
Published as a conference paper at ICLR 2025

INFILLING SCORE ✼ A PRETRAINING DATA DETECTION
ALGORITHM FOR LARGE LANGUAGE MODELS

Negin Raoof Litu Rout Giannis Daras
Sujay Sanghavi Constantine Caramanis Sanjay Shakkottai Alexandros G. Dimakis
The University of Texas at Austin

{neginmr, litu.rout,giannisdara,constantine,sanjay.shakkottai}@utexas.edu
sanghavi@mail.utexas.edu, dimakis@austin.utexas.edu

ABSTRACT

In pretraining data detection, the goal is to detect whether a given sentence is in the
dataset used for training a Large Language Model (LLM). Recent methods (such as
Min-K% and Min-K%++) reveal that most training corpora are likely contaminated
with both sensitive content and evaluation benchmarks, leading to inflated test set
performance. These methods sometimes fail to detect samples from the pretraining
data, primarily because they depend on statistics composed of causal token likeli-
hoods. We introduce Infilling Score, a new test-statistic based on non-causal token
likelihoods. Infilling Score can be computed for autoregressive models without
re-training using Bayes rule. A naive application of Bayes rule scales linearly with
the vocabulary size. However, we propose a ratio test-statistic whose computation
is invariant to vocabulary size. Empirically, our method achieves a significant accu-
racy gain over state-of-the-art methods including Min-K%, and Min-K%++ on the
WikiMIA benchmark across seven models with different parameter sizes. Further,
we achieve higher AUC compared to reference-free methods on the challenging
MIMIR benchmark. Finally, we create a benchmark dataset consisting of recent
data sources published after the release of Llama-3; this benchmark provides a
statistical baseline to indicate potential corpora used for Llama-3 training.

1 INTRODUCTION

The significant progress in language modeling can largely be attributed to development and deploy-
ment of large-scale models that utilize extensive training corpora, often encompassing trillions of
tokens (Li et al., 2024; Dubey et al., 2024). The selection and curation of data for training such
Large Language Models (LLMs) is very complex and expensive. Further, recent developers of LLMs
withhold details regarding the sources of their pretraining datasets (Dubey et al., 2024; OpenAI
et al., 2024; Touvron et al., 2023b). This lack of transparency has raised concerns regarding the
inadvertent inclusion of copyrighted content (Chang et al., 2023; Min et al., 2023; Meeus et al., 2023)
or personally identifiable information (Mozes et al., 2023; Panda et al., 2024), potentially leading to
ethical and legal challenges (Grynbaum & Mac, 2023). Furthermore, the inclusion of benchmark
datasets within the training corpora itself can compromise the integrity of model evaluations. This
practice may inflate test performance metrics without accurately reflecting the model’s capabilities
(Oren et al., 2023; Zhou et al., 2023).

Recent work has focused on the problem of determining whether specific sequences of tokens have
been previously seen by a language model (Shi et al., 2024; Zhang et al., 2024; Duan et al., 2024).
These investigations are categorized under a growing field of attacks on LLMs known as Membership
Inference Attacks (MIA) (Shokri et al., 2017; Mattern et al., 2023b; Carlini et al., 2022). Many studies
in this area focus on fine-tuning data detection (Song & Shmatikov, 2019; Shejwalkar et al., 2021;
Mahloujifar et al., 2021). However, pretraining data detection attacks are becoming increasingly
important as they can reveal whether a model has been trained on potentially sensitive data and
prevent evaluation data contamination (Jiang et al., 2024; Yang et al., 2023).

1

Published as a conference paper at ICLR 2025

We introduce a novel method for identifying whether a given text sequence was part of a language
model’s pretraining data. Our method uses a new test-statistic that we call the Infilling Score. Our
approach performs a non-causal test to compute the infilling probability of a token, based on the
tokens that appear before and after this token in the sentence. An autoregressive language model
generates causal likelihoods (i.e. the probability of a word appearing after some context). We find
that non-causal likelihoods lead to more accurate tests for membership inference. These likelihoods
can be computed using a causal autoregressive model.The computation involves applying Bayes’
rule and the law of total probability, and needs a marginalization over the vocabulary to compute a
partition function. Unfortunately, computing this partition function requires calling the autoregressive
LM many times, one for each vocabulary entry. This would require tens of thousands of calls to
the autoregressive LLM to compute a single non-causal probability for one token, and hence is not
practical. Our central idea is to propose an approximate test-statistic whose computation is much
faster, does not require an exact computation of this partition function and does not depend on the
vocabulary size.

Our method achieves a significant accuracy gain over state-of-the-art methods including Min-K%, and
Min-K%++ on the WikiMIA benchmark across seven models. On WikiMIA, our method outperforms
the previous state of the art in AUC. It achieves up to 10% improvement on Llama models when
testing long sequences (256 tokens). Further, we achieve higher AUC compared to reference-free
methods on the challenging MIMIR benchmark.

Our main contributions are summarized below:

(1) We introduce the Infilling Score, a new reference-free method for detecting pretraining
data using infilling likelihood of tokens within the candidate sentence (Section 3). While
SoTA methods: MIN-K% and MIN-K%++ rely on a statistic based on past tokens only, our
method computes a new test statistic considering both past and future tokens in the sentence.

(2) We develop an efficient algorithm for computing this new score. Though our method
conceptually shares similarities with a likelihood computed via Bayes rule, computationally
it is much different: whereas any natural approach for computing a Bayes rule calculation
scales with vocabulary size, our algorithm has computation invariant to vocabulary size.

(3) We conduct extensive experiments on the standard (a) WikiMIA (Shi et al., 2024) and,
(b) MIMIR (Duan et al., 2024) to verify the efficacy of our method (Section 4). On these
benchmarks, we compare our method with state-of-the-art MIA methods including MIN-
K% (Shi et al., 2024) and MIN-K%++ (Zhang et al., 2024). On WikiMIA, our method
achieves 11% improvement over MIN-K% and 5% improvement over MIN-K%++ in terms
of AUROC on average. We attribute the notable performance gain of our method to infilling
probability (Section 3).

(4) We curate a dataset of book excerpts that have not been seen by the LLMs released before
April 2024 (Section 4.1). Employing our Infilling Score, we detect a list of books which
have (likely) been used for training Llama-3-8B (Dubey et al., 2024) (4.4.3).

2 BACKGROUND

In this section, we discuss the standard definition of Membership Inference Attack (MIA) and recent
advances along this line of research.

Problem setup. Given a sentence x = {xi}Ni=0 and a Large Language Model (LLM) denoted by M,
the goal of MIA is to build a detector h (x,M) → {0, 1} that can infer the membership of x in the
training corpus D = {xj}j∈[n] of M. Existing MIA methods for LLMs (Shi et al., 2024; Zhang
et al., 2024; Carlini et al., 2021; Mattern et al., 2023a) assign a score to each sample x and use a
binary threshold to determine its membership class, with 1 indicating x ∈ D and 0 otherwise.

2.1 CHALLENGES IN PRETRAINING DATA DETECTION USING MIA METHODS

2.1.1 DETECTION DIFFICULTY

Prior works (Hardt et al., 2016; Bassily et al., 2020) have shown that the total variation (TV) distance
between the distribution of seen and unseen data is proportional to the learning rate, size of the

2

Published as a conference paper at ICLR 2025

dataset |D| and the frequency of the test sentence x. Since TV captures the separability between
these distributions, low TV makes it difficult to infer the membership class of a given x.

2.1.2 ARCHITECTURE AND PRETRAINING DISTRIBUTION

Membership inference attacks for LLM pretraining data detection are broadly categorized into two
classes: (a) reference-based methods and (b) reference-free methods. Reference-based methods
such as Reference (Carlini et al., 2021) infer the membership of a sentence x by computing the
likelihood of x using two different LLMs. They compare the perplexity of x under the target LLM
with the perplexity of x under a smaller language model. The smaller model M shares the same
architecture as M, and is trained on a subset of samples, D, collected from the same underlying
distribution of D. The intuition is that smaller networks have less capacity to memorize sentences
from the pretraining dataset. One crucial limitation of these methods is that reference model may not
always exist. Although LLM developers often do not disclose information about the distribution of
pretraining data, reference-based MIAs (Carlini et al., 2021) assume the knowledge of the architecture
and underlying pretraining distribution, making these methods less practical.

Among reference-free methods, Min-K% (Shi et al., 2024) hypothesizes that when a sentence is
seen by the model, i.e., x ∈ D, it usually contains a number of tokens with low causal probabilities
(outliers). Formally, given a sequence of tokens x = {xi}Ni=0, Min-K% score is given by:

Min-K%(x) =
1

|min-k%|
∑

xi∈min-k%

Min-K%token(xi), (1)

where Min-K%token(xi) = log p (xi|x<i) . (2)

Here, Min-K%token(xi) denotes the score for each token xi. The set min-k% contains k% of the
input tokens which correspond to the bottom k% scores within the sequence. If the average score for
this set is less than τ(k), where τ(k) denotes the binary threshold for a fixed k, then Min-K% detects
the sequence x as “unseen”. Note that the classification threshold τ(k) is determined empirically
using a validation dataset.

A recently proposed method, Min-K%++ (Zhang et al., 2024), improves the detection accuracy of
Min-K% by normalizing the next-tokens log likelihood log p(xi|x<i) as follows:

Min-K%++(x) =
1

|min-k%|
∑

xi∈min-k%

Min-K%++token(xi), (3)

where Min-K%++token(xi) =
log p (xi|x<i)− µx<i

σx<i

(4)

µx<i
= Ez∼p(.|x<i)[log p(z|x<i)] and σx<i =

√
Ez∼p(.|x<i)[(log p(z|x<i)− µx<i

)2] are the mean
and standard deviation of the next-token likelihood.

Both Min-K% and Min-K%++ rely on the “causal” likelihood predictions of the model. However,
the causal likelihood of xi does not consider the information from the entire sentence context, as it
only depends on the preceding tokens x<i. We propose that sentences seen during training (x ∈ D)
typically have a number of tokens with low infilling probabilities. By using the non-causal token
likelihoods which depend on both preceding and succeeding tokens (x<i and x>i), we achieve a
more accurate statistic than causal likelihoods alone. This enables our Infilling Score method to
outperform previous pretraining data detection approaches on standard benchmarks.

3 METHOD

We describe our method in this section. First we describe the computation of our new ratio statistic,
and explain why it offers computational scalability compared to a straightforward application of
Bayes Rule. Next, we describe how this score is used to detect data in the pretraining set. Finally, we
explain how we employ our method to detect pretraining samples in Llama-3.

3

Published as a conference paper at ICLR 2025

Ground truth: She ate Italian pasta
Masked input: She ate <MASKED> pasta

x1 x2 m3 x4

3.1 COMPUTING THE INFILLING LIKELIHOOD

In this setting, we search for the most likely token to infill m3 using other tokens in the sentence, i.e.,
{x1, x2, x4}. Using the law of total probability, we get:

p(x3|x1, x2, x4) =
p(x4|x1, x2, x3)p(x3|x1, x2)

p(x4|x1, x2)
=

p(x4|x1, x2, x3)p(x3|x1, x2)∑
x′
3∈V

p(x4|x1, x2, x′3)p(x
′
3|x1, x2)

. (5)

Observe that the partition function in the denominator of equation 5 is expensive to compute as it
requires summation over all the tokens in the vocabulary V . In the naive case, the number of LLM
calls required to compute the infilling likelihood scales linearly both with vocabulary size and the
sequence length. This is because for each token, the denominator in equation 5 scales linearly in the
vocabulary size, and this computation needs to be repeated for each token. The size of the vocabulary
can be as large as 128K in recent LLM (Dubey et al., 2024).

To address the scalability challenge, we introduce a ratio test statistic. Our main idea is to compute
the ratio of the infilling probability of the ground-truth token and the maximum causal likelihood
token. Using this proposed statistic, we bypass the need to compute the computationally expensive
partition function. In the above setting, we define the ratio test-statistic of token x3 as:

p(x3|x1, x2, x4)

p(x∗3|x1, x2, x4)
,where x∗3 = argmax

x′
3∈V

p(x′3|x1, x2). (6)

This ratio compares the infilling likelihood of the ground-truth token to that of the model’s causal
prediction. If x3 is an outlier the ratio is closer to 0, and when x3 is among the model’s top predictions,
this ratio is closer to 1. Since the partition function in equation 5 is the same for p(x3|x1, x2, x4) and
p(x∗3|x1, x2, x4), it is canceled in the ratio test statistic. This drastically reduces the number of LLM
calls from O(N |V|) to O(N), making our test statistic independent of the size of the vocabulary
(details in 4.5). Interestingly, we can exactly compute this ratio analytically using auto-regressive
models without retraining. We then compute the log of this ratio and normalize the probabilities to
capture the relative significance of each token in the vocabulary. First, we derive

log
p(x3|x1, x2, x4)

p(x∗3|x1, x2, x4)
= log

p(x4|x1, x2, x3)p(x3|x1, x2)

p(x4|x1, x2, x∗3)p(x
∗
3|x1, x2)

(7)

= log p(x4|x1, x2, x3) + log p(x3|x1, x2)− log p(x4|x1, x2, x
∗
3)− log p(x∗3|x1, x2), (8)

Generalizing (equation 7) to use m future tokens for calculating the infilling ratio of token i, we get
the following:

log
p(xi|x1:i−1, xi+1:n)

p(x∗i |x1:i−1, xi+1:i+m)
=

i+m∑
j=i+1

log p(xj |x1, x2, ..., xi, ...xj−1) + log p(xi|x1:i−1)−

i+m∑
j=i+1

log p(xj |x1, x2, ..., x
∗
i , ...xj−1)− log p(x∗i |x1:i−1),

(9)

where x1:i denotes the sequence x1, x2, ...xi, and x∗i = argmaxx′
i∈V p(x

′
i|x1:i−1).

4

Published as a conference paper at ICLR 2025

As suggested in Zhang et al. (2024), we normalize the terms to compute our infilling score for a given
token x3:

InfillingScoretoken(xi) =
i+m∑
j=i+1

log p(xj |x1, x2, ..., xi, ...xj−1)− µx1:j

σx1:j

+
log p(xi|x1:i−1)− µx1:i

σx1:i

−
i+m∑
j=i+1

log p(xj |x1, x2, ..., x
∗
i , ...xj−1)− µx1:j

σx1:j

− log p(x∗i |x1:i−1)− µx1:i

σx1:i

(10)

where µx1:j
= Ez∼p(.|x1:j)[log p(z|x1:j)], and σx1:j

=
√
Ez∼p(.|x1:j)[(log p(z|x1:j)− µx1:j

)2], are

the mean and standard deviation of the next token log probability, log p(xj |x1, ..., xj−1), over the
whole vocabulary. In contrast to equation 5, there is no normalization in the denominator needed in
equation 10. Note that the non-causal terms in equation 6 are all replaced by causal terms which can
be computed through LLM logits. To implement, we need two calls to the LLM – the first with input
as the sequence x1, ..., xi, ..., xN and the second call with input as x1, ..., x

∗
i , ..., xN . Note that the

means and standard deviations can be computed from these logits. Thus, equation 10 requires only
two calls to the LLM per token. Hence with N tokens, the total number of calls to the LLM scales
as 2N , in contrast to the naive approach where the scaling is N |V|. We will see in our experiments
(see Section 4.5) that this leads to a dramatic decrease in runtime, with two orders of magnitude
improvement.

3.2 PRETRAINING DATA DETECTION

To detect the membership of a given sentence x, we find the set of min-k% tokens with low Infilling
Scores in the sentence, and compute the average score over this subset. Our final test-statistic
becomes:

InfillingScore(x) =
1

|min-k%|
∑

xi∈min-k%

InfillingScoretoken(xi). (11)

Our experiments suggest that InfillingScore(x) is higher for a given sentence x which was seen by
the model during pretraining. Thus, the infilling score enables us to build a detector h(·,M) for an
LLM M to infer the membership class of x as:

h(x,M) =

{
0 InfillingScore(x) < τ
1 otherwise , (12)

where τ denotes the binary threshold that is applied on the soft scores.

4 EXPERIMENTS

4.1 BENCHMARKS

We conduct comprehensive tests to evaluate the performance of our newly proposed test-statistic
against state-of-the-art reference-based and reference-free methods. We experiment with various
models and different parameter sizes. Initially, we examine the established pretraining data detection
benchmarks: WikiMIA (Shi et al., 2024) and MIMIR (Duan et al., 2024). WikiMIA is a temporal
MIA dataset commonly used for evaluating pretraining data detection methods. This benchmark
contains excerpts from Wikipedia event articles, and classifies samples based on the timestamp of
the articles. Samples from articles published before the training of an LLM are classified as “seen”,
and samples after the training are classified as “unseen”. Hence, this benchmark applies only to a
subset of LLMs, depending on their training and release time. WikiMIA has four different subsets
with sequence lengths of 32, 64, 128, and 256. Zhang et al. (2024) also published a “Paraphrased”
version of WikiMIA which uses ChatGPT to paraphrase the samples.

A more challenging benchmark, MIMIR (Duan et al., 2024), aims to evaluate pretraining data
detection methods when the distributions of “seen” and “unseen” text samples have high n-gram
overlap. MIMIR consists of samples from the Pile (Gao et al., 2020) across seven domains: English

5

Published as a conference paper at ICLR 2025

Wikipedia, ArXiv, Github, Pile CC, PubMed Central, DM Mathematics, and HackerNews. Parts from
the train subset of the Pile are labeled as “seen” while parts of the test set are labeled as “unseen”.
These seen and unseen samples are selected to have very high n-gram overlaps, making it significantly
more challenging to infer training data membership.

Previous membership inference benchmarks such as WikiMIA, BookMIA (Shi et al., 2024), and
BookTection (Duarte et al., 2024) cannot be reliably used for Llama-3 because the model was trained
more recently. To address this, we curate a new dataset consisting of book excerpts published after
the release of Llama-3 labeled as “unseen” data. In this new dataset the “seen” data comes from
classical fiction books published before 1965. We sample a set of 100 excerpts, with each excerpt
containing 200 tokens. The “unseen” data consists of excerpts from books published after April 2024,
similarly having size of 200 tokens.

4.2 MODELS AND METRICS

We use the WikiMIA benchmark to evaluate our Infilling Score method on Llama (7B, 13B, 30B)
(Touvron et al., 2023a), Pythia (2.8B, 6.9B) (Biderman et al., 2023), GPT-NeoX-20B (Black et al.,
2022), and Mamba-1.4B (Gu & Dao, 2023) models. WikiMIA is applicable to models released
between 2017 and 2023. Samples from the Wikipedia event articles published in and after 2023 are
labeled as “unseen”, and samples from articles published before 2017 are labeled as “unseen”.

For experiments on the MIMIR benchmark, we evaluate our method using Pythia (160M and 1.4B) on
a subset of the Pile (Gao et al., 2020) dataset sampled across seven different domains. Pythia model
has been pretrained on the training set of the Pile dataset (Biderman et al., 2023). Therefore, MIMIR
benchmark has labeled samples from the train/test of the Pile as “seen”/“unseen”, respectively.

We evaluate Infilling Score for membership classification against the state-of-the-art methods using
the area under the ROC curve (AUROC) metric. As suggested in prior studies (Carlini et al.,
2022; Mireshghallah et al., 2022), we also report the True Positive rate at low False Positive rate
(TPR@5%FPR).

4.3 BASELINES

We compare our proposed method with multiple state-of-the-art methods as our baselines. Reference
method (Carlini et al., 2021) relies on the ratio of the sample perplexity (e.g. next token likelihood)
estimated by the target model to the sample perplexity estimated by a smaller reference model. Zlib
is another reference-based method which uses the Zlib compression entropy for calibrating the score
(Carlini et al., 2021). Neighbor method (Mattern et al., 2023a) replaces tokens within a sequence
using a pretrained masked language model to generate similar sentences. The method identifies if a
sample belongs to the training data by comparing the loss of the original sample with the average loss
of its neighboring sentences. The same algorithm is also used for detecting machine generated text in
(Mitchell et al., 2023). We compare our results with both Min-K%(Shi et al., 2024) and Min-K%++
methods (Zhang et al., 2024) extensively for performance evaluations because both methods are the
current state-of-the-art reference-free baselines, falling under the same category as our Infilling Score.

4.4 RESULTS

4.4.1 EVALUATION ON WIKIMIA

Table 1 presents the results comparing our Infilling Score method with state-of-the-art methods
evaluated on the WikiMIA benchmark. In addition, we evaluate the effectiveness of our method using
TPR at low FPR in Table 2. Our experimental setup is consistent with prior work such as Min-K%++
and Min-K%. For 32-token sequences we only use one future token, and for longer sequences we use
5 future tokens. We fix k = 20% across all experiments.

On average, our method shows a 5% improvement in AUC over Min-K%++ across various model
sizes and different inputs sequence lengths. As hypothesized in Section 3, Infilling Score consistently
outperforms existing reference-based and reference-free methods in detecting Llama pretraining data.
We empirically show that predicting the token-level likelihoods, using the information in both the
past and future tokens is more accurate for pretraining data detection. For longer sequences. This is
specially helpful for samples with longer sequence lengths where there are more tokens in the context

6

Published as a conference paper at ICLR 2025

Seq. Method Mamba-1.4B NeoX-20B Pythia-2.8B Pythia-6.9B Llama-7B Llama-13B Llama-30B Average

length Ori. Para. Ori. Para. Ori. Para. Ori. Para. Ori. Para. Ori. Para. Ori. Para.

Infilling Score (Ours) 66.6 66.1 75.6 73.1 65.0 63.9 69.7 68.2 88.1 88.0 88.6 87.0 87.3 84.7 76.56
Min-K%++ (Zhang et al., 2024) 66.8 66.1 75.0 69.6 64.4 62.4 70.3 68.0 85.1 84.0 84.8 82.7 84.3 81.2 74.62

32 Min-K%(Shi et al., 2024) 63.2 62.9 71.8 69.7 61.8 61.7 66.3 65.2 66.3 67.0 68.0 68.4 70.1 70.7 66.65
Neighbor (Mattern et al., 2023a) 64.1 63.6 70.2 68.3 62.1 64.5 65.8 65.5 - - 65.8 65.0 67.6 66.3 65.73
Zlib (Carlini et al., 2021) 61.9 62.3 69.0 68.2 62.1 62.3 64.3 64.2 66.7 67.3 67.8 68.3 69.8 70.4 66.04
Ref (Carlini et al., 2021) 62.2 62.3 67.2 66.3 61.3 61.2 63.6 63.5 - - 57.9 56.2 63.5 62.4 62.3

Infilling Score (Ours) 67.3 62.9 76.8 73.1 65.7 58.9 71.4 64.2 89.7 86.8 90.1 84.5 88.3 81.2 75.78
Min-K%++ (Zhang et al., 2024) 67.2 63.3 76.0 67.5 65.0 58.5 71.6 64.8 85.7 80.8 86.7 78.8 84.7 74.9 73.25

64 Min-K%(Shi et al., 2024) 62.2 58.0 72.2 66.1 61.2 56.8 65.0 61.1 63.3 61.8 66.0 64.0 68.5 65.7 63.71
Neighbor (Mattern et al., 2023a) 60.6 60.6 67.1 67.4 61.3 59.6 63.2 63.1 - - 64.1 64.7 67.1 66.7 63.79
Zlib (Carlini et al., 2021) 60.4 59.1 67.6 66.4 60.5 59.0 62.6 61.6 63.4 63.6 65.3 65.3 67.5 67.4 63.55
Ref (Carlini et al., 2021) 60.6 59.6 65.7 65.9 59.6 59.2 62.4 62.9 - - 63.4 60.9 69.0 65.4 63.88

Infilling Score (Ours) 69.6 66.6 78.1 74.9 67.1 64.1 70.4 67.5 87.6 83.4 88.3 83.5 86.7 79.5 76.23
Min-K%++ (Zhang et al., 2024) 68.8 65.6 75.9 72.2 66.8 63.4 70.4 66.8 85.7 82.2 83.9 76.3 82.6 73.8 73.88

128 Min-K%(Shi et al., 2024) 66.8 64.5 75.0 72.6 66.9 64.7 69.5 67.0 70.1 68.1 71.5 68.7 73.9 70.2 69.25
Neighbor (Mattern et al., 2023a) 64.8 62.6 71.6 69.6 65.2 61.9 67.5 64.3 - - 68.3 64.0 72.2 67.2 66.60
Zlib (Carlini et al., 2021) 65.6 65.3 71.8 71.8 65.0 65.0 67.6 67.4 68.3 68.4 69.7 69.6 71.8 71.5 68.48
Ref (Carlini et al., 2021) 65.2 61.1 67.8 67.8 59.6 59.5 63.3 62.9 - - 62.6 59.7 71.9 70.0 64.28

Infilling Score (Ours) 70.1 - 77.0 - 73.6 - 70.5 - 96.6 - 95.3 - 89.8 - 81.84
Min-K%++ (Zhang et al., 2024) 65.5 - 71.9 - 63.9 - 65.5 - 82.5 - 82.3 - 77.3 - 72.70

256 Min-K%(Shi et al., 2024) 69.8 - 78.0 - 70.0 - 71.1 - 72.4 - 72.9 - 72.1 - 72.33
Zlib (Carlini et al., 2021) 67.6 - 73.2 - 69.3 - 69.8 - 71.2 - 73.1 - 72.8 - 71.00

Table 1: AUROC results on the Original and Paraphrased subsets of the WikiMIA benchmark (Shi
et al., 2024). Note that the paraphrased version of the 256-token subset of WikiMIA is not published
on HuggingFace which is why some results are missing for 256 tokens. Bold shows the best result
and underline shows the second best results in each section. As seen, our Infilling Score method
outperforms previous work for detecting pretraining samples for EleutherAI’s Pythia (Biderman et al.,
2023) and GPT-NeoX (Black et al., 2022), Mamba (Gu & Dao, 2023), and Meta’s Llama (Touvron
et al., 2023a) models across various model sizes.

Seq. Method Mamba-1.4B NeoX-20B Pythia-2.8B Pythia-6.9B Llama-7B Llama-13B Llama-30B Average

length Ori. Para. Ori. Para. Ori. Para. Ori. Para. Ori. Para. Ori. Para. Ori. Para.

Infilling Score (Ours) 14.0 16.5 27.6 23.0 13.7 13.7 17.3 20.7 34.1 35.9 30.5 29.7 33.1 38.2 24.85
Min-K%++ (Zhang et al., 2024) 12.9 10.6 19.4 12.9 14.2 13.9 17.1 17.1 33.6 31.5 38.5 35.9 31.3 27.4 22.59

32 Min-K%(Shi et al., 2024) 14.7 15.2 27.9 19.6 17.1 16.5 17.8 21.7 15.2 16.0 18.9 17.6 21.2 18.1 18.39
Neighbor (Mattern et al., 2023a) 11.9 7.2 22.2 15.2 15.0 8.5 16.5 9.6 - - 11.6 8.5 9.3 9.3 12.07
Zlib (Carlini et al., 2021) 15.5 13.2 19.9 18.6 15.8 14.5 16.3 12.7 13.7 14.2 11.6 15.0 14.5 15.0 15.03
Ref (Carlini et al., 2021) 7.8 5.9 1.5 15.2 6.2 7.2 6.7 6.2 - - 4.7 5.4 9.8 7.5 7.01

Infilling Score (Ours) 19.4 10.2 27.8 21.8 18.0 13.4 21.1 14.8 50.7 28.5 53.5 34.9 44.0 27.8 27.56
Min-K%++ (Zhang et al., 2024) 16.6 7.0 20.4 13.0 16.2 9.9 26.1 14.1 39.4 26.8 34.1 26.4 36.3 21.5 21.98

64 Min-K%(Shi et al., 2024) 19.4 8.4 20.4 17.6 18.3 11.3 19.0 12.7 14.4 13.7 17.2 13.4 17.6 14.4 15.55
Neighbor (Mattern et al., 2023a) 8.8 9.5 13.0 18.3 10.2 11.3 10.9 12.7 - - 10.2 14.4 9.9 11.6 11.73
Zlib (Carlini et al., 2021) 14.1 15.1 16.6 19.4 14.4 16.6 16.2 15.8 11.3 14.8 12.7 13.4 15.5 16.9 15.20
Ref (Carlini et al., 2021) 4.6 8.1 15.5 14.1 10.6 13.0 12.0 16.2 - - 4.2 4.6 11.3 8.1 10.19

Infilling Score (Ours) 16.6 15.8 25.9 33.1 15.8 13.4 20.9 21.6 38.1 33.8 41.0 30.9 24.5 31.7 25.93
Min-K%++ (Zhang et al., 2024) 16.6 10.1 23.0 19.4 17.3 14.4 22.3 21.6 46.8 38.8 41.0 21.5 38.1 21.6 25.18

128 Min-K%(Shi et al., 2024) 16.6 14.4 25.2 22.3 13.7 14.4 18.0 17.3 19.4 21.6 25.9 14.4 23.7 18.7 18.97
Neighbor (Mattern et al., 2023a) 15.8 13.7 15.8 18.7 8.6 12.2 10.8 17.3 - - 12.9 11.6 15.1 14.4 13.91
Zlib (Carlini et al., 2021) 19.4 17.3 23.0 21.6 18.7 16.6 20.9 20.9 14.4 18.7 18.7 16.9 18.0 19.4 18.89
Ref (Carlini et al., 2021) 10.1 11.5 15.8 19.4 10.1 7.2 13.7 8.6 - - 10.8 8.1 10.8 18.7 12.07

Infilling Score (Ours) 25.5 - 29.4 - 19.6 - 29.4 - 80.4 - 80.4 - 72.5 - 48.17
Min-K%++ (Zhang et al., 2024) 15.7 - 13.7 - 13.7 - 11.8 - 47.1 - 37.3 - 19.6 - 22.70

256 Min-K%(Shi et al., 2024) 13.7 - 21.6 - 13.7 - 15.7 - 17.6 - 19.6 - 13.7 - 16.51
Zlib (Carlini et al., 2021) 23.5 - 23.5 - 19.6 - 27.5 - 21.6 - 27.5 - 29.4 - 24.66

Table 2: True Positive rate at low False Positive rate (FPR=5%) results on the Original and Paraphrased
subsets of the WikiMIA benchmark (Shi et al., 2024). Note that the paraphrased version of the 256-
token subset of WikiMIA is not published on HuggingFace, which is why some results are missing for
256 tokens. Bold shows the best results and underline shows the second best results in each section.
As shown, our Infilling Score method on average achieves higher True Positive rate compared to
existing methods, with the best performance on 256-token long sequences.

to use for inference. Since our method offers the capability to leverage the future as well as past
tokens, it shows a significant gain over current state-of-the-art method when input sequences are long.

4.4.2 EVALUATION ON MIMIR

Table 3 shows the results comparing our Infilling Score method with SoTA methods evaluated on
the challenging MIMIR benchmark. In the MIMIR dataset, samples from the “seen” and “unseen”
classes are sampled from the same dataset to ensure 13-gram overlap of up to 0.8 between the classes.
Reference-based models show high performance on this benchmark. However, the drawback of this

7

Published as a conference paper at ICLR 2025

Wikipedia Github Pile CC PubMed Central

Method 160M 1.4B 160M 1.4B 160M 1.4B 160M 1.4B

Infilling Score (Ours) 49.7 53.4 65.5 70.0 53.7 53.3 52.3 53.5
Min-K%++ (Zhang et al., 2024) 49.7 53.7 64.8 69.6 50.6 51.0 50.6 51.4
Min-K%(Shi et al., 2024) 50.2 51.3 65.7 69.9 50.3 51.0 50.6 50.3
Zlib (Carlini et al., 2021) 51.1 52.0 67.4 71.0 49.6 50.1 49.9 50.0
Ref (Carlini et al., 2021) 51.2 55.2 63.9 67.1 49.2 52.2 51.3 53.1

ArXiv DM Math HackerNews Average

Method 160M 1.4B 160M 1.4B 160M 1.4B 160M 1.4B

Infilling Score (Ours) 51.0 51.3 53.5 50.4 50.9 52.6 53.4 54.9
Min-K%++ (Zhang et al., 2024) 50.1 51.1 50.5 50.9 50.7 51.3 52.4 54.1
Min-K%(Shi et al., 2024) 51.0 51.7 49.4 49.7 50.9 51.3 52.6 53.6
Zlib (Carlini et al., 2021) 50.1 50.9 48.1 48.2 49.7 50.3 52.3 53.2
Ref (Carlini et al., 2021) 49.4 51.5 51.1 51.1 49.1 52.2 52.2 54.6

Table 3: AUROC results on MIMIR dataset (Duan et al., 2024) for Pythia models for different
sizes. Similar to Zhang et al. (2024), we experiment on a subset of MIMIR with maximum 13-gram
overlap of 0.8 between samples form “seen” and “unseen” class. Bold shows the best results and
underline shows the second best results in each section. As shown, our Infilling Score method overall
outperforms existing reference-free and reference-based methods.

.

Year Pub. Book Title Contamination Rate

1817 Persuasion 99
2006 Oakleaf bearers 76
1812 Grimms’ Fairy Tales 73
2003 The Sacred Land 73
1986 Howl’s Moving Castle 69
2009 CATCHING FIRE 68
1991 Red Magic 66
2009 Tenth Grade Bleeds 64
1998 Mad Ship 61
1996 Too Good to Leave, Too Bad to Stay 58
2009 Crouching Vampire, Hidden Fang 56
1889 Three Men in a Boat (To Say Nothing of the Dog) 56
2003 Something from the Nightside 54
2009 The Silver Eagle 53
1982 The Man From St. Petersburg 53
2000 Ship of Destiny 53
2008 The Painted Man 53
2007 The Center Cannot Hold 52
2007 Raintree: Sanctuary 52
2005 Sister of the Dead 52
2006 The Corfu Trilogy 50
2008 Ascendancy of the Last 50

Table 4: Books detected in the pretraining data of Llama-3-8B (Dubey et al., 2024). Contamination
rate shows the percentage of excerpts sampled from the books which were classified as “seen” using
the Infilling Score method.

approach is that it requires testing multiple different LLMs to determine the best performing baseline
(Duan et al., 2024; Zhang et al., 2024). Despite the competitive nature of the benchmark, our Infilling
Score achieves the best performance compared to both reference-free and reference-based models on
average over different domains.

4.4.3 DETECTING PRETRAINING DATA OF LLAMA-3

We apply Infilling Score to detect books that were likely used in the pretraining of the Llama3-8B
model, recently released by Meta (Dubey et al., 2024). Llama3 is known to be trained using over 15T
tokens of data (7x larger training set than Llama-2) according to Dubey et al. (2024). No information
about the source and distribution of this data is disclosed by the developers, making it difficult to
construct a labeled MIA dataset of books suitable for this model.

We used our books dataset as a validation set to find the best hyperparameters (k% and # future
tokens, m, and the classification threshold τ) for identifying samples used in pretraining Llama3.
Since Llama3 has been released in 2024, existing temporal benchmarks such as WikiMIA, BookMIA
(Shi et al., 2024), and BookTection (Duarte et al., 2024) cannot be used for pretraining data detection
on this model. We found that using the next 100 tokens when calculating the Infilling Score shows the
highest accuracy on this benchmark. Table 12 shows the performance of our method on this dataset.

8

Published as a conference paper at ICLR 2025

Figure 1: Figure shows an example of the distribution of the Infilling Scores for “seen” and “unseen”
excerpts in our validation dataset which consists of text from fiction books. Scores are normalized in
each distribution. The unseen data comes from recent novels published after the training of Llama
3. For the classic novel Persuasion, our method detects 99% of the excerpt to be in the training set.
As seen in this histogram, the distribution for Persuasion matches other seen novels and is clearly
separated from unseen data, as one would expect.

We employ our method on 20,000 excerpts sampled from 200 books. Table 4 presenters the list of
books which we found to be in the training dataset of Llama3-8B with ≥ 50% contamination rate.
Contamination rate shows the percentage of excerpts detected as ’seen’ for each publication. Figure 1
shows that books with high contamination rate have higher sample statistic overlap with the “seen”
excerpts in our validation dataset.

4.4.4 ABLATION STUDY ON THE NUMBER OF FUTURE TOKENS TO USE

It is important to note that the number of future tokens used to calculate the Infilling Score determines
the performance gain of our method. As shown in the Figure 2 increasing the number of future tokens
does not necessarily lead to a higher AUC. However, on the WikiMIA benchmark, using about 5
future tokens leads to relatively better AUC across various context lengths on WikiMIA using Llama-
7B and Llama-13B. We conduct all experiments with different input sequence lengths (32, 64, 128,
and 256) to examine the effect of the number of future tokens across various context lengths. While
the ideal number of next tokens to use remains consistent across various model sizes, the optimal
number may differ depending on data distribution and model architecture. We investigate various
values for m within {0, 1, 3, 5, 10, 20, . . . , N}, where N represents the input sequence length. It’s
important to note that the hyperparameter search does not increase the computational complexity, as
incorporating additional future tokens does not require extra calls to the LLM. We provide additional
results in Appendix A.

Figure 2: The figures show the AUROC achieved by the Infilling Score as the number of future
tokens increases. These results are shown for input sequence lengths of 32, 64, 128, and 256. The
left figure presents the results for Llama-7B, while the right figure shows the results for Llama-13B.
Our baseline, representing existing methods, uses zero future tokens. The optimal number of future
tokens to use is 1 for sequences of 32 tokens. For longer sequences of up to 256 tokens, the optimal
number is around 5 for both models.

9

Published as a conference paper at ICLR 2025

4.5 ALGORITHM RUNTIME

Table 5 compares the runtime of our Infilling Score algorithm with straightforward application
of Bayes, and Min-K%++ (Shi et al., 2024) using Llama-7B. Although both the naive approach
and Infilling score are slower than Min-K%, these methods yield a more accurate estimate of
token likelihoods for membership inference. Note that our proposed test statistic, Infilling Score,
significantly reduces the computational complexity compared to the naive approach, delivering an
accurate membership inference score within a feasible runtime. WikiMIA dataset has 776 sequences
of length 32, 542 of length 64, 250 of length 128, and 82 of length 256 tokens. The compute cost
increases with the sequence length. The 256-token sequences require approximately 2,460 seconds
compared to 776 seconds for 32-token sequences (30 seconds per sequence), highlighting the trade-off
between detection accuracy and computational efficiency.

Seq. length Min-K%++ Infilling Score Naive Approach
32 0.028 sec. 0.952 sec. 207 sec.
64 0.042 sec. 3.11 sec. 334 sec.
128 0.064 sec. 9.47 sec. 581 sec.
256 0.106 sec. 29.98 sec. 1141 sec.

Table 5: Algorithm runtime results comparing Infilling Score, Min-K%++, and the naive approach
discussed in Section 3, sequences of 32, 64, 128, and 256 tokens using Llama-7B on a H200 GPU.

To evaluate the impact of the number of future tokens used, m, on the runtime, we measure the
runtime using 1, 5, and 10 future tokens. As discussed in Section 3.1, the number of LLM calls
required by our Infilling Score algorithm is independent of the number of future tokens used. However,
increasing the number of future tokens also increases the number of terms in the summations in
equation 10. The additional computations have a minimal impact on the runtime as shown in Table 6.

Seq. length 32 64 128 256

future tokens 1 5 10 1 5 10 1 5 10 1 5 10

Runtime 0.952 sec. 0.953 sec. 0.956 sec. 3.11 sec. 3.12 sec. 3.12 sec. 9.47 sec. 9.48 sec. 9.49 sec. 29.98 sec. 30.01 sec. 30.04 sec.

Table 6: Algorithm runtime as the number of future tokens used increases. As the table indicates,
increasing the number of future tokens to use has minimal impact on runtime.

5 CONCLUSIONS

Limitations One limitation is that computing the Infilling Score requires grey-box access to the LLM,
meaning access to the sample log probabilities estimated by the model. This requirement is common
among most of the existing membership inference methods. Another limitation of our approach lies
in its runtime complexity. As described in Section 3.1, the order of LLM calls required for computing
the infilling likelihood (for a sequence of length N) with the naive Bayes method is N |V|, which
scales linearly with both sequence length N , and vocabulary size |V|. By introducing the Infilling
Score, we reduce the number of LLM calls to 2N . However, prior methods such as Min-K%and
Min-K%++ require only a single LLM call (to test a sequence of length N), and are faster compared
to our proposed algorithm.

To conclude, we proposed a novel method that can detect if text sequences have been present in the
training set with significantly better accuracy compared to prior work. Our new test statistic allows us
to derive non-causal likelihoods (up to a multiplicative factor) from pre-trained autoregressive models
and may have other uses, beyond membership inference. Although our method is slower compared to
previous methods, it can be practically run in a few seconds for large foundation models.

Our results present evidence that numerous books and other recent sources of text have been in the
training data of modern LLMs. This test can further be used for measuring dataset contamination
rates, and also evaluating decontamination methods. An important research direction would be to
create larger evaluation datasets for membership inference, and include high n-gram overlap samples
for recent sources that remain unseen to llama3 and other recently released frontier models.

10

Published as a conference paper at ICLR 2025

ACKNOWLEDGMENTS

This research has been supported by NSF Grants 2019844, 2112471, AF 1901292, CNS 2148141,
Tripods CCF 1934932, Tripods 2217069, NSF AI Institute for Foundations of Machine Learning
(IFML) 2019844, the Texas Advanced Computing Center (TACC) and research gifts by Western
Digital, Wireless Networking and Communications Group (WNCG) Industrial Affiliates Program,
UT Austin Machine Learning Lab (MLL), Cisco and the Stanly P. Finch Centennial Professorship in
Engineering.

REFERENCES

Raef Bassily, Vitaly Feldman, Cristóbal Guzmán, and Kunal Talwar. Stability of stochastic gradient
descent on nonsmooth convex losses, 2020.

Stella Biderman, Hailey Schoelkopf, Quentin Anthony, Herbie Bradley, Kyle O’Brien, Eric Hallahan,
Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, Aviya Skowron,
Lintang Sutawika, and Oskar van der Wal. Pythia: A suite for analyzing large language models
across training and scaling, 2023.

Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He,
Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu
Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, and Samuel Weinbach. Gpt-neox-20b: An
open-source autoregressive language model, 2022.

Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine
Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson, Alina Oprea, and Colin Raffel.
Extracting training data from large language models, 2021.

Nicholas Carlini, Steve Chien, Milad Nasr, Shuang Song, Andreas Terzis, and Florian Tramer.
Membership inference attacks from first principles, 2022.

Kent K. Chang, Mackenzie Cramer, Sandeep Soni, and David Bamman. Speak, memory: An
archaeology of books known to chatgpt/gpt-4, 2023.

Michael Duan, Anshuman Suri, Niloofar Mireshghallah, Sewon Min, Weijia Shi, Luke Zettlemoyer,
Yulia Tsvetkov, Yejin Choi, David Evans, and Hannaneh Hajishirzi. Do membership inference
attacks work on large language models? arXiv preprint arXiv:2402.07841, 2024.

André V. Duarte, Xuandong Zhao, Arlindo L. Oliveira, and Lei Li. De-cop: Detecting copyrighted
content in language models training data, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, and Angela Fan et. al. The llama 3 herd of
models, 2024. URL https://arxiv.org/abs/2407.21783.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy. The pile: An 800gb
dataset of diverse text for language modeling, 2020.

Michael M. Grynbaum and Ryan Mac. The times sues openai and microsoft over a.i. use
of copyrighted work. https://www.nytimes.com/2023/12/27/business/media/
new-york-times-open-ai-microsoft-lawsuit.html, 2023.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces, 2023.

Moritz Hardt, Benjamin Recht, and Yoram Singer. Train faster, generalize better: Stability of
stochastic gradient descent, 2016.

Minhao Jiang, Ken Ziyu Liu, Ming Zhong, Rylan Schaeffer, Siru Ouyang, Jiawei Han, and Sanmi
Koyejo. Investigating data contamination for pre-training language models, 2024. URL https:
//arxiv.org/abs/2401.06059.

11

https://arxiv.org/abs/2407.21783
https://www.nytimes.com/2023/12/27/business/media/new-york-times-open-ai-microsoft-lawsuit.html
https://www.nytimes.com/2023/12/27/business/media/new-york-times-open-ai-microsoft-lawsuit.html
https://arxiv.org/abs/2401.06059
https://arxiv.org/abs/2401.06059

Published as a conference paper at ICLR 2025

Jeffrey Li, Alex Fang, Georgios Smyrnis, Maor Ivgi, Matt Jordan, Samir Gadre, Hritik Bansal, Etash
Guha, Sedrick Keh, Kushal Arora, Saurabh Garg, Rui Xin, Niklas Muennighoff, Reinhard Heckel,
Jean Mercat, Mayee Chen, Suchin Gururangan, Mitchell Wortsman, Alon Albalak, Yonatan Bitton,
Marianna Nezhurina, Amro Abbas, Cheng-Yu Hsieh, Dhruba Ghosh, Josh Gardner, Maciej Kilian,
Hanlin Zhang, Rulin Shao, Sarah Pratt, Sunny Sanyal, Gabriel Ilharco, Giannis Daras, Kalyani
Marathe, Aaron Gokaslan, Jieyu Zhang, Khyathi Chandu, Thao Nguyen, Igor Vasiljevic, Sham
Kakade, Shuran Song, Sujay Sanghavi, Fartash Faghri, Sewoong Oh, Luke Zettlemoyer, Kyle Lo,
Alaaeldin El-Nouby, Hadi Pouransari, Alexander Toshev, Stephanie Wang, Dirk Groeneveld, Luca
Soldaini, Pang Wei Koh, Jenia Jitsev, Thomas Kollar, Alexandros G. Dimakis, Yair Carmon, Achal
Dave, Ludwig Schmidt, and Vaishaal Shankar. Datacomp-lm: In search of the next generation of
training sets for language models, 2024. URL https://arxiv.org/abs/2406.11794.

Saeed Mahloujifar, Huseyin A. Inan, Melissa Chase, Esha Ghosh, and Marcello Hasegawa. Member-
ship inference on word embedding and beyond, 2021.

Justus Mattern, Fatemehsadat Mireshghallah, Zhijing Jin, Bernhard Schoelkopf, Mrinmaya Sachan,
and Taylor Berg-Kirkpatrick. Membership inference attacks against language models via neigh-
bourhood comparison. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Findings
of the Association for Computational Linguistics: ACL 2023, pp. 11330–11343, Toronto, Canada,
July 2023a. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-acl.719.
URL https://aclanthology.org/2023.findings-acl.719.

Justus Mattern, Fatemehsadat Mireshghallah, Zhijing Jin, Bernhard Schölkopf, Mrinmaya Sachan,
and Taylor Berg-Kirkpatrick. Membership inference attacks against language models via neigh-
bourhood comparison, 2023b.

Matthieu Meeus, Shubham Jain, Marek Rei, and Yves-Alexandre de Montjoye. Did the neurons read
your book? document-level membership inference for large language models, 2023.

Sewon Min, Suchin Gururangan, Eric Wallace, Hannaneh Hajishirzi, Noah A. Smith, and Luke
Zettlemoyer. Silo language models: Isolating legal risk in a nonparametric datastore, 2023.

Fatemehsadat Mireshghallah, Kartik Goyal, Archit Uniyal, Taylor Berg-Kirkpatrick, and Reza Shokri.
Quantifying privacy risks of masked language models using membership inference attacks, 2022.

Eric Mitchell, Yoonho Lee, Alexander Khazatsky, Christopher D. Manning, and Chelsea Finn.
Detectgpt: Zero-shot machine-generated text detection using probability curvature, 2023.

Maximilian Mozes, Xuanli He, Bennett Kleinberg, and Lewis D. Griffin. Use of llms for illicit
purposes: Threats, prevention measures, and vulnerabilities, 2023.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, and Shyamal Anadkat et. al. Gpt-4
technical report, 2024.

Yonatan Oren, Nicole Meister, Niladri Chatterji, Faisal Ladhak, and Tatsunori B. Hashimoto. Proving
test set contamination in black box language models, 2023.

Ashwinee Panda, Christopher A. Choquette-Choo, Zhengming Zhang, Yaoqing Yang, and Prateek
Mittal. Teach llms to phish: Stealing private information from language models, 2024.

Virat Shejwalkar, Huseyin A. Inan, Amir Houmansadr, and Robert Sim. Membership inference
attacks against nlp classification models. 2021. URL https://api.semanticscholar.
org/CorpusID:245222525.

Weijia Shi, Anirudh Ajith, Mengzhou Xia, Yangsibo Huang, Daogao Liu, Terra Blevins, Danqi Chen,
and Luke Zettlemoyer. Detecting pretraining data from large language models, 2024.

Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference attacks
against machine learning models, 2017.

Congzheng Song and Vitaly Shmatikov. Auditing data provenance in text-generation models, 2019.

12

https://arxiv.org/abs/2406.11794
https://aclanthology.org/2023.findings-acl.719
https://api.semanticscholar.org/CorpusID:245222525
https://api.semanticscholar.org/CorpusID:245222525

Published as a conference paper at ICLR 2025

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand
Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language
models, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cris-
tian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu,
Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
2023b.

Shuo Yang, Wei-Lin Chiang, Lianmin Zheng, Joseph E. Gonzalez, and Ion Stoica. Rethinking
benchmark and contamination for language models with rephrased samples, 2023. URL https:
//arxiv.org/abs/2311.04850.

Jingyang Zhang, Jingwei Sun, Eric Yeats, Yang Ouyang, Martin Kuo, Jianyi Zhang, Hao Yang, and
Hai Li. Min-k%++: Improved baseline for detecting pre-training data from large language models.
arXiv preprint arXiv:2404.02936, 2024.

Kun Zhou, Yutao Zhu, Zhipeng Chen, Wentong Chen, Wayne Xin Zhao, Xu Chen, Yankai Lin,
Ji-Rong Wen, and Jiawei Han. Don’t make your llm an evaluation benchmark cheater, 2023.

13

https://arxiv.org/abs/2311.04850
https://arxiv.org/abs/2311.04850

Published as a conference paper at ICLR 2025

A CHOICE OF HYPERPARAMETERS

Infilling Score algorithm has two hyperparameters: m which represents the number of future tokens
to use, and k which represents the k% tokens with minimum probabilities to use. We sweep over
1, 3, 5, 10 and 20 future tokens, and k = 0.1, 0.2, ...0.5. Tables 7, 8, 9, and 10 show AUROC and
TPR at low FPR results on WikiMIA subsets with sequence lengths of 32, 64, 128, and 256. Based
on the results, the optimal number of future tokens is 1 for sequences of 32 tokens and 5 for longer
sequences. We find that k = 0.1 often works best across different model sizes and sequence lengths.

Llama-7B Llama-13B Llama-30B
future tokens k (Min-k%) AUROC FPR@TPR95 TPR@FPR05 AUROC FPR@TPR95 TPR@FPR05 AUROC FPR@TPR95 TPR@FPR05

0.1 89.10 33.90 30.50 89.20 32.90 24.50 87.80 37.30 27.90
0.2 88.10 36.80 27.60 88.60 35.50 26.40 87.30 37.80 27.40

1 0.3 88.00 37.80 27.90 88.60 36.20 26.90 87.30 39.10 28.90
0.4 88.10 36.00 25.60 88.60 35.20 27.60 87.30 37.80 28.20
0.5 88.00 37.30 25.30 88.60 36.80 25.60 87.30 38.80 27.10

0.1 88.20 34.70 29.50 89.00 32.10 29.50 86.80 36.00 27.90
0.2 87.80 35.70 31.00 88.70 38.30 28.70 86.60 37.50 27.40

3 0.3 87.80 37.30 31.80 88.60 38.80 28.40 86.60 37.50 28.90
0.4 87.80 36.00 32.00 88.70 38.30 30.50 86.60 37.50 27.10
0.5 87.70 37.30 28.20 88.70 38.00 30.00 86.60 36.80 28.70

0.1 88.00 35.50 34.10 88.40 32.90 27.60 87.30 35.20 31.80
0.2 87.60 37.50 32.80 88.30 33.70 29.50 87.20 35.20 33.10

5 0.3 87.60 37.80 32.80 88.20 36.20 27.60 87.30 35.50 31.50
0.4 87.70 37.50 33.90 88.30 35.20 30.50 87.30 35.70 32.00
0.5 87.50 37.80 30.50 88.30 34.40 28.90 87.30 35.50 31.00

0.1 86.80 39.60 28.40 86.80 37.00 26.90 85.30 39.80 28.40
0.2 86.60 41.10 26.60 86.60 37.50 26.90 85.20 40.60 27.90

10 0.3 86.60 41.40 27.10 86.60 36.20 26.40 85.20 40.90 27.90
0.4 86.60 41.60 26.90 86.70 35.50 26.10 85.20 41.40 27.90
0.5 86.40 41.60 25.10 86.60 36.00 26.40 85.30 40.90 27.90

0.1 82.00 47.30 22.70 81.20 44.20 19.60 81.30 47.80 22.20
0.2 81.80 47.80 23.50 81.00 45.50 20.20 81.20 49.10 22.20

20 0.3 81.80 47.80 22.50 80.90 44.50 19.90 81.10 49.40 22.20
0.4 81.80 48.10 23.00 81.00 45.80 20.20 81.20 48.60 22.20
0.5 81.40 46.80 21.70 80.80 45.00 20.20 81.20 48.30 22.20

Table 7: Complete Infilling Score results testing Llama-7B, Llama-13B, and Llama-30B models on
the Original subset of the WikiMIA 32-token sequences (Shi et al., 2024). For this subset, using one
future token results in the best performance.

Llama-7B Llama-13B Llama-30B
future tokens k (Min-k%) AUROC FPR@TPR95 TPR@FPR05 AUROC FPR@TPR95 TPR@FPR05 AUROC FPR@TPR95 TPR@FPR05

0.1 89.60 33.70 44.00 89.90 35.30 46.10 87.70 36.40 39.10
0.2 89.00 36.40 45.40 89.60 38.40 47.90 87.50 35.70 38.40

1 0.3 89.00 35.70 45.80 89.60 39.50 47.20 87.50 35.70 39.40
0.4 89.00 36.80 46.80 89.60 37.60 47.20 87.60 35.70 38.70
0.5 89.00 36.40 45.80 89.60 39.50 47.20 87.60 35.70 39.10

0.1 89.70 37.60 41.20 90.00 36.80 52.10 88.00 37.60 36.30
0.2 89.60 38.00 38.70 90.00 37.60 53.50 88.00 35.70 37.30

3 0.3 89.60 37.60 37.30 90.00 38.80 52.50 88.00 35.70 37.30
0.4 89.70 37.60 39.80 90.00 38.40 53.50 88.00 35.70 37.70
0.5 89.70 37.60 39.40 90.00 38.40 53.20 88.00 35.70 37.70

0.1 89.70 38.00 45.80 90.10 37.20 48.60 88.30 35.30 43.00
0.2 89.70 37.20 45.40 90.10 39.50 49.30 88.30 34.90 43.70

5 0.3 89.70 38.40 45.80 90.10 39.10 50.00 88.30 34.10 44.00
0.4 89.70 37.20 46.10 90.10 39.10 49.60 88.40 35.30 44.00
0.5 89.70 38.00 46.50 90.00 38.80 46.10 88.30 35.30 43.70

0.1 88.70 40.30 52.80 88.70 40.70 47.50 87.30 38.80 37.70
0.2 88.70 41.10 52.50 88.70 41.50 47.20 87.30 38.00 38.70

10 0.3 88.70 41.10 52.10 88.70 41.50 47.50 87.30 38.00 38.70
0.4 88.70 40.70 53.20 88.80 41.90 47.50 87.30 38.40 39.10
0.5 88.60 41.10 53.50 88.50 42.20 46.80 87.30 37.60 38.00

0.1 83.00 51.90 33.10 82.50 51.20 26.40 82.50 49.60 36.30
0.2 83.00 52.70 32.40 82.50 50.80 27.10 82.50 49.60 35.60

20 0.3 82.90 52.70 32.70 82.50 50.80 27.10 82.50 49.20 35.90
0.4 83.00 52.30 32.40 82.50 50.80 27.50 82.50 49.20 35.60
0.5 82.90 52.70 33.10 82.30 50.80 27.10 82.40 48.80 35.60

Table 8: Complete Infilling Score results testing Llama-7B, Llama-13B, and Llama-30B models on
the Original subset of the WikiMIA 64-token sequences (Shi et al., 2024). For this subset, using five
future tokens results in the best performance.

14

Published as a conference paper at ICLR 2025

Llama-7B Llama-13B Llama-30B
future tokens k (Min-k%) AUROC FPR@TPR95 TPR@FPR05 AUROC FPR@TPR95 TPR@FPR05 AUROC FPR@TPR95 TPR@FPR05

0.1 87.10 36.90 36.00 88.40 35.10 40.30 84.90 33.30 24.50
0.2 86.80 36.90 35.30 88.20 34.20 39.60 84.70 36.90 24.50

1 0.3 86.80 36.00 35.30 88.20 34.20 40.30 84.70 36.90 24.50
0.4 86.80 36.90 36.00 88.20 34.20 39.60 84.70 37.80 24.50
0.5 86.80 36.90 36.70 88.20 34.20 41.00 84.70 36.90 24.50

0.1 87.20 37.80 22.30 87.90 36.00 36.70 85.30 39.60 13.70
0.2 87.10 37.80 23.70 87.80 34.20 37.40 85.20 39.60 14.40

3 0.3 87.10 37.80 23.00 87.80 34.20 37.40 85.20 39.60 13.70
0.4 87.10 37.80 23.70 87.80 35.10 37.40 85.20 39.60 13.70
0.5 87.10 37.80 22.30 87.80 34.20 37.40 85.20 39.60 13.70

0.1 87.70 38.70 37.40 88.40 37.80 34.50 86.70 37.80 19.40
0.2 87.60 38.70 38.10 88.30 37.80 33.80 86.70 37.80 20.10

5 0.3 87.60 38.70 36.70 88.30 37.80 34.50 86.60 37.80 19.40
0.4 87.60 38.70 37.40 88.30 37.80 34.50 86.60 37.80 19.40
0.5 87.60 38.70 36.70 88.30 36.90 35.30 86.60 37.80 20.10

0.1 87.60 45.90 23.70 87.60 39.60 33.80 86.00 38.70 18.00
0.2 87.50 44.10 24.50 87.60 40.50 34.50 86.00 38.70 18.00

10 0.3 87.60 43.20 23.70 87.50 40.50 35.30 85.90 38.70 18.00
0.4 87.50 44.10 23.70 87.50 39.60 35.30 85.90 37.80 18.00
0.5 87.50 43.20 23.70 87.50 39.60 33.80 85.90 38.70 18.00

0.1 81.50 54.10 21.60 82.30 53.20 18.70 83.20 52.30 20.90
0.2 81.40 55.00 23.00 82.20 52.30 18.70 83.10 51.40 20.90

20 0.3 81.40 55.00 21.60 82.20 52.30 18.70 83.10 51.40 21.60
0.4 81.40 55.00 21.60 82.20 52.30 18.70 83.20 51.40 20.90
0.5 81.40 55.00 21.60 82.10 52.30 18.70 83.10 51.40 20.90

Table 9: Complete Infilling Score results testing Llama-7B, Llama-13B, and Llama-30B models on
the Original subset of the WikiMIA 128-token sequences (Shi et al., 2024). Again, using five future
tokens results in the best performance.

Llama-7B Llama-13B Llama-30B
future tokens k (Min-k%) AUROC FPR@TPR95 TPR@FPR05 AUROC FPR@TPR95 TPR@FPR05 AUROC FPR@TPR95 TPR@FPR05

0.1 93.80 51.60 80.40 92.90 25.80 66.70 85.60 32.30 21.60
0.2 93.80 51.60 80.40 92.80 29.00 68.60 85.60 35.50 21.60

1 0.3 93.70 51.60 80.40 92.70 29.00 66.70 85.60 32.30 19.60
0.4 93.80 51.60 80.40 92.70 29.00 66.70 85.60 35.50 21.60
0.5 93.90 51.60 80.40 92.70 29.00 66.70 85.70 32.30 19.60

0.1 96.30 29.00 78.40 95.30 19.40 72.50 90.60 41.90 72.50
0.2 96.10 32.30 74.50 95.30 19.40 72.50 90.60 41.90 72.50

3 0.3 96.00 35.50 74.50 95.30 19.40 72.50 90.60 41.90 72.50
0.4 96.00 35.50 74.50 95.30 19.40 72.50 90.60 41.90 72.50
0.5 96.00 35.50 72.50 95.30 19.40 72.50 90.60 41.90 72.50

0.1 96.80 22.60 74.50 95.30 22.60 80.40 89.80 35.50 47.10
0.2 96.60 22.60 74.50 95.30 22.60 80.40 89.80 35.50 47.10

5 0.3 96.50 25.80 74.50 95.20 22.60 80.40 89.80 35.50 47.10
0.4 96.60 22.60 74.50 95.20 22.60 80.40 89.80 35.50 47.10
0.5 96.60 25.80 74.50 95.20 22.60 80.40 89.80 35.50 47.10

0.1 95.70 29.00 78.40 93.00 29.00 54.90 87.40 45.20 49.00
0.2 95.90 25.80 78.40 93.10 29.00 54.90 87.50 45.20 49.00

10 0.3 95.80 29.00 78.40 93.20 29.00 54.90 87.60 45.20 49.00
0.4 95.80 29.00 78.40 93.10 29.00 54.90 87.50 45.20 49.00
0.5 95.80 29.00 78.40 93.20 29.00 54.90 87.50 45.20 49.00

0.1 93.70 22.60 66.70 90.70 35.50 51.00 85.60 48.40 35.30
0.2 93.70 22.60 66.70 90.60 35.50 51.00 85.60 48.40 33.30

20 0.3 93.40 22.60 68.60 90.60 35.50 51.00 85.80 48.40 35.30
0.4 93.70 22.60 68.60 90.60 35.50 51.00 85.70 48.40 35.30
0.5 93.50 22.60 66.70 90.50 35.50 51.00 85.70 48.40 35.30

Table 10: Complete Infilling Score results testing Llama-7B, Llama-13B, and Llama-30B models on
the Original subset of the WikiMIA 256-token sequences (Shi et al., 2024). Similar to the WikiMIA
64-token and 128-token sequence subsets, using 5 future tokens results in the best performance.

15

Published as a conference paper at ICLR 2025

Infilling Score Min-K%++ Comparison

Sequence Length Model AUROC (%) Std Err AUROC (%) Std Err Difference (%) p-value

llama-7b 89.185 1.173 85.182 1.328 4.003 ± 1.130 0.000***
32 tokens llama-13b 88.850 1.232 84.852 1.333 3.998 ± 1.222 0.004**

llama-30b 87.628 1.236 84.390 1.329 3.239 ± 1.157 0.006**

llama-7b 89.788 1.341 85.922 1.659 3.866 ± 1.492 0.012*
64 tokens llama-13b 90.029 1.265 85.692 1.642 4.338 ± 1.539 0.010*

llama-30b 88.206 1.447 84.828 1.705 3.378 ± 1.601 0.040*

llama-7b 87.364 2.272 84.896 2.395 2.468 ± 2.654 0.348
128 tokens llama-13b 88.145 2.214 83.740 2.463 4.405 ± 2.649 0.080

llama-30b 86.207 2.797 82.398 2.602 3.809 ± 1.993 0.064

llama-7b 96.307 1.761 82.354 4.662 13.952 ± 4.296 0.000***
256 tokens llama-13b 95.124 2.271 82.326 4.740 12.797 ± 3.952 0.000***

llama-30b 90.737 3.782 77.411 5.643 13.326 ± 4.459 0.002**

Table 11: Comparing performance of Infilling Score versus Min-K%++ across different sequence
lengths and model sizes. Results show bootstrap estimates with 1000 iterations. The mean difference
indicates Infilling Score’s improvement over Min-K%++. Statistical significance is denoted as: * (p
< 0.05), ** (p < 0.01), *** (p < 0.001).

B ADDITIONAL RESULTS

B.1 STATISTICAL ANALYSIS: INFILLING SCORE VS. MIN-K%++ WE EMPLOY A
BOOTSTRAP-BASED STATISTICAL COMPARISON TO EVALUATE INFILLING SCORE AND
MIN-K%++. WE USE 1,000 BOOTSTRAP ITERATIONS TO ESTIMATE THE THE MEAN
DIFFERENCE BETWEEN AUROC METRICS FROM THESE METHODS, ALONG WITH THE
STANDARD ERRORS TO CONSTRUCT 95% CONFIDENCE INTERVALS FOR THE TRUE
PERFORMANCE GAP. TABLE 11 SHOWS THAT INFILLING SCORE CONSISTENTLY
OUTPERFORMS MIN-K%++ ACROSS DIFFERENT SEQUENCE LENGTHS (32, 64, 128, AND
256 TOKENS) AND MODEL SIZES (7B, 13B, AND 30B PARAMETERS).

B.2 DETECTING PRE-TRAINING DATA FROM BOOKS

We compare the AUROC of Infilling Score with existing methods on a labeled validation subset of
book excerpts. As discussed in Section 4.1, this validation subset contains book excerpts labeled as
“seen” and “unseen”. Infilling Score significantly outperforms existing methods in detecting “seen”
examples.

Method AUC

Infilling Score (Ours) 0.79
Min-K%++ (Zhang et al., 2024) 0.53
Min-K%(Shi et al., 2024) 0.71
Zlib (Carlini et al., 2021) 0.68

Table 12: Comparing AUROC of Infilling Score, Min-K%++, Min-K%, and Zlib methods on the
validation dataset, detecting book excerpts in Llama3-8B pretraining data.

C COMPUTE RESOURCES

We ran our experiments on A100 (40 GB) and H200 (120 GB) GPUs. Testing Infilling Score on the
WikiMIA benchmark on an A100 node takes approximately between 20 minutes (for a 3B parameter
model) and 35 minutes (for a 30B parameter model). For Llama models, we used float16 data type.
On the MIMIR benchmark, where there are 1000 long samples per class, the test approximately takes
10 hours on each subset on an A100 node.

16

Published as a conference paper at ICLR 2025

D INFILLING SCORE ALGORITHM

Algorithm 1: Infilling Score
Input: Sequence: x : x1, x2...xN , Threshold τ

1 for i = 1 to N do
2 Compute log p(xi|x1...xi−1)
3 µx<i

← Ez∼p(.|x1...xi−1)[log p(z|x1...xi−1)]

4 σx<i
←

√
Ez∼p(.|x1...xi−1)[(log p(z|x1...xi−1)− µx<i

)2]

5 Find x∗
i ← argmaxx′

i
∈V p(x′

i|x1...xi−1)

6 Compute log p(x∗
i |x1...xi−1)

7 r ← (log p(xi|x1...xi−1)− µx<i
)/σx<i

− (log p(x∗
i |x1...xi−1)− µx<i

)/σx<i

8 for j = i + 1 to i + m do
9 Compute log p(xj |x1...xj−1)

10 Compute log p(xj |x1...xi∗ ...xj−1)
11 r ← r + (log p(xj |x1...xj−1)− µx<i)/σx<i − (log p(xj |x1...xi∗ ...xj−1)− µx<i)/σx<i

12 end
13 InfillingScoretoken(xi)← r

14 end
15 Min-K%(x)← k% of tokens from x with the lowest InfillingScoretoken(xi)
16 InfillingScore(x) =

∑
xi∈min-k% InfillingScoretoken(xi)

17 return InfillingScore(x) < τ

17

	Introduction
	Background
	Challenges in pretraining data detection using MIA methods
	Detection difficulty
	Architecture and pretraining distribution

	Method
	Computing the Infilling Likelihood
	Pretraining Data Detection

	Experiments
	Benchmarks
	Models and Metrics
	Baselines
	Results
	Evaluation on WikiMIA
	Evaluation on MIMIR
	Detecting pretraining data of Llama-3
	Ablation study on the number of future tokens to use

	Algorithm Runtime

	Conclusions
	Choice of hyperparameters
	Additional Results
	Statistical Analysis: Infilling Score vs. Min-K%++ We employ a bootstrap-based statistical comparison to evaluate Infilling Score and Min-K%++. We use 1,000 bootstrap iterations to estimate the the mean difference between AUROC metrics from these methods, along with the standard errors to construct 95% confidence intervals for the true performance gap. Table 11 shows that Infilling Score consistently outperforms Min-K%++ across different sequence lengths (32, 64, 128, and 256 tokens) and model sizes (7B, 13B, and 30B parameters).
	Detecting Pre-training Data from Books

	Compute Resources
	Infilling Score Algorithm

