Learning Neural Networks with Distribution Shift:
Efficiently Certifiable Guarantees

Gautam Chandrasekaran® Adam R. Klivans® Lin Lin Lee #
UT Austin UT Austin UT Austin

Konstantinos Stavropoulos®
UT Austin

February 25, 2025

Abstract

We give the first provably efficient algorithms for learning neural networks with distribution shift.
We work in the Testable Learning with Distribution Shift framework (TDS learning) of [KSV24b], where
the learner receives labeled examples from a training distribution and unlabeled examples from a test dis-
tribution and must either output a hypothesis with low test error or reject if distribution shift is detected.
No assumptions are made on the test distribution.

All prior work in TDS learning focuses on classification, while here we must handle the setting of
nonconvex regression. Our results apply to real-valued networks with arbitrary Lipschitz activations
and work whenever the training distribution has strictly sub-exponential tails. For training distributions
that are bounded and hypercontractive, we give a fully polynomial-time algorithm for TDS learning one
hidden-layer networks with sigmoid activations. We achieve this by importing classical kernel methods
into the TDS framework using data-dependent feature maps and a type of kernel matrix that couples
samples from both train and test distributions.

2502.16021v1 [cs.DS] 22 Feb 2025

arxiv

“gautamc@cs.utexas.edu. Supported by the NSF Al Institute for Foundations of Machine Learning (IFML).

"klivans@cs.utexas.edu. Supported by NSF award AF-1909204 and the NSF Al Institute for Foundations of Machine
Learning (IFML).

fl1lee3@utexas.edu. Supported by the NSF Al Institute for Foundations of Machine Learning (IFML).

Skstavrop@cs.utexas.edu. Supported by the NSF Al Institute for Foundations of Machine Learning (IFML) and by
scholarships from Bodossaki Foundation and Leventis Foundation.

http://arxiv.org/abs/2502.16021v1

1 Introduction

Understanding when a model will generalize from a known training distribution to an unknown test distribu-
tion is a critical challenge in trustworthy machine learning and domain adaptation. Traditional approaches
to this problem prove generalization bounds in terms of various notions of distance between train and test
distributions [BDBCP06, BDBC ™10, MMRO09] but do not provide efficient algorithms. Recent work due to
[KSV24b] departs from this paradigm and defines the model of Testable Learning with Distribution Shift
(TDS learning), where a learner may reject altogether if significant distribution shift is detected. When the
learner accepts, however, it outputs a classifier and a proof that the classifier has nearly optimal test error.

A sequence of works has given the first set of efficient algorithms in the TDS learning model for well-studied
function classes where no assumptions are taken on the test distribution [KSV24b, KSV24a, CKK 124,
GSSV24]. These results, however, hold for classification and therefore do not apply to (nonconvex) re-
gression problems and in particular to a long line of work giving provably efficient algorithms for learn-
ing simple classes of neural networks under natural distributional assumptions on the training marginal
[GK19, DGK 120, DKKZ20, DKTZ22, CKM22, CDG 23, WZDD23, GGKS24, DK24].

The main contribution of this work is the first set of efficient TDS learning algorithms for broad classes of
(nonconvex) regression problems. Our results apply to neural networks with arbitrary Lipschitz activations
of any constant depth. As one example, we obtain a fully polynomial-time algorithm for learning one
hidden-layer neural networks with sigmoid activations with respect to any bounded and hypercontractive
training distribution. For bounded training distributions, the running times of our algorithms match the best
known running times for ordinary PAC or agnostic learning (without distribution shift). We emphasize that
unlike all prior work in domain adaptation, we make no assumptions on the test distribution.

Regression Setting. We assume the learner has access to labeled examples from the training distribu-
tion and unlabeled examples from the marginal of the test distribution. We consider the squared loss

Lp(h) = \/ E(z,y)~pl(y — h(x))?]. The error benchmark is analogous to the benchmark for TDS learning
in classification [KSV24b] and depends on two quantities: the optimum training error achievable by a clas-
sifier in the learnt class, opt = minsc7[Lp(f)], and the best joint error achievable by a single classifier on
both the training and test distributions, A = min e #[Lp(f") + Lp/(f’)]. Achieving an error of opt + A is
the standard goal in domain adaptation [BDBCP06, BCK*07, MMRO09]. We now formally define the TDS
learning framework for regression.

Definition 1.1 (Testable Regression with Distribution Shift). For €, € (0,1) and a function class F C
{R? — R}, the learner receives iid labeled examples from some unknown training distribution D over
R? x R and iid unlabeled examples from the marginal D/, of another unknown test distribution D’ over
R? x R. The learner either rejects, or it accepts and outputs hypothesis % : R? — R such that the following
are true.

1. (Soundness) With probability at least 1 — 4, if the algorithm accepts, then the output h satisfies
Lop/(h) < minger[Lo(f)] +minger[Lp(f) + Lo (f)] + €.
2. (Completeness) If D,, = DL, then the algorithm accepts with probability at least 1 — 4.

1.1 Our Results

Our results hold for classes of Lipschitz neural networks. In particular, we consider functions f of the
following form. Let o : R — R be an activation function. Let W = (W(l), e W(t)) with W () g Rsixsi-1
be the tuple of weight matrices. Here, so = d is the input dimension and s; = 1. Define recursively the
function f; : R — R% as f;(x) = W . o(fi—1(x)) with fi(z) = WO . 2. The function f : R — R

computed by the neural network (W, o) is defined as f(x) := f;(x). The depth of this network is ¢.

We now present our main results on TDS learning for neural networks.

Function Class Runtime (Bounded) Runtime (Subgaussian)
One hidden-layer Sigmoid Net poly(d, M,1/¢) dpoly(klog(M/e))
Single ReLU poly(d, M) - 20(1/¢) (poly (klog M/e)
Sigmoid Nets poly(d, M) - 90((log(1/e))*~") | gpoly (klog M (log(1 /€)'~ 1))
1-Lipschitz Nets poly(d, M) - 20k:VE2=1/0) dpoly (k2= log M/c)

Table 1: In the above table, & denotes the number of neurons in the first hidden layer. M denotes a bound
on the labels of the train and test distributions. One hidden-layer Sigmoid nets refers to depth 2 neural
networks with sigmoid activation. The bounded distributions considered in the above table have support on
the unit ball. We assume that all relevant parameters of the neural network are bounded by constants. For
more detailed statements and proofs, see (1) Corollaries C.21 and C.23 and Theorems C.20 and C.22 for the
bounded case, and (2) Theorems C.24 and C.25 for the Subgaussian case.

From the above table, we highlight that in the cases of bounded distributions with (1) one hidden-layer
Sigmoid Nets, and (2) Single ReLU with ¢ < 1/log d, we obtain TDS algorithms that run in polynomial
time in all parameters. Moreover, for the last row, regarding Lipschitz Nets, each neuron is allowed to
have a different and unknown Lipschitz activation. Therefore, in particular, our results capture the class of
single-index models (see, e.g., [KKSK11, GGKS24]).

In the results of Table 1, we assume bounded labels for both the training and test distributions. This assump-
tion can be relaxed to a bound on any moment whose degree is strictly higher than 2 (see Corollary D.2). In
fact, such an assumption is necessary, as we show in Proposition D.1.

1.2 Our Techniques

TDS Learning via Kernel Methods. The major technical contribution of this work is devoted to importing
classical kernel methods into the TDS learning framework. A first attempt at testing distribution shift with
respect to a fixed feature map would be to form two corresponding covariance matrices of the expanded
features, one from samples drawn from the training distribution and the other from samples drawn from the
test distribution, and test if these two matrices have similar eigendecompositions. This approach only yields
efficient algorithms for linear kernels, however, as here we are interested in spectral properties of covariance
matrices in the feature space corresponding to low-degree polynomials, whose dimension is too large.

Instead we form a new data-dependent and concise reference feature map ¢, that depends on examples from
both D, and D.,. We show that this feature map approximately represents the ground truth, i.e., some
function with both low training and test error (this is due to the representer theorem, see Proposition 3.7).
To certify that error bounds transfer from D,, to D.,, we require relative error closeness between covariance
matrix &' = E,p, [¢(x)¢(x) "] of the feature expansion ¢ over the test marginal with the corresponding
matrix ® = E,p_[6(x)p(x)] over the training marginal. We draw fresh sets of verification examples
and show how the kernel trick can be used to efficiently achieve these approximations even though ¢ is a
nonstandard feature map. We provide a more detailed technical overview and a formal proof in Section 3.1.

By instantiating the above results using a type of polynomial kernel, we can reduce the problem of TDS
learning neural networks to the problem of obtaining an appropriate polynomial approximator. Our final
training algorithm (as opposed to the testing phase) will essentially be kernelized polynomial regression.

TDS Learning and Uniform Approximation. Prior work in TDS learning has established connections
between polynomial approximation theory and efficient algorithms in the TDS setting. In particular, the ex-
istence of low-degree sandwiching approximators for a concept class is known to imply dimension-efficient
TDS learning algorithms for binary classification. The notion of sandwiching approximators for a function
f refers to a pair of low-degree polynomials pyp, Ddown With two main properties: (1) Pdown < f < Dup
everywhere and (2) the expected absolute distance between p,, and pyown Over some reference distribution
is small. The first property is of particular importance in the TDS setting, since it holds everywhere and,
therefore, it holds for any test distribution unconditionally.

Here we make the simple observation that the incomparable notion of uniform approximation suffices for
TDS learning. A uniform approximator is a polynomial p that approximates a function f pointwise, mean-
ing that |p — f| is small in every point within a ball around the origin (there is no known direct relationship
between sandwiching and uniform approximators). In our setting, uniform approximation is more conve-
nient, due to the existence of powerful tools from polynomial approximation theory regarding Lipschitz and
analytic functions.

Contrary to the sandwiching property, the uniform approximation property cannot hold everywhere if the
approximated function class contains high-(or infinite-) degree functions. When the training distribution
has strictly sub-exponential tails, however, the expected error of approximation outside the radius of ap-
proximation is negligible. Importantly, this property can be certified for the test distribution by using a
moment-matching tester. See Section 4.2 for a more detailed technical overview and for the full proof.

1.3 Related Work

Learning with Distribution Shift. The field of domain adaptation has been studying the distribution
shift problem for almost two decades [BDBCP06, BCKT07, BDBC™10, MMR09, DLLP10, MKFAS20,
RMH™20, KZZ24, HK19, HK24, ACM24], providing useful insights regarding the information-theoretic
(im)possibilities for learning with distribution shift. The first efficient end-to-end algorithms for non-trivial
concept classes with distribution shift were given for TDS learning in [KSV24b, KSV24a, CKK*24] and
for PQ learning, originally defined by [GKKM20], in [GSSV24]. These works focus on binary classifica-
tion for classes like halfspaces, halfspace intersections, and geometric concepts. In the regression setting,
we need to handle unbounded loss functions, but we are also able to use Lipschitz properties of real-valued
networks to obtain results even for deeper architectures. For the special case of linear regression, efficient
algorithms for learning with distribution shift are known to exist (see, e.g., [LHL21]), but our results capture
much broader classes.

Another distinction between the existing works in TDS learning and our work, is that our results require
significantly milder assumptions on the training distribution. In particular, while all prior works on TDS
learning require both concentration and anti-concentration for the training marginal [KSV24b, KSV24a,
CKK™24], we only assume strictly subexponential concentration in every direction. This is possible because
the function classes we consider are Lipschitz, which is not the case for binary classification.

Testable Learning. More broadly, TDS learning is related to the notion of testable learning [RV23, GKK23,
GKSV24b, DKK123, GKSV24a, DKLZ24, STW24], originally defined by [RV23] for standard agnostic
learning, aiming to certify optimal performance for learning algorithms without relying directly on any
distributional assumptions. The main difference between testable agnostic learning and TDS learning is
that in TDS learning, we allow for distribution shift, while in testable agnostic learning the training and test

distributions are the same. Because of this, TDS learning remains challenging even in the absence of label
noise, in which case testable learning becomes trivial [KSV24b].

Efficient Learning of Neural Networks. Many works have focused on providing upper and lower bounds
on the computational complexity of learning neural networks in the standard (distribution-shift-free) set-
ting [GKKT17, GK19, GGJ*20, GGK20, DGK*20, DKZ20, DKKZ20, DKTZ22, CGKM22, CKM22,
CDG™23, WZDD23, GGKS24, DK24, LMZ20, GMOV19, ZYWG19, VW19, AZLL19, BJW19, MR18,
GKLW19, GLM18, DLT18, GKM18, Tial7, LY17, BG17, ZSI"17, ZLJ16a, JSA15]. The majority of the
upper bounds either require noiseless labels and shallow architectures or work only under Gaussian training
marginals. Our results not only hold in the presence of distribution shift, but also capture deeper architec-
tures, under any strictly subexponential training marginal and allow adversarial label noise.

The upper bounds that are closest to our work are those given by [GKKT17]. They consider ReLU as well
as sigmoid networks, allow for adversarial label noise and assume that the training marginal is bounded but
otherwise arbitrary. Our results in Section 3 extend all of the results in [GKKT17] to the TDS setting, by
assuming additionally that the training distribution is hypercontractive (see Definition 3.9). This additional
assumption is important to ensure that our tests will pass when there is no distribution shift. For a more
thorough technical comparison with [GKKT17], see Section 3.

In Section 4, we provide upper bounds for TDS learning of Lipschitz networks even when the training
marginal is an arbitrary strictly subexponential distribution. In particular, our results imply new bounds
for standard agnostic learning of single ReLU neurons, where we achieve runtime dP°Y(1/€). The only
known upper bounds work under the Gaussian marginal [DGK20], achieving similar runtime. In fact, in
the statistical query framework [Kea98], it is known that dP°'Y(1/¢) runtime is necessary for agnostically
learning the ReLLU, even under the Gaussian distribution [DKZ20, GGK20].

2 Preliminaries

We use standard vector and matrix notation. We denote with R, N the sets of real and natural numbers
accordingly. We denote with D labeled distributions over R? x R and with D,, the marginal of D on the
features in R?. For a set S of points in R?, we define the empirical probabilities (resp. expectations) as
Pro.s[E(xz)] = ‘—;1' Y weg HE(x)} (resp. Exs[f(z)] = ﬁ > wes f(x)). We denote with S the labeled
version of S and we define the clipping function cly; : R — [—M, M], that maps a number ¢ € R either to
itself if t € [— M, M], or to M - sign(t) otherwise.

Loss function. Throughout this work, we denote with £p(h) the squared loss of a hypothesis / : R — R

with respect to a labeled distribution D, i.e., Lp(h) = \/ E(z,)~p[(y — h(x))?]. Moreover, for any function

f:R? — R, we denote with || f||p the quantity || f||p = \/Ezp,[(f(z))?]. For a set of labeled examples
S, we denote with Lg(h) the empirical loss on S, i.e., Lg(h) = \/l_éTI > (@y)es(y — h(x))? and similarly
for || f]]s-

Distributional Assumptions. In order to obtain efficient algorithms, we will either assume that the training
marginal D, is bounded and hypercontractive (Section 3) or that it has strictly subexponential tails in every
direction (Section 4). We make no assumptions on the test marginal D,.

Regarding the labels, we assume some mild bound on the moments of the training and the test labels, e.g.,
(a) that Eyp, [y4]7Ey~DL [y}] < M or (b) that y € [—M, M] a.s. for both D and D’. Although, ideally,
we want to avoid any assumptions on the test distribution, as we show in Proposition D.1, a bound on some
constant-degree moment of the test labels is necessary.

3 Bounded Training Marginals

We begin with the scenario where the training distribution is known to be bounded. In this case, it is known
that one-hidden-layer sigmoid networks can be agnostically learned (in the classical sense, without distri-
bution shift) in fully polynomial time and single ReLU neurons can be learned up to error O(m) in
polynomial time [GKKT17]. These results are based on a kernel-based approach, combined with results
from polynomial approximation theory. While polynomial approximations can reduce the nonconvex ag-
nostic learning problem to a convex one through polynomial feature expansions, the kernel trick enables
further pruning of the search space, which is important for obtaining polynomial-time algorithms. Our
work demonstrates another useful implication of the kernel trick: it leads to efficient algorithms for testing
distribution shift.

We will require the following standard notions:

Definition 3.1 (Kernels [Mer09]). A function K : R¢ x R — R is a kernel. If for any set of m points
x1,..., T, in RY the matrix (K(z;, x;))(i,j)em] 1S positive semidefinite, we say that the kernel K is posi-
tive definite. The kernel K is symmetric if for all z, 2’ € R?, K(z, 2') = K(2',).

Any PSD kernel is associated with some Hilbert space H and some feature map from R¢ to H.

Fact 3.2 (Reproducing Kernel Hilbert Space). For any positive definite and symmetric (PDS) kernel K, there
is a Hilbert space H, equipped with the inner product {-,-) : H x H — R and a function v : R — H such
that K(z,x') = ((x),v (")) for all z, 2" € RY. We call H the reproducing kernel Hilbert space (RKHS)
for K and) the feature map for K.

There are three main properties of the kernel method. First, although the associated feature map) may
correspond to a vector in an infinite-dimensional space, the kernel C(x, ') may still be efficiently evaluated,
due to its analytic expression in terms of «, ’. Second, the function class Fx = {x — (v,9(x)) : v €
H, (v,v) < B} has Rademacher complexity independent from the dimension of H, as long as the maximum
value of K(x,) for x in the domain is bounded (Thm. 6.12 in [MRT18]). Third, the time complexity of
finding the function in Fx that best fits a dataset is actually polynomial to the size of the dataset, due to
the representer theorem (Thm. 6.11 in [MRT18]). Taken together, these properties constitute the basis of
the kernel method, implying learners with runtime independent from the effective dimension of the learning
problem.

In order to apply the kernel method to learn some function class F, it suffices to show that the class F can
be represented sufficiently well by the class Fx.. We give the following definition.

Definition 3.3 (Approximate Representation). Let F be a function class over R?, £ : R? x R — R a
PDS kernel, where H is the corresponding RKHS and v the feature map for K. We say that F can be
(e, B)-approximately represented within radius R with respect to K if for any f € F, there is v € H with
(v,v) < Bsuch that |f(x) — (v, (x))| <€ forallz € RY: ||z||s < R.

For the purposes of TDS learning, we will also require the training marginal to have be hypercontractive
with respect to the kernel at hand. This is important to ensure that our test will accept whenever there is no
distribution shift. More formally, we require the following.

Definition 3.4 (Hypercontractivity). Let D, be some distribution over R?, let H be a Hilbert space and let
¥ : RY — H. We say that D is (1, C, £)-hypercontractive if for any ¢ € N and v € H:

Ex~p, [(v,9(2))*] < (C)* (Egnp,[(v, ¥(x))?])!

If C is the PDS kernel corresponding to 1, we also say that D,, is (K, C, £)-hypercontractive.

3.1 TDS Regression via the Kernel Method

We now give a general theorem on TDS regression for bounded distributions, under the following assump-
tions. Note that, although we assume that the training and test labels are bounded, this assumption can be
relaxed in a black-box manner and bounding some constant-degree moment of the distribution of the labels
suffices, as we show in Corollary D.2.

Assumption 3.5. For a function class F C {RY — R}, and training and test distributions D, D' over
R? x R, we assume the following.

1. F is (¢, B)-approximately represented within radius R w.rt. a PDS kernel € : R? x RY — R, for
some € € (0,1) and B, R > 1 and let A = Supg,|z|.,<r K(, T).

2. The training marginal Dy, (1) is bounded within {x : ||z||2 < R} and (2)is (K, C, {)-hypercontractive
for some C, 0 > 1.

3. The training and test labels are both bounded in [—M, M| for some M > 1.

Consider the function class F, the kernel X and the parameters €, A, B, C, M, £ as defined in the assumption
above and let § € (0, 1). Then, we obtain the following theorem.

Theorem 3.6 (TDS Learning via the Kernel Method). Under Assumption 3.5, Algorithm 1 learns the class
F in the TDS regression setting up to excess error 5e and probability of failure . The time complexity is
O(T) - poly(d, %, (log(1/6))¢, A, B,C*,2°, M), where T is the evaluation time of K.

The main ideas of our proof are the following.

Obtaining a concise reference feature map. The algorithm first draws reference sets Sef, S, from both
the training and the test distributions. The representer theorem, combined with the approximate representa-
tion assumption (Definition 3.3) ensure that the reference examples define a new feature map ¢ : R? — R?™
with ¢(x) = (K(=, 2))zes,. s, such that the ground truth f* = argmingec 7[Lp(f) + Lp/(f)] can be
approximately represented as a linear combination of the features in ¢ with respect to both Syer and S/,
ie., ||f* — (a*) |, and || f* — (a*)TngS;ef are both small for some a* € R?™. In particular, we have

the following.

Proposition 3.7 (Representer Theorem, modification of Theorem 6.11 in [MRT18]). Suppose that a function
f:R? = R can be (e, B)-approximately represented within radius R w.r.t. some PDS kernel K (as per
Definition 3.3). Then, for any set of examples S in {x € R® : ||x||y < R}, there is a = (az)zes € Rl
such that for p(x) =), g aK(z,x) we have:

|f —bplls < eand Z azaK(z,z) < B

x,zeS

Proof. We first observe that there is some v € H such that (v,v) < B and for p(x) = (v, ¥(x)) we have
lf — plls < e because by Definition 3.3, there is a pointwise approximator for f with respect to K. By
Theorem 6.11 in [MRT18], this implies the existence of p as desired.]

Note that since the evaluation of ¢ () only involves Kernel evaluations, we never need to compute the initial
feature expansion () which could be overly expensive.

Forming a candidate output hypothesis. We know that the reference feature map approximately represents
the ground truth. However, having no access to test labels, we cannot directly hope to find the corresponding
coefficient a* € R?™. Instead, we use only the training reference examples to find a candidate hypothesis p
with close-to-optimal performance on the training distribution which can be also expressed in terms of the
reference feature map ¢, as p = a ' ¢. It then suffices to test the quality of ¢ on the test distribution.

Algorithm 1: TDS Regression via the Kernel Method
Input: Parameters M, R, B, A,C,¢ > 1, ¢, € (0,1) and sample access to D, D,

c(mgﬁile)él log($), N = cmZA:%CMC log(4))**1, ¢ large enough constant

Draw m i.i.d. labeled examples S,¢ from D and m i.i.d. unlabeled examples S;Of from D.,;

if for some x € S/ ; we have ||x|2 > R then
| Reject and terminate;

Setm =

Let @ = (az)zcs,., be the optimal solution to the following convex program

p S (o X k)

(wvy)egref ZESrof
s.t. Z a20,K(z,w) < B, where a = (a;)zcs,,,
szesrcf

Draw N i.i.d. unlabeled examples Sy, from D, and N unlabeled examples S,
if for some x € S!,. we have ||z||2 > R then

ver

| Reject and terminate;

/.
from D,,;

Compute the matrix & = (i)z7w)z’wesmfus/ . with D, = + Y owes.., Kz, 2)K(z, w);
Compute the matrix &' = (‘i>;7w)z,wesrcfus’ . with @’Z,w =+ es Kz, 2)K(z, w);
Let p be the value of the following eigenvalue problem
max a' ®'a st a' Pa <1
acR2m
if p> 1+ =55 then
| Reject and terminate;
Otherwise, accept and output i : @ — h(z) = cly(p(z)), where p(x) = 3,5 a.K(z,z);

Testing the quality of reference feature map on the test distribution. We know that the function p* =
(a*) T ¢ performs well on the test distribution (since it is close to f* on a reference test set). We also know
that the candidate output @ ' ¢ performs well on the training distribution. Therefore, in order to ensure that
p performs well on the test distribution, it suffices to show that the distance between p and p* under the test
distribution, i.e., |@"¢—(a*) " ¢||p, , is small. In fact, it suffices to bound this distance by the corresponding
one under the training distribution, because fits the training data well and ||a" ¢ — (a*) " ¢||p, is indeed
small. Since we do not know a*, we need to run a test on ¢ that certifies the desired bound for any a*.

Using the spectral tester. We observe that ||a "¢ — (a*)TngQDw = (@ —a*)"®(a — a*), where & =
Egnp, [6(x)p(2) "] and similarly ||a ' ¢ — (a*)TngQD,w = (@ —a*)"®(a — a*). Since we want to obtain
a bound for all a*, we essentially want to ensure that for any a € R?>™ we have a' ®'a < (1 + p)a' ®a for
some small p. Having a multiplicative bound is important because we do not have any bound on the norm
of |la — a*||a.

To implement the test, and since we cannot test ® and @ directly, we draw fresh verification examples
Syers Ster from Dy, and DY, and run a spectral test on the corresponding empirical versions &, P’ of the
matrices ®, ®’'. To ensure that the test will accept when there is no distribution shift, we use the following
lemma (originally from [GSSV24]) on multiplicative spectral concentration for d, where the hypercontrac-
tivity assumption (Definition 3.4) is important.

Lemma 3.8 (Multiplicative Spectral Concentration, Lemma B.1 in [GSSV24], modified). Let D, be a
distribution over R% and ¢ : R — R™ such that Dy is (¢, C, {)-hypercontractive for some C.{ > 1
Suppose that S consists of N i.i.d. examples from Dy and let ® = Egpop,[d(x)p(z)"], and & =
+ > pes O(@)p(x) . For any e,6 € (0,1), if N > %(40 logy (3))¥*1, then with probability at
least 1 — 6, we have that

Foranya € R™:a' ®a € [(1 —¢)a' ®a, (1 +¢)a' da)

Note that the multiplicative spectral concentration lemma requires access to independent samples. However,
the reference feature map ¢ depends on the reference examples Sief, S/.¢. This is the reason why we do not

reuse Syef, S7¢, but rather draw fresh verification examples. For the proof of Lemma 3.8, see Appendix A.

We now provide the full formal proof of Theorem 3.6. The full proof involves appropriate uniform con-
vergence bounds for kernel hypotheses, which are important in order to shift from the reference to the
verification examples and back.

Proof of Theorem 3.6. Consider the reference feature map ¢ : R? — R*™ with ¢(z) = (K(z, 2)) .cs,.,u Sl
Let f* = argminge 7[Lp(f) + Lp/(f)] and fopy = argminser[Lp(f)]. By Assumption 3.5, we know
that there are functions p*, popt : RY — R with p*(x) = (v*,9¥(x)) and popt = (Vopt, ¥(x)), that uni-
formly approximate f* and fopt within the ball of radius R, i.e., Supgz|,<r |f*(x) — p*(x)| < €and

SUPg:||z|2<R | fopt (&) — popt (z)| < €. Moreover, (v*, v*), (Vopt, Vopt) < B.

By Proposition 3.7, there is a* € R?™ such that for 5* : R? — R with 5*(x) = (a*)"¢(x) we have
[f* = D" 8,r < 3€/2and [|f*—p*[|sr = < 3€/2. Let K be a matrix in R2m*2m quch that K, 4 = K(2z,w)
for z,w € Syer U S’ ot~ We additionally have that (a*)TK a* < B. Therefore, for any « € R we have

T

G@? = ¥ avE.e@))

2ESrefUS] ¢
<(X aw) Y a@)- W@), @)
2ESretUS] ¢ 2€85,6£US] ¢

= (a")'Ka* K(z,x) < B-K(z,z),

where we used the Cauchy-Schwarz inequality. For = with ||z||2» < R, we, hence, have (p*(z))? < AB
(recall that A = max||,<r K(z, T)).

Similarly, by applying the representer theorem (Theorem 6.11 in [MRT18]) for ppt, we have that there
exists a®® = (ag?),es., € R™ such that for pop; : R — R with popi(x) = D 2. aP'K(z,) we
have L5 (Popt) < Lg, (Popt) and 3 eq. a2 asP K (z,w) < B. Since p in Algorithm 1 is formed by

solving a convex program whose search space includes popt, we have

ES‘mf (P) < ES‘mf (Popt) < ES‘mf (Popt) (3.1)

In the following, we abuse the notation and consider @ to be a vector in R>™, by appending m zeroes, one
for each of the elements of S’ ;. Note that we then have a' Ka < B, and, also, (p(x))?2 < A-Bforall x
with [|z|]2 < R.

Soundness. Suppose first that the algorithm has accepted. In what follows, we will use the triangle inequal-
ity of the norms to bound for functions hy, ha, hs the quantity ||hy — ha||p by ||h1 — hs||p +||ha — hs||p. We
also use the inequality Lp(h1) < Lp(he) + ||h1 — he||p, as well as the fact that ||clas 0 hy — clas 0 hallp <

llclar © h1 — ha||p < ||h1 — ha||p. We bound the test error of the output hypothesis h : R? — [~ M, M] of
Algorithm 1 as follows.

Lp(h) < [[h—clar o f*[lp, + LD (f7)

Since (h(x) — cly(f*(x)))? < 4M? for all = and the hypothesis h does not depend on the set S’ ;, by
a Hoeffding bound and the fact that m is large enough, we obtain that ||h — clys o f*[|pr < [[h —clps o
f |57, + €/10, with probability at least 1 — 6/10. Moreover, we have ||h — cly o f*|lsr = < [|h —clys o

HS/ +[[p* = f*|ls: - We have already argued that ||p* — f*|[s, < 3¢/2.

In order to bound the quantity [|h — clas o p*||sr . we observe that while the function h does not depend
on Smf, the function p* does depend on S;Cf and therefore, standard concentration arguments fail to bound
the [[h — clys o p*|lsr in terms of ||h — clas o p*||p,. However, since we have clipped p*, and p* is of
the form (v*,), we may obtain a bound using standard results from generalization theory (i.e., bounds
on the Rademacher complexity of kernel-based hypotheses like Theorem 6.12 in [MRT18] and uniform
convergence bounds for classes with bounded Rademacher complexity under Lipschitz and bounded losses

like Theorem 11.3 in [MRT18]). In particular, we have that with probability at least 1 — /10
b —cla o p*llsr, < |Ih —clar o p*|[py, +€/10

The corresponding requirement for m = |S/ ;| is determined by the bounds on the Lipschitz constant of
the loss function (y,t) — (y — clys(t))?, withy € [-M, M] and ¢t € R, which is at most 5M, the overall
bound on this loss function, which is at most 4M/?, as well as the bounds A = MaAX g |||, <R K(x,x) and
(a*)" Ka < B (which give bounds on the Rademacher complexity).

By applying the Hoeffding bound, we are able to further bound the quantity || — clas o p*||p, by ||h —
clar o p*||s:.. + €/10, with probability at least 1 — 0. We have effectively managed to bound the quantity
[h—clarop®||s by [[h—clarop® |y, +€/5. This is important, because the set S{.., is a fresh set of examples
and, therefore, independent from p. Our goal is now to use the fact that our spectral tester has accepted. We

have the following for the matrix & = ((i),z,w)zwesrerS;ef with <i>’z,w =+ > ozes, K(x, 2)K(z, w).

||h—ClM Oﬁ*H?q‘llcr < ||]5 HS’

ver

=(a—a")'d(a—a"

Since our test has accepted, we know that (@ — a)T (a —a*) < (14 p)(a—a*)"®(a — a*), for the
matrix & = (D) 208,08, With B 05 = N zwesm K(x, z)C(x, w). We note here that having a
multiplicative bound of this form is important, because we do not have any upper bound on the norms of a
and a*. Instead, we only have bounds on distorted versions of these vectors, e.g., on a'" Ka, which does
not imply any bound on the norm of a, because K could have very small singular values.

Overall, we have that

1P = 0" llst., = 1P = 57 [[sver < \/p(2\|ﬁ\|%m +2/|5*1%,..)

< 4ABp < %

— 10

By using results from generalization theory once more, we obtain that with probability at least 1 — §/5 we
have ||p — p*||s... < [P — P*ls..; + €/5. This step is important, because the only fact we know about
the quality of p is that it outperforms every polynomial on the sample S;.¢ (not necessarily over the entire
training distribution). We once more may use bounds on the values of p and p*, this time without requiring

10

clipping, since we know that the training marginal is bounded and, hence, the values of p and p* are bounded
as well. This was not true for the test distribution, since we did not make any assumptions about it.

In order to bound ||p — p*||s..,, we have the following.

ref >

1D = D" l[s0er < L5, (D) + L3, (Lo f7) + 17 = P75,
< L5, (Popt) + L, (clo f5) + 1F" = P ll5es (By equation 3.1)
< L3, Popt) + L3, (clo f5) +[f* = 5"[|s,.

The first term above is bounded as Lg_, (Popt) < L St (claro fopt) + |lPopt — fopt || s..; » Where the second term
is at most € (by the definition of pop) and the first term can be bounded by Lp(fopt) + €/10 = opt + €/10,
with probability at least 1 — §/10, due to an application of the Hoeffding bound.

For the term Lg (cl o f*) we can similarly use the Hoeffding bound to obtain, with probability at least
1 —¢6/10 that Lg _(clo f*) < Lp(f*) + ¢/10.

Finally, for the term || f* — p*||s,.,. we have that || f* — p*||s.., < 3€/2, as argued above.

ref?

Overall, we obtain a bound of the form L, (h) < Lp(f*) = Lp/(f*) + Lp(fopt) + He, with probability at
least 1 — 9, as desired.

Completeness. For the completeness criterion, we assume that the test marginal is equal to the train-
ing marginal. Then, by Lemma 3.8 (where we observe that any (1, C, £)-hypercontractive distribution is
also (¢, C, £)-hypercontractive), with probability at least 1 — §, we have that for all @ € R?™, a'da <
%anﬁa < (1 + p)a' ®a, because E[®] = E[®'] and the matrices are sums of independent samples
of qﬁ(w)qﬁ(a:)T, where @ ~ D,. It is crucial here that ¢» (which recall is formed by using S,¢f, S;ef) does not
depend on the verification samples Sy, and S7., which is why we chose them to be fresh. Therefore, the

test will accept with probability at least 1 — 4.

ver?

Efficient Implementation. To compute a, we may run a least squares program, in time polynomlal in m.
For the spectral tester, we first compute the SVD of & and check that any vector in the kernel of $ is also i 1n
the kernel of &’ (this can be checked without computing the SVD of d'). Otherwise, reject. Then, let b3
be the root of the Moore-Penrose pseudoinverse of $ and find the maximum singular value of the matrix
$3d'dL. If the value is higher than 1 + p, reject. Note that this is equivalent to solving the eigenvalue
problem described in Algorithm 1. U

3.2 Applications

Having obtained a general theorem for TDS learning under Assumption 3.5, we can now instantiate it to
obtain TDS learning algorithms for learning neural networks with Lipschitz activations. In particular, we
recover all of the bounds of [GKKT17], using the additional assumption that the training distribution is
hypercontractive in the following standard sense.

Definition 3.9 (Hypercontractivity). We say that D is C-hypercontractive if for all polynomials of degree ¢

and t € N, we have that .

Ezwp [p()%] < (CH* (Epnp [p(z)?])".
Note that many common distributions like log-concave or the uniform over the hypercube are known to be
hypercontractive for some constant C' (see [CWO01] and [O’D14]).

In Table 2, we provide bounds on the parameters in Assumption 3.5 for sigmoid networks and L-Lipschitz
networks, whose proof we postpone to Appendix C (see Theorems C.17 and C.19 and Lemma C.14). Com-
bining bounds from Table 2 with Theorem 3.6, we obtain the results of the middle column of Table 1.

11

Representation Kernel

Bound (B) Bound (A)

Function Class Degree (¢)

Sigmoid Nets | O (RW'2(tlog(*L))! L log R) | 2¢ . WOWlos(2))"* (2R)%'¢

L-Lipschitz Nets o) ((WL)t—le\/E/e) (k + £)0® ROW

Table 2: We instantiate the parameters relevant to Assumption 3.5 for Sigmoid and Lipschitz Nets. We have:
(1) t denotes a bound on the depth of the network, (2) W is a bound on the sum of network weights in all
layers other than the first, (3) (e, B) and radius R are the approximate representation parameters, (4) k is
the number of hidden units in the first layer. The kernel function can be evaluated in time poly(d, ¢). For
each of the classes, we assume that the maximum two norm of any row of the matrix corresponding to the
weights of the first layer is bounded by 1. The kernel we use is the composed multinomial kernel M Két) with
appropriately chosen degree vector £. Here, £ equals the product of the entries of £. Any C'-hypercontractive
distribution is also (MK%), C, ¢) hypercontractive for ¢ as specified in the table. For the case of k = 1, the
bound B in the second row can be improved to 20,

4 Unbounded Distributions

We showed that the kernel method provides runtime improvements for TDS learning, because it can be
used to obtain a concise reference feature map, whose spectral properties on the test distribution are all we
need to check to certify low test error. A similar approach would not provide any runtime improvements
for the case of unbounded distributions, because the dimension of the reference feature space would not be
significantly smaller than the dimension of the multinomial feature expansion. Therefore, we can follow
the standard moment-matching testing approach commonly used in TDS learning [KSV24b] and testable
agnostic learning [RV23, GKK23].

4.1 Additional Preliminaries

We define the notion of subspace juntas, namely, functions that only depend on a low-dimensional projection
of their input vector.

Definition 4.1 (Subspace Junta). A function f : R? - Risa k-subspace junta (where k& < d) if there exists
W € R with W2 = 1and WW T = I, and a function g : R¥ — R such that
f(®) = fw(x) = g(Wz) vz cR%

Note that by taking k = d, letting W = I; covers all functions f : R — R.

Note that neural networks are k-subspace juntas, where k is the number of neurons in the first hidden layer.
We also define the following notion of a uniform polynomial approximation within a ball of a certain radius.

Definition 4.2 ((¢, R)-Uniform Approximation). Fore¢ > 0, R > 1, and g : R* — R, we say that ¢ : R¥ —
R is an (¢, R)-uniform approximation polynomial for g if

la(x) —g(x)| <€ Vzll, <R

We obtain the following corollary which gives the analogous bound on the (¢, R)-uniform approximation to
a k-subspace junta, given the (¢, R)-uniform approximation to the corresponding function g.

12

Corollary 4.3. Let e > 0,R > 1, and f : R — R be a k-subspace junta, and consider the corresponding
function g(Wx). Let ¢ : RE — R be an (e, R)-uniform approximation polynomial for g, and define p -
R — R as p(x) := ¢q(Wz). Then |p(x) — f(x)| < eforall |Wz|s < R.

Finally, we consider any distribution with strictly subexponential tails in every direction, which we define
as follows.

Definition 4.4 (Strictly Sub-exponential Distribution). A distribution D on R? is ~-strictly subexponential
if there exist constants C,~ € (0, 1] such that for all w € R, [|w| = 1,¢ > 0,

Prop[/(w,x)| > t] < e "

4.2 TDS Regression via Uniform Approximation

We will now present our main results on TDS regression for unbounded training marginals. We require the
following assumptions.

Assumption 4.5. For a function class F C {Rd — R} consisting of k-subspaces juntas, and training and
test distributions D, D’ over R x R, we assuming the following.

1. For f € F, there exists an (€, R)-uniform approximation polynomial for f with degree at most { =
Rlog R - gr(€), where gr(€) is a function depending only on the class F and e.

2. For f € F, the value ry := sup|y4|,<r | f(x)| is bounded by a constant r > 0.
3. The training marginal Dy, is a ~y-strictly subexponential distribution for v € (0, 1].
4. The training and test labels are both bounded in [— M, M| for some M > 1.

Consider the function class F, and the parameters €,y, M, k, £ as defined in the assumption above and let
9 € (0,1). Then, we obtain the following theorem.

Theorem 4.6 (TDS Learning via Uniform Approximation). Under Assumption 4.5, Algorithm 2 learns the
class F in the TDS regression setting up to excess error 5¢ and probability of failure 0. The time complexity
is poly(d®,1/e,log(1/6)") where s = (£log(M /€))© /7).

Note that Assumption 4.5 involves a low-degree uniform approximation assumption, which only holds
within some bounded-radius ball. Since we work under unbounded distributions, we also need to han-
dle the errors outside the ball. To this end, we use the following lemma, which follows from results in
[BDBGK18].

Lemma 4.7. Suppose [= fw and q satisfy parts 1 and 2 of Assumption 4.5. Then

()| < (k) [Wely, forall [We|, > R.

The lemma above gives a bound on the values of a low-degree uniform approximator outside the in-
terval of approximation. Therefore, we can hope to control the error of approximation outside the in-
terval by taking advantage of the tails of our target distribution as well as picking R sufficiently large.
In order for the strictly subexponential tails to suffice, the quantitative dependence of ¢ on R is impor-
tant. This is why we assume (see Assumption 4.5) that £ = O(R) In particular, in order to bound the
quantity E,p, [p?(x)1{||Wz|]2 > R}|, we use Lemma 4.7, the Cauchy-Schwarz inequality, and the
bounds EmNDw[HWa:H;M] < (k0)°® and Pryp,[|[Wz|s > R] < exp(—Q(R/k)'*7). Substituting
for £ = O(R), we observe that the overall bound on the quantity E,p, [p?(z)1{||Wz|s > R}] decays
with R, whenever - is strictly positive. Therefore, the overall bound can be made arbitrarily small with an
appropriate choice of R (and therefore /).

13

Algorithm 2: TDS Regression via Uniform Approximation

Input: Parameters e > 0,0 € (0,1), R > 1, M > 1, and sample access to D, D,

Sete' =¢/11,8' = 6/4,£ = Rlog R+ gr(e), t = 2log (BL), B=r(2(k +£))%, A = 4];2;22“

Set Mirain = Miest = poly (M, In(1/6)¢,1/e,d’,r) and draw myain i.i.d. labeled examples S from
D and miegt i.1.d. unlabeled examples S’ from DY,.

For each o € N? with ||a||; < 2max(¢,t), compute the quantity
Mo = Egogr[2?] = Egogr [Hie[d} 5’31&]

Reject and terminate if [My, — Eqop, []| > A for some a with ||a]|; < 2max(¢, t).

Otherwise, solve the following least squares problem on S up to error ¢’

H}Din E(w,y)Ns [(y - p(:l?))ﬂ

s.t. p is a polynomial with degree at most ¢

each coefficient of p is absolutely bounded by B

Let p be an ¢/?-approximate solution to the above optimization problem.
Accept and output cly/(p(x)).

Apart from the careful manipulations described above, the proof of Theorem 4.6 follows the lines of the
corresponding results for TDS learning through sandwiching polynomials [KSV24b].

The following lemma allows us to relate the squared loss of the difference of polynomials under a set S and
under D, as long as we have a bound on the coefficients of the polynomials. This will be convenient in the
analysis of the algorithm.

Lemma 4.8 (Transfer Lemma for Square Loss, see [KSV24b]). Let D be a distribution over R% and S be a
set of points in RY. If |Egs[x®] — Epplx®]| < A for all a € N¢ with ||a||, < 2/, then for any degree {
polynomials py, po with coefficients absolutely bounded by B, it holds that

|[Eans[(p1(®) = pa(2))?] = Eonn[(p1(2) — p2())?]| < 4B%d*A

We are now ready to prove Theorem 4.6.

Proof of Theorem 4.6. We will prove soundness and completeness separately.

Soundness. Suppose the algorithm accepts and outputs clys(p). Let f* = argminscz[Lp(f) + Lo/ (f)]
and fope = argmingcz[Lp(f)]. By the uniform approximation assumption in Assumption 4.5, there are
polynomials p*, popt Which are (e, R)-uniform approximations for f* and fops, respectively. Let f* and
fopt have the corresponding matrices W*, W € R**4, respectively. Denote Agrain = Lp(f*) and Aest =
Lp(f*). Note that for any f, g : R? — R, “unclipping” both functions will not increase their squared loss
under any distribution, i.e. ||clas(f) — clar(9)]|p < ||f — gllp, which can be seen through casework on @
and when f(x), g(x) are in [-M, M] or not. Recalling that the training and test labels are bounded, we can
use this fact as we bound the error of the hypothesis on D’.

Lp(cly(p)) < Lo (cla(f7)) + llelar (f) — clar (D)l pr
< Lp(f*) + el (f) — (D)l g + €.

The second inequality follows from unclipping the first term and by applying Hoeffding’s inequality, so that

8M*1n(2/8")
=

for myest > , the second term is bounded with probability > 1 — ¢’. Proceeding with more

14

unclipping and using the triangle inequality:

Lo (clar(p)) < Aest + llelar () = clar(p") g + el (07) — clar (B) [l g0 + €
S)\test + HCIM(f*) — ClM(p*)”S’ + ”p* - ﬁ”s/ + 6/. (41)

We first bound |cla(f*) — cl(p*)llgy = VEzos [(cl(f*(x)) — cly(p*(x)))2]. Since p*(z) is an
(e, R)-uniform approximation to f*(x), we separately consider when we fall in the region of good ap-
proximation (|[WW*z|| < R) or not.

Exns[(clar (F*()) — cla (0" ()))?]
= Eqog[(clu(f*(2)) — CIM(“(x))? - L|[Wz| < R]
+ Bt [(clar (f (@) — cla(p"(2)))* - L|W|| > R]]
< &+ Egugr[2(clu (f ())? + clur (" (®))?) - LW]| > R]]

Then by applying Cauchy-Schwarz, (and similarly for cly;(p*)):

Bz~ [clar(f*(2))* - L[|[W*z| > R]] < /Egus[cly (f*(2))Y] - /Proos [|W*z|| > R]].

By definition, cly(p*)?, clp(£*)? < M2, So it suffices to bound Prys/[||[W*z|| > R]], since we now
have

Exns[(chr(f*(®)) — clu (0" (2)))?] < € +4M*/Pros [[W*z| > R]]. (4.2)

In order to bound this probability of the test samples falling outside the region of good approximation, we
use the property that the first 2¢ moments of S” are close to the moments of D (as tested by the algorithm).
Applying Markov’s inequality, we have

Eos[|W*2]*]

Pry.s[[|W*z| > R]] < R

Write [|[W*z||* = <Zf LW, >2)t where SF (W x)2 =S8 (Z? W ->2 is a degree 2 poly-
nomial with each coefficient bounded in absolute value by 2k (noting that since WI/VT = 1, then |WW;;| < 1).
Let a,, denote the coefficients of || *z||*". Applying Lemma C.7, Z”a” <ot |aal < (2k) d? < d°®. By
linearity of expectation, we also have |E,g/[||[W*z/* xND[HW*wH%H < zllaHlS?t laa| - A < dOO) .
A < ¢, where A < ¢ - d=) Since D is 7-strictly subexponential, then by Fact B.1, E,.p[(W}, x)?] <
(2C’t)1%. Then, we can bound the numerator Eq g [|W*z|*] < Epup|||W*z||*] + ¢ < (th)l% for
some large constant C'. So we have that

kt
Pros[|Wal > Aj) < T)

Setting t > C’(log(M/€)) and R > C'(kt) > C'klog(M /e) for large enough C’ makes the above proba-
bility at most 16¢"* /M* so that 4M?\/Pry.s/[[|[W*z| > R]] < €. Thus, from Equation (4.2), we have
that

llelar (£7) — el (p)lgr < e+ €. (4.3)

We now bound the second term ||clys(p*) — clps(p)||g. By Lemma B.2, the first 2¢ moments of S will
concentrate around those of D, whenever my;ain > Klg (Ce)* 081 (log(20d/5))*+1, and similarly the first

15

2¢ moments of S” match with D,, because the algorithm accepted. Using the transfer lemma (Lemma 4.8)
when considering p’ = (p* — p)?, along with the triangle inequality, we get:

Ip*(x) — p()]ls < [Ip*)l p + V4AB2d2¢A
< llp*(=))g + 2€
< Ls(p*) + Ls(p) + 2€,

x) x

o~ o~

— i
—plx

where we note that we can bound B, the sum of the magnitudes of the coefficients, by 7(2(k + £))3
using Lemma C.6. Recall that by definition p is an €/?-approximate solution to the optimization problem in
Algorithm 2, s0 L5(p) < Lg(popt) + €. Plugging this in, we obtain

1" () — p(x)||g < Ls(p") + L5 (Popt) + 3¢
< |lp* — el (f)lls + L(clm(f*))s

+ [lpopt (®) — clar (fopt ()l 5 + Ls(clar (fopt)) + 3¢’ 4.4)
By applying Hoeffding’s inequality, we get that L(clas(f*))s < |lcla(f*) — yllp + € which holds with
probability > 1 — &' when Mmipain > w. By unclipping cly/(f*), this is at most Agpain + €.

Similarly, with probability > 1 — &', Lg(clas(fopt)) < opt + €. It remains to bound ||p*(x) — clar (f*)|| ¢
and ||popt — claz(fopt ()| - The analysis for both is similar to how we bounded ||clas (p*) — clar(f*)]l g
except since we do not clip p* or pope we will instead take advantage of the bound on p*(x) on |W*x| > R
(respectively popt () on ||[Wope|| > R). We show how to bound |[p*(x) — clar(f*)]| g:

E~sl(clu(f*(®)) = p"(2))’] = Eansl(clu (f* (@) — p"(2))* - L[|Wz|| < R]
+ Eqns(cli (f* () — p*(2))? - 1[|W*z| > R]]
< € + 2Egnslelu (f* () - L[|W | > R]]
+ 2Egslp*()? - 1||W*z|| > R]]. (4.5)
We can bound the first expectation term, Eqg[cly (f*(x))? - 1[||W*z|| > R]], with ¢’ /4 since the same
analysis holds for bounding E,s/[cly(f*(x))? - 1[||[W*z|| > R]], except instead of matching the first 2¢

moments of S” with D, we match the first 2 moments of S with D,. We use the strictly subexponential
tails of D,, to bound the second term. Cauchy-Schwarz gives

Eonslp”(2)” - 1|W* 2| > R]] < VEeus[p*(2)1] - Pros([Wr e[| > R]]

Note that by definition of r and using that p* is an (e, R)-uniform approximation of f*, then p*(x) < (r+¢)
when |W*z| < R. By Lemma C.6, [p*(x)| < (r+¢) - (2k0)° ||(W*z)/R||* for sufficiently large constant
¢1 > 0. Then since R > 1, p*() < (r + €)* - (2k0)<’ ||[W*x||**. Then we have

Eanslp”(@)'] < (r+)" - (2k0) - Bgus[| W a|"]
(r+e)'- (kO - (Egmp, (W] + 1)
(r+e)t - (2k0)

IA A

4Ce
where using Fact B.1 we bound on E,_p_[||[W*z||*] < k2¢(4¢) 1+ similar to above, which can be up-
per bounded with (2k¢)°2¢ for co > 0 a sufficiently large constant. Take ¢ = ¢; + c3. We bound

16

Pr.s[|W*z|| > R]] as follows:

k
Pros[|W*z|| > R]] = Pry.s [ZW;*, x)? > R?

i=1

k
< Pros[(Wi,a)? > R?/K]
=1

<k sup Prg.s[(W,z)> > R?/k|,

[[w]2=1

where the first inequality follows from a union bound. Since (w,x)? is a degree 2 polynomial, we can
view sign((w, z)? — R?/k) as a degree-2 PTF. The class of these functions has VC dimension at most d?
(e.g. by viewing it as the class of halfspaces in d? dimensions). Using standard VC arguments, whenever
Mirain > C - % for some sufficiently large universal constant C' > 0, with probability > 1 — §’ we
have

Prys[(w,z)? > R%*/k] < Pry.p, [(w,x)? > R?/k] + ¢ /k.

Using the strictly subexponential tails of D, we have

Pros[|W*z|| > R] < k < sup Prop,|[(w,z)? > R2/k] + e”/k)
Jwl=1

< 2k - exp (— (R/k‘)HV) + €.

14

Choose ¢ = <

=tk Putting it together:

(r+e)t- (2/<;€)de_(R/’l€)lﬂ + €
(r+e)* - exp (cllog(2kC) — (R/k)'T7) + €4
We want to bound the first part with ¢4, Equivalently, we need to show that the exponent is < 4In TE—J;E

Substituting ¢ = Rlog R - gr(e), we get that cflog(2kl) < cgr(e)R(log R)?log(2kgz(e)). Thus, it
suffices to show that

Egns[p’ ()] - Pros[|We|| > R]] <
<

6/

r4+e

R

14~
<E> > cgr(e)R(log R)?(2kgr(€)) — 41n

This is satisfied when R > poly ((k;g]:(e) log(r) log(M/e))H%). Then, we have that

Eo~s[p™()” - LW x| > R]] < V2.

So, plugging this into Eq. (4.5), we have

el (f*) = pllg < /2 +2- €2/4+2e2V3 < e+ 2.
The same argument will also give

”CIM(fopt(w)) _popt(a?)HS <e+ 26/.

Combining Eq. (4.3) and the above two bounds into Eq. (4.4), we have from Eq. (4.1) that

Lp(clpr(p)) < A+ opt + 3e + 11" < X + opt + 4e.

17

The result holds with probability at least 1 — 56’ = 1 — § (taking a union bound over 5 bad events).

Completeness. For completeness, it is sufficient to ensure that mys; > N for N in Lemma B.2. This is
because when D, = D, our test samples S are in fact being drawn from the subexponential distribution
Dg. Then the moment concentration of subexponential distributions (Lemma B.2) gives that the empirical
moments of S’ are close to the moments of D, with probability > 1 — §’. This is the only condition for
acceptance, so when D, = D/, the probability of acceptance is at least 1 — 4, as required.

Runtime. The runtime of the algorithm is poly(d’, Mmain, Miest)» Where £ = Rlog R-gx(€). The two lower
1
bounds on R required in the proof are satisfied by setting R > ((k:g]:(e) log(r) log(M/e))O(7)> . Note that

setting Mipain = poly(M,In(1/8)¢,1/¢,d*,r) satisfies the lower bounds on myain required in the proof.

For myest we required that myest > %@/—6,) and also Mmyest > IV for N in Lemma B.2. This is satisfied
by choosing mes; = Mirain. Putting this altogether, we see that the runtime is poly(d®,In(1/6)*,1/€)

where s = ((k‘g}-(e) log (1) 1og(M/e))0<1/7>). O

4.3 Applications

In order to obtain end-to-end results for classes of neural networks (see the rightmost column of Table 1), we
need to prove the existence of uniform polynomial approximators whose degree scales almost linearly with
respect to the radius of approximation for the reasons described above. For arbitrary Lipschitz nets (see
Theorem C.17), we use a general tool from polynomial approximation theory, the multivariate Jackson’s
theorem (Theorem C.9). This gives us a polynomial with degree scaling linearly in R and polynomially on
% and the number of hidden units (k) in the first layer.

For sigmoid nets, a more careful derivation yields improved bounds (see Theorem C.19) which have a poly-
logarithmic dependence on % Our construction involves composing approximators for the activations at
each layer. Naively, the degree of this composition would be superlinear in R. To get around this, we use
the key property that the size of the output of a sigmoid network at any layer is memoryless (i.e., has no
R dependence). This follows from the fact that the sigmoid is bounded in [0, 1]. Using this, we obtain an
approximator with almost-linear dependence on R. For more details see Appendix C.5.

References

[ACM24] Pranjal Awasthi, Corinna Cortes, and Mehryar Mohri. Best-effort adaptation. Annals of
Mathematics and Artificial Intelligence, 92(2):393-438, 2024. 1.3

[AZLL19] Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and generalization in over-
parameterized neural networks, going beyond two layers. Advances in neural information
processing systems, 32, 2019. 1.3

[BCK'07] John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jennifer Wortman. Learn-

ing bounds for domain adaptation. Advances in neural information processing systems, 20,
2007. 1, 1.3

[BDBC*10] Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jen-
nifer Wortman Vaughan. A theory of learning from different domains. Machine learning,
79:151-175, 2010. 1, 1.3

[BDBCPO6] Shai Ben-David, John Blitzer, Koby Crammer, and Fernando Pereira. Analysis of represen-
tations for domain adaptation. Advances in neural information processing systems, 19, 2006.
1,13

18

[BDBGK18] Shalev Ben-David, Adam Bouland, Ankit Garg, and Robin Kothari. Classical lower bounds

[BG17]

[BIW19]

[CDG 23]

[CGKM22]

[CKK'24]

[CKM22]

[CWO1]

[DGK*20]

[DK24]

[DKK 23]

[DKKZ20]

[DKLZ24]

[DKTZ22]

[DKZ20]

from quantum upper bounds. In 2018 IEEE 59th Annual Symposium on Foundations of Com-
puter Science (FOCS), pages 339-349. IEEE, 2018. 4.2, C.5

Alon Brutzkus and Amir Globerson. Globally optimal gradient descent for a convnet with
gaussian inputs. In International conference on machine learning, pages 605-614. PMLR,
2017. 1.3

Ainesh Bakshi, Rajesh Jayaram, and David P Woodruff. Learning two layer rectified neural
networks in polynomial time. In Conference on Learning Theory, pages 195-268. PMLR,
2019. 1.3

Sitan Chen, Zehao Dou, Surbhi Goel, Adam Klivans, and Raghu Meka. Learning narrow
one-hidden-layer relu networks. In The Thirty Sixth Annual Conference on Learning Theory,
pages 5580-5614. PMLR, 2023. 1, 1.3

Sitan Chen, Aravind Gollakota, Adam Klivans, and Raghu Meka. Hardness of noise-free

learning for two-hidden-layer neural networks. Advances in Neural Information Processing
Systems, 35:10709-10724, 2022. 1.3

Gautam Chandrasekaran, Adam R Klivans, Vasilis Kontonis, Konstantinos Stavropoulos, and
Arsen Vasilyan. Efficient discrepancy testing for learning with distribution shift. arXiv
preprint arXiv:2406.09373, 2024. 1, 1.3

Sitan Chen, Adam R Klivans, and Raghu Meka. Learning deep relu networks is fixed-
parameter tractable. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer
Science (FOCS), pages 696-707. IEEE, 2022. 1, 1.3

Anthony Carbery and James Wright. Distributional and 1q norm inequalities for polynomials
over convex bodies in rn. Mathematical research letters, 8(3):233-248, 2001. 3.2

Ilias Diakonikolas, Surbhi Goel, Sushrut Karmalkar, Adam R Klivans, and Mahdi
Soltanolkotabi. Approximation schemes for relu regression. In Conference on learning the-
ory, pages 1452-1485. PMLR, 2020. 1, 1.3

Ilias Diakonikolas and Daniel M Kane. Efficiently learning one-hidden-layer relu networks
via schurpolynomials. In The Thirty Seventh Annual Conference on Learning Theory, pages
1364-1378. PMLR, 2024. 1, 1.3

Ilias Diakonikolas, Daniel Kane, Vasilis Kontonis, Sihan Liu, and Nikos Zarifis. Efficient
testable learning of halfspaces with adversarial label noise. Advances in Neural Information
Processing Systems, 36,2023. 1.3

Ilias Diakonikolas, Daniel M Kane, Vasilis Kontonis, and Nikos Zarifis. Algorithms and sq
lower bounds for pac learning one-hidden-layer relu networks. In Conference on Learning
Theory, pages 1514—-1539. PMLR, 2020. 1, 1.3

Ilias Diakonikolas, Daniel Kane, Sihan Liu, and Nikos Zarifis. Testable learning of general
halfspaces with adversarial label noise. In The Thirty Seventh Annual Conference on Learning
Theory, pages 1308—1335. PMLR, 2024. 1.3

Ilias Diakonikolas, Vasilis Kontonis, Christos Tzamos, and Nikos Zarifis. Learning a single
neuron with adversarial label noise via gradient descent. In Conference on Learning Theory,
pages 4313-4361. PMLR, 2022. 1, 1.3

Ilias Diakonikolas, Daniel Kane, and Nikos Zarifis. Near-optimal sq lower bounds for agnosti-

19

[DLLP10]

[DLT18]

[Fer14]

[GGI120]

[GGK20]

[GGKS24]

[GK19]

[GKK23]

[GKKM20]

[GKKT17]

[GKLW19]

[GKM18]

[GKSV24a]

[GKSV24b]

cally learning halfspaces and relus under gaussian marginals. Advances in Neural Information
Processing Systems, 33:13586-13596, 2020. 1.3

Shai Ben David, Tyler Lu, Teresa Luu, and David Pal. Impossibility theorems for domain
adaptation. In Proceedings of the Thirteenth International Conference on Artificial Intelli-
gence and Statistics, pages 129-136. JMLR Workshop and Conference Proceedings, 2010.
1.3

Simon S Du, Jason D Lee, and Yuandong Tian. When is a convolutional filter easy to learn?
In 6th International Conference on Learning Representations, ICLR 2018, 2018. 1.3

Dietmar Ferger. Optimal constants in the marcinkiewicz—zygmund inequalities. Statistics &
Probability Letters, 84:96-101, 2014. A, B

Surbhi Goel, Aravind Gollakota, Zhihan Jin, Sushrut Karmalkar, and Adam Klivans. Super-
polynomial lower bounds for learning one-layer neural networks using gradient descent. In
International Conference on Machine Learning, pages 3587-3596. PMLR, 2020. 1.3

Surbhi Goel, Aravind Gollakota, and Adam Klivans. Statistical-query lower bounds via func-
tional gradients. Advances in Neural Information Processing Systems, 33:2147-2158, 2020.
1.3

Aravind Gollakota, Parikshit Gopalan, Adam Klivans, and Konstantinos Stavropoulos. Ag-
nostically learning single-index models using omnipredictors. Advances in Neural Informa-
tion Processing Systems, 36,2024, 1, 1.1, 1.3

Surbhi Goel and Adam R Klivans. Learning neural networks with two nonlinear layers in
polynomial time. In Conference on Learning Theory, pages 1470-1499. PMLR, 2019. 1, 1.3

Aravind Gollakota, Adam R Klivans, and Pravesh K Kothari. A moment-matching approach
to testable learning and a new characterization of rademacher complexity. Proceedings of the
fifty-fifth annual ACM Symposium on Theory of Computing, 2023. 1.3, 4

Shafi Goldwasser, Adam Tauman Kalai, Yael Kalai, and Omar Montasser. Beyond pertur-
bations: Learning guarantees with arbitrary adversarial test examples. Advances in Neural
Information Processing Systems, 33:15859-15870, 2020. 1.3

Surbhi Goel, Varun Kanade, Adam Klivans, and Justin Thaler. Reliably learning the relu in
polynomial time. In Satyen Kale and Ohad Shamir, editors, Proceedings of the 2017 Confer-
ence on Learning Theory, volume 65 of Proceedings of Machine Learning Research, pages
1004-1042. PMLR, 07-10 Jul 2017. 1.3,3,3.2,C3,C.3,C.5,C.5

Rong Ge, Rohith Kuditipudi, Zhize Li, and Xiang Wang. Learning two-layer neural networks
with symmetric inputs. In International Conference on Learning Representations, 2019. 1.3

Surbhi Goel, Adam Klivans, and Raghu Meka. Learning one convolutional layer with over-
lapping patches. In International conference on machine learning, pages 1783-1791. PMLR,
2018. 1.3

Aravind Gollakota, Adam Klivans, Konstantinos Stavropoulos, and Arsen Vasilyan. Tester-
learners for halfspaces: Universal algorithms. Advances in Neural Information Processing
Systems, 36, 2024. 1.3

Aravind Gollakota, Adam R Klivans, Konstantinos Stavropoulos, and Arsen Vasilyan. An
efficient tester-learner for halfspaces. The Twelfth International Conference on Learning Rep-
resentations, 2024. 1.3

20

[GLM18]

[GMOV19]

[GSSV24]

[HK19]

[HK24]

[JSA15]

[Kea98]

[KKSKI11]

[KSV24a]

[KSV24b]

[KZZ24]

[LHL21]

[LMZ20]

[LSSS14]

[LY17]

[Mer09]

Rong Ge, Jason D Lee, and Tengyu Ma. Learning one-hidden-layer neural networks with
landscape design. In 6th International Conference on Learning Representations, ICLR 2018,
2018. 1.3

Weihao Gao, Ashok V Makkuva, Sewoong Oh, and Pramod Viswanath. Learning one-hidden-
layer neural networks under general input distributions. In The 22nd International Conference
on Artificial Intelligence and Statistics, pages 1950-1959. PMLR, 2019. 1.3

Surbhi Goel, Abhishek Shetty, Konstantinos Stavropoulos, and Arsen Vasilyan. Tolerant al-
gorithms for learning with arbitrary covariate shift. arXiv preprint arXiv:2406.02742, 2024.
1,1.3,3.1,3.8, A.1

Steve Hanneke and Samory Kpotufe. On the value of target data in transfer learning. Advances
in Neural Information Processing Systems, 32, 2019. 1.3

Steve Hanneke and Samory Kpotufe. A more unified theory of transfer learning. arXiv
preprint arXiv:2408.16189, 2024. 1.3

Majid Janzamin, Hanie Sedghi, and Anima Anandkumar. Beating the perils of non-
convexity: Guaranteed training of neural networks using tensor methods. arXiv preprint
arXiv:1506.08473, 2015. 1.3

Michael Kearns. Efficient noise-tolerant learning from statistical queries. Journal of the ACM
(JACM), 45(6):983-1006, 1998. 1.3

Sham M Kakade, Varun Kanade, Ohad Shamir, and Adam Kalai. Efficient learning of gener-
alized linear and single index models with isotonic regression. In J. Shawe-Taylor, R. Zemel,
P. Bartlett, F. Pereira, and K.Q. Weinberger, editors, Advances in Neural Information Process-
ing Systems, volume 24. Curran Associates, Inc., 2011. 1.1

Adam R Klivans, Konstantinos Stavropoulos, and Arsen Vasilyan. Learning intersections
of halfspaces with distribution shift: Improved algorithms and sq lower bounds. The Thirty
Seventh Annual Conference on Learning Theory, 2024. 1, 1.3

Adam R Klivans, Konstantinos Stavropoulos, and Arsen Vasilyan. Testable learning with dis-
tribution shift. The Thirty Seventh Annual Conference on Learning Theory, 2024. (document),
1,1.3,4,42,4.8

Alkis Kalavasis, Ilias Zadik, and Manolis Zampetakis. Transfer learning beyond bounded
density ratios. arXiv preprint arXiv:2403.11963, 2024. 1.3

Qi Lei, Wei Hu, and Jason Lee. Near-optimal linear regression under distribution shift. In
International Conference on Machine Learning, pages 6164-6174. PMLR, 2021. 1.3

Yuanzhi Li, Tengyu Ma, and Hongyang R Zhang. Learning over-parametrized two-layer
neural networks beyond ntk. In Conference on learning theory, pages 2613-2682. PMLR,
2020. 1.3

Roi Livni, Shai Shalev-Shwartz, and Ohad Shamir. On the computational efficiency of training
neural networks. In Proceedings of the 27th International Conference on Neural Information
Processing Systems - Volume 1, NIPS’ 14, page 855-863, Cambridge, MA, USA, 2014. MIT
Press. C.18

Yuanzhi Li and Yang Yuan. Convergence analysis of two-layer neural networks with relu
activation. Advances in neural information processing systems, 30, 2017. 1.3

James Mercer. Functions of positive and negative type, and their connection with the theory

21

[MKFAS20]

[MMRO09]

[MR18]

[MRT18]

[NS64]

[O’D14]
[RMH20]

[RV23]

[STW24]

[Tial7]

[Verl8]

[VW19]

[WZDD23]

[ZLJ16a]

[ZLJ16b]

of integral equations. Philosophical Transactions of the Royal Society A, 209:415-446, 1909.
3.1

Mohammadreza Mousavi Kalan, Zalan Fabian, Salman Avestimehr, and Mahdi
Soltanolkotabi. Minimax lower bounds for transfer learning with linear and one-hidden layer
neural networks. Advances in Neural Information Processing Systems, 33:1959—-1969, 2020.
1.3

Yishay Mansour, Mehryar Mohri, and Afshin Rostamizadeh. Domain adaptation: Learning
bounds and algorithms. In Proceedings of The 22nd Annual Conference on Learning Theory
(COLT 2009), Montréal, Canada, 2009. 1, 1.3

Pasin Manurangsi and Daniel Reichman. The computational complexity of training relu (s).
arXiv preprint arXiv:1810.04207, 2018. 1.3

Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of machine learn-
ing. MIT press, second edition, 2018. 3, 3.7, 3.1, 3.1, 3.1

D.J. Newman and H. S. Shapiro. Jackson’s Theorem in Higher Dimensions, pages 208-219.
Springer Basel, Basel, 1964. C.9

Ryan O’Donnell. Analysis of boolean functions. Cambridge University Press, 2014. 3.2

Ievgen Redko, Emilie Morvant, Amaury Habrard, Marc Sebban, and Younes Bennani. A sur-
vey on domain adaptation theory: learning bounds and theoretical guarantees. arXiv preprint
arXiv:2004.11829, 2020. 1.3

Ronitt Rubinfeld and Arsen Vasilyan. Testing distributional assumptions of learning algo-
rithms. Proceedings of the fifty-fifth annual ACM Symposium on Theory of Computing, 2023.
1.3,4

Lucas Slot, Stefan Tiegel, and Manuel Wiedmer. Testably learning polynomial threshold
functions. arXiv preprint arXiv:2406.06106, 2024. 1.3

Yuandong Tian. An analytical formula of population gradient for two-layered relu network
and its applications in convergence and critical point analysis. In International conference on
machine learning, pages 3404-3413. PMLR, 2017. 1.3

Roman Vershynin. High-dimensional probability: An introduction with applications in data
science, volume 47. Cambridge university press, 2018. B.1

Santosh Vempala and John Wilmes. Gradient descent for one-hidden-layer neural networks:
Polynomial convergence and sq lower bounds. In Conference on Learning Theory, pages
3115-3117. PMLR, 2019. 1.3

Pugian Wang, Nikos Zarifis, Ilias Diakonikolas, and Jelena Diakonikolas. Robustly learning a
single neuron via sharpness. In International Conference on Machine Learning, pages 36541—
36577. PMLR, 2023. 1, 1.3

Yuchen Zhang, Jason D Lee, and Michael I Jordan. 11-regularized neural networks are im-
properly learnable in polynomial time. In International Conference on Machine Learning,
pages 993-1001. PMLR, 2016. 1.3

Yuchen Zhang, Jason D. Lee, and Michael 1. Jordan. L1-regularized neural networks are
improperly learnable in polynomial time. In Maria Florina Balcan and Kilian Q. Weinberger,
editors, Proceedings of The 33rd International Conference on Machine Learning, volume 48
of Proceedings of Machine Learning Research, pages 993—-1001, New York, New York, USA,

22

20-22 Jun 2016. PMLR. C.5

[(ZSIT17] Kai Zhong, Zhao Song, Prateek Jain, Peter L Bartlett, and Inderjit S Dhillon. Recovery
guarantees for one-hidden-layer neural networks. In International conference on machine
learning, pages 4140-4149. PMLR, 2017. 1.3

[ZYWGI19] Xiao Zhang, Yaodong Yu, Lingxiao Wang, and Quanquan Gu. Learning one-hidden-layer relu
networks via gradient descent. In The 22nd international conference on artificial intelligence
and statistics, pages 1524-1534. PMLR, 2019. 1.3

A Proof of Multiplicative Spectral Concentration Lemma

Here, we restate and prove the multiplicative spectral concentration lemma (Lemma 3.8).

Lemma A.1 (Multiplicative Spectral Concentration, Lemma B.1 in [GSSV24], modified). Let D, be a
distribution over R? and ¢ : RY — R™ such that D, is (¢, C, £)-hypercontractive for some C,0 > 1.
Suppose that S consists of N i.i.d. examples from Dy and let ® = Egop, [o(x)d(x)"], and & =
L esd@)p(®)T. For any €, € (0,1), if N > 94502 (4Clogy (4))4+1, then with probability at
least 1 — &, we have that

Foranya € R™:a' ®a € [(1 —€)a' ®a, (1 + €)a' da)

Proof of Lemma 3.8. Let ® = UDU " be the compact SVD of & (i.e., D is square with dimension equal to
the rank of ® and U is not necessarily square). Note that such a decomposition exists (where the row and
column spaces are both spanned by the same basis UU), because ® = ® ', by definition. Moreover, note that
UUT is an orthogonal projection matrix that projects points in R on the span of the rows of ®. We also
have that, U TU = I.

Consider ' = UD~'UT and o3 = UD~3:UT. Our proof consists of two parts. We first show that it is
sufficient to prove that H<I>% 3Pp: — Lo |l < e with probability at least 1 — § and then we give a bound

on the probability of this event.
Claim. Suppose that for A = PIDDT — BIDDT we have I|A|l2 < €. Then, for any a € R™:
a'da c[(1-e)a'da,(1+e)a’Pa)

Proof. Leta € R™, ay = UU"a,and ag = (I - UUT)a (i.e., @ = ag + a4, where a is the component
of @ lying in the nullspace of ®). We have that a " ®a = aI<I>a+.

Moreover, for ag, we have that 0 = aj ®ag = Exp, [(¢(z) "ag)?] and, hence, ¢(z) " ag = 0 almost surely
over D,. Therefore, we also have aj ®ag = + >, s(d(z) ag)? = 0, with probability 1. Therefore,
a'da = alda,.

Observe, now, that (ID%CI)% = UD%UTUD_%UT = UU" and, hence, q)%@%cur = (UUT)za =UU"a =
a.,because UU T is a projection matrix. Overall, we obtain the following

a'da=a'Pa+al(®—P)a,
—a ®a+a &3 (DEDD: — DE0DE)DIa,
—a'ba+al®2Ad2a,
Since || All2 < eand 202 = P, we have that]aI(I)%ACI)%aJF\ < ¢lal®ay| = e|a’ ®al, which concludes

the proof of the claim. U

23

It remains to show that for the matrix A defined in the previous claim, we have || A||; < e with probability
at least 1 — 6. The randomness of A depends on the random choice of S from DE™. In the rest of the
proof, therefore, consider all probabilities and expectations to be over S ~ DE™. We have the following for

t = logy(4/9).

E[| A2
Pr[||Als >] < Pr[|Allr > € < %

We will now bound the expectation of E[|| A[|%]. To this end, we define a; = o3 e; € R™ fori € [m]. We
have the following, by using Jensen’s inequality appropriately.

Bl =E[(Y (] Ba;— o/ éa;)?)]

i,j€[m]
< m2t=D Z E[(a; ®a; — a ®a;)*]
ij€[m]
< m?* max E[(a; ®a; — a:@aj)%]
i,j€[m]

In order to bound the term above, we may use Marcinkiewicz-Zygmund inequality (see [Fer14]) to exploit
the independence of the samples in S and obtain the following.

T Ta o o 2(40) T T T N2t
El(a; ®a; — a; ®a;)"] < — 7~ Eonp,[(a; 2a; - a; o(z)d(z) a;)7]
< 200 2 (0] B0 + 2By, (0] G(o)0(z))

We now observe that Eq.p, [a ¢(z)¢(x) " a;] = a Pa; = e;-r<I>% <I><I>%ej = e UU"e;, which is at most
equal to 1. Therefore, we have Ep, [(a; #(x))?] < 1 and, by the hypercontractivity property (which we
assume to be with respect to the standard inner product in R™), we have Ep_ [(a; #(x))*] < (4Ct)*.
We can bound Eg.p,[(a; ¢(z)p(z) " a;)?] by applying the Cauchy-Schwarz inequality and using the
bound for Ep, [(a; #(x))*]. In total, we have the following bound.

16m2t(4Ct)4\ ¢t
Pr([[Af2 > €] < 4<N—62)
We choose N such that W < % and t = log,(4/6) so that the bound is at most 9. O

B Moment Concentration of Subexponential Distributions
We prove the following bounds on the moments of subexponential distributions, which allows us to control
error outside the region of good approximation.
Fact B.1 (see [Ver18]). Let D on R? be a ~-strictly subexponential distribution. Then for allw € R?, ||w|| =
1,t > 0,p > 1, there exists a constant C' such that
_b

Eyp[|{w, z)["] < (C'p) ™.

In fact, the two conditions are equivalent.

We use the following bounds on the concentration of subexponential moments in the analysis of our algo-
rithm. This will be useful in showing the sample complexity N required in order for the empirical moments
of the sample .S concentrate around the moments of the training marginal D,

24

Lemma B.2 (Moment Concentration of Subexponential Distributions). Let D, be a distribution over R¢
such that for any w € R with |w||z = 1 and any t € N we have Eqp,_[|w - z|'] < (Ct) for some C > 1.
For a = (i)ielq € N, we denote with > the quantity x® = H?Zl x3", where © = (x;);c[q. Then, for
any A,§ € (0,1), if S is a set of at least N = Rz (C'c)*431(log(20d/6))** i.i.d. examples from Dy, for
some sufficiently large universal constant ¢ > 2, we have that with probability at least 1 — 0, the following
is true.

For any a € N with ||a||y < 2¢ we have |Egg[x®] — Egop, [£°]] < A.

Proof. Let v = (a;)ie(q € N* with ||a]|; < 2¢. Consider the random variable X = ﬁ Yopeg Xt =
ﬁ > zes Llie z]". We have that E[X] = Egp, [x®] and also the following.
E[(X — E[X])*]
A2t
2(4t)t

< WE[(CBQ — E[z*])*]

Pr[|X — E[X]| > A] <

where the last inequality follows from the Marcinkiewicz—Zygmund inequality (see [Fer14]). We have that
E[(x* —E[x])*] < 4'E[(2*)]. Since [|all; < 2¢, we have that E[(*)*] < supy,,— [E[(w - 2)*]] <
(4Cte)*, which yields the desired result, due to the choice of N and after a union bound over all the
possible choices of « (at most d?b. O

C Polynomial Approximations of Neural Networks

In this section we derive the polynomial approximations of neural networks with Lipschitz activations
needed to instantiate Theorem 3.6 for bounded distributions and Theorem 4.6 for unbounded distributions.
Recall the definition of a neural network.

Definition C.1 (Neural Network). Let o : R — R be an activation function with ¢(0) < 1. Let W =
(W(l), e W(t)) with W (") € R%*%i-1 be the tuple of weight matrices. Here, s = d is the input dimension
and s; = 1. Define recursively the function f; : RY — R% as fi(x) = W) . o(fi—1(x)) with fi(x) =
WO . 2. The function f : R? — R computed by the neural network (W, o) is defined as f(x) == f;(x).
We denote |W||; = >f_, [|[W®]|;. The depth of this network is .

We also introduce some notation and basic facts that will be useful for this section.

C.1 Useful Notation and Facts

Given a univariate function g on R and a vector & = (z1,...,zq) € R% the vector g(z) € R? is defined as
the vector with 5" co-ordinate equal to g(z;). For a matrix A € R™*", we use the following notation:

* [|A]l2 = supj,=1 [[Az|]2,
* [|AlI5° = \/maxz’e[m} > i ()2,
* [[AllL = X6 emixmy [Aisl-
Fact C.2. Given a matrix W € R™*" we have that
L [[All2 < Al
2. ||All2 < v/m- || A5

25

Proof. We first prove (1). We have that for an € R™ with |||z = 1,

m

lAzlz < (| D (4 2)2 < | D0 (4i)? < Al

i=1 =1 j=1

where the second inequality follows from Cauchy Schwartz and the last inequality follows from the fact that
for any vector v, ||v||2 < ||v||1. We now prove (2). We have that

m n
lAzlz < (| D (4;-2)? < [mmax) (4;)? < vm|A]5°
i=1 ieml i
where the second inequality follows from Cauchy Schwartz and the last inequality is the definition. O

C.2 Results from Approximation Theory

The following are useful facts about the coefficients of approximating polynomials.

Fact C.3 (Lemma 23 from [GKKT17]). Let p be a polynomial of degree ¢ such that |p(z)| < b for |z| < 1.

Then, the sum of squares of all its coefficients is at most b* - 20(0),

Lemma C.4. Let p be a polynomial of degree { such that |p(x)| < b for |x| < R. Then, the sum of squares
of all its coefficients is at most b* - 20 when R > 1.

Proof. Consider ¢(xz) = p(Rz). Clearly, |g(z)| < b for all |x| < 1. Thus, the sum of squares of its
coefficients is at most b - 20(9) from Fact C.3. Now, p(z) = g(x/R) has coefficients bounded by »? - 20()
when R > 1.]

Fact C.5 ((BDBGKI18]). Let g be a polynomial with real coefficients on k variables with degree ¢ such that
forall x € [0,1]%, |q(x)| < 1. Then the magnitude of any coefficient of q is at most (2k0(k + £))* and the
sum of the magnitudes of all coefficients of q is at most (2(k + £))3".

Lemma C.6. Let q be a polynomial with real coefficients on k variables with degree ¢ such that for all
x € R with ||z||, < R, |q(z)| < b. Then the sum of the magnitudes of all coefficients of q is at most
b(2(k + 0))>k*/? for R > 1.

Proof. Consider the polynomial h(x) = 1/b- q(Rxz/vk). Then |h(x)| = 1/b - |¢(Rx/vk)| < 1 for
|zR/Vk|]2 < R, or equivalently for all ||z||, < v/k. In particular, since the unit cube [0, 1]* is contained
in the v/k radius ball, then |h(x)| < 1 for = € [0,1]%. By Fact C.5, the sum of the magnitudes of the
coefficients of A is at most (2(k + £))3*. Since g(x) = b - h(x/k/R), then the sum of the magnitudes of
the coefficients of ¢ is at most b(2(k + £))3¢k/2. O

Lemma C.7. Let p(x) be a degree { polynomial in x € R? such that each coefficient is bounded in absolute
value by b. Then the sum of the magnitudes of the coefficients of p(x)t is at most btd*.

Proof. Note that p(z) has at most d’ terms. Expanding p(x)? gives at most d*’ terms, where any monomial
is formed from a product of ¢ terms in p(x). Then the coefficients of p(x)! are bounded in absolute value
by B'. Summing over all monomials gives the bound. O

In the following lemma, we bound the magnitude of approximating polynomials for subspace juntas outside
the radius of approximation.

26

Lemma C.8. Lete > 0,R > 1, and f : RY — R be a k-subspace junta, and consider the corresponding
function g(Wa). Let ¢ : R¥ — R be an (e, R)-uniform approximation polynomial for g, and define
p:RY = Rasp(x) :=q(Wez). Let r := SUP|we|,<r |9(W)|. Then

s, | Wl
p(@)| < (r+€)(2(k + 0)* k" = | YIWzly= R

2

Proof. Since ¢(x) is an (€, R)-uniform approximation for g, then |¢(x) — g(x)| < € for ||z||, < R. Let
h(x) = q(Rz). Then |h(x/R) — g(x)| < e for ||x|, < R, and so |h(x/R)| < r + € for ||z|, < R,
or equivalently |h(x)| < 7 + € for ||z|, < 1. Write h(x) = zllaHlS@ haqa$* ... z3*. By Lemma C.6,

Sl <t ol < (r+)20k + £)3 - k2. Then for ||z, > 1,

h(@)] < D Ihallef" ... 23|

Jadly<¢

o

< D ol)™
Jally <
l

<lely- Y lhal,

llel; <€

where the second inequality holds because |z;| < |x||, for all 4, and the last inequality holds because
]| > \|m||g°““; for [|a]|, < ¢ when ||z|l, > 1. Then since p(z) = ¢(Wz) = h(Wax/R), we have
()] < ||22E], (r + €)(2(k + 0))3 kY2 for Wz, > R. O

The following is an important theorem that we use later to obtain uniform approximators for Lipschitz
Neural networks.

Theorem C.9 ([NS64]). Let f : RF - R bea function continuous on the unit sphere Sy_1. Let w; be the

function defined as wy(t) = SUD||g||,,|lyll.<1 |.f (&) — f(y)| for any t > 0. Then, we have that there exists a
lz—yll2<t
polynomial of degree € such that supj,,<1 |f(x) — p(z)| < C - ws(k/l) where C'is a universal constant.

This implies the following corollary.

Corollary C.10. Ler f : R¥ — R be an L-Lipschitz function for L > 0 and let R > 0. Then, for any ¢ > 0,
there exists a polynomial p of degree O(LRk /€) such that p is an (e, R)-uniform approximation polynomial

for f.

Proof. Consider the function g(x) = f(Rx). Then, we have that g is RL-Lipschitz. From statement of
Theorem C.9, we have that wy(t) < RLt. Thus, from Theorem C.9, there exists a polynomial ¢ of degree
O(LRk/e) such that supjy|,<1 [9(y) — q¢(y)| < e Thus, we have that sup|,,<g |[f(x) — ¢(z/R)| =
SUP|z|<R lg(x/R)—q(x/R)| = SUP|y|lo<1 l9(y)—q(y)| < e. p(x) := q(x/R) is the required polynomial

of degree O(LRE/¢). O
C.3 Kernel Representations

We now state and prove facts about Kernel Representations that we require. First, we recall the multinomial
kernel from [GKKT17].

Definition C.11. Consider the mapping o, : R” — RNt where N; = Zle d’ is indexed by tuples
(i1,42,...,i;) € [d) for j € [£] such that value of 1/, (z) at index (i1, i2,...,7;) is equal to [[/_, @;,. The

27

kernel MK, is defined as
MK (z,y) = (@), de(y)) = > (- y)".

We denote the corrresponding RKHS as Hyk, .
We now prove that polynomial approximators of subspace juntas can be represented as elements of Hk,.

Lemma C.12. Letk € Nand ¢, R > 0. Let f : R — R be a k-subspace junta such that f(x) = g(Wx)
where g is a function on RF and W is a projection matrix from R¥*?. Suppose, there exists a polynomial q
of degree { such that supy,<r |9(y) — q(y)| < € and the sum of squares of coefficients of q is bounded
above by B2. Then, f is (e, B?- (k +1))-approximately represented within radius R with respect to Hy Ky

Proof. We argue that there exists a vector v € Hyk, such that (v,v) < B? and |f(z) — (v,0,(z))| < €
for all ||z|[2 < R. Consider the polynomial p of degree ¢ such that p(x) = ¢(Wx). We argue that
p(x) = (v,04(x)) for some v and that (v,v) < B2 Let q(y) = > sent,s|<e 48 H;?:l y!Sil. From our
assumption on ¢, we have that 3 gy < gs| < B. Fori € £, weuse define B; as B = genn | g)=¢ |45]-

Given multi-index S, for any 7 € [d], we define S(7) as the number ¢ such that Zfz_ll ISi| <j< Zgzl |S;l.

We now compute the entry of v indexed by (i1, 72, . . ., i¢). By expanding the expression for p(x), we obtain
that .
Vieie = 2 45 [T Wstis
|S|=t Jj=1

t=0 (ix,...,1¢)€[d]* t=0 (i1,...i)e[d]k \|S|=t J=1
J4 t
2
< > (2@)| X 1w,
t=0 (in,....ir)€ld]F \|S|=t |S|=t j=1

>

t=0 \|S|=t |1S|=t j=1

IN
M
EN

VOUERS
M=~
3

IN
™~
M
A
=

l
=

IN

Y @] (k+1) < B (k+1)
|S|<¢

Here, the first inequality follows from Cauchy-Schwartz, the second follows by rearranging terms. The third
inequality follows from the fact that the number of multi-indices of size ¢ from a set of k£ elements is at most
(k + 1)!. The final inequality follows from the fact that the sum of the squares of the coefficients of ¢ is at
most B2, U

We introduce an extension of the multinomial kernel that will be useful for our application to sigmoid-nets.

Definition C.13 (Composed multinomial kernel). Let £ = (¢1,...,¢;) be a tuple in Nt. We denote a
sequence of mappings wéo), wél), e ,wét) on R? inductively as follows:

1. Q/Jéo)(a:) =x

28

2 9 @) = v, (i (@),

Let IV, éi) denote the number of coordinates in wéi). This induces a sequence of kernels M Kéo) .M Kél), ..., M Két)

defined as ,

M)) = 04 @), o) = S (10 @), D)

J=0

and a corresponding sequence of RKHS denoted by H H H

MK TEMKED 7 TRk

Observe that the the multinomial Kernel MK, = MKE;)) is an instantiation of the composed multinomial
kernel.

We now state some properties of the composed multinomial kernel.

Lemma C.14. Let £ = ({1, ...,4;) be a tuple in N' and R > 0. Then, the following hold:
1. Sup|z,<p MKg) (z,z) < max{1, (2R)? [Ti=1 &},
2. Forany x,y € R? MKg) (x,y) can be computed in time poly (d, (Zzzl Ei)),

3. Foranyv € ’HMth) and x € RY, we have (v, wét) (z)) is a polynomial in x of degree []}_, ¢:.

Proof. We assume without loss of generality that R > 1 as the kernel function is increasing in norm. To
prove (1), observe that for any a, we have that

4; .

MKéi)(ac,a:) = z:% <MK$_1)($,:1:)>J < (2MK$_1)(:B,:B))

li+1

R Y

We also have that sup,,<r I\/II'(E0
MK (2, 2) < max{1, (2R)ITi=1(6HD} < max{1, (2R)? [Tiza 41},

(x,z) = -« = R. Thus, unrolling the recurrence gives us that

The run time follows from the fact that M Kg) (x,x) = Zﬁ;o (M Kg_l) (x,)) and thus can be computed

from MKéi_l) with ¢; additions and exponentiation operations. Recursing gives the final runtime.

The fact that (v, wéi) (z)) follows immediately from the fact the fact the entries of wéi) (x) arise from the
multinomial kernel and hence are polynomials in . The degree is at most Hle ;. O

We now argue that a distribution that is hypercontractive with respect to polynomials is hypercontractive
with respect to the multinomial kernel.

Lemma C.15. Let D be a distribution on R that is C-hypercontractive for some constant C. Then, D is
also (M Kg), O, 1, 4:)-hypercontractive.

Proof. The proof immediately follows from Definition 3.4 and Lemma C.14(3). O

C.4 Nets with Lipschitz activations

We are now ready to prove our theorem about uniform approximators for neural networks with Lipschitz
activations. First, we prove that such networks describe a Lipschitz function.

Lemma C.16. Ler f : R? — R be the function computed by an t-layer neural network with L-Lipschitz
activation function o and weight matrices W. Say, ||W ||y < W for W > 0 and the first hidden layer has k
neurons. Then we have that f is \/k|W 1|32 (W L)*~'-Lipschitz.

29

Proof. First, observe from Fact C.2 that for all 1 < i < T, |[W® |y < W (since |[W||; < W) and
WOl < VE|WM |2, Recall from Definition C.1, we have the functions fi, ..., f; where f;(z) =
W@ . o(f;_1(x)) and fi(z) = WD - 2. We prove by induction on i that || f;(z) — fi(z + u)[]2 <
VE|W W |52 (W L)"~!||u||. For the base case, observe that

IN

d1 d1 2
I fi(x +u) — fi(x)]2 Z(((Wi(l),m) — <Wi(1), x -+ u>)2> < Z((Wi(l),m)

i=1 =1

IN

W Yl < VEIWD |5l

where the second inequality follows from the Lipschitzness of o and the final inequality follows from the
definition of operator norm. We now proceed to the inductive step. Assume by induction that || f;(x) —
fi(x + w)l|2 is at most v/&||W M ||3°(W L)'~ 1||w|2. Thus, we have

dy

| fir(e +) — firr(@)]2 = Z<<W}’“’7a (fi(@)) = W o (il + u>>>)

j=1
Wz]lo(fi(x)) — o fi(m +u)]2
< (WLVEIWD WL ully < VEIWD |5 (LW)|ullz

IN

where the third inequality follows from the Lipschitzness of ¢ and the inductive hypothesis. Thus, we get
that |f(z + u) — f(@)] < | fi(x +w) - fi(@) 2 < VE[WD |3 (WL) - [lull2. 0

We now state are theorem regarding the uniform approximation of Lipschitz nets. We also prove that the
approximators can be represented by low norm vectors in Rk, for appropriately chosen degree £.

Theorem C.17. Let ¢, R > 0. Let f : R® — R be a neural network with an L-Lipschitz activa-
tion function o, depth t and weight matrices W = (WM, .. W®) where W ¢ Rs*%i-1_ Ler
k be the number of neurons in the first hidden layer. Then, there exists of a polynomial p of degree
¢ =0 <||W(1)||§°(WL)t_1Rk7\/E/e) that is an (e, R)-uniform approximation polynomial for f. Fur-

thermore, f is (€, (k + E)O(Z))-approximately represented within radius R with respect to Huk, = HMK(”'
(£)

In fact, when k = 1, it holds that f is (e, 20(5))-appr0ximately represented within R with respect to HMK“)‘
£

Proof. We can express f as f(x) = g(Px) where P is a projection matrix and ¢ is a neural network with
input size k. We observe that the Lipschitz constant of g is the same as the Lipschitz constant of f since
P is a projection matrix. From Lemma C.16, we have that g is ||v/EW M)||3°(W L)!~!-Lipshitz. From

Corollary C.10, we have that there exists a polynomial ¢ of degree { = O (HW(I) HSO(WL)t_le‘\/E/e)
that is an (e, R)-uniform approximation for g. From Lemma C.6, we have that the sum of squares of mag-
nitudes of coefficients of ¢ is bounded by <||\/EW(1)||§°(WL)t_1R) (k +0)°0 < (k4 0)°®. Now,

applying Lemma C.12 yields the result. When & = 1, we apply Lemma C.4 to obtain that the sum of
squares of magnitudes of coefficients of ¢ is bounded by ||[W 1) ||5°(W L)t~1 - 2008 < 20(0), O

C.5 Sigmoids and Sigmoid-nets

We now give a custom proof for the case of neural networks with sigmoid activation. We do this as we can
hope to get O(log(1/¢) degree for our polynomial approximation. We largely follow the proof technique

30

of [GKKT17] and [ZLJ16b]. The modifications we make are to handle the case where the radius of ap-
proximation is a variable R instead of a constant. We require(for our applications to strictly-subexponential
distributions) that the degree of approximation must scale linear in 1, a property that does not follow directly
from the analysis given in [GKKT17]. We modify their analysis to achieve this linear dependence.

We first state a result regarding polynomial approximations for a single sigmoid activation.

Theorem C.18 ([LSSS14]). Let 0 : R — R denote the function o(x) = 1+6 —. Let R,e > 0. Then, there
exists a polynomial p of degree { = O(Rlog(R/¢)) such that sup|, < |o(z) — p(x)| < €. Also, the sum of
the squares of the coefficients of p is bounded above by 2000,

We now present a construction of a uniform approximation for neural networks with sigmoid activations.
The construction is similar to the one in [GKKT17] but the analysis deviates as linear dependence on radius
of approximation is important to us.

Theorem C.19. Let e, R > 0. Let f on R? be a neural network with sigmoid activations, depth t and weight
matrices W = (WO ... W®) where W) ¢ Rsixsi 1. Also, let ||W |1 < W. Then, there exists of a
polynomial p of degree ¢ = O ((Rlog R) - (||[WW||W*=2) . (¢ log(W/e€))!™1) that is an (e, R)-uniform
approximation polynomial for f. Furthermore, f is (e, B)-approximately represented within radius R with

respect to H MK where £ = ({1,...,0;_1) is a tuple of degrees whose product is bounded by (. Here,

B< (2HW ||oo) . WO(Wt’Z(tlog(W/e)t’z).

Proof. First, let ¢; be the polynomial guaranteed by Theorem C.18 that (¢/(2W)!)-approximates the sig-
moid in an interval of radius R||W(")||3°. Denote the degree of ¢ as ¢1 = O (Rt||W V|| log(RW /e)).
Forall 1 < i < t, let ¢; be the polynomial that (¢/(2W)!)-approximates the sigmoid upto radius 2W¥. These

have degree equal to O (Wtlog(W/e)). Let€ = (¢1,...¢;—1). Foralli € [t — 1], let ¢;(x) = Z?:o ﬁ](-i)xj.
We know that Zfizo(ﬁ](-i))2 < 20(4),
We now construct the polynomial p that approximates f. For i € [t], define p;(z) = W® - g;_; (pi_1(x))

with py () = W) . x. Define p(x) = p; (). Recall that p;(z) is a vector of s; polynomials. We prove the
following by induction: for every i € [t],

L lpi(x) = fi(@)]loo < €/(2W)',
2. For each j € [s;], we have that (p;);(x) = <v,¢;)(az)> with (v,v) < (2|Ww®|32)°Ln [T)
WOUTiz,)
where the function f; is as defined in Definition C.1.

The above holds trivially for i = 1 and fi(z) = py(x) = WU . (x) is an exact approxirnator Also,
(p1)i(x) = <WZ.(1), x) = (Wi(l), q/)él)(a:)) from the definition ofq/)él). Clearly, (Wi(l), W) (|wt H°°)2 .
We now prove that the above holds for i 4+ 1 € [t] assuming it holds for i.

We first prove (1). For j € [s;+1], we have that

(s (@) = Fasn)s @) = W) (0spu(a)) — o(fi(@))
< W (@(pi(@) = opi(@) | + W (0 i) - o(fi(@)))]
<W-. (6/(2W)t) + W - 6/(2w)t—i < 6/(2W)t_(i+1)_
For the second inequality, we analyse the cases ¢ = 1 and ¢ > 1 separately. When i = 1, we have that

(p1);(®) = (f1);(x) < R[W1[|3° and o(x) — q1(x) < (¢/(2W)") when |z| < R|[Wy||5°. For i > 1, from
the inductive hypothesis, we have that [W 1 p; ()| < [W D f;(2)| + | WEHD || - (e/(2W)EF) < 2W.

31

The second term in the second inequality is bounded since o is 1-Lipschitz.

We are now ready to prove that (p;1); is representable by small norm vectors in ’HMK(Z-H) forall j € [sj41].
£
We have that

(pis),s ZWJ;“ g ((po)(@)).

From the inductive hypothesis, we have that (p;), = (v(*), ¢el). Thus, we have that

(pis1)j(x) =) Wj'(li+1) " <<v(k)7w£i)>) .

k=1

We expand each term in the above sum. We obtain,
4 ' n
ai (W, 0f) =380 (0®,)
n=0
¢ , .
_ n;) g0 Y el (@) (4 @)

. mn
(mh---,mn)E[N(l)}”
j 1)
= @ g (0 (@) = w®, 0 (@)).
The second inequality follows from expanding the equation. u¥) indexed by (my,...,my) € [N, g(i)]" for
n < ¢; has entries given by uggl 5n m1 . vﬁff}l Putting things together, we obtain that
(pis1); Z W w®), g (@)

Z W(H—l (z+1)<w)>.

Thus, we have proved that (p;41); is representable in ’HMK(ZH) We now prove that the norm of the repre-

sentation is small. We have that

HZW’“ Iz < WDl a2 < W - max u®]o.

We bound maxyc [, ||u)||2. For any k, from the definition of u(*) and the inductive hypothesis, we have
that

l; n
PE=3"(s0) Y TI(e)
n=0 (ml,...,mn)E[Néi)]"jzl
L;
=30 (89)" I < 2060)3
n=0

32

We analyse the case i = 1 and 7 > 1 separately. When i = 1, we have 2001 |[o(®)]| 262 < (2] (D) ||52)©O (1)
from the bound on the base case. When 7 > 1, we have

. 1+1 . .
1S Wi u®)|3 < w2e0) |26
k=1

< W220) <(2||W(1)HSO)O(H:;11 £ Ol Zn)>2zi

< (2|[w M ||52)O0UTn=1 tn) . PO L=z tn)

which completes the induction. We are ready to calculate the bound on the degree.

We have £; = O(Rt||[WM||5°log(RW/e€)). Also, for i > 1, we have £; = O(Wtlog(W/e)). Thus, the
total degree is £ < [['_1 £; = O ((Rlog R) - (|[W M) ||W'=2) - (tlog(W/e))!~1). The square of the norm
of the kernel representation is bounded by B where

B< (QHW(UHSO)@) WO(Wt*Q(tlog(W/e)t*ﬂ'
This concludes the proof. U

C.6 Applications for Bounded Distributions

We first state and prove our end to end results on TDS learning Sigmoid and Lipschitz nets over bounded
marginals that are C'-hypercontractive for some constant C'.

Theorem C.20 (TDS Learning for Nets with Sigmoid Activation). Let F on R? be the class of neural
network with sigmoid activations, depth t and weight matrices W = (WM .. . W®) such that |W||; <
W. Let ¢ € (0,1). Suppose the training and test distributions D, D' over R? x R are such that the following
are true:

1. Dy is bounded within {x : ||z||2 < R} and is C-hypercontractive for R,C > 1,
2. The training and test labels are bounded in [— M, M] for some M > 1.

Then, Algorithm 1 learns the class F in the TDS regression up to excess error € and probability of failure §.
The time and sample complexity is

poly (d7 Lot 0, log(1/8)", (2R)2, (2 W |j50)f - wO((Wies(v) dw))
€

where £ = O ((Rlog R) - (J[W M |2W*2) - (tlog(W/e))!~1).

Proof. From Theorem C.19, we have that F is (e, (2HI/V(1)HS")ZVVO(WPQ(’e 10g(W/E)’f*z)>-alpproximaltely
represented within radius R with respect to Mth), where £ is a degree vector whose product is equal to
¢ = O ((RlogR) - (|WW|W*t2) . (tlog(W/e))!!). Also, from Lemma C.14, we have that A =
SUP | |l,<R I\/Ith)(:c, x) < (2R)¥‘. From Lemma C.14, the entries of the kernel can be computed in
poly(d, ¢) time and from Lemma C.15, we have that D,, is (M Kg’), C, E) hypercontractive. Now, we obtain

the result by applying Theorem 3.6. O

The following corollary on TDS learning two layer sigmoid networks in polynomial time readily follows.

33

Corollary C.21. Let F on R? be the class of two-layer neural networks with weight matrices W =
(WO W) and sigmoid activations. Let |[WM||* < O(1) and |W|y < W. Suppose the training
and test distributions satisfy the assumptions from Theorem C.20 with R = O(1). Then, Algorithm I learns
the class F in the TDS regression setting up to excess error € and probability of failure 0.1 in time and
sample complexity poly(d,1/e, W, M).

Proof. The proof immediately follows from Theorem C.20 by setting ¢ = 2 and the other parameters to the
appropriate constants. O

Theorem C.22 (TDS Learning for Nets with Lipschitz Activation). Let F on R? be the class of neu-
ral network with L-Lipschitz activations, depth t and weight matrices W = (W(l), ey W(t)) such that
W1 < W. Let € € (0,1). Suppose the training and test distributions D, D’ over R% x R are such that the
following are true:

1. Dy is bounded within {x : ||z|2 < R} and is C-hypercontractive for R,C > 1,

2. The training and test labels are bounded in [— M, M| for some M > 1.
Then, Algorithm I learns the class F in the TDS regression up to excess error € and probability of fail-
ure 8. The time and sample complexity is poly (d,X,C*, M,log(1/5)", (2R(k —l—ﬁ))o(z)), where { =

O (HW(l) ||§°(WL)t_1Rk:\/E/e>. In particular, when k = 1, we have that the time and sample complexity
is poly(d, 2, C*, M, log(1/5)", (2R)°O) where { = O (||W(1) [5°(WL)R/e) .

Proof. From Theorem C.17, for k > 1 we have that F is (e, (k + £)°©))-approximately represented within
radius R w.r.t MKED where / is a degree vector whose product is ¢ = O (HW(l) ||§O(WL)t_1Rk7\/E/€).

For k = 1, we have that we have that F is (e, 20(4))—approximately represented within radius R w.r.t
I\/IKél) where £ is a degree vector whose product is equal to £ = O (|WM||$°(W L)*"1R/¢). Also, from
Lemma C.14, we have that A ‘= sup|z|,<r MKg) (x,z) < (2R)°®. From Lemma C.14, the entries of

the kernel can be computed in poly(d, ¢) time and from Lemma C.15, we have that D, is (M KEI), C, E)
hypercontractive. Now, we obtain the result by applying Theorem 3.6.]

The above theorem implies the following corollary about TDS learning the class of ReLUs.

Corollary C.23. Let F = {x — max(0,w -) : ||w||s = 1} on R be the class of ReLU functions with
unit weight vectors. Suppose the training and test distributions satisfy the assumptions from Theorem C.22
with R = O(1). Then, Algorithm I learns the class F in the TDS regression setting up to excess error € and
probability of failure 0.1 in time and sample complexity poly(d, 2001/€) M).

Proof. The proof immediately follows from Theorem C.22 by setting ¢t = 2, W = (w) and the activation
to be the ReLLU function. U

In particular, this implies that the class of ReLUs is TDS learnable in polynomial time when e < O(1/log d).

C.7 Applications for Unbounded Distributions

We are now ready to state our theorem for TDS learning neural networks with sigmoid activations.

Theorem C.24 (TDS Learning for Nets with Sigmoid Activation and Strictly Subexponential Marginals).
Let F on R? be the class of neural network with sigmoid activations, depth t and weight matrices W =

34

(WO W) such that |W |y < W. Let € € (0,1). Suppose the training and test distributions D, D’
over R% x R are such that the following are true:

1. Dy is y-strictly subexponential,
2. The training and test labels are bounded in [— M, M] for some M > 1.

Then, Algorithm 2 learns the class F in the TDS regression up to excess error € and probability of failure §.
The time and sample complexity is at most

poly(d*,log(1/4)*),
1
where s = (klog M - (|[WM||seW2) - (¢ log(W/e))t_l)O(”) .

Proof. From Theorem C.19, we have that F there is an (¢, R)-uniform approximation polynomial for f with
degree { = O ((RlogR) - (W)W t=2) . (tlog(W/e))!1). Here, let gr(e) = (|[WD|FW!=2).
(tlog(W/e))!=t. We also have that r = SUp||z|, <, fer |f(@)] < poly (RE||[WM[|$*W*2) from the
Lipschitzness of the sigmoid nets (Lemma C.16) and the fact that the sigmoid evaluated at 0 has value 1.
The theorem now directly follows from Theorem 4.6. O

We now state our theorem on TDS learning neural networks with arbitrary Lipschitz activations.

Theorem C.25 (TDS Learning for Nets with Lipschitz Activation with strictly subexponential marginals).
Let F on R? be the class of neural network with L-Lipschitz activations, depth t and weight matrices
W = WW ... W®) such that |W||y < W. Let € € (0,1). Suppose the training and test distributions
D, D’ over R x R are such that the following are true:

1. Dy is y-strictly subexponential,
2. The training and test labels are bounded in [— M, M] for some M > 1.

Then, Algorithm 2 learns the class F in the TDS regression up to excess error € and probability of failure §.
The time and sample complexity is at most

poly(d®,log(1/6°%),
(1) |0 t—1,9(3)
where s = (klog M - |[WW||52(W L) 1 /e) 7.

Proof. From Theorem C.17, we have that F there is an (¢, R)-uniform approximation polynomial for f with
degree ¢ = O (Rk:\/E HW(l)HCQ’O(WL)t_l/e). Here, let gr(e) = kvVE|[WO||52(W L)1 /e. We also

have that r = sup| |, <g, rer [f(x)| < poly (RE||[W M| W*=2) from the Lipschitz constant(Lemma C.16)
and the fact that the each individual activation has value at most 1 when evaluated at O (see Definition C.1.
The theorem now directly follows from Theorem 4.6. O

D Assumptions on the Labels

Our main theorems involve assumptions on the labels of both the training and test distributions. Ideally,
one would want to avoid any assumptions on the test distribution. However, we demonstrate that this is
not possible, even when the training marginal and the training labels are bounded, and the test labels have
bounded second moment. On the other hand, we show that obtaining algorithms that work for bounded
labels is sufficient even in the unbounded labels case, as long as some moment of the labels (strictly higher
than the second moment) is bounded.

35

We begin with the lower bound, which we state for the class of linear functions, but would also hold for the
class of single ReLLU neurons, as well as other unbounded classes.

Proposition D.1 (Label Assumption Necessity). Let F be the class of linear functions over R?, i.e., F =
{x = w-z:w e R |wly < 1}. Even if we assume that the training marginal is bounded within
{x € RY : ||z||z < 1}, that the training labels are bounded in [0,1), and that for the test labels we have
EyND/y [y2] <Y where Y > 0, no TDS regression algorithm with finite sample complexity can achieve
excess error less than Y /4 and probability of failure less than 1/4 for F.

The proof is based on the observation that because we cannot make any assumption on the test marginal,
the test distribution could take some very large value with very small probability, while still being consis-
tent with some linear function. The training distribution, on the other hand, gives no information about the
ground truth and is information theoretically indistinguishable from the constructed test distribution. There-
fore, the tester must accept and its output will have large excess error. The bound on the second moment of
the labels does imply a bound on excess error, but this bound cannot be made arbitrarily small by drawing
more samples.

Proof of Proposition D.1. Suppose, for contradiction that we have a TDS regression algorithm for F with
excess error € < Y/4 and probability of failure § < 1/4. Let m € N be the sample complexity of the
algorithm and p € (0,1) such that m < 1/p. We consider three distributions over R x R. First D(!

outputs (0,0) with probability 1. Second, D) outputs (0, 0) with probability 1 — p and (Ew, E) with

VP VP
probability p, for some w € R? with ||wl||s = 1. Third, D® outputs (0,0) with probability 1 — p and
(\/—\/gw, 0) with probability p.

We consider two instances of the TDS regression problem. The first instance corresponds to the case D =
DW and D' = D@). The second corresponds to the case D = D) and D' = DG). Note that the
assumptions we asserted regarding the test distribution and the test labels are true for both instances. For
D@ in particular, we have EyND(z) [y?] =p- (\/?/\/5)2 = Y. Moreover, in each of the cases, there is a
hypothesis in F that is consistent with all of the examples (either the hypothesis « — 0 or x — w - x), so
opt = minse[Lo(f)] = 0 = minper[Lo(f) + Lo (f)] = A

Note that the total variation distance between D) and D@ is p and similarly between D) and D).
Therefore, by the completeness criterion, as well as the fact that sampling only increases total variation
distance at a linear rate, i.e., d¢y (D)%™, (D')®™) < m - d (D, D) < m - p, we have that in each of the
two instances, the algorithm will accept with probability at least 1 — m - p — § (due to the definition of total
variation distance').

Suppose that the algorithm accepts in both instances (which happens w.p. at least 1 — 2§ — 2mp). By the
soundness criterion, with overall probability at least 1 — 46 — 2mp, we have the following.
p-(h(z) —0)?> <Y/4
p-(h(z) = VY /\/p)? <Y/4
The inequalities above cannot be satisfied simultaneously, so we have arrived to a contradiction. It only

remains to argue that 1 — 49 — 2mp > 0, which is true if we choose p < 12_—;1;5. Therefore, such a TDS
regression algorithm cannot exist. O

"We know that the algorithm would accept with probability at least 1 — § if the set of test examples was drawn from (Dg)®™.
Since (D%)®™ is (mp)-close to (Dz)®™, no algorithm can have different behavior if we substitute (Dg)®™ with (D5)®™ except

with probability m - p. Hence, any algorithm must accept with probability at least 1 — m - p — 4.

36

The lower bound of Proposition D.1 demonstrates that, in the worst case, the best possible excess error
scales with the second moment of the distribution of the test labels. In contrast, we show that a bound on
any strictly higher moment is sufficient.

Corollary D.2. Suppose that for any M > 0, we have an algorithm that learns a class F in the TDS setting
up to excess error € € (0, 1), assuming that both the training and test labels are bounded in [—M, M]. Let
T (M) and m(M) be the corresponding time and sample complexity upper bounds.

Then, in the same setting, there is an algorithm that learns F up to excess error 4e under the relaxed
assumption that for both training and test labels we have E[y?g(|y|)] < Y for some Y > 0 and g some
strictly increasing, positive-valued and unbounded function. The corresponding time and sample complexity
upper bounds are T(g= (Y /€?)) and m(g~1 (Y /€?)).

The proof is based on the observation that the effect of clipping on the labels, as measured by the squared
loss, can be controlled by drawing enough samples, whenever a moment that is strictly higher than the
second moment is bounded.

Lemma D.3. Ler Y > 0and g : (0,00) — (0,00) be strictly increasing and surjective. Let y be a
random variable over R such that E[y*g(|y|)] < Y. Then, for any e € (0,1), if M > g~ (Y/€?), we have
\/E — CIM))] <e

Proof of Lemma D.3. We have that E[(y — cly(y))?] < E[y?1{|y| > M}], because y > clp/(y) and v,
clys(y) always have the same sign, so (y — cly/(y))? > y? and also (y — cly/(y))? = 0if |y| < M. Since

g9(Jy|) is non-zero whenever y > 0, we have E[y21{|y| > M}] = E[y2 - 20 . 1{]y| > M}]. We now

g9(y)
use the fact that g is increasing to conclude that E[y21{|y| > M}] < [Z;(%['?m < g&(/[). By choosing
M > g~ 1(Y/€?), we obtain the desired bound. O

We are now ready to prove Corollary D.2, by reducing TDS learning with moment-bounded labels to TDS
learning with bounded labels.

Proof of Corollary D.2. The idea is to reduce the problem under the relaxed label assumptions to a corre-
sponding bounded-label problem for M = g~!(Y/€?). In particular, consider a new training distribution
clpys o D and a new test distribution cly; o D', where the samples are formed by drawing a sample (x, y)
from the corresponding original distribution and clipping the label y to clj;(y). Note that whenever we have
access to i.i.d. examples from D, we also have access to i.i.d. examples from cly; o D and similarly for
(DL, clps o DL,). Therefore, we may solve the corresponding TDS problem for cly; o D and cly; o D, to
either reject or obtain some hypothesis A such that

Latyor (1) < minlLatyop ()] + min{Layyen(f) + Latyorr ()] + ¢

Our algorithm either rejects when the algorithm for the bounded labels case rejects or accepts and outputs
h. It suffices to show Lo/ (h) < minye r[Lp(f)] +minper[Lp(f') + Lo (f')] + 4e, because the marginal
distributions do not change and completeness is, therefore, satisfied directly.

It suffices to show that for any distribution D, we have |Lp(h) — Le,,op(h)| < e. To this end, note that

37

Leyop(h) = \/E(%y)ND[(clM(y) — h(x))?]. We have the following.

Latpgon(h) = \/Egayypl(clur(y) — h(x))?]
= VE@y-nl(clu () =y +y — h(@))?]

< \/E@ynl(elr(y) =1 + /E@y-~olly — hi@))?)
< e+ Lp(h)

The first inequality follows from an application of the triangle inequality for the £o-norm and the second
inequality follows from Lemma D.3. The other side follows analogously. O

38

	Introduction
	Our Results
	Our Techniques
	Related Work

	Preliminaries
	Bounded Training Marginals
	TDS Regression via the Kernel Method
	Applications

	Unbounded Distributions
	Additional Preliminaries
	TDS Regression via Uniform Approximation
	Applications

	Proof of Multiplicative Spectral Concentration Lemma
	Moment Concentration of Subexponential Distributions
	Polynomial Approximations of Neural Networks
	Useful Notation and Facts
	Results from Approximation Theory
	Kernel Representations
	Nets with Lipschitz activations
	Sigmoids and Sigmoid-nets
	Applications for Bounded Distributions
	Applications for Unbounded Distributions

	Assumptions on the Labels

