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Abstract

The seminal work of Linial, Mansour, and Nisan gave a quasipolynomial-time algorithm for
learning constant-depth circuits (AC0) with respect to the uniform distribution on the hypercube.
Extending their algorithm to the setting of malicious noise, where both covariates and labels can be
adversarially corrupted, has remained open. Here we achieve such a result, inspired by recent work
on learning with distribution shift. Our running time essentially matches their algorithm, which is
known to be optimal assuming various cryptographic primitives.

Our proof uses a simple outlier-removal method combined with Braverman’s theorem for fooling
constant-depth circuits. We attain the best possible dependence on the noise rate and succeed in the
harshest possible noise model (i.e., contamination or so-called “nasty noise”).
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1 Introduction

In their famous paper, Linial, Mansour, and Nisan [LMN93] introduced the “low-degree” algorithm
for learning Boolean functions with respect to the uniform distribution on {±1}d. The running time
and sample complexity of their algorithm scales in terms of the Fourier concentration of the underlying
concept class, and, using this framework, they obtained a quasipolynomial-time algorithm for learning
constant-depth, polynomial-size circuits (AC0).

Prior work [KKMS08] had extended their result to the agnostic setting, where the labels can be adver-
sarially corrupted, but the marginal distribution on inputs must still be uniform over {±1}d. Remarkably,
there had been no progress on this problem in the last three decades for malicious noise models where
both covariates and labels can be adversarially corrupted [Val85, KL93].

In this paper, we completely resolve this problem and obtain a quasipolynomial-time algorithm for
learning AC0 in the harshest possible noise model, the so-called “nasty noise” model of [BEK02]. We
define this model below and refer to it simply as learning with contamination, in line with recent work in
computationally efficient robust statistics (see e.g., [DK23]).

Definition 1.1 (Learning from Contaminated Samples). A set of N labeled examples S̄inp is an η-
contaminated (uniform) sample with respect to some class C ⊆ {{±1}d → {±1}}, where N ∈ N
and η ∈ (0, 1), if it is formed by an adversary as follows.

1. The adversary receives a set of N clean i.i.d. labeled examples S̄cln, drawn from the uniform
distribution over {±1}d and labeled by some unknown concept f∗ in C.

2. The adversary removes an arbitrary set S̄rem of ⌊ηN⌋ labeled examples from S̄cln and substitutes
it with an adversarial set of ⌊ηN⌋ labeled examples S̄adv.

Namely, S̄inp = (S̄cln \ S̄rem) ∪ S̄adv. For the corresponding unlabeled set Sinp, we say that it is an
η-contaminated (uniform) sample.

In this model, the goal of the learner is to output (with probability 1− δ) a hypothesis h : {±1}d →
{±1} such that Px∼Unif({±1}d)[h(x) ̸= f∗(x)] ≤ 2η + ϵ. The factor 2 is known to be the best possible
constant achievable by any algorithm [BEK02].

Although there is now a long line of research giving computationally efficient algorithms for learning
Boolean function classes in malicious noise models, these algorithms primarily apply to geometric con-
cept classes and continuous marginal distributions, such as halfspaces or intersections of halfspaces with
respect to Gaussian or log-concave densities [KKMS08, KLS09, ABL17, DKS18, SZ21]. In particular,
nothing was known for the case of AC0.

Our main theorem is as follows:

Theorem 1.2. For any s, ℓ, d ∈ N, and ϵ, δ ∈ (0, 1), there is an algorithm that learns the class of
AC0 circuits of size s and depth ℓ and achieves error 2η + ϵ, with running time and sample complexity
dO(k) log(1/δ), where k = (log(s))O(ℓ) log(1/ϵ), from contaminated samples of any noise rate η.

Our running time essentially matches the Linial, Mansour, and Nisan result, which is known to be
optimal assuming various cryptographic primitives [Kha95].

More generally, we prove that any concept class C that admits ℓ1-sandwiching polynomials of degree
k can be learned in time dO(k) from contaminated samples. Recent work due to [GSSV24] had obtained
a similar result achieving the weaker bound of O(η) + ϵ for learning functions with ℓ2-sandwiching
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polynomials. Crucially, it remains unclear how to obtain such ℓ2 sandwiching approximators for constant
depth circuits 1, and so their result does not apply here.

In 2005, Kalai et al. [KKMS08] showed that ℓ1-approximation suffices for agnostic learning. Here
we complete the analogy for malicious learning, showing that ℓ1-sandwiching implies learnability with
respect to contamination.

Proof Overview. The input set S̄inp is η-contaminated. This might make it hard to find a hypothesis
with near-optimal error on S̄inp. However, we are only interested in finding a hypothesis with error 2η+ϵ
on the clean distribution, which is structured (in particular, the marginal distribution on the features is
uniform over {±1}d). In order to take advantage of the structure of the clean distribution despite only
having access to the contaminated sample, we make use of the notion of sandwiching polynomials:

Definition 1.3 (Sandwiching polynomials). Let f : {±1}d → {±1}. We say that the (ℓ1) ϵ-sandwiching
degree of f with respect to the uniform distribution over the hypercube {±1}d is k if there are polyno-
mials pup, pdown : {±1}d → R of degree at most k such that (1) pdown(x) ≤ f(x) ≤ pup(x) for all
x ∈ {±1}d and (2) Ex∼Unif({±1}d)[pup(x)− pdown(x)] ≤ ϵ.

The sandwiching degree of size-s depth-ℓ AC0 circuits is bounded by k = (log(s))O(ℓ) log(1/ϵ),
due to the result of Braverman on fooling constant-depth circuits (see Theorem 4.2 from [Bra08, Tal17,
HS19]). Suppose that S̄ is a subset of S̄inp that preserves the expectations of low-degree and non-negative
polynomials (e.g., pup − pdown) compared to the uniform distribution. Under this condition, low-degree
polynomial regression gives a hypothesis with near-optimal error on S̄ (see Section 4).

We show in Lemma 3.1 that a simple procedure that iteratively removes samples from S̄inp can be
used to form such a set S̄ (that preserves the expectations of non-negative, degree-k and low-expectation
polynomials) and, moreover, this procedure removes more contaminated points than clean points. The
last property is important, because it implies that S̄ is representative for the ground truth distribution, i.e.,
any near-optimal hypothesis for S̄ will also have error 2η + ϵ on the ground truth.

This is possible because the only way the adversary can significantly increase the expectation of a
non-negative polynomial p is by inserting examples x where p(x) is unreasonably large compared to
the typical values of p over the uniform distribution. Our algorithm iteratively finds the non-negative
polynomial q with the largest expectation over a given set through a simple linear program and then
removes the points x for which q(x) is large.

Our iterative outlier removal procedure is inspired by prior work on TDS learning (Testable Learning
with Distribution Shift) and PQ learning [KSV24, GSSV24] as well as the work of [DKS18] on learning
geometric concepts from contaminated examples. Both of these works use outlier removal procedures
that give bounds on the variance of polynomials rather than the expectation of non-negative polynomials
and, instead of linear programming, they use spectral algorithms.

2 Notation

Throughout this work, when we refer to a set S of examples from the hypercube {±1}d, we consider ev-
ery example in S to be a unique and separate instance of the corresponding element in {±1}d. Moreover,
we denote with S̄ the corresponding labeled set of examples in {±1}d × {±1}.

Recall that polynomials over {±1}d are functions of the form p(x) =
∑

I⊆[d] cp(I)
∏

i∈I xi, where
x = (xi)i∈[d] and cp(I) ∈ R. We denote with xI the quantity

∏
i∈I xi. We say that the degree of p is at

1Braverman’s celebrated result on AC0 [Bra08] obtains only ℓ1-sandwiching.
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most k if for any I ⊆ [d] with |I| > k, we have cp(I) = 0. For a polynomial p, we denote with ∥p∥coef
the ℓ1 norm of its coefficients, i.e., ∥p∥coef =

∑
I⊆[d] |cp(I)|.

3 Removing the Outliers

The input set S̄inp includes an η fraction of contaminated examples. It is, of course, impossible to
identify the exact subset of S̄inp that is contaminated. However, we show how to remove contaminated
examples that lead to inflation of the expectations of low-degree non-negative polynomials, which we
call “outliers.” We remove only a relatively small number of clean examples from S̄inp, as we show in
the following lemma.

Lemma 3.1 (Outlier removal). Let Sinp be an η-contaminated uniform sample (see Definition 1.1) with
size N . For any choice of the parameters ϵ, δ ∈ (0, 1), and k ∈ N, the output Sfilt of Algorithm 1 satisfies
the following, whenever N ≥ C (3d)2k

ϵ2
log(1/δ), for some sufficiently large constant C ≥ 1.

1. With probability at least 1 − δ, the number of clean examples in Sinp that are removed from Sfilt

is at most equal to the number of adversarial examples that are removed from Sfilt (see Figure 1).
Namely, |(Sinp ∩ Scln) \ Sfilt| ≤ |Sadv \ Sfilt|.

2. For any non-negative polynomial p over {±1}d with degree at most k and Ex∼Unifd [p(x)] ≤
ϵ
8 ,

we have
∑

x∈Sfilt
p(x) ≤ ϵN with probability at least 1− δ.

Algorithm 1: Outlier removal through Linear Programming

Input: Set Sinp ⊆ {±1}d of size N and parameters ϵ ∈ (0, 1), B > 0 and k ∈ N
Output: Filtered set Sfilt ⊆ Sinp.
Let B = 3kdk/2, ∆ = ϵ

2B .
S(0) ← Sinp

for i = 0, 1, 2, . . . , N do
Let p∗ be the solution of the following linear program (P) and λ∗ = 1

N

∑
x∈S(i) p∗(x).

maxp
∑

x∈S(i) p(x)

s.t.: p polynomial, deg(p) ≤ k and ∥p∥coef ≤ B

p(x) ≥ 0, for all x ∈ Sref ∪ Sinp

1
N

∑
x∈Sref

p(x) ≤ ϵ/4

 (P)

if λ∗ ≤ ϵ then output Sfilt ← S(i) and terminate;
else

let τ∗ ≥ 0 be the smallest value such that
|S(i)|
N Px∼S(i) [p∗(x) > τ∗] ≥ 2Px∼Sref

[p∗(x) > τ∗] + ∆

S(i+1) ← S(i) \ {x ∈ S(i) : p∗(x) > τ∗}

Our Algorithm 1 is similar in spirit to outlier removal procedures that have been used previously
in the context of learning with contaminated samples [DKS18] and tolerant learning with distribution
shift [GSSV24]: we iteratively find the non-negative polynomial with largest expectation and remove
the examples that give this polynomial unusually large values. Here we focus on the expectations of
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non-negative polynomials, while in all previous works, the guarantees after outlier removal concerned
the variance of arbitrary polynomials. In this sense, our guarantees are stronger, but only hold for non-
negative polynomials. Our algorithm solves, in every iteration, one linear program (P) in place of the
usual spectral techniques from prior work.

The proof idea is that whenever there is a non-negative polynomial p∗ with unreasonably large expec-
tation, there have to be many outliers that give unusually large values to p∗. By removing all the points
where p∗ is large, we can, therefore, be confident that we remove more outliers than clean examples (part
1 of Lemma 3.1). When the algorithm terminates, all non-negative polynomials with low expectation
under the uniform distribution, will also have low expectation under the remaining set of examples (part
2 of Lemma 3.1).

For part 1, we analyze the non-terminating iterations and we show that for each clean point that is
filtered out by the procedure, at least one adversarial point is filtered out as well. We first show that in such
an iteration, there is a τ ∈ [0, B] such that |S(i)|

N Px∼S(i) [p∗(x) > τ ] ≥ 2Px∼Sref
[p∗(x) > τ ] + ∆ > 0.

This implies that in every non-terminating iteration at least one point is removed and, therefore, some
iteration i ≤ N will satisfy the stopping criterion and terminate (there are only N points in total).

Claim. In any non-terminating iteration (i.e. an iteration where λ∗ > ϵ), there is τ∗ ∈ [0, B] such that

|S(i)|
N

P
x∼S(i)

[p∗(x) > τ∗] ≥ 2 P
x∼Sref

[p∗(x) > τ∗] + ∆.

Proof. Suppose, for contradiction, that for all τ ∈ [0, B] we have

|S(i)|
N

P
x∼S(i)

[p∗(x) > τ ] < 2 P
x∼Sref

[p∗(x) > τ ] + ∆

We may integrate over τ ∈ [0, B] both sides of the above inequality, since the corresponding functions
of τ have finite number of discontinuities (at most equal to |S(i)|+ |Sref |).

|S(i)|
N

∫ B

τ=0
P

x∼S(i)
[p∗(x) > τ ] dτ < 2

∫ B

τ=0
P

x∼Sref

[p∗(x) > τ ] dτ +∆B (3.1)

We will now substitute the integrals above with expectations, i.e.,
∫ B
τ=0 Px∼S(i) [p∗(x) > τ ] dτ =

Ex∼S(i) [p∗(x)] and
∫ B
τ=0 Px∼Sref

[p∗(x) > τ ] dτ = Ex∼Sref
[p∗(x)]. We use the simple fact that for

any non-negative random variable X with values in [0, B], we have E[X] =
∫ B
τ=0 P[X > τ ] dτ .

We first set X = p∗(x), where x ∼ S(i) and observe that (1) p∗(x) ≥ 0 for all x ∈ S(i), and also
that (2) p∗(x) ≤ ∥p∥coef ≤ B for all x ∈ {±1}d ⊇ S(i), since p∗ satisfies ∥p∥coef ≤ B according to
the constraints of (P) and p∗(x) =

∑
I⊆[d] cp∗(I)xI ≤

∑
I⊆[d] |cp∗(I)| · |xI | =

∑
I⊆[d] |cp∗(I)| =

∥p∗∥coef , since x ∈ {±1}d and therefore |xI | = 1. This shows that X ∈ [0, B] almost surely over
x ∼ S(i). Using an analogous argument for x ∼ Sref , we overall obtain the following.∫ B

τ=0
P

x∼S(i)
[p∗(x) > τ ] dτ = E

x∼S(i)
[p∗(x)] and

∫ B

τ=0
P

x∼Sref

[p∗(x) > τ ] dτ = E
x∼Sref

[p∗(x)] (3.2)

We may now substitute (3.2) in the inequality (3.1), and use the fact that Ex∼Sref
[p∗(x)] ≤ ϵ/4 (by the

constraints of (P)) to conclude that

λ∗ =
1

N

∑
x∼S(i)

p∗(x) =
|S(i)|
N

E
x∼S(i)

[p∗(x)] ≤ 2ϵ/4 + ϵ/2 = ϵ

We reached a contradiction, since λ∗ > ϵ, and, therefore, τ∗ exists.
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We still need to show that whenever the procedure filters out clean examples, it also filters out an
equal number of adversarial examples. Let S(i)

r = {x ∈ S(i) : p∗(x) > τ∗} be the set of points
that are filtered out during iteration i. We can write S

(i)
r as a disjoint union S

(i)
r,cln ∪ S

(i)
r,adv, where

S
(i)
r,cln = S

(i)
r ∩Scln are the clean examples that are removed and S

(i)
r,adv = S

(i)
r ∩Sadv are the adversarial

examples that are removed.

Claim. With probability at least 1−δ, we have that for all non-terminating iterations, |S(i)
r,cln| ≤ |S

(i)
r,adv|.

Proof. By the previous claim, we know that τ∗ (which defines the set S(i)
r ) exists and has the property

that |S(i)|
N Px∼S(i) [p∗(x) > τ∗] ≥ 2Px∼Sref

[p∗(x) > τ∗] + ∆.
We first focus on the quantity Px∼Sref

[p∗(x) > τ∗], which is proportional to the number of reference
examples that would be removed by the thresholding operation p∗(x) > τ∗. However, we are interested
in the number of actual clean examples that would be removed. The reference examples can be shown
to provide an estimate of the number of removed clean examples, through uniform convergence. In
particular, the thresholding operation corresponds to a polynomial threshold function of degree at most
dk and, therefore, by standard VC dimension arguments (and uniformly for all iterations) we have that
Px∼Sref

[p∗(x) > τ∗] ≥ Px∼Scln
[p∗(x) > τ∗] − ∆/2, except with probability δ , as long as the sample

size is N ≥ C ′ dk+log(1/δ)
∆2 . This is because both Sref and Scln consist of N i.i.d. samples from the

uniform distribution.
Overall, we have that |S(i)|

N Px∼S(i) [p∗(x) > τ∗] ≥ 2Px∼Scln
[p∗(x) > τ∗]. We can write the empiri-

cal probabilities in terms of the sizes of the removed sets to obtain the following, where we also use the
fact that |S(i)

r | = |S(i)
r,cln|+ |S

(i)
r,adv| and that |S(i)

r,cln| is at most equal to the number of clean examples that
would be removed by the i-th filtering operation (some clean examples could already have been removed
either by the adversary or by some previous iteration and these will not be contained in S

(i)
r,cln).

|S(i)|
N
· |S

(i)
r |
|S(i)|

≥ 2
|S(i)

r,cln|
N

or |S(i)
r,cln|+ |S

(i)
r,adv| ≥ 2|S(i)

r,cln| or |S(i)
r,adv| ≥ |S

(i)
r,cln|

This concludes the proof of the claim.

Overall, if we sum over i ∈ [N ], we obtain that the number of clean examples that are removed by
the procedure is at most equal to the number of adversarial examples that are removed by the procedure.

For part 2 of Lemma 3.1, we observe that
∑

x∈Sfilt
p(x) ≤ λ∗N ≤ ϵN , as long as p satisfies all the

constraints of the program (P). It suffices to prove the following claim.

Claim. Any non-negative polynomial p with degree at most k and Ex∼Unifd [p(x)] ≤ ϵ/8 satisfies all the
constraints of the program (P) with probability at least 1− δ.

Proof. The degree bound and non-negativity are satisfied directly by the definition of p. We now need
to show that ∥p∥coef ≤ 3kdk/2. Recall that p(x) =

∑
I⊆[d] cp(I)xS , where cp(I) = 0 for any |I| > k

and ∥p∥coef =
∑

I⊆[d] |cp(I)|. By viewing cp as a vector with
∑k

j=0

(
d
j

)
≤ dk dimensions (assuming

2 ≤ k ≤ d), we have that ∥p∥coef = ∥cp∥1 ≤ dk/2∥cp∥2 = dk/2(Ex∼Unifd [(p(x))
2])1/2.

Since the uniform distribution is (2, 1)-hypercontractive (see Theorem 9.22 in [O’D14]), we have

E
x∼Unifd

[(p(x))2])1/2 ≤ ek E
x∼Unifd

[|p(x)|] (3.3)
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Recall that the polynomial p is non-negative. This implies that |p(x)| = p(x) for all x ∈ {±1}d and
therefore Ex∼Unifd [|p(x)|] = Ex∼Unifd [p(x)] ≤ ϵ/8. Overall, we have

E
x∼Unifd

[(p(x))2])1/2 ≤ ekϵ/8 ≤ 3k (3.4)

Recall, now, that ∥p∥coef ≤ dk/2(Ex∼Unifd [(p(x))
2])1/2. We obtain the desired bound ∥p∥coef ≤ 3kdk/2.

It remains to show that with probability at least 1 − δ, we have 1
N

∑
x∈Sref

p(x) ≤ ϵ/4. Consider
the random variable X = 1

N

∑
x∈Sref

p(x), where Sref is drawn i.i.d. form Unifd. We have that E[X] =

Ex∼Unifd [p(x)] ≤ ϵ/8. Moreover, p(x) ≤ ∥p∥coef ≤ 3kdk/2, for all x ∈ {±1}d and, from a standard
Hoeffding bound on the random variable X , we obtain that 1

N

∑
x∈Sref

p(x) ≤ ϵ/4 with probability at

least 1 − exp(− ϵ2

64Ndk9k
). Due to the choice of N ≥ C ′ dk9k

ϵ2
log(1/δ), we have that the probability of

failure is bounded by δ, as desired.

4 Finding a Low-Error Hypothesis

The outlier removal process of Lemma 3.1 enables us to find a subset Sfilt of the input set such that
all non-negative and low-degree polynomials with small expectation under the uniform distribution also
have small empirical expectation under Sfilt. Moreover, the number of clean examples removed to form
Sfilt is smaller than the number of removed outliers (see Figure 1). We show that these two properties
are all we need in order to learn constant-depth circuits with contamination (Definition 1.1).

In order to take advantage of Lemma 3.1, we will use two main tools. The first one is the following
theorem originally proposed by [KKMS08] to show that L1 polynomial regression implies agnostic
learning for classes that can be approximated by low-degree polynomials.

Theorem 4.1 (Learning through L1 polynomial regression [KKMS08]). Let D be any distribution over
{±1}d×{±1} and C some class of concepts from {±1}d to {±1}. If for each f ∈ C there is some poly-
nomial p over {±1}d of degree at most k such that Ex∼Dx [|f(x)−p(x)|] ≤ ϵ, then there is an algorithm
(based on degree-k L1 polynomial regression) which outputs a degree-k polynomial threshold function
h such that P(x,y)∼D[y ̸= h(x)] ≤ minf∈C P(x,y)∼D[y ̸= f(x)] + 2ϵ, in time O( 1

ϵ2
)dO(k) log(1/δ).

Our overall learning algorithm will first filter the input set of examples S̄inp using Algorithm 1 and
then run the algorithm of Theorem 4.1 on the uniform distribution over the filtered set S̄filt. All we
need to show is that there is a low-degree polynomial p with Ex∼S̄filt

[|f(x) − p(x)|] ≤ ϵ. This is
ensured by combining part 2 of Lemma 3.1 with the sandwiching approximators for constant-depth
circuits originally proposed by [Bra08] in the context of pseudorandomness.

Theorem 4.2 (Sandwiching polynomials for AC0 [Bra08, Tal17, HS19]). Let f : {±1}d → {±1} be
any AC0 circuit of size s and depth ℓ and let ϵ ∈ (0, 1). Then, there are polynomials pup, pdown over
{±1}d, each of degree at most k = (log(s))O(ℓ) · log(1/ϵ) such that (1) pup(x) ≥ f(x) ≥ pdown(x) for
all x ∈ {±1}d and (2) Ex∼Unifd [pup(x)− pdown(x)] ≤ ϵ.

Proof of Theorem 1.2. Consider the polynomial p = pup − pdown, where pup, pdown are the (ϵ/8)-
sandwiching polynomials of some circuit f of size s and depth ℓ. Observe that p is non-negative and
Ex∼Unifd [p(x)] ≤ ϵ/8. Therefore, according to part 2 of Lemma 3.1, we have

∑
x∈Sfilt

p(x) ≤ ϵN .
Since pup ≥ f ≥ pdown we also have Ex∼Sfilt

[|f(x) − pdown(x)|] ≤ ϵN/|S̄filt|. By Theorem 4.1, we
find h : {±1}d → {±1} with P(x,y)∼S̄filt

[y ̸= h(x)] ≤ minf∈C P(x,y)∼S̄filt
[y ̸= f(x)] + 2ϵN/|S̄filt| or
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equivalently ∑
(x,y)∈S̄filt

1{y ̸= h(x)} ≤ min
f∈C

∑
(x,y)∈S̄filt

1{y ̸= f(x)}+ 2ϵN (4.1)

The error of the hypothesis h on the set S̄cln gives a bound on its error under the uniform distribution
with high probability, due to classical VC theory, as long as N ≥ C ′ dk+log(1/δ)

ϵ2
, because h is a PTF of

degree at most k. We can provide an upper bound for P(x,y)∼S̄cln
[y ̸= h(x)] in terms of the sizes of

the sets depicted in Figure 1. In particular, we give a high-probability upper bound on the number of
mistakes that h makes on S̄cln.

1. The points in S̄cln that are removed by the adversary are not taken into account while forming h,
so, in the worst case, h classifies them incorrectly. This gives at most |Scln \ Sinp| mistakes.

2. Similarly, h makes at most |S3|mistakes corresponding to the clean points that are removed during
the outlier removal process.

3. Finally, h will make at most |S2| + 2ϵN mistakes on Sfilt, according to the inequality (4.1), cor-
responding to the adversarially corrupted points that were not removed during the outlier removal
process. In the worst case, all of these mistakes are made in the part of Sfilt that intersects Scln.

Figure 1: The diagram shows the input set of points Sinp (red circle), the clean points Scln (green circle),
the output Sfilt (black circle) of Algorithm 1 and the sets S1 (yellow region), S2 (blue region), S3 (pink
region). The set Sinp consists of clean points, except from an η fraction of adversarial points. S1 contains
the adversarial points that are filtered out by the outlier removal process and S2 contains the adversarial
points that were not removed and are kept in Sfilt. S3 contains the clean points that were filtered out
during outlier removal. Lemma 3.1 states that |S3| ≤ |S1| w.h.p.

The overall error is 1
N (|Scln \Sinp|+ |S3|+ |S2|)+O(ϵ). According to part 1 of Lemma 3.1, we have

|S3| ≤ |S1|. Moreover, by Definition 1.1, we have that |Scln \Sinp| = |Sinp \Scln| = |S1|+ |S2| = ηN .
The error bound we obtain overall is 2η +O(ϵ), as desired.

Acknowledgments. We thank Mark Braverman and Sasha Razborov for useful conversations.
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