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Abstract—Federated Learning (FL) enables model training across
decentralized clients while preserving data privacy. However, band-
width constraints limit the volume of information exchanged, mak-
ing communication efficiency a critical challenge. In addition, non-
IID data distributions require fairness-aware mechanisms to prevent
performance degradation for certain clients. Existing sparsification
techniques often apply fixed compression ratios uniformly, ignoring
variations in client importance and bandwidth. We propose Fed-
Band, a dynamic bandwidth allocation framework that prioritizes
clients based on their contribution to the global model. Unlike
conventional approaches, FedBand does not enforce uniform client
participation in every communication round. Instead, it allocates
more bandwidth to clients whose local updates deviate significantly
from the global model, enabling them to transmit a greater number
of parameters. Clients with less impactful updates contribute
proportionally less or may defer transmission, reducing unnecessary
overhead while maintaining generalizability. By optimizing the
trade-off between communication efficiency and learning perfor-
mance, FedBand substantially reduces transmission costs while
preserving model accuracy. Experiments on non-IID CIFAR-10
and UTMobileNet2021 datasets, demonstrate that FedBand achieves
up to 99.81% bandwidth savings per round while maintaining
accuracies close to that of an unsparsified model (80% on CIFAR-
10, 95% on UTMobileNet), despite transmitting less than 1% of the
model parameters in each round. Moreover, FedBand accelerates
convergence by 37.4%, further improving learning efficiency under
bandwidth constraints. Mininet emulations further show a 42.6%
reduction in communication costs and a 65.57% acceleration in
convergence compared to baseline methods, validating its real-world
efficiency. These results demonstrate that adaptive bandwidth allo-
cation can significantly enhance the scalability and communication
efficiency of federated learning, making it more viable for real-
world, bandwidth-constrained networking environments.

Index Terms—Federated Learning (FL), Non-IID Data, Adaptive
Sparsification, Dynamic Bandwidth Allocation, Bandwidth-Aware
Client Prioritization, Communication-Efficient Learning, Conver-
gence Acceleration, Mininet Emulation.

I. INTRODUCTION

Federated Learning (FL) enables decentralized training of a
machine learning (ML) model, by leveraging data distributed
across remote clients, such as mobile phones or IoT devices [1].
This distributed paradigm enhances data privacy by ensuring that
raw data remains on local devices, eliminating the need to trans-
fer it to a central server. Despite this benefit, FL faces challenges
when deployed over real-world networks. Specifically, bandwidth
constraints and heterogeneous data distributions (non-IID) can
significantly hinder training performance.

Challenge #1: Bandwidth Constraints. In modern networks,
bandwidth is typically partitioned between control-plane data
(operational information) and user-plane data (content) [13]. In-
creased control plane activity reduces the data plane bandwidth,
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straining the volume of user data that can be carried. FL tasks,
such as traffic classification, fall under control plane operations,
adding to network overhead. Transmitting full model parameters
or gradients is bandwidth-intensive, especially with many clients,
risking network overload. However, imposing strict bandwidth
limits in FL can delay convergence and degrade performance.
The key question is: How do we ensure rapid and resource-
efficient FL training under stringent bandwidth constraints?

Challenge #2: Non-IID Client Data. FL. must cope with
data that is not independent and identically distributed (non-
IID). In such cases, each client holds data that diverges from
the global distribution, introducing heterogeneity. For instance,
clients in different regions may encounter distinct, skewed traf-
fic patterns (if the model addresses traffic classification). This
variability complicates global model development and makes
it difficult to ensure consistent performance across all clients.
Traditional FL algorithms often suffer from performance degra-
dation in highly skewed scenarios, as they treat all clients’
updates equally. Achieving robust global performance (i.e., high
average accuracy) while ensuring acceptable performance for un-
derrepresented or outlier clients remains particularly challenging
with non-IID data. Consequently, adaptive resource-allocation
strategies are needed to ensure both fairness and efficacy. The
key question is: How can we ensure good performance for all
clients, especially those with skewed data, while maintaining
global accuracy under strict bandwidth constraints?

Adaptive Resource Allocation and Bandwidth-Aware
Client Prioritization. Current FL approaches often apply fixed
or uniform sparsification techniques to reduce communication
costs, using the same compression level across all clients. How-
ever, these methods are suboptimal for non-IID data because they
ignore the varying significance of each client’s updates. This
leads to inefficient bandwidth utilization, degrading both local
and global performance. An adaptive framework is needed—one
that (i) prioritizes clients based on their contribution to the global
model, (ii) dynamically adjusts bandwidth allocation across
clients, and (iii) considers the distinct importance of each client’s
updates in the presence of data heterogeneity.

Proposed Solution: FedBand. To tackle these issues,
we propose FedBand (short for Federated Learning with
Strict Bandwidth Constraints), a dynamic sparsification and
bandwidth-aware allocation framework for FL. Unlike uniform
approaches, FedBand:

« Dynamically adjusts compression ratios based on both avail-

able bandwidth and the degree of non-IID skew across
clients, ensuring adaptive communication of updates.



« Allocates bandwidth proportional to the significance of each
client’s updates, prioritizing clients whose local models
deviate more from the global model.

« Enables flexible client participation, where different clients
contribute varying amounts of updates per round, improving
fairness and robustness while maintaining strong global
performance.

We evaluate FedBand on two datasets: CIFAR-10 [14] for
image classification and UTMobileNet2021 [5] for network traffic
classification. Our experiments show that FedBand achieves 80%
accuracy on CIFAR-10 and 95% accuracy on UTMobileNet2021,
closely matching the performance of uncompressed models while
outperforming uniform sparsification techniques under band-
width constraints. We point out that while centralized models
trained on CIFAR-10 with IID data typically exceed 99% accu-
racy, such results do not translate to realistic non-IID federated
learning scenarios, where data heterogeneity impacts perfor-
mance. Importantly, FedBand reduces communication costs by
an impressive 99.81% to 99.91% compared to an uncompressed
model and accelerates convergence by minimizing processing
overheads at the protocol level.

o Development of the FedBand Framework: We propose
FedBand, a federated learning framework designed for scal-
able and communication-efficient learning under strict band-
width constraints. FedBand dynamically adjusts client par-
ticipation and transmission to optimize learning efficiency
while ensuring fairness and adaptability to heterogeneous
data distributions.

o Novel Importance-Aware Bandwidth Allocation Strat-
egy: We introduce a new cost function that adaptively
distributes bandwidth by prioritizing clients generating the
most impactful updates. Unlike existing approaches, this
strategy enables heterogeneity-aware bandwidth allocation,
ensuring balanced learning contributions while significantly
improving communication efficiency.

o Extensive Performance Evaluations: Experiments on
CIFAR-10 and UTMobileNet2021 demonstrate that Fed-
Band achieves accuracy comparable to unsparsified models
while transmitting less than 1% of model parameters per
round, significantly outperforming uniform sparsification
approaches in bandwidth-limited environments.

o Realistic Network Emulations with Mininet: Using
Mininet-based emulations [27] with a full networking stack,
we show that FedBand accelerates convergence by 65.57%
and reduces bandwidth usage by 42.6% compared to base-
line methods, validating its efficiency in real-world network
conditions.

II. RELATED WORK

In this section, we summarize key research relevant to our
work, highlighting where they fall short in handling both non-
IID data and tight bandwidth constraints simultaneously.

Many FL approaches struggle with non-IID client data, which
can degrade performance for certain subsets of clients. Person-
alized FL methods [19], [21] seek to address this heterogene-
ity by tailoring models for different client distributions, often
relying on transfer learning [23] or meta-learning [22]. While
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Fig. 1: Average and Minimum Local Accuracies vs. number of rounds for
both Original Model (orange) and Fixed top-k method (blue) with FedAvg.

these approaches improve local accuracy, they typically assume
continuous data availability and do not explicitly address com-
munication efficiency, making them impractical for bandwidth-
limited environments.

Reducing communication overhead has been a major focus
in FL to cope with bandwidth scarcity. For instance, Top-k
sparsification, which transmits the largest k gradient magnitudes
[2], assumes static compression ratios and overlooks bandwidth
variability. CocktailSGD, utilized in large language models,
integrates top-K selection, and quantization [4], and FedPM
activates sparse subsets of weights with stochastic masks [10].
However, these approaches enforce a fixed sparsification pattern
across all clients, failing to incorporate client heterogeneity and
adaptive resource allocation.

Aggregation methods like Federated Averaging (FedAvg) op-
timize global accuracy but overlook minimum local accuracy,
which is crucial in non-IID settings. Our CIFAR-10 experiments
with 20 users and a VGG19 model highlight this limitation (see
Fig. 1). Over 500 communication rounds, a vanilla FL. model
without compression, using FedAvg for aggregation, (referred to
as the ”Original Model” or “Full Model”) achieves good global
accuracy but requires 10,960 MB of transmission per round,
with local accuracies frequently dropping to zero. Fixed top-
k sparsification reduces transmission to 60 MB per round but
fails to maintain minimum local accuracy, with many clients
experiencing zero accuracy even after multiple rounds.

Several recent methods attempt to improve FL performance in
non-IID settings. FedNova [16] and SCAFFOLD [18] enhance
performance in non-IID settings by normalizing updates and
mitigating client drift but do not account for tight bandwidth
constraints. Agnostic Federated Learning (AFL) [3] addresses
data heterogeneity by focusing on the worst-performing clients
but similarly overlooks bandwidth usage. More recent studies
address resource-limited FL, such as employing differential pri-
vacy in bandwidth- and energy-constrained contexts [6], adapting
communication intervals for dynamic bandwidth networks [15],
and exploring edge-based FL adaptation [7]. However, these
works do not fully address the interplay among client heterogene-
ity, parameter importance, compression, and strict bandwidth
allocation.

FedBand addresses these limitations by dynamically adapting
compression ratios based on bandwidth availability and client
data heterogeneity. Unlike fixed sparsification methods, FedBand
prioritizes critical client updates, maintaining high accuracy with
significantly reduced communication overhead, making it par-
ticularly effective for bandwidth-constrained, non-1ID federated



environments.

III. PROBLEM DEFINITION

A server coordinates with N clients sharing a fixed total
bandwidth B, where B represents the total available bits per
communication round. A fraction 8 (where 0 < § < 1) of this
bandwidth is allocated for training-related updates. For instance,
if B =0.01, then 1% of the total bandwidth is used for training
communications. Thus, in each round, clients collectively share
the bandwidth BB.

Traditional FL approaches, wherein clients transmit their entire
local models or gradients, become impractical under realistic
bandwidth constraints, leading to increased latency and pro-
longed convergence times. In such scenarios, allocating band-
width efficiently among clients is a fundamental challenge. Since
all clients share the same communication budget, determining
how to distribute this budget in a way that maximizes learning
efficiency while ensuring fairness remains an open problem.

Because of non-IID data distributions, some clients may have
updates that are crucial to the global model, while others may
contribute updates with minimal impact. Additionally, allocating
bandwidth equally among all clients may lead to inefficient
learning, as some clients may require more bandwidth to convey
essential updates. This motivates the need for an adaptive band-
width allocation strategy that can prioritize clients based on their
importance to the global model while still maintaining fairness.

To formalize this constraint, the server enforces a global
bandwidth budget, requiring that the total transmitted size sat-
isfies Zg\':ICi < BB, where C; is the size of the compressed
parameter set sent by client i, and i € {1,...,N}. A key fairness
consideration in FL is ensuring that no individual client is
disproportionately disadvantaged due to its data distribution. To
quantify model performance across heterogeneous clients, we
measure the fidelity of the global model on each client’s data
distribution. Specifically, given a global model g(-) and a client’s
validation dataset D}’al, we compute the empirical accuracy as:
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where 1{g(x) =y} is an indicator function that returns 1 if the
model correctly classifies x, and 0 otherwise. Since FL settings
involve limited bandwidth, we must balance model fidelity across
clients while adhering to a global bandwidth budget. Thus, the
bandwidth allocation must ensure that clients with highly skewed
data distributions receive sufficient communication resources to
improve their local model performance. Given a total available
bandwidth BB, our approach optimizes:

N
max min E p [1{g(x) =y} subject to ;Ci <BB (2)

ie{l,..,N} =1
where C; is the size of the compressed parameter set transmit-
ted by client i, and BB represents the total bandwidth allocated
for training updates in each round. This formulation ensures that
bandwidth allocation prioritizes fairness by improving the worst-
performing clients, thereby enhancing overall model robustness
in heterogeneous FL settings.

However, achieving this fairness goal under strict bandwidth
constraints is challenging. The key issue is how to dynamically
allocate the available bandwidth BB across N clients while
accounting for data heterogeneity. Due to the non-1ID nature of
client data, some clients generate updates that are significantly
more impactful to the global model in terms of improving
accuracy while maintaining fairness. Consequently, a naive equal
bandwidth allocation may lead to suboptimal convergence and
fairness. The following section introduces our proposed solution,
which adaptively adjusts bandwidth allocation based on client
importance, data heterogeneity, and resource availability.

IV. DETAILS OF FEDBAND

FedBand is an FL framework designed to handle both strict
bandwidth constraints and non-IID client data. Its key novelty
lies in two intertwined mechanisms:

(i) Adaptive bandwidth allocation, where clients receive
bandwidth in proportion to their importance score, deter-
mined via gradient norm or validation loss.

(ii) Dynamic sparsification, where each client transmits only
its top-k most significant parameters, where k is dynamically
determined based on the client’s allocated bandwidth. This
reduces communication overhead while preserving model
accuracy.

By first computing each client’s importance (either via the L2
norm of its gradient or its validation loss), FedBand dynamically
assigns a fraction of the limited bandwidth to prioritize impactful
updates. Clients with higher importance scores receive a larger
bandwidth allocation and, correspondingly, can transmit more
parameters. Figure 2 and Algorithm 1 outline FedBand’s round-
by-round process, described in detail below.

A. Overview and Key Assumptions

We adopt a synchronous FL setting, where the server coordi-
nates communication rounds across clients—a common approach
in FL literature [25]. Each round has a fixed bandwidth pool
BB, which is shared among participating clients. While real-
world networks employ various resource-sharing mechanisms,
we assume that the server can allocate fractional bandwidth B;
to each client i. This assumption allows us to focus on opti-
mizing bandwidth allocation across clients rather than modeling
lower-layer wireless constraints such as spectrum contention or
interference.

Additionally, we assume that downlink bandwidth is uncon-
strained during model transmission from the server to clients. In
many practical scenarios (e.g., cell towers, satellites), downlink
broadcasts naturally incur less overhead than uplink transfers.
However, we acknowledge that this assumption may not hold
in every real-world setting and leave the study of downlink
bandwidth limitations for future work. Our approach nevertheless
remains applicable to a wide range of network environments
where bandwidth is dynamically shared among users.

B. Max-Min Optimization Approach

Recall from Section III that our objective is to maximize the
minimum local accuracy while satisfying the constraint Y~ | C; <
BB. FedBand achieves this via an iterative heuristic: in each



round, clients are ranked by an importance score, and bandwidth
is allocated accordingly to maximize the global model’s overall
improvement.

Why prioritize outlier (high-loss or high-norm) clients?
Allocating additional bandwidth to high-loss or high-norm clients
may seem counterintuitive, but our findings indicate that targeting
these underperforming clients early leads to faster global con-
vergence. By prioritizing clients with significant deviations from
the global model, FedBand ensures that their updates—which
often contain critical information reflecting diverse data dis-
tributions—are incorporated promptly. This strategy improves
worst-case accuracy, enhances gradient diversity, and accelerates
overall training efficiency, leading to better generalization in
heterogeneous FL environments.

Algorithm 1 FedBand Algorithm

1: Input: Clients N = {1,...,N}, Total Bandwidth B, Fraction f3, Cache Table CT, Initial
Global Model Bg1opal

2: Output: Updated Global Model 6yjopai
3: Step 0: Server Initialization
4: Broadcast initial model Byjopa to all clients
5: Set equal bandwidth B; = ﬁWB for all clients in the first round
6: for each round r do
7 for each client i in parallel do
8 Evaluate Byjopa On local validation set and compute oss]
9 Train locally and compute gradients G;
10: Compute importance score S; = ||g;|| or S; = loss]
11: Compress updates C; based on allocated bandwidth B;
12 Transmit {S;,C;} to the server
13 end for
14 Step 1: Server Aggregation and Model rUpdate
15 Compute aggregation weights w; = 1@; —
e 1o,
16 Update Ogiobal < Oglobal + Lic Wi Ci
17: if r > 1 then
18: Step 2: Adaptive Bandwidth Allocation
19: Compute total importance Sy = Y, S
20: Update bandwidth B; = Slf):'al x BB
21: end if
22: Broadcast updated model 8gopa1 and new bandwidth allocations B; to clients
23: end for

C. Round-by-Round Workflow

Algorithm 1 summarizes FedBand’s procedure, which we
break down into:

(A) Server Initialization: The model architecture is prede-
termined and static during training. The server broadcasts an
initial, untrained model to all clients. Uplink communication is
bandwidth-constrained and carefully managed. In the first round,
the server allocates equal bandwidth B; = %B to every client and
broadcasts this allocation.

(B) Local Model Assessment: Each of the N clients main-
tains fixed training and validation datasets. In round r, upon re-
ceiving the global model, each client evaluates it on its validation
set to compute local accuracy (acc}) and local loss (loss}). The
client then performs local training (e.g., one or more epochs of
gradient descent) to calculate gradients G;. Finally, it transmits
lossi to the server, enabling the server to gauge each client’s
importance in updating the global model.

(C) Computing Importance Scores and Bandwidth Alloca-
tion: Initially, the total available bandwidth (8B) is equally dis-
tributed among clients. However, in subsequent rounds, FedBand
dynamically reallocates bandwidth based on each client’s impor-
tance score S;, which quantifies its contribution to improving

the global model. Each client’s importance score S; is computed
using one of two possible metrics:

o Gradient Magnitude (||g;||): The L2 norm of the client’s
gradient updates, given by ||g;|| = ):jg% ;» where g;;
represents the j-th gradient element of client i. A higher
norm indicates larger deviations from the global model,
suggesting that the client has significant information to
contribute.

« Validation Loss (loss;): The client’s local loss on its
validation dataset (distinct from training loss) measured
after receiving the global model and before local training. It
indicates the global model’s generalization to client-specific
data and highlights distribution shifts. A higher value signals
poorer generalization and higher client uniqueness, guiding
the server to allocate more bandwidth to improve the client’s
contribution.

After computing S; for all clients, the server normalizes these
scores and allocates bandwidth proportionally:

S;

Bi=—x—=
j=1 Sj

x BB. 3)

This adaptive allocation ensures that clients contributing the
most relevant and diverse updates receive more bandwidth,
thereby enhancing the global model’s performance. The allocated
bandwidth values B; are broadcast to clients at the start of each
round.

(D) Dynamic Compression Ratio Optimization and Gradi-
ent Transmission: FedBand dynamically determines how many
gradient parameters each client can send in each communi-
cation round, ensuring efficient bandwidth utilization. Because
full gradient transmission is impractical under strict bandwidth
constraints, clients must compress their updates.

FedBand employs sparsification instead of alternative com-
pression techniques such as quantization. Quantization reduces
precision across all parameters uniformly, which can degrade
important updates [17], while structured pruning removes pre-
defined sets of weights without considering real-time importance.
Sparsification, particularly Top-K selection, allows clients to
transmit only the most significant updates based on their available
bandwidth, maximizing impact while minimizing communication
overhead. The process unfolds as follows:

« Dynamic Bandwidth Allocation: The total available band-
width is shared across all clients, and each client is assigned
an individual bandwidth fraction B; based on its importance
score. This allocation varies from round to round as Fed-
Band dynamically reassigns bandwidth.

« Bandwidth to Parameter Mapping: Given its allocated
bandwidth B;, each client determines how many gradient
updates it can afford to transmit. The available bandwidth
(in MB) is first converted to bits, then divided by the
number of bits required per transmitted parameter, which
includes both its numerical value and associated metadata
(such as indices for sparsification). This ensures that each
client efficiently utilizes its bandwidth while transmitting
only the most critical updates. Since B; changes dynamically
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Fig. 2: Workflow of FedBand.

each round, the number of transmittable parameters and the
corresponding compression ratio also adapt accordingly.

o Compression Ratio Calculation: Since clients operate
under different bandwidth constraints, each client computes
its own compression ratio—the fraction of model parameters
it can transmit in the given round. For example, if a client
can send only 10,000 out of 1,000,000 model parameters,
its compression ratio is 0.01 (1%). Because bandwidth al-
locations change every round, these ratios vary dynamically
both across clients and over time.

« Selecting and Transmitting the Most Significant Param-
eters: Instead of selecting parameters arbitrarily, FedBand
applies a sparsification strategy (e.g., top-K selection) to
prioritize transmitting only the most significant gradient
updates (those with the highest magnitudes). Each client
determines the exact number of gradients it can send based
on its bandwidth B;, ensuring that communication resources
are spent on the most impactful updates. Unlike uniform
sparsification, where all clients transmit the same number
of gradients, FedBand dynamically adjusts gradient trans-
mission based on importance scores. This dynamic strategy
ensures an efficient use of bandwidth for transferring critical
updates while suppressing those that contribute little to the
training process.

« Memorization via Caching: To optimize efficiency and
avoid redundant calculations, FedBand employs a cache-
based memorization mechanism. If a client’s allocated band-
width B; in a new round is similar to a past value, the
previously computed compression ratio is reused instead
of being recalculated from scratch. This technique reduces
computational overhead and speeds up adaptation to fluctu-
ating bandwidth conditions.

(E) Aggregating Received Parameters: After the clients
send their sparsified gradients A6;, the server aggregates them to
update the global model. Unlike standard FedAvg, which weights
updates by sample size, FedBand prioritizes updates from clients
with higher validation losses to improve minimum local accuracy,

aligning with the objective in (2). The global model update is:

6global — eglobal + Z wi - A6; “4)
e?
. . . . . loss;
where, AQ; is the sparse gradient from client i, w; = m,

and & is the set of participating clients in the current round.
The weight w; scales the update based on the client’s normal-
ized validation loss. This ensures that underperforming clients
contribute more to the global model, enhancing robustness in
non-IID environments. Note that if a client cannot send gradients
due to bandwidth limits, its gradients are excluded.

V. Experiments and Results

We evaluate FedBand in both simulated and emulated en-
vironments to comprehensively analyze its performance under
realistic bandwidth constraints and non-IID settings. Our
experiments examine accuracy, fairness, and convergence effi-
ciency, comparing FedBand against established baselines.

Simulation Environment: We conduct large-scale simulations
using Python and PyTorch on a server with dual AMD EPYC
7543 32-Core Processors and 944GB RAM running Ubuntu
20.04 LTS. The number of clients, communication rounds,
and bandwidth constraints are configured to reflect practical
FL deployments. Each client locally trains on its dataset and
transmits updates per communication round. Performance met-
rics are recorded over multiple rounds to evaluate convergence
trends, impact of non-IID data, and efficiency under strict
bandwidth constraints, following established FL benchmarking
practices [1], [25], [26].

Emulation Environment: To validate our results in a realistic
network setting, we used Mininet to emulate FL conditions with
variable bandwidth, delays, and packet loss. Bandwidth was
managed via Hierarchical Token Bucket (HTB) queuing, and
the FL cycle includes GPU-based model training followed by
server-side aggregation. CPU resources were carefully controlled
to ensure fair allocation throughout the emulation.

In both environments, we set total bandwidth B to match
the uncompressed size of client models per round, representing



transmission without sparsification. We defined B as a fraction
of B (e.g., B =0.05 or B =0.01, corresponding to 5% or 1%
of B) to simulate realistic constraints, with dynamic allocation
based on validation loss or gradient norms (refer to Section IV).

To model realistic client heterogeneity, we introduce non-IID
distributions using a Dirichlet distribution with concentration
parameter « to control class imbalance across clients [8]. Clients
received varying subsets of classes, with random sample sizes
scaled to the total dataset size. Minimum thresholds ensured
no client was left without data, producing non-IID distributions
where both class types and sample counts varied across clients.

Baselines for Comparison: We compared FedBand with five
baselines, all of which use weighted FedAvg for aggregation, as
detailed in Section IV:

1) OrgUl1 (Original Unsparsified without bandwidth limit):
The full model is transmitted without compression, repre-
senting the upper performance bound.

2) OrgU2 (Original Unsparsified with bandwidth limit):
The full model is transmitted under bandwidth constraints,
showing the impact of limited capacity.

3) Fixed top-k sparsification: Transmits the largest gradients,
with each client sending a fixed number of parameters per
round.

4) FedProx (Full Model Transmission): A variant of FedAvg
that modifies the local training process by introducing
a proximal term to constrain client updates and improve
stability in non-IID settings [9]. We evaluate it with two
regularization values (4 = 0.1 and u = 1.0), where clients
send the full model without bandwidth constraints.

5) Sparse FedProx (Sparsified with bandwidth limit): A
bandwidth-limited version of FedProx, where top-k spar-
sification is applied while maintaining its proximal term
(u=0.1and p =1.0).

Our evaluations focus on three metrics: 1) Average Local Ac-
curacy: Mean accuracy across all clients’ validation datasets. 2)
Minimum Local Accuracy: The lowest accuracy among clients,
reflecting fairness and generalizability. 3) Time to Convergence:
Time required for the model to converge, indicating training
efficiency.

Why Local Accuracies? In FL, especially with non-1ID data,
client updates can vary significantly, leading to performance
disparities. Evaluating both average and minimum local accuracy
across all clients provides a balanced view: average accuracy
measures overall model effectiveness, while minimum accuracy
highlights fairness by ensuring no client is severely under-
performing. This captures the trade-off between maximizing
accuracy and maintaining equitable performance.

Research Question:. We explore the following: How does
FedBand’s performance—measured by average and minimum ac-
curacy—compare with other baselines, especially under varying
data skew and realistic strict bandwidth constraints?

Datasets. We use the CIFAR-10 for image classification and
UTMobileNet2021 for traffic classification. Each experiment is
repeated five times with different random seeds, and results are
averaged for statistical robustness.

The CIFAR-10 dataset [14] contains 60,000 images across ten
classes, with 50,000 for training and 10,000 for testing.

The UTMobileNet2021 dataset [5] includes traffic data from
14 applications, exhibiting class imbalance (e.g., 391 samples
for YouTube vs. 21,004 for Facebook), leading to skewed rep-
resentation across applications. To mitigate this imbalance, we
apply Synthetic Minority Over-sampling Technique (SMOTE)
[11] for underrepresented classes and Random Undersampling
(RUS) [12] for overrepresented ones. The sampling threshold
is set near the average class size to balance representation while
avoiding excessive training overhead.

A. Results with the CIFAR-10 Dataset

Our experiments with the DenseNet169 model [20] on 100
simulated clients evaluate FedBand’s performance under varying
data skew and bandwidth constraints. Each client performs
1,000 iterations over 3 epochs. The total available bandwidth
per round is set to B = 5,400MB, which corresponds to the
full size of the model if transmitted without compression in
each communication round. For FedBand, bandwidth is allocated
dynamically based on gradient norms, which serve as importance
scores to prioritize clients with more significant updates. Note:
Due to space limitations, not all tables and figures are reported
here, but the trends consistently align with the reported results.

1) Impact of Data Heterogeneity and Bandwidth Constraints:
Table I presents the accuracy results across different levels of
data heterogeneity (Dirichlet parameter ¢) and bandwidth con-
straints (). The results demonstrate that FedBand consistently
outperforms sparsified baselines while closely matching fully
unsparsified baselines (OrgUl and FedProx with full model
transmission), demonstrating its ability to maintain high accuracy
while significantly reducing communication overhead.

Comparison with Fully Unsparsified Models (OrgUl1, Fed-
Prox): FedBand achieves accuracy comparable to OrgUl and
FedProx (Full Model) while transmitting only SMB per round
under stricter bandwidth constraints and 10MB per round under
more relaxed conditions, significantly less than the 5,400MB
required by unsparsified models (Table I). For instance, at o =
20.0, FedBand attains 80% average accuracy, matching OrgU1
and FedProx (¢ = 1.0,0.1), while using 99% less communication
bandwidth (see Fig. 3). Even at high data skew (a = 0.5),
FedBand achieves 79% average accuracy, closely matching the
performance of unsparsified baselines. These results underscore
FedBand’s capability to maintain high accuracy under extreme
bandwidth constraints.

Comparison with Sparsification-based Baselines (Fixed
Sparsification, Sparse FedProx): FedBand consistently outper-
forms Fixed Sparsification and Sparsified FedProx (1 =1.0,0.1)
across all evaluated conditions, with the gap widening as data
becomes increasingly non-IID. At 8 = 0.0018, o = 20.0, Fed-
Band surpasses Sparse FedProx (1 = 1.0) by 12% in average
accuracy (82% vs. 70%) and 20% in minimum accuracy (74%
vs. 54%). Under even tighter constraints (f = 0.0009, o = 0.5),
FedBand maintains a substantial advantage, reaching 77% av-
erage accuracy, significantly outperforming Sparse FedProx’s
60%, and achieves 60% minimum accuracy compared to Sparse
FedProx’s 48% (As shown in Fig. 4). While FedProx attempts
to address heterogeneity through proximal regularization, this
approach alone is insufficient under strict bandwidth constraints
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Fig. 5: UTMobileNet: Avg. and min. accuracies, 8 = 0.0008, SMB per round for Fixed
sparsification, Sparse FedProx, and FedBand, while OrgU1 ”Original” and FedProx send the
full model 5,664MB with different & values.

due to its uniform sparsification, highlighting FedBand’s superior
adaptability.

2) Efficiency of Communication and Training Convergence:
We evaluate convergence efficiency by comparing accuracy ver-
sus training time under identical bandwidth constraints. Our anal-
ysis reveals that while full-model transmission methods (OrgU2
and FedProx Full) incur significant communication overhead,
leading to slower convergence, FedBand achieves comparable
accuracy with drastically reduced transmission costs. At 30,000
seconds, with B = 0.0009 and a = 0.5, FedBand reaches a
minimum accuracy of 60%, significantly surpassing Fixed Spar-
sification’s 42% and OrgU2’s lower accuracy (32%) under the
same constraints. This demonstrates FedBand’s capability to en-
hance convergence by selectively transmitting the most impactful
updates, thereby effectively managing communication overhead.
Additionally, FedBand exhibits superior training efficiency com-
pared to FedProx. Specifically, FedProx requires nearly twice
the computational time per round due to its proximal regu-
larization term, whereas FedBand completes each training round
approximately 1.5x faster. These results indicate that FedBand’s
dynamic bandwidth allocation not only reduces communication

Round

Round

Fig. 6: UTMobileNet: Avg. and min. accuracies, 8 = 0.0005, 3MB per round for Fixed
sparsification, Sparse FedProx, and FedBand, while OrgU1 “Original” and FedProx send the
full model 5,664MB with different & values.

overhead but also accelerates training convergence by prioritizing
updates critical to model improvement.

3) Dynamic Compression Ratio Adaptability and Scalability:
A key advantage of FedBand is its dynamic adjustment of
compression ratios (CR) according to both bandwidth constraints
(B) and data heterogeneity (). As illustrated in Fig. 7, at
B =0.0018, FedBand’s CR ranges from 0.0006-0.0012 (o =
20.0) but dips to 0.0002-0.0011 (o = 0.5), reflecting selective
bandwidth allocation to more impactful clients under higher
skew. Under stricter constraints (§ = 0.0009), CR narrows to
0.0003-0.0006 (a = 20.0) and can reach 0.0 when & = 0.5. This
indicates that in extreme cases where both bandwidth is highly
limited and data is significantly skewed, FedBand may allocate
no bandwidth to clients whose updates provide minimal or no
contribution to the global model. Instead of wasting bandwidth
on uninformative updates, FedBand prioritizes transmission from
clients with more critical updates, ensuring efficient use of
available resources. In contrast, static methods (Fixed, Sparse
FedProx) apply fixed CRs (0.00104 at f = 0.0018, 0.00052 at
B = 0.0009) regardless of skew, often leading to suboptimal
performance in heterogeneous conditions. By continuously ad-



justing CR per client and round, FedBand balances accuracy,
fairness, and communication overhead while scaling effectively
as the number of clients grows, thus avoiding the inefficiencies
of uniform allocation.

Compression Ratios Across Different alpha and beta values
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Fig. 7: Sample illustration of dynamic compression ratio variations on
CIFAR-10 under different o (data skew) and 3 (bandwidth) conditions.

B. Results with the UTMobileNet2021 Dataset

Our experiments with the UTMobileNet2021 dataset involved
45 participants, each performing 1000 training iterations over
3 epochs using a custom ResNet50 model [24] for one-
dimensional traffic data. The total bandwidth B was set to
5,664MB per round, corresponding to the full size of the model if
transmitted without compression in each round. Bandwidth was
allocated based on clients’ validation loss as importance score,
prioritizing critical updates. Again, due to space constraints, only
selected tables and figures are included, with omitted results
aligning with reported trends.

1) Impact of Data Heterogeneity and Bandwidth Constraints:
Table I summarizes accuracy under varying data skew (&)
and bandwidth constraints (). FedBand consistently matches
or slightly exceeds full-model baselines (OrgU1, FedProx) and
Sparse FedProx in average accuracy, and clearly outperforms
Fixed sparsification in both average and minimum accuracy.

Comparison with Fully Unsparsified Models (OrgUl1, Fed-
Prox): FedBand closely matches OrgU1 and FedProx, achieving
comparable or higher minimum and average accuracies despite
significant bandwidth reduction. For instance, at § = 0.0008 and
moderate skew (& = 0.4), FedBand attains a minimum accuracy
of 89%, notably surpassing OrgU1 (72%) and FedProx (80%)
(see Fig. 5). This improvement indicates FedBand’s effective
bandwidth prioritization of critical updates.

Interestingly, FedProx performs better in this 1D traffic clas-
sification scenario compared to it’s behavior in image classi-
fication, particularly under non-IID conditions. This enhanced
performance arises from the simpler patterns and more dis-
tinguishable features present in 1D traffic data, allowing the
proximal regularization term in FedProx to better manage local
update divergence and client heterogeneity.

Comparison with Sparsification-based Baselines (Fixed
Sparsification, Sparse FedProx): FedBand consistently outper-
forms Fixed sparsification across varying levels of skew. For in-

stance, at B =0.0008, o = 0.4, FedBand achieves a 7% improve-
ment in minimum accuracy compared to Fixed sparsification
(89% vs. 82%). Moreover, Sparse FedProx performs similarly
to FedBand in average accuracy but lags behind in minimum
accuracy under more skewed conditions (¢ = 0.1) (see Fig.
6), reflecting FedBand’s superior adaptability to heterogeneous
environments.

2) Efficiency of Communication and Training Convergence:
Similar to CIFAR-10 results, FedBand shows notable con-
vergence speed advantages by dynamically prioritizing critical
updates. Under bandwidth constraints (f = 0.0008), FedBand
achieves high accuracy significantly faster than Fixed sparsifi-
cation, Sparse FedProx, and OrgU2, due to selective bandwidth
allocation of impactful gradients. This demonstrates FedBand’s
effective strategy in reducing communication overhead and ac-
celerating convergence.

3) Dynamic Compression Ratio Adaptability and Scalabil-
ity: FedBand consistently exhibits dynamic compression ratio
(CR) adaptability to both bandwidth constraints () and data
heterogeneity (¢¢), mirroring trends observed with CIFAR-10.
Under moderate constraints (§ = 0.0008), the CR varies from
0.0 to 0.0121, broadening as data skew increases (@ = 0.1),
highlighting FedBand’s robustness in prioritizing critical updates.
Conversely, Fixed sparsification employs static CRs, limiting
adaptability. These results confirm FedBand’s superior efficiency
and scalability in dynamically allocating bandwidth, particularly
beneficial under highly heterogeneous and stringent bandwidth
constraints.

Emulation Results: To assess FedBand under real-world con-
straints, we conducted Mininet-based emulations using CIFAR-
10 with a network setup of 60MB bandwidth, Sms latency, and a
packet loss rate of 1073, simulating practical wireless conditions.
Unlike idealized PyTorch or TensorFlow simulations that neglect
network effects, Mininet models bandwidth contention, conges-
tion, and delay variations, offering a more realistic evaluation of
FL performance.

FedBand demonstrated significantly faster rounds than the
unsparsified model (OrgU1) by reducing transmission overhead
and optimizing packet delivery. Each round—including model
transmission, local training, gradient compression, and aggrega-
tion—completed in 7.32s for FedBand, compared to 21.26s for
OrgUl1, achieving a 2.9x speedup. This improvement stems from
FedBand’s selective gradient transmission, which minimizes net-
work congestion and prioritizes high-impact updates.

In an ideal setting without network overheads, FedBand com-
pleted a round in 6.64s, compared to 10.60s for OrgUl, indi-
cating that while network constraints introduce delays, FedBand
consistently improves communication efficiency. These results
highlight its practical benefits in real-world FL deployments,
mitigating communication bottlenecks and enhancing scalability
under bandwidth and latency constraints.

VI. Conclusions

We addressed the challenge of federated learning (FL) under
strict bandwidth constraints by proposing FedBand, a dynamic
sparsification method that adaptively adjusts compression ratios
based on client data heterogeneity and bandwidth limitations.



TABLE I: Accuracies with various models under different bandwidth
and o settings for CIFAR-10 and UTMobileNet2021 datasets.

Dataset | Condition Models Min Acc | Avg Acc
B 00018, OrgU1 *Original” 0.72 0.80
200 g riginal A .

FedProx u =1.0 0.72 0.80

FedProx u =0.1 0.74 0.80

Fixed top-k 0.56 0.74

FedBand (Ours) 0.74 0.82

Sparse FedProx u =1.0 0.54 0.70

Sparse FedProx u = 0.1 0.54 0.70

B 3%0518 OrgU1 “Original” 0.60 0.77

= FedProx u = 1.0 0.60 0.77

Q'g FedProx pu = 0.1 0.55 0.77

< Fixed top-k 0.51 0.70

O FedBand (Ours) 0.64 0.79

Sparse FedProx u = 1.0 0.50 0.65

Sparse FedProx u = 0.1 0.50 0.65

B O? 38%9 OrgU1 ”Original” 0.72 0.80

FedProx u=1.0 0.72 0.80

FedProx u =0.1 0.74 0.80

Fixed top-k 0.50 0.65

FedBand (Ours) 0.74 0.80

Sparse FedProx u = 1.0 0.49 0.63

Sparse FedProx u =0.1 0.49 0.63

p 3'%(.)28’ OrgU1 ”Original” 0.72 0.95

FedProx u =1.0 0.80 0.95

Fixed top-k 0.82 0.95

FedBand (Ours) 0.89 0.95

Sparse FedProx u =1.0 0.80 0.95

2‘.3‘ B 3'%(.)?8’ OrgU1 ”Original” 0.38 0.88

9 FedProx u =1.0 0.60 0.94

RS Fixed top-k 0.38 0.87

b FedBand (Ours) 0.49 0.90

= Sparse FedProx u = 1.0 0.48 0.90
= B 0.0005 —

o 0.4 ’ OrgU1 ”Original” 0.72 0.95

FedProx u=1.0 0.80 0.95

Fixed top-k 0.72 0.93

FedBand (Ours) 0.80 0.95

Sparse FedProx u =1.0 0.77 0.95

Extensive experiments demonstrated that FedBand consistently
outperforms static sparsification methods and sparsified FedProx
across various conditions, achieving higher accuracy, faster con-
vergence, and enhanced fairness. Furthermore, FedBand matches
the performance of unsparsified baselines (OrgU1 and FedProx
with full model transmission) while significantly reducing com-
munication overhead, highlighting its suitability for efficient and
scalable FL deployments in bandwidth-constrained and hetero-
geneous environments.
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