∑
j′=1

E
[
(e⊤k X

n
j )

2
]
E
[
(e⊤k X

n
j′)

2
]
= 2E

[
(e⊤k Yn)

2
]2

. (25)

Next, we bound the first term of Equation (24). For any j ∈ [n],∣∣∣e⊤k Xn
j

∣∣∣ = ∣∣∣e⊤k V⊥Λn−j
⊥ V ⊤⊥ (Ai − Σ)v1

∣∣∣ ≤ ∥∥∥e⊤k V⊥∥∥∥ ∥∥∥Λn−j
⊥

∥∥∥ ∥∥∥V ⊤⊥ (Aj − Σ)v1

∥∥∥ ≤ bk ∥Aj − Σ∥ ,

which implies

n∑
j=1

Var
(
(e⊤k X

n
j )

2
)
≤

n∑
j=1

E
[
(e⊤k X

n
j )

4
]
≤

n∑
j=1

E
[
b4k ∥Aj − Σ∥4

]
≤ b4kM4

4n. (26)

Combining equations (24), (25), and (26) and using equality (23),

Var
(
(e⊤k Ψn,1)

2
)
≤ 2E

[(
(e⊤k Ψn,1)

2
)]2

+
η4n

(1 + ηnλ1)4
b4kM4

4n.

By Chebyshev’s inequality, for any t > 0,

P

(∣∣∣∣∣ 1m
m∑
i=1

(
e⊤k Ψ

(i)
n,1

)2
− E

[(
e⊤k Ψn,1

)2]∣∣∣∣∣ ≥ t

)
≤

Var
((

e⊤k Ψn,1

)2)
mt2

≤
2E
[(
(e⊤k Ψn,1)

2
)]2

+ η4n
(1+ηnλ1)4

b4kM4
4n

mt2
.

The result follows by setting t =
√
2E[((e⊤k Ψn,1)2)]+η2nb

2
kM

2
4

√
n

√
mδ

.
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Remark 6. Note that in Lemma 13, one can always provide a uniform bound on all elements using
a Bernstein-type tail inequality rather than a Chebyshev bound. This is possible because we can use
our concentration inequality in Lemma 26. However, there are two pitfalls of this approach; first, for
failure probability δ, the errors of the lower order terms (Ψn,2,Ψn,3,Ψn,4) still depend polynomially
on the 1/δ (see Lemma 17, 19, 21), which limits the sample complexity of our estimator to have a
poly(1/δ) factor, and secondly, Lemma 26 requires a stronger a.s. upper bound on Ai−Σ for i ∈ [n].
However, we can get both a uniform bound over all coordinates k ∈ [d], and a log(1/δ) dependence
on the sample complexity, using our median of means based algorithm (Algorithm 1).

B.2.3 Ψn,2 tail bound

We start by providing a tail bound on higher order terms in the Hoeffding decomposition of Bn −
E [Bn], which may be of independent interest. Let Sn,k := {{i1, . . . , ik} : 1 ≤ i1 < · · · < ik ≤ n}.
Consider a general product of n matrices, where all but k of the matrices are constant, and k indexed
by the subset S are mean zero independent random matrices. With slight abuse of notation, let
MS,i denote a constant matrix Mi with ∥Mi∥ =: mi when i ̸∈ S and Wi when i ∈ S, EWi = 0,
Wi, i = 1, . . . , n are mutually independent.

Tn,k :=
∑

S∈Sn,k

n∏
i=1

MS,n+1−i (27)

Let Tn,k be a scaled version of the kth term in the Hoeffding projection of the matrix product
Bn :=

∏n
i=1(I + ηnAi). Let Wi = Ai − Σ. We want a tail bound for

∑
k≥2 Tn,k.

Lemma 14. For S ∈ Sn,k, denote a function MS,i := ηn(Ai − Σ) when i ∈ S and I + ηnΣ when
i ̸∈ S. Suppose q ≥ 2 and Mq are such that E [∥Ai − Σ∥q]1/q ≤ Mq. Then, for any 1 ≤ j ≤ n and
any p ≥ q, ∣∣∣∣∣∣

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
k≥j

Tn,j

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
p,q

≤ 2d1/p(1 + ηnλ1)
n

(
ηnMq

√
np

1 + ηnλ1

)j

,

as long as 2ηnMq
√
np

1+ηnλ1
< 1.
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Proof. We start by deriving a recurrence relation for Tn,k as follows:

Tn,k =
∑

S∈Sn,k

n∏
i=1

MS,n+1−i

=
∑

S∈Sn,k,n/∈S

n∏
i=1

MS,n+1−i +
∑

S∈Sn,k,n∈S

n∏
i=1

MS,n+1−i

=
∑

S∈Sn−1,k

(I + ηnΣ)
n∏

i=2

MS,n+1−i +
∑

S∈Sn−1,k−1

ηn(An − Σ)
n∏

i=2

MS,n+1−iMS,n+1−i

= (I + ηnΣ)

 ∑
S∈Sn−1,k

n−1∏
i=1

MS,n−i

+ ηn(An − Σ)

 ∑
S∈Sn−1,k−1

n−1∏
i=1

MS,n−i


= (I + ηnΣ)Tn−1,k + ηn(An − Σ)Tn−1,k−1.

Next, we apply Proposition 4.3. of Huang et al. [2022] to bound |||Tn,k|||p,q. To apply the proposition,
we require E [ηn(An − Σ)Tn−1,k−1|(I + ηnΣ)Tn−1,k] = 0. Indeed, by independence of A1, A2, . . . , An,

E [ηn(An − Σ)Tn−1,k−1|(I + ηnΣ)Tn−1,k] = E [ηn(An − Σ)]E [Tn−1,k−1|(I + ηnΣ)Tn−1,k] = 0.

Therefore, the proposition implies that

|||Tn,k|||2p,q ≤ |||(I + ηnΣ)Tn−1,k|||2p,q + (p− 1)|||ηn(An − Σ)Tn−1,k−1|||2p,q.

From Equation 4.1. and Equation 5.3. of Huang et al. [2022],

|||(I + ηnΣ)Tn−1,k|||p,q ≤ ∥I + ηnΣ∥op |||Tn−1,k|||p,q, and

|||ηn(An − Σ)Tn−1,k−1|||p,q ≤ ηnE [∥An − Σ∥q]1/q |||Tn−1,k−1|||p,q.

Plugging these bounds into the recurrence yields

|||Tn,k|||2p,q ≤ (1 + ηnλ1)
2|||Tn,k−1|||2p,q + η2nM2

q(p− 1)E [∥An − Σ∥q]2/q |||Tn−1,k−1|||2p,q.

Letting fn,k := |||Tn,k|||2p,q, we have the following recurrence for all n ≥ k ≥ 1:

fn,k ≤ (1 + ηnλ1)
2fn−1,k + η2nM2

q(p− 1)fn−1,k−1.

Defining an,k :=
fn,k

(1+ηnλ1)2(n−k)(η2nM2
q(p−1))k

, we recover an inequality resembling Pascal’s identity:

an,k ≤ an−1,k + an−1,k−1.

Moreover, an,k = 0 for all n < k and an,0 = (1 + ηnλ1)
−2n|||(I + ηnΣ)

n|||2p,q ≤ d2/p. Inducting on n
and k shows

an,k ≤ d2/p
(
n

k

)
.
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Translating this back to the bound on the norm of Tn,k, we conclude

|||Tn,k|||p,q ≤

√
(1 + ηnλ1)2(n−k)

(
η2nM2

q(p− 1)
)k

d2/p
(
n

k

)
≤ d1/p(1 + ηnλ1)

n−k (ηnMq
√
np)k

Since norms are sub-additive and ηnMq
√
np

1+ηnλ1
< 1

2 ,∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
∑
k≥j

Tn,k

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
p,q

≤
n∑

k=j

d1/p(1 + ηnλ1)
n−k (ηnMq

√
np)k

= d1/p(1 + ηnλ1)
n

n∑
k=j

(
ηnMq

√
np

1 + ηnλ1

)k

≤ 2d1/p(1 + ηnλ1)
n

(
ηnMq

√
np

1 + ηnλ1

)j

.

Lemma 15. For S ∈ Sn,k, denote a function MS,i := ηn(Ai − Σ) when i ∈ S and I + ηnΣ when
i ̸∈ S. Then, for any 1 ≤ j ≤ n, and 2 ≤ q ≤ 4 log d,

P

∥∥∥∥∥∥
∑
k≥j

Tn,k

∥∥∥∥∥∥ ≥ 3(1 + ηnλ1)
n
(
ηnMq

√
4n log d

)j
δ

1
4 log d

 ≤ δ,

as long as 4ηnMq
√
n log d < 1.

Proof. Let p = 4 log d; note that the assumption 2ηnMq
√
np

1+ηnλ1
< 1 holds. By Markov’s inequality,

Equation 4.2. of Huang et al. [2022], and Lemma 14,

P

∥∥∥∥∥∥
∑
k≥j

Tn,k

∥∥∥∥∥∥ ≥ (1 + ηnλ1)
nt

 ≤ inf
p′≥2

((1 + ηnλ1)
nt)−p

′
E


∥∥∥∥∥∥
∑
k≥j

Tn,k

∥∥∥∥∥∥
p′


≤ inf
p′≥2

((1 + ηnλ1)
nt)−p

′
E


∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
∑
k≥j

Tn,k

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
p′

p′,q


≤

2d1/p
(
ηnMq

√
np

1+ηnλ1

)j
t


p

≤

(
3
(
ηnMq

√
4n log d

)j
t

)4 log d

.

for all t > 0. The lemma follows by setting t = 3
(
ηnMq

√
4n log d

)j
δ

−1
4 log d .
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Lemma 16. Let Ψn,2 be as defined in Lemma 2 with u0 = g/ ∥g∥2. Then, for any δ ∈ (0, 1),

P

(
∥Ψn,2∥ ≤

12η2nM2
2n log d√
δ

)
≥ 1− δ.

Proof. By Lemma 15, with probability at least 1− δ,∥∥∥∥∥∥
∑
k≥2

Tn,k

∥∥∥∥∥∥ ≤ 3(1 + ηnλ1)
n
(
ηnM2

√
4n log d

)2
δ

1
4 log d

<
12(1 + ηnλ1)

nη2nM2
2n log d√

δ
.

Conditioned on this event,

∥Ψn,2∥ =

∥∥∥V⊥V ⊤⊥ (
∑

k≥2 Tn,k)v1sign(v
⊤
1 u0)

∥∥∥
(1 + ηnλ1)n

≤

∥∥V⊥V ⊤⊥ ∥∥ ∥∥∥∑k≥2 Tn,k

∥∥∥ ∥v1∥
(1 + ηnλ1)n

≤

∥∥∥∑k≥2 Tn,k

∥∥∥
(1 + ηnλ1)n

≤ 12η2nM2
2n log d√
δ

.

Lemma 17. Let Ψn,2 be defined as in Lemma 2 for u0 = g/ ∥g∥2 with g ∼ N (0, Id). Let
{
Ψ

(i)
n,2

}
i∈[m]

and
{
g(i)
}
i∈[m]

be m i.i.d. instances of Ψn,2 and g respectively, and let δ ∈ (0, 1). Then, with
probability at least 1− δ, ∑

i∈[m]

(
e⊤k Ψ

(i)
n,2

)2
m

≤
144b2kη

4
nM4

2n
2 log2 d

δ
,

for all k ∈ [d], where bk :=
∥∥V ⊤⊥ ek

∥∥
2
.

Proof. We have

∣∣∣e⊤k Ψn,2

∣∣∣ =
∣∣∣e⊤k V⊥V ⊤⊥ (

∑
k≥2 Tn,k)v1sign(v

⊤
1 u0)

∣∣∣
(1 + ηnλ1)n

=

∣∣∣e⊤k V⊥V ⊤⊥ V⊥V
⊤
⊥ (
∑

k≥2 Tn,k)v1sign(v
⊤
1 u0)

∣∣∣
(1 + ηnλ1)n

=
∣∣∣e⊤k V ⊤⊥ V⊥Ψn,2

∣∣∣ ≤ ∥∥∥e⊤k V⊥∥∥∥ ∥Ψn,2∥ ≤
bk

∥∥∥∑k≥2 Tn,k

∥∥∥
(1 + ηnλ1)n

.

By Lemma 16, for each i ∈ [m], with probability at least 1− δ
m ,∣∣∣e⊤k Ψ(i)

n,2

∣∣∣ ≤ 12bkη
2
nM2

2n log d√
δ/m

.

By a union bound, the above holds for all i ∈ [m] with probability at least 1− δ. Under this event,

∑
i∈[m]

(
e⊤k Ψ

(i)
n,2

)2
m

≤

∑
i∈[m]

(
12bkη

2
nM2

2n log d√
δ/m

)2

m
=

144b2kη
4
nM4

2n
2 log2 d

δ
.
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B.2.4 Ψn,3 tail bound

Lemma 18. Let Ψn,3 be as defined in Lemma 2 with u0 = g/ ∥g∥2. Let ηn be set according to
Lemma 9. Fix δ ∈ (0, 1). Then for any ϵ > 0 we have with probability at least 1− δ,

∥Ψn,3∥2 ≲
√
sn

d exp
(
−2ηnn (λ1 − λ2) + η2nn

(
λ2
1 +M2

2

))
+

ηnM2
2

(λ1−λ2)

δ3(1− δ) log−1(1/δ)


1
2

+
√
sn

ηn
√
nM2 log (d)

δ
1
2

.

where sn :=
C log( 1

δ )
δ3

ηnM2
2

(λ1−λ2)
for a universal constant C > 0.

Proof. Let cn = (1 + ηnλ1)
n|uT0 v1|. We first note that

∥Ψn,3∥2 =
∥∥∥∥V⊥V ⊤⊥ Bnu0

(
1

∥Bnu0∥2
− 1

cn

)∥∥∥∥
2

=

∥∥∥∥V⊥V ⊤⊥ Bnu0
∥Bnu0∥2

(
1−
∥Bnu0∥2

cn

)∥∥∥∥
2

≤
∥∥∥∥V⊥V ⊤⊥ Bnu0
∥Bnu0∥2

∥∥∥∥
2

∣∣∣∣∥Bnu0∥2
cn

− 1

∣∣∣∣ . (28)

We bound each of the two multiplicands separately. The first term corresponds to the sin error
between voja and v1: ∥∥∥∥V⊥V ⊤⊥ Bnu0

∥Bnu0∥2

∥∥∥∥2
2

= 1−
(
v⊤1 Bnu0

)2
∥Bnu0∥22

= sin2 (voja, v1) .

By Corollary 1 of Lunde et al. [2021],

P

(∥∥∥∥V⊥V ⊤⊥ Bnu0
∥Bnu0∥2

∥∥∥∥2
2

> sn

)
= P

(
sin2 (voja, v1) > sn

)
≤ δ. (29)

It follows that for any ϵ > 0,

P
(
∥Ψn,3∥2 > ϵ

√
sn
)
≤ P

(∥∥∥∥V⊥V ⊤⊥ Bnu0
∥Bnu0∥2

∥∥∥∥2
2

> sn

)
+ P

(∣∣∣∣∥Bnu0∥2
cn

− 1

∣∣∣∣ > ϵ

)
(30)

≤ δ + P

(∣∣∣∣∥Bnu0∥2
cn

− 1

∣∣∣∣ > ϵ

)
. (31)

To bound the second term, we adapt the proof of Lemma B.2 in Lunde et al. [2021]. Letting
a1 =

∣∣v⊤1 u0∣∣, ∣∣∣∣∥Bnu0∥
cn

− 1

∣∣∣∣ ≤ ∣∣∣∣∥Bnv1a1∥ − ∥a1(I + ηnΣ)
nv1∥

cn

∣∣∣∣+ ∥BnV⊥V
T
⊥ u0∥

cn

=

∣∣∣∣∥Bnv1∥ − ∥(I + ηnΣ)
nv1∥

(1 + ηnλ1)n

∣∣∣∣+ ∥BnV⊥V
T
⊥ u0∥

cn

≤
∥Bn − E[Bn]∥op
(1 + ηnλ1)n

+
∥BnV⊥V

T
⊥ u0∥

cn
. (32)
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For the first summand, using Eq 5.6 of Huang et al. [2022] with q = 2 and by Markov’s inequality,

P

(∥Bn − E [Bn]∥op

(1 + ηnλ1/n)n
>

ϵ

2

)
≤

E
[
∥Bn − E [Bn]∥2op

]
(1 + ηnλ1)nϵ2

≤ Cη2nnM2
2(1 + log d)2

ϵ2
(33)

For the second summand of equation (32), define the event

G =

{
∥BnV⊥V

T
⊥ u0∥2

|vT1 u0|2
≤ C log(1/δ)

δ2
trace

(
V T
⊥BT

nBnV⊥
)}

.

By Proposition B.6 of Lunde et al. [2021], P (G) ≥ 1 − δ where C > 0 is some universal constant.
Since P (A|B)P (B) = P (A ∩ B) ≤ P (A), Markov’s inequality together with Lemma 5.2 of Jain
et al. [2016] with V ≤M2

2 yields

P

(
∥BnV⊥V

T
⊥ u0∥

cn
≥ ϵ

2
|G
)

(34)

≤ 1

1− δ
P

(
trace(V⊥B

T
nBnV

T
⊥ ) ≥ ϵ2

4
· δ2

C log(1/δ)

)

≤ 1

1− δ
C
d exp

(
−2ηnn (λ1 − λ2) + η2nn

(
λ2
1 +M2

2

))
+

ηnM2
2 exp(nη

2
n(2λ

2
1+M2

2))
2(λ1−λ2)

ϵ2δ2 log−1 (1/δ)
(35)

≤ 1

1− δ
C
d exp

(
−2ηnn (λ1 − λ2) + η2nn

(
λ2
1 +M2

2

))
+

eηnM2
2

2(λ1−λ2)

ϵ2δ2 log−1 (1/δ)
, (36)

where the last bound follows from Lemma 9.

Finally, define the error ϵ as

ϵ :=

C
d exp

(
−2ηnn (λ1 − λ2) + η2nn

(
λ2
1 +M2

2

))
+

ηnM2
2

(λ1−λ2)

δ3(1− δ) log−1(1/δ)


1
2

+
ηn
√
nM2 log (d)

δ
1
2

. (37)

Substituting ϵ in equations (36) and (33), and combining with equation (32),

P

(∣∣∣∣∥Bnu0∥
cn

− 1

∣∣∣∣ > ϵ

)
≤ P

(
∥BnV⊥V

T
⊥ u0∥

cn
>

ϵ

2

)
+ P

(∥Bn − E [Bn]∥op
(1 + ηnλ1/n)n

>
ϵ

2

)
(38)

≤ P

(
∥BnV⊥V

T
⊥ u0∥

cn
>

ϵ

2
|G
)
+ P(G∁) + P

(∥Bn − E [Bn]∥op
(1 + ηnλ1/n)n

>
ϵ

2

)
≤ 3δ.

(39)

From equations (31) and (39), we conclude

P
(
∥Ψn,3∥2 > ϵ

√
sn
)
≤ 4δ.
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Lemma 19. Let Ψn,3 be defined as in Lemma 2 for u0 = g/ ∥g∥2 with g ∼ N (0, Id). Let ηn be
set according to Lemma 9. Let

{
Ψ

(i)
n,3

}
i∈[m]

and
{
g(i)
}
i∈[m]

be m i.i.d. instances of Ψn,3 and g

respectively. Then for any δ ∈ (0, 1), with probability at least 1− δ,∑
i∈[m]

(
e⊤k Ψ

(i)
n,3

)2
m

≲ snb
2
k

m3

d exp
(
−2ηnn (λ1 − λ2) + η2nn

(
λ2
1 +M2

2

))
+

ηnM2
2

(λ1−λ2)

δ3(1− δ/m) log−1(m/δ)

+m
η2nnM2

2 log
2 (d)

δ

 .

for all k ∈ [d], where bk :=
∥∥V ⊤⊥ ek

∥∥
2

and sn :=
C log( 1

δ )
δ3

ηnM2
2

(λ1−λ2)
for a universal constant C > 0.

Proof. Using Lemma 18, for any fixed i ∈ [m], with probability at least 1− δ,

∥∥∥Ψ(i)
n,3

∥∥∥
2
≲
√
sn


d exp

(
−2ηnn (λ1 − λ2) + η2nn

(
λ2
1 +M2

2

))
+

ηnM2
2

(λ1−λ2)

δ3(1− δ) log−1(1/δ)


1
2

+
ηn
√
nM2 log (d)

δ
1
2

 .

(40)

Furthermore, note that∣∣∣e⊤k Ψ(i)
n,3

∣∣∣
2
=

∣∣∣∣e⊤k V⊥V ⊤⊥ Bnu0

(
1

∥Bnu0∥2
− 1

cn

)∣∣∣∣
2

=

∣∣∣∣e⊤k V⊥V ⊤⊥ V⊥V
⊤
⊥ Bnu0

(
1

∥Bnu0∥2
− 1

cn

)∣∣∣∣
2

≤
∥∥∥e⊤k V⊥V ⊤⊥ ∥∥∥

2

∥∥∥∥V⊥V ⊤⊥ Bnu0

(
1

∥Bnu0∥2
− 1

cn

)∥∥∥∥
2

= bk

∥∥∥∥V⊥V ⊤⊥ Bnu0

(
1

∥Bnu0∥2
− 1

cn

)∥∥∥∥
2

= bk

∥∥∥Ψ(i)
n,3

∥∥∥
2

(41)

The result then follows by a union bound over all i ∈ [m] for the event in (40) and using (41).

B.2.5 Ψn,4 tail bound

Lemma 20. Let Ψn,4 be defined as in Lemma 2 for u0 = g/ ∥g∥2 with g ∼ N (0, Id). Let ηn be set
according to Lemma 9. For any δ ∈ (0, 1), with probability at least 1− δ,

∥Ψn,4∥ ≤
1

δ3/2

(
d exp

(
−2ηnn (λ1 − λ2) + η2nn

(
λ2
1 +M2

2

))
+

eη3nnM4
2 (1 + 2 log (d))

2 (λ1 − λ2) + ηn
(
λ2
1 − λ2

2 −M2
2

))1/2

.

Proof. Recall that

∥Ψn,4∥ =
∥∥V⊥V ⊤⊥ BnV⊥V

⊤
⊥ u0

∥∥
|v⊤1 u0|(1 + ηnλ1)n

=

∥∥V⊥V ⊤⊥ BnV⊥V
⊤
⊥ g
∥∥

|v⊤1 g|(1 + ηnλ1)n
.
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To bound this quantity, we will bound its square instead. Using Markov’s inequality, with probability
at least 1− δ/2,∥∥∥V⊥V ⊤⊥ BnV⊥V

⊤
⊥ g
∥∥∥2 ≤ 2

δ
E

[∥∥∥V⊥V ⊤⊥ BnV⊥V
⊤
⊥ g
∥∥∥2]

=
2

δ
Tr

(
E

[(
V⊥V

⊤
⊥ BnV⊥V

⊤
⊥ g
)(

V⊥V
⊤
⊥ BnV⊥V

⊤
⊥ g
)⊤])

=
2

δ
E
[
Tr
(
V ⊤⊥ BnV⊥V

⊤
⊥ B⊤n V⊥

)]
.

By Lemma B.3 of Lunde et al. [2021],

E
[
Tr
(
V ⊤⊥ BnV⊥V

⊤
⊥ B⊤n V⊥

)]
(1 + ηnλ1)2n

≤ d exp
(
−2ηnn (λ1 − λ2) + η2nn

(
λ2
1 +M2

2

))
+

eη3nnM4
2 (1 + 2 log (d))

2 (λ1 − λ2) + ηn
(
λ2
1 − λ2

2 −M2
2

) .
Also, with probability at least 1− δ/2, |v⊤1 g| ≥ δ/2 (see Proposition 7 from Lunde et al. [2021] for
anticoncentration of gaussians). Combining the two bounds yields the result.

Lemma 21. Let Ψn,4 be defined as in Lemma 2 for u0 = g/ ∥g∥2 with g ∼ N (0, Id). Let ηn be
set according to Lemma 9. Let

{
Ψ

(i)
n,4

}
i∈[m]

and
{
g(i)
}
i∈[m]

be m i.i.d. instances of Ψn,4 and g

respectively. Fix δ ∈ (0, 1). Then, conditioned on E, with probability at least 1− δ,

∑
i∈[m]

(
e⊤k Ψ

(i)
n,4

)2
m

≤
b2km

2

δ3(1− δ)

(
d exp

(
−2ηnn (λ1 − λ2) + η2nn

(
λ2
1 +M2

2

))
+

eη3nnM4
2 (1 + 2 log (d))

2 (λ1 − λ2) + ηn
(
λ2
1 − λ2

2 −M2
2

))

for all k ∈ [d], where bk :=
∥∥V ⊤⊥ ek

∥∥
2
.

Proof. Note that

(
e⊤k Ψn,4

)2
≤
∥∥∥V ⊤⊥ ek

∥∥∥2
2

(∥∥V ⊤⊥ BnV⊥V
⊤
⊥ u0

∥∥
2∣∣v⊤1 u0∣∣ (1 + ηnλ1)n

)2

︸ ︷︷ ︸
Φn

Let Φ
(i)
n correspond to the ith instance of the random variable Φn. Then, for any k ∈ [d],

1

m

∑
i∈[m]

(
e⊤k Ψ

(i)
n,4

)2
≤
∥∥V ⊤⊥ ek

∥∥2
2

m

∑
i∈[m]

Φ(i)
n . (42)

Define the event E :=
{
|v⊤1 g| ≥ δ

m

}
and let E(i), i ∈ [m] be the ith instance of this event. First,
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observe that:

E[Φn|E ] = E

(∥∥V ⊤⊥ BnV⊥V
⊤
⊥ u0

∥∥
2∣∣v⊤1 u0∣∣ (1 + ηnλ1)n

)2 ∣∣∣∣E
 = E

[
V ⊤⊥ BnV⊥V

⊤
⊥ gg⊤V⊥V

⊤
⊥ B⊤n V⊥(

v⊤1 g
)2

(1 + ηnλ1)2n

∣∣∣∣E
]

≤ m2

δ2(1 + ηnλ1)2n
E

[
V ⊤⊥ BnV⊥V

⊤
⊥ gg⊤V⊥V

⊤
⊥ B⊤n V⊥

∣∣∣∣E]
≤ m2

δ2P(E)
E
[
Tr
(
V ⊤⊥ BnV⊥V

⊤
⊥ B⊤n V⊥

)]
(1 + ηnλ1)2n

(43)

Now, using Markov’s inequality conditioned on
⋂

i∈[m] E(i), we have with probability at least 1 −
P(
⋂

i∈[m] E(i)),

1

m

∑
i∈[m]

Φ(i)
n ≤

1

δ
E

Φ(i)
n

∣∣∣∣ ⋂
j∈[m]

E(j)


(By i.i.d. nature of the instances) =
1

δ
E

[
Φ(i)
n

∣∣∣∣E(i)] = 1

δ
E[Φn|E ]

≤ m2

δ3P(E)
E
[
Tr
(
V ⊤⊥ BnV⊥V

⊤
⊥ B⊤n V⊥

)]
(1 + ηnλ1)2n

(44)

The last step uses Eq 43. Using Lemma B.3 from Lunde et al. [2021], we have

E
[
Tr
(
V ⊤⊥ BnV⊥V

⊤
⊥ B⊤n V⊥

)]
(1 + ηnλ1)2n

≤ d exp
(
−2ηnn (λ1 − λ2) + η2nn

(
λ2
1 +M2

2

))
+

eη3nnM4
2 (1 + 2 log (d))

2 (λ1 − λ2) + ηn
(
λ2
1 − λ2

2 −M2
2

)
(45)

Finally, we note that using Proposition 7 from Lunde et al. [2021], we have

∀i ∈ [m],P
(
E(i)
)
≥ 1− δ

m
=⇒ P


 ⋂

i∈[m]

E(i)
∁
 ≤ ∑

i∈[m]

P
(
E∁i
)
≤
∑
i∈[m]

δ

m
= δ (46)

The result follows by substituting (45) in (44) and then using (42), along with the union-bound
provided in (46).

B.2.6 Total Variance Bound

We now put together the results from Lemmas 12, 13, 17, 19, and 21 to provide a high probability
bound on the error of the variance estimator Algorithm 1.

Figure 5 summarizes how the variance estimation algorithm works. The algorithm first computes
an Oja vector ṽ using N samples. Then, n samples are divided into m1 batches, with each batch
containing n/m1 samples. These n samples need not be disjoint from the N samples used to compute
the high-accuracy estimate ṽ. Then, the ℓth batch of n/m1 samples is split into m = m2 batches of
size B := n/m1m2 each. Oja vectors {v̂j}j∈[m2]

are computed on each of these m2 batches, and

σ̂2
k,ℓ :=

∑
j∈[m2]

(
e⊤k
(
v̂j − (ṽ⊤v̂j)ṽ

))2
m2

. (47)
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Figure 5: Schematic picture of Algorithm 1

for all k ∈ [d]. The overall estimate for the variance of the kth coordinate is Median
(
{σ̂k,ℓ}ℓ∈[m1]

)
.

Since this variance scales with the inverse of the learning parameter ηB, we define the scale-free
γ̂k := Median

(
{σ̂k,ℓ}ℓ∈[m1]

)
/(ηB (λ1 − λ2)). For each k ∈ [d], define the quantities

bk :=
∥∥∥e⊤k V⊥∥∥∥ , ck :=

√√√√E
[(
e⊤k ΨB,1

)2]
ηB

λ1 − λ2

M2
2

.

Under this setting, we show that each σ̂2
k,ℓ approximates the true variance with at least 3/4 proba-

bility. We assume that the learning rate ηB satisfies

ηB ≤
1

2λ1
+

λ1 − λ2

2M2
2

. (48)

It can be verified that this assumption is satisfied by the bounds on B provided in (56).

Lemma 22. For any ℓ ∈ [m1] and under assumption 48, with probability at least 3/4,∣∣∣σ̂2
k,ℓ − ηB (λ1 − λ2) e

⊤
k Vek

∣∣∣ ≤ 8

(
1√
m

+
2

m

)
ηB (λ1 − λ2) e

⊤
k Vek +O

(
b2k log

2B

B3/2m1/2

(
M4

λ1 − λ2

)2

+
logN

N

(
M2

λ1 − λ2

)2
)

+O

(
b2km

2 log2 d log4B

B2

(
M2

λ1 − λ2

)4

+
λ1M2

2 log
2B

B2 (λ1 − λ2)
3

)
. (49)

Proof. Drop the index ℓ for convenience of notation. Let δ0 := 1/20. By triangle inequality,∣∣∣σ̂2
k − ηB (λ1 − λ2) e

⊤
k Vek

∣∣∣ ≤ ∣∣∣∣σ̂2
k,ℓ − E

[(
e⊤k ΨB,1

)2]∣∣∣∣+ ∣∣∣∣E [(e⊤k ΨB,1

)2]
− ηB (λ1 − λ2) e

⊤
k Vek

∣∣∣∣
(50)

and by Lemma 1,∣∣∣∣E [(e⊤k ΨB,1

)2]
− ηB (λ1 − λ2) e

⊤
k Vek

∣∣∣∣ ≤ η2BM2
2λ1
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≲
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2 log
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By equation (19) and Lemma 7, for any ϵ ∈ (0, 1),

∣∣∣∣σ̂2
k − E

[(
e⊤k ΨB,1

)2]∣∣∣∣ ≤ (1 + ϵ)
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)2]∣∣∣∣∣∣∣+ ϵE
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ϵ

∑
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(j)
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)2
+
(
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(j)
B,2

)2
+
(
e⊤k Ψ

(j)
B,3

)2
+
(
e⊤k Ψ

(j)
B,4

)2
m︸ ︷︷ ︸

:=esmall

. (52)

Set ϵ = 2/
√
m. By Lemmas 12, 17, 19, and 21, along with Lemma 9 to bound nd exp (−ηnn (λ1 − λ2)) =

o (1), we have with probability at least 1− 4δ0

esmall

8/ϵ
≲

ηNM2
2

λ1 − λ2
+ b2kη

4
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2B
2 log2 d+ sBb

2
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2 log
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2 log d log3B
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(
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(53)

where we used Assumption 48 to bound the last term. By Lemma 13, with probability 1− δ0,∣∣∣∣∣∣∣
∑

j∈[m]

(
e⊤k Ψ

(j)
B,1

)2
m

− E
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2E
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+ η2Bb

2
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+

b2k log
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M4
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(54)

We now combine equations (51), (52), (53), and (54) in (50) to conclude that with probability at
least 1− 5δ0 = 3/4,∣∣∣σ̂2

k,ℓ − ηB (λ1 − λ2) e
⊤
k Vek

∣∣∣ ≤ (1 + ϵ)

(
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⊤
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b2k log
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B3/2m1/2

(
M4
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)

+ (1 + ϵ)(1 + 4ϵ)
η2BM2

2λ1

λ1 − λ2
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which simplifies to the lemma statement.

Next, assume that the following relations hold:

N ≳
mB

c2k logB
log

(
mB

c2k logB

)
. (55)

B ≳ m3

(
bk
ck

)2( M2

λ1 − λ2

)2

log3 (B) log2 (d) . (56)

B ≳ max

(
m

(
bk
ck

)4(M4

M2

)4

log2B,
mλ1 logB

c2k (λ1 − λ2)

)
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These assumptions on N and B subsume the assumption on the learning rate ηB in equation 48.

Using equation 51 and the relation

E
[(
e⊤k ΨB,1

)2]
m

=
ηBc

2
k

m

M2
2

λ1 − λ2
. (58)

and comparing it with each term in the smaller order error of Lemma 22 yields the following Lemma.

Lemma 23. Under assumptions 55, 56, and 57, we have the following upper bound on the R.H.S
of Eq 49 in Lemma 22.

logN

N

(
M2

λ1 − λ2

)2

+
b2k log
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B3/2m1/2

(
M4
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≤
ηB (λ1 − λ2) e

⊤
k Vek

m
.

(59)

It follows that a stronger multiplicative guarantee holds for any coordinate k that satisfies the above
assumptions:

Lemma 24. For any coordinate k that satisfies Lemma 22 and assumptions 55, 56, and 57,∣∣∣σ̂2
k − ηB (λ1 − λ2) e

⊤
k Vek

∣∣∣ ≤ O

(
ηB (λ1 − λ2) e

⊤
k Vek√

m

)
.

Given a per-coordinate guarantee that succeeds with probability 3/4, we can boost the probability
of success and give a uniform guarantee over all coordinates k ∈ [d] using the median procedure
described in Lemma 10.

Lemma 25. Let {γ̂k}k∈[d] be the output of Algorithm 1. Under assumption (48), with probability
1− δ, for all k ∈ [d],

|γ̂k − Vkk| ≤ 8

(
1√
m

+
2

m

)
Vkk +O

(
b2k logB√
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2 log2 d log3B
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)4
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2 logB

B (λ1 − λ2)
3

)
.

Moreover, let K be the set of indices in [d] that satisfy assumptions (55), (56), and (57). Then, for
all k ∈ K, ∣∣∣γ̂k − e⊤k Vek

∣∣∣ = O

(
Vkk√
m

)
.

Proof. By Lemma 22, the bound for any k ∈ [d], the bound of equation (49) holds with probability
3/4. By Lemma 10 and the choice m1 = 8 log(d/δ), the estimate γ̂k satisfies the equation with
probability at least 1− δ/d. The Lemma follows by a union bound over the indices in [d].
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Remark 7. The first term of the error of Lemma 25 is O (Vkk/
√
m), where m = log n. We verify

that the other terms are smaller asymptotically in n. Since m = log n and m2 = 8 log(20d) where
d = poly(n),

B =
n

mm1
= Θ

(
n

log n log d

)
.

Therefore, each summand with a
√
B or B in the denominator of the error of Lemma 25 is Õ(1/

√
n).

It suffices to show that 1√
m

asymptotically dominates B logN
N logB . Note that 1 ≤ log d ≤ 5 log n, B =

Θ̃(n) and logB = Θ(log n). Therefore,

B logN
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=

logB + logm1 + logm
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≤ logB +m1 +m
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8 log n log(20d)
+
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)
= o

(
1√
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)
.

C Entrywise Error Bounds

Lemma 26. Let the learning rate, ηn, be set according to Lemma 9. Further, for Xi ∼ P , Ai =
XiX

⊤
i , let ∥Ai − Σ∥op ≤ M almost surely. Then, for δ ∈ (0, 1), with probability at least 1 − δ, we

have for all k ∈ [d],
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where Ψn,1 is defined in Lemma 2, bk :=
∥∥V ⊤⊥ ek

∥∥
2
, M̃ := E

[
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⊤
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]
and

R0 ∈ R(d−1)×(d−1) with entires

R0(k, l) :=
M̃kℓ

2λ1 − λk+1 − λℓ+1
, ∀k, l ∈ [d− 1]

Proof. Using Lemma 11, we have
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⊤
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ηne
⊤
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j , where Xn
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Let αj := ηne
⊤
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j . Then, note that E [αj ] = 0. Furthermore,

E
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∣∣∣ ≤ ηnbk

∥∥∥Λn−j
⊥

∥∥∥
op
M≤ ηnbkM

Therefore, using the fact that αj are independent of each other, along with Bernstein’s inequality,
(see e.g. Proposition 2.14 and the subsequent discussion in Wainwright [2019]), we have with
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probability at least 1− δ,
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Furthermore, considering a union bound over k ∈ [d], we have for all k ∈ [d],
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Finally, using Lemma 1, we have

n∑
j=1

σ2
jk = η2ne

⊤
k

 n∑
j=1

V⊥Λ
n−j
⊥ M̃Λn−j

⊥

V ⊤⊥ ek

= η2ne
⊤
k E
[
YnYn

⊤
]
ek

= η2ne
⊤
k V⊥

(
R(n)

)
V ⊤⊥ ek

= η2ne
⊤
k V⊥

(
R0

ηn
+

(
R(n) − R0

ηn

))
V ⊤⊥ ek

≤ ηne
⊤
k V⊥R0V

⊤
⊥ ek + η2nb

2
k

∥∥∥∥R(n) − R0

ηn

∥∥∥∥
F

≤ ηne
⊤
k V⊥R0V

⊤
⊥ ek +

η2nb
2
kλ1M2

2

(λ1 − λ2)

which completes our proof.

Lemma 27. Let the learning rate, ηn, be set according to Lemma 9. Then, for δ ∈ (0, 1), with
probability at least 1− δ, we have
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where Ψn,2,Ψn,3,Ψn,4 are as defined in Lemma 2, bk :=
∥∥V ⊤⊥ ek

∥∥
2

and sn :=
C log( 1

δ )
δ3

ηnM2
2

(λ1−λ2)
for a

universal constant C > 0.

Proof. We have

∥Ψn,2 +Ψn,3 +Ψn,4∥2 ≤
∣∣∣e⊤k Ψn,2

∣∣∣+ ∣∣∣e⊤k Ψn,3

∣∣∣+ ∣∣∣e⊤k Ψn,4

∣∣∣ (60)

Using Lemma 16, we have for all k ∈ [d], with probability at least 1− δ
3 ,

∥Ψn,2∥ ≤
12η2nM2

2n log d√
δ/3

≤ 21η2nM2
2n log d√
δ

. (61)

Using Lemma 18 , along with the definition of ηn in Lemma 9, with probability at least 1− δ
3 ,

∥Ψn,3∥2 ≲
√
sn

√
log
(
1
δ

)
δ

3
2

(√
d exp (−ηnn (λ1 − λ2)) +

√
ηnM2√
λ1 − λ2

)
+
√
sn

ηn
√
nM2 log (d)√

δ

≲

√
log
(
1
δ

)
δ

3
2

√d exp (−ηnn (λ1 − λ2)) +

√
C log(1/δ)

δ3
ηnM2

2

λ1 − λ2
·
√
ηnM2 log d√
λ1 − λ2


≲

log
(
1
δ

)
δ3

(
√
d exp (−ηnn (λ1 − λ2)) +

√
η3nnM2

2 log (d)√
λ1 − λ2

)
, (62)

where the second inequality used sn ≤ 1. Using Lemma 20, along with the definition of ηn in
Lemma 9, with probability at least 1− δ

3 ,

∥Ψn,4∥2 ≲
1

δ
3
2

(
√
d exp (−ηnn (λ1 − λ2)) +

√
η3nnM2

2 log (d)√
λ1 − λ2

)
(63)

The first result follows by a union bound over (61), (62), (63) and substituting in (60). Finally,
note that using Lemma 2, ∃xn, yn, zn ∈ Rd−1 such that of Ψn,2 = V⊥V

⊤
⊥ xn, Ψn,3 = V⊥V

⊤
⊥ xn,

Ψn,4 = V⊥V
⊤
⊥ xn. Therefore,∣∣∣e⊤k (Ψn,2 +Ψn,3 +Ψn,4)

∣∣∣ = ∣∣∣e⊤k V⊥V ⊤⊥ (xn + yn + zn)
∣∣∣

=
∣∣∣e⊤k V⊥V ⊤⊥ V⊥V

⊤
⊥ (xn + yn + zn)

∣∣∣
≤
∥∥∥e⊤k V⊥V ⊤⊥ ∥∥∥

2

∥∥∥V⊥V ⊤⊥ (xn + yn + zn)
∥∥∥
2

= bk ∥Ψn,2 +Ψn,3 +Ψn,4∥2

which completes the proof of the second result.

Now we are ready to prove a detailed version of Theorem 1.
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Lemma 28. Let the learning rate, ηn, be set according to Lemma 9. Further, for Xi ∼ P , Ai =
XiX

⊤
i , let ∥Ai − Σ∥op ≤M almost surely. Define roja := voja −

(
v⊤1 voja

)
v1. Then, with probability

at least 1− δ, for all k ∈ [d],

∣∣∣e⊤k roja∣∣∣ ≲
√

ηn
(
e⊤k V⊥R0V ⊤⊥ ek

)
log

(
d

δ

)
+ ηnbk

(
M log

(
d

δ

)
+M2

√
λ1

λ1 − λ2

√
log

(
d

δ

))

+ bk
log
(
1
δ

)
δ3

(
√
d exp (−ηnn (λ1 − λ2)) +

√
η3nnM2

2 log (d)√
λ1 − λ2

)

+
bkη

2
nnM2

2 log d√
δ

+
bk
√
snηn
√
nM2 log (d)√
δ

where bk :=
∥∥V ⊤⊥ ek

∥∥
2
, sn :=

C log( 1
δ )

δ3
ηnM2

2
(λ1−λ2)

, M̃ := E
[
V ⊤⊥ (Aj − Σ) v1v

⊤
1 (Aj − Σ)⊤ V⊥

]
and R0 ∈

R(d−1)×(d−1) with entires

R0(k, l) =
M̃kℓ

2λ1 − λk+1 − λℓ+1
, k, l ∈ [d− 1]

.

Proof. Using Lemma 2, we have

e⊤k roja := e⊤k Ψn,1 + e⊤k Ψn,2 + e⊤k Ψn,3 + e⊤k Ψn,4

Therefore, ∣∣∣e⊤k roja∣∣∣ ≤ ∣∣∣e⊤k Ψn,1

∣∣∣+ ∣∣∣e⊤k Ψn,2 + e⊤k Ψn,3 + e⊤k Ψn,4

∣∣∣
The result then following by a union bound over the events defined in Lemma 26 and Lemma 27.

D Central Limit Theorem for entries of the Oja vector

We consider the following setup from Chernozhukov et al. [2017a]. Let Are denote the class of all
hyperrectangles in Rp. That is, Are consists of all sets A of the form:

A = {w ∈ Rp : aj ≤ wj ≤ bj for all j = 1, . . . , p} (64)

for some real values aj and bj satisfying −∞ ≤ aj ≤ bj ≤ ∞ for each j = 1, . . . , p.

Consider

SX
n =

1√
n

n∑
i=1

Xi.

where Xi, i ∈ [n] ∈ Rp are independent random vectors with E[Xij ] = 0 and E[X2
ij ] < ∞, for

i ∈ [n], j ∈ [p]. Consider the following Gaussian approximation to SX
n . Define the normalized sum

for the Gaussian random vectors:

SY
n =

1√
n

n∑
i=1

Yi,
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where Y1, . . . , Yn be independent mean zero Gaussian random vectors in Rp such that each Yi has
the same covariance matrix as Xi. We are interested in bounding the quantity

ρn (Are) := sup
A∈Are

∣∣P (SX
n ∈ A

)
− P

(
SY
n ∈ A

)∣∣
Let Cn ≥ 1 be a sequence of constants possibly growing to infinity as n → ∞, and let b, q > 0 be
some constants. Assume that Xi satisfy,

(M.1) n−1
∑n

i=1 E[X2
ij ] ≥ b for all j = 1, . . . , p,

(M.2) n−1
∑n

i=1 E[|Xij |2+k] ≤ Ck
n for all j = 1, . . . , p and k = 1, 2.

Further, the authors consider examples where one of the following conditions also holds:

(E.1) E[exp(|Xij |/Cn)] ≤ 2 for all i = 1, . . . , n and j = 1, . . . , p,

(E.2) E[(max1≤j≤p |Xij |/Cn)
q] ≤ 2 for all i = 1, . . . , n.

Let

D(1)
n =

(
C2
n log

7(pn)

n

)1/6

, D(2)
n,q =

(
C2
n log

3(pn)

n1−2/q

)1/3

.

Now we present Proposition 2.1 [Chernozhukov et al., 2017a].

Theorem 3 (Proposition 2.1 [Chernozhukov et al., 2017a]). Suppose that conditions (M.1) and
(M.2) are satisfied. Then under (E.1), we have

ρn(Are) ≤ CD(1)
n ,

where the constant C depends only on b; while under (E.2), we have

ρn(Are) ≤ C{D(1)
n +D(2)

n,q},

where the constant C depends only on b and q.

Next, we will need the following result cited by Chernozhukov et al. [2017b].

Theorem 4 (Nazarov’s inequality [Nazarov, 2003], Theorem 1 in [Chernozhukov et al., 2017a]).
Let Y = (Y1, . . . , Yp)

T be a centered Gaussian random vector in Rp such that

E[Y 2
j ] ≥ σ2, for all j = 1, . . . , p,

for some constant σ > 0. Then, for every y ∈ Rp and δ > 0,

P(Y ≤ y + δ)− P(Y ≤ y) ≤ δ

σ
(
√
2 log p+ 2).

Here, for vector y ∈ Rp, y + δ denotes the vector constructed by adding δ to each entry of y.

Now we are ready to state our main result in Proposition 2,
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Proposition 2 (CLT for a suitable subset of entries). Suppose the learning rate ηn, set according
to Lemma 9, satisfies M2

2λ1ηn

(λ1−λ2)
2 ≤ C0b

2 for some b > 0 and a small universal constant C0. Let

{Xi}ni=1 ∈ Rd be i.i.d. mean-zero random vectors with covariance matrix Σ such that for all vectors
v ∈ Rd, we have

E
[
exp

(
vTX1

)]
≤ exp

(
σ2vTΣv

2

)
.

Let roja := voja − (v⊤1 voja)v1. Consider the set J := {j : Vjj ≥ b}, and let p := |J |. Let Hi :=
sign(uT

0 v1)
1+ηnλ1

V⊥Λ
n−i
⊥ V ⊤⊥

(
XiX

⊤
i − Σ

)
v1. Let Yi ∈ Rp be independent mean zero normal vectors such

that
E[YiY

T
i ] =

nηn
λ1 − λ2

E[Hi[J ]Hi[J ]
T ].

Then,

sup
A∈Are

∣∣∣∣∣P
(

roja[J ]√
(λ1 − λ2) ηn

∈ A

)
− P

(∑
i Yi√
n
∈ A

)∣∣∣∣∣ = Õ

(
max

((
M4

λ1 − λ2

)1/3

n−1/6,

(
M2

λ1 − λ2

)1/2

n−1/8

))
,

where Õ hides logarithmic factors in n, p, and constants depending on b.

Proof of Proposition 2. Consider the error decomposition of the Oja vector in Lemma 2. We have
roja = Ψn,1 + Ψn,2 + Ψn,3 + Ψn,4, where Ψn,1,Ψn,2,Ψn,3,Ψn,4 are defined in Equation (19). Let
R := Ψn,2 +Ψn,3 +Ψn,4.

For any δ ∈ (0, 1), ∃ϵ > 0 such that from Lemma 27 we have,

P((ηn (λ1 − λ2))
−1/2∥R∥2 ≥ ϵ) ≤ δ

we will specify ϵ as needed in the proof.

For all i ∈ [n], let

Ui :=
√

nηn/ (λ1 − λ2)︸ ︷︷ ︸
cn

Hi (65)

We show that U1, U2, . . . , Un satisfy conditions (M.1) and (M.2) with suitable constants.

For (M.1), using equation (19),

n∑
i=1

Hi = Ψn,1. (66)

By Lemma 1 (equation (9)), there exists a universal constant C0 such that∣∣∣∣∣e⊤j
(

ηn
λ1 − λ2

n∑
i=1

E
[
HiH

⊤
i

]
− V

)
ej

∣∣∣∣∣ ≤ ηnλ1M2
2

C0 (λ1 − λ2)
2 ≤

b

2
≤ Vjj

2
.
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for all j ∈ J , where the last two inequalities follow by assumption and definition of J . This implies
for all j ∈ J ,

ηn
λ1 − λ2

n∑
i

E
[
H2

ij

]
≥ Vjj/2 ≥ b/2 ⇐⇒ 1

n

∑
i

E[U2
ij ] ≥ Vjj/2 ≥ b/2

To show (M.2), by Lyapunov’s inequality and Assumption 1:

E
[
∥U2+k

ij ∥2
]
= E

[
c2+k
n |Hij |2+k

]
≤ 2(cnM4)

2+k

for k ∈ {1, 2}, where Cn := 2cnM4.

We now check condition E.1. Now note that for any unit vector u ∈ Rd, uTHi is subexponential
with parameter σ2λ1 (Proposition 2.7.1. of [Vershynin, 2018]). Hence, there exists a constant C > 0
such that

E[exp(|Hij |/Cλ1σ
2)] ≤ 2

Therefore,

E[exp(|Uij |/Cλ1cnσ
2)] ≤ 2.

Now we set Cn := max(2cnM4, Cλ1cnσ
2).

Using Eq 66,

1√
(λ1 − λ2)ηn

Ψn,1[J ] =
√
ηn/ (λ1 − λ2)

∑
i

Hi[J ] =
1√
n

∑
i

Ui[J ],

the random variables Ui[J ], i ∈ [n] satisfy conditions (M.1), (M.2) and (E.1). By Theorem 3,

ρ(Are) ≤ C

(
C2
n log

7(pn)

n

)1/6

Recall from the statement of the proposition that Yi, i ∈ [n] are mean zero independent Gaussian
vectors in Rp with the same covariance structure as Ui[J ], i.e, E

[
YiY

⊤
i

]
= E

[
Ui[J ]Ui[J ]

⊤].
Let SW be the random variable

∑
iWi for any collection W of n random variables W1,W2, . . . ,Wn.

Consider the vector SW [J ] to be the projection of W on the set J , defined as e⊤i SW [J ] = e⊤i SW for
i ∈ J .

Recall that

eTi roja := e⊤i

 n∑
j=1

ηnHj +R

 .

Let A := {u ∈ Rp|ui ∈ [ai, bi], i ∈ J}. Let A+
ϵ := {X|Xi ∈ [ai−ϵ, bi+ϵ], i ∈ [p]} and A−ϵ := {X|Xi ∈

[ai + ϵ, bi − ϵ], i ∈ J}.
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Let SR[J ] :=
∑

i∈J e
T
i roja. Then, we have SR[J ] = ηnSH [J ] +R[J ].

We will use the following identity for vectors G1, G2 ∈ Rp.

P(G1 ∈ A−ϵ , ∥G2∥ ≤ ϵ) ≤ P(G1 +G2 ∈ A, ∥G2∥ ≤ ϵ) ≤ P (G1 ∈ A+
ϵ , ∥G2∥ ≤ ϵ)

So,

P(G1 +G2 ∈ A) ≤ P(G1 ∈ A+
ϵ , ∥V ∥ ≤ ϵ) + P (∥V ∥ ≥ ϵ)

P(G1 +G2 ∈ A) ≥ P (G1 ∈ A−ϵ , ∥G2∥ ≤ ϵ)

Using G1 = SU [J ]/
√
n and G2 = (ηn (λ1 − λ2))

−1/2R, we have:

P(((λ1 − λ2) ηn)
−1/2roja[J ] ∈ A)− P(SY /

√
n ∈ A)

≤ P(((λ1 − λ2) ηn)
−1/2roja[J ] ∈ A, (ηn (λ1 − λ2))

−1/2∥R∥ ≤ ϵ) + P((ηn (λ1 − λ2))
−1/2∥R∥2 ≥ ϵ)

− P(SY /
√
n ∈ A)

≤ P(SU [J ]/
√
n ∈ A+

ϵ ) + P((ηn (λ1 − λ2))
−1/2∥R∥2 ≥ ϵ)− P(SY /

√
n ∈ A) =: γA.

Note that γA can be written as

γA ≤ |P(SU [J ]/
√
n ∈ A+

ϵ )− P(SY /
√
n ∈ A+

ϵ )|+ |P(SY /
√
n ∈ A+

ϵ )− P(SY /
√
n ∈ A)|+ P((ηn (λ1 − λ2))

−1/2∥R∥ ≥ ϵ).

Similarly,

P(((λ1 − λ2) ηn)
−1/2roja[J ] ∈ A)− P(SY /

√
n ∈ A) ≥ ωA,

where

ωA := P(SU [J ]/
√
n ∈ A−ϵ , (ηn (λ1 − λ2))

−1/2∥R∥ ≥ ϵ)− P(SY /
√
n ∈ A)

≥ P(SU [J ]/
√
n ∈ A−ϵ )− P((ηn (λ1 − λ2))

−1/2∥R∥ ≥ ϵ)− P(SY /
√
n ∈ A−ϵ ) + P(SY /

√
n ∈ A−ϵ )− P(SY /

√
n ∈ A)

Therefore, we have by Theorem 3 that for some constant C ′ that depends only on b,

sup
A∈Are

|γA| ≤ C ′
(
C2
n log

7(pn)

n

)1/6

+
∣∣P(SY /

√
n ∈ A+

ϵ )− P(SY /
√
n ∈ A)

∣∣+ δ (67)

Similarly,

sup
A∈Are

|ωA| ≤ C ′
(
C2
n log

7(pn)

n

)1/6

+
∣∣P(SY /

√
n ∈ A−ϵ )− P(SY /

√
n ∈ A)

∣∣+ δ (68)

For P(SY /
√
n ∈ A+

ϵ )− P(SY /
√
n ∈ A), we will use Nazarov’s inequality (Lemma 4):

∣∣P(SY /
√
n ∈ A+

ϵ )− P(SY /
√
n ∈ A)

∣∣ ≤ √2ϵ
b1/2

(
√

2 log p+ 2) (69)
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For bounding the terms concerning A−ϵ , we need to be a little careful because if bi − ai ≤ 2ϵ, then
A−ϵ has measure zero under the Gaussian distribution. If A−ϵ is nonempty, then we have the same
bound as Eq 69. However, in case that is not true, note that there must be some i ∈ [p] such that
bi − ai ≤ 2ϵ. Hence∣∣P(SY /

√
n ∈ A−ϵ )− P(SY /

√
n ∈ A)

∣∣ = P(SY /
√
n ∈ A)

= P(SY [i]/
√
n ∈ [ai, bi])

≤ 2ϵ
√
πb1/2

(70)

So overall, ∣∣P(SY /
√
n ∈ A−ϵ )− P(SY /

√
n ∈ A)

∣∣ = P(SY /
√
n ∈ A)

= P(SY [i]/
√
n ∈ [ai, bi])

≤ max

(
2ϵ

√
πb1/2

,

√
2ϵ

b1/2
(
√
2 log p+ 2)

)
(71)

Putting Eqs 67, 68, 69 and 71 together, we have, for some absolute constant C1:

sup
A∈Are

|P(((λ1 − λ2) ηn)
−1/2roja[J ] ∈ A)− P(n−1/2SY ∈ A)| ≤ max( sup

A∈Are

|γA|, sup
A∈Are

|ωA|)

≲

(
C2
n log

7(pn)

n

)1/6

+
C1ϵ

b1/2

√
log p+ δ (72)

We invoke Lemma A.2.3 in Kumar and Sarkar [2024a] to see that: M4 ≤ λ1+σ2trace (Σ). Therefore,
for some constant C ′′ > 0,

Cn = max(2cnM4, Cλ1cnσ
2) ≤ C ′′

√
nηn

(λ1 − λ2)
M4

From Lemma 27 and the assumption on the learning rate (Lemma 9),

√
ηn (λ1 − λ2)ϵ ≲

η2nnM2
2 log d√
δ

+

√
snηn
√
nM2 log (d)√
δ

+
log
(
1
δ

)
δ3

(√
η3nnM2

2 log (d)√
λ1 − λ2

)
(73)

Substituting the bound on ϵ from equation (73) into equation (72) and optimizing over δ yields

δ = Õ

((
log p

b

)1/8√ M2

λ1 − λ2
n−1/8

)
. (74)

Substituting the choice of δ from equation (74) in (72), we conclude

sup
A∈Are

|P(((λ1 − λ2) ηn)
−1/2roja[J ] ∈ A)− P(n−1/2SY ∈ A)|

= Õ

(
max

((
M4

λ1 − λ2

)1/3

n−1/6,

(
M2

λ1 − λ2

)1/2

n−1/8

))
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