
Inexact Augmented Lagrangian Methods for Conic
Programs: Quadratic Growth and Linear Convergence

Feng-Yi Liao1 Lijun Ding2 Yang Zheng1∗

1Department of Electrical and Computer Engineering, UC San Diego
2Department of Mathematics, UC San Diego

Abstract

Augmented Lagrangian Methods (ALMs) are widely employed in solving con-
strained optimizations, and some efficient solvers are developed based on this
framework. Under the quadratic growth assumption, it is known that the dual iter-
ates and the Karush–Kuhn–Tucker (KKT) residuals of ALMs applied to semidefi-
nite programs (SDPs) converge linearly. In contrast, the convergence rate of the
primal iterates has remained elusive. In this paper, we resolve this challenge by
establishing new quadratic growth and error bound properties for primal and dual
SDPs under the strict complementarity condition. Our main results reveal that both
primal and dual iterates of the ALMs converge linearly contingent solely upon the
assumption of strict complementarity and a bounded solution set. This finding
provides a positive answer to an open question regarding the asymptotically linear
convergence of the primal iterates of ALMs applied to semidefinite optimization.

1 Introduction

We consider the standard primal and dual semidefinite programs (SDPs) of the form

p⋆ := min
X∈Sn

⟨C,X⟩

subject to A(X) = b,

X ∈ Sn+,
(P)

d⋆ := max
y∈Rm,Z∈Sn

⟨b, y⟩

subject to A∗(y) + Z = C,

Z ∈ Sn+,

(D)

where the problem data consists of a cost matrix C ∈ Sn, a constant vector b ∈ Rm, a linear map
A : Sn → Rm A(X) = [⟨A1, X⟩ , · · · , ⟨Am, X⟩]T with A1, · · · , Am ∈ Sn, and its adjoint operator
A∗ : Rm → Sn as A∗(y) =

∑m
i=1 Aiyi that satisfy ⟨A(X), y⟩ = ⟨X,A∗(y)⟩ , ∀X ∈ Sn, y ∈ Rm.

SDPs are a broad and powerful class of conic programs, which include linear programs and second-
order cone programs as special cases. The class of SDPs has found an extensive list of applications,
including control theory [1], combinatorial optimization [2], polynomial optimization [3], machine
learning [4–6], and beyond [7]. Meanwhile, many algorithms have been developed to solve (P)
and (D), ranging from reliable interior point methods [8–10] to scalable first-order methods [11–14].
In particular, it is demonstrated that Augmented Lagrangian methods (ALMs) [15, 16] are suitable
for solving large-scale optimization problems. Some efficient ALM-based algorithms have been
developed to solve (P) and (D). For example, the celebrated low-rank matrix factorization [17] was
integrated with ALM for efficient algorithm design. A semi-smooth Newtown-CG algorithm was
proposed for ALM to solve SDPs with many affine constraints in [18]. An enhanced version was
introduced in [19] to tackle degenerate SDPs by combining a warm starting strategy. The algorithms
[18, 19] have been implemented into a solver, SDPNAL+, which has shown very impressive numerical
performance in benchmark problems. Other recent ALM-based algorithms include [20–22].
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Despite the impressive practical performance, theoretical convergence guarantees of applying ALMs
to (P) and (D) are less complete. Thanks to the seminal work [23], it is well-known that running
ALMs for the primal (P) is equivalent to executing the proximal point method (PPM) for the dual (D).
Thus, the classical convergences of ALM are typically inherited from PPM, which only guarantees
that the dual iterates converge linearly when a Lipschitz continuity property is satisfied [24]. The
Lipchitz condition requires (P) to have a unique solution. The uniqueness assumption was relaxed
in [25], which allows multiple optimal solutions but requires an error bound property. Recently,
this error bound property was established in [26] in a general conic optimization setup. The work
[26] also proves linear convergence of KKT residuals when applying ALM to convex composite
conic programming. However, due to the connections between ALM and PPM, all these results only
guarantee linear convergence for the dual iterates, while the convergence rate of the primal iterates in
ALM remains unclear. Indeed, it is noted in [21, 26] that the problem of whether the primal sequence
generated by the ALM can also converge asymptotically linearly is open.

This asymmetry in convergence guarantees is notably dissatisfying, especially considering the elegant
duality in (P) and (D). In this paper, our main goal is to establish linear convergence guarantees for
both primal and dual iterates when applying an inexact ALM to SDPs (either (P) or (D)), under the
usual assumption of strong duality and strict complementarity.

Our contributions. To resolve the challenge, we have made novel contributions from two aspects.
On the problem structure side:

(a) Under the standard strict complementarity assumption, we establish the quadratic growth and
error bound for both primal and dual SDPs (P) and (D) over any compact set containing an
optimal solution (see Theorems 1 and 2). Our results not only extend the findings of [27] from
a small (yet unknown) neighborhood to any compact set, benefiting the analysis of iterative
algorithms, but also improves the recent results in [28–30]; see Remark 1 for a comparison.

(b) To establish the quadratic growth, we unveil a new characterization of the preimage of the
subdifferential of the exact penalty functions for SDPs. This reveals a useful connection between
exact penalty functions and indicator functions (see (11) in Lemma 3). We believe that this new
characterization is of independent interest.

(c) Using the new characterization, we further provide a new and simple proof for the growth
properties in the exact penalty functions of Sn+ (see Appendix B), and clarify some subtle
differences in constructing exact penalty functions (see Section 3.1 and Remark B.1).

On the algorithm analysis side:

(a) By leveraging the established quadratic growth and error bound, we show that applying ALM to
solve either the primal or dual SDPs (P) and (D) has linear convergence for both the primal and
dual iterates (see Theorem 3).

(b) We establish symmetric versions of inexact ALMs for solving both the primal and dual conic
programs (see Section 4 and Appendix E.3), which is less emphasized in the literature.

(c) We clarify the subtlety concerning the (in)feasibility of the dual iterates by inexact ALMs (see
Section 4.2), which is an important issue concerning the relationship between PPM and ALM.

Related works: We here review some closely related results in the literature.

Quadratic growth and error bound. Many studies have been dedicated to establishing quadratic
growth or error bound for conic optimizations under various assumptions [28, 31, 27, 32–35]. Starting
from the famous Hoffman’s lemma [36], a global error bound for linear systems has been established,
which was later extended to a partially infinite-dimensional case [37]. Sturm investigated the error
bound for SDPs, in which the exponent term is bounded by 2d with d being the sigularity degree that
is at most n− 1 [32]. Zhang provided a simple proof of error bound for a feasibility system under
Slater’s condition [33]. Zhou and So provided a unified proof to establish error bound for a class of
structured convex optimization [35]. The results in [35] are generalized to convex problems with
spectral functions [31]. Drusvyatskiy and Lewis discussed quadratic growth for a convex problem
of the form minx f(Ax) + g(x) under dual strict complementarity [34, Section 4]. Very recently,
Ding and Udell established an error bound property for general conic programs via an elementary
framework using strict complementarity [28]. All the aforementioned results have slightly different
assumptions, resulting in different forms of quadratic growth properties. They are not directly
applicable to our purpose of establishing linear convergences of primal and dual iterates in ALM; a
detailed comparison will be provided in Remark 1 after introducing our main result.
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Augmented Lagrangian method (ALM) and Proximal point method (PPM). The ALM is first
introduced in [15, 16] to improve numerical performance of penalty methods. It is shown by
Rockafellar that the augmented dual function is continuously differentiable [38], and the ALM
can be viewed as an augmented dual ascent method [24], thus the convergence of ALM can be
analyzed via dual ascent. The seminal work [23] established a strong relation between ALM and
PPM: the dual iterate by ALM is the same as the proximal update on the dual function by PPM.
From the convergence of PPM, we know that the dual iterates of ALM converge linearly when the
preimage of the subdifferential map of the dual function is Lipschitz continuous at the origin [24].
However, the Lipchitz condition requires the solution to be unique, which is not suitable for many
practical applications. Luque made an important extension in PPM to allow multiple solutions while
maintaining linear convergence [25]. Recently, Cui et. al relaxed the Lipschitz assumption to upper-
Lipschtiz continuous which allows multiple primal and dual solutions [26]. In addition, the KKT
residuals of convex composite conic programs are shown to converge linearly under the assumption
that the dual function satisfies quadratic growth [26]. The primal iterates of ALM are also known to
converge linearly under a much stronger Lipschitz assumption on the augmented Lagrangian function
[23, 26]. As pointed out in [26, Section 3], the Lipschitz property of the Lagrangian function is more
conservative than the quadratic growth of the primal or dual function. To the best of our knowledge,
when applying ALM to conic optimization (P) and (D), the problem of whether the primal iterates
converge linearly under the normal quadratic growth condition remains open.

Paper outline. The rest of this paper is structured as follows. Section 2 reviews some preliminaries
in SDPs and PPM. Section 3 establishes quadratic growth and error bound properties. Section 4
establishes the linear convergence of primal and dual iterates of ALMs under standard assumptions.
Section 5 presents numerical experiments, and Section 6 concludes the paper. While all results are
presented for SDPs, analogous versions exist for other conic programs, such as LPs and SOCPs.

2 Preliminaries

2.1 Strong duality and strict complementarity

In this paper, we assume the linear mapping A to be surjective (or A∗ is injective, thus y and Z have
a unique correspondence). This is equivalent to A1, · · · , Am being linear independent. We here
introduce two important regularity conditions: strong duality and strict complementarity.
Definition 1 (Strong duality). We say (P) and (D) satisfies strong duality if we have p⋆ = d⋆.

Strong duality only requires the optimal values to be the same. The existence of optimal primal and
dual variables (X⋆, y⋆, Z⋆) is ensured by the primal and dual Slater’s condition [8, Theorem 3.1], i.e.,
there exist primal and dual feasible points X and y satisfying X ∈ int(Sn+) and C−A∗(y) ∈ int(Sn+).
Let ΩP ⊆ Sn and ΩD ⊆ Rm × Sn denote the optimal solutions of (P) and (D), respectively,

ΩP = {X ∈ Sn | ⟨C,X⟩ = p⋆, A(X) = b,X ∈ Sn+}, (1a)
ΩD = {(y, Z) ∈ Rm × Sn | ⟨b, y⟩ = d⋆, A∗(y) + Z = C,Z ∈ Sn+}. (1b)

Under the primal and dual Slater’s condition, the solution sets ΩP,ΩD are nonempty and compact (see
e.g., [30, Section 2] or [29, Prop. 2.1]). We further have ⟨Z⋆, X⋆⟩ = 0, ∀X⋆∈ΩP, (y

⋆, Z⋆)∈ΩD,
which is called complementary slackness.

Next, we introduce another regularity condition: dual strict complementarity, which is the key to
ensuring many nice properties in a range of conic problems [34, 28, 35].
Definition 2 (Dual strict complementarity for SDPs). Given a pair of optimal solutions X⋆ ∈
ΩP, (y

⋆, Z⋆) ∈ ΩD, we say that (X⋆, y⋆, Z⋆) satisfies dual strict complementarity if X⋆ ∈
relint(N(Sn+)◦(−Z⋆)), where (Sn+)◦ is the polar cone of Sn+, N(Sn+)◦(−Z⋆) denotes the normal
cone of (Sn+)◦ at −Z⋆, and relint denotes relative interior. If (P) and (D) have one such pair, we say
that (P) and (D) satisfy dual strict complementarity.

We note that the usual notion of strict complementarity for SDPs is equivalent to Definition 2, as
pointed out in [28, Appendix B]. For completeness, we also review the standard notion of strict
complementarity in Appendix A.1. The notion of (dual) strict complementarity is not restrictive, and
it holds generically for conic programs [39], [40, Theorem 15]. Recently, it has been revealed that
many structured SDPs from practical applications also satisfy strict complementarity [41]. One can
also define primal strict complementarity, and the primal and dual strict complementarity are not
equivalent in general, but they are equivalent for the so-called self-dual cones, such as Sn+.
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2.2 Proximal point methods (PPMs)

It is now well-known that running ALMs for the primal (P) is equivalent to executing a PPM for the
dual (D), and vice versa [23]. We here give a quick review of PPMs and their standard convergences.

Let f : Rn → R̄ be a proper closed convex function, and consider the problem f⋆ = minx∈Rn f(x).
Let S = argminx f(x), which we assume to be nonempty. We define the proximal operator as

proxα,f (x) := argmin
y∈Rn

f(y) +
1

2α
∥y − x∥2 , (2)

where α > 0. Starting with an initial point x0 ∈ Rn, the PPM generates a sequence of points as
follows xk+1 = proxck,f (xk), k = 0, 1, 2, . . ., where {ck}k≥0 is a sequence of positive numbers
bounded away from zero. The proximal operator (2) is always well-defined thanks to strong convexity.

In practice, the proximal operator (2) may not be easily evaluated, and thus an inexact version is often
used [42]. In particular, an inexact PPM generates a sequence of points as

xk+1 ≈ proxck,f (xk), k = 0, 1, 2, . . . . (3)

Two classical types of inexactness, originating from the seminal work [42], are

∥xk+1 − proxck,f (xk)∥ ≤ ϵk,
∑∞

k=0 ϵk < ∞, (a)

∥xk+1 − proxck,f (xk)∥ ≤ δk∥xk+1 − xk∥,
∑∞

k=0 δk < ∞, (b)

where {ϵk}k≥0 and {δk}k≥0 are two sequences of inexactness for (3). The classical work [42] has
established asymptotic convergence of the iterates xk from (3) when using criterion (a). Fast linear
convergences have also been established under various regularity conditions, such as the inverse of
the subdifferential (∂f)−1 is locally Lipschitz at 0 [42] (or relaxed to be upper Lipschitz continuous
at 0 [25]), and more generally ∂f is metrically subregular [27, 43] (or f satisfies quadratic growth
[34, 44]). Recall that f satisfies quadratic growth at x⋆∈S if there exists a constant µq > 0 such that

f(x)− f⋆ ≥ µq/2 · dist2(x, S), ∀x ∈ U , (QG)

where U is a neighborhood containing the optimal solution x⋆. Convergence results for (3) are:
Lemma 1. Let S = argminx∈Rn f(x) and suppose S ̸= ∅. Let {xk}k≥0 be a sequence from (3).

(a) If criterion (a) is used, then limk→∞ xk = x∞∈S, i.e., xk converges to an optimal solution.

(b) In addition to (a), if (b) is used and f satisfies (QG) at x∞ ∈ S, then there exists k̂ > 0 such
that dist(xk+1, S) ≤ θ̂kdist(xk, S), ∀k ≥ k̂, where θ̂k = θk+2δk

1−δk
with θk = 1/

√
ckµq+1<1.

The first asymptotic convergence is taken from [42, Theorem 1], and different proofs for the second
linear convergence under (QG) are available, and a simple one can be found in [44, Theorem 5.3].
Criterion (a) guarantees the iterate xk will arrive within a neighbor U where (QG) holds after some
number k̂, then criterion (b) ensures the linear convergence; see [44, Theorem 5.3] for details.

Note that Lemma 1 only guarantees the (linear) convergence of iterates xk, which corresponds to
the dual iterates in the ALM [23] (see Lemma 4 in Section 4). Thus, once a suitable condition like
(QG) is established for (P) and (D), applying the ALM will enjoy linear convergence for dual iterates
[21, 25, 26]. In this paper, we aim to establish linear convergences of both primal and dual iterates in
the ALM, when applied to (P) or (D). For this, we first establish quadratic growth in Section 3.

3 Quadratic Growth in SDPs

In this section, we identify favorable quadratic growth and error bound properties for both primal and
dual SDPs in (P) and (D), under the usual assumptions of strong duality and strict complementarity
(cf. Definitions 1 and 2). These favorable structural properties will allow us to establish linear
convergences of both primal and dual iterates of inexact ALMs applied to either (P) or (D).

3.1 Growth and error bound properties

To analyze PPM or ALM, we consider an equivalent reformulation of (P) or (D) in the following form
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f⋆
P := min

X∈Sn
fP(X) :=⟨C,X⟩+ g(X)

subject to A(X) = b,
(4)

f⋆
D := min

y∈Rm,Z∈Sn
fD(y, Z) :=⟨−b, y⟩+ h(Z)

subject to A∗(y) + Z = C,
(5)

where g (and h, respectively) is chosen as either an indicator function δSn+ or an exact penalty function,
defined as2

g(X) = ρmax{0, λmax(−X)} with ρ > tr(Z⋆). (6)
where (y⋆, Z⋆) ∈ ΩD can be any optimal solution. In (5), the exact penalty function h is designed in
the same way as (6) where the lower bound on ρ is replaced by ρ > tr(X⋆) and X⋆ is any optimal
solution in ΩP. The common feature in (4) and (5) is to move the difficult conic constraint X ∈ Sn+
and Z ∈ Sn+ as a nonsmooth term g(X) and h(Z) in the cost function. It is clear that for both
indicator and exact penalty functions, we have g(X) = 0, ∀X ∈ Sn+ and h(Z) = 0, ∀Z ∈ Sn+. For
clarity, we state the following technical result.
Lemma 2. Suppose strong duality holds for (P) and (D). Under the choice of an indicator function
or an exact penalty function in (6), the set of optimal solutions for (4) is the same as ΩP in (1a), and
the set of optimal solutions for (5) is the same as ΩD in (1b).

The equivalence with an indicator function is obvious, and the equivalence with an exact penalty
function has appeared in [30] and [29, Propositions 3.1&3.2]. Their proofs rely on a general character-
ization in exact penalty methods [45, Theorem 7.21]. In Appendix B, we present a simple, different,
and self-contained proof without relying on prior results. Our proof uses a new characterization of the
subdifferential of exact penalty functions (Proposition B.1), which might be of independent interest.

Our first main theoretical results are the following growth and error bound properties for primal and
conic programs. The proofs will be outlined in Section 3.2.
Theorem 1 (Growth properties in the primal). Suppose strong duality and dual strict complementarity
hold for (P) and (D). Consider the primal conic programs (P) and (4). Let (X̄⋆, ȳ⋆, Z̄⋆) satisfy strict
complementarity, and the exact penalty parameter is chosen as ρ > tr(Z̄⋆). For any compact set
U⊆Sn containing an optimal solution X⋆ ∈ ΩP, there exist positive constants κ, γ, α > 0 such that

fP(X)− p⋆ + γ∥A(X)− b∥ ≥ κ · dist2(X,ΩP), ∀X ∈ U , (7a)

⟨C,X⟩ − p⋆ + γ∥A(X)− b∥+ α · dist(X, Sn+) ≥ κ · dist2(X,ΩP), ∀X ∈ U , (7b)
If ΩP is further compact, then set U in (7a) and (7b) can be chosen as any sublevel set of fP, i.e.,
{X ∈ Sn | fP(X) ≤ β,A(X) = b} with a finite β.

In (7a), the impact of the conic constraint X ∈ Sn+ is reflected in the reformulated cost fP(X). When
using the indicator function as fP(X) = ⟨C,X⟩ + δSn+(X), the left-hand side of (7a) implicitly
requires X ∈ Sn+; otherwise fP(X) = +∞ and thus the inequality (7a) holds trivially. If using the
exact penalty function (6), we have fP(X) = ⟨C,X⟩+ g(X) < +∞ for X /∈ Sn+, which is closer to
(7b). Indeed, our proof of (7b) utilizes a characterization of the exact penalty function (6).

Both (7a) and (7b) give useful bounds when X moves away from the optimal solution set ΩP in terms
of suboptimality fP(X)− p⋆ or ⟨C,X⟩ − p⋆, affine feasibility ∥A(X)− b∥, and conic feasibility
dist(X, Sn+). They are closely related to quadratic growth in (QG), and are also referred to error
bound properties [46, 33, 28]. The error bound plays a vital role in proving fast linear convergence for
many iterative algorithms [34, 35, 44, 47]. Indeed, some previous studies [27–30] have established
similar results to Theorem 1 for conic optimization, especially SDPs. As we will detail in Remark 1
below, our results are more general and unified. Similarly, the growth and error bound properties also
hold for the dual conic program.
Theorem 2 (Growth properties in the dual). Suppose strong duality and dual strict complementarity
hold for (P) and (D). Consider the dual problems (D) and (5). Let (X̄⋆, ȳ⋆, Z̄⋆) satisfy strict comple-
mentarity, and the penalty parameter is chosen as ρ> tr(X̄⋆). For any compact set V ⊆Rm×Sn
containing an optimal solution (y⋆, Z⋆) ∈ ΩD, there exist constants κ, γ, α > 0 such that

fD(y, Z)− (−d⋆) + γ∥C −A∗(y)− Z∥ ≥ κ · dist2((y, Z),ΩD), ∀(y, Z) ∈ V , (8a)

2This penalty parameter ρ guarantees that (4) and (P) are equivalent. To further ensure the dual problem of
(P) is equivalent to the dual of (4), we need to choose ρ > sup(y⋆,Z⋆)∈ΩD

tr(Z⋆). This subtle point is less
emphasized in the literature [30, 29]; see Remark B.1 in the appendix for details.
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d⋆ − ⟨b, y⟩+ γ∥C −A∗(y)−Z∥+ α · dist(Z, Sn+) ≥ κ · dist2((y, Z),ΩD), ∀(y, Z) ∈ V . (8b)
If ΩD is further compact, then set V can be chosen as any sublevel set of fD, i.e., {(y, Z) ∈ Rm×Sn |
fD(y, Z) ≤ β,C + Z = A∗(y)} with a finite β.

The compactness of ΩP and ΩD in Theorems 1 and 2 is not restrictive, as it can be ensured by the
dual and primal Slater’s conditions (and A∗ is injective) respectively; see e.g., [29, Proposition 2.1].
Remark 1. Our results in Theorems 1 and 2 are more general and unified than previous ones [27–30].
Theorems 1 and 2 hold for both the indicator function and the penalty function (6), while all previous
results [27–30] have only discussed either one of them. We provide more comparisons below. The
guarantees in (7a) and (8b) directly lead to a quadratic growth property of fP and fD:

fP(X)− p⋆≥κ· dist2(X,ΩP), ∀X ∈ U ∩ {X ∈ Sn |A(X) = b}, (9a)

fD(y, Z) + d⋆≥κ·dist2((y, Z),ΩD), ∀(y, Z) ∈ V ∩ {(y, Z)∈Rm×Sn |A∗(y) + Z = C}. (9b)

When considering indicator functions, this property (9) is more general than [27, Corollary 3.1] since
we allow for any compact set U (and also any sublevel set of fP or fD). In contrast, the size of
the neighborhood around an optimal solution X⋆ in [27, Corollary 3.1] depends on the eigenvalues
of an optimal dual solution Z⋆. Thus the neighborhood only exists but its size might be unknown.
Furthermore, our results (7a) and (8a) allow for the residual of the affine constraints A(X) = b and
C −A∗(y) = Z, while [27, Corollary 3.1] requires strict affine feasible points.

When considering exact penalty functions, similar quadratic growth properties appear in [29, 30].
However, the penalty ρ in [29, 30] needs to be as large as ρ ≥ 2 sup(y⋆,Z⋆)∈ΩD

tr(Z⋆). Our results
in Theorems 1 and 2 only require a smaller constant as ρ > tr(Z̄⋆) where Z̄⋆ is an optimal dual
solution satisfying strict complementarity, and this result is established via a new and simple argument
(see Proposition B.2 in the appendix). Finally, an error bound similar to (7b) was also established in
[28, Corollary 1] under similar assumptions of strong duality and strict complementarity. Our error
bound (7b) does not require the absolute value of fP(X)− p⋆, and our proof strategy relies on a new
characterization of exact penalty functions (see Lemma 3), which offers a new (possibly simpler)
perspective than [28, Corollary 1]. The dual property (8b) is new and not discussed in [28]. □

Remark 2 (Conic programs). Theorems 1 and 2 are stated specifically for SDPs (P) and (D). It
is known that linear programs (LP) and second-order cone programs (SOCP) are special cases of
SDPs. Therefore, results similar to Theorems 1 and 2 when replacing Sn+ by nonnegative orthant or
second-order cone also exist. Theorems 1 and 2 hold for a general class of conic programs.

3.2 Proof sketches for Theorems 1 and 2

We here provide key proof sketches for Theorems 1 and 2. One key step is the following growth
properties of an indicator function and a penalty function.
Lemma 3. Let X̄, Z̄ ∈ Sn+ satisfying

〈
X̄, Z̄

〉
= 0 (i.e., both X̄ and Z̄ are on the boundary unless

one of them is zero). If l : Sn → R̄ is either an indicator function l = δSn+ , or a penalty function

l(X) = ρmax{0, λmax(−X)} with ρ > tr(Z̄), (10)

then we have that
(∂l)−1(−Z̄) = (∂δSn+)

−1(−Z̄) = N(Sn+)◦(−Z̄). (11)

Moreover, for any positive value µ ∈ (0,∞), there exists a positive constant κ such that

l(X) ≥ l(X̄) +
〈
−Z̄,X − X̄

〉
+ κ · dist2

(
X, (∂l)−1(−Z̄)

)
, ∀X ∈ B(X̄, µ). (12)

Note that l in (10) is related to, but not identical to, the exact penalty function in (6). The proof of
Lemma 3 heavily exploits the nice self-dual structure of the cone Sn+. For better clarity, we provide
the proofs of (11) and (12) in Proposition B.1 and Appendix C respectively.
Remark 3. We believe that the results in Lemma 3 are of independent interest, especially in terms of
the penalty function (10). Building upon (12), one can further show l is metrically subregular [48,
Theorem 3.3]. The most closely related characterization is [27, Proposition 3.3], which focuses solely
on the indicator function of the positive semidefinite cone Sn+. However, even in this scenario, the
result in [27, Proposition 3.3] only guarantees the existence of a small neighborhood around X̄ . In
contrast, our result (12) works for any closed ball B(X̄, µ) around X̄ with a finite radius µ > 0. □
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Upon establishing Lemma 3, with bounded linear regularity (see Appendix A.4) that is guaranteed by
dual strict complementarity, we can establish the following growth properties for (4) and (5).
Proposition 1. Consider primal and dual conic programs (P) and (D) and their equivalent forms in
(4) and (5) respectively. Suppose strong duality and dual strict complementarity hold for (P) and (D).
Let (X⋆, y⋆, Z⋆) be a pair of primal and dual optimal solutions, i.e., X⋆ ∈ ΩP and (y⋆, Z⋆) ∈ ΩD.
For any µ > 0, there exist positive constants κ1, γ1, κ2, γ2 such that

fP(X)− f⋆
P + γ1∥A(X)− b∥ ≥ κ1 · dist2(X,ΩP), ∀X ∈ B(X⋆, µ),

fD(y, Z)− f⋆
D + γ2∥C −A∗(y)− Z∥ ≥ κ2 · dist2((y, Z),ΩD), ∀(y, Z) ∈ B((y⋆, Z⋆), µ).

The proof of Proposition 1 is given in Appendix D.1. We now see that Theorems 1 and 2 are
direct consequences of Proposition 1 as max{0, λmax(−X)} ≤ dist(X, Sn+) for all X ∈ Sn. The
compactness statement in Theorems 1 and 2 comes from the fact that the solution set ΩP (resp. ΩD)
is compact if and only if any sublevel set of fP (resp. fD) is compact (see, e.g., [29, Lemma D.1]).

4 Augmented Lagrangian Methods (ALMs) for SDPs

In this section, we prove that both primal and dual iterates of ALMs, when applied to (P) and (D),
enjoy linear convergence under the usual assumption of strict complementarity.

4.1 Inexact Augmented Lagrangian Method

In principle, ALM can be applied to solve both (P) and (D). However, most existing results focus on
solving (D) [18, 19]. For simplicity, we here focus on one formulation of the augmented Lagrangian
function for (P). The dual formulation is presented in Appendix E.3 for completeness.

We start by introducing two dual variables y ∈ Rm and Z ∈ Sn+ and defining the Lagrangian function
for (P) as L0(X, y, Z) = ⟨C,X⟩ + ⟨y, b−A(X)⟩ + ⟨Z,X⟩. The corresponding Lagrangian dual
function and dual problem read as

g0(y, Z) = inf
X∈Sn

L0(X, y, Z) and max
y∈Rm,Z∈Sn+

g0(y, Z). (13)

It can be verified the dual in (13) is the same as the dual conic program (D). Given a penalty parameter
r > 0, the Augmented Lagrangian function of (P) corresponding to L0 is defined as

Lr(X, y, Z) = ⟨C,X⟩+ 1

2r
(∥y + r(b−A(X))∥2 + ∥ΠSn+(Z − rX)∥2 − ∥y∥2 − ∥Z∥2), (14)

where ΠSn+(·) denotes the orthogonal projection onto the cone Sn+. Note that Lr is continuously
differentiable as ∥ΠSn+(·)∥

2 is continuously differentiable [18, Section 1]. Given initial points
(y0, Z0) ∈ Rm × Sn+ and a sequence of positive scalars rk ↑ r∞ < +∞, the inexact ALM generates
a sequence of {Xk} (primal variables) and {yk, Zk} (dual variables) as

Xk+1 ≈ min
X∈Sn

Lrk(X, yk, Zk), (15a)

yk+1 = yk + rk∇yLrk(Xk+1, yk, Zk) = yk + rk(b−A(Xk+1)), (15b)
Zk+1 = Zk + rk∇ZLrk(Xk+1, yk, Zk) = ΠSn+(Zk − rkXk+1). (15c)

For notational convenience, we write w = (y, Z) and wk = (yk, Zk) and consider the following two
inexactness criteria for solving (15a) (since it can be a challenge to solve (15a) exactly):

Lrk(Xk+1, wk)− min
X∈Sn

Lrk(X,wk) ≤ ϵ2k/(2rk),
∑∞

k=1 ϵk < ∞, (A′)

Lrk(Xk+1, wk)− min
X∈Sn

Lrk(X,wk) ≤ δ2k∥wk+1 − wk∥2/(2rk),
∑∞

k=1 δk < ∞. (B′)

The two stopping criteria above are suggested by the seminal work of Rockafellar [23].

4.2 Linear convergences of primal and dual iterates in ALM

After [23], one classical method for analyzing the convergence of the inexact ALM (15) is to utilize
the connection between ALM and PPM. We review the following important lemma.
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Lemma 4 ([23, Proposition 6]). The dual iterates wk+1 = (yk+1, Zk+1) in (15b) and (15c) satisfy
the following relationship

∥wk+1 − proxrk,−g0(wk)∥2/(2rk) ≤ Lrk(Xk+1, wk)− inf
X∈Sn

Lrk(X,wk),

where g0 is the Lagrangian dual function in (13).

If (15a) is updated exactly, Lemma 4 confirms that wk+1 = proxrk,−g0(wk): the dual iterate of the
ALM agree with the PPM iterate for the dual problem (13). If (15a) is updated inexactly, the iterate
wk+1 may not satisfy the affine constraint C = Zk+1 +A∗(yk+1). Moreover, viewing Lemma 4, the
stopping criteria (A′) and (B′) naturally imply that the dual iterate wk+1 satisfies

∥wk+1 − proxrk,−g0(wk)∥ ≤ ϵk and ∥wk+1 − proxrk,−g0(wk)∥ ≤ δk∥wk+1 − wk∥.

Then, we can establish the convergence of the dual sequence {wk} in (15) from Lemma 1 via PPM.
In particular, this observation was first discovered in [23] and later tailored in convex composite conic
programmings in [26]. We summarize asymptotic convergences of (15) below.
Proposition 2 (Asymptotic convergences). Consider (P) and (D). Assume strong duality holds and
ΩD ̸= ∅. Let {Xk, wk} be a sequence from the ALM (15) under (A′). The following hold.

(a) The dual sequence {wk} is bounded. Further, limk→∞ wk = w∞ ∈ ΩD (i.e., the whole sequence
converges to a dual optimal solution).

(b) The primal feasibility and cost value gap satisfy
dist(Xk+1, Sn+) ≤ ∥Zk − Zk+1∥/rk → 0, ∥A(Xk+1)− b∥ = ∥yk − yk+1∥/rk → 0,

⟨C,Xk+1⟩ − p⋆ ≤ Lrk(Xk+1, wk)− min
X∈Sn

Lrk(X,wk) + (∥wk∥2 − ∥wk+1∥2)/(2rk) → 0.

(c) If the primal solution set ΩP in (1a) is nonempty and bounded, then the primal sequence {Xk}
is also bounded, and all of its cluster points belongs to ΩP.

Proof. We give the sketch of proof for parts (a) and (b). A complete proof can be found in Ap-
pendix E.1. Part (a) comes directly from the PPM convergence Lemma 1 as Lemma 4 and the
stopping criteria (A′) naturally imply the dual iterate wk+1 satisfies ∥wk+1−proxrk,−g0(wk)∥≤ϵk
and

∑∞
k=1 ϵk < ∞.

In part (b), the first inequality uses the fact that Zk+1 + (Xk+1 − Xk)/rk ∈ Sn+ by performing
Moreau decomposition [49, Exercise 12.22] on rkXk+1 − Zk and using the update rule (15b); The
second inequality comes directly from (15c); The last inequality uses the definition of Lrk(Xk+1, wk)
in (14) and the fact minX∈Sn Lrk(X,wk) ≤ p⋆.

Part (c) is a consequence of part (b) and the fact that ΩP is bounded if and only if for any γ ∈ R3 the
set {X ∈ Sn | dist(X, Sn+) ≤ γ1, ∥A(X)− b∥ ≤ γ2, ⟨C,X⟩ ≤ γ3} is bounded [23, page 110].

Proposition 2 establishes the asymptotic convergences for both the primal and dual variables. The
linear convergence of the dual iterates can also be deduced when the negative of the dual g0 defined
in (13) satisfies (QG). However, the rate of the primal iterates remains unclear. Here, leveraging
the error bound (8b), we also derive a linear convergence of the primal iterates, which is one main
technical contribution of this work. We summarize linear convergence results below.
Theorem 3 (Linear convergences). Consider (P) and (D). Assume strong duality and dual strict
complementarity holds (implying ΩP ̸= ∅ and ΩD ̸= ∅). Let {Xk, wk} be a sequence from the ALM
(15) under (A′) and (B′). The following statements hold.

(a) (Dual iterates and KKT residuals) There exist constants k̂ > 0 such that for all k ≥ k̂, we have

dist(wk+1,ΩD) ≤ µk · dist(wk,ΩD), dist(Xk+1, Sn+) ≤ µ′
k · dist(wk,ΩD),

∥A(Xk+1)− b∥ ≤ µ′
k · dist(wk,ΩD), ⟨C,Xk+1⟩ − p⋆ ≤ µ′′

k · dist(wk,ΩD),
(16)

where 0 < µk < 1, µ′
k > 0, and µ′′

k > 0 are positive finite constants.
(b) (Primal iterates) If ΩP is bounded, then the primal sequence {Xk} also converges linearly to

the solution set ΩP, i.e., there a constant k̂ > 0 such that for all k ≥ k̂,

dist2(Xk+1,ΩP) ≤ τk · dist(wk,ΩD), (17)
where τk > 0 is a finite constant.
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Proof. The proof of part (a) is largely motivated by the techniques in [26] that focus on ALMs on
dual SDPs. Part (b) is a consequence of the error bound (7b). Here, we highlight the key steps of
the proof of part (a) due to the page limit, and detailed arguments about part (a) can be found in
Appendix E.2. Note that if dual strict complementarity holds, Theorem 2 (with h in (5) as an indicator
function) guarantees the following two nice properties: 1) −g0 in (13) satisfies quadratic growth in
(9b); 2) the error bound (7b) holds.

1. By the discussion after Lemma 4, since (A) and (B′) are in force, the dual sequence {wk} satisfies
∥wk+1 − proxrk,−g0(wk)∥ ≤ ϵk, ∥wk+1 − proxrk,−g0(wk)∥ ≤ δk∥wk+1 − wk∥, ∀k ≥ 0.

Applying the convergence result of PPM in Lemma 1 yields the linear convergence of the dual
distance, i.e., there exists a k1 ≥ 0 such that

dist(wk+1,ΩD) ≤ µk · dist(wk,ΩD), µk < 1, ∀k ≥ k1.

Using part (b) in Proposition 2 and ∥wk+1 − wk∥ ≤ 1
1−δk

dist(wk,ΩD) if δk < 1, we can show

max{dist(Xk+1, Sn+), ∥A(xk+1)− b∥} ≤ 1

(1− δk)rk
dist(wk,ΩD),

⟨C,Xk+1⟩ − p⋆ ≤ δ2k∥wk+1 − wk∥+ ∥wk∥+ ∥wk+1∥
2rk(1− δk)

dist(wk,ΩD).

Finally, as δk → 0, there exists k2 ≥ 0 such that δk < 1 and for all k ≥ k2. Thus, part (a) then
follows from taking k̂ = max{k1, k2}.

2. Note that the error bound (7b) and the assumption that ΩP is bounded guarantee that for any
bounded set U containing ΩP, there exist constants α1, α2, α3 > 0 such that

⟨C,X⟩− ⟨C,X⋆⟩+α1∥A(X)− b∥+α2 · dist(X, Sn+) ≥ α3 · dist2(X,ΩP), ∀X ∈ U . (18)
By Proposition 2 - part (c), the sequence {Xk} is bounded. Let U ⊆ Sn be a bounded set that
contains ΩP and all the iterates {Xk}. Combing (18) with (16), we have

α3 · dist2(Xk+1,ΩP) ≤ (µ′′
k + (α1 + α2)µ

′
k) · dist(wk,ΩD), ∀k ≥ k̂.

Dividing both sides by α3 leads to the desired result in part (b). This completes the proof.

To our best knowledge, achieving linear convergence for the primal iterates of inexact ALMs requires
a significantly stronger condition on the Lagrangian function [23, Theorem 5] and implementing an
additional stopping criterion [26, Proposition 3]. Unfortunately, as highlighted in [26, Section 3],
such an assumption in [23, Theorem 5] can easily fail for general conic programs.

Our result Theorem 3, however, reveals that the linear convergence of the primal iterates also happens
under the standard assumption of strict complementarity and bounded primal solution set. This
suggests that primal linear convergence is often expected since strict complementary is a generic
property of conic programs [40, Theorem 15]. Our result not only completes theoretical convergences
of inexact ALMs but also offers insights for practical successes in [18, 19].
Remark 4 (Strict complementarity). As we see in the proof of Theorem 3, strict complementarity is
the key to ensure that 1) the negative of the function g0 in (13) satisfies quadratic growth; 2) the error
bound property (E.2) holds for the primal conic program. The quadratic growth is used to derive the
dual linear convergence (16), and the error bound is to conclude the primal linear convergence. □

5 Numerical experiments

In this section, we present numerical experiments to examine the empirical performance of ALM
introduced in Section 4. We consider two applications in combinational problems and machine
learning, including the SDP relaxation of maximum cut (Max-Cut) problem [50] and linear Support
Vector Machine (SVM). The Max-Cut problem and the linear SVM can be formulated as

min
X∈Sn

⟨C,X⟩

subject to Diag(X) = 1,

X ∈ Sn+,

min
x∈Rn,t∈Rm

λ1Tt+
1

2
∥x∥2,

subject to diag(b)Ax+ 1 ≤ t,

t ∈ Rm
+ .

where 1 is an all one vector, A ∈ Rm×n and b ∈ Rm are problem data in the linear SVM, diag(b)

9



Figure 1: Numerical convergence behavior of inexact ALM (15) for Max-Cut and linear SVM. The symbol ϵ3
denotes the KKT residuals ϵ3 = max{η1, η2, η3, η4, η5}.

denotes the diagonal matrix with b as the diagonal elements, and λ > 0 is a constant. We can see that
Max-Cut is of the same form as (P). Despite linear SVM is not in the form of SDP (P) but a quadratic
program, the corresponding ALM with similar convergence guarantees can also be derived since a
quadratic program is a special case of SDP. For Max-Cut problem, we select the graph G1,G2, and
G3 from the website https://web.stanford.edu/~yyye/yyye/Gset/ and only take the first
20 × 20 submatrix as the considered problem data C. For linear SVM, we randomly generate the
problem data A ∈ R10×100 and b ∈ {−1, 1}100. We then apply the ALM (15) for those instances and
compute the relative primal and dual cost value gap and the relative feasibility residuals as follows

ϵ1 =
| ⟨C,Xk⟩ − p⋆|

1 + |p⋆|
, ϵ2 =

| ⟨b, yk⟩ − d⋆|
1 + |d⋆|

, η1 =
∥A(Xk)− b∥

1 + ∥b∥
, η2 =

∥Xk −ΠSn+(Xk)∥
1 + ∥Xk∥

,

η3 =
∥C −A∗(yk)− Zk∥

1 + ∥C∥
, η4 =

∥Zk −ΠSn+(Zk)∥
1 + ∥Zk∥

, η5 =
| ⟨C,Xk⟩ − ⟨b, yk⟩ |

1 + |d⋆|
.

The numerical results are presented in Figure 1. In all cases, the primal and dual cost value gap and
the KKT residuals all converge linearly to at least the accuracy of 10−5. The oscillation or flattening
behavior that appears in the tail (when the iterates are close to the solution set) could be due to the
inaccuracy of the subproblem solver and computational impreciseness. A detailed theoretical analysis
of such behavior is interesting, and we leave it to future work.

Further details on the algorithm parameters, problem instances, and more numerical experiments for
machine learning applications can be found in Appendix F.

6 Conclusion

In this paper, we have established the quadratic growth and error bound of two different variants
(4) and (5) of SDPs under the condition of strict complementarity. Central to our approach is the
examination of the growth properties of the indicator and exact penalty functions. By leveraging these
new quadratic growth and error bounds, we establish the linear convergence of both primal and dual
iterates of inexact ALMs when applied to semidefinite programs, under the usual assumption of strict
complementarity and a bounded solution set on the primal side. Our result not only fills a void in the
convergence theory of inexact ALMs but also offers valuable insights into the exceptional numerical
performance of solvers rooted in ALMs, such as SDPNAL+ [19]. We expect further interesting
applications in machine learning and polynomial optimization [11] for inexact ALMs.
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Appendix
The appendix is divided into the following seven sections:

1. Appendix A presents some preliminaries in conic optimization and standard ALMs.
2. Appendix B presents a self-contained proof for the exact penalty functions and a new characterized

of the preimage of the exact penalty functions.
3. Appendix C completes the proof of growth properties of the indicator function and exact penalty

function.
4. Appendix D details the proof of Proposition 1 and presents a simple example to illustrate the

growth property.
5. Appendix E.2 completes the missing proofs in Theorem 3.
6. Appendix E.3 discusses the convergence of ALMs applied to the dual problem (D).
7. Appendix F presents further details of numerical experiments in Section 5.

A Optimization Background

Notations For clarity, we summarize common notations here. We use Rn to denote the n-
dimensional real space and Sn to denote the space of real n× n symmetric matrices. The cone of
nonnegative orthant is denoted as Rn

+ = {x ∈ Rn | xi ≥ 0, ∀i = 1, . . . , n}. The cone of positive
and negative semidefinite matrices are defined as Sn+ = {X ∈ Sn | vTXv ≥ 0, ∀v ∈ Rn} and
Sn− = −Sn+ respectively. For vectors in Rn, the inner product ⟨·, ·⟩ is defined as ⟨x, y⟩ = xTy and
the normal ∥ · ∥ stands for the l2 norm. For matrices in Sn, the inner product ⟨·, ·⟩ is defined as
⟨X,Y ⟩ = tr(XTY ) and the norm ∥ · ∥op, ∥ · ∥∗ and ∥ · ∥ denote the operator two norm, nuclear
norm, and Frobenious norm respectively. Given a set S ⊆ Rn, the relative interior of S is denoted
as relint(S), and δS(x) is defined as the indicator function of S, i.e., δS(x) = 0 if x ∈ S and
δS(x) = ∞ otherwise. The closed ball with a radius µ around the center x ∈ Rn is written as
B(x, µ) = {y ∈ Rn | ∥y − x∥ ≤ µ}.

A.1 Standard notion of strict complementarity in SDPs

In this subsection, we review the standard algebraic notion definition for SDPs which is equivalent to
Definition 2. A proof of the equivalence can be found in [28, Appendix B].
Definition A.1 (Strict complementarity for SDPs). Consider the pair of primal and dual SDPs (P)
and (D). We say the strict complementarity holds if there exists a pair of primal and dual solutions
(X⋆, y⋆, Z⋆) satisfying

X⋆ + Z⋆ ∈ Sn++ or rank(X⋆) + rank(Z⋆) = n. (A.1)

With the complementarity slackness ⟨X⋆, Z⋆⟩ = 0, we have X⋆Z⋆ = Z⋆X⋆ = 0. This means there
exists an orthonormal matrix Q ∈ Rn×n with QTQ = I , such that

X⋆ = Q · diag(λ1, . . . , λn) ·QT, Z⋆ = Q · diag(w1, . . . , wn) ·QT (A.2)
and λiwi = 0, i = 1, . . . , n. Then, (A.1) implies that exactly one of the two conditions λi = 0 and
wi = 0 is true in (A.2). In other words, the eigenvalues of X⋆ and Z⋆ have a complementary sparsity
pattern.
Remark A.1 (Dual strict complementarity in the general case). The dual strict complementarity in
Definition 2 is consistent with [28, Defnition 2]. A variant of dual strict complementarity in the
general case is given in [34, Section 4], which requires that

0 ∈ relint(∂g(y⋆)), (A.3)
where g(y) = ⟨b, y⟩ − δSn+(C −A∗(y)). Definition 2 is also consistent with (A.3). Indeed, let a dual
optimal solution (y⋆, Z⋆) satisfy (A.3). Considering ∂g(y) = b+A(NSn+(C −A∗(y))) and using
[51, Corollary 6.6.2 and Theorem 6.6], we have

0 ∈ relint(b+A(NSn+(Z
⋆))) = b+ relint(A(NSn+(Z

⋆)))) = b+A(relint(NSn+(Z
⋆))),

which means there exists a point s ∈ relint(NSn+(Z
⋆)) such that 0 = b+A(s). Equivalently, there

exists X⋆ = −s ∈ relint(N(Sn+)◦(−Z⋆)) (recall that (Sn+)◦ = −Sn+) such that A(X⋆) = b. This is
equivalent to Definition 2. □
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A.2 Augmented Lagrangian Methods (ALMs) for inequality constraints

We here review some classic results of ALM. Consider a constrained convex optimization problem
min
x∈X0

f(x)

subject to fi(x) ≤ 0, ∀i = 1, 2, . . . ,m,
(A.4)

where X0 ⊆ Rn is a closed convex set and f, fi : E → R̄ are proper closed convex functions. We
associate each inequality constraint in (A.4) with a dual variable zi ≥ 0, and the Lagrangian function
for (A.4) is L0(x, z) = f(x) +

∑m
i=1 zifi(x). The corresponding dual function is

g0(z) = inf
x∈X0

L0(x, z). (A.5)

One way to define the augmented Lagrangian for (A.4) is to transform the inequality constraints
into equality constraints [45, Chapter 4.7]. After some manipulation (see [45, Equation 4.79] or
Appendix A.3), the classical augmented Lagrangian with parameter r > 0 for (A.4) reads as

Lr(x, z) = f(x) +
1

2r

(
∥ΠRm

+
(z + rf(x))∥2 − ∥z∥22

)
, (A.6)

where ΠRm
+
(·) denotes the Euclidean projection onto Rm

+ . Note that Lr is differentiable in z [52].
Given an initial point z0 ∈ Rm and a sequence of positive scalars r0 ↑ r∞ < +∞, the inexact ALM
generates a sequence of {xk} (primal variables) and {zk} (dual variables) as

xk+1 ≈ min
x∈X0

Lrk(x, zk), (A.7a)

zk+1 = zk + rk∇zLrk(xk+1, zk) = ΠRm
+
(zk + rkf(xk+1)), k = 0, 1, . . . . (A.7b)

The convergence of xk and zk depends on the inexactness in (A.7a). For this, the seminal work by
Rockafellar [23] points out an important connection between PPM and ALM, summarized below.
Lemma A.1 ([23, Proposition 6]). The dual iterate zk+1 in (A.7b) satisfies the following relationship

∥zk+1 − proxrk,−g0(zk)∥
2/(2rk) ≤ L̄rk(xk+1, zk)− inf

x∈X0

Lrk(x, zk),

where g0 is the Lagrangian dual function in (A.5), and L̄r denotes an extended form of the augmented
Lagrangian Lr as L̄r(x, z) = Lr(x, z), if x ∈ X0, otherwise L̄r(x, z) = ∞.

Note the subtle difference between Lemmas 4 and A.1. If (A.7a) is updated exactly, Lemma A.1
confirms that zk+1 = proxck,−g0(zk). In other words, the dual iterates of the ALM are the same as
the iterates from PPM on the dual problem (A.5). Moreover, by controlling the inexactness (A.7a),
the convergence of the dual variables zk can be naturally guaranteed from Lemma 1. Motivated by
(a) and (b), the following two criteria are commonly used in (A.7a)

L̄ck(xk+1, zk)− min
x∈X0

L̄rk(x, zk) ≤ ϵ2k/(2rk),
∑∞

k=1 ϵk < ∞, (A)

L̄ck(xk+1, zk)− min
x∈X0

L̄rk(x, zk) ≤ δ2k∥zk+1 − zk∥2/(2rk),
∑∞

k=1 δk < ∞, (B)

where {ϵk}k≥0 and {δk}k≥0 are two sequences of inexactness. Note that (A) and (B) guarantee the
dual variables zk from ALM (A.7) satisfy (a) and (b) with the inexact PPM (3), respectively. Let
S = argmaxz≥0 g0(z) denote the set of optimal dual solutions for (A.4). Combining Lemma A.1
with Lemma 1, the iterates from the inexact ALM (A.7) has the following convergence guarantees.
Lemma A.2. Assume S ̸= ∅. Let {xk, zk} be a sequence generated by the inexact ALM (A.7).

(a) If criterion (A) is used, then limk→∞ zk = z∞∈S (i.e., zk converges to a dual optimal solution),
and the primal sequence {xk} satisfies fi(xk+1) ≤ ∥zk − zk+1∥/ck, i = 1, . . . ,m (primal
feasibility), and ⟨c, xk+1⟩ − p⋆ ≤ (ϵ2k + ∥zk − zk+1∥2)/(2ck) (cost value gap).

(b) If both criteria (A) and (B) are used, and the dual function −g0 in (A.5) further satisfies
(QG) with a coefficient µq > 0, then there exists a k̂ > 0 such that dist(zk+1, S) ≤ µk ·
dist(zk, S), ∀k ≥ k̂, where µk = θk+2δk

1−δk
with θk = 1/

√
ckµq+1<1.

The first asymptotic convergence for limk→∞ zk = z∞∈S directly comes from Lemma 1, and the
asymptotic convergence in terms of primal feasibility and cost value gap is taken from [23, Theorem
4]. The second linear convergence in Lemma A.2 is only guaranteed for the dual iterates zk, which
is also implied by Lemma 1. However, the rate of the primal iterates xk is unclear even with the
quadratic growth condition. With a much stronger condition on the Lagrangian, the classical result in
[23, Theorem 5] can ensure linear convergence of xk.
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A.3 Augmented Lagrange functions for inequality constraints

One straightforward way to define the augmented Lagrangian for the inequality form (A.4) is to first
transform (A.4) into the following equivalent problem

min
x∈X0,v≥0

f(x)

subject to fi(x) + v = 0, ∀i = 1, 2, . . . ,m.
(A.8)

Then the augmented Lagrangian for the above equality-constrained problem with a penalty term
r > 0 is defined as

Lr(x, v, z) = f(x) +
m∑
i=1

zi(fi(x) + vi) +
r

2

m∑
i=1

(fi(x) + vi)
2

= f(x) +
1

2r

(
∥z + r(f(x) + v)∥2 − ∥z∥2

)
.

Note that Lr is a decoupled quadratic function in terms of vi. Minimizing Lr(x, v, z) with respect to
v ≥ 0 with a fixed x and y, we derive the optimal v as

vi = max
{
0,−zi

r
− fi(x)

}
, ∀i = 1, . . . ,m.

Upon plugging the optimal v in the Lr with some arrangements, we arrive at the classical augmented
Lagrangian for the problem with inequality constraints (A.4)

Lr(x, z) = f(x) +
1

2r

(
∥ΠRm

+
(z + rf(x))∥2 − ∥z∥2

)
.

A.4 Bounded Linear regularity and regularity conditions

We review an important concept: bounded linear regularity of a collection of closed convex sets.

Definition A.2 (Bounded linear regularity [53, Definition 5.6]). Let D1, . . . , Dm ⊆ Rn be closed
convex set. Suppose D := D1 ∩ · · · ∩ Dm is nonempty. The collection {D1, . . . , Dm} is called
boundedly linear regular if for every bounded set V ⊆ Rn, there exists a constant κ > 0 such that

dist(x,D) ≤ κmax{dist(x,D1), . . . , dist(x,Dm)}, ∀x ∈ V .

Bounded linear regularity allows us to bound (up to some constant) the distance to the intersection D
(which can be complicated) by the maximum of the distance to Di, which is often easier to compute.
The following result shows a sufficient condition for bounded linear regularity.

Lemma A.3 ([54, Collorary 3]). Let D1, . . . , Dm ⊆ Rn be closed convex set. Suppose that
D1, . . . , Dr(r ≤ m) are polyhedra. Then {D1, . . . , Dm} is boundedly linear regular if

(∩i=1,2,...,rDi)
⋂

(∩i=r+1,...,mrelint(Di)) ̸= ∅,

where relint denotes the relative interior.

This result indicates that a collection of closed convex sets is boundedly linear regular if the rela-
tive interiors of non-polyhedral sets have a non-empty intersection with the rest of the polyhedra.
Lemma A.3 plays a key role in the proof of Theorems 1 and 2. In particular, as we will see in
Appendix D.1, the optimal solution set of (P), i.e., ΩP, can be characterized as

ΩP = X0 ∩ (∂g)−1(−Z⋆), ∀(y⋆, Z⋆) ∈ ΩD,

where X0 = {X ∈ Sn+ | A(X) = b}. Thus, assuming dual strict complementarity (there exists
X⋆ ∈ relint((∂g)−1(−Z⋆))), given a compact set U ⊆ Sn containing X⋆, Lemma A.3 ensures the
following holds

dist(X,ΩP) ≤ α1dist(X,X0) + α2dist(X, (∂g)−1(−Z⋆)), ∀X ∈ U ,

where α1 and α2 are two positive constants.
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B Exact penalty forms of conic optimization

In this section, we characterize the connection between exact penalty functions and indicator functions
(6). Most importantly, we give a simple proof for the exact penalty functions. The main result is
stated in Proposition B.2. We first state the preimage characterization of subdifferential mapping
of the exact penalty function in Proposition B.1, which is a more general result of the first part of
Lemma 3 (i.e., (11)). The second part of Lemma 3 (i.e., (12)) is postponed to Appendix C.

B.1 Subdifferential of the exact penalty function

Proposition B.1. Let Z ∈ Sn+ and define

l(X) = ρmax{0, λmax(−X)} with ρ > tr(Z). (B.1)

Then for all S ∈ Sn+ satisfying ρ > tr(S), it holds that

(∂l)−1(−S) = (δSn+)
−1(−S) = N(Sn+)◦(−S). (B.2)

One can see that (11) is a special case of Proposition B.1 with S = Z̄. We postpone the proof of
Proposition B.1 to Appendix B.2. Be aware that (B.2) does not mean the mappings (∂l)−1 and
(δSn+)

−1 are the same for each point in the domain, while the equality only holds for certain points
satisfying the relationship with the penalty coefficient ρ in (B.1). We use a simple example to illustrate
this subtlety.

Example B.1. Consider l : R → R as l(x) = 2max{0,−x} which is the scalar version of the
function in (B.1) with ρ = 2. The subdifferential ∂l : R ⇒ R and ∂δR+

= NR+
can be computed as

∂l(x) =


0, if x > 0,

[−2, 0], if x = 0,

−2, if x < 0,

and ∂δR+
(x) =


0, if x > 0,

(−∞, 0], if x = 0,

∅, if x < 0.

Thus, the preimages can be verified as

(∂l)−1(−z) =



∅, if z > 2,

(−∞, 0], if z = 2,

0, if 0 < z < 2,

[0,∞), if z = 0,

∅, if z < 0,

and ∂(δR+
)−1(−z) =


0, if z > 0,

[0,∞), if z = 0,

∅, if z < 0.

This shows that (∂l)−1(−z) = (δR+)
−1(−z) holds only when z < 2.

With the preimage characterization in Proposition B.1, the following result on the exact penalty
functions follows easily by choosing the penalty term ρ correctly.

Proposition B.2 (Exact penalty function). Assuming strong duality holds for (P) and (D), (4) is
equivalent to the primal SDP (P) if the function g in (4) is chosen to be the corresponding indicator
function, i.e., g = δSn+ , or the exact penalty function

l(X) = ρmax{0, λmax(−X)} with ρ > tr(Z⋆), (B.3)

where (y⋆, Z⋆) ∈ ΩD is an optimal dual solution of (D).

Proof. The case for the indicator function δSn+ is clear. We consider the case for the exact penalty
function. Note the dual of (4) is

max
y,Z

⟨b, y⟩

subject to A∗(y) + Z = C,

tr(Z) ≤ ρ,

Z ∈ Sn+.

(B.4)
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Let ΩP2 and ΩD2 denote the optimal solution of (4) and (B.4) respectively. First, it is clear that
ΩD2 ⊆ ΩD as there is an extra constraint in (B.4), compared with (D). Second, as the problem
is convex, a pair of primal and dual solutions (X̂⋆, ŷ⋆, Ẑ⋆) solves (4) and (B.4) if and only if the
following KKT system holds

A(X̂⋆) = b, Z⋆ = C −A∗(ŷ⋆), 0 ∈ Ẑ⋆ + ∂g(X̂⋆).

Then the primal solution set can be written as

ΩP2 = X0 ∩ (∂g)−1(−Ẑ⋆), ∀(ŷ⋆, Ẑ⋆) ∈ ΩD2
.

where X0 = {X ∈ Sn | A(X) = b}. Note that (y⋆, Z⋆) is an optimal solution to (B.4) as (y⋆, Z⋆)
is feasible in (B.4) and ⟨b, y⋆⟩ ≤ maxy,Z (B.4) ≤ d⋆ = ⟨b, y⋆⟩ by construction. We can write ΩP2

as

ΩP2 = X0 ∩ (∂g)−1(−Z⋆) = X0 ∩ (∂δSn+)
−1(−Z⋆),

where the last equality uses (∂g)−1(−Z⋆) = (∂δSn+)
−1(−Z⋆) in (B.2) as tr(Z⋆) < ρ and Z⋆ ∈ Sn+.

On the other hand, we can write ΩP as
ΩP = X0 ∩ (∂δSn+)

−1(−Z⋆).

It is clear that ΩP2 = ΩP and the proof is complete.

Remark B.1 (Dual problem). Note that Proposition B.2 only guarantees the cost value and solution
sets of (4) and (P) to be the same, while the solution sets of (D) and the dual of (4) may differ, as seen
in the proof of Proposition B.2. To fully equate (D) and the dual of (4), one can choose the penalty
coefficient ρ as ρ > sup(y⋆,Z⋆)∈ΩD

tr(Z⋆). This choice of ρ can guarantee every optimal solution in
(D) is also an optimal solution in (B.4) as the extra constraint in (B.4) (compared with (D)) does not
affect the solution set. Combining this with the fact ΩD2

⊆ ΩD, we conclude that ΩD = ΩD2
.

B.2 Proof for Proposition B.1

The following proposition showcases the subdifferential calculation of the function l(X) =
ρmax{0, λmax(−X)} with ρ ≥ 0. It is a standard result of the subdifferential of the maximal
eigenvalue of symmetric matrices and standard subdifferential calculus.
Proposition B.3 ([55, Theorem 2] and [45, Theorem 2.87]). Let ρ ≥ 0 and X ∈ Sn with λmax(−X)
having t multiplicity . The subdifferential of l(X) = ρmax{0, λmax(−X)} is characterized by

∂l(X) =


0 if λmin(X) > 0,

{−ρPSPT | S ∈ St+, tr(S) ≤ 1} if λmin(X) = 0,

{−ρPSPT | S ∈ St+, tr(S) = 1} if λmin(X) < 0,

(B.5)

where columns of P ∈ Rn×t are orthonormal eigenvectors corresponding to λmax(−X).

Proposition B.4. Let Z ∈ Sn+ \ {0} and write Z = [P1 P2]

[
Λ1 0
0 0

] [
PT
1

PT
2

]
with Λ1 ∈ Sr++. Let

l(X) = ρmax{0, λmax(−X)} with ρ > tr(Z). We have

(∂l)−1(0) = Sn+,
(∂l)−1(−Z) = (NSn+)

−1(−Z).

Proof. The case (∂l)−1(0) = Sn+ can be easily observed from the first two cases in (B.5). We then
consider the case Z ∈ Sn+ \ {0}. Given a X ∈ Sn, we use the matrix PX ∈ Rn×t to denote the
orthonormal eigenvectors corresponding to λmax(−X) where t is the multiplicity of λmax(−X). It
follows that

(∂l)−1(−Z) = {X ∈ Sn | −Z ∈ ∂l(X)}
(a)
= {X ∈ Sn+ \ Sn++ | Z ∈ ρPXSPT

X , S ∈ St+, tr(S) < 1}
(b)
=

{
[P1 P2]

[
0 0
0 B

] [
PT
1

PT
2

]
| 0 ∈ Rr×r, B ∈ Sn−r

+

}
(c)
= NSn−(−Z)

= (NSn+)
−1(−Z),
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where the domain Sn+ \Sn++ and the strict inequlaity tr(S) < 1 in (a) is due to the choice ρ > tr(Z),
and (c) is a common form of NSn−(−Z) [28, Complementary face in Section 3.3]. We argue (b) is
correct by verifying the following two sets are equivalent.

D1 = {X ∈ Sn+ \ Sn++ | Z ∈ ρPXSPT
X , S ∈ St+, tr(S) < 1},

D2 =

{
[P1 P2]

[
0 0
0 B

] [
PT
1

PT
2

]
| 0 ∈ Rr×r, B ∈ Sn−r

+

}
.

• (D1) ⇒ (D2) : Let X ∈ D1. Write X = Pα0P
T
α + PβΛβP

T
β with Pα ∈ Rn×t and Pβ ∈

Rn×(n−t). As span(P1) ⊆ span(Pα), we have span(Pβ) ⊆ span(P2). Thus, there exists U ∈
Rn×(n−r) such that UTU = In−r and Pβ = P2U . We then have

PβΛβP
T
β = P2(UΛβU

T)PT
2 .

This means X ∈ D2.
• (D2) ⇒ (D1) : Let X ∈ D2. It is clear that span(P1) is in the eigenspace of 0 of the matrix X .

Choosing S = Λ1

ρ ∈ Sr++, we can recover Z as

ρP1
Λ1

ρ
PT
1 = Z.

Also, tr(S) = tr(Λ1)/ρ < 1, so we conclude X ∈ D1.

C Growth properties of indicator and exact penalty functions in Lemma 3

One key step in the proof of Theorems 1 and 2 is the growth properties of the indicator function or
the penalty function (10), summarized in (12) in Lemma 3. In this section, we complete its proof
details. We first establish a lower bound of

〈
Z̄,X

〉
in terms of the distance dist(X,N(Sn+)◦(−Z̄)).

Our proof uses some techniques in [27].
Lemma C.1. Let X̄, Z̄ ∈ Sn+ satisfying

〈
X̄, Z̄

〉
= 0 (i.e., both X̄ and Z̄ are on the boundary unless

one of them is zero). For any positive µ ∈ (0,∞), there exists a constant κ > 0 such that〈
Z̄,X

〉
≥ κ · dist2

(
X,N(Sn+)◦(−Z̄)

)
, ∀X ∈ Sn+ ∩ B(X̄, µ), (C.1)

where B(X̄, µ) = {X ∈ Sn | ∥X − X̄∥ ≤ µ} denotes a closed ball with radius µ and center X̄ .

Note that (C.1) is the reformulation of

0 ≥ 0−
〈
Z̄,X

〉
+ κ · dist2

(
X,N(Sn+)◦(−Z̄)

)
, ∀X ∈ Sn+ ∩ B(X̄, µ). (C.2)

Indeed, (C.2) is the same as (12) in Lemma 3 when choosing l = δSn+ (recall that we have δSn+(X̄) = 0,
and the relationship in (11)). Therefore, Lemma 3 for the indicator function l = δSn+ is a direct
consequence of Lemma C.1. The proof of Lemma C.1 is given in Appendix C.1. In Appendix C.2,
we will use Lemma C.1 to prove the growth property for the exact penalty function l in (10).

C.1 Proof of Lemma C.1

We only need to consider the case where Z̄ ̸= 0, since the case Z̄ = 0 is true by observing that〈
X, Z̄

〉
= 0, dist(X,N(Sn+)◦(0)) = dist(X, Sn+) = 0, ∀X ∈ Sn+ ∩ B(X̄, µ).

We first introduce the following useful inequality for positive semidefinite matrices.

Lemma C.2. Suppose
[
A B
BT D

]
∈ Sn+. Then ∥D∥op tr(A) ≥ ∥B∥2.

We now proceed with the proof. Fix a µ > 0. Consider X̄, Z̄ ∈ Sn+ and
〈
X̄, Z̄

〉
= 0. Let

X ∈ B(X̄, µ) ∩ Sn+ and write

Z̄ = [P1 P2]

[
Λ1 0
0 0

] [
PT
1

PT
2

]
,
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where Λ1 ∈ Sr+ is a diagonal matrix containing the positive eigenvalues of Z̄. Let P = [P1 P2] be
the orthonormal eigenvectors matrix. The projection of X onto N(Sn+)◦(−Z̄) can be verified as

P

[
0 0
0 PT

2 XP2

]
PT = argmin

Y ∈N(Sn
+

)◦ (−Z̄)

∥X − Y ∥2.

Hence, the distance dist2(X,N(Sn+)◦(−Z̄)) can be computed as

dist2(X,N(Sn+)◦(−Z̄)) =

∥∥∥∥X − P

[
0 0
0 PT

2 XP2

]
PT

∥∥∥∥2
=

∥∥∥∥[PT
1 XP1 PT

1 XP2

PT
2 XP1 0

]∥∥∥∥2 = ∥PT
1 XP1∥2 + 2∥PT

1 XP2∥2,
(C.3)

where the second equality uses the unitary invariance. It remains to estimate the terms ∥PT
1 XP1∥2

and ∥PT
1 XP2∥2.

By the assumption X ∈ B(X̄, µ) ∩ Sn+ and unitary invariance, we have

µ ≥ ∥X − X̄∥ = ∥PT(X − X̄)P∥ ≥ max{∥PT
1 (X − X̄)P1∥, ∥PT

2 (X − X̄)P2∥}
≥ max{∥PT

1 XP1∥op, ∥PT
2 (X − X̄)P2∥op},

(C.4)

where the last inequality uses the fact that PT
1 X̄P1 = 0 as

〈
X̄, Z̄

〉
= 0 and X̄, Z̄ ∈ Sn+, and the

relationship ∥ · ∥ ≥ ∥ · ∥op. It follows that

∥PT
1 XP1∥2 =

〈
PT
1 XP1, P

T
1 XP1

〉
≤ ∥PT

1 XP1∥op∥PT
1 XP1∥∗ ≤ µ · tr(PT

1 XP1), (C.5)

where the second inequality uses the generalized Cauchy-Schwarz inequality (∥ · ∥∗ and ∥ · ∥op norms
are dual to each other; we have | ⟨X,Z⟩ | ≤ ∥X∥∗∥Z∥op, ∀X,Z ∈ Sn), and the last inequality uses
(C.4) and ∥PT

1 XP1∥∗ = tr(PT
1 XP1) as X ∈ Sn+.

On the other hand, applying Lemma C.2 on PTXP yields

∥PT
1 XP2∥2 ≤ ∥PT

2 XP2∥op tr(PT
1 XP1) ≤ (µ+ ∥X̄∥) · tr(PT

1 XP1), (C.6)

where the last inequality is due to (C.4). Moreover, we have〈
Z̄,X

〉
=

〈
P1Λ1P

T
1 , X

〉
=

〈
Λ1, P

T
1 XP1

〉
≥ λmin(Λ1) tr(P

T
1 XP1), (C.7)

where λmin(Λ1) > 0. Putting (C.3), (C.5) and (C.6) together and choosing κ = λmin(Λ1)
3µ+2∥X̄∥ gives us

κ · dist2(X,N(Sn+)◦(−Z̄)) ≤ κ(3µ+ 2∥X̄∥) tr(PT
1 XP1) ≤

〈
Z̄,X

〉
,

where the last inequality is due to (C.7). This completes the proof.

C.2 Growth property of the exact penalty function l in (10)

Throughout this section, we fix a pair of matrices (X̄, Z̄) ∈ Sn+ × Sn+ satisfying
〈
X̄, Z̄

〉
= 0. We

need to prove for any positive value µ ∈ (0,∞), there exists a positive constant κ > 0 such that

l(X) ≥ l(X̄) +
〈
−Z̄,X − X̄

〉
+ κ · dist2

(
X, (∂l)−1(−Z̄)

)
, ∀X ∈ B(X̄, µ). (C.8)

Note that it is equivalent to showing that there exists a κ > 0 such that

l(X) ≥
〈
−Z̄,X

〉︸ ︷︷ ︸
R1

+κ · distp
(
X,N(Sn+)◦(−Z̄)

)
︸ ︷︷ ︸

R2

, ∀X ∈ B(X̄, µ) (C.9)

as l(X̄) = 0 and
〈
Z̄, X̄

〉
= 0 by assumption. This result (C.9) has already applied a non-trivial fact

(∂l)−1(−Z̄) = (NSn+)
−1(−Z̄) = N(Sn+)◦(−Z̄) for the exact penalty function (10), which has been

established in Proposition B.1.
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In the following, we will bound the terms R1 and R2 in (C.9). The term R2 will rely on Lemma C.1.
One key difference between (C.9) and (C.2) is that the penalty function l(X) < ∞ when X /∈ Sn+,
while δSn+(X) = ∞, ∀X /∈ Sn+.

Let us fix a µ > 0, consider X ∈ B(X̄, µ), and write ρ = δ+ tr(Z̄). We first consider the case when
Z̄ = 0. Note that

〈
Z̄,X

〉
= 0 and N(Sn+)◦(0) = Sn+. The distance dist(X,N(Sn+)◦(0)) can be upper

bounded as

dist2(X,N(Sn+)◦(0)) = ∥X −ΠSn+(X)∥2 ≤ nmax{0, λmax(−X)}2 ≤ nµmax{0, λmax(−X)}.

Choosing κ = ρ
nµ yields

⟨−Z⋆, X⟩+ κ · dist2(X,N(Sn+)◦(0)) ≤ ρmax{0, λmax(−X)} = l(X), ∀X ∈ B(X̄, µ).

We then consider the case Z̄ ̸= 0.

• We first bound R1 =
〈
−Z̄,X

〉
:〈

−Z̄,X
〉
=

〈
Z̄,ΠSn+(X)−X

〉
−
〈
Z̄,ΠSn+(X)

〉
≤ ∥Z̄∥∗∥ΠSn+(X)−X∥op −

〈
Z̄,ΠSn+(X)

〉
= tr(Z̄)max{0, λmax(−X)} −

〈
Z̄,ΠSn+(X)

〉
, (C.10)

where the inequality applies the general Cauchy-Schwarz inequality (∥ · ∥∗ and ∥ · ∥op norms are
dual to each other; we have | ⟨X,Z⟩ | ≤ ∥X∥∗∥Z∥op, ∀X,Z ∈ Sn).

• We then bound R2 = dist2(X,N(Sn+)◦(−Z̄)): Let Y be the projection of ΠSn+(X) on to
N(Sn+)◦(−Z̄), i.e., Y = argminV ∈N(Sn

+
)◦ (−Z̄) ∥ΠSn+(X)− V ∥. We then have

dist2
(
X,N(Sn+)◦(−Z̄)

)
≤ ∥X − Y ∥2 ≤ 2∥X −ΠSn+(X)∥2 + 2∥ΠSn+(X)− Y ∥2. (C.11)

The first term ∥X −ΠSn+(X)∥2 can be bounded by

∥X −ΠSn+(X)∥2 ≤ nmax{0, λmax(−X)}2 ≤ nµmax{0, λmax(−X)},

where the last inequality comes from |λmin(X)− λmin(X̄)| = |λmax(−X)| ≤ µ as λmin(X̄) = 0
and ∥X − X̄∥ ≤ µ.

The second term ∥ΠSn+(X)− Y ∥2 can be bounded by Lemma C.1, i.e., there is a κ′ > 0 such that

∥ΠSn+(X)− Y ∥2 ≤ 1

κ′

〈
ΠSn+(X), Z̄

〉
.

Putting everything together and choosing κ = min{ δ
2nµ ,

κ′

2 } yields〈
−Z̄,X

〉
+ κ · dist2

(
X,N(Sn+)◦(−Z̄)

)
≤ tr(Z̄)max{0, λmax(−X)} −

〈
Z̄,ΠSn+(X)

〉
+ κ2nµmax{0, λmax(−X)}+ 2κ

κ′ ·
〈
ΠSn+(X), Z̄

〉
≤ tr(Z̄)max{0, λmax(−X)}+ δmax{0, λmax(−X)}
= ρmax{0, λmax(−X)} = l(X), ∀X ∈ B(X̄, µ).

D Growth growth under strict complementarity

As mentioned in the main text, the key step to prove Theorems 1 and 2 is to establish the growth
property (12) in Lemma 3 which we have proved in Appendix C. Once Lemma 3 is established, with
strict complementarity assumption, we can deduce Proposition 1. In this appendix, we first provide
proof for Proposition 1 in Appendix D.1 and use a simple example to illustrate the quadratic growth
property in Appendix D.2.
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D.1 Proof of Proposition 1

The following proof is adapted from [27]. We first prove the primal case. Fix a µ > 0 and X⋆ ∈ ΩP.
As the problem is convex, a pair of primal and dual solutions (X̂⋆, ŷ⋆, Ẑ⋆) solves (4) and its dual
problem if and only if the following KKT system holds

A(X̂⋆) = b, Ẑ⋆ = C −A∗(ŷ⋆), 0 ∈ Ẑ⋆ + ∂g(X̂⋆).

Combined with the fact that any primal and dual solution forms a pair, the optimal primal solution
ΩP can be characterized as

ΩP = X0 ∩ (∂g)−1(−Ẑ⋆), ∀(ŷ⋆, Ẑ⋆) ∈ ΩD,

where X0 = {X ∈ Sn | A(X) = b}. Let (X̄⋆, ȳ⋆, Z̄⋆) be a pair of primal and dual solutions satis-
fying X̄⋆ ∈ relint((∂g)−1(−Z̄⋆)) (strict complementarity assumption). There exist α1, κ1, κ2 > 0
such that for all X ∈ B(X⋆, µ) the following holds

dist2(X,ΩP) = dist2(X,X0 ∩ (∂g)−1(−Z̄⋆))

≤ α1(dist(X,X0) + dist(X, (∂g)−1(−Z̄⋆)))2

≤ κ1(dist
2(X,X0) + dist2(X, (∂g)−1(−Z̄⋆)))

≤ κ2(∥A(X)− b∥2 + dist2(X, (∂g)−1(−Z̄⋆))),

(D.1)

where the first inequality applies Lemma A.3, the second inequality applies (A+B)2 ≤ 2A2 + 2B2

for all A,B ≥ 0, the third inequality uses the fact that X0 is an affine space. On the other hand, we
know

〈
X̂⋆, Z̄⋆

〉
= 0 for all X̂⋆ ∈ ΩP naturally, so Lemma 3 can be applied here on Z⋆ and Z̄⋆ (the

proof of Lemma 3 is provided in Appendix C.2). For all X ∈ B(X⋆, µ) it holds that

fP(X) = ⟨C,X⟩+ g(X)

≥ ⟨C,X⟩+ g(X⋆) + ⟨A∗(ȳ⋆)− C,X −X⋆⟩+ κ · dist2(X, (∂g)−1(−Z̄⋆))

≥ ⟨C,X⟩+ g(X⋆) + ⟨A∗(ȳ⋆)− C,X −X⋆⟩+ κ

κ2
dist2(X,ΩP)− κ∥A(X)− b∥2

≥ fP(X
⋆)− ∥ȳ⋆∥∥A(X)− b∥ − κ∥A(X)− b∥2 + κ

κ2
· dist2(X,ΩP)

= fP(X
⋆)− (∥ȳ⋆∥+ κ∥A(X)− b∥)∥A(X)− b∥+ κ

κ2
· dist2(X,ΩP)

≥ fP(X
⋆)− (∥ȳ⋆∥+ γ)∥A(X)− b∥+ κ

κ2
· dist2(X,ΩP),

where the first inequality uses the growth property on g for X⋆ and Z̄⋆ (12), the second inequality
uses (D.1), the third inequality uses the definition of the adjoint operator and Cauchy–Schwarz
inequality, and the last inequality uses the fact that X is in a bounded set B(X⋆, µ) so there exists
some γ ≥ 0 such that κ∥A(X)− b∥ ≤ γ. This completes the proof.

We move on to prove the dual case. Similarly, we let (y⋆, Z⋆) ∈ ΩD and µ > 0 and characterize the
optimal dual solution as

ΩD = Z0 ∩ (Rm × (∂h)−1(−X̂⋆)), ∀X̂⋆ ∈ ΩP,

where Z0 = {(y, Z) ∈ Rm × Sn | C −A∗(y) = Z}. Let (X̄⋆, ȳ⋆, Z̄⋆) be a pair of primal and dual
solution satisfying Z̄⋆ ∈ relint((∂h)−1(−X̄⋆)). Note that

relint(Rm × (∂h)−1(−X̄⋆)) = Rm × relint((∂h)−1(−X̄⋆)).

Therefore, the existence of such a pair of strict complementarity solution implies

Z0 ∩ relint(Rm × (∂h)−1(−X̄⋆)) ̸= ∅.

Hence, following the same argument to (D.1), we know there exists a constant κ3 > 0 such that

dist2((y, Z),ΩD) ≤ κ3(∥C −A∗(y)− Z∥2 + dist2((y, Z), (∂h)−1(−X̄⋆))) (D.2)
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for all (y, Z) ∈ B((y⋆, Z⋆), µ). Also, as
〈
X̄⋆, Z⋆

〉
= 0, we have

fD(y, Z) = −⟨b, y⟩+ h(Z)

≥ −⟨b, y⟩+ h(Z⋆) + ⟨−X⋆, Z − Z⋆⟩+ κ · dist2((y, Z), (∂h)−1(−X̄⋆))

= h(Z⋆) +
〈
−X̄⋆,A∗(y)− Z − C +A∗(y⋆)

〉
+ κ · dist2((y, Z), (∂h)−1(−X̄⋆))

≥ fD(y
⋆, Z⋆)− ∥X̄⋆∥∥C −A∗(y)− Z∥ − κ∥C −A∗(y)− Z∥2 + κ

κ3
· dist2((y, Z),ΩD)

= fD(y
⋆, Z⋆)− (∥X̄⋆∥+ κ∥C −A∗(y)− Z∥)∥C −A∗(y)− Z∥+ κ

κ3
· dist2((y, Z),ΩD)

≥ fD(y
⋆, Z⋆)− (∥X̄⋆∥+ γ)∥C −A∗(y)− Z∥+ κ

κ3
· dist2((y, Z),ΩD),

where the first inequality uses the growth property on h, the second equality rewrites ⟨b, y⟩ =〈
X̄⋆,A∗(y)

〉
and Z⋆ = C −A∗(y⋆), and the last inequality uses the fact that (y, Z) is in a bounded

set B((y⋆, Z⋆), µ) so there exists a γ ≥ 0 such that κ∥C −A∗(y)− Z∥ ≤ γ.

D.2 Illustration of quadratic growth

In this subsection, we use a simple example to illustrate the quadratic growth property discussed in
(9). In particular, we choose the exact penalty formulation for dual SDP (5) (the proof for the exact
penalty function can be found in Appendix B). Moreover, the following example shows that even a
simple 2× 2 SDP can not have sharp growth in the objective function.
Example D.1. Consider a SDP (P) and (D) with the problem data

C =

[
1 −1
−1 1

]
, A1 =

[
1 0
0 0

]
, A2 =

[
0 0
0 1

]
, and b =

[
1
1

]
.

It can be verified that both primal and dual SDP have a unique solution

X⋆ =

[
1 1
1 1

]
, y⋆ =

[
0
0

]
, and Z⋆ =

[
1 −1
−1 1

]
.

Therefore, the optimal cost value is 0. Moreover, it also satisfies strict complementarity as rank(X⋆)+
rank(Z⋆) = 1 + 1 = 2 (see Definition A.1). (8b) and (9b) then ensure the following exact penalized
formulation having quadratic growth property

f(y) := −bTy + ρmax{0, λmax(A∗(y)− C)},
where ρ can be chosen as any number satisfying ρ > tr(Z⋆) = 2. Let S = {(0, 0)} be the optimal
dual solution set and f⋆ = 0 be the optimal cost value. Figure 2a shows the landscape of the function
f with ρ = 4 and verifies that the function value f(y) is growing at least quadratically away from
the distance to the solution set S = {(0, 0)} with the quadratic constant κ = 0.3. In Figure 2a, the
yellow area indicates the part where only the linear component of f(y), i.e. bTy, is active while
the nonlinear penalty component ρmax{0, λmax(A∗(y)− C)} is 0, and the blue region is the part
where both the linear and nonlinear components of f(y) are active. The black line in Figure 2a is
the boundary where λmax(A∗(y)− C) = 0 which can be characterized by the nonlinear equation
y1y2 − y1 − y2 = 0 with y1 < 1. This nonlinear direction also indicates that sharp growth of f is
impossible. Indeed, let y1 ∈ [0, 1) and y2 = y1

y1−1 . Note that this choice of y satisfies the nonlinear
equation y1y2 − y1 − y2 = 0 and thus only the linear part −bTy in f(y) is in force. We then have

f(y)− f⋆ = −y1 − y2 = −y1 −
y1

y1 − 1
=

−y21
y1 − 1

.

On the other hand, the distance to the solution set can be verified as

dist(y, S) =

√
y21 +

y21
(y1 − 1)2

=

∣∣∣∣∣y1
√
1 + (y1 − 1)2

y1 − 1

∣∣∣∣∣ ≥
∣∣∣∣ y1
y1 − 1

∣∣∣∣ .
It becomes clear that it is impossible to have a constant κ > 0 such that

κ

∣∣∣∣ y1
y1 − 1

∣∣∣∣ ≤ −y21
y1 − 1

= f(y)− f⋆, ∀y1 ∈ [0, 1)
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(a) 3-dimensional view
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(b) Sectional view

Figure 2: The quadratric growth property of the exact penalty function f(y) = −bTy+ρmax{0, λmax(A∗(y)−
C)} where ρ = 4 and f⋆ = 0. The optimal solution set S = {(0, 0)}. In Figure 2a, the yellow region represents
the linear part where only −bTy is active, resulting ρmax{0, λmax(A∗(y) − C)} = 0, the blue region
encompasses both the linear and the nonlinear parts, and the green surf is the square of the distance to the optimal
solution set with κ = 0.3. Figure 2b shows the sectional view of f along the direction y1y2 − y1 − y2 = 0,
which can be characterized as the rational function f(y1) =

−y2
1

y1−1
.

as the quadratic therm y21 will dominant when y1 is small, let alone the sharp growth κ · dist(y, S) ≤
f(y)−f⋆. Moreover, the quadratic growth of indicator function formulation −bTy+δS2+(C−A∗(y))

has also been verified as we only need to consider the linear component −bTy, which has already
been confirmed in the previous case. Lastly, it is worth pointing out that the sublevel sets of the
functions f and −bTy + δS2+(C − A∗(y)) are different. Indeed, given a finite value β > 0, the
sublevel set {y ∈ R2 | f(y) ≤ β} contains both parts of yellow and blue regions in Figure 2b. In
contrast, the sublevel set {y ∈ R2 | −bTy + δS2+(C −A∗(y)) ≤ β} only contains the linear part in
Figure 2b.

E Proofs and supplemental discussions in Section 4

In this section, we complete the missing proof in Section 4 and discuss the ALM applied to (D) with
its corresponding convergence properties. This section is divided into three subsections. Appendix E.1
completes the proof of Proposition 2. Appendix E.2 finishes the proof of Theorem 3. Appendix E.3
discusses the ALM applied to (D).

E.1 Proof of Proposition 2

The proof of Proposition 2 requires a nice characterization of the ordinal dual function and the
augmented dual function defined as

gr(w) = inf
X∈Sn

Lr(X,w) (E.1)

where Lr is the augmented Lagrangian function (14), recall that we write w = (y, Z).
Proposition E.1 ([38, Theorem 3.2]). Let r > 0. For all w ∈ Rm × Sn, it holds that

gr(w) = min
X∈Sn

Lr(X,w) = max
u∈Rm×Sn

g0(u)−
1

2r
∥u− w∥2,

where g0 is the dual function in (13).

Proposition E.1 not only shows the augmented dual function gr is g0 with a prior but also shows gr is
continuously differentiable. In comparison, the ordinary dual function g0 can be highly nonsmooth.
We are ready to prove Proposition 2.
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• Part (a) of Proposition 2 comes directly from the PPM convergence Lemma 1 as Lemma 4 and the
stopping criteria (A′) naturally imply the dual iterate wk+1 satisfies ∥wk+1−proxrk,−g0(wk)∥ ≤ ϵk
and

∑∞
k=1 ϵk < ∞.

• The proof of (b) in Proposition 2 is in fact straightforward. Firstly, by Moreau decomposition [49,
Exercise 12.22] and (15c), we have
rkXk+1 − Zk = ΠSn+(rkXk+1 − Zk)−ΠSn+(Zk − rkXk+1) = ΠSn+(rkXk+1 − Zk)− Zk+1.

Diving both sides by rk, we conclude Xk+1 + (Zk+1 − Zk)/rk ∈ Sn+. Therefore, it follows that

dist(Xk+1, Sn+) ≤ ∥Xk+1 − (Xk+1 + (Zk+1 − Zk)/rk)∥ = ∥Zk+1 − Zk∥/rk.
Secondly, ∥A(Xk+1)− b∥ = ∥yk − yk+1∥/rk comes directly from the update (15b).
Lastly, note that

Lrk(Xk+1, wk) = ⟨C,Xk+1⟩+
1

2rk
(∥wk+1∥2 − ∥wk∥2).

On the other hand, we have

min
X∈Sn

Lrk(X,wk) = grk(wk) = g0(u
⋆)− 1

2rk
∥u⋆ − wk∥2 ≤ g0(u

⋆) ≤ p⋆,

where u⋆ is the point that achieves the maximum in Proposition E.1 and the last inequality uses
weakly duality. Therefore, we have

⟨C,Xk+1⟩ − p⋆ ≤ Lrk(Xk+1, wk)− min
X∈Sn

Lrk(X,wk)−
1

2rk
(∥wk+1∥2 − ∥wk∥2).

Since the convergence of {wk} is guaranteed in (a), the quantities dist(Xk+1, Sn+), ∥A(Xk+1)−b∥,
and ⟨C,Xk+1⟩ − p⋆ also convergence to zero.

• Part (c) is a direct consequence of part (b) and the fact that ΩP is bounded if and only if the set
{X ∈ Sn | dist(X, Sn+) ≤ γ1, ∥A(X) − b∥≤ γ2, ⟨C,X⟩ − p⋆ ≤ γ3} is bounded for any γ ∈R3

[23, page 110].

E.2 Proof of Theorem 3

In this subsection, we provide a complete proof of part (a) in Theorem 3. The proof is motivated by
[26, Theorem 1] which focuses on dual SDPs only. To facilitate proof, we first introduce a standard
result in proximal mapping that upper bounds the step length of the proximal step by the distance to
the optimal solution set, which can be found in [42, Proposition 1] by setting z = x and z′ = ΠS(x).
We give a simple proof below.
Proposition E.2. Let f : Rn → R̄ be a convex function. Denote S ⊆ Rn as the set of minimizers of
f , i.e., S = argminx∈Rn f(x). Suppose S ̸= 0. Given a point x ∈ Rn and a constant α > 0, the
proximal mapping holds that

∥proxα,f (x)− x∥ ≤ dist(x, S).

Proof. From the optimality condition of proximal mapping, we have

f(proxα,f (x)) +
α

2
∥proxα,f (x)− x∥2 ≤ f(ΠS(x)) +

α

2
∥ΠS(x)− x∥2

=⇒ α

2
∥proxα,f (x)− x∥2 ≤ f(ΠS(x))− f(proxα,f (x)) +

α

2
∥ΠS(x)− x∥2

=⇒ ∥proxα,f (x)− x∥ ≤ dist(x, S),

which completes the proof.

Using Proposition E.2 and (B′), we arrive at the following key inequality to show the linear conver-
gence of KKT residuals. Proposition 2. It bounds the step length of the dual update by the current
distance to the solution set.
Proposition E.3. [26, Lemma 3] Let {Xk, wk} be the sequence generated by (15) under (B′). Then
for all k ≥ 1 with δk < 1, it holds that

∥wk+1 − wk∥ ≤ 1

1− δk
dist(wk,ΩD).
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Proof. From the triangle inequality and the stopping criterion (B′), we have

∥wk+1 − wk∥ − ∥wk − proxrk,−g0(wk)∥ ≤ ∥wk+1 − proxrk,−g0(wk)∥ ≤ δk∥wk+1 − wk∥.

Rearranging terms and using Proposition E.2 yields

(1− δk)∥wk+1 − wk∥ ≤ ∥wk − proxrk,−g0(wk)∥ ≤ dist(wk,ΩD).

This completes the proof.

We are ready to start the proof of part (a) here. As dual strict complementary holds, the negative
of the dual function (13), i.e., −g0, satisfies quadratic growth (9b). Using Lemma 4 and stopping
criteria (B′), we have ∥wk+1 − proxrk,−g0(wk)∥ ≤ δk∥wk+1 −wk∥. Therefore, the linear reduction
on dist(wk,ΩD) comes directly from the PPM convergence Lemma 1, i.e., there exists a k̂1 such that
for all k ≥ k̂1, it holds that

dist(wk+1,ΩD) ≤ µkdist(wk,ΩD), µk =
θk + 2δk
1− δk

< 1, θk =
1√

2rkµq+1
< 1.

We move to show the bound for residuals dist(Xk+1, Sn+), ∥A(Xk+1) − b∥, and ⟨C,Xk+1⟩ − p⋆.
Specifically, when δk < 1, it holds that

dist(Xk+1, Sn+) ≤
∥Zk − Zk+1∥

rk
≤ ∥wk − wk+1∥

rk
≤ 1

(1− δk)rk
dist(wk,ΩD),

∥A(xk+1)− b∥ ≤ ∥yk − yk+1∥
rk

≤ ∥wk − wk+1∥
rk

≤ 1

(1− δk)rk
dist(wk,ΩD),

where we use part (b) in Proposition 2, ∥yk−yk+1∥ ≤ ∥wk−wk+1∥, ∥Zk−Zk+1∥ ≤ ∥wk−wk+1∥,
and Proposition E.3. Again, using part (b) in Propositions 2 and E.3, when δk < 1, we have

⟨C,Xk+1⟩ − p⋆ ≤ δ2k∥wk+1 − wk∥2 + ∥wk∥2 − ∥wk+1∥2

2rk

=
δ2k∥wk+1 − wk∥2 + (∥wk∥+ ∥wk+1∥)(∥wk∥ − ∥wk+1∥)

2rk

≤ δ2k∥wk+1 − wk∥2 + (∥wk∥+ ∥wk+1∥)(∥wk − wk+1∥)
2rk

≤ δ2k∥wk+1 − wk∥+ ∥wk∥+ ∥wk+1∥
2rk(1− δk)

dist(wk,ΩD).

Since δk → 0, there exists a k̂2 such that δk < 1 for all k ≥ k̂2. Taking k̂ = max{k̂1, k̂2} completes
the proof for part (a) with the constants

µ′
k =

1

(1− δk)rk
→ µ′

∞ =
1

r∞
,

µ′′
k =

δ2k∥wk+1 − wk∥+ ∥wk∥+ ∥wk+1∥
2rk(1− δk)

→ µ′′
∞ =

∥w∞∥
r∞

.

We move on to part (b). By Theorem 2, we know that the error bound (7b) holds as dual strict
complementary holds, i.e., for any bounded set U ⊆ Sn containing any X⋆ ∈ ΩP, there exist
constants α1, α2, α3 > 0 such that

⟨C,X⟩ − ⟨C,X⋆⟩+ α1∥A(X)− b∥+ α2 · dist(X, Sn+) ≥ α3 · dist2(X,ΩP), ∀X ∈ U . (E.2)

From the assumption that ΩP is bounded, Proposition 2 confirms that the sequence {Xk} is bounded.
Thus, we can choose a bounded set U ⊇ ΩP

⋃
∪k≥1{Xk}. Combing (E.2) with (16), we have

α3 · dist2(Xk+1,ΩP) ≤ (µ′′
k + (α1 + α2)µ

′
k) · dist(wk,ΩD).

Dividing both sides by α3 leads to the desired result in part (b). This completes the proof.
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E.3 ALMs for dual conic program (D)

In aiming to offer a comprehensive understanding of ALMs for solving (P) and (D), in this subsection,
we provide the algorithm of ALM applied to solving the dual problem (D) along with the convergence
analysis. This can be considered as an extension of the work in [26] and a counterpart to the ALM
for solving (P) discussed in Section 4.

We first reformulate (D) as the equivalent minimization problem

−d⋆ = min
y∈Rm,Z∈Sn

⟨−b, y⟩

subject to C −A∗(y) ∈ Sn+.

We then introduce a dual variable X ∈ Sn+ and define the ordinary Lagrangian function as L0(y,X) =
−⟨b, y⟩+ ⟨X,C −A∗(y)⟩. The corresponding dual function and dual problem become

g0(X) = inf
y∈Rm

L0(y,X) and max
X∈Sn+

g0(X). (E.3)

Then, the augmented Lagrangian with parameter r > 0, analogous to (14), is

Lr(y,X) = ⟨−b, y⟩+ 1

2r
(∥ΠSn+(X − r(C −A∗(y)))∥2 − ∥X∥2).

Given an initial point X0 ∈ Sn and a sequence of positive scalars rk ↑ r∞, the ALM generates a
sequence of {yk} and {Xk} following

yk+1 ≈ argmin
y∈Rm

Lrk(y,Xk) (E.4a)

Xk+1 = Xk + rk∇XLrk(yk+1, Xk) = ΠSn+(Xk − rk(C −A∗(yk+1))), k = 0, 1, . . . . (E.4b)

Many of the same properties discussed in Section 4 hold. We will provide the precise statement in the
remainder of this section. Similarly, we can consider the analogous stopping criteria of (A′) and (B′).

Lrk(yk+1, Xk)− min
y∈Rm

Lrk(y,Xk) ≤ ϵ2k/(2rk),
∑∞

k=1 ϵk < ∞, (A′
D)

Lrk(yk+1, Xk+1)− min
y∈Rm

Lrk(y,Xk) ≤ δ2k∥Xk+1 −Xk∥2/(2rk),
∑∞

k=1 δk < ∞. (B′
D)

Proposition E.4. Consider (P) and (D). Assume strong duality holds and ΩP ̸= ∅. Let {yk, Xk} be a
sequence from the ALM (E.4) under (A′

D) and write Zk = C −A∗(yk) for all k ≥ 0. The following
statements hold.

(a) The dual sequence Xk is bounded. Further, limk→∞ Xk = X∞ ∈ ΩP (i.e., the whole sequence
converges to a primal optimal solution).

(b) The dual feasibility and cost value gap satisfy

dist(Zk+1, Sn+) ≤ ∥Xk −Xk+1∥/rk → 0,

d⋆ − ⟨b, yk+1⟩ ≤ Lrk(yk+1, Xk)− min
y∈Rm

Lrk(y,Xk) + (∥Xk∥2 − ∥Xk+1∥2)/(2rk) → 0.

(c) If the solution set ΩD in (1b) is nonempty and bounded, then the primal sequence yk is also
bounded, and all of its cluster points belongs to ΩD.

Proof. The proof of many of these statements is a change of the notations in the proof in Proposition 2.

• Part (a) comes directly from the PPM convergence by noting Lemma 4 and the stopping criterion
(A′

D) imply the dual iterate Xk+1 satisfies ∥Xk+1 − proxrk,−g0(Xk)∥ ≤ ϵk.
• By the Moreau decomposition [49, Exercise 12.22], we have

rkZk+1 −Xk = ΠSn+(rkZk+1 −Xk)−ΠSn+(Xk − rkZk+1) = ΠSn+(rkXk+1 − Zk)−Xk+1.

Thus, Zk+1 +
Xk+1−Xk

rk
∈ Sn+. Therefore,

dist(Zk+1, Sn+) ≤
∥∥∥∥Zk+1 −

(
Zk+1 +

Xk+1 −Xk

rk

)∥∥∥∥ =
1

rk
∥Xk+1 −Xk∥ .
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From the definition of the augmented Lagrangian function, we have

Lrk(yk+1, Xk) = ⟨−b, yk+1⟩+
1

2r
(∥Xk+1∥2 − ∥Xk∥2).

On the other hand, we know

min
y∈Rm

Lrk(y,Xk) = g0(U
⋆)− 1

2rk
∥U⋆ −Xk∥2 ≤ g0(U

⋆) ≤ −d⋆,

where U⋆ denoted as the point that achieves the maximum in the identity [38, Theorem 3.2]

min
y∈Rm

Lrk(y, ·) = max
X∈Sn

g0(X)− 1

2rk
∥X − ·∥2

and the last inequality comes from the definition of the dual problem in (E.3). Thus,

d⋆ − ⟨b, yk+1⟩ ≤ Lrk(yk+1, Xk)− min
y∈Rm

Lrk(y,Xk)−
1

2r
(∥Xk+1∥2 − ∥Xk∥2).

• Part (c) is a consequence of part (b) and the fact that ΩD is bounded if and only if the set
{(y, Z) ∈ Rm × Sn | d⋆ − ⟨b, y⟩ ≤ γ1, dist(Z, Sn+) ≤ γ2, ∥C −A∗(y) − Z∥ ≤ γ3} is bounded
for any γ ∈ R3 [23, page 110].

Theorem E.1 (Linear convergences). Consider primal and dual SDPs (P) and (D). Assume strong
duality and strict complementarity holds (implying ΩP ̸= ∅ and ΩD ̸= ∅). Let {yk, Xk} be a
sequence from the ALM (E.4) under (A′

D) and (B′
D) and write Zk = C −A∗(yk) for all k ≥ 0. The

following statements hold.

(a) There exists constants k̂ ≥ 0, 0 < µk < 1 and µ′
k, µ

′′
k > 0 such that for all k ≥ k̂,

dist(Xk+1,ΩP) ≤ µk · dist(Xk,ΩP),

dist(Zk+1, Sn+) ≤ µ′
k · dist(Xk,ΩP),

d⋆ − ⟨b, yk+1⟩ ≤ µ′′
k · dist(Xk,ΩP).

(E.5)

(b) If ΩD is bounded, then the primal sequence {yk} also converges linearly to ΩD, i.e., there is a
constant k̂ ≥ 0 such that for all k ≥ k̂,

dist2(yk+1,ΩP) ≤ τk · dist(Xk,ΩD).

Proof. Similar to Proposition E.3, if (B′
D) is used, we have

∥Xk+1 −Xk∥ ≤ 1

1− δk
dist(Xk,ΩP), ∀δk < 1. (E.6)

Therefore, there exists a k̂ ≥ 0 such that ∀k ≥ k̂, δk < 1 and

dist(Zk+1, Sn+) ≤
∥Xk+1 −Xk∥

rk
≤ 1

rk(1− δk)
dist(Xk+1,ΩP),

where the first inequality uses part (b). Then, once again using (E.6) and part (b), we have

d⋆ − ⟨b, y⟩ ≤ δ2k∥Xk+1 −Xk∥2 + ∥Xk∥2 − ∥Xk+1∥2

2rk

≤ δ2k∥Xk+1 −Xk∥2 + (∥Xk∥ − ∥Xk+1∥)(∥Xk∥+ ∥Xk+1∥)
2rk

≤ δ2k∥Xk+1 −Xk∥2 + (∥Xk −Xk+1∥)(∥Xk∥+ ∥Xk+1∥)
2rk

≤ δ2k∥Xk+1 −Xk∥+ ∥Xk∥+ ∥Xk+1∥
2rk(1− δk)

dist(Xk+1,ΩP).

If strict complementarity holds, Theorem 1 (with g in (5) as an indicator function) guarantees that
−g0 in (E.3) satisfies quadratic growth in (9b). Thus, the linear convergence of dist(Xk,ΩP) comes
from the PPM convergence Lemma 1, i.e., there exists a k̂1 such that for all k ≥ k̂1, it holds that

dist(Xk+1,ΩP) ≤ µkdist(Xk,ΩP), µk =
θk + 2δk
1− δk

< 1, θk =
1√

2rkµq+1
< 1.
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Since δk → 0, there exists a k̂2 such that δk < 1 for all k ≥ k̂2. Taking k̂ = max{k̂1, k̂2} completes
the proof for part (a) with the constants

µ′
k =

1

rk(1− δk)
→ µ′

∞ =
1

r∞
,

µ′′
k =

δ2k∥Xk+1 −Xk∥+ ∥Xk∥+ ∥Xk+1∥
2rk(1− δk)

→ ∥X∞∥
r∞

.

On the other hand, Theorem 1 also guarantees that the error bound (8b) holds, i.e., for any bounded
set V ⊇ ΩD, there exist constants α1, α2, α3 > 0 such that

d⋆−⟨b, y⟩+α1∥C−A∗(y)−Z∥+α2 ·dist(Z, Sn+) ≥ α3 ·dist2((y, Z),ΩD), ∀(y, Z) ∈ V . (E.7)

By the design of (E.4), we always have ∥C − A∗(yk) − Zk∥ = 0. By Proposition E.4 - part (c),
the sequence {yk, Zk} is bounded. Thus, choosing a bounded set V ⊇ ΩD

⋃
∪k≥1{yk, Zk} and

combing (E.7) with (E.5), we have

α3 · dist2(yk+1,ΩD) ≤ (µ′′
k + α2µ

′
k) · dist(Xk,ΩP), ∀k ≥ k̂.

Dividing both sides by α3 leads to the desired result. This completes the proof.

F Details of the numerical experiments

In Section 5, we consider the classical SDP relaxation of the Mac-Cut problem and the linear SVM.
In this section, along with another popular signal processing problem - Lasso, we detail the problem
formulation and report the numerical performance of ALM applied to those problems.

• The SDP relaxation of Max-Cut:
min
X∈Sn

⟨C,X⟩

subject to Diag(X) = 1,

X ∈ Sn+,

where C ∈ Sn is the problem data representing a weighted undirected graph, 1 ∈ Rn is an all one
vector, and Diag(X) = [X11, · · · , Xnn]

T. This type of problem has been shown to satisfy
strict complementarity and has unique primal and dual solutions for almost all data matrix C [41,
Corollary 2.3].

• Linear SVM:

min
x∈Rd

λ
m∑
i=1

max{0, 1 + bi(a
T
i x)}+

1

2
∥x∥2,

where ai ∈ Rn is the feature of the i-th data point, bi ∈ {−1, 1} is the corresponding label, and
λ > 0 is a constant. Equivalently, the problem can reformulated in the following standard conic
form

min
x∈Rn,t∈Rm

1

2
∥x∥2 + λ1Tt

subject to Diag(b)Ax+ 1 ≤ t,

0 ≤ t,

where A = [a1, · · · , am]
T ∈ Rm×n and Diag(b) ∈ Sm denotes the diagonal matrix with the

diagonal elements being b.
• Lasso:

min
x∈Rn

1

2
∥Ax− b∥2 + λ∥x∥1,

where A ∈ Rm×n, b ∈ Rm are problem data and λ > 0 is the weighted parameter balancing the
sparsity of the solution and the accuracy of the linear solution. Equivalently, the problem can be
rewritten in the conic form

min
x∈Rn

1

2
∥y∥2 + λ1Tt

subject to Ax− b = y,

− t ≤ x ≤ t.
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Figure 3: Nuremical experiments for Max-Cut with different instances and various augmented Lagrangian
parameter r > 0.

All numerical experiments are conducted on a PC with a 12-core Intel i7-12700K CPU@3.61GHz
and 32GB RAM. For Max-Cut problem, we select the graph G1,G2, and G3 from the website
https://web.stanford.edu/~yyye/yyye/Gset/ and only take the first 20 × 20 submatrix as
the considered problem data C. For both the linear SVM and Lasso, we randomly generate the
problem data with the dimension m = 100 and n = 10, and set the constant λ = 1. We use Mosek
[56] to get the optimal cost value. In each application, we consider the following two scenarios 1)
fixing the same augmented parameter rk = r for all k for three different problem instances; 2) fixing
a problem instance and varying different augmented parameter r. The numerical results are presented
in Figures 3 to 5. For each Figures 3 to 5, the first row shows the evolution of the primal cost gap, dual
cost gap, and KKT residuals for three different instances with a fixed augmented parameter (scenario
one), and the second row compares the different numerical behaviors when varying the augmented
parameter (scenario two). In the setting of a fixed augmented parameter, the augmented term r is
set as 1, 5, 20 for Max-Cut, linear SVM, and Lasso respectively. In the setting of various augmented
parameters, the parameter is chosen as r = {1, 5, 10}, r = {1, 5, 10}, and r = {10, 20, 30} for
Max-Cut, linear SVM, and Lasso respectively.

We observe that, in all cases, ALM enjoys linear convergence in the primal cost value gap, dual
cost value gap, and KKT residuals to the accuracy of at least 10−5, which is consistent with our
theoretical findings in Theorem 3. We believe the oscillated or flattening behavior that appears in
the tail (when the iterates are close to the solution set) is due to the inaccuracy of the subproblem
solver and computational errors. The numerical result also indicates that when the augmented term
r increases, ALM favors the decrease of the feasibility more, leading to faster convergence in the
beginning phase. However, a large r may not lead to the best convergence in the long term.

Note that the projection term ∥ΠSn+(Z − rX)∥2 in the subproblem (15a) can not be directly modeled
by Yalmip. Therefore, we reformulate the problem as the following

argmin
X∈Sn

⟨C,X⟩+ 1

2r
(∥y + rk(b−A(X))∥2 + ∥ΠSn+(Z − rkX)∥2 − ∥y∥2 − ∥Z∥2)

= argmin
X∈Sn

⟨C,X⟩+ 1

2r
(∥y + rk(b−A(X))∥2 + ∥ΠSn−(rkX − Z)∥2)

= argmin
X∈Sn,U∈Sn+

⟨C,X⟩+ 1

2r
(∥y + rk(b−A(X))∥2 + ∥rkX − Z − U∥2),
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where the first equality drops two independent terms and uses −Sn+ = Sn− and ∥ΠSn+(Y )∥ =

∥−Π(−Sn+)(−Y )∥ = ∥Π(Sn−)(−Y )∥ for all Y ∈ Sn, and the last equality uses minU∈Sn+ ∥Y −U∥ =

∥Y −ΠSn+(Y )∥ = ∥ΠSn−(Y )∥ for all Y ∈ Sn.

Figure 4: Nuremical experiments for linear SVM with different instances and various augmented Lagrangian
parameter r > 0.

Figure 5: Nuremical experiments for Lasso with different instances and various augmented Lagrangian parameter
r > 0.
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36

https://neurips.cc/public/EthicsGuidelines


• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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