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Abstract

We consider the fundamental problem of learning the parameters of an undirected graphical model
or Markov Random Field (MRF) in the setting where the edge weights are chosen at random. For Ising
models, we show that a multiplicative-weight update algorithm due to Klivans and Meka learns the
parameters in polynomial time for any inverse temperature 3 < /logn.

This immediately yields an algorithm for learning the Sherrington-Kirkpatrick (SK) model beyond
the high-temperature regime of 5 < 1. Prior work breaks down at 8 = 1 and requires heavy machinery
from statistical physics or functional inequalities. In contrast, our analysis is relatively simple and uses
only subgaussian concentration.

Our results extend to MRFs of higher order (such as pure p-spin models), where even results in the
high-temperature regime were not known.
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1 Introduction

In this work, we revisit the problem of structure learning and parameter recovery in undirected graphical
models or Markov Random Fields (MRFs) over a binary alphabet. This class of distributions plays a sig-
nificant role in various fields, including statistical physics, mathematics, and theoretical computer science.
Perhaps the simplest and most well-studied class of graphical models is the Ising model. An Ising model
Dy p, is a distribution over {£1}" given by the factorization

n
P X = Aieias x|
XNDrA’h[ x] exp( E Ty + E h2$l>

i<j i=1

Here A is called the interaction interaction matrix and h is the external field. The dependency graph of D 4 j,
is the set of edges (i, j) for which A;; is non zero.

The structure learning problem is to recover the underlying dependency graph G given only iid sam-
ples from D4 ;. We refer to the more difficult problem of recovering the edges of G and their associated
weights as parameter recovery. The most commonly studied complexity measure for structure learning
is the width of the Ising model denoted A(A, h) = max;(}_;[Ai;| + [hs]). Klivans and Meka [KM17]
obtained the first algorithm with nearly optimal sample complexity and running time for learning Ising
models (see also [Brel5, VMLC16, HKM17]). Their multiplicative-weight update algorithm Sparsitron
uses N = exp(O())) log n samples, runs in time O(n?N), and additionally recovers the parameters of the
graph.

1.1 Beyond Worst-Case Bounds and the SK Model

Although the above bounds are best possible for all bounded-width Ising models [SW12, KM17], it is natural
to ask whether the exponential dependence on A can be avoided for natural special cases of distributions. A
prominent example is the extensively studied Sherrington-Kirkpatrick (SK) model. The SK model is the
Ising model with factorization % > <j Ajjrix; + 2?21 h;x; where the entries of A and h are sampled iid
from A/ (0, 1). We refer to this distribution as SK(23).

When 8 < 1, the SK model is said to be in the high-temperature regime, where various desirable
properties such as replica symmetry hold [Tal10]. The SK model experiences a phase transition at § = 1,
and 5 > 1 is known as the low temperature regime (see [Tal03, Pan13] for a comprehensive discussion).
Note that the underlying graph here is almost surely the complete graph, and so the structure learning
problem is trivial. The parameter recovery problem, however, is still interesting. The problem had been first
studied under the name spin glass inversion, and heuristic methods were proposed in [BRO17, MMO09b].
Clearly, the width of this model is O(1/n) and thus the analysis from [KM17] only guarantees a sample
complexity and running time that is superpolynomial in n.

For the easier problem (implied by parameter recovery) of recovering a distribution that is close in TV
distance, [AJK24] obtained a polynomial time algorithm for the limited portion of the high-temperature
regime (8 < %). They rely on the approximate tensorization of entropy of these models at high temperatures,
which have many implications including the polynomial-time mixing of the Glauber dynamics of these
distributions. Furthermore, their work relies on powerful results in functional inequalities [BB19, EKZ22,
ABXY?24] that provably do not hold for 5 > %.

To overcome the above barrier at § = % and to attain parameter recovery, a very nice recent work
of Gaitonde and Mossel [GM24] takes a different approach. They first prove that bounding the operator
norm of the covariance matrix of the SK model suffices for parameter recovery. They then apply a recent
deep theorem on the boundedness of the operator norm of the covariance matrix of the SK model [EAG24,
BXY23, BSXY24] for the entire high-temperature regime 3 < 1. The boundedness of the operator norm



provably does not hold for 8 > 1, and hence their techniques cannot work in the low-temperature regime.
This suggests the existence of a barrier for efficient learnability beyond the high-temperature regime.

1.2 Our Results

We show that, surprisingly, there is no such barrier. We prove that Sparsitron run with exp(O(5% +
B+/logn)) - poly(n) samples recovers the parameters of the SK model. In particular, for § < y/logn,
the algorithm runs in polynomial time. In doing so, we subsume and improve the corresponding result from
[GM24].

Theorem 1.1 (Theorem 3.7, Informal). With probability 1 — O(1/n) over D, ~ SK(B), there exists an
algorithm that takes N = exp(O(8? + B+/logn)) - poly(n, 1/e€) iid samples from Dy, and recovers a

matrix A and vector h such that HA — EH < eand Hh — E‘
o

< e. The running time is O(n? - N).
o0

As a corollary of the above theorem, we can output an Ising model that is close in TV distance to the
ground truth.

Corollary 1.2 (Corollary 3.8). With probability 1 — O(1/n) over D 4 j, ~ SK(3), there exists an algorithm
that takes exp(O(3% 4 8v/logn)) - poly(n, 1/€) iid samples from D 4 5, and outputs an Ising model D ;7

such that dvry(D 3+, Da ) < €. The running time is O(n? - N).

We note that for 5 < 1, the running time of [GM24] is exp(O(1/(1 — /3))) - poly(n). For 8 >
1 — 0(1/log n), this running time becomes super polynomial. Thus, our running time is better even in the
high temperature regime for 5 > 1 — o(1/logn). A feature of our proof is that the Gaussian external field
case does not require any additional work, whereas the corresponding proof of [GM24] relies on a highly
technical argument that does not apply to the full high-temperature regime. Finally, we note that the analysis
of [GM24] only implies learnability with probability 1 — O(1/logn) over the choice Dy j, ~ SK(/). On
the other hand, our algorithm works with probability 1 — O(1/n).

In fact, our techniques solve a more general problem: given samples from an Ising model with arbitrary
dependency graph GG and random weights, recover the graph and the parameters of the model. It is not clear
if the techniques from prior work [AJK 24, GM24] solve this problem, even in the high-temperature regime.
Formally, we work in the following model:

Definition 1.3 (Random Ising Model). Let G be a graph on n vertices with maximum degree d and let 3 > 0.
We define the distribution Dg g over Ising models as follows: a distribution D ~ Dg g has weight matrix A
such that 5 5
4y = s -N(0,1) (or T “Rad(1/2)) if (i,7) is an edge in G
0 otherwise

where each entry is sampled independently. Each entry of the external field h is either O or sampled from
N(0,1) (or Rad(1/2)). The parameter 3 is called the inverse temperature.

Note that in the above definition, the graph G is arbitrary and only the weights of the interaction are ran-
dom. Some variants of the above definition have been studied under the names diluted spin glasses [MPV87,
MMO09a], or the Edwards-Anderson (EA) model [EA75]. When G is instantiated to be the complete graph,
the above definition corresponds to SK(3). We obtain the following theorem for parameter recovery.

Theorem 1.4 (Theorem 3.5, Informal). With probability 1 — O(1/n) over D, ~ Dg g (with Gaussian
weights), there exists an algorithm that takes N = exp(O(3? + B+/logn)) - poly(d,log n, 1/e€) iid samples

from D 4, and recovers a matrix A and vector h such that || A — A‘ < eand ||h—h ‘ < ne. The
o0 o

running time is O(n? - N).



Note that if one is only interested in parameter recovery for the interaction matrix A, then our sample
complexity is sub-polynomial in n for bounded degree graphs. In fact, when both the random interaction
matrix and external field have rademacher entries, we can recover the parameters exactly (by rounding) with
sample complexity sub-polynomial in n and polynomial in 1//.

Theorem 1.5 (Theorem 3.9). With probability 1 — O(1/n) over D 4, ~ Dg g (with rademacher weights),
there exists an algorithm that takes N = exp(O(8? + 3v/logn)) - O(dlog(n/B)/B%) samples and recovers
matrix A and external field h exactly. The running time is O(n? - N).

The structure learning algorithm is immediate: as long as each non-zero edge has value at least 7, run
algorithm from Theorem 1.4 with ¢ = 7/2 and add all edges (7, j) with ﬁij > 1n/2 to the graph. In the
Gaussian case, via standard Gaussian anticoncentration, with high probability, we have n > Q(3/n3) and
thus we need polynomial sample complexity to identify these edges. In the rademacher case, since we
exactly recover A, we just look at the non zero entries of A to recover the graph.

Corollary 1.6. With probability 1 — O(1/n) over D 4 j, ~ D¢ g (with rademacher weights), there exists an
algorithm that takes N = exp(O(8% + By/logn)) - O(dlog(n/B)/B?) iid samples from D 4 , and recovers
the graph G.

Corollary 1.7. With probability 1 — O(1/n) over D4, ~ Dg g (with Gaussian weights), there exists an
algorithm that takes N = exp(O(B% + By/logn)) - poly(n,log n, 1/3) iid samples from D 4 , and recovers
the graph G.

We also obtain closeness in TV distance as a direct corollary.

Corollary 1.8. With probability 1 — O(1/n) over D4, ~ Dg g (with Gaussian weights), there exists an
algorithm that takes exp(O(B% + B+/logn)) - poly(n, 1/€) iid samples from D4y, and outputs an Ising

model D in such that drv (D i D) < e The running time is O(n? - N).

1.3 Our Results: Markov Random Fields

We now move on to the more general problem of parameter recovery and structure learning in higher order
Markov Random Fields (MRFs) with random weights. We first give a formal definition of an MRF.

Definition 1.9 (Markov Random Field). A distribution Dy, is a t-wise Markov Random Field (MRF) with
dependency graph G if

Pr [sz]ocexp(wx)):exp( ) fs(:v)> M
v SeCi(G)

where Cy(G) are the cliques of G of size at most t and fs are arbitrary functions on the variables of S. The
function 1)(x) is a degree t polynomial called the factorization polynomial of D.

Note that Ising models are the special case when ¢ = 2. The dependency graph can also be defined
as the following: the set of neighbors of vertex v is the minimal set .S such that X, and X\ sufo) are
independent conditioned on the variables in S. Furthermore, every distribution with such a dependency
structure can be expressed as an MRF [CH71]. Now, the width of the model A(¢) = max; ||0;%|; where
||lp||; for a polynomial p is the sum of the absolute values of its coefficients. 0;1) is the partial derivative of
1 with respect to the index ¢. Similar to the case of the Ising model, Klivans and Meka [KM17] give an
algorithm that uses N = exp(O(\)) log n samples, runs in time O(n' - N) and recovers the graph G, see
also ((HKM17]).



The first MRF we study is a generalization of the SK model called a pure ¢-spin model that is also widely
studied (see [Tal10, Pan13] for a discussion). The problem of parameter recovery in these models for the full
high-temperature region was stated as an open problem in [GM24] (they state a more general problem for
mixed ¢-spin models, but even the special case of pure ¢-spin models is open and suffers the same technical
barriers). This is the MRF with factorization 1(x) = ﬁ 2 acln]t Ve H§:1 To, Where 1, are sample
iid from (0, 1) for every multi-index a € [n]’. Note that A()) = Q(n(*=1)/2) and hence the running time
of Sparsitron is again exponentially large.

For a limited range of the high-temperature regime, the results of [AJK24] do solve the weaker problem
of recovering a distribution that is close in total variation distance. However, their techniques will provably
not work for the entire high-temperature range, as these models experience the property of shattering in the
high-temperature regime, and this provably rules out fast mixing and entropy factorization [AJ24, AMS23,
GJK?23].

Observing this barrier, [GM24] conjectured that boundedness of certain moment matrices are necessary
for learning in the entire high-temperature regime. We prove that this is not the case. We show that it
is possible to recover parameters even in the low temperature regime where the aforementioned moment
matrices are provably unbounded [EAG24]. We now state our theorem on parameter recovery in pure t-spin
models.

Theorem 1.10 (Theorem C.3, Informal). Let D be a pure t-spin model with inverse temperature 5. Then,
we have that with probability at least 1 — O(1/n") over Dy, ~ D, there exists an algorithm that draws
N = exp(O(B%t? + pt\/tlogn)) - poly(nt, 1/€) samples and runs in time O(N - n') that outputs a t-MRF
D; such that (1) H¢ - zzHl <6 (2)drv(Dy, D) < e

Again, our techniques solve the following more general problem: given iid samples from an MRF with

dependency graph G and random coefficients, find G and recover the coefficients. Formally, we work in the
following model:

Definition 1.11 (Random MRF). Let G be a graph on n vertices with maximum degree d. Let 5 > 0 be the
inverse temperature and t > 0 be the degree of the MRF. The t-MRF 1) sampled from the distribution over
MRFs D¢ g is the MRF with factorization polynomial 1) defined as

8 -
Y(z) = CEGE POREACIN | E2

SeC(G) €S

where {@(S)}Sect((;) are sampled iid from N (0, 1) (or Rad(1/2)).

We obtain the following theorems on parameter recovery and structure learning in these models.
Theorem 1.12 (Theorem 4.12, Informal). With probability 1 — O(1/n') over Dy, ~ Dg g+ (with Gaussian
weights), there exists an algorithm that draws N = exp(O(S%t+ Bt\/logn))-poly(nt, 1/€) iid samples from
Dy, and runs in time O(N -n') that outputs a t-MRF D such that (1) Hl/J — 1/~1H1 <€ (2)drv(Dy, DJ,) <e

Corollary 1.13 (Theorem 4.11, Informal). With probability 1 — O(1/n') over D,, ~ D¢ g (with Gaussian
weights), there exists an algorithm that draws N = exp(O(B8? + B+y/logn)) - poly(nt,1/3)) iid samples
from Dy, and runs in time O(N - n') that recovers the graph G.

Similar to our results for the Ising model, we obtain improved bounds when the weights are rademacher.
We give an algorithm that draws only a sub-polynomial number of samples and recovers 1 exactly.

Theorem 1.14 (Theorem 4.13, Informal). With probability 1—O(1/n') over Dy, ~ D¢ 3.1 (with rademacher
weights), there exists an algorithm that draws N = exp(O(B8% + By/logn)) - O(td' log(n/B)/5?) iid sam-
ples from Dy, and runs in time O(N - nt) that recovers the polynomial 1) exactly.



1.4 Related Work

The problem of designing efficient algorithms for learning undirected graphical models has a long history
of research [CL68, WLR06, AKN06, BMS08, NBSS10, TR14]. Current work on structure learning and
parameter recovery for MRFs primarily focuses on the setting where A, the sum of the absolute values of
each node’s edge weights, is bounded. In an important result, Bresler [Brel5] gave the first polynomial-
time algorithm for constant A that did not take any further assumptions on the underlying graph (such as
correlation decay). His algorithm, however, has sample complexity that is doubly exponential in A. Bresler’s
result was extended to general MRFs by Hamilton et al. [HKM17]. Vuffray et al. [VMLC16] gave the first
efficient algorithm for learning Ising models with nearly optimal sample complexity (singly exponential in
A) but with suboptimal running time.

Using a different approach, Klivans and Meka [KM17] obtained the first algorithm for learning Ising
models with both near-optimal sample complexity and near-optimal running time. Their algorithm also
extends to MRFs and non-binary alphabets. In a follow-up work, Wu et al. [WSD19] showed how to replace
the algorithm in [KM17] with an algorithm for sparse logistic regression. Their analysis follows the same
framework as [KM17] and results in a slightly improved sample-complexity bound for large alphabets. The
Wu et al. algorithm was extended to the case of MRFs in [ZKKW20] by closely following the analysis of
the MRF case in [KM17]. Vuffray et al. [VML22] extended these results to more general models. Other
recent works that extend Ising and MRF learning to different settings include [GKK19, PSBR20, MMS21,
DKSS21, DDDK21, BGPV21, GMM?24].

2 Preliminaries

Given a set S C [n] and a vector x € {£1}", we use xg to denote the vector obtained from z by restricting
to the indices in the set S. Similarly we use g to denote the x restricted to coordinates outside S. We use
Xs(z) to denote the monomial [ [, ¢ x;. Given a polynomial p, p(S) refers to the coefficient of x5 in p.
N (0, 1) refers to the univariate standard normal distribution. Rad(1/2) refers to the Rademacher random
variable that takes 1 with probability 1/2. For z,y € {£1}", the Hamming distance between x and y
is defined as dp(z,y) == > ;¢ 1{zi # y;i}. Given a polynomial p = } g, P(S)xs(2), the partial
derivative with respect to set T is defined as Orp(z) == > ¢~ P(S)xs(x). When S = {i}, we use the
notation J;p for the polynomial dg;3p. A maximal monomial of pis any set S C [n] such that p(T) = 0 for

all ' D S. The sigmoid function o : R — R is defined as o(z) = H%

Fact 2.1 (Properties of subgaussian distributions, [Ver18]). For A > 0, a random variable X is A-subgaussian

if there exists an absolute constant C' such that Pr[| X| > t] < 2 - exp(—(t/A)?); E[exp((X/(AC))?)] < 2;
and Elexp(rX)] < exp(C%r2)\2), for all r € R.

Fact 2.2 (Anti-Lipschitzness of the Sigmoid). For a,b € R, we have that |o(a) — o(b)| > exp(—|a|] — 3) -
min(1, |a — b|).

Fact 2.3. Let D, be a t-MRF with factorization polynomial 1. Then, for x € {£1}" and i € [n], we have
that Prxp [XZ =1 | X[n]\{i} = l'[n}\{i}] = 0'(281¢(33))

3 Learning Random Ising Models

In this section we present the argument for learning random Ising models with Gaussian external fields. We
first review the Sparsitron algorithm and analysis from [KM17]. We then overview the techniques used by
Gaitonde and Mossel [GM24] to solve the high-temperature case and show how we sidestep their technical
barriers to achieve learnability in the low-temperature regime.



3.1 The Analysis of Sparsitron

Klivans and Meka [KM17] proved that the problem of parameter recovery in Ising models can be reduced to
learning sparse generalized linear models with noise. We now sketch their argument (we consider the zero
external field case for simplicity). From the definition of the Ising measure, it holds that for any ¢ € [n],
Prx p,[Xi = 1| Xy = @] = 0(24; - ). Recall sup;ep,) [[Aill; < A. First, a multiplicative-weight
update algorithm Sparsitron is run to obtain a vector w to minimize Ex~p,[(c(w - X) — o(4; - X))?].
Formally, their multiplicative-weight update algorithm has the following guarantee:

Theorem 3.1 ([KM17]). Let \,e,§ > 0. Let D be a distribution on {£1}" x {£1} where Pr[Y =
+1|1X] = o(w - X) for (X,Y) ~ D and vector w € R™ with ||w||; < \. There exists an algorithm that
takes N = O (A\*(In(n/d€))/€?) independent samples from D, runs in time O(nN), and outputs a vector @
such that ,

(X,)I/EL;ND[(U(w X)—o(w-X))*] <e
with probability at least 1 — 9.

To recover the parameters of D 4, they run the above algorithm for each i € [n] with € set to exp(—Q(\))e?
and output the recovered vectors. The final sample complexity is N = exp(O(\)) log(n/e)/e* and the run-
ning time is O(n? - N). The source of their (unavoidable in the worst case) exponential dependence on A
lies in their proof reducing parameter recovery to obtaining small squared loss. The proof of this reduction
goes through two steps.

* (Step 1) Observe that the sigmoid function satisfies a weak anti-lipschitz property. Formally, we have
forany a,b € R, |o(a) — o(b)| > exp(—|a] —3) - min(1, |a — b|). Now, since |4; - X| < A for any
x € {£1}", any w that attains squared loss less than €2 must satisfy the following property:

E [[Ai- X —w- X[*] < exp(O(N))e”. )
X~Dy

* (Step 2) Note that for any j € [n] and y € {£1}"~!, it holds that minyey 1) Prx~p,[X; = b |
Xy = ¥l = exp(—4|A; - y|)/2 > exp(—O(X)). A distribution satisfying this property is said
to be exp(—O(\))-unbiased. Now, say a vector w has |w; — A;;| = «. Then, for any y in {£1}",
there exists a b € {£1} such that [b(w; — Aj) + (Ai — w)p)\ (53 - ¥)| = a. Using the fact that D 4
is exp(—O(\))-unbiased, it now easily follows that Ex~.p,[|4; - X —w - X|?] > exp(—O(\)) - 2.
From Equation (2), we have that that |A;; — w;| = o < exp(O())) - e. Setting the squared error to
exp(—(A)) - €2 implies that [|4; — w|| < e

3.2 Learning in the High-Temperature Regime: the Analysis of Gaitonde and Mossel

Gaitonde and Mossel [GM24] showed that the exponential dependence on A in the reduction from the
previous subsection can be avoided when A has iid Gaussian entries. First, they showed that as long as there
is some constant C' such that Pry.p,[|4;- X| < C] > 3/4, for any w with small squared loss the following
holds: Ex.~p ,[|4;- X —w-X|*] < exp(O(C))-€2. The intuition is that in a region of constant mass, the anti-
lipschitzness of the sigmoid scales much better than exp(—O(\)), namely it scales as exp(—O(C')). More
precisely, to improve step one from the previous subsection, they consider the conditional expectation over
the event { A;- X < C'}. Note that the expected squared error (after conditioning) is at most a constant factor
off the true expectation. To avoid the exponential dependence on A from step two and recover the weight A;;,
they observe the following: if D 4 satisfied the additional property that Prx..p,[|4; - X| < C] > 3/4, then,
the unbiasedness of the distribution conditioned on the event {max(|A4; - X|,|A; - X|) < C} is effectively
at least exp(—O(C)). Thus, it suffices to set the squared error of Sparsitron to exp(—Q(C')) - €2. Formally,
[GM24] proved the following:



Theorem 3.2. (Theorem 6.1 from [GM24]) Let A be an interaction matrix and h € R™ be the external field
of an Ising model. Suppose there exists a bound C > 1 such that the following hold: (1) For each i € [j],
we have || A;| ., < C, and (2) for each i € [n], it holds with probability at least 3/4 over X ~ D 4}, that
|A; - X + hi| < C Let A be a matrix from R"™™ and h a vector from R". Then, we have that for all i € [n),

j#iand A(X) =(0(2(A; - X + h;) — ((AZ X+hl))),

XNILE;A’h[A(X)] > exp(—0(C)) - min{1,8(4;; — Ai;)?}. 3)

< |hi — hg|/2n, then it holds that Ex~p,,[AX)] > exp(=0(C)) -
min{1, 8(h; —h) }

They proceed by showing that the conditions of the above lemma hold for the SK model for 5 < 1. To do
s0, they use a recent result on the boundedness of the covariance matrix of the SK model at high temperatures
[EAG24, BXY23, BSXY24]. These works show that HEXN DX X H < W with probability at
least 1 — o(1) over the randomness in A. From the definition of the operator norm and an application of
Chebyshev’s inequality, this implies that for any unit vector v, Prx.p,[lv - X| > 4/(1 — 5)] < 1/4.
Now, applying this argument along the direction A; for any ¢ € [n] implies the conditions required to apply
Theorem 3.2 with C' = 4/(1 — j3).

This gives a learning algorithm that has sample complexity and running time exp(O(1/(1 — 3))) -
poly(n). It is known that boundedness of the covariance matrix experiences a phase transition at 3 = 1 and
becomes unbounded for 5 > 1 [GM24]. Thus, this approach will provably not work in the low-temperature
regime. Furthermore, it is unclear if these covariance bounds hold for random Ising models on arbitrary
graphs. We also note that the above argument does not hold for the case of non-zero external fields and
requires significantly more technical work [GM24].

3.3 Learning Random Ising Models Beyond the High-Temperature Regime

In this section we prove our main result for learning random Ising models and obtain our claimed results for
SK({3) as a corollary. We begin with the following observation: for the task of parameter recovery, we do not
need Ex~p, ,[v- X] to be small for all directions v, as is implied by a distribution with bounded covariance.
Rather, we only care about the directions {Ai}ie[n} corresponding to the rows of the interaction matrix as
required by Theorem 3.2. We directly analyze the correlation of D 4 ; with these directions. We use the
additional property that the rows of A are subgaussian to show that with high probability over the choice of
A, the random variable A; - X + h;X; is subgaussian with subgaussianity constant O(3% + 3+/logn).

To do this, we give a simple proof that there exists a universal constant B such that Ex..p, , [exp(|4; -
X + h; X;|?/BB?)] < exp(8?) - O(n?) with probability at least 1 — O(1/n) over the random choice of
A and h (Lemma 3.3). Having shown this, a tail bound on |A4; - X + h;X;| follows immediately by using
the standard trick of exponentiating and applying Markov’s inequality (Lemma 3.4). Our main lemma is as
follows:

Lemma 3.3. With probability 1 — - over Dy ~ Dg,g, there exists a universal constant B for all i € [n],
we have
. I% [exp(|A; - X + hi Xi)?/(BB?))] < n?exp(O(B?)). 4)
~LUAR

Proof. We compute E4Exp, [exp(|4; - X + h;X;|*/B3?)] for all i € [n]. We choose the universal
constant B later in the proof. Let (A, h)_; denote the entries of (A, h) that do not involve the variable i.



These are independent from (A;, h;).

AI?,ZXN%M[GXPUA - X+ hiXil?/BB?)] = JEE, XNEAh[eXpUAi‘X+hiXi|2/Bﬁ2)]
- (A,IE),Z- A?j:hi :xe{%;l}n XNFEA [x= =z|-exp (|A x + hjx;| /352)]
— (A7E),i A?j:hi :xe{%:l}n exp(X <k Aga(:ij;)r > =1 hjz;) cexp (|4; -z + hi$i|2/352)}
= 4 A, _gce{zj::l}" T Aij?(:lr, ];;)xi +9un-2), exp (JAi -z + hixilz/Bﬂz)}
= (AEH [me{zizl}n exp(gian_; (z)) A;Ehi [exp(xz(ﬁ(zA’w}z)—i- hiz;) p(|Ai -z + hixi’2/B,82)H

&)

where ga ), (2) = exp(D_;<p jrizk AjkTjTh)+ ;2 hjx; only depends on (A, h)_; and is indepen-
dent of A;, h;. To further bound the right hand side above, we need a lower bound on Z (A, h), the partition
function. We do so by marginalizing out the dependence of Z(A, h) on A;, h; so that we can remove this
term from the expectation over A;, h;. We have that

Z(A,h) = Z exp ZA]k:Ej:Ek + Z hiz;) = Z exp(z;(A; - o) + hizi) exp(gia,n)_, (7))

ze{£1}" j<k ze{£1}"
1
=3 Z (exp(A; -z + hy) + exp(—4; - & — h)) exp(gan _,; (x))
ze{xl1}"
1
=3 > exp(gian., (@) ©6)
ze{£1}"

where the third equality follows from the fact that A; -z + h; and g4 »)_, () do not depend on z;. The final

inequality follows from the fact that e® 4+ et > 1 for any ¢t € R. Combining the Equations (5) and (6), we
obtain that

E E [exp(|Ai - X+ hiXi|2/452)]

AhX~Dyp
exp(a:,-(Ai . a:) + h,xl) 2 2
- E (z)) E cexp (|A; - © + hizi|2/B
(Avh)i[xe{%:l}n eXp(g(Aﬁ)fz(ZE))Ai’hi[ Z(A,h) p (| x + h;x;|* /B )]]
ex :EiAi':E+hi+Ai':E+hil’i2B2

<2 B [ Y enlsun (o) 5 [0 )+ ( /By
(Ah)_; ve(E1)n Ai by er{:l:l}” eXp(g(A,h)—i(x))

=2- E | ) exp(gan)_ (#) Ea,n, [exp@i(Ai'x+hz~>+\Ai-x+hiwi!2/362ﬂ] (7)
(Avh)fi Z‘E{:I:l}” er{:tl}n eXp(g(A7h)7i (':U))

To bound the above quantity, it suffices to bound E 4, 5, [exp(xi(Ai -x + h;))-exp (\Az -x+ hixi]2/352)]
for arbitrary x. Since A; is a vector of d independent % subgaussian random variables and h; is O(1)-
subgaussian, the distribution of A; - = + h; is O(3)-subgaussian for fixed =. This is because the sum of d



\-subgaussian random variables is Av/d-subgaussian. Thus, we have
Ea, n, [exp(@i(A; - @) + hiz;) -exp (|4; -z + hixi|2/352)]
< \/ E [exp(2x;(A; -+ h;))] 'AEh lexp(2(4; - = + hyz;)2/BB?)] < exp(O(8%)  (8)

15/bg 1514

where the first inequality follows from Cauchy Schwarz inequality and the last inequality follows from
Fact 2.1 when B is an appropriately chosen universal constant. Combining Equations (7) and (8), we obtain
that B4, Ex~p, , [exp(|4i - X 4+ hiX;|*/BB?)] < exp(O(5?)).

Now, applying Markov’s inequality implies that with probability at least 1 — —2 over A, for a fixed
i € [n], we have that Ex.p, , [exp(]4; - X + h; X;]?/Bf?)| < n*exp(O (52)). A union bound over
i € [n] completes the proof. O

Having proved the above lemma, the following tail bound on A4; - X + h;X; immediately follows.

Lemma 3.4. Let G be a graph of degree d and let § > 0. With probability 1 — % over Dy ~ Dg g with
interaction matrix A and gaussian external field, for all i € [n], we have

Pr [|4;- X + hiXi| < O(B% 4 B/logn)] > 1 — 1 9)
X~Dap n

Proof. The proof follows almost immediately from Lemma 3.3. Observe that with probability 1 — % over
Dy, ~ D¢ g, for any i € [n], we have that

. Y. _ |Ai - X + hi X; | t2
GBI X X 2t = Py [exp( B )2 exp(B_ﬁz)}
Exn,, [exp(|Ai X+ hiXi|2/B52)]

- < n? exp(O(5%)) exp( — (t/BB)?)
exp (3—52)
where B is the universal constant from Lemma 3.3. The first inequality follows from Markov’s and the final

inequality follows from Lemma 3.3. Setting t = O(3% + 3+/log n) makes the above probability less than
1
2, O

n

Our theorem on parameter recovery now follows.

Theorem 3.5. Let G be a graph of degree d and 0 < €,0 < 1. With probability at least 1 — O(1/n) over
Day ~ Dg g, there exists an algorithm that draws N = exp(O(8? + B+/logn)) - (Mogn—hyg("/&))
samples and runs in time O(n? - N)) that outputs a matrix A such that HA AH < eand Hh hH < ne.
The algorithm succeeds with probability 1 — 6.

Proof. Observe that the interaction matrix A and external field / for a random Ising model satisfies || A, <
O(% VIogn) and ||h||,, < O(y/logn) with high probability by applying standard subgaussian concen-
tration. Now, Applying Theorem 3.2 with C = O(f% + B+/logn) and Theorem 3.1 with error ¢ =
exp(—O(B? + Bv/logn)) - € and A = O(B+/dlogn), we obtain the theorem. O

Our structure learning result immediately follows from the above theorem. From a standard argument
that parameter recovery implies closeness in TV distance (Lemma B.3), we immediately obtain the follow-
ing corollary by setting the error to ¢/n?.

10



Corollary 3.6. Let G be a graph of degree d and 0 < €,6 < 1. With probability at least 1 — O(1/n) over
Dap ~ Dg g, there exists an algorithm that draws N = exp(O(8? + 3/logn)) - O (62n8d1°gg§10g(n/56)>
samples and runs in time O(n? - N) that outputs a matrix A and vector h such that (1) dkL(Dan, D37) <
2¢2 and (2) drv(Da,n, Dg ﬁ) < €. The algorithm succeeds with probability 1 — 6.

We instantiate the above two statements to the SK model (complete graph with Gaussian weights) to
obtain the following corollaries.

Theorem 3.7. Let 3 > 0and 0 < €,6 < 1. With probability at least 1 — O(1/n) over D 4 j, ~ SK(3), there
exists an algorithm that draws N = exp(O(B8? + +/logn)) - O <w> samples and runs in

time O(n? - N) that outputs a matrix A such that HA — EH < eand Hh —EH < ne.
o o

Corollary 3.8. Let 3 > 0 and 0 < €,0 < 1. With probability at least 1 — O(1/n) over D), ~ SK(B),
there exists an algorithm that draws N = exp(O(8? + 3v/logn)) - O (B “n’ log ?;Og("/ 56)) samples and

runs in time O(n? - N) that outputs a matrix A and vector h such that (1) dkL(Dan, D37) < 2¢2 and (2)
drv(Dan, D33) < e

In the case where the matrix A and external field are rademacher random variables, we show that we
can exactly recover the model using only a sub-polynomial number of samples. This is in contrast to
the Gaussian case where our sample complexity was polynomial in n, and we only recovered the model
approximately.

Theorem 3.9. Let G be a graph of degree d and 0 < ¢€,0 < 1. With probability at least 1 — O(1/n)
over Dy, ~ Dg g (with rademacher weights), there exists an algorithm that draws N = exp(O(B% +

Bv/logn)) - O (W) samples and runs in time O(n? - N) that recovers the distribution D 4 j, exactly.

This is a special case of a more general theorem (Theorem 4.13). We refer to Appendix D for the proof.

Remark 3.10. We note that the analysis of Lemma 3.4 and hence all the learning results straightforwardly
extend to the case where h; ~ N (u, o). In this case, for v = /Bt + 02, we obtain that |A; - X + h; X;|
is at most O + % + ~+/1og n) with probability at least 1 — O(1/n). This implies sample complexity and
running time that scale with exp(O(p + 72 + vy/logn)) - poly(n).

Remark 3.11. Note that most of the analysis above would hold even if we had used a simpler algorithm
for learning a sigmoid with respect to square loss such as GLMTron [KKSKI11]. GLMtron, however, has
polynomial sample complexity (in n) when the input norm is \/n. On the other hand, Sparsitron has sample
complexity O(\? - logn). This improved dependence on n is crucial to obtain our sub-polynomial sample
complexity bound in Theorem 3.5 and Theorem 3.9.

4 Learning Random MRFs

We now present the proofs of our result on learning random ¢-MRFs. First we sketch the analysis. Consider
an MRF Dy, Note that Prxp,[X; = 1 | Xy = 7] = 0(20;9(x)). We run Sparsitron nodewise to
obtain a polynomial p that attains squared error (for learning the sigmoid) of at most €2 with respect to J;1).
In [KM17], they argue that an MRF with width at most \ is exp(—O(\))-unbiased. They use this to show
that squared loss of at most €2 implies that the maximal monomials of 9;1) and p are exp(O(\t))e close.
Recovering the maximal monomials is sufficient for structure recovery. As in Section 3, we want to avoid
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worst-case bounds (i.e., naively setting A = Q(n(t_l)/ 2)) by conditioning on some constant probability
regions.

We condition on the event £ := {z | [1)(z)—¢(y)| < C for all y with di(z,y) < t} (see Definition 4.2).
We argue that Dy, conditioned on & behaves similarly to an exp(—O(C))-unbiased distribution and hence
obtain parameter recovery without an exponential dependence on A (Lemmas A.2 and A.4). These results
generalize Theorem 3.2 to the case of MRFs. Finally, we argue via a generalization of Lemmas 3.3 and 3.4
that for any random MRF, the event £ occurs with constant probability (Theorem 4.4). In doing so, we
bypass the need for boundedness of moment matrices as conjectured by [GM24].

4.1 Subgaussian Derivatives, C'-smooth MRFs and their properties

We now define the notion of an MRF with subgaussian derivatives. This is a property that holds true for all
the random MRF families that we study in this work. We argue that for any distribution over MRFs D with
subgaussian derivative, Dy, ~ D satisfies a deterministic condition (Definition 4.2) with high probability
that implies efficient structure learning and parameter recovery by running Sparsitron.

Definition 4.1 (Subgaussian Derivatives). Let D be a distribution over factorization polynomials 1 of degree
t such that each coefficient of 1) ~ D is independently picked. Let A > 0. We say that D has A-subgaussian
derivatives if it holds that

1. Forall x,y € {£1}" such that di(x,y) < t, we have that the random variable (1(x) — (y)) is
A-subgaussian where the randomness is over 1) ~ D.

For any vector z € {+1}" and set S C [n], we denote the vector obtained by flipping the coordinates
of x in the set S by z°. Let the function ¢° be defined as

W) = o) — ) =2 Y D) xr(a).

|TNS| is odd

In particular, we have that ¢/{%} (z) = 2z; - 9;4(z). We also refer to D as a distribution over MRFs because
the factorization polynomial uniquely determines the MRF. We now define the deterministic conditions on
Dy, ~ D that imply efficient learning of D,

Definition 4.2 (C-smooth MRF). Let Dy, be a t-wise MRF with factorization polynomial 1. Let £ C {£1}"
be the set defined as

E={z | |W(x) —Y(y)| < C, forall y such that dg (x,y) < t}
We say that Dy, is C-smooth if Prx.p[X € £] > %.

To motivate the above definition and why it implies efficient learning, first consider the case of the Ising
model Dy . In this case, the above definition corresponds to the property that with constant probability
over X ~ Dy p, we have that |A; - ¢ 4+ h;| < C for all i € [n]. This was exactly the property used in the
case of learning random Ising models in Section 3.

In the case of ¢-MRFs, the analysis of [KM17] used the worst case property of §-unbiasedness of these
distributions. They proved that for any distribution D that is §-unbiased, given a polynomial p of degree
at most ¢ and maximal monomial S, it holds that Prxp||p(X)| > |p(S)| > §'. Using this property and
the fact that the width of the model is bounded by )\ , they showed how to learn the coefficients of p from
samples. Note that 0 > exp(—€()\)). Since § scales with the width, we cannot directly use their analysis
directly for learning the polynomial without paying exp(O())). Here is where the above condition of C-
smoothness helps us. It is easy to argue that for any polynomial p and point z, there exists a y at Hamming
distance at most ¢ — 1 from z such that [p(y)| > |[p(S)| (Lemma A.1). Now, using a simple argument, we
see that any C-smooth MRF also has a similar anticoncentration property as the one required by [KM17].

12



Lemma 4.3 (Anticoncentration of C-smooth Dy,). Let Dy, be a C-smooth t-MRF. Then for any polynomial
p of degree t with maximal monomial S, it holds that Prx.p,[|[p(X)| > [p(S)|] > 2~ (41 L exp(—20).

Proof. For any x € £ and y, z that differ from x only in the coordinates in .S, it holds that |¢(y) — ¥ (2)| <
2C. Let z maximize the quantity Prxp,[X = z | Xp,)\g = z]. Thus, for any y with yj,)\g = T\ g it
holds that

_ Prx~p,[X =y

> 2 texp(—2C
PrXNDw[X = Z] - p( )

pr— — >
ngw (X =y | Xjps = Tpps] = 2

where the first inequality holds from the definition of z and the fact that at least one element has conditional
probability greater than 27¢. Let £g be the set {y | Tpps =Y, T €E }. Thus, we have

r [Ip(0)] = [BS) = Y ngwﬂp(X)\ > [P | Xppys = w] - XE)Ew[X[n]\S = w]

weg

X~D

> 27 exp(—2C) XPE (X € &) > 27D L exp(—2C)
~D,
where the penultimate inequality follows from the fact that there exists some string z that differs from x
only in S such that |p(z)| > |p(S)|. The second inequality follows from the previous argument that the
probability of X = z conditioned on X,\g = w is at least 27t exp(—2C). The last inequality follows
from the fact that Prxp,[X ~ €] > Prx.p,[X € &] > %. O

Although we do not use the above result directly in our proofs, we use similar ideas to extend the analysis
of [KM17] to our setting.

We now prove a structural result that says that any MRF with subgaussian derivatives is also C-smooth
for appropriate choice of C' (a generalization of Lemma 3.4). This result contains most of the technical
novelty of our work, and we believe it could be useful in other contexts as well.

Theorem 4.4. Let D be a distribution over t-wise MRF's such that D has \-subgaussian derivatives. Then,
with probability at least 1 — CESY +1)t over Dy, ~ D, we have that D, is O(\? + A\y/tlog n)-smooth.
Proof. Let the function 1)~ be the polynomial containing the coefficients of ¢ not in 1. Thatis, ¢y~ (z) =
~ S
>8] iseven YT - X7(@). Clearly, we have that i(z) = P (x) + wT(m We also have that ¢ (z%) =
S

5() - 5

We are now ready to start the proof. The result follows by applying Markov’s inequality to the following
claim.

Claim 4.5. With probability 1 —  over Dy, ~ D, for all S C [n] with |S| < t, we have

(n+1)" +1)

CE fexp (0°(X))?/B)] < A(n+1)* exp(B) (10)
~ L

where B = 2(C\)? for large universal constant C.

Proof. We compute the quantity Ep ~pEx~p, [exp ((¢°(X))?/B)] for all sets S with size at most ¢.
We have that

pEp B, [ (502 /B)] = E B B [exp ((07(X)/B)]
- EEL 3 2y = e (@7@)n)]
_ D) | s
—ﬁﬁ[m%}n 2 p ((¥°(x))°/B) (1)



where Z is the partition function of the MRF defined as Zy, = -, qyn exp(¥(z)). To proceed in

bounding the quantity in Equation (11), we first need to decouple Z,, from ¢® as this quantity is in the
denominator and hence hard to analyze. To do this, we lower bound Z;, using only the polynomial ™. We
have that

Zi= Y el =5 Y (esp(() +ep((r)

we{+1}n re{xl}n
s s
= % Z <exp(¢_s(az) + V(@) 2($)) + exp(zb_s(:n) _vile) 2(3:)))
ze{£1}"
>0 Y ew (65) (12)
ze{£1}"

where we obtain the second equality by pairing terms that are equal to each other outside .S and the com-
plement of each other in S. The third equality follows from the definition of the polynomials 1/ and 1)~
and the final inequality follows from the fact that e! + et > 1 for all ¢ € R. Combining Equations (11)
and (12), we obtain that

pE i By, [exp (0°(X))*/B)]

‘ exp(y(z)) .
=S S D wefaiyn €Xp (¥ (2))

|ze{£1}"
S 7
exp (=5 (@) + 257

et | e e e (05(@)

exp(ur5(x)) Eys [exp (2) -exp (05(2)" /)
mE {%:1} Sy oxp(—S(@))

where the penultimate equality follows from the fact that ¢(z) = = () + @ and the last equality

follows linearity of expectation. Clearly, to bound the RHS in the above argument, it suffices to bound
Eys [exp <@> - exp <(¢S(:p))2 /B)] pointwise for any x € {£1}". Note that from the assumption
of \-subgaussian derivatives, we have that the random variable ¢ (z) is A-subgaussian. Let Y denote

the random variable ° (). We want to bound Ey [exp(Y/2) - exp(Y2/(2 - (CX)?))] given that Y is \-
subgaussian. We have that

E [exp(Y/2) -exp(Y?/(2- (CA))] < | [E[exp(Y)] - E[exp(Y?/(CA)?)] < 2exp(C*N?)
where the first inequality is Cauchy-Schwarz and the last inequality follows from Fact 2.1. Now, combining

the above arguments, above gives us Ep ~pEx~p, [exp ((1(X))?/B)] < 4exp(C?A?) = 4exp(B).
Thus, for any fixed S of size at most ¢, Markov’s inequality implies that

P | B, e (05 (X))/B)] 2 4n + 1)* exp(B) | < <n+711>2t

Since the number of sets of size at most ¢ is bounded above by (n+1)?, a union bound implies the claim. [
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We are now ready to complete the proof of the theorem. Let D, ~ D be an MRF for which the event
from Claim 4.5 holds true. This happens with probability at least 1 — ﬁ For any set |S| < ¢, we have
that

L, [P0l z ] = Py [WS(X)* /B2 /B] < B exp ((0°(X))/B)] - exp(~r*/B)
a4 1P exp(B) el D) < s

where B = 2(C\)2. The second inequality follows by taking the exponent on both sides and applying
Markov’s inequality. The third inequality follows from Claim 4.5. The final inequality follows by settings
r = O(B + +/Btlogn). Now, a union bound over all sets of size at most ¢ completes the proof. O

4.2 Results on Structure Learning and Parameter Recovery

We now state our results on structure learning and parameter recovery for C-smooth MRFs. We need the fol-
lowing standard non-degeneracy condition (introduced in [KM17]) that is required to ensure identifiability
of the underlying graph given samples from the MRF.

Definition 4.6 (n-identifiability). A ¢-MRF with factorization polynomial ) with dependency graph G is
said to be n-identifiable for n > 0 if |¢(S)| > n for all maximal monomials S in v and all edges in G are
contained in a monomial of .

We are now ready to state and prove the theorem on structure learning in C'-smooth MRFs which are
n-identifiable.

Theorem 4.7. Let C,\,n > 0. Let Dy be a C-smooth t-MRF with dependency graph G that is n-
identifiable and suppose ||0;1)||; < X for all i € [n]|. Then, there exists an algorithm that draws N =

(@) (w log(n/ (57])) samples from Dy, and runs in time equal O (N : nt) such that it finds the

graph G with probability at least 1 — .

Proof. The algorithm is exactly the same as Algorithm 3 in [KM17] with an appropriate choice of parame-
ters. We only sketch a proof here since our analysis is almost identical to that of [KM17] except that we use
Lemma A.2 instead of Lemma 6.2 from [KM17]. First, for each i € [n], we obtain polynomials p; such that

2

[(oi(X) = o] S g iom g (13)

E
X~Dy

To do this, we use the property that Pr[X; = 1 | Xp,)\(;3] = 0(20;4(X)) and run the algorithm from
Theorem 3.1 after doing a feature expansion of X to the monomial basis containing all monomials of de-
gree less than ¢ — 1. We run Sparsitron such for each i the success probability is O(d/n). Thus, with
probability O(§), we have that Equation (13) holds for all ¢ € [n]. The sample complexity so far was

X200 (OO 1og(n /o).
n
Now, since D, is C-smooth, we have from Lemma A.2 that

—_— 1

P 20; — (X 2l < -.

(P [2800(8) 05 3)] > /2] < 5
The rest of the analysis is exactly the same as [KM17]. We construct an output graph H iteratively. Draw
K = O(log(n'/é)) independent samples from D,,. For each i € [n], and S C [t — 1], evaluate asp#(X) on
each of these samples. If the median of these K evaluations is greater than 1/2, then add the clique on the
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vertices in S U {i} to the graph H. Using the concentration of median, 7-identifiability of G and a union
bound over all monomials of degree less than ¢ and vertices i € [n], we have the graph H obtained at the
end being equal to G with probability at least 1 — §. The sample complexity is dominated by the number
of samples N required for Sparsitron and the running time is at most O (NN - n') where the n' dependence
comes from the feature expansion and the evaluation of the median on each of the monomials. O

We now state and prove the theorem on learning a distribution Di that is close to C-smooth Dy, in KL
divergence and TV distance.

Theorem 4.8. Let C,\ > 0and 0 < €,0 < 1. Let Dy, be a C-smooth t-MRF and suppose |0;1||; < A for
A2 ((nt)9) exp(O(C)) log(n/de)

€8

all i € [n]. Then, there exists an algorithm that draws N =

samples from D,
and runs in time equal to O(N - n') such that it outputs a t-MRF D - with factorization polynomial 1 such
that (1) H?/) ¢H <€ (2) dKL(Dw,D ) < 2¢2, and (3) dTV(D,/,,D ) < e. The algorithm succeeds with
probability at least 1—20.

Proof. After doing a feature expansion, we run the algorithm from Theorem 3.1 nodewise to recover poly-
nomials {p;};epy) such that Exp,[(o(pi(X)) — 0(20;9(x)))?] < € forall i € [n] with ¢ < O(e*
exp(—10C) - (1/nt)**2). The sample complexity is N = X2 ()2 exp(O(C) 108(n/99) " From Lemma A4,

€

we obtaln polynomials {p; };c[,] such that [|[p; — 0;9[|; < £ forall i € [n]. Construct a polynomial ¢ such
that ¢( ) = pi(S'\ {i}) where i is an arbitrary index in S. Observe that H¢ 1/)” < €2. Now, the theorem

follows from Lemma B.3.

We now argue that a random MRF drawn from the distribution over MRFs defined in Definition 1.11
satisfies the properties required for structure learning and parameter recovery in Theorems 4.7 and 4.8 with
appropriate choice of parameters.

Lemma 4.9. For a graph G of degree d andt > 0, let Dg g be as defined in Definition 1.11 with Gaussian
(or Rademacher) coefficients. Then, we have that with probability at least 1 — O(1/n") over Dy, ~ D¢ g4,

1. Dy is(a) %-idemiﬁable in the Gaussian case, (b) Fﬁl)/z-identiﬁable in the Rademacher case,

2. foralli € [n], |0, is at most (1) B - dA*TV/2\/Flogn in the Gaussian case (2) 3 - d*TV/2 in the
Rademacher case,

3. Dy is O(B*t + Bty/Tog n)-smooth.

Proof. We begin with the proof of (1). From standard Gaussian anticoncentration, we have that |1,Z (9) >
d(tf% - 1) with probability at least 1 — O(n) for any set S and Dy, ~ Dg g4 Choosing n = O(1/n*)
and taking a union bound over all monomials, we obtain that with probability at least 1 — O(1/n?), it holds
that ]12( S)| > = /2 The bound for the Rademacher case is direct as each variable is FIGEYEl 1) 7 + 1. We now
prove (2). From standard Gaussian tail bound, we have that || X||__ < O(y/log k) with probability at least
1—1/k for X ~ N(0,1)*. Applying this to all monomials, we have that ||9;3/||, < 8- d*+1/2\/tTogn for
all i € [n] with probability at least 1 — O(1/n'). Finally for (3), we prove the following lemma.

Lemma 4.10. For a graph G of degree d andt > 0, let Dg g ; be as defined in Definition 1.11 with Gaussian
(or Rademacher) coefficients. Then, we have that with probability at least 1 — Dy ~ Dgpy is

O(B*t + Bt+/Tog n)-smooth.

1
CESYE
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Proof. We prove that Dg g, has subgaussian derivatives and then use Theorem 4.4. Let ¢ be the random
function corresponding to the factorization polynomial of an MRF sampled from Theorem 4.4. Consider
any x,y € {£1}" with z and y differing in set S and |S| < ¢. From Definition 4.1, it suffices to prove that
the random variable ¢)(x) — 1 (y) is A-subgaussian for appropriate A. By the definition of the set S, we have
that R
o) —v)=2 > P(T)- xr(x).
TeCy(G)
|TNS| is odd

Recall that each coefficient of 1) are independent and identically distributed to \/%Z where Z ~ N(0,1)
or Z ~ Rad(1/2). Note that the number of 7' € C;(G) with which S has non zero intersection is at
most ¢ - 3170 (Czl) < O(t - d'=1). Since both A(0,1) and Rad(1/2) are O(1)-subgaussian, we have that
YP(z) — 9(y) is the sum of O(t - d'~!) iid random variables which are d(fi%/z-subgaussian. Since the
sum of k A-subgaussian variables is O(v/k)\)-subgaussian (Proposition 2.6.1 from [Ver18]), we have that
¥(x) —(y) is O(B/t)-subgaussian. Now, applying Theorem 4.4, we obtain that with probability at least
1-— m, we have that Dy, ~ D¢ g+ is O(3?t + Bt/log n)-smooth. O

Thus, we have proved that D g ; satisfies all the conditions that we need for efficient learnability. [

The following theorems are now immediate from Theorem 4.7 and Lemma B.3 and Lemma 4.9. The
first theorem states the sample complexity and running time for structure learning.

Theorem 4.11 (Structure Learning in Random MRFs). For a graph G of degree d and t > 0, let Dg g4 be
as defined in Definition 1.11. Then, we have that with probability at least 1 — O(1/nt) over Dy ~ Dg g,

2 /1 O(t).
exp(O(B7t+5t 10%?)) n-log(1/98) samples and recovers the graph

there exists an algorithm that draws N =
G. The running time is O(N - n?).

Note that for 3 < O(y/logn) the above running time is polynomial in n!. We now state the theorem of
learning in TV distance.

Theorem 4.12. For a graph G of degree d and t > 0, let D¢ g be as defined in Definition 1.11. Then, we

have that with probability at least 1 — O(1/n') over Dy, ~ D¢ g, there exists an algorithm that draws

N — exp(O(B2t+Bty/Togn))-n°®) log(1/d€)
= o

samples and runs in time O(N - n') that outputs a t-MRF Dy such
that (1) H?,Z) _ q,Z)Hl < & (2)du(Dy, D) < 262 and (3) dry(Dy, D) < c.

For random MRFs with rademacher weights, we obtain improved bounds. We give an algorithm that
draws a sub-polynomial number of samples and recovers the random MRF exactly.

Theorem 4.13. For a graph G of degree d and t > 0, let Dg g be as defined in Definition 1.11 with
rademacher coefficients. Then, we have that with probability at least 1 — O(1/n") over D,, ~ D¢ g+, there
exists an algorithm that draws N = exp(O(B%t + Bt\/logn)) - O(td' log(n/83)/3?) samples and recovers
W exactly. The running time is O(N - nt).

The proof is in Appendix D.

Remark 4.14. We remark that when the graph G is known to the learner, the task of parameter recovery
becomes less expensive. When running Sparsitron for the index 1, it suffices to only search over the polyno-
mials whose variables are neighbours of i in G. This is valid as the optimal polynomial 0;1) only contains
the neighbouring variables. Thus, the cost of feature expansion is now d instead of nt. Similarly, the error
parameter in Lemma A.4 now scales with d* instead of n'. Thus, the sample complexity in Theorem 4.12 is
now improved to N = exp(O(F°t+5 t@s) VA2 B 08/ g the running time is now O(N - nd"). Thus,
for bounded d, the running time is now polynomial in n.
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A Lemmas on Polynomial Recovery

This section has some useful results on polynomial recovery in C-smooth MRFs. The proofs of these claims
follow the steps of the analogous claims in Section 6 of [KM17], with appropriate changes to handle C-
smooth distributions as opposed to the unbiased ones considered in [KM17]. The property of unbiasedness
is a worst case property, but we extend their proofs to work under the average case properties of C'-smooth
MRFs.

First, we prove that for any polynomial p with maximal monomial .S and any z, there exists a vector y
at a Hamming distance at |S| from z such that [p(z)| > |p(5)].

Lemma A.1. Let p be a polynomial on {£1}" and let S be a maximal monomial of p. For any x € {£1}",
there exists a vector y € {£1}" with dg(x,y) < |S| such that |p(y)| > |p(S)|.

Proof. We prove the lemma by induction on |.S|. We first consider the base case |S| = 1. Let S = {i}. We
have that

p(z) =p({i}) zi + p~"(z)
where p~/(x) does not depend on z;. Choosing y such that y; = sign (p({1}) - p~'(2)) and y; = x; for
Jj # i, we have that |p(y)| > |p ({1}) |. Clearly, d(x,y) < 1.

Say the claim is true for |S| — 1. Consider a maximal monomial S with ¢ € S for some index i. We
have that p(x) = x; - 9;p(x) + p~*(z) where p~*(z) and 9;p do not depend on z;. Observe that S \ {i} is
a maximal monomial for 0;p with coefficient equal to p(.S). Thus, we have that there exists a vector z with
dy(r,2) < |S|—1and z; = x; such that |9;p(z)| > |p(S)|. Construct y such that y; = sign(9;p(z)-p~1(z))
and y; = z; for j # 4. Clearly, we have that [p(y)| > |0;p(z)| > |p(S)| we also have that dy (z,y) < |S]|
as y and z differ in at most one coordinate. This completes the proof. O

The following lemma proves that for for any p such that Ex..p,[(o(p(X)) — o(20;4(X)))?] is small,

it is possible to estimate the coefficient @(S ) using p for any maximal monomial S.

Lemma A.2. For C > 0, let Dy, be a C-smooth t-MRF. Let p be a polynomial and i € [n] such that
Ex~p,[(o(p(X)) — o(20;1(X)))?] < e for € > 0. Then, for any maximal monomial S of Oy of size at
mostt — 1, we have that

20~ exp(10C +6) -¢ 1

29-0(S) — < 3
lelgw [|2821,Z)(S) dsp(X)| > 6[| < 52 T S

Proof. The proof follows the same structure as the proof of Lemma 6.2 in [KM17]. We make appropriate
changes to account for the fact that we do not have unbiasedness anymore. Recall the definition of £ from
Definition 4.2. We define the set

Es = {y | there exists x € & with z,,\ g = y}.

We first prove the following claim that [0;¢)(z)| < 2C for z € {+1}" with x5 € Es.
Claim A.3. Fory € {£1}" with yp)\s € Es, it holds that |0;1)(y)| < 2C.

Proof. Since yp,)\s € s, we have that yj,,)\ s = z[,)\s for z € €. For z € £, we have that

1 C
(@) = Sl (@) < 5
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from the fact that ¢{%} (z) = 2z; - 9;1(x). Thus, we have that

0ub(w) = Bty = Sl () — D ()] < 510@) — )]+ S () — V)
< 5 (@) = )]+ [wl) — (@) + ) - v@l) < 2.

The first inequality follows from the definition of ¥{"} and a triangle inequality . The second inequal-
ity again follows from a triangle inequality. The last inequality follows from the facts that x € £ and
max (dg (z, 28%), dy (2, y), dg (2, y1)) < t. Thus, we obtain that |9;1(y)| < 2C. O

From Fact 2.2, we have that for any y with yj,;\s € Es,

lo(p(y)) — 0 (20i¢(y))| = exp(—=4C — 3) - min(1, |p(X) — 20;9(X)]).
since |9;1(y)| < 2C for all y with yp,,)\ g € Es. Squaring and taking expectation, we obtain

XAIJEDU, [min(1, [p(X) — 20:0(X)[?) - { X5 € sl

< exp(3C+6) B [(a(p(X)) — 0(200(X)))? - 1{ X s € Es}| < exp(8C +6) - €

From Markov’s inequality, for any 0 < § < 1, we have that

exp(8C +6) - ¢
WP, [P0 = 20(X)| 2 6. Xpups € &) < % |

Similar to the proof of Lemma 6.2 in [KM17], for any fixing z of variables not in S, let r,(xg) be the
polynomial obtained from p(z) — 20;1(x) by fixing the variables outside S to z. Note that 7(S) =
2/827/1(5) — Osp(X) where X[\ g = z as S is maximal in 0;3).

For any z(,\ g € £s with |,)\ g = z, Lemma A.1 implies that there exists y with dy(x,y) <t —1 and
Ypn\s = Z[n)\s such that [ (ys)| > |7 (9)]. Let w € {£1}" such that Prx.p, [X = w | Xpps = 2| >
2~*1 There always exists one such vector as it is fixed in all but ¢ — 1 indices. We have that for z € &g,

X§5¢ [Ir=(Xs)l = [F2(S)], | Xppps = 2] = XB{% (X =y | Xpps = 2]
- PrXND¢[X Y] . Prx~p, (X = w]
Prxep, X =w] Prx.p, [Xjms = 7]
> exp(P(y) — p(w)) - 277 > exp(—2C) - 27 (14)

where the first equality follows from the definition of conditional probability. The first inequality follows
from the definition of w and the last inequality follows from the definition of £g.
We now have that

L [[p(X) = 20i(X)| > 6, Xppp\ s € Es]
~Dy,

> 32 (Pr [ IP(0) = 2006(X)| 2 5] [20:5(S) = dsp(X)] 2 6, Xy = 7]

z€Eg
oI5 [B05) ~ 05p(X) 2 X =]
it — _
> %; exp(—2C) - 27tF ey [I%W(S) — 9sp(X)] 2 6, Xpps = Z}
z S

> exp(~20) -2 Py [ym(a — Asp(X)| > 6, Xjup s € gs}
~ Ly
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Putting things together, we obtain that

201 exp(10C +6) - €
52

P [[200(S) = sp(X)] 2 6 Xiupys € &5 <

Now, we have that

—_— — 1
Pr [[20:5(8) — 9sp(X)| 2 8] < Pr [130:0(S) — 9sp(X)| = 6 X s € Es] +
X~ Dy X~Dy 8

where we used the fact that Prx.p,, [X[,\s € €s] > Prx.p,[X € £] > %. Combining the two equations
above completes the proof. ]

The following lemma asserts that for a C'-smooth MREF, the error ||p — 20;¢|; < O (eo(c) ("!)€) when-
ever Ex.p, [(o(p(X)) — 0(20;¢(X)))?] < e. This lemma generalizes Theorem 3.2 from [GM24]. The
proof closely follows the proof of Lemma 6.4 in [KM17]. Their lemma also recovers the external fields,
contrary to a remark in [GM24].

Lemma A4. For C > 0, let Dy, be a C-smooth t-MRF. Let p be a polynomial and i € [n] such that
Ex~p,[(o(p(X)) — o(20;9(X)))?] < efor 0 < € < exp(—2C) - 2. Then, we have that

b — 200, < O(1)(4t)’ (?) exp(5C)V

Proof. This proof follows closely the proof of Lemma 6.4 in [KM17]. Most of the details are the same,
except that we make appropriate changes to handle the fact that we do not have unbiasedness, similar to
Lemma A.2. We borrow notation from the proof of the aforementioned lemma in [KM17]. We highlight the
parts where we make changes and do not re-derive the steps that are exactly the same. Let r = p — 20;¢
be the difference polynomial. For ¢ < ¢ — 1, let r—, be the polynomial obtained from r by only considering
monomials of size exactly equal to £. For ¢ <t —1, let p; = ||r—||. Clearly, the quantity we want to bound
is ||7]], = Z';f;(l) pi. We bound py, . . . p;—1 inductively, starting with p;_1. We first, bound p;_1.

Claim A.5. Consider any maximal monomial S of r = p — 20;% for p satisfying the assumptions of
Lemma A.4. Then, it holds that |7(S)| < exp(5C + 3) - 2t/%\/e.

Proof. Recall the definition of £g. From the fact that Prx..p, (X m)\s € & 5] > % and the assumption of the
lemma, we obtain (using an averaging argument) that there exists a vector z € £g such that

B, [000X) — o (20(X))? | Xigs = 2] < 2.

Similar to the proof of Lemma A.2, let 7, be the polynomial obtained from r by fixing the variables in
[n] \ S to z. Note that 7, (S) = 7(S). From the argument preceding Equation (14), we have that

~ —t+1
(P, 1) 2 17(9)]| X = 2] 2 exp(-20) - 2717

Recall from Claim A.3 that |0;9(y)| < 4C for any y with yj,)\s € Es. This fact, together with Fact 2.2,
implies that

2> E [(a(p(X)) — 0(200(X)))? | Xups = z} > exp(—10C — 6) - 27+ . min (1, 7(S))?
~ ey

From the bound € < % exp(—5C — 3) - 271, we have that 7(S) < 1 which implies [F(S)| < exp(5C +
3) - 212 /e O
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Since all degree ¢ —1 terms are maximal, the above claim implies that p;_1 < ( tfl) exp(5C+3)-24/2 /€.
We now do the inductive step. For |I| = ¢ < t — 1, again by an averaging argument, we have z such that

Ex~p, [(o—(p(X)) — 0(20;(X)))? | X1 = z] < 2e. Let r, be the polynomial obtained from r by
setting these variables to z. Again, repeating the same steps as before, we obtain that 7, (I) < exp(5C +

3)2t/ 2, /€. From here, the proof is exactly identical to the proof in [KM17] except we set g = exp(5C +
3)24/2 /e - (,",)- Their analysis yields that

Il < 240 < 00y () exp(5C) V.

t

B Parameter Recovery vs TV Distance

We now argue that an MRF D that has parameters close to D, has low TV distance (in fact KL divergence)
with respect to D,,. First we define KL divergence and TV distance.

Definition B.1 (KL Divergence). Let P and Q) be two distributions. The KL-divergence between P and Q)
is defined as

d(P,Q) = E [log(P(X)/Q(X))
We now define the Total Variation distance.

Definition B.2 (TV Distance). Let P and @) be two distributions. The KL-divergence between P and Q) is

defined as )
drv(PQ) =5 Y, IP() - Q)|

ze{xl1}"

We are now ready to argue that parameter recovery in {-MRFs implies closeness in KL divergence/TV
distance. The proof is almost the same as Lemma 3.6 in [GM24].

Lemma B.3. Let Dy and D b be t-MRF's with factorization polynomials 1) and 1; respectively such that
Hzp - 1[’H1 < . Then, (1) d(Dy, D;) < 26 and (2) drv(Dy, D;) < v/e.

Proof. We prove (1). (2) follows from Pinsker’s inequality. Let Z, and Z ; are the partition functions of

Dy, D respectively. For any € {£1}", we have that exp(¢(z)) < exp(e) -exp(¢(z)) and exp(¢(z)) <
exp(€) - exp(¢(x)). From the definition of the partition function, we have that Z,, < exp(e) - Z;, and

Zj < exp(e) - Zy. Forany z € {£1}", we thus have that g#(x)) < exp(2¢). Now, from the definition of
»(=
KL divergence, we get that dki (D, Dd?) < 2e. O

C Parameter Recovery in the Pure ¢-spin Model

Definition C.1 (Pure ¢-spin model). A pure t-spin model is the distribution of t-MRF's such that that factor-
ization polynomials 1) is a random variable of the form

t
j=

(ilr“vit)e[n]t
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We now prove that pure ¢-spin models satisfy the properties required for parameter recovery in Theorem 4.8.

Lemma C.2. Let D be the pure t-spin model with inverse temperature (3. Then, it holds with probability at
least 1 — O(1/n') over Dy, ~ D that

1. |0i¢]|; < By/tntTtlogn for alli € [n),
2. Dy is O(B*t? + Bt\/tlog n)-smooth.

Proof. We first prove (1). The number of tuples (71,19, ...14) is at most n'. By standard gaussian tails,
the maximum absolute values of all these coefficients is at most %1)/2‘/’5 log n with probability at least
n

1 — O(1/n'). Thus, we obtain [|0;¢||; < B+/tn*T1logn. To prove (2), we argue that D has subgaussian
derivatives and then use Theorem 4.4. For any multiset « € [n]" and set S C [n], we say that |S N o is odd
if the number of common elements between S and ¢ (counting repetitions) is odd. Observe that for any set
S with | S| < tand any x,y € {£1}" with 2 and y differing in the set S, we have that

t

9 ¢
Y(z) —Y(y) = Fﬁl)ﬂ Z N(0,1) - Hxaz
\Sf?‘léa€|[g0dd '

We now count the number of terms in the above expression as that determines the subgaussianity of i(z) —
¥ (y). Since S has at most ¢ terms and the intersection is at least 1, the number of terms is upper bounded
by |Ui_ {a | a; € S,a € [n]'}]| < t2-n'~1. Thus, we have that 1(z) — 1 (y) is O(Bt)-subgaussian. Now,
from Theorem 4.4, we have that Dy, is O(5%t* + t\/t1logn)-smooth. O

Note that the smoothness is a factor of ¢ worse than what was obtained in Lemma 4.9. This is because
in the definition of the pure ¢-spin model, the same set can be counted multiple times whereas this was
not allowed in the definition of the random MRF (Definition 1.11). The following theorem on parameter
recovery of these models is now immediate from Theorem 4.8.

Theorem C.3. Let D be a pure t-spin model with inverse temperature 3. With probability at least 1 —
exp(O(B%t248ty/Tlogn))-n°®) log(1/de¢) s
8

O(1/n") over D, ~ D, there exists an algorithm that draws N = . am-
ples and runs in time O(N -n') that outputs a t-MRF Dy, such that (1) Hw — 1/~1H1 < €, (2) dkL(Dy, D) <

262, and (3) dry(Dy, Dj) <e

D Improved bounds for Rademacher Random MRFs

For our algorithm with improved sample complexity to exactly learn the random MRF with Rademacher
weights, we require a slightly modified version of Theorem 3.1.

Theorem D.1. Let A\, e,0 > 0. Let D be a distribution on {£1}" x {£1} where Pr[Y = +1|X] =
o(w-X+g(X)) for (X,Y) ~ D where w € R" is an unknown vector with ||w||; < Aand g : {£1}" — R
is a known function. There exists an algorithm that takes N = O (X*(In(n/d¢))/€?) independent samples
from D, runs in time O(nNN ), and outputs a vector W such that

(X,}}%ND [(U(w . X+Q(X)) — U(@-X+9(X))2] <e

with probability at least 1 — 0.
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Note that the only difference between the above theorem and Theorem 3.1 is the addition of the known
function g(X) to the conditional probability. The proof of the above theorem is almost identical to that of
Theorem 3.1 (also Theorem 3.1 in [KM17]) with very few additional changes (we change one line in their
algorithm). We descrive the change below. We borrow the notation from the proof of [KM17] and only
highlight key changes.

Proof of Theorem D.1. We now use u instead of ¢ to refer to the link function. We apply the transformation
(z,y) — (x, er1) so that the +1 labels are mapped to 41 and the —1 labels are mapped to 0. From now on,
we assume that D is the distribution of inputs after this transformation. Thus, we have that E x y plY |
X =z =u(w- X+ g(X)).

The only changes we make to their algorithm are the following: (1) in line 4 of Algorithm 2 of [KM17],
we redefine the loss vector £ to now be ¢! := (1/2)(1 + (u(Ap' - 2t + g( )) — y')a?!), and (2) in line 7 we
compute the empirical risk as £(Ap!) = (1/M) z L(u(Apt - at + g(at)) — /)% Note the addition of the
term g(z?) in both the steps. We can do this as we know the function g.

Now, we highlight the changes in the analysis. The steps of the argument until Equation 3.3 of the proof
of [KM17] are identical as the new loss vector ¢ is still a vector in [0, 1]”. The only change is in how we
bound E(,¢ ) [Q | (z*,y1),..., (z'"1,4'1)]. We have that

E Q'] >,...,<:ct—1,yt—1>1 = E, [0 = (1/x)w) -]

<1/2>( E, [0 = (1/3)w) - (O’ ' + g(a) ~ y') o'
= (120 B[O 2" + g(a") — w-a' — g )’ - o' + g(a')) = u(w -2 + g(a)]

> (1/2X) wt[(U(Ap cat 4 g(ah) —u(w -2’ + g(2")))’] = (1/20)e(Wp")

(=

where £(v) == E(xy)op(u(v- X + g(X)) — u(w - X 4 g(X)))?] is the risk. The main difference from
the proof of [KM17] is the third equation where we add and subtract g(z!) and then use the lipschitzness
property. The rest of the proof is exactly identical. O

We are now ready to prove Theorem 4.13.

Proof. Recall that Dy, ~ D¢ g+ (with rademacher weights) is C-smooth with C' = O(3?t+ 3t\/log n) with

probability at least 1 — O(1/n"). We henceforth assume D, is C-smooth. We recover the coefficients of ¢

iteratively, starting with the degree ¢ terms and proceeding downwards. We use fresh samples per iteration.

We first show the base case of recovering degree ¢ terms. For each ¢ € [n], we use Theorem 3.1 to find
polynomials {p}} ;¢ such that

XNDw[(U(P?(X)) — 0(209(X)))’] < exp(~10C — 6) - (5%/(16(2d)"))

Now, from Claim A.5, we have that J]%(S ) — 2/((?,\1b(5 )| < AW#W? for any maximal monomial S of

pl — 28¢¢ To recover the coefficient (S) for |S| = ¢, we consider any i € S. Now, we have that

( )(S\ {i}) = ©(S). Note that S\ {i} is a maximal monomial of p! — 20, as it has degree t — 1

Wthh is the degree of the polynomial. Thus, it holds that |pl(S \ {i})/2 — ( )| < W%)/Q To obtain

¢(S ) exactly, we round pZ(S \ {i})/2 to the nearest multiple of 3/d*~1)/2. Thus, we have obtained all the
degree t coefficients of 1 exactly. The sample complexity of this step is N* = exp(O(3°t + Bt\/logn)) -
O(d'log(n/63) /%) and follows from Theorem 3.1.

We now describe how to obtain coefficients of degree j if we know QZ( S) exactly for all [S| > j.
Construct a function g7 : {£1}" — {#1} such that ¢/ (z) = 2IT|> QZ(T) 7(x). Let the polynomial g/ be
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defined as gg = 20;g7. We can construct these polynomials as we know all coefficients of size greater than
j- Now, for each i € [n], we find polynomials {p] };c[n] of degree at most j such that

L, [002(X) + g/0) — 0(200(X))?) < exp(-10C —6) - (5°/(16(24)")).
We note that 20;4)(X) = 237 g/<; @(S)XS(X) + gg (X). Thus, we can find the above polynomials by

{p{ }z‘e[n} by running the modified Sparsitron algorithm from Theorem D.1 (with known function gg ) after
expanding the features to contain all monomials of degree at most j. Observe that the degree j monomials in
the polynomial 7 = p] + g/ — 20;1) are maximal as all higher degree monomials are 0. Thus, again, we use

Claim A.5 and repeat the argument from the base case to obtain that | p{ (S\{i})/2 — n (9)] < Zd(t%m for
all | S| = j. To obtain () exactly, we again round pl(S\ {i})/2 to the nearest multiple of 3/d*~1/2. In
this way iterating j = ¢,¢ — 1,... 1, we obtain, all the coefficients of 1) exactly. Since we use fresh samples

in each iteration, we pay a multiplicative factor of ¢ in the final sample complexity
O
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