g APOLLO: SGD-LIKE MEMORY, ADAMW-LEVEL PERFORMANCE

Hanging Zhu“'? Zhenyu Zhang“! Wenyan Cong' XiLiu? Sem Park? Vikas Chandra? Bo Long?
David Z. Pan'' Zhangyang Wang'! Jinwon Lee "2

Website: @ https://zhuhanging.github.io/APOLLO
Code: Q) https://github.com/zhuhanging/APOLLO

ABSTRACT

Large language models (LLMs) demonstrate remarkable capabilities but are notoriously memory-intensive during
training, particularly with the popular AdamW optimizer. This memory burden often necessitates using more or
higher-end GPUs or reducing batch sizes, limiting training scalability and throughput, respectively. To address this,
various memory-efficient optimizers have been proposed to reduce optimizer memory usage. However, they face
key challenges: (i) reliance on costly SVD operations (e.g., GaLore, Fira); (ii) significant performance trade-offs
compared to AdamW (e.g., Flora); and (iii) still substantial memory overhead of optimization states in order to
maintain competitive performance (e.g., 1/4 rank in GaLore, and full-rank first momentum in Adam-mini).

In this work, we investigate the redundancy in AdamW’s learning rate adaptation rule and identify that it can be
coarsened as a structured learning rate update (channel-wise or tensor-wise). Based on this insight, we propose
a novel approach, Approximated Gradient Scaling for Memory Efficient LLM Optimization (APOLLO), which
approximate the channel-wise learning rate scaling with an auxiliary low-rank optimizer state based on pure
random projection. The structured learning rate update rule makes APOLLO highly tolerant to further memory
reduction with lower rank, halving the rank while delivering similar pre-training performance. We further propose
an extreme memory-efficient version, APOLLO-Mini, which utilizes tensor-wise scaling with only a rank-1
auxiliary sub-space, achieving SGD-level memory cost but superior pre-training performance than Adam(W).

We conduct extensive experiments across different model architectures and tasks, showing that APOLLO series
performs generally on-par with, or even better than Adam(W). Meanwhile, APOLLO achieves substantially
greater memory savings than GaLore, by almost eliminating the optimization states in AdamW. These savings
translate into significant system benefits: (1) Enhanced Throughput: APOLLO and APOLLO-Mini achieve
around 3 x throughput on an 8 x A100-80GB setup compared to AdamW by fully utilizing memory to support
4x larger batch sizes. (2) Improved Model Scalability: APOLLO-Mini for the first time enables pre-training
LLaMA-13B model with naive DDP on A100-80G without requiring other system-level optimizations. (3)
Low-End GPU Friendly Pre-training: Combined with quantization, the APOLLO series for the first time enables
the training of LLaMA-7B from scratch on a single GPU using less than 12 GB of memory.

1 INTRODUCTION

Large Language Models (LLMs) have achieved remarkable
progress across various domains (Brown et al., 2020; Kocon
etal., 2023; Dubey et al., 2024), largely due to substantial
increases in model size, now reaching billions of param-
eters. Training these high-dimensional models demands
robust optimization techniques, with the Adam(W) opti-

*Equal contribution fCo-advisor !The University of Texas at
Austin 2AI at Meta (Work was done during Hanging’s intern-
ship). Correspondence to: David Z, Pan <dpan@ece.utexas.edu>>,
Zhangyang Wang <atlaswang@utexas.edu>, Jinwon Lee <jin-
wonl@meta.com>.

Proceedings of the 8" MLSys Conference, Santa Clara, CA, USA,
2025. Copyright 2025 by the author(s).

mizer (Kingma & Ba, 2014; Loshchilov, 2017) emerging as
the de-facto standard for stabilizing LLM training (Zhang
et al., 2024a) by tracking both first-order and second-order
moments. Despite its effectiveness, Adam(W) incurs signifi-
cant memory overhead, as maintaining both moments triples
the memory required relative to the model’s parameter size.
For instance, training an LLaMA-7B model with a single
batch requires at least 58 GB of memory, with 28 GB de-
voted to AdamW’s optimizer states (Zhao et al., 2024). For
larger models like GPT-3, with 175B parameters, memory
demands reach 700GB for the model alone and a staggering
1.4 TB requirement for AdamW'’s optimizer states.

This excessive optimizer memory usage poses significant
challenges in training large-scale LLMs. It compels the

https://zhuhanqing.github.io/APOLLO/
https://github.com/zhuhanqing/APOLLO

APOLLO: SGD-like Memory, AdamW-level Performance

Memory comparison Throughput on 8A100-80GB
Nt | - . E— — —— BS-16 BS—16
I - AdamW [1 | 1§ 14000 |
Y Backward
G | == otore [T ol
g 10000 -
Update optimizer APOLLO I L
R, ‘™" = Weighe g
> APO; _Mini [Activation 2 aoon B
. LLO :l] [Optimization £
& AdamiVes e [Weight Gradient g 4000
\ (Q-) APOLLO-Mini I [(hers 1 ﬁ 2000 F
— R, | o 0 10 20 30 40 50 0 : i
Re e U Kdamw

Memory cost (GB)

APOLLO APOLLO-Mini

Figure 1. (Left) Overview of our APOLLO optimizer; (Middle) Memory breakdown comparison for a single batch size, where both Gal.ore
and our method employ the layer-wise gradient update strategy (Lv et al., 2023). The (Q-) prefix indicates the integration of INT8 weight
quantization, as utilized in (Zhang et al., 2024c); (Right) End-to-end training throughput on 8 A100-80GB GPUs.

— APOLLO
m— APOLLO-Mini
m— (GaLore

AdamW

Perplexity

o~

G000 80000
Steps

Figure 2. Comparison of Validation perplexity on LLaMA-7B.

0 20000 40000 100000 120000

140000

community to either use more and higher-end GPUs, or to
reduce batch sizes. However, scaling training clusters intro-
duce highly non-trivial communication and infrastructure
overheads (Jiang et al., 2024); smaller batch sizes come
at the cost of training throughput; and high-end GPUs are
often inaccessible to researchers with limited resources.

Significant efforts have focused on solving the high memory
costs of training LLMs. One approach reduces the parameter
volume by designing smaller-scale LLMs (Liu et al., 2024b;
Tang et al., 2024), employing sparse model training (Liu
et al., 2022; Thangarasa et al., 2023), and leveraging low-
rank adaptation (Hu et al., 2021). While these techniques
effectively reduce memory usage, they restrict the optimiza-
tion space, resulting in performance trade-offs (Biderman
et al., 2024), particularly in pretraining (Lialin et al., 2023).

Another avenue of research focuses on designing memory-
efficient optimizers that reduce memory usage while achiev-
ing performance on par with Adam(W). This includes ex-
ploring redundancy in optimizer states (Zhang et al., 2024b)
and leveraging low-rank properties (Zhao et al., 2024; Chen
et al., 2024). GaLore (Zhao et al., 2024) stands out among
low-rank methods by enabling full-parameter training of
LLMs through low-rank gradient updates via Singular Value
Decomposition (SVD). Fira (Chen et al., 2024) enhances
Galore by incorporating the error residual between the full-
rank gradient and its low-rank approximation, effectively
simulating full-rank updates. LDAdam (Robert et al., 2024)
also integrates a generalized error feedback mechanism to

account for the compression of gradient and optimizer states.

However, the periodic updates to the gradient subspace via
SVD (e.g., every 200 iterations) incur a computational cost
of O(mn?), prohibitive when the matrix dimensions, m and
n, are large. For example, a single subspace update can take
~10 minutes for the LLaMA-7B model, whereas inference
only takes seconds. This substantial overhead significantly
reduces training throughput, as demonstrated in Fig. 9.

The recent Adam-mini (Zhang et al., 2024b) finds that a
block-wise second moment V suffices for learning rate ad-
justments, offering an orthogonal, more efficient alternative.
However, achieving performance on par with AdamW re-
quires careful handling of different model components to
preserve its optimization dynamics.

In this paper, we effectively integrate the two idea streams
of low-rank approximation and optimizer state redundancy,
introducing a unified framework that achieves significant
memory savings (much below GaLore and its variants &
close to SGD) while matching or surpassing the perfor-
mance of Adam(W). Our key observation is that AdamW’s
element-wise learning rate update rule can be effectively
restructured into a channel-wise or even tensor-wise format,
where each channel or tensor shares the same gradient scal-
ing factor. We introduce a memory-efficient approximation
for the scaling factors using an auxiliary optimizer state,
requiring only lower-dimensional gradient information as
input. This significantly reduces memory usage by lever-
aging compressed gradient representation. Moreover, we
prove that an SVD-free low-rank projection via random pro-
jections is sufficient, eliminating the need for costly SVD.
Notably, we show that a much lower rank, or even a rank-1
approximation, is sufficient to capture the structured gra-
dient scaling factors. This innovation allows for a simpler
and more efficient training process without compromising
performance. Our new memory-efficient optimizer for LLM
training, named Approximated Gradient Scaling for Memory
Efficient LLM @imization (APOLLO), not only achieves
better performance than AdamW but also delivers greater
memory savings than GaLore at SGD-like costs.

APOLLO: SGD-like Memory, AdamW-level Performance

Our key contributions are as follows:

» Structured Learning Rate Update for LLM Training:
We show that structured learning rate updates, such as
channel-wise or tensor-wise scaling, are sufficient for
LLM training. This addresses redundancy in AdamW s
element-wise learning rate update rule.

» Approximated Channel-wise Gradient Scaling in a
Low-Rank Auxiliary Space (APOLLO): We propose a
practical and memory-efficient method to approximate
channel-wise gradient scaling factors in an auxiliary low-
rank space using pure random projections. APOLLO
achieves superior performance to AdamW, even with
lower-rank approximations, while maintaining excellent
memory efficiency.

Minimal-Rank Tensor-wise Gradient Scaling
(APOLLO-Mini): For extreme memory efficiency, we
introduce APOLLO-Mini, which applies tensor-wise
gradient scaling using only a rank-1 auxiliary sub-space.
APOLLO-Mini achieves record-low SGD-level
memory costs while still outperforming AdamW.

We demonstrate the efficacy of the APOLLO series in
both pre-training and fine-tuning scenarios. In pre-
training, across LLaMA models ranging from 60M to
7B, APOLLO and APOLLO-Mini consistently outperform
AdamW, achieving up to a 2.8 | in validation perplexity
while significantly reducing memory overhead by eliminat-
ing nearly all optimizer states. In fine-tuning, APOLLO-
series achieves performance on par with full fine-tuning.
Beyond these performance gains, the APOLLO series of-
fers practical system-level advantages, including: (i) 3x
better throughput on pre-training LLaMA 7B (Fig.1
(right) and Fig.2); (2) Extreme training memory savings.
By combining APOLLO-Mini with weight quantization,
we set a new record for memory efficiency: pre-training
LLaMA 7B requires only 12GB of memory (Fig. 1 (mid-
dle)). More system-level evaluations are in Section 5.3.
These results establish APOLLO and APOLLO-Mini as
highly efficient and scalable solutions for LLM pre-training
and fine-tuning, offering compelling improvements in per-
formance, memory usage, and throughput.

2 RELATED WORK

2.1 Algorithm-Level Memory-Efficient Training

Numerous algorithmic improvements have been introduced
to tackle the substantial memory overhead in training LLMs.
One category reduces trainable parameters to save mem-
ory costs, such as designing high-quality, small-scale mod-
els (Liu et al., 2024b; Tang et al., 2024), introducing sparsity
during training (Liu et al., 2022; Thangarasa et al., 2023),
and implementing low-rank adaptation (Hu et al., 2021).
While these methods are effective at reducing memory us-
age, they often fall short in achieving comparable perfor-

mance with Adam, especially in pre-training scenarios. An-
other avenue of research targets advancements in optimizers,
as exemplified by works such as GaLore (Zhao et al., 2024),
Fira (Chen et al., 2024), Flora (Hao et al., 2024), Adam-
mini (Zhang et al., 2024b), GaLore-mini (Huang et al.),
LDAdam (Robert et al., 2024), GoLore (He et al., 2024),
and LoQT (Loeschcke et al.). These approaches have made
notable progress but still face significant challenges. Some
methods rely on computationally expensive SVD operations
(e.g., GaLore and Fira), although recent research shows
that random projections can effectively compress gradients
during later training stages while still requiring SVD early
on (He et al., 2024). Others either exhibit noticeable perfor-
mance gaps compared to AdamW, or demand substantial
memory overhead to maintain competitive performance, as
seen in Galore’s 1/4 rank requirement and Adam-mini’s
reliance on full-rank first momentum.

In contrast, APOLLO-series achieves ultra-efficient mem-
ory usage without SVD while matching or even surpassing
the performance of AdamW. Notably, our extreme variant,
APOLLO-Mini, drives memory costs down to SGD levels,
setting a new record for memory-efficient optimization.

2.2 System-Level Memory Efficiency Optimization
Several system-level techniques have been developed to re-
duce memory usage in LLM training (Chen et al., 2016;
Ren et al., 2021). Activation checkpointing (Chen et al.,
2016) recomputes activations during backward instead of
storing them, reducing memory requirements. Quantization
(Dettmers et al., 2024) reduces memory requirements by
utilizing lower-bit data formats. Memory offloading (Zhang
et al., 2023; Ren et al., 2021) reduces GPU memory con-
sumption by leveraging non-GPU memory. APOLLO is
orthogonal to these system-level optimizations and can be
seamlessly integrated to achieve greater memory efficiency.
Furthermore, SVD-free APOLLO is more system-friendly.

3 COARSENED LEARNING RATE UPDATE
RULE IS ENOUGH FOR LLMS

In this section, we first revisit the Adam(W) (Kingma &
Ba, 2014; Loshchilov, 2017) and reformulate it as an adap-
tive learning rate algorithm without explicit momentum
term (Section 3.1). Then, we propose that the element-wise
learning rate update rule can be coarsened with a structured
channel-wise learning rate adaptation strategy, with even
slightly better model performance by empirical verification.

3.1 Reformulating AdamW as a Pure Adaptive
Learning Rate Algorithm

Vanilla AdamW update rule. AdamW has established
itself as the go-to optimizer for Transformer training, lever-
aging both first moment (the mean of past gradients) and

APOLLO: SGD-like Memory, AdamW-level Performance

second moment (the variance of past gradients) to adjust up-
dates. This dual momentum-based approach has proven su-
perior to purely first-order optimizers like SGD (Zhang et al.,
2024a). Disregarding weight decay, the vanilla AdamW up-
date rule is as follows: At time step ¢, given a weight matrix
W e R™*" (m < n) with gradient G; = —Vwa:(We),
the standard AdamW update rule is defined as:

M,
\/V: —|— €

Here, n is the learning rate and e is a small constant for
numerical stability. The first and second moment, M, and
V., are computed as exponentially weighted averages:

M; = .SlM:—l + (1 - .81)0:
Vi=BVioi+ (1 — £2)G?

Wt+l :Wt _n'ét, ét = (l)

where 31, 82 € [0, 1) are the exponential decay rates.

Viewing AdamW as an adaptive learning rate algorithm
without momentum. The above update rule in equation 1
can be reformulate as an element-wise gradient scaling
rule with a gradient scaling factor S = %: € R™*™ over
the raw gradient G, i.e.,

WH-I - Wt = Gt (2)

In other words, the effectiveness of AdamW can be viewed
as the result of a variance-aware learning rate schedule
per element in raw gradient G; using the corresponding
element in S, where elements with higher variance in V;
are scaled down to reduce unstable updates. While this
reformulation is very straightforward, it paves the way for
subsequent analysis. It also provides a convenient strategy
to analyze other momentum algorithms through “SGD-like”
lens (e.g., all reduced to adaptive SGD learning rates).

3.2 Coarsening Element-wise Learning Rate
Adjustment in a Structured Manner

While the element-wise learning rate update rule in AdamW
is effective, it can be overly sensitive to noisy gradients in
specific parameters, especially in high-dimensional models
like LLMs. Recent work, such as Adam-mini (Zhang et al.,
2024b), proposes grouping parameters into blocks and ap-
plying a block-wise learning rate adjustment to reduce
memory usage while maintaining Adam(W) performance.
However, the block-wise approach in Adam-mini requires
carefully chosen block sizes for different modules in Trans-
formers and only achieves memory savings for the second
moments, leaving the first moment memory unaffected.

A more structured learning rate update rule. Inspired
by findings of optimizer redundancy, we propose an effec-
tive simplification by coarsening the element-wise adaptive
learning rate rule in equation 2 into a structured channel-
wise adaptation. We group parameters based on the larger

dimension of the weight tensors. The element-wise scaling
factor S = &* is then simplified into a channel-wise format
, s € R1*"_where each element s; for each channel j is:

|Gl 4]J2
e e 3
Y Gk dllle @
where || - |2 denotes the £, norm. Then, the final gradient

scaling rule becomes G; = S - G; = Gy - diag(s).

=== Eletment-wize LR update
—— Structure-wise LR update w/o NL
Structure-wisé LR update w/ NL

Y Spike due to early-stage

Training Loss
(=2
T

3 unstable gradient
b : Simj.larlo_ssa.tmd]
a— ¢, N
0 5000 10000 15000 20000

Training Steps

Figure 3. Training loss comparison between Element-wise and
Channel-wise Learning Rate (LR) Adaptations with or without
norm limiter (NL) on the LLaMA-130M model.

Empirical validation. We first empirically explore the
effectiveness of the proposed update rule where we com-
pare the training loss of the original element-wise learning
rate adaptation with our proposed channel-wise one on a
LLaMA-130M model. As shown in Fig. 3, both approaches
achieve similar final training loss, demonstrating that the
structured adaptation effectively maintains performance. In
fact, the channel-wise adaptation achieves slightly better
perplexity 24.43 (AdamW: 25.08), further supporting our
effectiveness. However, we notice that our channel-wise
learning rate adaption (orange curve) shows a significant
spike at the early stage, which is due to the unstable gradient
at the early stage. Instead of applying the vanilla gradient
clipping method, we use the Norm-growth Limiter (NL) in
(Chen et al., 2024) to limit the consecutive gradient growth,
as it is shown slightly more effective than gradient clipping:

o |G| - G .
if >y then Gt ¢+ ——— - 7||Ge—1]] 4
|Ge—l| |G|

where -y is a threshold to ensure that the rate of gradient
growth remains controlled. This approach limits the magni-
tude of gradient norm increases, particularly for the unstable
gradients in the early stages, thereby preventing loss spikes
(green curve), leading to further better perplexity 24.11. We,
by default, use the NL in our method and set v = 1.01.

Takeaways @: A structured learning rate update is suffi-
cient for LLM training.

This observation suggests that effective optimization can be
achieved by applying adaptive learning rates at a coarser

APOLLO: SGD-like Memory, AdamW-level Performance

Algorithm 1 AdamW with APOLLO/APOLLO-Mini

Input: A weight matrix W € R™*™ with m < n. Step
size 1, scale factor a, decay rates {31, 32}, weight decay
A, rank r, subspace update frequency T'.
Initialize: ¢ < 0
repeat
Step 1: Calculate gradient into low rank space.
G; e Rm*n —Vqut(Wt)
if t mod T' = 0 then
P + Neeea(0,1/7)
seed — an independent new random seed
end if
R; + P,G;
Step 2: Obtain low rank optimization states, M, V.
ME, VE « AdamW(Ry, 1, B2, A = 0)
R, + ME/(\/VE +¢)
Step 3: Obtain approximated gradient scaling factor.
if APOLLO then
S « diag(sk, sk, .
else if APOLLO-Mini then

R _ Re[]l2
sm) {88 = e

end if

Step 4: Update weight in original space.
W, « W, i+n-a-GS—n-AW,_;
t+t+1

until convergence criteria met

return Wr

granularity, such as channel-wise, rather than at the element-
wise level. This insight forms the basis for the memory-
efficient methods we propose in the next section.

4 APOLLO: APPROXIMATED GRADIENT
SCALING FOR MEMORY EFFICIENT
LLM OPTIMIZATION

From observation to practical benefit. While coarsening
gradient scaling factors is effective, it does not inherently
reduce optimizer memory usage, since the full states M, and
'V are still required. This brings us to a critical question:

Question @: Can structured learning rate adaptation be
converted into practical, memory-efficient optimization?

4.1 APOLLO: Approximate Structural Gradient
Scaling for LLM Optimization

4.1.1 Approximating Gradient Scaling with an Auxiliary
Low-Rank Space

To address this question, we propose APOLLO, which ap-
proximates the channel-wise gradient scaling in a com-

pressed low-rank space rather than the original full-rank
one, showing in Algorithm 1. Specifically, an auxiliary
low-rank optimizer state is stored by taking the low-rank
gradient R; as input, computed as R; = P,G; € R™*"
with a projection matrix P; € R™™. It will only maintain
the low-rank version of the first and second moments as:

M{ = 1ML + (1 - B1)Rq
Vit =BV +(1-F)RE

These low-rank moments, M and VE, are then converted
into a lightweight, channel-wise scaling factors:
D R
3}_ "Rt[Jlll2 ,where R = Mi}: (5)
IR[:, 5]ll2” VE+e

In this way, APOLLO only stores auxiliary low-rank opti-
mizer state, saving memory from 2mn to 2nr. We will
show later that the structured scaling renders APOLLO in-
sensitive to the rank, unlocking substantial memory savings.
In contrast, GaLore requires a relatively high rank to retain
performance (see Sec. 5.4 and Appendix A3 for details).

However, since APOLLO operates in a compressed domain
(i.e. low-rank space), a key question remains:

Question @: Can the adaptive learning rate in the com-
pressed space effectively approximate its behavior in the
original space?

Moreover, what type of low-rank projection method is ideal
for this purpose? The default choice might be SVD, as it
captures the most informative components of the gradient.
In fact, most existing low-rank optimizers for LLMs rely on
SVD to maintain pre-training performance. However, SVD
is computationally expensive for large models and cannot
be efficiently parallelized on GPUs, hindering the training
process. Therefore, we pose the following question:

Question @: Do we still need costly SVD to construct our
compressed space?

4.1.2 APOLLO Performs Well with Random Projection:
SVD is Not Necessary.

We demonstrate that random projection can effectively
bound the difference between the gradient scaling factor in
the compact and original space in equation 6:

_ Gl

- 1l M,
Original space: s; = G,
CTIGEN T TV
_ IR 411 M
Compact space: s R, =
IR VVE

with all small e in the denominators removed for simplicity.

APOLLO: SGD-like Memory, AdamW-level Performance

model. layers. 7.self_attn k_proj.weight

model layers. 18 self_attn.o_proj.weight

maodel.layers. 23, mlp.down_proj.weight

= 150000 g

alu

10000

100000

Factor Value

000 F
o S0000

Sealing Factor 'V

Scaling

[—

40000

20000

Sealing Factor Value

0 20000 40000 GOOOD i

Steps
APOLLO-1/8n

20000

APOLLO-1/4n

20000 40000 GOOOD

Steps

20000 60000 0

Steps

AdamW

Figure 4. Visualization of the channel-wise scaling factor ratio for APOLLO with rank 1/8n and 1/4n, compared with AdamW (full rank
n). The empirical data aligns well with the theoretical ratios 1 : /2 : 24/2, validating the bounds across various layer types and stages on
the LLaMA-350M model. More visualization can be found at Fig. 5.

Generating random projection matrix. We generate the
random projection matrix P by sampling each element from
a standard Gaussian distribution. With high probability, pro-
jection using a random Gaussian matrix largely preserves
the scaled norm from the original space based on the John-
son—Lindenstrauss lemma (JLT) (Freksen, 2021).

First-order moment ratio bounding. We expand the
computation formula of the first moment recursively, as:

M = p1Mi—1+ (1 — 51)Gy

t—1

7
= BiMo+(1- 1) S AEGeos @
k=0
M{ = BMI; 4 (1 - f1)Re
t—1 (8)
= ﬁng + (1 - ﬁl)Zﬁ{cR:—k
k=0

We quantify the approximation error in the following.

Theorem 4.1. Approximated Channel-wise Momentum
with a bound for its {3 norm: G, € R™*" is the full-rank
gradient (m < n). Let P be a matrix of shape R"™*™ where
each element is independently sampled from a standard
Gaussian distribution in the variance of 1/r. With the pro-
jected gradient R, = PG, we have the projected gradient
with a bounded channel-wise first order moment. For any

channel j, with probability at least 1 — 2 exp (—"’%2):
(1= IV, 5101 < IMEL 112 < (1 + o) IV 51112

Proof: Please refer to Appendix A.1.3.

Second-order moment ratio bounding. Similarly, the
second-order moment state can be formulated as:

t—1
Vi=(1-p2) Zﬁ%G?—k

k=0

t—1

Vi=(1-p2)> BRI

k=0

where we assume Vg = 0 (common in most initialization).

Theorem 4.2. Approximated channel-wise variance with
a bound for its {1 norm: For any channel j and time t, if

>.8] 2t
r> —<log | —
2 5log{),

then with probability at least 1 — §/2:
(1= Vels gl < IVEE I < A+l Vels il

where V[:, j] and VE[:, j] are the second moments in the
original and projected spaces, respectively.

Proof: Please refer to Appendix A.1.4.

Bounded update ratio s¥/s We now bound the differ-
ence between the gradient scaling factor in the compressed
and original space based on the theorems 4.1 and 4.2:

_ IRl NGl gl R Gl NGl A
IRl 51 N1Gel: gl Gl 1l 1R S

si/ss

For any channel j, with probability > 1 — §:
V1i—e¢ < Ei < Vite

1+e¢ 1—¢

9

T Ss;

Proof: Please refer to Appendix A.1.5.

The theorem suggests we should scale the gradient by a
factor \/? to ensure consistent behavior with AdamW under
structured learning rate update. Accordingly, we include a
gradient scale factor « in Algorithm 1. However, since this
factor can be absorbed into the learning rate, we seta = 1
by default in APOLLO. When the r is too small compared
to m, as in our APOLLO-Mini case with rank-1 space, we
explicitly set a = /128 to compensate.

Empiric evidence of the ratio |/n/r: We empirically val-
idate the scaling factor ratio \/n/r (Eq. 9) by comparing
the original rank-n space with the compressed rank-r space
using LLaMA-350M. Specifically, we evaluate APOLLO
with 7 to 1/8n and 1/4n against the full-rank AdamW base-
line. As shown in Fig. 4, the observed ratios align closely

APOLLO: SGD-like Memory, AdamW-level Performance

with the theoretical predictions (~ /1/8 and 4/1/4 respec-
tively), confirming the bound and effectiveness of random
projection. Check more details in Appendix A.2.

So far, APOLLO has been shown to be theoretically sound
with random projection, which we adopt as the default.
APOLLO with SVD also performs well, yet incurs signifi-
cant computational overhead with only marginal improve-
ment. We re-sample the projection matrix every T steps
(200 by default) by effortlessly generating a new random
seed, as fixing the matrix has been shown to be suboptimal
for high-dimensional LLM training (Zhao et al., 2024).

Take-away @: APOLLO can approximate the structured
learning rate adaption with only random projection.

4.2 APOLLO-Mini: Achieve Extreme Memory
Efficiency with Rank-1 Space

The rank r plays a crucial role in balancing memory effi-
ciency and approximation quality. The coarsened learning
rate update rule is highly tolerant to low-rank approxima-
tions. So, APOLLO can operate effectively with a rank that
is half of what GaLore requires. However, we still need
n X T memory cost for the optimizer state. If we can relax
the rank to 1, then the optimizer state cost is totally negligi-
ble. However, simply setting rank to 1 in APOLLO doesn’t
work well due to rank-1 space sacrificing too much informa-
tion (details at Sec. 5.4 and Appendix A2). This leads to our
next question:

Question @: Can we further compress the optimizer state
to SGD-level memory cost while matching or surpassing
AdamW’s performance?

To address this, we introduce an extremely memory-efficient
APOLLO variant, APOLLO-Mini, which coarsens the scal-
ing factor into a tensor-wise scaling factor to reduce vari-
ance during gradient scaling estimation in a rank-1 space.

The scaling factor is computed as: s = H:%:Hf. Moreover,
we find the tensor-wise scaling factor estimated in a rank-1
space is typically smaller than that obtained with a higher
rank, which the theorem can theoretically justify in equa-
tion 9. Hence, we heuristically set a gradient scale factor o

(defaulting to +/128) to compensate for this difference.

4.3 Savings and Cost Analysis

Tab. 1 compares various memory-efficient training meth-
ods, including APOLLO-series, Fira (Chen et al., 2024),
GaLore (Zhao et al., 2024), and Flora (Hao et al., 2024).

Notably, APOLLO purely relies on random projection, avoid-
ing the costly SVD in Fira and GaLore. In terms of memory
efficiency, APOLLO exhibits greater robustness to low rank
settings compared to other methods (see Tab. 2). Addition-

ally, it eliminates the need to store the projection matrix,
requiring only a random seed. Our variant, APOLLO-Mini,
achieves extreme memory efficiency by reducing optimizer
states to a constant 2n 4 2, making it comparable to SGD
cost, yet it retains or even surpasses AdamW performance.

Table 1. Detailed comparison between Fira, Galore, Flora,
APOLLO, and APOLLO-Mini. Denote W; € R™*™ (m < n),
rank r. APOLLO series has a constant 2 due to storing random
seed and gradient norm used for norm-worth limiter.

APO.LL.O APOLLO Fira Galore Flora
—Mini
Weights mn mn mn mn mn
. 2n 2nr 2nr 2nr 2nr
Optimizer States +2 +2 | 4mr+1 4mr +1
Full-Rank Gradients 4 v v X x
Full-Rank Weights v v v v v
Pre-Training v v v v X
Fine-Tuning v v v v v
wo. SVD v v X X v

5 EXPERIMENTS

We evaluate the effectiveness of APOLLO through a compre-
hensive set of experiments. In Sec. 5.1 and 5.2, we assess
APOLLO on various pre-training and fine-tuning tasks, re-
spectively. Sec.5.3 highlights the system-level advantages of
APOLLO in terms of memory usage and throughput. Sec.5.4
presents extensive ablation studies analyzing the impact of
low-rank projection methods, rank selection, and scaling
factor granularity, along with detailed comparisons of train-
ing dynamics. Finally, Sec. 5.5 offers preliminary insights
into why a stateless APOLLO can outperform AdamW.

5.1 Memory-Efficient Pre-training with APOLLO

We show that the APOLLO-series achieves superior pre-
training performance across various sizes of LLaMA mod-
els, with up to a 2.80 | in validation perplexity on C4 dataset.
Notably, APOLLO-Mini uses a negligible memory budget
for optimization states, yet still outperforms AdamW.

Setup. We evaluate LLaMA models of various sizes, rang-
ing from 60M to 7B. Following the training setting used in
prior works (Zhao et al., 2024), we pre-train each model
from scratch, with a detailed description in Appendix A.6.
The C4 dataset (Raffel et al., 2020), a comprehensive corpus
derived from Common Craw] data and meticulously filtered
and cleaned, is used for pre-training. All experiments are
conducted in BF16 data format without other quantization.
Baselines. We include the following baselines: (i) AdamW:
We pre-train the models using the standard AdamW opti-
mizer (Loshchilov & Hutter, 2019). (ii) Low—Rank: This
approach decomposes the model weights into two low-rank
matrices (W = UV), with both U and V optimized us-
ing AdamW. (iii) LoRA: LoRA (Hu et al., 2021) uses low-
rank adapters for memory-efficient training by decompos-

APOLLO: SGD-like Memory, AdamW-level Performance

Table 2. Comparison of pretraining perplexity across various memory-efficient training approaches. We pretrain the LLaMA models with
model size ranging from 60M to 1B on the C4 (Raffel et al., 2020) dataset and report the validation perplexity. The memory overhead
focus solely on weights and optimization states. Results marked with * are collected from (Zhao et al., 2024). By default, we set the rank
to one-quarter of the original dimension for all low-rank-based training approaches, while results marked with * indicate the use of a halved
rank, i.e., one-eighth of the original dimension. For a fair comparison, we keep the same training settings as GaLore/Fira, which is
not tuned on the APOLLO series. We can further tune the hyperparameters, e.g., the learning rates, for optimal performance.
Here, we report the APOLLO-Mini with a learning rate of 0.02 (not 0.01 in GaLore), achieving stronger results, marked with i

Method 60M 130M 350M 1B
cthods Perplexity Memory | Perplexity Memory | Perplexity Memory | Perplexity Memory
AdamW* | 3406 036G | 2508 076G | 18.80 206G | 1556 7.80G
Low-Rank* T8.18 0.26G 45.51 0.54G 37.41 1.08G 142.53 3.57G
LoRA* 3499 0.36G 3392 0.80G 25.58 1.76G 19.21 6.17G
ReLoRA* 37.04 0.36G 2937 0.80G 29.08 1.76G 18.33 6.17G
GaLore* 34.88 0.24G 25.36 0.52G 18.95 1.22G 15.64 438G
Fira 3106 0.24G 2273 0.52G 17.03 1.22G 14.31 438G
APOLLO w 5VD 31.26 0.24G 22.84 0.52G 16.67 1.22G 14.10 438G
APOLLO 31.55 0.24G 2294 0.52G 16.85 1.22G 14.20 438G
aporro?t 31.26 0.18G 23.18 0.39G 16.98 0.95G 14.25 349G
APOLLO-Mini 31.93 0.12G 23.53 0.25G 17.18 0.69G 14.17 2.60G
APOLLO-Mini ¥ 30.95 0.12G 22.85 0.25G 16.63 0.69G 13.95 2.60G

ing the weights as W = W, + UV, where W, remains
frozen and only U and V are optimized with AdamW. (iv)
ReLoRA: ReLoRA (Lialin et al., 2023) enhanced LoRA,
specifically for pre-training, which periodically merges the
low-rank adapters UV back into the original weights W.
(v) GaLore: GaLore (Zhao et al., 2024) projects gradients,
rather than weights, into a low-rank space, effectively reduc-
ing memory consumption for optimizer states. (vi) Fira:
Fira (Chen et al., 2024) further improves GaLore by adding
the error residual of low-rank gradient back.

Main Results. We evaluate APOLLO and its two variants:
APOLLO w. SVD, which uses SVD instead of random pro-
jection; and APOLLO-Mini, which uses rank-1 space and
computes scaling factors in a tensor-wise manner, with negli-
gible optimizer memory cost. Results are reported in Tab. 2,
from which several observations can be made: (i) Perfor-
mance under the same memory budget: With rank set
to one-quarter of the original dimension, APOLLO consis-
tently outperforms GaLore, achieving up to a 3.62 reduction
in perplexity; (ii) Comparison with full-rank AdamW:
APOLLO demonstrates superior performance while using
significantly less memory. Notably, APOLLO-Mini in-
curs a memory cost similar to that of SGD while signif-
icantly outperforming AdamW. This is impressive given
that vanilla SGD is known to fail in training Transformer
models (Zhang et al., 2024a); (iii) Robustness across pro-
jection methods and rank sizes: APOLLO performs ro-
bustly regardless of projection type or rank. For exmaple,
on LLaMA-350M, switching to SVD improves perplexity
by only a 0.18. This indicates that APOLLO can maintain
performance even without SVD, which is known for its time-
consuming nature (Zhang et al., 2024c). Further halving the
rank leads to negligible performance degradation, highlight-

Table 3. Pre-training LLaMA 7B on C4 dataset for 150K steps.
Validation perplexity and memory estimate (optimization states
only) are reported. Results marked with * are collected from (Zhao
etal., 2024). APOLLO uses the rank of 256, and APOLLO-Mini
uses the rank of 1.

Optimizer | o0 g0K 120K 150K
Memory
8-bit Adam® 13G 1809 1547 1483 14.61
8-bit GaLore* 4.9G 1794 1539 1495 14.65
APOLLO 1.6G 17.55 1439 1323 13.02
APOLLO-Mini 0.0G 1803 1460 1332 13.09
Tokens (B) | | 52 105 157 197

ing APOLLO ’s efficiency even under aggressive memory
constraints. A detailed analysis of the effects of projection
methods and rank is in Sec. 5.4; (iv) Comparison with Fira:
APOLLO scales better with larger models and more training
tokens, consistently outperforming Fira as model size and
training tokens increase, though it slightly outperforms us
on smaller models (60M, 130M). An in-depth comparison of
training performance across model sizes and training tokens
is in Sec. 5.4, A4. The above results validate the effective-
ness of APOLLO on pre-training tasks, demonstrating that
it achieves superior performance while requiring negligible
memory costs for optimization states compared to AdamW.

Scaling up to LLaMA-7B. We evaluate the pre-training
of a LLaMA-7B model using AdamW, GaLore, APOLLO
(r = 256) and APOLLO-Mini (r = 1) on an 8x A100
80GB setup. To ensure consistency, we maintain a total
batch size of 512 per epoch across all methods, adjusting
the micro-batch size based on each method’s memory foot-
print. AdamW is limited to a micro-batch size of 4. GaLore
is configured to match our memory usage with a micro-

APOLLO: SGD-like Memory, AdamW-level Performance

batch size of 8. Since AdamW requires extended training
time to fully train a 7B model, we allocate a fixed training
time budget of half a month(15 Days) for a fair and prac-
tical comparison. The training curve, showing validation
perplexity recorded every 1000 steps, is in Fig. 2.

Our 7B-scale experiments highlight two key benefits of the
APOLLO series: (i) Accelerated training memory sav-
ings enabling larger batch sizes. The APOLLO series
achieves substantial memory efficiency, allowing for larger
batch sizes and resulting in ~3x faster training throughput
compared to AdamW, ~2x faster than GaLore. Notably,
APOLLO and APOLLO-Mini are the only methods able to
complete pre-training within the half-month timeframe. (ii)
Superior model performance with best perplexity. De-
spite significantly reducing optimizer overhead, APOLLO
delivers the best perplexity results, even when GaL.ore uses
a high rank of 1024. Midway through training, APOLLO
surpasses GaLore in performance, marking a key crossover
point that demonstrates its clear advantage. As shown in
Tab.3, the APOLLO series delivers > 1.5 perplexity improve-
ment compared to the 8-bit Adam and GaLore, all while
maintaining significantly lower optimizer memory usage.

Downstream Task Performance. As perplexity may not
precisely assess model quality (Jaiswal et al., 2023), we
further evaluate performance on a suite of commonsense
and math reasoning tasks. We use LLaMA-350M models
pretrained with sequence lengths of 256 and 1024, selecting
the best AdamW checkpoint via learning rate sweeps. Tab.4
presents zero-shot results across multiple tasks, including
BoolQ (Clark et al., 2019), RTE (Wang et al., 2018), Hel-
laSwag (HS) (Zellers et al., 2019), Winogrande (WG) (Sak-
aguchi et al., 2021), OpenBookQA (OBQA) (Mihaylov
etal., 2018), ARC (ARC-Easy (ARC-E), ARC-Challenge
(ARC-C)) (Clark et al., 2018), PIQA (Bisk et al., 2020),
SciQ (Johannes Welbl, 2017), and MathQA (Amini et al.,
2019). We confirm that models pretrained with the APOLLO
series not only achieve lower perplexity but also outper-
form AdamW-trained models on downstream tasks.

Conclusion @: The APOLLO series optimizes memory
usage to a SGD-like level, enhances model quality over
AdamW, and accelerates pre-training by enabling larger
batch sizes. This makes APOLLO a highly practical and
efficient solution for large-scale LLM pre-training.

5.2 Memory-Efficient Fine-tuning with APOLLO

Pre-training large foundation models typically demands
thousands of GPUs and months of training. Hence, fine-
tuning these models has become a more practical approach
among engineers and researchers. Here, we thoroughly eval-
uate the performance of APOLLO in fine-tuning scenarios.

Setup. We use four open-source pre-trained models for
our fine-tuning evaluation: LLaMA-3.2-1B, LLaMA-3-8B,
Gemma-7B, and Mistral-7B. The downstream tasks are di-
vided into two categories: (i) Eight common-sense reason-
ing tasks: WG, PIQA, SIQA (Sap et al., 2019), OBQA, HS,
BoolQ, and ARC-E and ARC-C; (ii) MMLU (Hendrycks
et al., 2020) tasks across various domains: STEM, Social
Sciences, Humanities and others. Details at Appendix A.7.

Baseline. We compare APOLLO against several baselines,
including full-rank AdamW, LoRA, GaLore, and Fira. Ad-
ditionally, we include DoRA (Liu et al., 2024a), an effec-
tive fine-tuning approach. We set the rank to 32 and 8 for
common-sense reasoning and MMLU tasks, respectively.
APOLLO-Mini uses arank of 1.

Main Results. As shown in Tab. 5 and Tab. 6, APOLLO
consistently matches or outperforms other baselines, achiev-
ing up to a 1.01 average accuracy improvement over full-
rank AdamW on commonsense reasoning tasks, while main-
taining comparable performance on MMLU tasks. Notably,
APOLLO requires only a rank-32 space for optimizer states,
and APOLLO-Mini uses a rank of I—resulting in negligi-
ble optimizer memory cost.

Conclusion @: The APOLLO series establishes itself as a
compelling memory-efficient full-parameter fine-tuning
method, delivering on-par or better performance com-
pared to AdamW.

5.3 System-level Benefits

End-to-end system-level benefits: We evaluate the end-
to-end training throughput and memory usage by running
LLaMA-7B on 8x A100 80GB GPUs. Fig. 1 compares
APOLLO and APOLLO-Mini against AdamW, highlight-
ing two key benefits: (1) Much lower memory usage: With
a batch size of 4, AdamW already reaches the memory limit,
consuming approximately 79 GB. In contrast, APOLLO and
APOLLO-Mini require only 70 GB and 68 GB, respec-
tively, even with a batch size of 16; (2) Higher throughput:
The APOLLO series achieves significantly higher through-
put than AdamW, with up to 3x improvement in training
throughput. This is enabled by the substantial memory sav-
ings, which allow the batch size to scale up to 4x larger than
that of AdamW.

These results demonstrate that AdamW not only incurs high
memory costs but also limits training efficiency by becom-
ing memory-bound, preventing full utilization of available
compute. In contrast, APOLLO enables larger batch sizes
and better hardware utilization, accelerating large-scale
training with even better performance.

Negligible optimizer overhead. We further evaluate the
optimizer step time of AdamW, the APOLLO series, GaLore,

APOLLO: SGD-like Memory, AdamW-level Performance

Table 4. Zero-shot performance of LLaMA-350M models pretrained with AdamW and APOLLO-series on commonsense and math

reasoning tasks.

Sequence Length: 256

Method | Memory | Perplexity | BoolQ | RTE | HS | WG | OBQA | ARC-E | ARC-C | PIQA | SciQ | MathQA | Average
AdamW 137G | 1880 | 0.5881 | 0.4729 | 0.3286 | 0.5335 | 0304 | 03615 | 0.2167 | 0.6387 | 0.591 | 02047 | 0.3554
APOLLO 034G 1685 05165 04729 03528 | 05146 0318 03792 02517 06632 0592 02188 | 0.3681
APOLLO-Mini | 0.00G 1718 05434 04729 03481 | 05162 0320 03653 02474 06469 0591 02178 | 0.3654
Sequence Length: 1024
Method Memory | Perplexity | BoolQ | RTE | HS | WG | OBQA | ARCE | ARCC | PIQA | SciQ | MathQA | Average
AdamW 137G | 1630 | 04917 | 0.4693 | 03688 | 0.5233 | 0332 | 03729 | 0.2449 | 0.6534 | 0.609 | 02064 | 03712
APOLLO 034G 1564 05373 04693 03850 | 0.4925 0322 03788 02483 06681 0624 02127 | 0.3840
APOLLO-Mini | 0.00G 1612 05376 04693 03707 | 05217 0324 03758 02312 06638 0619 02224 | 03785

Table 5. Comparison of various finetuning approaches on common-sense reasoning tasks. Experiments are conducted with Llama-3.2-1B

based on the implementation from (Liu et al., 2024a).

Methods | WG PIQA SIQA OBQA HS BoolQ ARCE ARCC | Average
AdamW | 6819 7612 7236 69.00 69.19 6434 7222 5512 | 68.07
LoRA 67.56 63.28 71.65 6820 19.13 63.58 6130 5299 | 59.21
DoRA 68.98 7470 7247 6480 6393 6401 6932 5282 | 66.38
GaLore 6275 7263 68.17 6220 4781 5899 6894 47.61 | 61.14
Fira 71.82 77.20 73.08 69.00 6821 6431 7340 5478 | 68.98
APOLLOw SVD 70.88 77.69 7252 7060 68.19 63.00 7403 5572 | 69.08
APOLLO 7040 7693 7272 7060 6375 6269 7340 5520 | 68.21
APOLLO-Mini 67.64 7650 72.88 69.60 6654 6422 7298 5546 | 68.23

and Fira, in Tab. 7. We benchmark LLaMA-1B and 7B with
a sequence length of 1024, using batch sizes of 16 and 4,
respectively, the largest batch sizes that AdamW supports.

Unlike GaLore and Fira, which suffer from expensive
SVD updates (taking ~10 minutes for the 7B model), the
APOLLO series incurs minimal overhead by relying only
on cheap random projections. While APOLLO introduces an
additional step to compute the scaling factor and applies NL,
projecting gradients into a low-rank space reduces the over-
head of maintaining first-order and second-order moments.
Notably, on the 7B model, the APOLLO series achieves even
faster optimizer step times than AdamW. Overall, the op-
timizer step overhead remains negligible compared to the
backward pass, particularly for larger batch sizes, ensur-
ing that APOLLO enables superior memory efficiency while
being a lightweight solution.

APOLLO-Mini enables LLaMA-13B pre-training on
A 100 80GB without system-level optimization. Leverag-
ing the exceptional memory efficiency of APOLLO-Mini,
we are the first to enable the pre-training of a LLaMA-13B
model on A100 80GB GPU with naive DDP, without requir-
ing other system-level optimizations (e.g. model sharding).
This breakthrough not only simplifies deployment by reduc-
ing engineering complexity but also empowers researchers
to scale up model sizes effortlessly with APOLLO-Mini.

Pre-training LLaMA-7B under 12 GB with weight quan-
tization. As our methods significantly reduce optimizer
memory costs, model weights become the next major mem-

ory bottleneck. To further address this, we integrate our ap-
proach with the Int8 weight quantization method proposed
in Q-GaLore (Zhang et al., 2024c), enabling even greater
memory savings. As shown in Table 8, our Q-APOLLO se-
ries minimizes memory consumption across both optimizer
and weight components while maintaining pre-training per-
plexity on par with—or better than—full-precision AdamW.
Notably, Q-APOLLO also achieves a clear performance ad-
vantage over Q-GalLore, underscoring its superiority in
both memory efficiency and model quality. By combin-
ing APOLLO-series with quantization, we enable—for the
first time—the pre-training of a LLaMA-7B model using
just 12 GB of memory (Q-APOLLO-Mini), assuming a
layer-wise gradient update strategy (Lv et al., 2023) is em-
ployed. This marks a major breakthrough, making LLM
pre-training feasible on low-end GPUs and democratizing
access to LLM training for a broader audience.

Conclusion @: The APOLLO series significantly reduces
optimizer memory usage with minimal compute over-
head, enabling higher throughput, improved model scal-
ability, and more friendly low-end GPU training for
LLMs. APOLILO takes a pivotal step toward democra-
tizing LLM training, making large-scale model training
more accessible and efficient.

5.4 Extra Investigation and Ablation Study
This section presents several experimental investigations
focused on five key research questions:

APOLLO: SGD-like Memory, AdamW-level Performance

Table 6. Comparison results of various memory-efficient fine-
tuning algorithms on MMLU tasks. For Galore, Fira, APOLLO,
and APOLLO-Mini, we report the best accuracy obtained by
sweeping the learning rate within the range [5e-6, 7.5e-6, le-5,
2.5e-5, 5e-5, 7.5e-5, le-4,1.5e-4, 2e-4].

Model Methods sTEM %8l anities Otber | Average
Sciences

Full 5427 7566 5008 7280 | 6485

LoRA 5300 7485 5897 7234 | 6425

GaLore 5450 7511 5850 7203 | 6443

LLaMA-3-88 Fira 5353 7546 5850 7200 | 6432
APOLLOW SVD 5473 7546 5872 TL68 6476

APOLLO 5437 7586 5818 TL69 6435

APOLLO-Mini 5440 7537 5872 7159 6441

Full 003 3716 3408 3547 | 3421

LoRA 2623 3494 3088 3696 | 3218

Gomma 7B GaLore 2547 3321 3107 3371 | 3095
- Fira 2903 3527 3240 3652 | 3326
APOLLOwW SVD 2920 40.42 3240 3894 3498

APOLLO 753 3697 3399 3640 3381

APOLLO-Mini 2730 33.83 3161 3377 3167

Full 5240 7295 5516 69.05 | 6167

LoRA 5213 7246 5505 6877 | 6141

Mistral 7B GaLore 5187 .82 5494 6949 | 6156
) Fira 5280 7285 55.07 69.11 | 6172
APOLLOwW SVD 5243 73.8 5505 6924 6176

APOLLO 5163 7312 5490 6958 6158

APOLLO-Mini 5197 72.89 5443 69.18 6135

Table 7. Optimizer step time (in seconds) across LLaMA-1B and
LLaMA-7B with a sequence length of 1024 on a single A100 GPU.
Results are averaged over 400 steps, with 100 warm-up steps and
low-rank projection matrices updated every 200 steps. Batch sizes
are set to 16 (1B) and 4 (7B), the maximum batch size supported
by AdamW. Lower values indicate less overhead.

Optimizer Step Time (s)

0del| Bwd |

Size ‘ Time(s) | Adamw ‘ APOLLO ‘ AP;I:’.LL.O GaLore ‘ Fira
—Mini

1B 1.069 0.036 0.051 0.048 0.371 | 0421

7B 0.712 0.173 0.159 0.142 2.874 | 3.086

QI: How can the scaling factor subspace be identified?
Short answer: Random Projection performs well with no
need for SVD. More details in Appendix A.3.1.

Q2: Is APOLLO sensitive to the rank? Short answer:
APOLLO is largely insensitive to low rank settings, and
APOLLO-Mini remains effective even with rank 1. More
details in Appendix A.3.2.

Q3: What is the appropriate granularity for scaling fac-
tors? Short answer: Channel-wise granularity is preferred
for higher ranks (APOLLO), while rank-1 settings prefers
tensor-level scaling (APOLLO-Mini). More details in Ap-
pendix A.3.3.

Q4: How does the performance of different methods evolve
during training? Short answer: The APOLLO series out-
performs others as model size and training tokens increase.
More details in Appendix A.3.4.

Q5: How does APOLLO perform in long-context training
settings? Short answer: The APOLLO series performs

Table 8. Validation of pretraining perplexity of APOLLO-series
combined with int-8 weight quantization strategy (Zhang et al.,
2024c). APOLLO-series uses a quantization group size of 128. *
are collected from (Zhao et al., 2024) and (Zhang et al., 2024c).

Methods 60M 130M 350M
| Perplexity ~ Memory | Perplexity ~Memory | Perplexity ~Memory
AdamW* | 3406 036G | 2508 076G | 1850 206G
GaLore* 3488 0.24G 25.36 0.52G 1895 1.22G
Q-GaLore* 3488 0.18G 2553 0.39G 1979 0.88G
APOLLO 3155 0.24G 294 052G 16.85 1.22G
Q-APCLLO 3197 0.18G 24.16 0.39G 1879 0.88G
APOLLO-Mini 3193 0.12G 2384 0.25G 17.18 0.69G
Q-APOLLO-Mini 33.05 0.06G 2470 0.12G6 1890 035G

on par with, or even better than, AdamW in long-context
scenarios. More details in Appendix A.3.5.

5.5 Extra Insights on Why a Stateless Optimizer Can
Beat AdamW in Pre-training

We provide preliminary insights in Appendix A.4 on why
a stateless APOLLO can surpass AdamW, and we leave a
formal one as future work.

6 CONCLUSION

In this paper, we introduced a novel approach for training
LLMs that strikes an effective balance between memory
efficiency and performance. Motivated by the limitations of
existing methods like GaLore, which rely on SVD, and in-
spired by techniques like Fira and Adam-mini, we proposed
two methods to achieve structured-wise gradient scaling.
Our approach leverages low-rank optimizer states, using ran-
dom projection only to preserve gradient norms, enabling
efficient training without storing the full optimizer state. Ex-
tensive experiments across both pre-training and fine-tuning
tasks demonstrate the effectiveness of our APOLLO, consis-
tently surpassing the AdamW baseline with greater memory
saving than GaLore. APOLLO-Mini further squeezes the
memory cost by using a rank-1 sub-space, achieving better
performance than AdamW at the cost of SGD. Overall, our
method offers a promising solution to the memory bottle-
necks in LLM training, providing an efficient alternative
that maintains high performance while drastically reducing
memory consumption.

ACKNOWLEDGEMENTS

Meta supported H. Zhu during his internship. D. Pan is
in part supported by the NSF Al Institute TILOS (award
number 2112665) and an equipment donation from Nvidia.
Z. Wang is in part supported by NSF Awards 2145346 (CA-
REER), 2133861 (DMS), 2113904 (CCSS), and the NSF Al
Institute for Foundations of Machine Learning (IFML) We
extend our heartfelt gratitude to Yuandong Tian for critical
discussions.

APOLLO: SGD-like Memory, AdamW-level Performance

REFERENCES

Amini, A., Gabriel, S., Lin, P.,, Koncel-Kedziorski, R., Choi,
Y., and Hajishirzi, H. Mathqa: Towards interpretable math
word problem solving with operation-based formalisms,
2019.

Biderman, D., Portes, J., Ortiz, J. J. G., Paul, M., Greengard,
P, Jennings, C., King, D., Havens, S., Chiley, V., Frankle,
J., et al. Lora learns less and forgets less. arXiv preprint
arXiv:2405.09673, 2024.

Bisk, Y., Zellers, R., Gao, ., Choi, Y., et al. Piqa: Reasoning
about physical commonsense in natural language. In Pro-
ceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 74327439, 2020.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P, Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:
1877-1901, 2020.

Chen, T., Xu, B., Zhang, C., and Guestrin, C. Training
deep nets with sublinear memory cost. arXiv preprint
arXiv:1604.06174, 2016.

Chen, X., Feng, K., Li, C., Lai, X., Yue, X., Yuan, Y.,
and Wang, G. Fira: Can we achieve full-rank train-
ing of Ilms under low-rank constraint? arXiv preprint
arXiv:2410.01623, 2024.

Clark, C., Lee, K., Chang, M.-W., Kwiatkowski, T., Collins,
M., and Toutanova, K. Boolq: Exploring the surprising
difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044, 2019.

Clark, P., Cowhey, L., Etzioni, O., Khot, T., Sabharwal, A.,
Schoenick, C., and Tafjord, O. Think you have solved
question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Dettmers, T., Pagnoni, A., Holtzman, A., and Zettlemoyer, L.
Qlora: Efficient finetuning of quantized llms. Advances
in Neural Information Processing Systems, 36, 2024.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle,
A., Letman, A., Mathur, A., Schelten, A., Yang, A., Fan,
A., et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

Freksen, C. B. An introduction to johnson-lindenstrauss
transforms. arXiv preprint arXiv:2103.00564, 2021.

Hao, Y., Cao, Y., and Mou, L. Flora: Low-rank adapters are
secretly gradient compressors. In Forty-first International
Conference on Machine Learning, 2024. URL https:
//openreview.net/forum?id=uubBZKM99Y.

He, Y., Li, P, Hu, Y., Chen, C., and Yuan, K. Subspace
optimization for large language models with convergence
guarantees. arXiv preprint arXiv:2410.11289, 2024.

Hendrycks, D., Burns, C., Basart, S., Zou, A., Mazeika,
M., Song, D., and Steinhardt, J. Measuring mas-
sive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., and Chen, W. Lora: Low-rank adaptation of

large language models. arXiv preprint arXiv:2106.09685,
2021.

Huang, W., Zhang, Z., Zhang, Y., Luo, Z.-Q., Sun, R., and
Wang, Z. Galore-mini: Low rank gradient learning with
fewer learning rates. In NeurIPS 2024 Workshop on Fine-
Tuning in Modern Machine Learning: Principles and
Scalability.

Jaiswal, A., Gan, Z., Du, X., Zhang, B., Wang, Z., and Yang,
Y. Compressing llms: The truth is rarely pure and never
simple. arXiv preprint arXiv:2310.01382, 2023.

Jiang, Z., Lin, H., Zhong, Y., Huang, Q., Chen, Y., Zhang,
Z.,Peng, Y., Li, X, Xie, C., Nong, S., etal. {MegaScale}:
Scaling large language model training to more than
10,000 {GPUs}. 1In 2Ist USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 24),
pp. 745-760, 2024.

Johannes Welbl, Nelson F. Liu, M. G. Crowdsourcing mul-
tiple choice science questions. 2017.

Keskar, N. S. and Socher, R. Improving generalization per-
formance by switching from adam to sgd. arXiv preprint
arXiv:1712.07628, 2017.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Kocof, J., Cichecki, L, Kaszyca, O., Kochanek, M., Szydio,
D., Baran, J., Bielaniewicz, J., Gruza, M., Janz, A., Kan-
clerz, K., et al. Chatgpt: Jack of all trades, master of none.
Information Fusion, 99:101861, 2023.

Lialin, V., Muckatira, S., Shivagunde, N., and Rumshisky,
A. Relora: High-rank training through low-rank updates.
In Workshop on Advancing Neural Network Training:
Computational Efficiency, Scalability, and Resource Opti-
mization (WANT@ NeurIPS 2023), 2023.

Liu, S., Chen, T., Chen, X., Chen, X., Xiao, Q., Wu, B.,
Kirkkiinen, T., Pechenizkiy, M., Mocanu, D., and Wang,
Z. More convnets in the 2020s: Scaling up kernels beyond
51x51 using sparsity. arXiv preprint arXiv:2207.03620,
2022.

https://openreview.net/forum?id=uubBZKM99Y
https://openreview.net/forum?id=uubBZKM99Y

APOLLO: SGD-like Memory, AdamW-level Performance

Liu, S., Wang, C.-Y., Yin, H., Molchanov, P., Wang,
Y.-C. E, Cheng, K.-T., and Chen, M.-H. DoRA:
Weight-decomposed low-rank adaptation. In Forty-
first International Conference on Machine Learning,
2024a. URL https://openreview.net/forum?
1d=3d5CIRG1nZ.

Liu, Z., Zhao, C., Iandola, F., Lai, C., Tian, Y., Fedorov,
I., Xiong, Y., Chang, E., Shi, Y., Krishnamoorthi, R.,
et al. Mobilellm: Optimizing sub-billion parameter lan-
guage models for on-device use cases. arXiv preprint
arXiv:2402. 14905, 2024b.

Loeschcke, S. B., Toftrup, M., Kastoryano, M., Belongie, S.,
and Snzbjarnarson, V. Loqt: Low-rank adapters for quan-
tized pretraining. In The Thirty-eighth Annual Conference
on Neural Information Processing Systems.

Loshchilov, I. Decoupled weight decay regularization. arXiv
preprint arXiv:1711.05101, 2017.

Loshchilov, I. and Hutter, F. Decoupled weight decay reg-
ularization. In International Conference on Learning
Representations, 2019.

Lv, K., Yang, Y., Liu, T., Gao, Q., Guo, Q., and Qiu, X. Full
parameter fine-tuning for large language models with lim-
ited resources. arXiv preprint arXiv:2306.09782, 2023.

Mihaylov, T., Clark, P., Khot, T., and Sabharwal, A. Can
a suit of armor conduct electricity? a new dataset
for open book question answering. arXiv preprint
arXiv:1809.02789, 2018.

Pan, Y. and Li, Y. Toward understanding why adam con-
verges faster than sgd for transformers. arXiv preprint
arXiv:2306.00204, 2023.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21
(140):1-67, 2020.

Ren, J., Rajbhandari, S., Aminabadi, R. Y., Ruwase, O.,
Yang, S., Zhang, M., Li, D., and He, Y. {Zero-offload}:
Democratizing {billion-scale} model training. In 2021
USENIX Annual Technical Conference (USENIX ATC
21), pp. 551-564, 2021.

Robert, T., Safaryan, M., Modoranu, 1.-V., and Alistarh, D.
Ldadam: Adaptive optimization from low-dimensional
gradient statistics. arXiv preprint arXiv:2410.16103,
2024.

Sakaguchi, K., Bras, R. L., Bhagavatula, C., and Choi, Y.
Winogrande: An adversarial winograd schema challenge
at scale. Communications of the ACM, 64(9):99-106,
2021.

Sap, M., Rashkin, H., Chen, D., LeBras, R., and Choi, Y.
Socialiga: Commonsense reasoning about social interac-
tions. arXiv preprint arXiv:1904.09728, 2019.

Tang, Y., Liu, E, Ni, Y., Tian, Y., Bai, Z., Hu, Y.-Q., Liu, S.,
Jui, S., Han, K., and Wang, Y. Rethinking optimization
and architecture for tiny language models. arXiv preprint
arXiv:2402.02791, 2024.

Thangarasa, V., Gupta, A., Marshall, W., Li, T., Leong, K.,
DeCoste, D., Lie, S., and Saxena, S. Spdf: Sparse pre-
training and dense fine-tuning for large language models.
In Uncertainty in Artificial Intelligence, pp. 2134-2146.
PMLR, 2023.

Wainwright, M. J. Chapter 2: Tail bounds, 2015.
URL https://www.stat.berkeley.edu/
~mjwain/stat210b/Chap2_TailBounds_
Jan22_2015.pdf.

Wang, A., Singh, A., Michael, J., Hill, E, Levy, O., and
Bowman, S. R. Glue: A multi-task benchmark and anal-
ysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461, 2018.

Zellers, R., Holtzman, A., Bisk, Y., Farhadi, A., and Choi,
Y. Hellaswag: Can a machine really finish your sentence?
arXiv preprint arXiv:1905.07830, 2019.

Zhang, H., Zhou, Y., Xue, Y., Liu, Y., and Huang, J. G10:
Enabling an efficient unified gpu memory and storage
architecture with smart tensor migrations. In Proceedings
of the 56th Annual IEEE/ACM International Symposium
on Microarchitecture, pp. 395-410, 2023.

Zhang, Y., Chen, C., Ding, T., Li, Z., Sun, R., and Luo, Z.-
Q. Why transformers need adam: A hessian perspective.
arXiv preprint arXiv:2402.16788, 2024a.

Zhang, Y., Chen, C., Li, Z., Ding, T., Wu, C., Ye, Y., Luo,
Z.-Q., and Sun, R. Adam-mini: Use fewer learning rates
to gain more. arXiv preprint arXiv:2406.16793, 2024b.

Zhang, Z., Jaiswal, A., Yin, L., Liu, S., Zhao, J., Tian,
Y., and Wang, Z. Q-galore: Quantized galore with int4
projection and layer-adaptive low-rank gradients. arXiv
preprint arXiv:2407.08296, 2024c.

Zhao, J., Zhang, Z.., Chen, B., Wang, Z., Anandkumar, A.,
and Tian, Y. Galore: Memory-efficient LLM training by
gradient low-rank projection. In Forty-first International
Conference on Machine Learning, 2024. URL https:
//openreview.net/forum?id=hYHsrKDiX7.

Zheng, Y., Zhang, R., Zhang, J., Ye, Y., Luo, Z., Feng,
Z., and Ma, Y. Llamafactory: Unified efficient fine-
tuning of 100+ language models. In Proceedings of the

https://openreview.net/forum?id=3d5CIRG1n2
https://openreview.net/forum?id=3d5CIRG1n2
https://www.stat.berkeley.edu/~mjwain/stat210b/Chap2_TailBounds_Jan22_2015.pdf
https://www.stat.berkeley.edu/~mjwain/stat210b/Chap2_TailBounds_Jan22_2015.pdf
https://www.stat.berkeley.edu/~mjwain/stat210b/Chap2_TailBounds_Jan22_2015.pdf
https://openreview.net/forum?id=hYHsrKDiX7
https://openreview.net/forum?id=hYHsrKDiX7

APOLLO: SGD-like Memory, AdamW-level Performance

62nd Annual Meeting of the Association for Computa-
tional Linguistics (Volume 3: System Demonstrations),
Bangkok, Thailand, 2024. Association for Computational

Linguistics. URL http://arxiv.org/abs/2403.
13372.

Zhou, P, Feng, J., Ma, C., Xiong, C., Hoi, S. C. H., et al.
Towards theoretically understanding why sgd generalizes
better than adam in deep learning. Advances in Neural
Information Processing Systems, 33:21285-21296, 2020.

http://arxiv.org/abs/2403.13372
http://arxiv.org/abs/2403.13372

APOLLO: SGD-like Memory, AdamW-level Performance

A APPENDIX

A.1 Proof of Gradient Scaling Approximation in
Random Projected Low-rank Space

A.1.1 Problem Statement
Notations and Definitions: We first introduce the nota-

tions and definitions used in the proof:

* Let G; € R™*" denote the gradient matrix at iteration
t(m < n).

* Let P € R™™™ denote the random projection matrix
where P;; ~ N(0,1/r) i.i.d.

* Define R; = PG as the projected gradient.
* Let 34, 82 € (0,1) be exponential decay rates.

* Define M;, V; as first and second moments in the
original space.

* Define M, VI as first and second moments in pro-
jected space.

* Let T denote the total number of iterations.
* Let n denote the number of channels.

* Assume zero initialization: My = 1\/1{‘;2 =0,V =
VE=o.

* |||| indicates £3 norm of a vector.

* |/|lx indicates £, norm of a vector.

Problem: We aim to prove that gradient scaling factors
s; and s;? in the original and low-rank projected space have

a bound for their ratio s7*/s;,

s, NGl 1l IR 31 _ NGl 7l IRl 5]
T NG A IR AN IR 11 (G, 51
where
3, ME
V§
and M
('::: _ i
A

A.1.2 Norm Preservation Under Random Projection

Theorem A.1 (Norm Preservation). For any fixed vector
z € R™ and random matrix P € R™™™ where P;; ~
N(0,1/r) i.id, the following holds with high probability:

2
Prl(1=0)el < [Pl < (1+0)e]?] > 1-2exp (-7

Theorem A.1 is proven by leveraging the properties of Gaus-
sian random projections and the concentration inequality
for the chi-squared distribution.

Proof. The projected norm | Pz||? can be expressed as:

T m 2
||P:J:||2 = Z (PﬁIg‘) .
1

i=1 \i=
Rewriting this using the quadratic form, we have:
|Pz||? =z P Pz,
where PP is a symmetric m x m matrix. To analyze
|P||2, consider the distribution of P T P.
Each entry of P TP is given by:
T
(PTP)” = ZPkiij.
k=1

For ¢ = j (diagonal entries), we have:
T
(PTP)u =) Pi,
k=1

and since Py; ~ N'(0,1/r), PZ, ~ Exponential(1/7).

Therefore, (PTP);; ~ Ix2, where x2 is the chi-squared
distribution with r degrees of freedom. For i # j (off-
diagonal entries), the expectation is zero:

E[(PTP);] =0,
due to the independence of Py; and Py;.

The expected value of P TP is therefore:
E[P"P] =I,,,
where I, is the identity matrix.
The expectation of ||Pz||? is:
E[|[Pz|?| = z"E[P"Plz = =" I,z = ||z||°.

Now consider the concentration of | Pz||? around its expec-
tation. Define the random variable:

_ rlP=?
[l

Since P;; entries are i.i.d., Z ~ x2. Using the moment gen-
erating function of X?,, the following concentration bounds
can be derived using standard tail inequalities for sub-
exponential random variables (Wainwright, 2015):

2
Pr(Z 26)§2exp(—%).

21
T

APOLLO: SGD-like Memory, AdamW-level Performance

Returning to |Pzx||?, we scale Z back:
Z|=|?
[[P=||? = T
Thus, with high probability:
(1= @)llz)l* < [IP]|* < (1 + €)ll«]?,

and the probability of this event is at least:

2
1—2exp (—%)

A.1.3 First Moment Analysis

Theorem A.2 (First Moment Preservation). For any chan-
nel j, with probability at least 1 — 2 exp (—’"'%2):

(1= IMLL:, A% < IMEL 1P < (1 + €)M, 51117,
using a fixed projection matrix R™*™ over t.

Proof. Our goal is to bound ||MZE[:, 7]|| in terms of ||M,][:
11l

Step 1: Recursive Definitions of M,|:, j] and ME[:, j].

The first moment M|, j] in the original space is recursively
defined as:

i—1

M, 5] = (1= 81) Y BEGokl[:],

k=0
where G;_g[:, 7] € R™ is the gradient at timestep ¢ — k.
The projected first moment ME[:, 5] is similarly defined as:

t—1

ME 5] = (1—B1) > BiR—k[: 4,

k=0

where R‘t—k[:':j] = PGt—k[::j] eR".

Step 2: Projected First Moment in a Lower Dimension.
With a random matrix P € R™*™ where P;; ~ N(0,1/r)
i.i.d., we have the projected first moment in the low-rank
space,

ME[,] = (1 61) 3" BER, [

t—1
=(1—-B1)>_ BPG k[]
k=0

7

= P((1 —B1) tz_f ﬁ{‘Gt_k[:,j])

k=0
= PM,[;,]

by factoring P out of the summation.

This implies the ME[:, j] can be viewed as a projected
version of M,[:, 7] into a lower dimension with a fixed P
over time £.

Step 3: Properties of Random Projection By Theorem
A.1, we have the norm of M;[:, 7] is preserved in a high
probability,

Pr ((1 — O)IMe:, 51117 < IMEL:]2

s(1+e)||Mt[:,ﬂ||2) (10)

2
>1—2exp (—%) .

Remark: Here, we assume the projection matrix is fixed
over time step ¢. GaLore (Zhao et al., 2024) also derives
their theorem with the same assumption. However, as ac-
knowledged in GaLore, using the same projection matrix
for the entire training may limit the directions in which the
weights can grow. Therefore, empirically, as in GaLore, we
can periodically resample P over T iterations to introduce
new directions. Unlike GaLore, which uses time-consuming
SVD-based updates, we can simply re-sample P from the
Gaussian distribution by changing the random seed. H

A.1.4 Second Moment Analysis

Theorem A.3 (Second Moment Preservation). For any
channel j and time t, if

8 2t
T'Z E_ZIOg ? 1

then with probability at least 1 — §/2:
(1= IVel alll < IVEL 3l < (1 + NI Vel 4]l

where V[:, j] and VE[:, j] are the second moments in the
original and projected spaces, respectively.

Proof. Our goal is to show that the norm of the second mo-
ment V, in the original space is preserved under projection
to the lower-dimensional space. We proceed by analyzing
the recursive definition of V; and applying the results of
Theorem A.2 on norm preservation.

Step 1: Recursive Formulation of V; The second mo-
ment V[:, 7] for channel j at iteration ¢ is defined recur-
sively as:

Vil 5] = B2 Vi1l 3] + (1 — B2)(Gel:, 5])°

APOLLO: SGD-like Memory, AdamW-level Performance

By expanding recursively, we can write V,[:,j] as a
weighted sum of the squared gradients from all past itera-
tions:

t—1

Vc[3:j] = (1 - 52) Zﬁg(Gt—k[%j])z

k=0

Step 2: Projected Second Moment in Lower Dimension
Similarly, in the projected space, the second moment VZ[:
, 7] for channel j at iteration ¢ is given by:

VI3 = BV]+ (1 — B2) (Re[:, 4])

Expanding recursively, we have:
ViG] = (1 - B2) Z BY (Re—kl:, 5])?

Step 3: ¢; Norm of Channel-wise Second Moment.
Then, we can obtain the £; norm of the second-moment
term VE[:, 5] |1

T

IVEL Al =30 -) S B Re_lir 3],

i=1

We can swap the summation order and have,

IVEE 3l = (1 B) Y B D (R 1))
—(1-82) Y BIIRsler 4]l

Similarly, we can have

i

IVl = (1= 62) 3 85 D (G i 1)
— (1-62) Y BHIIGek L I

Step 4: Constructing the Bounds for VZ[:, j] By The-
orem A.1, we know that for each k, the £5 norm of the
projected gradient ||R;_x[:, 7]|| satisfies:

(1=IGe—k[:, 4II” < IRe—k[:, 3]II* < 1ellGerl:, 5111,
with probability > 1 — 2 exp(—re?/8).

Therefore,
t—1
IVEE Al = (1= 82) > BEIRe—«l:, 5]II?
k=0
t—1
<(1-B2))_ B5(1+ |Gkl 41I1> = 1+ ©)IVil: 3l
k=0

Similarly, we can obtain the lower bound,

IVEL i1l = (1 — 82) S B Rei:, 1l
> (1=) S B — OlICeil A2 = (1 — OVl 1l

We obtain the following bounds for the #; norm of full
projected second moment VE[:,]:

11 = e)Vels, sllle < IVELallle < N1+) Vel gl

Step 5: Probability of Success. To ensure the bound holds
across all ¢ timesteps, we apply the union bound. For each k,
the failure probability is 2 exp(—re2/8). Across t timesteps,
the total failure probability is:

2
2t exp (—%) .

Set this total failure probability to §/2, giving the condition:
8 1 2t
T = 28| 5]

Remark: Here, the requirement that = grows sublinearly as
log(t) ensures that even for large ¢, the rank r does not grow
excessively. However, empirically, we find our method
is not sensitive to rank selection; even a rank of 256 is
sufficient to train LLaMA 7B with 150k steps. This can
be explained by recent Adam-mini (Zhang et al., 2024b)
that the variance doesn’t need to be precise, and a block-
wise approximation is enough, showing that the variance
approximation error can be tolerated well.

O

A.1.5 Main Result: Gradient Scaling Approximation

Theorem A.4 (Main Result). For any channel j, with prob-
ability > 1 — 6:

\/1—€< nﬁ?(ﬁl—l—e
1+e —Vrs; = 1l—e¢

Proof. Express ratio:

sit Gl 3111 IRs[:, 4]l

s a [IR[:, 5] ||Gt[5:j]||

Apply Theorem A.2 for the first part, we can obtain the error
bound for the first part:

1G L, T 1
Rl SV Tze Ve

APOLLO: SGD-like Memory, AdamW-level Performance

For the second part, it is equal to

||(7M\,—%)[:,j1||2

A
Gl IR A2
ro, ME \gp. . an
Ei=l(ﬁ) [?‘1}]
T T (%)%
SGD with Momentum only If we handle SGD with Mo-

mentum only, where variance term above is non-existent,
and can be simplified as
.
IRe[:, 4101

I1G:[:, 41112

ML 5111
(M [:, 51117

We can easily apply Theorem A.3 for the first-moment term:

IMEL,]I
VT=e < g <V

where the final scaling factor is bounded,

IRe[11 .
Gy VeVt

AdamW AdamW’s case is more tricky, as equation 11 in-
volves the element-wise division and cannot easily separate
the momentum and variance. However, recent works such as
Adam-mini (Zhang et al., 2024b) and GaLore-mini (Huang
et al.) find out that the variance term can be approximated
as an average of a block-wise (original full-rank space) or
channel-wise (projected low-rank space). Given the £; norm
of the variance term is bounded based on Theorem A.4, we
take this assumption by replacing the variance term as the

. R o
. . Vet V.
average of variance vector, i.e., . ‘L’J]Hl and 1Vx L’J]”‘
in equation 11. Then it is approximated as,

M4,
R ey
G A0 z::‘zl(%:LL ——
_ () IVl il IMEE 5112
n’ [IVEL 411l TV 112

Multiply inequalities from theorem A.3 and theorem A.4
with union bound probability > 1 — 4, we have the above

term
,‘l—e ,‘I—I—E
1+¢€ I—E

Then, we have the bounded ratio,

\/Eiz 7 Gl g1l [Reli gl (VI=€ VITe
T8 [R5l |Gl 5]~ 1+e’ 1—e

|Rt[J
G,

]

Remark: This contains the constant factor \/? , suggesting
we should scale the gradient to make sure it has consistent
behavior as AdamW with structured learning rate update.
This gradient scale factor can be combined with the learn-
ing rate. When the r is too small compared to n, as in our
APOLLO-Mini case, which uses rank-1 space, we specifi-
cally assign the scaling factor by using 1/128.

Probability of Success: We now establish the probability
of success. Both Theorem A.3 and Theorem A.4 rely on the
same random projection matrix P are derived from Theorem
A.2 (norm preservation for random projections). Therefore,
the probability of failure for both bounds is governed by the
failure of Theorem A.2.

For a single timestep ¢, the failure probability of Theorem
A2is:

2
Pr(Theorem A.2 fails at timestep t) < 2exp (—%) .

Across all t timesteps, the total failure probability (union
bound) is:

2
Pr(Theorem A.2 fails for any timestep) < 2t exp (—%) .

Set this total failure probability to &:

2
2t exp (—%) < 4.

Solving for r, we require:

> Slog (%
T og|~5)-

This ensures that both Theorem A.3 and Theorem A.4 hold
simultaneously with probability > 1 — §, which together
make Theorem A.5 hold.

|

A.2 Empirical validation of the derived bound in
Theorem A.4

In this part, we present a visualization of the scaling factor
ratio /n/r derived in Theorem A.4. The plot demonstrates
how the ratio adheres to the theoretical bounds under various
rank settings, providing empirical support for the theorem.

Here, we consider the following variants:

* AdamW with the same structured channel-wise
learning rate adaptation rule: This variant uses a
full rank n and serves as the golden standard for esti-
mating s;, the scaling factor.

APOLLO: SGD-like Memory, AdamW-level Performance

* APOLLO with rank r: This variant computes a low-
rank approximated version of the scaling factor, sf,
which should theoretically be y/n/r times smaller than

Sj.

We visualize the channel-wise scaling factor on the LLaMA-
350M model !, comparing APOLLO with ranks 1/8n and
1/4n. These configurations should yield scaling factor ratios
of approximately 1/1/8 (~ 0.35) and 1/2, respectively,
relative to the full-rank AdamW.

As shown in Fig. 5, the scaling factor ratio adheres closely
to the theoretical predictions across different layer types
(e.g., attention, MLP) and model stages (e.g., early, middle,
or late layers).

A.3 Ablation Study

A.3.1 Al: Similar performance between Random
Projection (RP) and Singular Value Decomposition
(SVD).

Previous low-rank gradient-based approaches (Zhao et al.,
2024) rely on SVD to identify the gradient subspace, fre-
quently updated during training. This process is time-
consuming, thereby affecting training throughput. For a
LLaMA-7B model, each SVD operation takes approxi-
mately ten minutes, resulting in an additional 25 hours of
training time over 150K steps when the subspace is updated
every 1,000 steps. To alleviate this overhead, (Zhang et al.,
2024c) employs a lazy subspace updating strategy, though it
still incurs substantial SVD costs. In this section, we demon-
strate that APOLLO performs effectively with random pro-
jection, significantly reducing the heavy SVD costs present
in previous memory-efficient training algorithms. We pre-
train LLaMA models ranging from 60M to 350M on the
C4 dataset using Gal.ore, APOLLO, and APOLLO-Mini,
reporting results for both SVD and random projection in
each method. As shown in Fig. 6 (a-c), GaLore is signifi-
cantly impacted by random projection, failing to match the
performance of AdamW (red dashed line). In contrast, both
APOLLO and APOLLO-Mini demonstrate strong robust-
ness with random projection, even slightly outperforming
SVD in certain cases, such as APOLLO-Mini on LLaMA-
350M. These results confirm the effectiveness of APOLLO
under random projection, thereby addressing the throughput
challenges present in previous low-rank gradient methods.
'To ensure consistent optimization trajectories across the vari-
ants, we use the same learning rate as APOLLO with rank 1/4n.

Additionally, we scale the final gradient updates using the heuristic
ratio derived from the rank settings relative to 1/4n.

A.3.2 A2: APOLLO-Mini remains effective even with a
rank of 1.

We carry out an ablation study on pre-training LLaMA-60M
with different rank budgets, as shown in Fig. 6 (d). The
results demonstrate that GaLore’s performance degrades sig-
nificantly as the rank decreases, matching full-rank AdamW
only when the rank is set to 128 (one-quarter of the orig-
inal dimension), which limits its effectiveness in extreme
low-rank scenarios. In contrast, APOLLO exhibits much
better robustness with smaller rank settings compared to
both GaLore and Fira, achieving performance comparable
to full-rank AdamW even with lower ranks.

Interestingly, APOLLO-Mini shows the best rank effi-
ciency, remaining effective even with a rank of 1, clearly
outperforming AdamW. By averaging the gradient scaling
factor across different channels, APOLLO-Mini seems to
effectively mitigate the errors introduced by low-rank pro-
jection. This capability allows APOLLO-Mini to achieve
SGD level memory cost while reaching superior perfor-
mance than AdamW.

Table 9. Ablation study on the granularity of gradient scaling fac-
tors. Perplexity on the validation set is reported.

Methods Granularity | 60M 130M 350M
AdamW 3406 2508 18.80

GalLore 3488 2536 1895

Channel | 3126 2284 16.67

APOLLOW. SVD o or | 3177 2386 1690
Channel | 31.55 2294 16.85

APOLLO Tensor 32,10 2382 17.00

A.3.3 A3: The gradient scaling factor can even be
calculated at the tensor level.

In Tab.9, we compare the pre-training perplexity of our
method using different scaling factor granularities. Here,
Channel indicates that the gradient scaling factor is calcu-
lated along the channels with the smaller dimension of each
layer, while Tensor denotes that a single gradient scaling
factor is used for each layer. We keep one-quarter of the
original model dimension as the rank. Across model sizes
ranging from 60M to 350M, the perplexity difference be-
tween these granularities is minimal and both configurations
outperform AdamW and GaLore. These results demon-
strate that using a tensor-wise scaling factor is sufficient
for modest rank training (one-quarter of the original dimen-
sion). However, in extreme low-rank scenarios, tensor-wise
scaling factor (APOLLO-Mini) outperforms channel-wise
ones (APOLLO), as shown in Fig. 6 (d).

APOLLO: SGD-like Memory, AdamW-level Performance

model layers.0.self_attn.g_proj.weight

model.layers. 1 .self_attn.o_proj.weight

model.layers.4.mlp.up_proj. weight

Z 30000 £ 2000}] é 20000 -
3 g 3
3 20000 g 2
Early e £ 1000 | Z 10000
Layers = 1909 & 2
I : ' doE L ' : J 0+ : : '
0 20000 40000 60000 0 20000 40000 60000 0 20000 40000 G0O000
Steps Steps Steps
model layers. 14.self_attn.k_proj. weight model.layers.15.se lf_,um v_proj.weight model layers. 12.mlp.down_proj.weight
N — . . A ., 10000 Fr— : ey -
= 200000 - S E
5 = = 30000 -
= - =
— - i
; b = £ 20000 |
Middle = 100000] & 35000 3
Layers = e =0
= = = 10000 -
3 3 3
s 0= ' : Jo 0 : : J G 0L ' : :
0 200000 40000 60000 0 20000 40000 60000 0 20000 40000 GOOOO
Steps Steps Steps
model layers.21 self_attn.k_proj.weight model. layers.23.se lf_r1tt11 q-proj.weight model.layers.22.mlp.gate_proj.weight
e ' ' ' "1z 300000 ' qHE |
= G =
= [> ” 4{1{1(;[)- 1
= 200000 = 200000 Y
Late < g z
. e =
Layers 2o 100000 1 =0 100000 &0 ZUU[]{] I 1
A ol : : oF : : s L : : :
0 20000 40000 60OOOO 0 20000 40000 60000 0 20000 40000 60000
Steps Steps Steps
APOLLO-1/8n APOLLO-1/4n AdamW

Figure 5. Visualization of the channel-wise scaling factor ratio for APOLLO with rank 1/8n and 1/4n, compared with AdamW (full rank
n). The empirical data aligns well with the theoretical ratios 1 : v/2 : 21/2, validating the bounds across various layer types and stages on
the LLaMA-350M model.

LLaMA-130M LLaMA-350M Llama=5iM an C4 Across #ilank
30 AdamW 504 AdamW 24 AdamW " - Gi;':-m
el
|:| svn [sVD [sVD
“ 407 - R B Random] AFOLLO
2 o = 20 g‘m APOLLOMini
= = = - AdamW
g0 E 304 18 < e
E 20 5 201 16 §5n
14 = 40 &
10 104
12
a 0 10 2 4 16 64 128
APOLLO APOLLO-MINI GaLore APOLLO APOLLO-MINT GaLore APOLLO APOLLO-MINI #Rank
(©) (d)

Figure 6. (a-c) Comparison results of various optimization methods using singular value decomposition or random projection. The
experiments were conducted on LLaMA-60M/130M/350M models for C4 pretraining tasks. (d) Validation perplexity with varying rank
sizes, where 128 is one-quarter of the original model dimension. The red dashed line indicates the performance of full-rank AdamW.

A.3.4 A4: APOLLO performs better with larger model
sizes and more training tokens.

Fig. 7 illustrates the validation perplexity across the training
process for LLaMA-350M models. In the early training
stages, Fira shows faster convergence and lower perplex-
ity. However, APOLLO gradually catches up, achieving
improved performance in the later stages. This observation

suggests that AdamW optimization states play a more cru-
cial role in the initial phase (as Fira maintains the low-rank
format of these states), while compressing the optimization
states into gradient scaling factors (as done in APOLLO)
becomes more effective in later stages. Additionally, Fig. 7
indicates that APOLLO seem to benefit from increased train-
ing tokens. To quantify this effect, we pre-trained LLaMA-
130M models for {20k, 30k} steps, with final perplexities

APOLLO: SGD-like Memory, AdamW-level Performance

Early Middle Late

1775

17584

17.254

17.00H

16754
10000 20000 30030 00 lwgw I!lI'QU !n\;w m"w w'm
z — 1
3 ol] — Fira
5 i —— APOLLO |
:E 604 : i
§ 40 h
R W e J
0 10000 20000 30000 40000 50000 6OOOO

. Training Steps

Figure 7. Validation perplexity of pretraining LLaMA-350M on
the C4 dataset, with zoomed-in figures showing early, middle, and
late stages of training at top, with full training period at bottom.

for Fira and APOLLO reaching {22.73, 21.69} and {22.84,
21.71}, respectively, further confirming that APOLLO can
gradually catch up Fira with more training tokens. Further-
more, Tab.2 shows that as model size increases, APOLLO
demonstrates better scaling capabilities than Fira: valida-
tion perplexity decreases from 31.55 to 14.20 when scaling
model sizes from 60M to 1B, whereas Fira only improves
from 31.06 to 14.31. Overall, APOLLO exhibits superior
performance with both larger model sizes and additional
training tokens.

A.3.5 A5: APOLLO performs on par with or even better
than AdamW in the long-context setting.

Training LLM with long context windows is computation-
ally expensive, but it is critical to enhance LLM performance
by involving more contexts to reason. Here, we further vali-
date the effectiveness of the APOLLO series on pre-training
a LLaMA-350M with a long context window of 1024, four
times over original GaLore uses. To establish a strong base-
line, we vary AdamW’s learning rate across a range of [1le-3,
2.5e-3, 5e-3, 7.5e-3, le-2]. We also lazily tune the scale
factor of APOLLO-series by varying APOLLO’s in [/1, v/2,
v/3] and APOLLO-Mini’s in [v/128, v/256, 1/384], under

a fixed learning rate le-2.

As shown in Fig. 8, both APOLLO and APOLLO-Mini
demonstrate better performance than AdamW while achiev-
ing drastic reductions in optimizer memory costs—1/8 or
even 1/1024 of AdamW’s memory usage. Note that our
methods generally exhibit even better performance in the
later stage with more training tokens involved, marking it
a promising candidate in partial LLM pre-training settings,
i.e., long-context window and trillions of training tokens.

A.4 Extra Insights on Why a Stateless Optimizer Can
Beat AdamW in Pre-training

We provide preliminary insights on why a stateless APOLLO
can surpass AdamW in certain scenarios, and we leave a

22 T T T T
— AdamW

ok N\ — APOLLO |
£ APOLLO-Mini
Z E

B 18 b BN Surpasses AdamW with
K ore token exposure

t
]6 S (S S S P —
0 20000 40000 60000

Steps

Figure 8. Perplexity curves of the LLaMA-350M model trained
in a long-context window setting. APOLLO and APOLLO-Mini
outperform AdamW with a grid-searched learning rate, demon-
strating the effectiveness of the APOLLO series in industrial LLM
pre-training settings(long sequences and extensive training tokens).

formal one as the future work.
Adam(W) applies G, = %, which can be viewed as

scaling the raw gradient G; by a scaling matrix S = g—:
APOLLO observes that this fine-grained, parameter-wise
scaling S can be approximated at the channel or tensor level,
validated in Fig. 3. Although coarser, this scaling largely
preserves the original gradient direction, (e.g., G.s® in
APOLLO-Mini) and thus behaves similarly to SGD. Such
an “SGD-like” update depends more on the current gradient
and injects greater randomness during training, enhanc-
ing the ability to escape local optima and yielding better
generalization performance(Zhou et al., 2020; Keskar &
Socher, 2017). This explains why APOLLO series can sur-
pass AdamW, especially at later training stages (when gener-
alization becomes critical) and for larger models (with more
complex loss landscapes). Key observations supporting this
claim include:

* In Sec. 3.2, Fig. 3, the structured AdamW (APOLLO-
style update rule) underperforms AdamW initially but
eventually surpasses it.

* In Sec. 5.4 (Ablation A.3.4), APOLLO typically outper-
forms AdamW at later stages of training.

Why APOLLO Resembles SGD Yet Performs Well for
LLM Training? While SGD is associated with stronger
generalization, it often struggles with Transformer train-
ing (Pan & Li, 2023; Zhang et al., 2024a). APOLLO recon-
ciles SGD’s generalization benefits with AdamW’s conver-
gence speed, as illustrated by the following two hypothe-
ses (Pan & Li, 2023; Zhang et al., 2024a).

Hypothesis 1: Directional Sharpness (Pan & Li, 2023)
A key finding in (Pan & Li, 2023) is that Adam achieves
lower directional sharpness than SGD, thereby improving
Transformer training. The directional sharpness of f at =
along direction v (with ||v||z = 1) is v V2f(z)v. Lower

APOLLO: SGD-like Memory, AdamW-level Performance

Table 10. Directional sharpness comparison across different opti-
mizers.

Epoch | SGD | Adam | APOLLO | APOLLO-Mini
2 1.959722 | 0.009242 | 0.006024 0.004017
5 1.512521 | 0.000509 | 0.000249 0.000107
10 2471792 | 0.000242 | 0.000163 0.000056
20 3.207535 | 0.000399 | 0.000261 0.000101

directional sharpness implies the possibility of taking larger
effective steps, potentially yielding a greater local decrease
in the objective. In contrast, if the directional sharpness is
large, we have no choice but to take a tiny step, as otherwise
the loss would blow up due to the second-order term.

Empirical tests on APOLLO/APOLLO-Mini (using a small
T5 model for a machine translation task following (Pan &
Li, 2023)) show significantly reduced sharpness relative to
SGD and comparable to or better sharpness than Adam(W)
(see Tab. 10). This provides a theoretical underpinning for
APOLLO ’s effectiveness in LLM training.

Hypothesis 2: Adaptive Learning Rates for Transform-
ers (Zhang et al., 2024a) Transformer blocks display
varying Hessian spectra, suggesting that block-wise adap-
tive learning rates are advantageous (Zhang et al., 2024a),
which can render naive SGD less suitable. However, fully
parameter-wise adaptive learning rates (as in AdamW) can
be redundant, as shown in Adam-Mini (Zhang et al., 2024a),
which replaces the second-order moment with group-wise
averaging—thereby reducing optimizer memory usage by
up to 50%.

APOLLO applies adaptive learning rates in a structured
channel-/tensor-wise manner and goes beyond Adam-Mini
by reducing memory usage for both first- and second-
order moments, even eliminating optimizer memory in
APOLLO-Mini.

A.5 Training throughput of GaLore-type Optimizer
on LLaMA-1B

We further show the training throughput for Galore-type low-
rank optimizer (Galore, Fira) in Fig. 9. At every 200 update
step, they need to call SVD to update the projection matrix,
leading to a drastic drop in training throughput. Although
Galore tries to amortize the cost by relaxing the update
gap, the significantly high cost is hard to amortize fully as
we still keep a short update gap to keep performance; for
example, to update the projection matrix for a LLaMA 7B
model needs 10 mins, while inference takes seconds.

throughput_tokens

A

Token/second

Figure 9. The training throughput of Galore-type low-rank opti-
mizer with many spikes due to the expensive SVD operation every
200 steps.

A.6 Detailed Pre-Training Setting

This section provides an overview of the LLaMA architec-
tures and the hyperparameters used during pre-training. To
ensure a fair comparison, we adopt the same settings as
Zhao et al. (2024). Tab. 11 outlines the hyperparameters for
the various LLaMA model sizes. Across all architectures,
we use a maximum sequence length of 256 and a batch
size of 131K tokens. Additionally, we apply a learning
rate warm-up over the first 10% of training steps, followed
by a cosine annealing schedule that gradually reduces the
learning rate to 10% of its initial value.

APOLLO runs using the same learning rate 0.01 and a sub-
space change frequency T of 200 without tuning, following
the Galore open-sourced settings. The scale factor a is
considered a fractional learning rate, which is set to 1 by
default in APOLLO for models with a size of less than 1B,
showing our method doesn’t need too much tuning like Ga-
lore and Fira. On 1B-model, we set the high-rank APOLLO
with a @ = /1/2 and the high-rank APOLLO w SVD
with a @ = 0.4. As we find the scaling factor increases
with the rank r, therefore we scale the gradient factor in
APOLLO-Mini with setting a to 1/128.

A.7 Detailed Fine-Tuning Setting
A.7.1 Commonsense reasoning fine-tuning

We use the implementation from (Liu et al., 2024a) with the
chosen hyperparameters detailed in Table 12.

A.7.2 MMLU fine-tuning

We use the implementation from (Zheng et al., 2024). We
adopt the implementation from (Zheng et al., 2024). For
a fair and comprehensive comparison, we set the rank to
8 and sweep the learning rate across the range [Se-6, 7.5-
6, le-5, 2.5e-5, 5e-5, 7.5e-5, le-4, 1.5e-4, 2e-4] for Ga-
Lore, Fira, APOLLO, and APOLLO-Mini. Specifically,
APOLLO-Mini uses a scaling factor of v/4 for fine-tuning
LLaMA-3-8B and Mistral-7B, while a factor of 1 is applied

APOLLO: SGD-like Memory, AdamW-level Performance

Table 11. Hyper-parameters of LLaMA architectures for pre-training.

Params Hidden Intermediate Heads Layers Steps Data Amount (Tokens)
60M 512 1376 8 8 10K 1.3B

130M 768 2048 12 12 20K 26B

350M 1024 2736 16 24 60K 78B
1B 2048 5461 24 32 100K 13.1B
7B 4096 11008 32 32 150K 19.7B

to Gemma-7B, as it exhibits higher sensitivity during fine-
tuning. The full fine-tuning and LoRA results are taken
from (Zhang et al., 2024c).

A.8 Discussion with Fira (Chen et al., 2024)

As suggested by the authors of concurrent work Fira (Chen
etal., 2024), our channel-wise approximation of the element-
wise gradient scaling rule %: shares a similar format the
scaling factor in the Fira, which is used for normalizing the
error residual between low-rank GaLore and full-rank gra-
dients. While our approach shares a similar mathematical
form, as being a straightforward computation of £>-norm ra-
tios, it originates from a fundamentally distinct perspective.
We argue that the element-wise gradient scaling rule in equa-
tion 2 is unnecessarily fine-grained and can be effectively
replaced with structured channel-wise or tensor-wise adap-
tation. In contrast, Fira seeks to normalize the error residual
between low-rank GaLore updates and full-rank updates
based on the observation that channel-wise gradient norm
ratios between low-rank and full-rank optimizers are inher-
ently similar. Our method, however, establishes a different

finding: the low-rank approximated channel-wise gradient
scaling factor, g—:, follows a predictable ratio of |/ /n (see
Theorem A.4) compared to full-rank optimization, which
differs fundamentally from Fira’s observations.

B ARTIFACT APPENDIX
B.1 Abstract

APOLLO introduces a memory-efficient optimizer designed
for large language model (LLM) pre-training and full-
parameter fine-tuning, for the first time offering SGD-like
memory cost with AdamW-level performance based on only
cheap random projection. APOLLO-Mini is an extremely
memory-efficient version of APOLLO, which uses a rank
of 1 but uses tensor-wise scaling instead of channel-wise
scaling in APOLLO.

Our artifact contains the complete source code for APOLLO
and key experimental scripts to validate APOLLO’s effec-
tiveness on LLM pre-training and fine-tuning as well as
system level benefits, i.e., throughput and memory saving.

The code and artifact are accessible at GitHub.

Our APOLLO has been integrated into Hugging Face Trans-
formers and LLaMA -Factory. Welcome to try our APOLLO
in their code framework as well following their instruction.

B.2

* Algorithm: APOLLO, a memory-efficient optimizer.

Artifact check-list (meta-information)

* Program: Python.

* Data set:

— Pre-training: C4 dataset (Raffel et al., 2020) — a
comprehensive corpus derived from Common Crawl
data, meticulously filtered and cleaned.

— Finetuning: MMLU (Hendrycks et al., 2020) task.

* Run-time environment:

— Python, PyTorch, transformers, bitsandbytes.

— Please refer to the minimal packages and minimal ex-
perimental packages for details.

* Hardware:

— The minimal LLM pre-training example (LLaMA-
60M) requires at least one Nvidia A6000 GPU (48GB)
for 3 hours.

— QOur code has been tested on Nvidia A6000 (48GB) and
A100 (80GB).

« Experiments: We prepared two main suites of experiments
to evaluate that APOLLO is functional and avaliable:

— Memory-efficient LLM Pre-training: Use the code
base available on our GitHub.

— Memory-efficient full-parameter LLM Fine-tuning:
Use the code base using LLaMA -Factory, which sup-
port APOLLO natively.

Additionally, scripts are provided to demonstrate extreme
memory efficiency:

— Pretraining a LLaMA-7B model within 12GB memory
(runnable on Nvidia Titan GPU).

* How much disk space required (approximately)?:
100 GB.

* How much time is needed to prepare workflow (approxi-
mately)?: 1 hour.

* How much time is needed to complete experiments (ap-
proximately)?:

https://github.com/zhuhanqing/APOLLO
https://huggingface.co/docs/transformers/main/en/trainer#apollo
https://huggingface.co/docs/transformers/main/en/trainer#apollo
https://github.com/hiyouga/LLaMA-Factory/pull/6617
https://github.com/zhuhanqing/APOLLO/blob/main/requirements.txt
https://github.com/zhuhanqing/APOLLO/blob/main/exp_requirements.txt
https://github.com/zhuhanqing/APOLLO/blob/main/exp_requirements.txt
https://github.com/zhuhanqing/APOLLO
https://github.com/hiyouga/LLaMA-Factory/pull/6617

APOLLO: SGD-like Memory, AdamW-level Performance

Table 12. Hyperparameter of Llama-3.2-1B on the commonsense reasoning tasks.

Hyperparameters AdamW LoRA DoRA Galore Fira APOLLOW.SVD APOLLO APOLLO-Mini
Rank r - 32 32 32 32 32 32 1
a - 64 64 - - - - -
scale - - - 025 025 1.0 V5 V128
Dropout 0.05
LR [2e-5, 5e-5] 3e4 3e-4 3e-4 3e4 3e-4 3e-4 3e-4
LR Scheduler Linear
Batch size 32
‘Warmup Steps 100
Epochs 3
Where Q.K,V,Up,Down

— One minimal pre-training example with LLaMA-60M:
3 hours on a single A6000, 1 hour in 4 A6000.

— One fine-tuning example with LLaMA-8B: 3 hours.

* Publicly available?: Yes. Available at the GitHub Repo or
via PyPL

* Code licenses (if publicly available)?: CC-BY-NC.

* Archived (provide
https://doi.org/10.6084/m9.figshare.28558319.v1.

DOI)?

B.3 Description
B.3.1 How delivered

The artifact is delivered via the GitHub Repo or directly
from PyPI. We provide the source codes and essential scripts
to replicate our main results.

Alternatively, you can use APOLLO within the frameworks
of Hugging Face Transformers and LLaMA-Factory, where
APOLLO is natively integrated and supported.

B.3.2 Hardware dependencies

At least one GPU is required for minimal LLM training
and fine-tuning examples (tested on NVIDIA A6000 and
A100). Moreover, APOLLO enables training a 7B model
on an NVIDIA Titan—demonstrating, for the first time, the
capability to run large-scale models without any system-
level optimizations such as offloading techniques.

B.3.3 Software dependencies

The artifact is implemented in Python and requires several
packages. Please refer to the minimal packages and minimal
experimental packages for details.

B.3.4 Data sets

You can use the streaming mode of the C4 dataset without
the need to download it locally (the full dataset is large,
500GB). The finetuning dataset becomes available once you
set up LLaMA -Factory.

B.4 Installation

Our code and scripts are available at the GitHub Repo,
which includes detailed instructions for installation.

You can install the APOLLO optimizer either from the
source:

git clone https://github.com/zhuhanging/APOLLO.git

cd APOLLO
pip install -e .

or directly from pip:
pip install apollo-torch

Moreover, our APOLLO has been integrated into Hugging
Face Transformers and LLaMA-Factory. You can directly
try APOLLO within their frameworks by installing their up-
to-date versions.

B.5 Experiment workflow

Please check the detailed usage for APOLLO-series
(APOLLO and APOLLO-Mini) optimizer with hyperpa-
rameter setting.

We provide the following essential experiment scripts to
replicate our method’s results, which can be obtained by
clone our GitHub Repo and install required packages fol-
lowing the repo guide.

Expl: Pre-train LLaMA on C4 dataset

We provide the scripts in scripts/benchmark_c4 for
pre-training LLaMA models with sizes ranging from 60M
to 7B on the C4 dataset.

You can also run LLM pre-training with a long
context window by following the scripts in
scripts/benchmark_c4_long_context, which
compare Adam, APOLLO, and APOLLO-Mini.

Minimal example: The minimal example is provided in
scripts/pretraincd/llama_60mapollo.sh

scripts/pretraincd/l1lama_60m apollomini. sh,

https://github.com/zhuhanqing/APOLLO
https://pypi.org/project/apollo-torch/
https://doi.org/10.6084/m9.figshare.28558319.v1
https://github.com/zhuhanqing/APOLLO
https://pypi.org/project/apollo-torch/
https://huggingface.co/docs/transformers/main/en/trainer#apollo
https://github.com/hiyouga/LLaMA-Factory/pull/6617
https://github.com/zhuhanqing/APOLLO/blob/main/requirements.txt
https://github.com/zhuhanqing/APOLLO/blob/main/exp_requirements.txt
https://github.com/zhuhanqing/APOLLO/blob/main/exp_requirements.txt
https://github.com/hiyouga/LLaMA-Factory
https://github.com/zhuhanqing/APOLLO
https://huggingface.co/docs/transformers/main/en/trainer#apollo
https://huggingface.co/docs/transformers/main/en/trainer#apollo
https://github.com/hiyouga/LLaMA-Factory/pull/6617
https://github.com/zhuhanqing/APOLLO?tab=readme-ov-file#-usage
https://github.com/zhuhanqing/APOLLO

APOLLO: SGD-like Memory, AdamW-level Performance

which can be executed on a single GPU (e.g., A100 or
A6000).

Expected outputs: The perplexity results should be similar to
the reported results in Tab. 2, with possibly a slight variance.

Exp2: Pre-Train a LLaMA-7B on Nvidia Titan with
12GB memory!!!

We provide the script in scripts/single_gpu for pre-
training a LLaMA-7B model on a single GPU with a batch
size of 1. This configuration allows pre-training within
11GB of memory without any complicated system-level
optimizations, such as sharding or offloading, marking the
first demonstration of this capability.

Exp3: Memory-efficient full-parameter LLM finetuning

We provide the finetuning experiment examples directly
under the widely-used LLaMA-Factory with their direct
support.

Please first install LLaMA-Factory according to their Instal-
lation guide.

The fine-tuning experiments are done inside LLaMA-
Factory repo by cloning their repo from Github,
which contains the official test examples in the
examples/extras/apollo directory.

We provide a demo to perform a comparative evaluation with
GaLore by fine-tuning models and testing on the MMLU
task.

Use llamafactory—-cli train

59.72
71.25

Humanities:
Other:

APOLLO Performance (Scaling Factor = 32):

Average: 65.03
STEM: 55.47
Social Sciences: 76.15
Humanities: 59.60
Other: 71.28

Besides performance, you can observe that APOLLO is
significantly faster than GaLore without stall issue, since
APOLLO does not require Singular Value Decomposition
(SVD), eliminating the SVD delays commonly encountered
when using GaLore.

You will not observe significant memory saving between
GaLore and APOLLO since they use the same rank during
fine-tuning.

Exp4: 7B-scale throughput improvement via memory
efficiency

Due to the requirement of high-end GPUs like the 8xA100
to run large-scale pre-training experiments (e.g., LLaMA-
7B/13B), we provide a series of videos available at Videos,
allowing you to inspect the memory cost and throughput
(replicate Experiment in our Fig. 1 (right)).

You can also run the llama-7B experiment by yourself

examples/extras/galore/ 1lamal_full_sft. yamlusing the 7B SCI'iptS in scripts/benchmark_c4 with

to fine-tune llama3-8B with GalL.ore.

Use llamafactory—-cli train

examples/extras/apollo/llama3_full sft.yaml

to fine-tune llama3-8B with APOLLO.

Since LLaMA-Factory does not provide
evaluation scripts directly, please copy the
eval_ llama3_full_sft.yaml file from our repos-
itory. And put them under corresponding directory,
examples/extras/METHOD/. METHOD is apollo
or galore. Then run

llamafactory-cli eval

APOLLO and APOLLO-Mini at a batch size of 16. How-
ever, AdamW can only run at a batch size of 4 due to exces-
sive optimizer memory cost. (Need A100-80GB)

Exp5: APOLLO can use extreme low rank

One interesting customization is to safely reduce the rank
in APOLLO by a certain ratio and compensate by adjusting
the apollo_scale, which will yield similar pre-training
performance. This demonstrates that APOLLO can operate
at very low ranks without a performance penalty, achiev-
ing SGD-like memory efficiency—unlike previous methods
(e.g., GaLore) that require a higher rank to maintain perfor-

mance.
examples/extras/METHOD/eval_ llama3_full sft.yaml

to get fine-tuned model performance.
Expected outputs:

GalLore Performance:

Average: 64.96
STEM: 55.43
Social Sciences: 75.66

For example, you <can set the rank in
scripts/pretraincd/llama_130m_apollo.sh
from 192 to 48, and set apollo_scale from 1 to 4. The
model perplexity remains similar. For your reference,
LLaMA-130M has a model dimension of 768; using a rank
of 48 corresponds to using only % = % of the full rank,

leading to neligble optimizer memory cost.

This phenomenon is theoretically proved in Appendix A.1.5
and empirically observed in Appendix A.2.

https://github.com/hiyouga/LLaMA-Factory/pull/6617
https://github.com/hiyouga/LLaMA-Factory?tab=readme-ov-file#getting-started
https://github.com/hiyouga/LLaMA-Factory?tab=readme-ov-file#getting-started
https://github.com/zhuhanqing/APOLLO/tree/main/scripts/llama-factory-finetune
https://github.com/zhuhanqing/APOLLO/tree/main/scripts/llama-factory-finetune
https://github.com/hiyouga/LLaMA-Factory/blob/64a6fb9b5056166265abc5acbddffb64cd8b5256/src/llamafactory/train/trainer_utils.py#L282-L284
https://www.youtube.com/playlist?list=PLE0M__TDnJIhvUYG1KRCfzC6gDjt0LV6T

APOLLO: SGD-like Memory, AdamW-level Performance

B.6 Evaluation and expected result

The expected results should match those reported in the
experimental section, including similar perplexity scores
and performance metrics under comparable configurations.
B.7 Experiment customization

You can experiment with different configurations of
APOLLO by following the detailed usage instructions.

B.8 Methodology

Submission, reviewing, and badging methodology:

* http://cTuning.org/ae/
submission-20190109.html

* http://cTuning.org/ae/
reviewing—20190109.html

* https://www.acm.org/publications/
policies/artifact-review-badging

https://github.com/zhuhanqing/APOLLO?tab=readme-ov-file#-usage
http://cTuning.org/ae/submission-20190109.html
http://cTuning.org/ae/submission-20190109.html
http://cTuning.org/ae/reviewing-20190109.html
http://cTuning.org/ae/reviewing-20190109.html
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging

