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Abstract

Improvements in language models are often driven by improving the
quality of the data we train them on, which can be limiting when strong
supervision is scarce. In this work, we show that paired preference data
consisting of individually weak data points can enable gains beyond the
strength of each individual data point. We formulate the delta learning hy-
pothesis to explain this phenomenon, positing that the relative quality delta
between points suffices to drive learning via preference tuning—even when
supervised finetuning on the weak data hurts. We validate our hypothesis
in controlled experiments and at scale, where we post-train 8B models on
preference data generated by pairing a small 3B model’s responses with
outputs from an even smaller 1.5B model to create a meaningful delta. Strik-
ingly, on a standard 11-benchmark evaluation suite (MATH, MMLU, etc.),
our simple recipe matches the performance of Tülu 3, a state-of-the-art open
model tuned from the same base model while relying on much stronger su-
pervisors (e.g., GPT-4o). Thus, delta learning enables simpler and cheaper
open recipes for state-of-the-art post-training. To better understand delta
learning, we prove in logistic regression that the performance gap between
two weak teacher models provides useful signal for improving a stronger
student. Overall, our work shows that models can learn surprisingly well
from paired data that might typically be considered weak.
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Figure 1: The delta learning hypothesis posits that paired preference data enables language
models to learn from relative differences in data quality, driving gains beyond the absolute
quality of each individual data point. Example: Tuning Tülu-3-8B-SFT to prefer greedy
responses from Llama3 3B over those from Llama3 1B improves Tülu’s GSM8k accuracy,
even though both Llamas are weaker than Tülu on GSM8k. SFT on the weak data hurts.
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1 Introduction

Common wisdom in machine learning holds that strong data builds strong models: improving
performance typically requires training on data that exceeds a model’s current capabilities.
This principle has driven progress across the language model pipeline—from pretraining
corpus curation (Li et al., 2024; Penedo et al., 2024; OLMo et al., 2024), to rejection sampling
for finetuning data (Dong et al., 2023; Adler et al., 2024), and to preference tuning, where
human annotators identify the best model outputs as targets to tune towards (Ouyang et al.,
2022; Bai et al., 2022). However, this wisdom also implies an inherent limitation: model
capability may be upper-bounded by the strength of supervision available. Many desirable
tasks are difficult to support with strong data, either because of high collection costs (e.g.,
synthesizing scientific literature at a PhD level) or because the task exceeds current human
expertise (e.g., formulating a unified theory of physics). Thus, we ask: how might we build
models that exceed the capabilities demonstrated in their training data?

In this paper, we show that preference pairs consisting of individually weak data points (e.g.,
responses from weak models) can be leveraged to improve a stronger language model beyond
the strength of each individual sample. Our study is motivated by preliminary evidence
in the literature (Yao et al., 2024; Zhu et al., 2024) and an intriguing pilot result: preference
tuning a modern 8B Llama 3 (Dubey et al., 2024) large language model (LLM) using paired
outputs from weaker, past-generation models consistently leads to performance gains, even
when supervised finetuning on those same weak responses directly results in degradation.

We formalize these observations as the delta learning hypothesis (Figure 1), which posits
that data with high absolute quality is not strictly necessary to improve language models.
Instead, the relative quality difference—the ”delta”—between paired samples can provide
sufficient supervision to guide improvement through preference tuning, even if neither sam-
ple alone is stronger than the model being trained. Intuitively, the delta defines a meaningful
direction of improvement; a strong model may learn to generalize along this direction and
improve beyond the absolute quality of the preferred example. We systematically test our
hypothesis in two controlled experiments by explicitly constructing preference pairs with
limited absolute quality but a clear delta, and find consistent empirical evidence in support.

Our hypothesis enables new open recipes for state-of-the-art language model post-
training—without requiring any strong supervision. To test the limits of “delta learning,”
we preference-tuned Tülu-3-8B-SFT, the instruction-finetuned precursor to Tülu 3, a state-
of-the-art openly post-trained model (Lambert et al., 2024). In contrast to typical open
recipes (Lambert et al., 2024; Ivison et al., 2023), which heavily distill from strong supervi-
sors (e.g., GPT-4o) to generate high-quality chosen responses, we generate chosen responses
with a single small model (e.g., Qwen 2.5 3B Instruct) that is not stronger than Tülu-3-8B-SFT
itself. We pair these responses with outputs from an even smaller model (e.g., Qwen 2.5
1.5B Instruct), thus creating a delta for learning. Strikingly, on a standard 11-benchmark
evaluation suite, our simple recipe matches Tülu 3’s performance, despite using vastly less
supervision. Our analysis explains our recipe’s success; we find that the chosen response
only needs to meet a surprisingly low quality threshold (i.e., not significantly worse than
base model), beyond which the size of the quality delta becomes the primary determinant
of downstream preference tuning performance. Delta learning offers simple, cheap, and
performant post-training, reducing the reliance of open recipes on strong model distillation.

To further illuminate why delta learning works, we theoretically study a logistic regression
setup where a student model is trained to prefer synthetic pseudo-labels from a (possibly
weak) teacher model over those from an even weaker one. We prove that even when both
teachers provide misleading supervision individually, the performance gap between them
ensures that the delta between these signals is still directionally correct. Learning from this
delta can improve an already-strong student with high probability.

Overall, our work shows that models can learn surprisingly well from weak data, provided
the data is paired to expose informative deltas. We find these deltas are often readily
obtainable—even simple heuristics like model size differences suffice to capture them.
Thus, we are optimistic that weak, currently unused data may be revitalized into valuable
supervision. Furthermore, curating pairs of weak data may offer a more scalable alternative
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Model / Training MMLU AE2 Full Avg.

LLAMA-3.2-3B-INST. 62.9 18.7 57.8
+ UF-WEAK SFT 61.8 12.3 54.0
+ UF-WEAK DPO 64.0 22.4 59.0

LLAMA-3.1-8B-INST. 71.8 24.9 63.9
+ UF-WEAK SFT 65.7 8.9 56.1
+ UF-WEAK DPO 72.0 26.3 64.5

Table 1: We tune Llama 3 Instruct models on the
ULTRAFEEDBACK-WEAK preference dataset, generated
by models weaker than Llama 3. Training with prefer-
ence learning (DPO)—to prefer “weak responses” over
“weaker responses”—yields gains, while SFT directly
on the weak preferred responses hurts performance.
Blue indicates gain over baseline, orange degradation.

to finetuning in settings where strong supervision is limited—for example, by generating
targeted corruptions to existing data or collecting lightweight human edits of weak model
outputs. Finally, curating paired data may potentially enable training of superhuman
models with preference labels on human-level outputs (Burns et al., 2023; Bowman et al.,
2022). We leave these directions for future work.

2 A Warm-up Case Study

We begin our investigation with an intriguing empirical finding: training on paired prefer-
ence data generated by weak models can improve a stronger model’s performance, even
when finetuning directly on the weak models’ outputs hurts.

Data. We start with ULTRAFEEDBACK, a popular preference dataset (Cui et al., 2023)
consisting of preference pairs (x, yc, yr), where yc and yr are an LLM-generated chosen and
rejected response (respectively) to a prompt x. We filter to explicitly exclude all responses
from models that have an LMSYS Chatbot Arena ELO score near or above Llama-3.2-3B-
Instruct. Hence, the chosen response yc now derives from a model weaker than the Llama 3
models, although it is still higher-quality than the rejected response yr. We call the resulting
filtered dataset ULTRAFEEDBACK-WEAK. See Appendix G.2 for details.

Training and evaluation. We finetune Llama-3.2-3B-Instruct and Llama-3.1-8B-Instruct (Tou-
vron et al., 2023) on ULTRAFEEDBACK-WEAK in two ways. One, we (1) preference tune with
the DPO algorithm (Rafailov et al., 2024) on the preference pairs (x, yc, yr). We compare
to (2) supervised finetuning (SFT) directly on the chosen responses (x, yc). We evaluate
models on 8 standard benchmarks that measure knowledge recall, mathematical reasoning,
instruction following, truthfulness, general reasoning, and coding. See Appendix G.2 for
full details of benchmarks used, along with training and hyperparameter details.

Results. We show a representative subset of results in Table 1, deferring the rest to the
Appendix (Table A2). SFT on the chosen responses significantly hurts performance—likely
because the models are finetuned to imitate weaker outputs. Yet surprisingly, preference
tuning with the same weak preference pairs improves overall performance across bench-
marks. Thus, regardless of absolute data quality, there may exist valuable learning signal in
the pairwise contrast between chosen and rejected responses, which preference tuning can
leverage. We will now develop this intuition into our central hypothesis.

3 The Delta Learning Hypothesis

We hypothesize that training on paired responses (x, yc, yr) enables learning from the
relative quality difference—the delta—-between yc and yr. Even if both responses yc, yr
have low absolute quality compared to the model we aim to improve, as long as yc is better
than yr along some informative axes, the model can learn from this delta and improve.

Formally, let µ(x, y) be the utility of a response y to some prompt x. In practice, µ may repre-
sent human preference, or simply some arbitrary function we wish to optimize. Suppose we
wish to improve a model M. The delta learning hypothesis posits that there exist natural
preference pairs (x, yc, yr), where µ(x, yc) > µ(x, yr), such that two conditions hold:

1. Low absolute utility: The utility µ(x, yc) of the chosen response yc is no higher than the
current capability of model M, and therefore supervised finetuning on (x, yc) explicitly
hurts the model or at best does not help.

2. Extrapolated gain: Preference tuning on the pair improves model M beyond µ(x, yc).

3
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Model/Algorithm Chosen Res. Rejected Res. Section ∆ # Sections Generated

LLAMA-3.2-3B-INST. (Baseline) — — — 5.9

+ SFT 9 sections — — 24.6 (+ 18.7)
+ SFT 3 sections — — 4.4 (- 1.5)
+ SFT 2 sections — — 2.9 (- 3.0)

+ DPO 3 sections 2 sections +1 81.1 (+ 75.2)
+ DPO 2 sections 3 sections -1 1.1 (- 4.8)
+ DPO 3 sections 3 sections 0 6.1 (+ 0.2)

Table 2: We train Llama-3.2-3B-Instruct with DPO on preference pairs with responses
containing a varying number of bold sections, and compare to SFT on the chosen response
directly. When responses contain fewer sections than the model’s baseline (i.e., < 5.9
sections), SFT decreases the number of sections generated. In contrast, preference tuning
can leverage the delta between responses, increasing the number of sections generated even
when each response is individually suboptimal.

We now present experiments with language models in controlled settings where we explic-
itly manipulate µ and construct responses yc, yr of varying utility to test the delta learning
hypothesis; we find consistent evidence in support. Later in Section 6, we theoretically
study delta learning in logistic regression to better understand why delta learning can work.

3.1 Controlled Experiment: Stylistic Delta in Number of Bold Sections

We start with a toy setting where we explicitly define µ(x, y) to be “the number of
Markdown-denoted bold section headers in y” (e.g., **example header**), a measurable and
controllable metric. Our hypothesis predicts that if we tune M on preference pairs (x, yc, yr)
where yc contains, say, 3 sections and yr contains 2, then M should learn to produce more
sections—even though 3 sections (the “better” response) is fewer than M’s current capability,
and hence would hurt when used as SFT data. As shown below, this is indeed observed.

Setup. We build a dataset of prompts x matched with responses yk1 . . . ykn containing
varying numbers ki of bolded sections (details in Appendix G.3). We then tune Llama-3.2-
3B-Instruct with DPO on preference pairs (x, yki

, ykj
) formed by selecting a response yki

with
more sections (ki > k j) as chosen. To isolate potential confounding effects associated with
preference tuning, we also consider two control settings: (1) reversing the preference pairs
(ki < k j) and (2) tuning with responses containing an equal number of sections (ki = k j). We
compare against SFT on the chosen responses yki

. See Appendix G.3 for hyperparameter
details. We evaluate by measuring the average number of bolded sections generated before
and after training in response to a set of held-out test prompts.

Results. Results in Table 2 strongly support our hypothesis: SFT only helps when the
training responses are higher quality than the model’s baseline “capability” (i.e., response
contains more sections than what the model generates), and otherwise hurts. In contrast,
even when responses are individually weak according to our defined µ, pairing them
together with a positive delta massively boosts section generation, extrapolating beyond
the number of sections contained in the chosen response (see Figure A1—the model learns
to make nearly every single word a new section header!). Our negative controls (preference
tuning with negative delta or zero delta) do not yield gains; the positive delta is thus critical.

3.2 Controlled Experiment: Semantic Delta from a Weaker Model

To test whether our hypothesis extends beyond a one-dimensional style feature to general
semantic quality, we next study the delta between self-generated outputs and outputs from
a weaker model. Specifically, suppose we wish to improve model M. Given a set of prompts
{x}, we can use M to greedy decode responses yM = M(x). By construction, the quality
of these responses exactly match M’s capability, µ(x, yM) = µ(x, M(x)). Consequently, we
would not expect SFT on (x, yM) to improve M’s overall performance. In contrast, our
hypothesis predicts that creating a quality delta by pairing self-generated responses yM
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Model/Training Setup MMLU MATH GSM AEval2 IFEval BBH TQA HEval+ Avg.

LLAMA-3.2-3B-INSTRUCT (Weaker) 62.9 39.6 75.7 18.7 76.5 61.6 50.6 76.8 57.8

LLAMA-3.1-8B-INSTRUCT (Baseline) 71.8 43.0 83.7 24.9 78.2 72.7 55.1 81.6 63.9
+ SFT (self-generated responses) 72.2 42.2 82.9 24.3 76.3 72.1 53.4 78.0 62.7
+ DPO (self-generated over weaker) 72.0 43.5 84.2 25.7 80.0 71.4 55.6 82.2 64.3
+ DPO (weaker over self-generated) 70.9 42.3 83.4 22.9 78.6 72.1 54.6 80.5 63.2

Table 3: We train Llama-3.1-8B-Instruct using greedy responses generated by itself and
by its weaker sibling, Llama-3.2-3B-Instruct. SFT on self-generated responses—which, by
definition, equal the model’s current capability—does not yield gains. In contrast, training
with DPO to prefer self-generated responses over weaker ones can exploit the delta between
them and yield consistent improvement. Reversing the preference order hurts performance;
the positive delta is critical, not generic effects of preference tuning.

with semantically weaker responses ym may provide sufficient signal for preference tuning
to improve M. A simple way to obtain such weaker responses is to use a smaller (weaker)
model m from the same model family as M and greedy decode ym = m(x).

While similar in spirit to our pilot experiment (Section 2), this setup guarantees by construc-
tion that M never observes any single chosen response of higher quality than it can currently
produce. Our experiment also studies whether we can learn from a noisy delta, as even
though µ(x, M(x)) > µ(x, m(x)) on average, some responses ym from the smaller model
may surpass corresponding responses yM from the larger model on individual prompts.

Setup. We randomly sample 50k prompts x from the Tülu 3 SFT dataset (Lambert et al.,
2024). We greedy decode chosen responses yM with Llama-3.1-8B-Instruct (the model we
later train) and rejected responses ym with Llama-3.2-3B-Instruct. We tune Llama-3.1-8B-
Instruct with DPO to prefer its own responses yM over outputs ym from its smaller 3B sibling.
We compare to SFT on yM. As a negative control, we also preference tune to prefer ym over
yM. See Appendix G.4 for training details. We use the same evaluations from Section 2.

Results. Results in Table 3 further support our hypothesis. SFT on self-generated greedy
responses reduces average performance by 1.2 points, possibly due to overfitting on these
outputs at the expense of broader ability. In contrast, pairing self-generated responses with
weaker responses creates a positive delta that drives learning beyond the baseline model’s
performance. This approach yields small but consistent gains on nearly all benchmarks,
with a 0.4-point gain on average. Our negative control—flipping the preference order of self-
generated and weaker responses—eliminates these gains and worsens overall performance
(−0.7 points). Thus, the improvement comes specifically from the positive delta created by
pairing with weaker responses, rather than general effects of preference tuning.

4 Post-training Language Models with Delta Learning

Having validated our hypothesis in controlled settings, we now test its applicability in
a realistic, large-scale setting: 8B LLM post-training. Current open recipes extensively
rely on strong LLMs (e.g., GPT-4o) to generate preference data with high-quality chosen
responses to learn from (Lambert et al., 2024; Ivison et al., 2023). However, the delta learning
hypothesis suggests that preference tuning can be effective even when chosen responses
are not high quality, provided we can construct a meaningful delta to a weaker rejected
response. Pushing this idea to its logical extreme, we propose a simple preference tuning
setup that explicitly eliminates the use of any strong LLMs (i.e., larger than 3B parameters)
for either response generation or preference annotation from an existing state-of-the-art
synthetic preference data recipe. Surprisingly, we find our simplifying changes incur little
performance trade-off, enabling a significantly cheaper and more accessible post-training
recipe that reduces the reliance of open recipes on strong model distillation.

4.1 A State-of-the-Art Existing Setup: The Tülu 3 Recipe

To contextualize our simplifications, we first detail Tülu 3 (Lambert et al., 2024), the current
state-of-the-art recipe in open-source post-training. Tülu 3 comprises a series of 8B and 70B
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Figure 2: We simplify the Tülu 3 preference data recipe (top half). Instead of using a GPT-4o
judge to pick the best response from many strong models as chosen, our recipe (bottom
half) uses a single small model to generate all chosen responses, relying on the implicit delta
to an even smaller (and thus weaker) model’s responses to drive downstream learning.

language models post-trained on top of the Llama 3 base models, achieving performance
that matches or exceeds equivalently-sized proprietary models. Hence, we adopt the Tülu 3
8B preference tuning recipe (Figure 2, top half) as an ideal starting point for our exploration.

Tülu 3 preference data is constructed starting from 271k diverse prompts. Responses
are generated using strong modern LLMs (e.g., Llama-3.1-70B-Instruct, Qwen-2.5-72B-
Instruct (Yang et al., 2024a), etc.). A frontier LLM (GPT-4o) then scores these responses;
preference pairs are formed by selecting the highest-scoring response as chosen and a lower-
scoring one as rejected. This data is then used to DPO tune an intermediate instruction-
finetuned model (Tülu-3-8B-SFT), yielding the preference tuned model Tülu-3-8B-DPO.

Besides the substantial cost of GPT-4o annotation (∼$10,000 USD), the Tülu 3 preference
tuning recipe fundamentally assumes access to supervision sources stronger than the model
being trained (i.e., an 8B model), both for (1) generating high-quality responses (i.e., using
70B models) and (2) annotating response quality (using GPT-4o). As we demonstrate below,
this assumption can be entirely eliminated.

4.2 Our Simple Recipe: Constructing Preference Data without Strong Supervision

Our recipe, illustrated in Figure 2 (bottom half), simplifies the Tülu 3 preference tuning
recipe while keeping the starting model checkpoint (Tülu-3-8B-SFT) and initial prompts
fixed to isolate our changes. We intervene by removing all use of strong models:

Chosen response generation. Starting from the same set of prompts as the Tülu 3 dataset,
we generate all chosen responses with a single small model (e.g., Qwen 2.5 3B Instruct) that
is near or below the capability of Tülu-3-8B-SFT (as measured by downstream evaluations,
see below). With a 3B chosen model, this change reduces the FLOPs needed for data
generation by over an order of magnitude (∼6% of the original).

Forming preference pairs. We eliminate GPT-4o quality annotations entirely. Drawing
from our findings in Section 3.2, we simply use model size as a proxy for quality. We pair
every chosen response with a response from the next-smallest model in the same model
family (e.g., pair Qwen 2.5 3B Instruct with Qwen 2.5 1.5B Instruct). While this heuristic
is noisy—the smaller model might occasionally generate better responses—our previous
controlled experiments show that learning can still occur with such noisy semantic deltas.

With our simplified pipeline, we construct three preference datasets, generating chosen
responses with either (1) Qwen-2.5-3B-Instruct (paired with Qwen-2.5-1.5B-Instruct), (2)
Qwen-2.5-1.5B-Instruct (paired with 0.5B), or (3) Llama-3.2-3B-Instruct (paired with Llama-
3.2-1B-Instruct). We choose these exact models because the original pool of data-generating
models in Tülu 3’s preference data recipe explicitly includes larger models from both the
Qwen 2.5 and Llama 3 model families, while excluding these small models. Hence, the
chosen responses in the original Tülu 3 preference data are of significantly higher absolute

6



Published as a conference paper at COLM 2025

Model/Preference Data MMLU PopQA MATH GSM AE2 IFEval BBH DROP TQA HEval HEval+ Avg.

LLAMA-3.2-1B-INSTRUCT 46.1 13.9 21.1 44.4 8.8 54.5 40.2 32.2 40.0 64.8 60.0 38.7
LLAMA-3.2-3B-INSTRUCT 62.9 19.4 39.6 75.7 18.7 76.5 61.6 48.5 50.6 79.7 76.8 55.5
QWEN-2.5-0.5B-INSTRUCT 46.2 10.1 27.2 39.2 3.3 28.8 32.2 25.3 45.4 60.5 58.9 34.3
QWEN-2.5-1.5B-INSTRUCT 59.7 15.4 41.6 66.2 7.2 44.2 45.9 14.1 46.5 83.0 79.8 45.8
QWEN-2.5-3B-INSTRUCT 69.5 15.7 63.1 77.7 17.8 64.0 57.6 31.5 57.2 90.5 87.4 57.5

TÜLU-3-8B-SFT 66.1 29.6 31.2 76.0 12.2 71.3 69.2 61.2 46.8 86.2 79.8 57.2
+ Llama 3.2 3B over 1B 68.8 30.3 40.9 81.5 24.9 75.0 70.0 60.7 54.2 84.7 81.1 61.1
+ Qwen 2.5 1.5B over 0.5B 67.4 29.9 39.9 79.8 15.8 72.5 70.8 61.8 52.1 83.7 78.1 59.3
+ Qwen 2.5 3B over 1.5B 69.4 31.7 42.6 83.4 36.1 78.6 69.4 62.0 57.7 84.4 81.7 63.4

+ Tülu 3 Preference Dataset 69.8 30.3 42.6 84.2 32.8 80.4 69.2 62.5 56.1 84.7 80.8 63.0

Table 4: We train Tülu-3-8B-SFT with DPO on preference data constructed with our simple
recipe, which pairs outputs from a weak model (chosen response) with outputs from an even
weaker model (rejected). Strikingly, our best setup matches the original Tülu 3 preference
data, which requires vastly stronger supervision (e.g., from GPT-4o). We generate our data
using models that are near or below Tülu-3-8B-SFT in average performance (top half).

quality compared to our setup (i.e., 4.44/5 absolute quality points as judged by GPT-4o,
versus 3.98/5 in our setup with Qwen-2.5-3B-Instruct generating chosen responses). Our
setup thus relies more on the delta between chosen and rejected responses to drive learning.
See Appendix E for qualitative examples of these deltas, as well as additional statistics of
our datasets (e.g., response length, vocabulary diversity, etc.).

4.3 Matching Tülu with Delta Learning

We preference tune Tülu-3-8B-SFT on our weak preference datasets using DPO, tuning
hyperparameters following Lambert et al. (2024) (see Appendix G.5). We evaluate our
models on all benchmarks from Section 2 as well as three additional benchmarks measuring
model capabilities for consistency with Tülu 3’s evaluations (see Appendix B). We show
further results on six safety evaluations in Appendix C. To compare our simple preference
data against the Tülu 3 preference data, we evaluate the official Tülu-3-8B-DPO model.

Our main results in Table 4 reveal a striking finding: tuning with our simple weak prefer-
ence data recipe matches the original Tülu 3 recipe in performance, achieving a +0.4 point
average gain over the Tülu 3 preference data when using Qwen-2.5-3B-Instruct to generate
chosen responses. Even though Tülu 3 preference data uses strong model supervision to
synthesize chosen responses of significantly higher absolute quality, the quality delta be-
tween chosen and rejected responses in our weak pairs still suffices to produce comparable
gains—it is possible to learn a surprising amount from the quality delta alone.

Consistent with our hypothesis, we observe gains when tuning with any of our three weak
datasets. For instance, tuning with chosen responses from Qwen-2.5-1.5B-Instruct—which
is 11.4 points worse than Tülu-3-8B-SFT on average—still yields a +2.1 point gain in average
performance. The delta learning phenomenon also holds on the level of individual tasks;
for example, tuning on Llama-3.2-3B-Instruct chosen responses boosts GSM8K accuracy by
5.5 points, despite Llama being weaker than Tülu on GSM8K. Finally, our preference data
recipe yields gains when using either Llama or Qwen models to generate preference data,
suggesting that it is not reliant on idiosyncrasies of a specific model family.

5 Analysis

We identify four factors in our simple recipe that may impact preference tuning perfor-
mance and study each: (1) the magnitude of the quality delta between chosen and rejected
responses, (2) the absolute quality of chosen responses, (3) our model size-based reward
heuristic, and (4) our choice of Tülu-3-8B-SFT as the base model to tune from. We use the
same 11-benchmark evaluation as in Section 4. Unless noted otherwise, all models are tuned
from Tülu-3-8B-SFT with DPO. We defer full training details to Appendix G.6.
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Figure 3: The size of the quality delta between chosen and rejected responses is a strong
predictor of downstream preference tuning performance. Performance improves as the delta
increases, up to approximately ∆ ≈ 0.55, beyond which gains plateau. Each dot in the plot
represents a model preference-tuned from Tülu-3-8B-SFT, using either the original Tülu
3 data or data generated by pairing two Qwen 2.5 Instruct models following our simple
recipe. Numbers in parentheses indicate the parameter counts (B) of the paired models.

5.1 How does the magnitude of the chosen-rejected quality delta affect learning?

Using our simple recipe, we construct 21 preference tuning datasets containing chosen and
rejected responses with varying absolute quality (and thus varying deltas). Starting with
Tülu 3 prompts, we synthesize preference pairs with all 21 possible model pairs from the
Qwen 2.5 Instruct family, which we select for its wide variety of model sizes (0.5B, 1.5B, 3B,
7B, 14B, 32B, 72B). Following our recipe, we select the larger model’s response as chosen
(e.g., 72B over 7B). To quantify the absolute quality of these responses, we apply the GPT-4o
annotation method from Lambert et al. (2024) to score 10k responses from each model on a
1–5 scale. We plot average performance after preference tuning against the average pairwise
delta between chosen and rejected responses in Figure 3. Our results suggest that:

The magnitude of the delta strongly predicts downstream preference tuning performance,
with a minimal delta required for optimal gains. We observe a strong positive correlation
between the magnitude of the delta and downstream performance, up until approximately
∆ ≈ 0.55, after which performance peaks and plateaus. Beyond this threshold, further
increases in the delta do not yield additional downstream gains. Interestingly, the Tülu
3 preference dataset falls in line with this same trend, despite being generated via a
significantly different recipe. This alignment provides some evidence for why our simple
recipe can match Tülu 3 in performance: both the Tülu 3 dataset and our Qwen-2.5-3B-
Instruct-generated weak data exhibit deltas that are above the saturation threshold, after
which nearly all datasets perform comparably.

An outlier to this trend is the dataset with Qwen-2.5-1.5B-Instruct-generated chosen re-
sponses. The gain over Tülu-3-8B-SFT from tuning on this data is positive, but smaller than
what its delta size alone would predict. We conjecture that this is because Qwen 1.5B is the
only chosen model considered that is substantially weaker than the Tülu-3-8B-SFT base.

Not all positive deltas drive learning. Tuning on preference datasets generated by pairing
the 72B Qwen model with 32B or 14B-sized models hurts performance—these are the only
two points that fall below the Tülu-3-8B-SFT dashed line in Figure 3. We observe that the
log-likelihoods of both the chosen and rejected responses decrease during DPO training
on these datasets (an occasional phenomenon in DPO training, see Razin et al. (2024)). We
hypothesize that this effect may be particularly harmful when both chosen and rejected
responses are much stronger than the base model being tuned; the model is optimized
to downweight good behaviors. It remains an open question as to what properties of the
delta—beyond magnitude—are necessary to drive effective learning, and how these factors
interact with the choice of preference tuning algorithm.
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Figure 4: Impact of chosen data quality:
We plot the performance of the model
used to generate chosen responses (x-
axis) against performance change after
tuning on those responses (y-axis). SFT
only yields gains when training on re-
sponses from models stronger than the
base model we tune from; gains scale
with chosen quality. DPO yields gains
even when the chosen responses come
from models no stronger than the base
(green box); increasing chosen response
quality gives quickly diminishing returns.
Each dot represents a model tuned on
chosen responses generated by a Qwen
2.5 Inst. model (parameter size labeled).

Model/Preference Data MMLU PopQA MATH GSM AE2 IFEval BBH DROP TQA HEval HEval+ Avg.

TÜLU-3-8B-SFT 66.1 29.6 31.2 76.0 12.2 71.3 69.2 61.2 46.8 86.2 79.8 57.2
+ Model size heuristic 69.4 31.7 42.6 83.4 36.1 78.6 69.4 62.0 57.7 84.4 81.7 63.4
+ GPT-4o judge reward 69.9 31.5 40.6 83.9 29.9 79.5 66.5 61.2 62.4 85.7 80.8 62.9

OLMO-2-7B-SFT 61.4 23.6 25.3 73.5 8.4 66.5 49.3 59.6 48.6 70.0 63.8 50.0
+ Qwen 2.5 3B over 1.5B 62.9 23.6 30.0 80.6 31.0 71.5 50.9 59.3 56.3 72.6 66.6 55.0
+ OLMo 2 Preference Dataset 61.9 23.5 30.3 83.1 27.7 72.3 50.9 60.2 56.0 70.7 66.2 54.8

Table 5: Top half. We ablate our use of model size as a heuristic to label preference pairs in
our simple recipe, and find that it is a good proxy for GPT-4o judge reward. Bottom half.
We ablate our choice of tuning from Tülu-3-8B-SFT. We find that our setup generalizes to
OLMo-2-7B-SFT, matching the original OLMo 2 preference recipe’s performance.

5.2 How does the chosen response’s absolute quality affect learning?

We group the 21 preference datasets described above (Section 5.1) according to the strength
of the Qwen 2.5 model used to generate the chosen response (i.e., 1.5B, 3B, 7B, 14B, 32B, or
72B parameters). For each group, we selected the dataset that yields the highest downstream
performance after preference tuning as a best-case measure for the performance achievable
when tuning on chosen responses generated by a model of a given strength. For comparison,
we also evaluated supervised finetuning directly on the responses generated from each of
the Qwen models. Results in Figure 4 show that preference tuning generally outperformed
SFT; preference tuning with 3B chosen responses yielded higher gains than SFT on even 72B
responses1. Moreover, we observe distinct qualitative trends for each tuning approach:

Supervised finetuning: performance scales with chosen quality. Performance gains (above
y=0) only occur when tuning on responses from Qwen models stronger than our base Tülu-
3-8B-SFT model (to the right of x=0). Gains scale monotonically with the chosen responses’
absolute quality, increasing as the data-generating model’s strength increases.

Preference tuning: performance is less dependent on chosen quality, but saturates. Tuning
on chosen responses of any quality yielded gains—even when generated by models weaker
than or equal to our base model (green box in figure). Still, chosen quality matters; tuning
on chosen responses from Qwen 1.5B (much weaker than our base model) yields smaller
gains than using stronger responses. However, once response quality reaches that of the
tuned model (x=0), further improvements in chosen quality do not significantly improve
performance. This saturation effect further explains why our weak preference data matches
Tülu 3, despite using chosen responses with lower absolute quality.

1Tülu-3-8B-SFT has alredy been finetuned with even stronger supervision (e.g., human-written or
GPT-4o responses), potentially diminishing the benefits of additional SFT.
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5.3 Ablations

We ablate our choice of (1) using model size as a preference heuristic (as opposed to
annotating preferences with an LLM judge) and (2) tuning from Tülu-3-8B-SFT. We discuss
results (in Table 5) below. See Appendix D.4 for a further ablation on our choice of preference
tuning algorithm; we find that delta learning also succeeds with SimPO (Meng et al., 2024).

Model size preference heuristic. Using Tülu 3’s GPT-4o judge method, we re-labeled our
best-performing weak preference dataset (responses from Qwen-2.5-3B-Instruct paired with
1.5B responses). We find that the model size heuristic is a surprisingly accurate proxy for
GPT-4o preferences, with an 80.5% agreement rate. For context, GPT-4’s agreement rate with
human annotators has been estimated at around 65% (Dubois et al., 2023). Preference tuning
with either GPT-4o preference labels or model size heuristic labels yielded comparable
performance (Table 5, top half), except on AlpacaEval 2 (see discussion in Appendix D.3).
Overall, our findings (1) validate our approach of using model size to ensure a chosen-
rejected quality delta, and (2) show that learning from the delta between weak responses
can succeed independently of the specific preference signal used.

Choice of base model. To test the generality of our preference tuning recipe across base
models, we use it to tune OLMo-2-7B-SFT. Using prompts from the OLMo 2 Preference
Dataset—constructed in a near-identical manner to the Tülu 3 data—we generate chosen
and rejected responses using Qwen-2.5-3B-Instruct and 1.5B, respectively. We choose this
pair as it was the best pair from Section 4. We show results of training in Table 5 (bottom
half). Consistent with our earlier comparison against Tülu 3, our simple recipe matches the
OLMo 2 preference data (+0.2 points average), which requires far stronger supervision.

6 Delta Learning in Logistic Regression, Provably

We have shown empirical evidence of our hypothesis (Section 3) and utilized it for perfor-
mant language model post-training (Section 4). Now, we seek to deepen our intuition for
why delta learning works. We analyze a binary logistic regression setup where we preference
tune a student model to prefer pseudo-labels from one teacher over pseudo-labels from a
weaker teacher. We prove that this teacher strength gap alone can guarantee that the learner
improves with high probability, even when both teachers are weaker than the student.

6.1 Problem Setup and Notation

Preliminaries. We study binary classification with intercept-free logistic regression. Sup-
pose that input data points are drawn as x∼N (0, Id) and that labels y∗ ∈ {0, 1} are assigned
according to some ground-truth unit-norm parameter θ∗ ∈ Rd:

y∗ = 1{⟨θ∗, x⟩ ≥ 0}. (1)

Hence, the input data is linearly separable (realizable), and by construction θ∗ achieves zero
population 0-1 loss (i.e., perfect classification accuracy). Because the input distribution is an
isotropic Gaussian, the population 0-1 loss incurred by any model θ ∈ Rd depends only on
its angle with the ground truth unit parameters θ∗:

L0-1(θ) := Pr
x∼N (0,Id)

[
sgn ⟨θ, x⟩ ̸= sgn ⟨θ∗, x⟩

]
=

1
π

arccos
⟨θ, θ∗⟩
∥θ∥2

. (2)

Thus, the classification accuracy—or strength—of any model θ is proportional to its cosine
similarity with θ∗, defined as

cos(θ, θ∗) := ⟨θ, θ∗⟩/ ∥θ∥2 ∥θ
∗∥2 = ⟨θ, θ∗⟩/ ∥θ∥2 . (3)

Improving the model θ is equivalent to improving cos(θ, θ∗).

10



Published as a conference paper at COLM 2025

𝔼∇θlog pθ (yr |x; θ0)

￼θ*
Δ-Learning Update

￼θ0
𝔼∇θlog pθ (yc |x; θ0)

Figure 5: We train student model θ0 to prefer
pseudo-labels yc from a (possibly weak) teacher
model θc over pseudo-labels yr from a weaker
teacher θr. Individually, the gradient updates
∇θ log pθ(yc|x; θ0),∇θ log pθ(yc|x; θ0) (dashed
arrows) induced by the weak labels can be harm-
ful in expectation and steer the student away
from the ground-truth parameters θ∗. In con-
trast, the delta learning gradient updates fol-
low their difference vector ∇θ log pθ(yc|x; θ0)−
∇θ log pθ(yr|x; θ0), which is positively aligned
with θ∗ whenever θc outperforms θr. Pairing
weak-and-weaker teachers thus yields a learn-
ing signal that can improve a stronger student.

Student and teachers. Fix an arbitrary student model θ0 ∈ Rd that we aim to improve,
θ0 ̸= θ∗, and fix two teacher models θc, θr. We write α0, αc, αr to denote cosine similarity of
each model with the ideal parameters θ∗:

α0 := cos(θ0, θ∗), αc := cos(θc, θ∗), αr := cos(θr, θ∗). (4)

We assume that αc > αr, so that teacher θc is a stronger model than teacher θr in expectation
over the data population. We have no other assumptions on the teachers or the strength α0
of the student θ0. Given any input data point x, we assign chosen and rejected pseudo-labels

yc = 1{⟨θc, x⟩ ≥ 0}, yr = 1{⟨θr, x⟩ ≥ 0}, (5)

forming a preference pair (x, yc, yr) annotated with yc ≻ yr that we use to train the student.
With this procedure, some pairs may have incorrect annotations; the chosen pseudo-label
can be incorrect while the rejected pseudo-label correctly matches the true label y∗. We will
show that learning succeeds regardless of this noise, so long as yc is more correct than yr on
average across all pairs (i.e. Pr[yc = y∗] > Pr[yr = y∗], or equivalently, αc > αr).

Delta learning training procedure. We optimize a naı̈ve preference loss with mini-batch
SGD. Given a fresh batch of B preference pairs

{
(x(i), y(i)c , y(i)r )

}B
i=1 with sampled covariates

x(i) iid∼ N (0, Id), we update the learner as

θt+1 ← θt − η
m

∑
i=1
∇θLpref(x(i), y(i)c , y(i)r ; θt), (6)

Lpref(x, yc, yr; θ) := −
(
log pθ(yc|x)− log pθ(yr|x)

)
. (7)

Here, η > 0 is the learning rate and pθ(y = 1|x) = σ(⟨θ, x⟩). The loss Lpref can be seen as
an unnormalized version of the SimPO loss (Meng et al., 2024); we drop the normalization
for theoretical simplicity. Intuitively, we are upweighting labels from the stronger teacher θc
and downweighting labels from the weaker teacher θr.

6.2 Delta Learning Succeeds with High Probability

Our central claim is that in sufficiently high dimensions, delta learning in logistic regression
works with high probability. At a high level, we show that given any student model θ0 and
under mild conditions, most pairs of teacher models θc, θr exhibiting a performance delta
(i.e., θc has higher accuracy than θr) suffice to generate preference data that will improve the
student model, even beyond the performance of each teacher.

Intuitively, preference tuning pushes the student’s parameters towards the stronger teacher
θc and away from the weaker teacher θr. Since θc is (by assumption) better aligned with
the ideal parameters θ∗ than θr, the difference vector θc − θr is itself positively aligned with
θ∗, regardless of how low the absolute alignment of θc may be. In other words, the delta
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between the two teachers yields a directionally correct signal, even when both teachers
are individually weak (Figure 5). As long as this useful signal is not swamped out by
other spurious signals arising from the teachers’ errors, tuning will improve the student.
In particular, the spurious signals are most problematic when they align with and amplify
the student’s existing errors. Fortunately, the teachers’ errors are essentially orthogonal
to the student’s errors in high dimensions, so such amplification rarely happens. This
high-dimension effect creates a training length “sweet spot,” where the student can improve
from the useful signal without overfitting to the teachers’ errors.

We now formally characterize conditions on the teacher models for successful learning in
Theorem 6.1; for any given student in high dimensions, most teacher pairs satisfy these
conditions, yielding our main result (Corollary 6.2).
Theorem 6.1 (Delta Learning for Logistic Regression). Fix a failure probability δ ∈ (0, 1),
and let θ0∈Rd be an arbitrary student model whose initial cosine similarity with the (unobserved)
ground-truth model θ∗ is α0 := cos(θ0, θ∗) < 1, θ0 ̸= θ∗. We train θ0 with delta learning following
the setup of Section 6.1: given two teacher models θc, θr satisfying

cos(θc, θ∗) =: αc, cos(θr, θ∗) =: αr, αc > αr,

we update θ0 to prefer teacher θc’s pseudo-labels over the weaker teacher θr’s via SGD on the naı̈ve
preference loss Lpref (Equation 7). Then if the teachers and student satisfy

κ := (αc − αr) (1− α2
0)︸ ︷︷ ︸

useful signal from delta

− α0 ⟨Proj(θ∗⊥)(θ̃0), Proj(θ∗⊥)(v∆)⟩︸ ︷︷ ︸
spurious noise orthogonal to θ∗

> 0, (C1)

v∆ := (θc/ ∥θc∥2)− (θr/ ∥θr∥2), θ̃0 := θ0/ ∥θ0∥2 , (8)

and the ambient dimension exceeds a threshold of d ≳ ln
[(

κ + ∥v∆∥2
2
)
/
(
δ2κ ∥v∆∥2

2
)]

, training for
T total steps with batch size B = Θ(d) and learning rate η where

η = Θ̃
(

κ2 ∥θ0∥2 ·min
{

1/
√

d, κ/ ∥v∆∥2
2

})
, T = (κ ∥θ∥2) /

(
4η ∥v∆∥2

2
)
, (9)

yields (with probability at least 1− δ) a student iterate θT satisfying

cos(θT , θ∗) > cos(θ0, θ∗) + Θ(κ2). (10)

Hence, the trained model θT incurs strictly smaller population 0-1 loss than the initial student θ0.

Note that the right-hand side of Condition C1 can be made small regardless of the teachers’
performance level; learning can succeed even when the initial student already outperforms
both teachers, α0 > αc > αr. In fact, most teacher pairs satisfy Condition C1 in high
dimensions, yielding our main result:
Corollary 6.2. In high dimensions, most pairs of teacher models with a performance gap suffice
to improve the student via delta learning. Suppose we randomly sample two teacher models θc, θr
uniformly over the unit sphere, conditional on their cosine similarity with the optimal model:

θc ∼ Uniform {θ ∈ Sd−1 | cos(θ, θ∗) = αc}, θr ∼ Uniform {θ ∈ Sd−1 | cos(θ, θ∗) = αr},
and train student θ0 following the setup from Theorem 6.1. For any δ ∈ (0, 1), define the threshold

d∗ = 2 ln
4
δ
·

 |α0| ∥θ0∥2

(√
1− α2

c +
√

1− α2
r

)
(αc − αr) (1− α2

0)

2

+ 1. (11)

Then whenever d > d∗, with probability at least 1− δ Condition C1 holds and by Theorem 6.1
training strictly improves the student with high probability.

Remark 6.1. The expected improvement, on the order of Θ(κ2), grows with the magnitude
of the teachers’ performance delta (αc − αr) but shrinks as the student’s initial performance
α0 increases. This theoretical result aligns with our empirical results in Section 5: the quality
delta between chosen and rejected responses is a strong predictor of downstream preference
tuning performance (albeit only up to a point beyond which gains saturate; language model
tuning is more complex than the logistic-regression setup assumed here).
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Remark 6.2. The dimension threshold d∗ is mild. Say the initial student has unit parameters
θ0 and is 80% accurate. If the teachers θc, θr are sampled to be 70% and 60% accurate
respectively, then with d > 2000, at least 90% of all such teacher pairs suffice to improve θ0.

We end with a proof sketch of Theorem 6.1. See Appendix F for full proofs of all results.

Proof sketch of Theorem 6.1. Our proof proceeds in two main steps. We first show that with
exact gradients, delta learning improves the student when Condition C1 holds. We then
extend this population analysis to empirical SGD via martingale concentration techniques.

Learning succeeds with exact gradients. Consider the population update rule

θt+1 ← θt − η Ex∼N (0,Id)

[
∇θLpref(x, yc, yr; θt)

]
, (12)

where training θ0 for some T steps yields an exact iterate θT . For a single preference pair
(x, yc, yr) the naı̈ve preference loss gradient is ∇θLpref = −(yc − yr)x and does not depend
on the student’s current weights. Taking expectation over x ∼ N (0, Id) and applying Stein’s
lemma yields the population update direction (Proposition F.1):

−E[∇θLpref] =
1√
2π

(
θc

∥θc∥
− θr

∥θr∥

)
. (13)

So we can assume without losing generality that θc, θr are unit norm, as they only affect
learning via their direction. Training the student model with exact gradients (Equation 13)
then amounts to tracing various points along a parametric ray ℓ : R≥0 7→ Rd given by

ℓ(λ) := θ0 + λv∆, v∆ := θc − θr. (14)

Thus, our learning problem reduces to a geometric problem: characterizing if training
improves the student’s accuracy is equivalent to characterizing if moving along ray ℓ
improves alignment with the optimal parameter θ∗. Formally, we define a map f measuring
the ray’s alignment with θ∗:

f (λ) := cos(ℓ(λ), θ∗) =
⟨ℓ(λ), θ∗⟩
∥ℓ(λ)∥2

. (15)

To show that learning succeeds, it is sufficient (but not strictly necessary) to show that f is
initially increasing ( f ′(0) > 0). By direct calculation (Proposition F.3), we find that

f ′(0) > 0 ⇐⇒ ⟨Projθ⊥0
(v∆), θ∗⟩ > 0, (16)

which says that the components of v∆ orthogonal to θ0 must be positively aligned with θ∗.
In other words, v∆ must help rotate θ0 closer to θ∗. We ground this geometric condition back
in our training setup by re-writing it in terms of the teachers’ and initial student’s strength:

f ′(0) > 0 ⇐⇒ κ := (αc − αr)(1− α2
0)︸ ︷︷ ︸

useful signal

− α0 ⟨Proj(θ∗⊥)(θ̃0), Proj(θ∗⊥)(v∆)⟩︸ ︷︷ ︸
noise orthogonal to θ∗

> 0. (17)

This is exactly Condition C1 stated in the theorem. Thus, learning succeeds when the
useful signal induced by the teachers’ performance delta dominates the harmful noise from
teacher errors that align with and amplify the student’s existing errors. Assuming successful
learning (κ > 0), we can further quantify the total improvement after some T training steps.
By a second-order Taylor expansion of f , the total improvement Γ is at least

Γ := cos(θT , θ∗)− cos(θ0, θ∗) = f (ηT)− f (0) ≥ ηT f ′(0)− L
2
(ηT)2, (18)

where L := supλ∈[0, ηT] | f ′′(λ)| bounds the second derivative (Proposition F.3). In particular,
setting η, T as in the theorem statement gives Γ ≥ Θ(κ2) as claimed.

13



Published as a conference paper at COLM 2025

Extending to empirical SGD. Let θT denote the result of T SGD training steps with
empirical mini-batch gradients. Applying martingale analysis and a Bernstein-Freedman
concentration inequality (Lemma F.2) gives∥∥θT − θT

∥∥
2 ≤ η Õ

(√
dT/B +

√
d
)

. (19)

So we can control the distance
∥∥θT − θT

∥∥
2 by using a batch size B = Θ(d) and a sufficiently

small learning rate η. We decompose the cosine similarity improvement of θT over θ0 as

cos(θT , θ∗)− cos(θ0, θ∗) ≥
[
cos(θT , θ∗)− cos(θ0, θ∗)

]︸ ︷︷ ︸
deterministic ideal gain

−
∣∣cos(θT , θ∗)− cos(θT , θ∗)

∣∣︸ ︷︷ ︸
stochastic deviation from ideal

. (20)

The deterministic gain is Γ = Θ(κ2) > 0. Since cosine similarity is Lipschitz continuous, the
stochastic error can be made arbitrarily small by making

∥∥θT − θT
∥∥

2 small; setting η, T as in
the theorem ensures that the stochastic error is at most Γ/2. Thus, SGD training yields a
final iterate θT that achieves at least Γ/2 = Θ(κ2) gain over the initial student θ0.

7 Related Work

Learning from preference feedback. Early preference tuning used reinforcement learning
from human feedback (Ziegler et al., 2019; Ouyang et al., 2022; Bai et al., 2022), which
involves training a reward model on human-annotated rankings of model outputs that
is then optimized against with algorithms like PPO (Schulman et al., 2017). Recent work
has simplified this approach by (1) removing the reward model in favor of direct policy
updates (Rafailov et al., 2024; Meng et al., 2024; Ethayarajh et al., 2024) and (2) replacing hu-
man annotations with strong LLM judges (Cui et al., 2023; Lee et al., 2023). While the source
of supervision has evolved, its use remains largely unchanged: modern approaches (Dubey
et al., 2024; Lambert et al., 2024) still often rely on strong judges to optimize the quality of
the chosen responses, under the tacit assumption that tuning towards these better-than-
current-policy responses is critical for improving the learner model. We show that learning
can succeed even when the chosen response is weak.

Weak-to-strong generalization. As models continuously advance, the field is actively
exploring ways to supervise them beyond human capability (Burns et al., 2023). Prior
work has focused on eliciting behavior from base (i.e., non instruction-tuned) models (Hase
et al., 2024; Burns et al., 2023) or enabling models to iteratively improve their own training
data (Yang et al., 2024b; Wu et al., 2024). Our work shows another approach forward:
leveraging relative differences in weak data to guide generalization. The closest related
works of this same spirit are Yao et al. (2024); Zhu et al. (2024). Yao et al. (2024) shows that
training on preference pairs where the chosen and rejected responses are both verifiably
wrong—but the chosen response is less wrong (i.e. closer to correct answer by some metric)—
can lead to gains on tasks such as Knowledge Crosswords and biography generation; they
focus on comparing various methods for labeling ”wrong-over-wrong” preference pairs,
and find that using a GPT-4 judge-based method performs best. Zhu et al. (2024) proposes a
modified DPO objective to align a larger unaligned model (i.e. 7B) using the distributional
differences of a smaller model (i.e. 1.5B) before and after alignment. Motivated by these
studies offering preliminary evidence that preference tuning can enable models to surpass
the quality of their supervision, we formalize and validate the delta learning hypothesis,
show its efficacy for state-of-the-art post-training, and theoretically analyze it to elucidate
underlying mechanisms.

8 Conclusion
In this work, we have shown that models can learn surprisingly well from the delta between
paired weak data points. We further characterized key factors of paired data that drive
learning, such as the delta’s magnitude and the chosen response’s absolute quality. We
find that not all deltas are equally useful: some fail to drive gains, and gains saturate as
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chosen response quality improves. Natural questions arise: what makes a delta informative?
How can we effectively scale delta-based learning? And to what extent are these dynamics
dependent on the specific task or tuning algorithm? We leave exploration to future work.

9 Reproducibility

To ensure clean reproducibility, we provide extensive details on our training codebase and
setup (Appendix G.1), our evaluation codebase and setup (Appendix B), our compute usage
(Appendix H), and experiment-specific details for all experiments in our study (Appendix G),
such as training hyperparameters and details in dataset creation. We encourage the reader
to review the referenced sections.
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Kamilė Lukošiūtė, Amanda Askell, Andy Jones, Anna Chen, et al. Measuring progress
on scalable oversight for large language models. arXiv preprint arXiv:2211.03540, 2022.

Collin Burns, Pavel Izmailov, Jan Hendrik Kirchner, Bowen Baker, Leo Gao, Leopold As-
chenbrenner, Yining Chen, Adrien Ecoffet, Manas Joglekar, Jan Leike, et al. Weak-to-
strong generalization: Eliciting strong capabilities with weak supervision. arXiv preprint
arXiv:2312.09390, 2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto,
Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evalu-
ating large language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

15



Published as a conference paper at COLM 2025

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin
Zheng, Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing.
Vicuna: An open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023.
URL https://lmsys.org/blog/2023-03-30-vicuna/.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers
to solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Wei Zhu, Yuan Ni, Guotong Xie,
Zhiyuan Liu, and Maosong Sun. Ultrafeedback: Boosting language models with high-
quality feedback. 2023.

Tri Dao. FlashAttention-2: Faster attention with better parallelism and work partitioning.
In International Conference on Learning Representations (ICLR), 2024.

Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin, Zhi Zheng, Shengding Hu, Zhiyuan Liu,
Maosong Sun, and Bowen Zhou. Enhancing chat language models by scaling high-quality
instructional conversations. arXiv preprint arXiv:2305.14233, 2023.

Hanze Dong, Wei Xiong, Deepanshu Goyal, Yihan Zhang, Winnie Chow, Rui Pan, Shizhe
Diao, Jipeng Zhang, Kashun Shum, and Tong Zhang. Raft: Reward ranked finetuning for
generative foundation model alignment. arXiv preprint arXiv:2304.06767, 2023.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel Stanovsky, Sameer Singh, and Matt
Gardner. Drop: A reading comprehension benchmark requiring discrete reasoning over
paragraphs. arXiv preprint arXiv:1903.00161, 2019.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3
herd of models. arXiv preprint arXiv:2407.21783, 2024.

Yann Dubois, Chen Xuechen Li, Rohan Taori, Tianyi Zhang, Ishaan Gulrajani, Jimmy Ba,
Carlos Guestrin, Percy S Liang, and Tatsunori B Hashimoto. Alpacafarm: A simulation
framework for methods that learn from human feedback. Advances in Neural Information
Processing Systems, 36:30039–30069, 2023.

Yann Dubois, Balázs Galambosi, Percy Liang, and Tatsunori B Hashimoto. Length-controlled
alpacaeval: A simple way to debias automatic evaluators. arXiv preprint arXiv:2404.04475,
2024.

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela. Kto:
Model alignment as prospect theoretic optimization. arXiv preprint arXiv:2402.01306, 2024.

Yuling Gu, Oyvind Tafjord, Bailey Kuehl, Dany Haddad, Jesse Dodge, and Hannaneh
Hajishirzi. Olmes: A standard for language model evaluations. arXiv preprint
arXiv:2406.08446, 2024.

Seungju Han, Kavel Rao, Allyson Ettinger, Liwei Jiang, Bill Yuchen Lin, Nathan Lambert,
Yejin Choi, and Nouha Dziri. Wildguard: Open one-stop moderation tools for safety risks,
jailbreaks, and refusals of llms. arXiv preprint arXiv:2406.18495, 2024.

Peter Hase, Mohit Bansal, Peter Clark, and Sarah Wiegreffe. The unreasonable effectiveness
of easy training data for hard tasks. arXiv preprint arXiv:2401.06751, 2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang,
Dawn Song, and Jacob Steinhardt. Measuring mathematical problem solving with the
math dataset. arXiv preprint arXiv:2103.03874, 2021.

16

https://lmsys.org/blog/2023-03-30-vicuna/


Published as a conference paper at COLM 2025

Jian Hu, Xibin Wu, Zilin Zhu, Xianyu, Weixun Wang, Dehao Zhang, and Yu Cao. Open-
rlhf: An easy-to-use, scalable and high-performance rlhf framework. arXiv preprint
arXiv:2405.11143, 2024.

Hamish Ivison, Yizhong Wang, Valentina Pyatkin, Nathan Lambert, Matthew Peters,
Pradeep Dasigi, Joel Jang, David Wadden, Noah A Smith, Iz Beltagy, et al. Camels in a
changing climate: Enhancing lm adaptation with tulu 2. arXiv preprint arXiv:2311.10702,
2023.

Hamish Ivison, Yizhong Wang, Jiacheng Liu, Zeqiu Wu, Valentina Pyatkin, Nathan Lam-
bert, Noah A. Smith, Yejin Choi, and Hannaneh Hajishirzi. Unpacking dpo and ppo:
Disentangling best practices for learning from preference feedback, 2024.

Liwei Jiang, Kavel Rao, Seungju Han, Allyson Ettinger, Faeze Brahman, Sachin Kumar,
Niloofar Mireshghallah, Ximing Lu, Maarten Sap, Yejin Choi, et al. Wildteaming at scale:
From in-the-wild jailbreaks to (adversarially) safer language models. Advances in Neural
Information Processing Systems, 37:47094–47165, 2024.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze
Brahman, Lester James V. Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, Yuling Gu,
Saumya Malik, Victoria Graf, Jena D. Hwang, Jiangjiang Yang, Ronan Le Bras, Oyvind
Tafjord, Chris Wilhelm, Luca Soldaini, Noah A. Smith, Yizhong Wang, Pradeep Dasigi,
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A Limitations

As an empirical study with limited compute, our results are largely based on in-depth
analysis over a single preference tuning algorithm (DPO) and a few base models (Llama
3, Tülu 3, OLMo 2). Moreover, our evaluation does not capture all potential downstream
model behaviors. For example, we do not evaluate multilingual capabilities or domain-
specific use cases such as scientific writing. As such, extending our findings to (1) other
preference tuning algorithms, (2) larger model scales and different base models, and (3) new
tasks are all interesting directions for future work.

B Evaluation Details

Unless otherwise noted, we evaluate all models on the following core set of 8 standard bench-
marks. We provide the skill that each benchmark measures as well as abbreviations used in
parenthesis. Following Tülu 3 (Lambert et al., 2024), we evaluate with the OLMES (Gu et al.,
2024) implementation of these benchmarks, with the exact same evaluation configurations
(e.g., for prompts, metrics, few-shot examples, etc.) for all benchmarks. We defer readers to
the above references for further details.

• MMLU (knowledge recall) (Hendrycks et al., 2020)
• MATH (mathematical reasoning) (Hendrycks et al., 2021)
• GSM8k (GSM; mathematical reasoning) (Cobbe et al., 2021)
• IFEval (instruction following) (Zhou et al., 2023)
• AlpacaEval 2 (AEval2, AE2; instruction following) (Dubois et al., 2024)
• TruthfulQA (TruthQA, TQA; truthfulness) (Lin et al., 2021)
• BigBenchHard (BBH; general reasoning) (Suzgun et al., 2022)
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Unsafe Prompt Refusal Jailbreak Resistance Aggregate Scores

Model / Preference Data XSTest HarmB. WildGuard DAN JailTrig. WildJail. Avg. Refusal Avg. Jailbreak Avg. All

LLAMA-3.2-1B-INSTRUCT 81.1 65.0 78.1 87.0 74.5 61.8 74.7 74.4 74.6
LLAMA-3.2-3B-INSTRUCT 90.9 77.8 88.1 95.0 78.0 68.4 85.6 80.5 83.0
QWEN-2.5-0.5B-INSTRUCT 72.2 70.3 72.5 64.7 84.8 50.9 71.7 66.8 69.2
QWEN-2.5-1.5B-INSTRUCT 71.8 94.7 79.8 77.7 82.0 53.6 82.1 71.1 76.6
QWEN-2.5-3B-INSTRUCT 87.8 91.2 83.2 49.0 67.8 56.0 87.4 57.6 72.5

TÜLU-3-8B-SFT 90.7 98.8 99.2 87.7 96.0 86.6 96.2 90.1 93.2
+ Llama 3B over 1B 93.1 97.2 99.2 73.0 88.0 85.1 96.5 82.0 89.3
+ Qwen 1.5B over 0.5B 90.9 98.1 99.3 84.7 94.8 88.0 96.1 89.2 92.6
+ Qwen 3B over 1.5B 93.6 96.2 99.1 62.3 83.0 78.8 96.3 74.7 85.5

+ Tülu 3 Preference Data 92.9 95.3 98.5 68.7 87.2 81.3 95.6 79.1 87.3

Table A1: We evaluate the safety of the models post-trained with our weak preference
data from Tülu-3-8B-SFT (Section 4) on six benchmarks measuring (a) whether the models
refuse unsafe requests or (b) whether the models are robust to jailbreaking prompts. On
all benchmarks, a higher score is better. The safety performance of the models we used to
generate data are shown in the top half of the table.

• Codex HumanEval+ (HEval+; coding) (Liu et al., 2023)

For our post-training experiments (Section 4 and Section 5), we extend our evaluation suite
to include three additional benchmarks to maintain evaluation consistency with the full
suite from (Lambert et al., 2024). The added benchmarks are:

• PopQA (knowledge recall) (Mallen et al., 2022)
• DROP (general reasoning) (Dua et al., 2019)
• Codex HumanEval (HEval; coding) (Chen et al., 2021)

C Additional Safety Evaluations for Post-trained Models

Following (Lambert et al., 2024), we further evaluated the models from our main post-
training experiments (Section 4) on six safety benchmarks measuring either (a) whether
models refuse to respond to unsafe requests or (b) whether models are robust to jailbreaking
prompts. We list the benchmarks below, with skill measured in parenthesis:

• XSTest (refusal) (Röttger et al., 2023)
• HarmBench (refusal) (Mazeika et al., 2024)
• WildGuardTest (refusal) (Han et al., 2024)
• Do-Anything-Now (abbreviated DAN; jailbreaking resistance) (Shen et al., 2024)
• JailbreakTrigger (jailbreaking resistance) (Sun et al., 2024)
• WildJailbreakTest (jailbreaking resistance) (Jiang et al., 2024)

We show results of evaluation in Table A1. Overall, both strongly-supervised Tülu 3
preference data and delta learning with our weak preference data tend to slightly hurt
average safety compared to the base SFT model. Thus, we conjecture that these drops
are due to characteristics of the Tülu 3 prompt distribution (Lambert et al., 2024) shared
between these data rather than an inherent limitation of delta learning. Intuitively, we
speculate that if the prompts do not expose useful deltas, then one cannot expect gains.
Nonetheless, models trained with delta learning degrade less, and hence are generally more
safe than Tülu-3-8B-DPO. An exception is the model trained with Qwen-2.5-3B-Instruct
over 1.5B responses. While it correctly refuses more often than Tülu-3-8B-DPO, it is easier to
jailbreak. We conjecture that this is because Qwen 3B itself is easier to jailbreak than Qwen
1.5B (Table A1; see also (Biderman et al., 2023; OLMo et al., 2024) which suggest that model
size can sometimes inversely correlate with safety), and hence the delta between Qwen
3B and 1.5B is in a negative direction. How to curate prompts and deltas that effectively
improve safety remains an exciting open question.
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D Extended Results and Discussions

D.1 Pilot Study on ULTRAFEEDBACK-WEAK

See Table A2. Results are consistent with our findings in Section 2.

Model/Training MMLU MATH GSM AEval2 IFEval BBH TruthQA HEval+ Avg.

LLAMA-3.2-3B-INST. 62.9 39.6 75.7 18.7 76.5 61.6 50.6 76.8 57.8
+ UF-WEAK SFT 61.8 34.3 73.2 12.3 68.0 60.7 46.5 75.4 54.0
+ UF-WEAK DPO 64.0 42.2 76.4 22.4 76.2 61.3 53.6 76.0 59.0

LLAMA-3.1-8B-INST. 71.8 43.0 83.7 24.9 78.2 72.7 55.1 81.6 63.9
+ UF-WEAK SFT 65.7 34.6 77.9 8.9 59.9 71.8 49.1 80.8 56.1
+ UF-WEAK DPO 72.0 43.9 83.9 26.3 81.1 72.3 56.2 80.4 64.5

Table A2: We tune Llama 3 Instruct models on the ULTRAFEEDBACK-WEAK preference
dataset, generated by models weaker than Llama 3. Training with preference learning (DPO)
to prefer “weak responses” over “weaker responses” yields gains, while SFT directly on the
weak preferred responses hurts. Blue indicates gain over base model, orange degradation.

D.2 Controlled Experiment: Stylistic Delta in Number of Bold Sections

Figure A1 shows examples of model generations before and after DPO training.

D.3 Ablation Study: Model Size Heuristic, AlpacaEval 2 Discrepancy

The observed low performance on AlpacaEval 2 when using GPT-4o as a reward signal
(Table 5) is likely because of the length-correction applied by the AlpacaEval 2 benchmark.
LLM judges are known to have a bias towards preferring longer responses (Dubois et al.,
2024); this bias is likely present when re-annotating our responses using the GPT-4o judge
from Tülu 3. Hence, DPO training on preferences annotated by GPT-4o may increase the
average generation length of the model, which is then penalized by the length-correction
term that AlpacaEval 2 uses when computing winrate. Empirically, the model trained with
GPT-4o preferences generates outputs that are around 200 characters longer on average
compared to the model trained on the model size heuristic reward in response to the
AlpacaEval 2 test prompts.

D.4 Additional Ablation Study: Preference Tuning Algorithm

We further ablate our choice of using DPO as the preference tuning algorithm in our main
post-training experiments (Section 4) by instead tuning with SimPO (Meng et al., 2024) while
keeping data and base model fixed. Specifically, we use SimPO to tune Tülu-3-8B-SFT on our
best weak preference data (Qwen-2.5-3B-Instruct responses paired with 1.5B responses). We
largely follow the same hyperparameters as our other analysis experiments (Appendix G.6);
we additionally grid-sweep the following hyperparmaters:

• Dataset size: {100000, 200000}
• Learning rate: {5e-8, 7e-8, 1e-7, 3e-7}

• SimPO (β, γ), roughly following the ranges tried in (Meng et al., 2024): {(10, 3.0),
(5, 1.5), (2.5, 1.25), (2, 1.0)}

Results of training with SimPO are reported in Table A3. Overall, using SimPO to tune on
weak data also yields strong gains, with a 5.2 point gain in average performance over the
base SFT model. Consistent with (Lambert et al., 2024), the gains with SimPO are slightly
less than with DPO (-1 point on average).
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Model/Preference Data MMLU PopQA MATH GSM AE2 IFEval BBH DROP TQA HEval HEval+ Avg.

TÜLU-3-8B-SFT 66.1 29.6 31.2 76.0 12.2 71.3 69.2 61.2 46.8 86.2 79.8 57.2
+ DPO (Qwen 3B over 1.5B) 69.4 31.7 42.6 83.4 36.1 78.6 69.4 62.0 57.7 84.4 81.7 63.4
+ SimPO (Qwen 3B over 1.5B) 67.8 31.1 40.6 81.8 28.4 77.8 70.6 61.4 57.9 86.0 82.6 62.4

Table A3: Top half. We ablate our use of DPO as our preference tuning algorithm, and find
that tuning with SimPO can also yield gains with weak preference data.

E Weak Preference Dataset Details

Here, we provide generation details and statistics for the weak preference datasets used in
our main post-training experiments (Section 4). To better illustrate what deltas exist between
the chosen and rejected responses, we also provide qualitative examples of preference pairs
from our best performing weak dataset (Qwen-2.5-3B-Instruct over 1.5B responses).

E.1 Dataset Creation Details

We find that the original Tülu 3 dataset contains approximately 6000 duplicated prompts
(but not duplicated preference pairs, as Tülu 3 uses a large pool of models to generate
responses and hence can form multiple distinct pairs for each prompt). Because our setup
uses the same model to generate chosen responses for every prompt, we de-duplicated the
repeated prompts, leaving 264806 remaining preference pairs for each of our weak datasets.
These are the seed prompts are used for our simple recipe in Section 4.

E.2 Qualitative Examples

To better understand the delta between weak and weaker responses, we manually inspected
pairs from our best post-training preference data (i.e., chosen responses generated by Qwen-
2.5-3B-Instruct and rejected responses by Qwen-2.5-1.5B-Instruct). Overall, there were no
universal axes along which the Qwen 3B responses were better than the Qwen 1.5B, but we
did observe several interesting deltas. We summarize them here, and showcase qualitative
examples of these differences in Figure A2, Figure A3, and Figure A4.

1. On prompts with verifiable answers (e.g. math, code), we find pairs where Qwen
3B responds correctly but Qwen 1.5B does not (Figure A2).

2. On knowledge-seeking prompts, we find pairs where Qwen 3B responds with more
detail (Figure A3).

3. On prompts that admit brief answers, we find pairs where Qwen 3B generates a
chain-of-thought, while Qwen 1.5B responds with just the answer (Figure A4).

Note that these deltas are not exhaustive; we simply highlight a few here as interesting
examples to motivate future work. In particular, we believe it would be exciting to further
characterize what semantic deltas exist in preference data and how the deltas translate to
downstream model behavior after training.

E.3 Quantitative Statistics

We computed the following statistics for each weak dataset used in our core post-training ex-
periments (Table 4) using the Tülu-3-8B-SFT tokenizer (i.e. the base SFT model’s tokenizer):

• Average token length of chosen and rejected responses
• Vocabulary diversity, measured as the number of unique 1-gram and 2-gram tokens

in chosen and rejected responses
• Cosine similarity between chosen and rejected response embeddings, computed

using OpenAI’s text-embedding-3-small API

As a reference point, we also report these statistics for the original Tülu 3 preference dataset.
Results are shown in Table A4. Overall, we observe that the chosen responses in our weak
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preference data are generally (a) shorter and (b) more diverse in vocabulary than the paired
rejected responses. In contrast, chosen and rejected responses in the Tülu 3 data exhibit
largely similar statistics. We hypothesize that the longer length of rejected responses in our
data may be due to degenerate outputs from the small weak models; they sometimes repeat
tokens until reaching the maximum generation length. The cosine similarity between chosen
and rejected responses is relatively small for all datasets; qualitatively, chosen and rejected
responses often differ significantly on a surface semantic level, which may contribute to this
low embedding similarity.

Chosen Responses Rejected Responses

Preference Dataset Avg. Len. Uniq. 1-gram Uniq. 2-gram Avg. Len. Uniq. 1-gram Uniq. 2-gram Cosine Sim.

Llama 3.2 3B over 1B 779.3 112,553 6,858,616 1,041.3 109,090 5,884,941 0.117
Qwen 2.5 1.5B over 0.5B 776.5 110,380 5,107,761 1,317.8 106,900 4,626,119 0.112
Qwen 2.5 3B over 1.5B 709.1 114,183 6,637,312 776.5 110,380 5,107,761 0.115

Tülu 3 Preference Data 443.9 119,269 10,980,913 441.3 119,320 10,866,352 0.117

Table A4: Statistics of the chosen and rejected responses in our weak preference datasets,
with statistics of responses from the Tülu 3 preference dataset shown for referenc

F Delta Learning in Logistic Regression

In this section, we give the full proofs of Theorem 6.1 and Corollary 6.2 along with all
intermediate propositions and lemmas.

F.1 Additional Preliminaries

We begin by stating additional useful results that we take as preliminaries.

Proposition F.1 (Population Gradient for Naive Preference Loss). Take covariates x ∼ N (0, Id)

and assign pseudo-labels yc, yr using two teacher models θc, θr ∈ Rd via the following rule:

yc = 1{⟨θc, x⟩ ≥ 0}, yr = 1{⟨θr, x⟩ ≥ 0}.

Then in expectation over the covariate distribution, we have

E
[
∇θLpref (x, yc, yr; θ)

]
= − 1√

2π

(
θc

∥θc∥2
− θr

∥θr∥2

)
,

Cov
(
∇θLpref (x, yc, yr; θ)

)
⪯ Id.

Proof. The naive preference loss Lpref is

Lpref(x, yc, yr; θ) = −
[
log pθ(yc|x)− log pθ(yr|x)

]
, pθ(y = 1|x) = σ(⟨θ, x⟩).

For any single fixed preference pair (x, yc, yr), the gradient with respect to θ is

∇θ Lnaive(x, yc, yr; θ) = −
[
∇θ log pθ(yc|x)−∇θ log pθ(yr|x)

]
= −

[(
yc − σ(⟨θ, x⟩)

)
x−

(
yr − σ(⟨θ, x⟩)

)
x
]

= −(yc − yr)x.

Taking expectation of the gradient over the covariate distribution N (0, Id),

E[∇θLpref(x, yc, yr; θ)] = −
[
E
[
yc · x

]
−E

[
yr · x

]]
= −

[
E
[
1{⟨θc, x⟩ ≥ 0} · x

]
−E

[
1{⟨θr, x⟩ ≥ 0} · x

]]
.
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Since the function h(x) = 1{⟨θ, x⟩ ≥ 0} is weakly differentiable, by Stein’s Lemma we have

E
[
1{⟨θ, x⟩ ≥ 0} · x

]
= E

[
∇x1{⟨θ, x⟩ ≥ 0}

]
= E

[
θ · δ(⟨θ, x⟩)

]
= θ E

[
δ(⟨θ, x⟩)

]
=

1√
2π
· θ

∥θ∥2
.

where δ denotes the Dirac delta function. The final equality holds since Z := ⟨θ, x⟩ ∼
N (0, ∥θ∥2

2), and hence E
[
δ(⟨θ, x⟩)

]
= pZ(0) = 1/(

√
2π ∥θ∥2).

We now bound the covariance Cov(∇θLpref) = Cov((yc− yr)x). Let D denote the set where
θc and θr disagree on decision

D = {x : sgn ⟨θc, x⟩ ̸= sgn ⟨θr, x⟩}

Then since (yc − yr)x = x for all x ∈ D and 0 otherwise, we have

E
[
(∇θLpref)(∇θLpref)

T
]
= E[(yc − yr)

2xxT ] = E[xxT · 1D(x)] ⪯ E[xxT ] = Id

=⇒ Cov(∇θLpref) = E[(∇θLpref)(∇θLpref)
T ]−E[∇θLpref]E[∇θLpref]

T ⪯ Id

as E[∇θLpref]E[∇θLpref]
T is positive semi-definite. The equality E[xxT ] = Id holds from

the assumption that our data is drawn from isotropic Gaussian.

Lemma F.2 (Vector Bernstein-Freedman). Let
(
F
)

k≥0 be a filtration and let

{Yk : k = 0, 1, 2, . . . }

be an Rd-valued martingale adapted to it. Denote the difference sequence as

Xk := Yk −Yk−1, k ≥ 1,

and assume that the difference sequence is uniformly bounded:

∥Xk∥2 ≤ R almost surely for every k ≥ 1

At any finite horizon n, we define the predictable quadratic variation as

σ2
n :=

n

∑
k=1

Ek−1 ∥Xk∥2
2 .

Let Sn denote the partial sum of differences up to the horizon, Sn = ∑n
k=1 Xk. Then for every t ≥ 0,

Pr [∥Sn∥2 ≥ t] ≤ (d + 1) exp− −t2/2
σ2

n + Rt/3
.

Equivalently, for any failure probability δ ∈ (0, 1), then with probability at least 1− δ

∥Sn∥2 ≤
√

2σ2
n ln

d + 1
δ

+
2R
3

ln
d + 1

δ
.

Proof. This is a restatement of Theorem 1.6 from Tropp (2012) specialized to d× 1 vectors in
Rd. To get the equivalent high probability bound statement, simply set Pr [∥Sn∥2 ≥ t] ≤ δ
and solve for t.

F.2 Full Proof of Theorem 6.1

We build up to the final proof via a series of propositions.
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Proposition F.3. Take a, b ∈ Rd and take θ∗ to be a unit vector in Rd. Define the function

f (t) := cos(a + bt, θ∗) =
⟨a + bt, θ∗⟩
∥a + bt∥2

. (21)

Then the derivative at t = 0 satisfies the following identity:

f ′(0) · ∥a∥2 = ⟨Proja⊥(b), θ∗⟩. (22)

This can also be expressed as

f ′(0) · ∥a∥2 = ⟨b, θ∗⟩
(

1− ⟨a, θ∗⟩2

∥a∥2
2

)
− ⟨a, θ∗⟩
∥a∥2

2

(
⟨Proj(θ∗)⊥(a), Proj(θ∗)⊥(b)⟩

)
. (23)

Hence, f ′(0) > 0 is equivalent to either of the above expressions being positive.

Proof. This proceeds with direct calculation. Write ℓ(t) = a + bt. By quotient rule, the
derivative of f is

f ′(t) =
d
dt

[
⟨ℓ(t), θ∗⟩
∥ℓ(t)∥2

]
=
∥ℓ(t)∥2

2 · ⟨b, θ∗⟩ − ⟨ℓ(t), θ∗⟩ · ⟨ℓ(t), b⟩
∥ℓ(t)∥3

2

.

Evaluating at t = 0 gives

f ′(0) =
∥a∥2

2 ⟨b, θ∗⟩ − ⟨a, θ∗⟩⟨a, b⟩
∥a∥3

2

.

Now write the projection of b onto the hyperplane perpendicular to a as

Proja⊥(b) := b− ⟨a, b⟩
∥a∥2

2

a,

so then

⟨Proja⊥(b), θ∗⟩ = ⟨b, θ∗⟩ − ⟨a, b⟩
∥a∥2

2

⟨a, θ∗⟩ = f ′(0) · ∥a∥2 ,

yielding the first identity. We further decompose a, b into their components parallel to and
orthogonal to θ∗ as

a = ⟨a, θ∗⟩θ∗ + Proj(θ∗)⊥(a), b = ⟨b, θ∗⟩θ∗ + Proj(θ∗)⊥(b).

Simplifying ⟨a, b⟩ with this decomposition, we have

⟨a, b⟩ = ⟨a, θ∗⟩⟨b, θ∗⟩+ ⟨Proj(θ∗)⊥(a), Proj(θ∗)⊥(b)⟩.

Substituting this into the expression for ⟨Proja⊥(b), θ∗⟩ yields that

f ′(0) · ∥a∥2 = ⟨Proja⊥(b), θ∗⟩

= ⟨b, θ∗⟩
(

1− ⟨a, θ∗⟩2

∥a∥2
2

)
− ⟨a, θ∗⟩
∥a∥2

2

(
⟨Proj(θ∗)⊥(a), Proj(θ∗)⊥(b)⟩

)
,

yielding the second identity.

Proposition F.4. Take f as defined in Proposition F.3, f (t) := cos(a + bt, θ∗). Then for all t,

| f ′′(t)| ≤ 2√
3
· ∥b∥2

2

∥a + bt∥2
2

. (24)
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Proof. This bound can be shown by some careful algebra. We rewrite f in terms of two
intermediary functions defined as

r(t) := ∥l(t)∥2 , u(t) := l(t)/r(t),

so that f = ⟨u(t), θ∗⟩. Then since θ∗ is a fixed unit vector we have

f ′′(t) = ⟨u′′(t), θ∗⟩ =⇒ | f ′′(t)| ≤
∥∥u′′(t)

∥∥
2 .

So it suffices to bound u′′(t). With some calculus, we compute

u′(t) =
br(t)2 − l(t)⟨l(t), b⟩

r(t)3 .

Differentiating again with quotient rule,

u′′(t) =
r(t)3 ·

(
2b⟨l(t), b⟩ − b⟨l(t), b⟩ − l(t)⟨b, b⟩

)
−
(
br(t)2 − l(t)⟨l(t), b⟩

)
· 3r(t)⟨l(t), b⟩

r(t)6

=
−2b⟨l(t), b⟩r(t)3 − l(t)⟨b, b⟩r3(t) + 3l(t)⟨l(t), b⟩2r(t)

r(t)6

= b · −2⟨l(t), b⟩
r(t)3 + l(t) ·

(
−⟨b, b⟩

r(t)3 +
3⟨l(t), b⟩2

r(t)5

)
.

To simplify further, we decompose b into constituent parts parallel to and perpendicular to
l(t):

b∥ := Projl(t)(b) =
(
⟨l(t), b⟩

r(t)2

)
l(t), b⊥ := b− b∥.

Then since b = b∥ + b⊥ we can reduce u′′(t) as

u′′(t) =
(

l(t) · −2⟨l(t), b⟩2
r(t)5 + b⊥ ·

−2⟨l(t), b⟩
r(t)3

)
+ l(t) ·

(
−⟨b, b⟩

r(t)3 +
3⟨l(t), b⟩2

r(t)5

)
= b⊥ ·

−2⟨l(t), b⟩
r(t)3 − l(t) · ⟨b, b⟩ − ⟨l(t), b⟩2/r(t)2

r(t)3 .

So now we’ve expressed u′′(t) in terms of two orthogonal components, b⊥ ⊥ l(t). As such,
the squared norms of the components add:

∥∥u′′(t)
∥∥2

2 =
4⟨l(t), b⟩2 ∥b⊥∥2

2
r(t)6 +

(
∥b∥2

2 − ⟨l(t), b⟩2/r(t)2
)2

r(t)4

(
∥l(t)∥2

2 = r(t)2
)

Now let θ(t) denote the angle between b and l(t), and observe that c(t) := cos(θ(t)) =
⟨l(t),b⟩

r(t)∥b∥2
. Then we have

∥∥u′′(t)
∥∥2

2 =
4c(t)2 ∥b∥2

2 · (1− c(t)2) ∥b∥2
2

r(t)4 +

(
∥b∥2

2 − c(t)2 ∥b∥2
2

)2

r(t)4

=
∥b∥4

2
r(t)4 ·

[
4c(t)2(1− c(t)2) + (1− c(t)2)2

]
=
∥b∥4

2
r(t)4 ·

[
−3c(t)4 + 2c(t)2 + 1

]
.

By construction, for any t we have c(t) ∈ [−1, 1]. One can check that

| f ′′(t)|2 ≤
∥∥u′′(t)

∥∥2
2 ≤
∥b∥4

2
r(t)4 · sup

x∈[−1,1]

[
−3x4 + 2x2 + 1

]
≤ ∥b∥

4
2

r(t)4 · (4/3).

Taking square roots of both sides gives the desired bound.
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Proposition F.5. Assume the delta learning setup of Section 6.1 and Theorem 6.1, and suppose we
train with the population update rule

θt+1 ← θt − η Ex∼N (0,Id)

[
∇θLpref(x, yc, yr; θt)

]
. (25)

Then if Condition C1 holds so that κ > 0 (as defined in Theorem 6.1), training with learning rate η
for a total update horizon of

H∗ := ηT =
κ ∥θ0∥2

4 ∥v∆∥2
2

(26)

yields a final iterate θT whose cosine alignment with the ideal parameters θ∗ improves over the
alignment of the initial student θ0 by a margin of at least Γ:

Γ := κ/50 = Θ(κ), (27)

cos(θT , θ∗) > cos(θ0, θ∗) + Γ. (28)

Proof. As discussed in our sketch in Section 6.2, by Proposition F.1 training with population
gradients amounts to tracing various points along a parametric ray ℓ : R≥0 7→ Rd,

ℓ(λ) := θ0 + λv∆, v∆ := θc/ ∥θc∥2 − θr/ ∥θr∥2 . (29)

Define f to be a map measuring the student’s performance over the course of training:

f (λ) := cos(ℓ(λ), θ∗) =
⟨ℓ(λ), θ∗⟩
∥ℓ(λ)∥2

. (30)

Specializing Proposition F.3 to our setup, we have that

f ′(0) · ∥θ0∥2 = ⟨Projθ⊥0
(v∆), θ∗⟩ (31)

= (αc − αr)(1− α2
0)− α0⟨Proj(θ∗)⊥(θ0/ ∥θ0∥2), Proj(θ∗)⊥(v∆)⟩ =: κ. (32)

So f ′(0) ⇐⇒ κ > 0, and f ′(0) > 0 is a sufficient condition for training with population
updates to yield an improvement. This is exactly Condition C1 from Theorem 6.1. Assuming
this holds, we can quantify the magnitude of the gain after training for some T steps. By a
second-order Taylor expansion of f , the total improvement Γ can be bounded as

Γ := cos(θT , θ∗)− cos(θ0, θ∗) = f (ηT)− f (0) ≥ ηT f ′(0)− L
2
(ηT)2, (33)

where L is a bound on the second derivative | f ′′(λ)| derived in Proposition F.4:

L := sup
λ∈[0, ηT]

| f ′′(λ)| = 2√
3

∥v∆∥2
2

∥θ0 + λv∆∥2
2

. (34)

To simplify L further, observe that |κ| ≤ 2 ∥v∆∥2:

|κ| ≤
∣∣∣⟨v∆, θ∗⟩(1− α2

0)
∣∣∣+ ∣∣∣α0⟨Proj(θ∗)⊥(θ0/ ∥θ0∥2), Proj(θ∗)⊥(v∆)⟩

∣∣∣ (35)

≤ ∥v∆∥2 +
∥∥∥Proj(θ∗)⊥(v∆)

∥∥∥
2
≤ 2 ∥v∆∥2 . (36)

So then we have for all λ ∈ [0, ηT] that

∥θ0 + λv∆∥2 ≥ ∥θ0∥2 − λ ∥v∆∥2 ≥ ∥θ0∥2 −
(

2 ∥v∆∥2 ∥θ0∥2

4 ∥v∥2
2

)
∥v∆∥2 =

1
2
∥θ0∥2 , (37)

=⇒ L =
8√
3
∥v∆∥2

2

∥θ0∥2
2

. (38)
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Now, note that f ′(0) = κ/ ∥θ0∥2 (Equation 32), and set the total training horizon as in the
proposition statement:

H∗ := ηT = f ′(0) · ∥θ0∥2
2

4 ∥v∆∥2
2

=
κ ∥θ0∥2

4 ∥v∆∥2
2

. (39)

Combining this training horizon with Equation 33 and Equation 38, we have ηT =

2 f ′(0)/(
√

3L), so

Γ =
2 f ′(0)2
√

3L
− L

2
· 4 f ′(0)2

3L2 =

(
2√
3
− 2

3

)
f ′(0)2

L
=

√
3

8

(
2√
3
− 2

3

)
κ2

∥v∆∥2
2

. (40)

Simplifying with ∥v∆∥2 ≤ ∥θc∥2 + ∥θr∥2 = 2 yields the desired claim.

Proposition F.6. Assume the delta learning setup of Section 6.1 and Theorem 6.1. Then the student
iterates θt trained with empirical mini-batch SGD (Equation 6) do not deviate too much from the
exact iterates θt trained with population gradients (Equation 25). Formally, for any failure probability
δ ∈ (0, 1), if the ambient dimension satisfies d > 1

4 ln(2BT/δ), then with probability at least 1− δ

∥∥θT − θT
∥∥

2 ≤ η

[√
2dT

B
ln

d + 1
δ/2

+ 4
√

d ln
d + 1
δ/2

]
= η Õ

(√
dT/B +

√
d
)

. (41)

Proof. This follows via a martingale concentration argument. Write the empirical mini-batch
gradient at each timestep t as

gt =
1
B

B

∑
i=1

[
∇θLpref

(
x(t,i), y(t,i)c , y(t,i)r

)]
(42)

and define the error vector

ζt := gt −E[gt], (43)

where E[gt] = −v∆ up to a constant scaling factor absorbed into η. Each ζt is a random
variable (over the draws of the mini-batch) that measures how much the empirical gradient
gt differs from the population gradient. Introducing ζt allows us to rewrite the empirical
SGD updates in terms of the exact iterates θt:

θt+1 = θt − ηgt = (θt − η E[gt])− ηζt = θt+1 − ηζt. (44)

Unrolling these updates across T steps,

θT = θT − η
T

∑
t=1

ζt
(
= deterministic “backbone” + stochastic deviation

)
. (45)

We now bound the stochastic deviation η ∑T
i=1 ζt. By construction, the sequence {ζ1, . . . , ζT}

is a martingale difference sequence with E[ζt] = 0. Hence, their cumulative sum can be
bounded via a vector Bernstein-Freedman inequality (Lemma F.2). We verify the necessary
assumptions for Lemma F.2 by bounding ∥ζt∥2 and ∑T

t=1 E ∥ζt∥2
2. To bound ∥ζt∥2, observe

that x(t,i) ∼ N (0, Id), so then
∥∥∥x(t,i)

∥∥∥2

2
follows a chi-squared distribution with d degrees of

freedom. Standard tail bounds due to Laurent & Massart (2000) give that

Pr
(∥∥∥x(t,i)

∥∥∥
2
≥ 4
√

d
)
≤ e−4d. (46)

By a union bound, the event that any covariate observed throughout training exceeds
this bound occurs with probability at most δ1 = TB exp(−4d). So if d exceeds the stated
threshold, up to a δ1 = δ/2 failure probability we can condition the rest of our argument on
the “good” event

E :=
{
1

{∥∥∥x(t,i)
∥∥∥

2
≤ 4
√

d
}
∀i ∀t

}
. (47)
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Applying triangle inequality then gives

∥ζt∥2 ≤ ∥gt∥2 + ∥v∆∥2 ≤
1
B

B

∑
i=1

∥∥∥x(t,i)
∥∥∥

2
+ ∥v∆∥2 ≤ 4

√
d + ∥v∆∥2 ≤ 6

√
d. (48)

The final inequality holds because ∥v∆∥2 ≤ ∥θc∥2 + ∥θr∥2 = 2. We next bound the cumula-
tive second moments ∑T

t=1 E ∥ζt∥2
2. Observe that

Cov(ζt) = Cov(gt) =
1

B2

B

∑
i=1

Cov
(
∇θLpref

(
x(t)i , y(t)c,i , y(t)r,i

))
⪯ 1

B
Id, (Proposition F.1)

(49)

so then the second moment is bounded as

E
[
∥ζt∥2

2

]
≤ d

B
=⇒

T

∑
i=1

E
[
∥ζt∥2

2

]
≤ dT

B
. (50)

Then by Lemma F.2, for any δ2 ∈ (0, 1) we have with probability at least 1− δ2∥∥∥∥∥ T

∑
i=1

ζt

∥∥∥∥∥
2

≤

√
2dT

B
ln

d + 1
δ2

+ 4
√

d ln
d + 1

δ2
. (51)

Combining this with Equation 45 and setting δ2 = δ/2 yields that the desired claim.

We are now ready to put everything together.

Proof of Theorem 6.1. We want to show that the early-stopped T-th student iterate θT
achieves higher performance than the initial student θ0,

cos(θT , θ∗)− cos(θ0, θ∗) ≥ Θ(κ2) > 0.

Using a triangle inequality, we break this down as

cos(θT , θ∗)− cos(θ0, θ∗) ≥
[
cos(θT , θ∗)− cos(θ0, θ∗)

]︸ ︷︷ ︸
deterministic ideal gain

−
∣∣cos(θT , θ∗)− cos(θT , θ∗)

∣∣︸ ︷︷ ︸
stochastic deviation from ideal

. (52)

By Proposition F.5, if Condition C1 in the theorem statement holds and we fix the total
training horizon H∗ = ηT =

(
κ ∥θ0∥2

)
/
(
4 ∥v∆∥2

2
)
, then we are guaranteed a deterministic

gain in cosine similarity of at least Γ ≥ Θ(κ2). To bound the stochastic error, we control∥∥θT − θT
∥∥

2 (Proposition F.6) and rely on the continuity of cosine similarity. A straightfor-
ward gradient computation shows that for all fixed R > 0, the map fu(θ) = ⟨θ, u⟩/ ∥θ∥2 is
(1/R)-Lipschitz on the domain {θ ∈ Rd, ∥θ∥2 ≥ R}. In our setting, training for horizon H∗

already guarantees that
∥∥θT

∥∥
2 ≥

1
2 ∥θ0∥2 (Equation 37), so

∥θT∥2 ≥
∥∥θT

∥∥
2 −

∥∥θT − θT
∥∥

2 ≥
1
2
∥θ0∥2 −

∥∥θT − θT
∥∥

2 . (53)

Thus, if we control the distance such that∥∥θT − θT
∥∥

2 ≤
1
8

Γ ∥θ0∥2 , (54)

then we have ∥θT∥2 ≥ 1
4 ∥θ0∥2 (as 0 < Γ ≤ 1) and consequently∣∣cos(θT , θ∗)− cos(θT , θ∗)

∣∣ ≤ 4
∥θ0∥2

∥∥θT − θT
∥∥

2 =
Γ
2

. (55)

So then training θ0 with delta learning yields an improvement in cosine similarity of at
least Γ/2 = Θ(κ2) as claimed. We end by analyzing what the training hyperparameters
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η, T, B need to be set as to control this distance. Rewriting T = H∗/η and combining
Proposition F.6 with Equation 54,

∥∥θT − θT
∥∥

2 ≲ η

 1
√

η

√
2dH∗

B
ln (d/δ)︸ ︷︷ ︸

=: a

+ 4
√

d ln(d/δ)︸ ︷︷ ︸
=: b

 = aη1/2 + bη ≤ 1
8

Γ ∥θ0∥2 . (56)

We can rewrite Equation 56 as a quadratic inequality in s =
√

η:

bs2 + as− 1
8

Γ ∥θ0∥2 ≤ 0. (57)

Because both a, b > 0, η = s2 satisfies Equation 56 so long as we simultaneously have

bs2 ≤ 1
16

Γ ∥θ0∥2 and as ≤ 1
16

Γ ∥θ0∥2 .

Both are immediately satisfied if we set η as

η := min

{
Γ ∥θ0∥2

16b
,

Γ2 ∥θ0∥2
2

256a2

}
. (58)

Plugging in the definitions of a, b, Γ into Equation 58 and choosing B = Θ(d), we have
(modulo some fixed scaling constants)

η = min

{
κ2 ∥θ0∥2√
d ln(d/δ)

,
κ3B ∥θ0∥2

d ∥v∆∥2
2 ln(d/δ)

}
= Θ̃

(
κ2 ∥θ0∥2 ·min

{
1/
√

d, κ/ ∥v∆∥2
2

})
. (59)

So then the number of training steps T can be expressed as

T = H∗/η = Θ̃

(
1

κ ∥v∆∥2
2

·max
{√

d, ∥v∆∥2
2 /κ

})
. (60)

Finally, our earlier use of Proposition F.6 requires that

d >
1
4

ln(2BT/δ). (61)

But we set B = Θ(d) and T = O(
√

d), so the right-hand side grows only logarithmically
with d; this condition is trivially satisfied for any reasonably large d. One can check this
with some algebra:

1
4

ln(2BT/δ) ≲
1
4

ln

2d
δ
·

max
{√

d, ∥v∆∥2
2 /κ

}
κ ∥v∆∥2

2

· ln(d/δ)

 (62)

≤ 1
4

ln

(
2d2

δ2 ·
√

d(1 + ∥v∆∥2
2 /κ)

κ ∥v∆∥2
2

)
≤ 1

4

[
3 ln(d) + ln

(
κ + ∥v∆∥2

2

δ2κ ∥v∆∥2
2

)]
(63)

≤ 3
4

d +
1
4

ln

(
κ + ∥v∆∥2

2

δ2κ ∥v∆∥2
2

)
≤ d. (64)

So as long as

d ≳ ln

(
κ + ∥v∆∥2

2

δ2κ ∥v∆∥2
2

)
(65)

then the total failure probability is at most δ, and running delta learning with SGD improves
θ0 by Θ(κ2) as claimed.
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F.3 Full Proof of Corollary 6.2

We rely on a standard concentration bound of inner products on a sphere:
Lemma F.7 (Sphere-concentration Bound). Fix an arbitrary vector v0 ∈ e⊥1 ⊂ Rd, and draw
uc, ur uniformly and independently from the unit sphere Sd−2 ⊂ e⊥1 . For some constants αc, αr ∈ R,
set

vc =
√

1− α2
c uc, vr =

√
1− α2

r ur, v∆ = vc − vr.

Then for any δ ∈ (0, 1), with probability at least 1− δ,∣∣⟨v0, v∆⟩
∣∣ ≤ ∥v0∥2

(√
1− α2

c +
√

1− α2
r

)√ 2
d− 1

ln
4
δ

Proof. We decompose the inner product and apply Lévy’s concentration on each term. We
have

⟨v0, v∆⟩ =
√

1− α2
c ⟨v0, uc⟩ −

√
1− α2

r ⟨v0, ur⟩.
For either u ∈ {uc, ur} the map f (u) = ⟨v0, u⟩ is ∥v0∥2-Lipschitz in the Euclidean metric.
Since E⟨v0, u⟩ = 0, Lévy’s concentration on the sphere gives, for any ϵ > 0,

Pr
(
|⟨v0, u⟩| ≥ ϵ

)
≤ 2 exp

(
− (d− 1) ϵ2

2∥v0∥2

)
.

Now set ϵ so that the right hand side equals δ/2; explicitly,

ϵ = ∥v0∥
√

2
d− 1

ln
4
δ

.

By a union bound, with probability at least 1− δ we have {|⟨v0, uc⟩| ≤ ϵ} and {|⟨v0, ur⟩| ≤
ϵ}. So by a triangle inequality we have∣∣⟨v0, v∆⟩

∣∣ ≤ √1− α2
c
∣∣⟨v0, uc⟩

∣∣+√1− α2
r
∣∣⟨v0, ur⟩

∣∣ ≤ (√1− α2
c +

√
1− α2

r

)
ϵ.

Substituting the specified ϵ gives the displayed bound.

Proof of Corollary 6.2. The claim is that Condition C1 holds with high probability in suf-
ficiently high dimensions. Since both θc, θr are randomly drawn and uncorrelated in all
components orthogonal to θ∗, standard sphere concentration bounds show that the “bad”
noise

⟨Proj(θ∗⊥)(θ̃0), Proj(θ∗⊥)(v∆)⟩ (66)

vanishes in high dimensions. In particular, given any fixed failure probability δ ∈ (0, 1), a
direct application of Lemma F.7 yields that with probability at least 1− δ∣∣∣⟨Proj(θ∗⊥)(θ̃0), Proj(θ∗⊥)(v∆)⟩

∣∣∣ ≤ ∥θ0∥2

(√
1− α2

c +
√

1− α2
r

)√
2

d− 1
ln

4
δ

. (67)

Hence Condition C1 holds with the same probability whenever

(αc − αr)
(
1− α2

0
)

|α0|
> ∥θ0∥2

(√
1− α2

c +
√

1 + α2
r

)√
2

d− 1
ln

4
δ

. (68)

Or equivalently, whenever

|α0| ∥θ0∥2

(√
1− α2

c +
√

1 + α2
r

)
< (αc − αr)(1− α2

0)

√
d− 1

2 ln(4/δ)
. (69)

In particular, for any fixed δ, the right-hand side grows like
√

d as d→ ∞, so Condition C1
is easily satisfied. Specifically, we simply need

d > d∗ := 2 ln(4/δ) ·

 |α0| ∥θ0∥2

(√
1− α2

c +
√

1− α2
r

)
(αc − αr)(1− α2

0)

2

+ 1. (70)
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G Experiment Details

G.1 Shared training and hyperparameter details

For all training, we generally sweep hyperparameters near the defaults suggested by recent
work (Lambert et al., 2024; Hu et al., 2024). We use a cosine annealing learning rate schedule
with a warmup ratio of 0.03. We use an AdamW optimizer with (β1 = 0.9, β2 = 0.95)
and no weight decay following (Ivison et al., 2024). For all DPO tuning, we use length-
normalization in the loss, which Lambert et al. (2024) suggests to generally work better. We
use batch size 32 for DPO tuning and batch size 256 for SFT. We train all DPO models for
exactly one epoch, sweeping learning rate and DPO β. For all SFT experiments, we sweep
epochs and learning rate; see each experiment subsection below for exact ranges. We use
gradient checkpointing, DeepSpeed (Rasley et al., 2020), and FlashAttention2 (Dao, 2024) to
improve training efficiency. We use code from the OpenRLHF Github repository (Hu et al.,
2024) to train all of our models.

G.2 Pilot Study on ULTRAFEEDBACK-WEAK

Data and filtering. The original ULTRAFEEDBACK dataset (Cui et al., 2023) is a popular
preference dataset constructed by prompting a set of LLMs with diverse prompts and then
scoring the responses using a much stronger judge model (GPT-4). For each prompt x,
we form preference pairs (x, yc, yr) by selecting the highest-scoring response yc and one
lower-scoring response yr.

As of March 28 2025, Llama-3.2-3B-Instruct achieves a LMSYS Chatbot Arena ELO score
of 1103 and Llama-3.1-8B-Instruct achieves 1176 ELO. We filter out all responses from the
original ULTRAFEEDBACK dataset that were generated by models with higher ELO than
1100. This excludes GPT-4-0613 (1163 ELO), GPT-3.5-Turbo (1106 ELO), and WizardLM-70B
(1106 ELO). The best remaining model is Vicuna-33B (1091 ELO); see Table A5 for a full list
of remaining models.

Model Reference

Alpaca-7B Taori et al. (2023)
Bard https://bard.google.com/
Falcon-40B-Instruct Almazrouei et al. (2023)
Llama-2-13B-Chat Touvron et al. (2023)
Llama-2-70B-Chat Touvron et al. (2023)
Llama-2-7B-Chat Touvron et al. (2023)
MPT-30B-Chat Team (2023)
Pythia-12B Biderman et al. (2023)
StarChat Tunstall et al. (2023)
UltraLM-13B Ding et al. (2023)
UltraLM-65B Ding et al. (2023)
Vicuna-33B Chiang et al. (2023)
WizardLM-7B Xu et al. (2023)
WizardLM-13B Xu et al. (2023)

Table A5: Models used to generate the responses in our ULTRAFEEDBACK-WEAK dataset,
constructed by filtering out all responses generated by models with a LMSYS Chatbot
Arena ELO score above 1100 (i.e., near Llama-3.2-3B-Instruct’s ELO) from the original
ULTRAFEEDBACK dataset.

Evaluation. We evaluate on the eight core benchmarks detailed in Appendix B: MMLU,
MATH, GSM8k, IFEval, AlpacaEval 2, TruthfulQA, BigBenchHard, and Codex Hu-
manEval+.

Training and hyperparameters. We follow the setup described in Appendix G.1, and
further sweep learning rate in {1e-7, 3e-7, 5e-7, 7e-7} and β ∈ {5, 10} for DPO training. For
SFT, we sweep learning rate in {1e-5, 5e-5, 1e-6} and epochs in {1, 2}.
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G.3 Controlled Experiment: Stylistic Delta in Number of Bold Sections

Data. Each prompt x is formed by appending “Include bolded sections in your re-
sponse.” to a prompt from the Tülu 3 SFT dataset (Lambert et al., 2024). To generate
each response yki

, we modify the appended instruction into a hard constraint: “Include
exactly ki bolded sections in your response.” We generate responses with Llama-3.2-3B-
Instruct, and use regular expressions to guarantee correctness. We collect exactly 16384
training data points.

Hyperparameters. We follow the setup described in Appendix G.1, and further sweep
learning rate in {1e-7, 3e-7, 5e-7, 7e-7} and β ∈ {5, 10} for DPO training. For SFT, we sweep
learning rate in {1e-5, 5e-5, 1e-6} and epochs in {1, 2}. We select the best hyperparameters
based on a held-out validation set.

G.4 Controlled Experiment: Semantic Delta from a Weaker Model

Hyperparameters. We follow the setup described in Appendix G.1, and further sweep
learning rate in {3e-7, 1e-7, 5e-8, 1e-8} and β ∈ {5, 10} for DPO training. For SFT, we
sweep learning rate in {5e-6, 1e-6, 5e-7, 1e-7} and epochs in {1, 2}. We select the best
hyperparameters based only on GSM8k accuracy, keeping the remaining evaluations in this
controlled experiment held-out.

The learning rates swept here are slightly lower than those used in prior work (Lambert
et al., 2024); we found in our preliminary experiments that lower learning rates generally
performed better across the board for both DPO and SFT in this setting.

Evaluation. We evaluate on the eight core benchmarks detailed in Appendix B: MMLU,
MATH, GSM8k, IFEval, AlpacaEval 2, TruthfulQA, BigBenchHard, and Codex Hu-
manEval+.

G.5 Post-training with Weak Preference Data

Data. See Appendix E for details on dataset generation, dataset statistics, and qualitative
examples.

Hyperparameters. We follow the setup described in Appendix G.1. Hyperparameter
tuning is crucial for performant post-training; we carefully tune hyperparameters for each
dataset independently, being careful to sweep the same number of hyperparameters for
each setting. Following best practice (Lambert et al., 2024; Ivison et al., 2024), we sweep
DPO learning rate in {5e-7, 1e-7, 7e-8, 5e-8} and β ∈ {5, 10} and select the best checkpoint
for each dataset. We further swept dataset size in {100000, 150000, 200000, 264806}, and find
that training on a subset of the full dataset (264806 samples) was typically slightly better.
Finally, Tülu 3 (Lambert et al., 2024) finds that performance can depend on random seed
initialization and hence picks the best run out of multiple seeds; we follow this practice and
sweep 5 random seeds on top of our single best hyperparameter and dataset configuration.
This yields the numbers for our best setup in Table 4.

Evaluation. We evaluate on all eleven benchmarks detailed in Appendix B: MMLU,
PopQA, MATH, GSM8k, IFEval, AlpacaEval 2, TruthfulQA, BigBenchHard, DROP, Codex
HumanEval, and Codex HumanEval+. We compare directly against the officially released
Tülu-3-8B-DPO model and re-run evaluations with the exact same version of the codebase
we use to evaluate our own models. We find that, despite using the same evaluation
configuration and overall evaluation codebase as Tülu 3 (Appendix B), re-running with the
current version slightly improves Tülu-3-8B-DPO’s performance numbers compared to the
numbers reported in the original paper (Lambert et al., 2024).
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G.6 Analysis Experiments

Data. To construct the 21 preference datasets used in our analysis experiments on delta
magnitude and chosen response quality, we use a 100k prompt random subset of the full
Tülu 3 dataset.

Hyperparameters. We follow the setup described in Appendix G.1. For our analysis
experiments on delta magnitude and chosen response quality, we tune learning rate in
{1e-7, 7e-8, 5e-8} and β ∈ {5, 10} when training with DPO. When training with SFT for
our chosen response quality experiments, we sweep learning rate in {5e-6, 1e-5, 1e-6} and
epochs in {1, 2}. For our experiments with GPT-4o annotations and OLMo-2-7B-SFT, we
tune hyperparameters as described in Appendix G.5.

Evaluation. We evaluate on all eleven benchmarks detailed in Appendix B: MMLU,
PopQA, MATH, GSM8k, IFEval, AlpacaEval 2, TruthfulQA, BigBenchHard, DROP, Codex
HumanEval, and Codex HumanEval+.

H Compute Details

All models are trained on either single H100 or A100 nodes. Training an 8B language
model with DPO on 100k preference pairs takes approximately 4-6 hours on one H100 node.
Supervised finetuning an 8B model on 100k data points takes approximately 2-4 hours on
one H100 node.
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Llama-3.2-3B-Instruct (no training baseline)

User: ...assuming the graph is Eulerian, determine the number of possible closed trails of length 7 (i.e.,
the number of Eulerian circuits of length 7) that the guide can choose from, if possible. (Note: A graph
is Eulerian if it has an Eulerian circuit, and it must satisfy certain conditions). If the tour guide decides
to add an additional attraction to the itinerary, represented by adding a new node and connecting it
with edges to 3 existing nodes, analyze how this change affects the Eulerian properties of the graph
and determine the new possible number of closed trails of length 7, if any exist.

Include bolded sections in your response.

Assistant: **Problem Analysis**

The problem asks for the number of possible closed trails (Eulerian circuits) in a graph with 50 nodes
and 100 edges, and then analyzing the effect of adding a new node and edges on the Eulerian properties
of the graph.

**Initial Graph Properties**

⟨text ommitted without sections for space⟩

**Initial Number of Eulerian Circuits**

⟨text without sections ommitted for space⟩

**Adding a New Node and Edges**

⟨text without sections ommitted for space⟩

**Conclusion**

The addition of a new node and edges to the graph does not allow for any Eulerian circuits of length 7,
since the new node introduces a constraint that cannot be satisfied. Therefore, the number of possible
closed trails of length 7 is 0.

After DPO training (3 sections chosen response / 2 sections rejected response)

User: ...assuming the graph is Eulerian, determine the number of possible closed trails of length 7 (i.e.,
the number of Eulerian circuits of length 7) that the guide can choose from, if possible. (Note: A graph
is Eulerian if it has an Eulerian circuit, and it must satisfy certain conditions). If the tour guide decides
to add an additional attraction to the itinerary, represented by adding a new node and connecting it
with edges to 3 existing nodes, analyze how this change affects the Eulerian properties of the graph
and determine the new possible number of closed trails of length 7, if any exist.

Include bolded sections in your response.

Assistant: **Initial Conditions **The graph **has 50 nodes** and **100 edges**, **satisfying the con-
ditions** of an Eulerian graph **with a degree** of at least **2** at **all** nodes **except** possibly
**one**.

**Eulerian Circuit Conditions**

For a graph to have an Eulerian circuit **(i.e.,** **an Eulerian path** **that** **loops** **back** **to**
**the** **starting** **node** **exactly** **once** **),** **all** **nodes** **must** **have** **even**
**degrees** **or** **the** **number** **of** **edges** **going** **into** **a** **node** **must** **be**
**equal** **to** **the** **number** **of** **edges** **leaving** **it** **exactly** **once** **for** **each**
**node** **except** **the** **starting** **and** **ending** **node** **( **in** **the** **case** **of** **a**
**closed** **trail** **or** **path** **of** **length** **greater** **than** **2** **)** **.

**New Graph Conditions**

**After** **adding** **a** **new** **node** **and** **edges** **to** **3** **existing** **nodes** **the**
**graph** **will** **no** **longer** **be** **Eulerian** **since** **not** **all** **nodes** **will** **have**
**even** **degrees** **any** **more** **the** **new** **node** **will** **have** **degree** **3** **and**
**two** **existing** **nodes** **will** **have** **degree** **4** **and** **the** **remaining** **46**
**nodes** **will** **have** **degree** **2** **or** **more** **than** **2** **.

**Conclusion**

The **initial** **graph** **had** **the** **potential** **for** **Eulerian** **circuits** **of** **length**
**7** **but** **the** **new** **graph** **does** **not** **satisfy** **the** **conditions** **for** **an**
**Eulerian** **graph** **any** **more** **the** **number** **of** **closed** **trails** **of** **length**
**7** **is** **** **0** **.**

Figure A1: DPO training massively increases the number of sections generated by the model
(from 5 to 89 in this example). Most notably, the increase extrapolates beyond the number of
sections (i.e., absolute quality) of the chosen response (3 sections).
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Prompt:

Dani brings two and half dozen cupcakes for her 2nd-grade class. There are 27 students (including Dani), 1
teacher, and 1 teacher’s aid. If 3 students called in sick that day, how many cupcakes are left after Dani gives
one to everyone in the class?

Note: the correct answer is 4

Chosen Response (Generated by Qwen-2.5-3B-Instruct):

First, let’s determine the total number of cupcakes Dani brought. Since a dozen is equal to 12, two and a half
dozen cupcakes is calculated as follows:

2.5× 12 = 30

So, Dani brought 30 cupcakes.
Next, we need to determine the total number of people in the class that day. There are 27 students, 1 teacher,
and 1 teacher’s aid, but 3 students called in sick. Therefore, the number of students present is:

27− 3 = 24

Including the teacher and the teacher’s aid, the total number of people in the class is:

24 + 1 + 1 = 26

Dani gives one cupcake to each person in the class. Therefore, the number of cupcakes given out is 26. The
number of cupcakes left after giving one to each person is:

30− 26 = 4

So, the number of cupcakes left is:

4

Rejected Response (Generated by Qwen-2.5-1.5B-Instruct):

To determine how many cupcakes are left after Dani gives one to everyone in the class, we need to follow
these steps:

1. Calculate the total number of cupcakes Dani brought.
2. Determine the number of students who attended the class.
3. Calculate the total number of cupcakes given out.
4. Subtract the number of cupcakes given out from the total number of cupcakes brought.

First, let’s calculate the total number of cupcakes Dani brought. She brought two and a half dozen cupcakes.
Since one dozen equals 12 cupcakes, two and a half dozen is:

2.5× 12 = 30 cupcakes

Next, we need to determine the number of students who attended the class. There are 27 students in total, but
3 students called in sick. Therefore, the number of students who attended is:

27− 3 = 24 students

Now, we calculate the total number of cupcakes given out. Since Dani gives one cupcake to each student, the
total number of cupcakes given out is:

24 cupcakes

Finally, we subtract the number of cupcakes given out from the total number of cupcakes brought to find out
how many cupcakes are left:

30− 24 = 6 cupcakes

So, the number of cupcakes left after Dani gives one to everyone in the class is:

6

Figure A2: Qualitative example of a preference pair from our Qwen 3B over 1.5B weak
preference data. On this math prompt (ground-truth answer is 4 cupcakes), the Qwen
3B-generated chosen response contains a verifiably correct answer, while the Qwen 1.5B-
generated rejected response is incorrect (6 cupcakes).
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Prompt:

when were we first settled by humans

Chosen Response (Generated by Qwen-2.5-3B-Instruct):

The first humans to settle in what is now known as the world are believed to be the
Homo sapiens, who originated in Africa around 300,000 years ago. However, the first
modern humans to leave Africa and settle in other parts of the world are thought to
have occurred around 50,000 to 70,000 years ago.

Specifically:

1. Out of Africa: The first major migration of modern humans out of Africa occurred
around 50,000 to 70,000 years ago. This migration involved groups moving into
Europe, the Middle East, and eventually Asia.

2. Europe The first known settlement in Europe by modern humans is believed to
be in the Levant (modern-day Syria, Lebanon, and Israel), around 50,000 years
ago.

3. Asia: The first known settlement in Asia by modern humans is believed to be in
the Altai Mountains in Siberia, around 45,000 to 50,000 years ago.

4. Americas: The first known settlement in the Americas by modern humans is
believed to be around 15,000 to 17,000 years ago, with the earliest evidence found
in the Beringia region, which is now part of Alaska.

So, while the first humans originated in Africa, the first major settlements outside
of Africa occurred relatively recently in human history, with the earliest known
settlements in Europe, Asia, and the Americas occurring around 50,000 to 17,000 years
ago.

Rejected Response (Generated by Qwen-2.5-1.5B-Instruct):

The exact date when humans first settled on Earth is not known, as there is no evidence
of human presence on the planet before the formation of the solar system. However,
scientists believe that humans originated in Africa and then spread to other parts of
the world over a period of millions of years. The earliest known human fossils date
back to around 2. 5 million years ago, and the earliest known human settlements date
back to around 100, 000 years ago.

Figure A3: Qualitative example of a preference pair from our Qwen 3B over 1.5B weak
preference data. On this knowledge-seeking prompt, the Qwen 3B-generated chosen re-
sponse contains (1) more detail and (2) more structure compared to the Qwen 1.5B-generated
rejected response.
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Prompt:

In this task, you’re given a context, a question, three options, and an answer.
Your task is to classify whether the given answer is correct or not by providing
’Yes’ or ’No’, based on the context with commonsense reasoning about social situations.

Input: Context: Kai wanted to save money so he wen to the car dealership
and haggled and bought a used car.

Question: How would you describe Kai?
Options: (A) wasteful (B) extravagant (C) thrifty
Answer: C

Output:

Chosen Response (Generated by Qwen-2.5-3B-Instruct):

Yes

The given answer C (thrifty) is correct based on the context provided. Kai’s actions
of wanting to save money and haggling to buy a used car demonstrate frugality and
careful financial management, which aligns with the definition of being thrifty

Rejected Response (Generated by Qwen-2.5-1.5B-Instruct):

Yes

Figure A4: Qualitative example of a preference pair from our Qwen 3B over 1.5B weak
preference data. On this prompt which admits a brief answer, the Qwen 3B-generated
chosen response contains a chain-of-thought justification, while the Qwen 1.5B-generated
rejected response contains just an answer.
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