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Abstract
Machine unlearning (MU) aims to remove the in-
fluence of specific data points from trained mod-
els, enhancing compliance with privacy regula-
tions. However, the vulnerability of basic MU
models to malicious unlearning requests in ad-
versarial learning environments has been largely
overlooked. Existing adversarial MU attacks
suffer from three key limitations: inflexibility
due to pre-defined attack targets, inefficiency in
handling multiple attack requests, and instabil-
ity caused by non-convex loss functions. To ad-
dress these challenges, we propose a Flexible, Ef-
ficient, and Stable Attack (DDPA). First, leverag-
ing Carathéodory’s theorem, we introduce a con-
vex polyhedral approximation to identify points
in the loss landscape where convexity approxi-
mately holds, ensuring stable attack performance.
Second, inspired by simplex theory and John’s
theorem, we develop a regular simplex detection
technique that maximizes coverage over the pa-
rameter space, improving attack flexibility and
efficiency. We theoretically derive the proportion
of the effective parameter space occupied by the
constructed simplex. We evaluate the attack suc-
cess rate of our DDPA method on real datasets
against state-of-the-art machine unlearning at-
tack methods. Our source code is available at
https://github.com/zzz0134/DDPA.

1. Introduction
Machine unlearning (MU) aims to give data holders the
right to remove the influence of a certain subset of data from
a trained machine learning (ML) model, while maintaining
the accuracy of the ML model on remaining data (Garg et al.,
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2020a; Gupta et al., 2021; Nguyen et al., 2022; Wu et al.,
2022). Although MU research have attracted significant
attention for their ability to protect the right to be forgotten,
most of existing studies focus on the improvement of effec-
tiveness and efficiency of MU algorithms (Chowdhury et al.,
2024; Aldaghri et al., 2020; Yan et al., 2022; Kumar et al.,
2022; Dukler et al., 2023; Golatkar et al., 2023; Pratama &
Gambetta, 2024; Yang et al., 2024).

Despite achieving remarkable performance, recent studies
have shown that basic MU models are vulnerable to ma-
licious unlearning (i.e., data removal) requests during the
unlearning process in adversarial settings (Liu et al., 2024e;
Di et al., 2024; ZHAO et al., 2023; Zhang et al., 2023;
Huang et al., 2024b; Ma et al., 2024; Shin & Park, 2024;
Zhao et al., 2024; Hu et al., 2024). An attacker can inject
some carefully-designed data samples to the training dataset
such that the MU model behaves benign without impact on
the model prediction. Afterwards, the attacker submits a
unlearning request to remove the perturbed data samples,
so as to negatively affect the prediction of MU models (Liu
et al., 2024e; Di et al., 2024; ZHAO et al., 2023; Shin &
Park, 2024).

Current mainstream research in adversarial attacks on MU
concentrates on target attacks to degrade the performance
of MU models, including misclassifying specific data sam-
ples (Liu et al., 2024e; Di et al., 2024; Zhang et al., 2023;
Huang et al., 2024b; Ma et al., 2024; Shin & Park, 2024)
and misclassifying data samples into a specific class (ZHAO
et al., 2023; Hu et al., 2024). Nevertheless, three critical
challenges remain open: (1) Flexibility. These approaches
require to know which attack targets before the data poison-
ing process. That is, these attacks are attack target-specific:
the malicious unlearning requests regarding the perturbed
data samples that are related to specific attack targets are
only effective for specific data samples or specific class.
This flexibility concern dramatically limits the applicability
of such attacks in real scenarios; (2) Efficiency. In practice,
a large ML model like Stable Diffusion (Rombach et al.,
2022) often faces the arrival of a series of MU requests
with different attack targets. In this case, the attacker need
to sequentially redo the data poisoning operations and the
attack processes one by one to adapt to diverse attack tar-
gets, resulting in non-trivial computational costs; and (3)
Stability. The non-convexity of loss functions in ML and
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Figure 1: Attack workflow of our DDPA attack.

MU models poses significant challenges for existing MU
attack methods, as they are vulnerable to the pitfalls of local
minima of model parameters. These local minima can sig-
nificantly degrade the performance of MU models and thus
cause large deviations from the intended attack outcomes,
leading to MU attack failure.

To our best knowledge, this work is the first to conduct
the problem of adversarial attacks on machine unlearning,
while holding the attack target-agnostic property, supports
on-demand attacks to attack arbitrary targets upon attackers’
demands and quickly responding to a series of MU attack
requests after the MU models are deployed, and maintaining
the stability of MU attacks, by leveraging the theory of thrust
vector control, Simplex Geometry, and convex polyhedron.

Thrust vector control is a technique widely used in aerospace
engineering that an aircraft or rocket manipulates the direc-
tion of the thrust from its engines to control the attitude or
angular velocity of the vehicle (Praveen et al., 2023). This
motivates us to establish a connection between thrust vector
control for moving the aircraft and rocket towards arbitrary
locations and thrust vector control for moving the parameter
of attacked MU models towards parameters corresponding
to any attack targets upon attackers’ demands.

First, following (Zhang et al., 2023), given some clean in-
stance, we randomly select multiple data samples from the
clean instance as the initial group centers V . In order to
tackle the instability issue of MU attacks due to the non-
convexity of loss functions, we propose a convex polyhedral
approximation method to transform the original non-convex
loss function into a convex version. Notice that directly
enforcing the convexity on the original loss function is im-
practical because the model owner has no justification for
accommodating user requests to modify the model parame-
ters and loss functions. Next, we model the group centers
whose neighborhood is near convex on the original loss func-
tion, i.e., the group centers making the distance between the
original and convex loss functions the smallest, as thrust

points in the thrust vector control. Since the neighborhood
of these thrust points is near convex, finding the optimal
parameter (near global minima of model parameters) is de-
terministic due to the MU, which consistently moves the
unlearning gradients toward this minimum and ensures the
stability of MU attacks. We theoretically derive the solution
of convex polyhedral approximation through constrained
optimization.

Second, by utilizing the conjugate algorithm (Ly et al.,
2017), the thrust points are mapped to the corresponding
parameters in parameter space. Due to the convexity of the
neighborhood of the thrust points, the mapping between the
thrust points and the corresponding parameters is a one-to-
one mapping, since the optimal parameter in the parameter
space is unique under the convexity condition. We then
model the corresponding parameters in parameter space
as thrust vectors in the thrust vector control. Following
this mapping, an effective simplex detection technique is
proposed to build a maximum regular simplex with thrust
vectors as vertices. The maximum regular simplex is able
to cover the parameter space as much as possible, which
allows the model parameter to be moved towards parameters
corresponding to any attack targets upon attackers’ demands.
Like multiple thrusts from the engines on a aircraft or rocket
can be adjusted to steer the vehicle in any direction, based
on the built maximum regular simplex, by unlearning one
or more thrust vectors in parameter space, the model param-
eter can be moved to handle the parameter change due to
arbitrary MU attack requests. We theoretically validate the
regularity property of the built maximum regular simplex as
well as the coverage of the simplex to the parameter space.

Figure 1 exhibits the workflow of our proposed MU attack
algorithm, DDPA, with two main stages: poisoned dataset
construction and MU attacks. In the first stage, Figure 1
(a) represents the random selection of multiple data sam-
ples from the clean instance as the initial group centers. In
Figure 1 (b), the group centers whose neighborhood is near
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convex are selected as the thrust points (red points in Figure
1 (a)) through the convex polyhedral approximation method.
In Figure 1 (c), utilizing the conjugate algorithm (Ly et al.,
2017), the thrust points in the poisoning dataset are mapped
to the thrust vectors (red vertices v1-v5 in Figure 1 (c))
in parameter space via the conjugate algorithm. Around
these group centers, data samples are generated within the
MU budget using a predefined distribution, such as a Gaus-
sian distribution (More & Wolkersdorfer, 2023; Oymak &
Soltanolkotabi, 2021), to construct the poisoning dataset. In
the second stage, in Figure 1(d), giving current parameter
w, the attacker aims to attack a specific attack target by
moving w towards a target parameter wt. The deviation
from w to wt is �w = wt � w. To move w to wt, the
attacker requests the data removal with the direction ��w

by manipulating the thrust vectors (blue vertices v1 and v3)
to control the direction of the vehicle towards wt. After
addressing this malicious unlearning requests, the attacker
can continue to move the parameter from wt to others in
the parameter space in response to one or more unlearning
requests, without sequentially redoing the data poisoning
operations and the attack processes one by one.

In comparison with existing MU attack techniques, our
DDPA method exhibits three compelling advantages: (1) It
supports the target-agnostic MU attacks by manipulating
one or more thrust vectors to move the parameter towards
any direction; (2) It provides the timely response to a se-
ries of MU attack requests, as long as the amount of data
removals is below the MU budget; and (3) It ensuring the
stability of MU attacks based on convex approximation and
optimization. Empirical evaluation on real datasets demon-
strates the superior performance of our DDPA MU attack
model against several state-of-the-art methods on image
classification. More experiments, implementation details,
and hyperparameter setting are presented in Appendices F.

2. Background
2.1. Machine Unlearning

Machine unlearning is a process designed to ensure that the
influence of specific data points is effectively removed from
a trained model. Formally, given a training dataset of N
samples D = {xi, yi}Ni=1, where each data point xi 2 Rd is
associated with a label yi 2 {1, 2, . . . , Y }, where Y is the
number of classes. A classification model M(D) is trained
on the complete dataset D. Machine unlearning aims to
remove the influence of a subset of data Du ⇢ D, referred
to as the forgotten data, such that the updated model behaves
as if Du were never part of the training process.

When a data removal request is submitted, the dataset is
conceptually split into Du, the data to be forgotten, and Dr,
the data to be retained, where D = Du [ Dr. The goal

of machine unlearning is to ensure that the model obtained
after forgetting specific data has a probability distribution
equivalent to a model trained without those data points. This
can be expressed as:

Pr(D \ xf ) = Pr(D(X \ xf ;Y )) (1)

A straightforward approach to achieve unlearning is to re-
train a new classification model Mr(Dr) from scratch us-
ing only Dr. This method ensures exact unlearning by
completely removing the influence of Du from the model.
However, retraining is computationally intensive and im-
practical for large-scale datasets and modern deep learning
architectures, making it an inefficient solution.

To address these limitations, efficient algorithms aim to ap-
proximate the retrained model Mr(Dr) directly from the
deployed model M(D). The objective is to produce a san-
itized model Mu(D,Du,M) that eliminates the influence
of Du while leveraging the existing model M(D), thus
avoiding the need for full retraining. By modifying M(D)
to remove the impact of Du, this approach significantly
reduces computational costs while achieving the desired
unlearning outcome.

2.2. Poisoning-Based Backdoor Attacks
Poisoning-based backdoor attacks inject maliciously crafted
data into the training process to implant hidden backdoors
in machine learning models. Consider a training dataset
D = {xi, yi}Ni=1, where each xi 2 Rd is associated with a
label yi. The attacker introduces a poisoned subset Dp =
{(xp, yt)}, where xp contains a trigger, and yt is the target
label. The poisoned dataset becomes D0 = D [Dp. The
model M(D0) is trained to behave normally on clean inputs
xb, such that:

M(xb) = yb, 8(xb, yb) 2 D, (2)

while misclassifying inputs containing the trigger xt:

M(xt) = yt, 8xt containing the trigger. (3)

These attacks are stealthy and adaptable, as the poisoned
samples are often indistinguishable from benign data. Re-
cent techniques have further enhanced the stealth and robust-
ness of triggers, making poisoning-based backdoor attacks
a critical challenge for secure machine learning.

3. Dynamic Delayed Poisoning Attack
3.1. Threat Model

During training at time t0, the model learns from a clean
dataset Dc1, while the attacker injects a malicious dataset
Dp. Training continues with additional clean data Dc2. At
t1 > t0, the attacker submits an unlearning request targeting
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Du ⇢ Dp, thereby manipulating the model parameters w
toward a desired state wt. The target wt is determined
by searching the neighborhood of w, ensuring the model
exhibits the intended adversarial behavior post-unlearning.

No access to training data. The adversary has no direct
access to the training data beyond their injected poison sam-
ples. This reflects realistic scenarios, such as collaborative
open-source projects where users contribute data. In such
cases, an adversary can subtly introduce poisoned samples
that remain indistinguishable from benign data. Through
unlearning requests, these poisoned samples are strategi-
cally removed, activating the attack and compromising the
model’s integrity.

Knowledge. The attacker has access to the model archi-
tecture, training process, loss function, and parameters at
a checkpoint t1. This assumption is practical, as many
machine learning models are built using well-documented
architectures, open-source libraries, or pre-trained models.
Additionally, APIs for model fine-tuning and interaction
often expose certain model behaviors, which attackers can
exploit.

Real-word scenarios. Complying with modern privacy
regulations, such as the European Union’s General Data
Protection Regulation (GDPR) (Voigt & Bussche, 2017)
and the California Consumer Privacy Act (CCPA) (Pardau,
2018), MU aims to give data holders the right to remove
the influence of a certain subset of data from a trained ML
model. For example, Stability AI announced it would al-
low artists to remove their work from the training dataset
for the Stable Diffusion 3.0 release (Staff, 2022). Such re-
quirements are increasingly relevant in settings like online
learning (Hoi et al., 2018) and continual learning (Wang
et al., 2024), where models are incrementally updated over
time.

3.2. Thrust-Driven Parameter Manipulation via
Simplex Geometry

To address the two key limitations of existing MU attack
methods mentioned in Section 1, namely inflexibility due
to pre-defined attack targets and inefficiency in handling
multiple attack requests, we propose an effective simplex de-
tection technique based on John’s theorem (Lasserre, 2014).
This technique constructs a maximal regular simplex us-
ing thrust vectors (group centers V ) as vertices, ensuring
that the simplex provides maximal coverage of the param-
eter space. This property allows model parameters to be
dynamically guided toward those corresponding to any at-
tack target specified by the attacker. By unlearning one or
more thrust vectors within the parameter space, the model
parameters can be adjusted to accommodate the shifts re-
sulting from arbitrary MU attack requests. Additionally, we
provide theoretical validation of the regularity of the con-

structed maximal regular simplex and its parameter space
coverage, demonstrating the robustness and effectiveness of
the proposed method.

A regular n-simplex (Dirksen, 2015) is an n-dimensional
regular polytope with n + 1 vertices, where each pair of
vertices is connected by an edge. To formally define the sim-
plex and its geometric properties, we present the following:
Definition 3.1 (Simplex). A (n � 1)-simplex Sn�1 is
the convex hull of n affinely independent group centers
v1, v2, . . . , vn 2 Rn. It is defined as:

Sn�1 =

(
s

���� s =
KX

i=1

�ivi,
KX

i=1

�i = 1, �i � 0, 8i
)

(4)

where n represents the number of vertices in the simplex.
These conditions ensure that Sn�1 is a compact and convex
subset of Rn.

Definition 3.2. [Regular n� 1 Simplex] A set of n group
centers {v1,v2, . . . ,vn} ⇢ Rn�1 forms a regular n�1 sim-
plex if and only if: (1) Centroid Condition: The centroid
of the points is at the origin,

P
n

i=1 vi = 0. (2) Equidistant
Condition: The squared Euclidean distance between any
two distinct points is constant, kvi � vjk2 = d

2
, 8i 6= j.

(3) Inner Product Symmetry: The inner product between
any two distinct points is constant, vi ·vj = � d

2

n�1 , 8i 6= j.
These conditions ensure that the points are symmetrically
distributed in n� 1 dimensions, forming a regular simplex.

Definition 3.3. [John’s Theorem] Let K be a convex body
in Rn. John’s Theorem states that K contains a unique
ellipsoid of maximal volume, denoted as Bn

2 (the Euclidean
ball of unit radius), if and only if the following conditions
are satisfied:

• B
n

2 ✓ K.

• There exist Euclidean unit vectors (vi)ni=1 on the
boundary of K and positive coefficients (ci)ni=1 such
that:

nX

i=1

civi = 0, and
nX

i=1

cihx, vii2 = kxk2, 8x 2 Rn. (5)

These conditions ensure the uniqueness of the maximal-
volume ellipsoid within K, providing a geometric charac-
terization of K through its boundary points.

The following theoretical analysis quantifies the correctness
and applicability of our poisoning dataset construction based
on the regular simplex. Definitions 3.1–3.3 provide the nec-
essary foundations for the theoretical proofs. Theorems 3.1
and 3.2 establish that the John ellipsoid of a regular simplex
is its inscribed sphere. For any simplex in Rn, the simplex
is regular if and only if its John ellipsoid is the unit ball Bn

2 .
Consequently, Theorem 3.3 determines whether multiple

4



Flexible, Efficient, and Stable Adversarial Attacks on Machine Unlearning

group centers form a regular simplex and quantifies the de-
gree of regularity of the simplex. Theorem 3.4 measures
the proportion of the effective parameter space occupied
by the constructed simplex. Please refer to Appendix C for
detailed proof of Theorem 3.1 - 3.4
Theorem 3.1. The John ellipsoid of a regular simplex is
its inscribed ball. Let A be a regular simplex in Rn with
vertices {A1, A2, . . . , An+1} and B

n

2 as its inscribed ball.
Denote by {Bi, i = 1, ..., n+1} the tangent points which is
opposite to {Ai, i = 1, ..., n+1} respectivelyy. For positive
weights ci = n

n+1 (i = 1, . . . , n+ 1), the barycentric sum
satisfies:

n+1X

i=1

ciBi =

✓
1

n+ 1
, . . . ,

1
n+ 1

◆
(6)

Additionally, the solution to the representation of any point
x 2 Rn in the simplex is:

↵ =

✓
n

n+ 1
hu1, xi, . . . ,

n
n+ 1

hun+1, xi
◆

(7)

where {u1, . . . , un+1} are unit normal vectors.

Theorem 3.2. A simplex S in Rn is regular if and only if
its John ellipsoid is the unit ball Bn

2 . If Bn

2 is the John
ellipsoid of S, then B

n

2 must be tangent to each face Fi of
S. Conversely, if S is a regular simplex, its John ellipsoid
is necessarily B

n

2 , as the regularity ensures symmetry and
equal tangency conditions.

The volume of S satisfies:

Vol(S) =
p

nn(n+ 1)n+1

n!
(8)

which is the exact volume of a regular simplex with its
inscribed ball being B

n

2 . Furthermore, for the unit normal
vectors {vi}n+1

i=1 corresponding to the faces of C, the inner
product between any two distinct vectors satisfies:

hvi, vji = �n+ 1
n2

, i 6= j (9)

This establishes that the regularity of a simplex is directly
characterized by the tangency, volume, and inner product
properties of its John ellipsoid.
Theorem 3.3. A regular simplex can be quantified by how
closely it satisfies the conditions of the John ellipsoid. For
a given set of group centers V = {v1, v2, . . . , vn}, let I
denote the identity matrix, vi represent individual group
centers, and T denote the total number of group centers.
Define the regularity measure based on the group centers V
as:

�(V ) =
1
T

TX

t=1

exp

 
�
��I �

Pn
i=1 civi ⌦ vi

��2

2�2

!
(10)

where �
2 = 1

2⇡ is the variance of the Gaussian function.

The value of �(V ) lies in the range [0, 1], where ⌧(V ) = 1
indicates that the simplex is perfectly regular, satisfying
all the conditions of the John ellipsoid. A value closer
to 0 reflects higher irregularity due to deviations in the
summation conditions.

To ensure the simplex effectively covers the parameter space
and provides precise control over model parameters, it must
satisfy two criteria: (1) the simplex should be as large as
possible, and (2) its centroid should be positioned at the
origin. These properties enable the simplex to efficiently and
effectively manipulate the parameters in diverse directions.

We achieve these goals by optimizing the following objec-
tive function:

Ev1,v2⇠V kv1 � v2k+
1
|V |

nX

i=1

vi, (11)

where V = {v1, v2, . . . , vn} represents the set of group
centers. The first term maximizes the distance between ran-
domly sampled pairs of group centers v1 and v2, ensuring
the simplex is as large as possible. The second term mini-
mizes the sum of the group centers’ distances to the origin,
ensuring the centroid of the simplex lies at the origin.

Thus, our overall optimization objective is defined as:

Ls = ��(V )� Ev1,v2⇠V kv1 � v2k+
1
|V |

nX

i=1

vi, (12)

where �(V ) quantifies the regularity of the simplex formed
by the group centers V = {v1, v2, . . . , vn}.

Due to the lack of access to the training data, we cannot
determine the size of the effective parameter space before-
hand. However, through theoretical analysis, the following
theorem quantifies the proportion of the effective parameter
space occupied by the constructed simplex.
Theorem 3.4. Following (Li et al., 2015; Pearce et al.,
2020; de G. Matthews et al., 2018), assume the parameter
space follows a Gaussian distribution in Rd. The propor-
tion of the effective parameter space (PS) occupied by the
constructed (n� 1)-dimensional simplex (S)is:

⇢ =
Vol(S)

Vol(EPS)
=

p
n+ 1�

�
m
2 + 1

�

(n� 1)! l ⇡m/2
p
2�m

(13)

where � is the Gamma function, � represents the stan-
dard deviation of the Gaussian distribution defining the
spread of the parameter space, m is the dimensionality of
the Gaussian parameter space, and l is the edge length of
the constructed simplex.

3.3. Handling Instability in Non-Convex Loss via
Convex Polyhedral Approximation

The non-convexity of the loss function in training models
poses a fundamental challenge for existing machine un-
learning attack methods, as they are all susceptible to local
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minima, which can lead to deviations from the intended at-
tack outcomes and significantly reduce attack success rates.
In our scenario, this issue is particularly critical, as it intro-
duces instability in the behavior of the constructed thrust
vectors (group centers), making parameter updates unpre-
dictable and difficult to control. In contrast, if the loss func-
tion L(f(w, x), y) were convex, it would possess a unique
minimum for each data sample x, ensuring that unlearning
gradients consistently converge toward the intended update
direction. However, directly enforcing convexity in the orig-
inal loss function is infeasible, as it would severely degrade
the model’s performance, and model owners have no in-
centive to modify their model structure to accommodate
external requests.

To mitigate instability, we propose we propose a convex
polyhedral approximation method that transforms the orig-
inal non-convex loss function Ld(w) into its convex coun-
terpart L0

d
(w). Our objective is to identify multiple group

centers in the neighborhood of the original loss function that
exhibit the smallest deviation from its convex approxima-
tion, ensuring that they are as close as possible to the convex
regions of Ld(w) These group centers act as thrust points
in thrust vector control, guiding parameter updates during
unlearning. Since these thrust points lie in regions where
the loss function is nearly convex, the optimization process
under machine unlearning (MU) becomes more predictable.
This allows the unlearning gradients to reliably push the
model parameters toward an optimal state, ensuring a stable
and effective MU attack.

By adopting this approach, we carefully position the thrust
vectors (group centers) at these optimized data points. This
ensures stable and predictable behavior of the thrust vectors,
enabling precise manipulation of model parameters and
significantly enhancing attack effectiveness.
Definition 3.4 (Convex Polyhedron of a Function). The
convex polyhedron of a function Ld(w) is defined as the
intersection of all half-spaces in Rn that lie above the graph
of Ld(w). Formally, for a function Ld : Rn ! R, the
convex polyhedron P is given by:

P ={(w, z) 2 Rn ⇥ R |
z � Ld(w) +rLd(w)>(w0 � w), 8w0 2 Rn}

(14)

where z represents the vertical coordinate in Rn+1, and the
inequality ensures that P captures the convex hull of Ld(w).
This formulation represents the set of points lying above the
epigraph of Ld(w) in Rn+1, forming a convex polyhedron.
Definition 3.5 (Caratheodory’s theorem). Given a polytope
P ⇢ Rn and a lower semi-continuous function Ld(w), the
convex envelope of Ld(w) at a point w 2 P is defined as :

ConvL,P (w) = min

(
n+1X

i=1

�iL(Qi) : Qi 2 P,

i = 1, . . . , n+ 1,
n+1X

i=1

�i = 1,
n+1X

i=1

�iQi = w, �i � 0

) (15)

Here, �i represents the barycentric coordinates associated
with the points Qi, ensuring that the convex combination
satisfies the conditions of w being in P .

Convex polyhedral envelopes are not necessarily differen-
tiable at optimal points, making gradient-based optimization
infeasible. Moreover, finding the convex envelope of a gen-
eral function g over a region P is computationally challeng-
ing. It has been proven (Guo et al., 2023) that determining
the convex envelope of multilinear functions over the unit
hypercube is an NP-hard problem.

To address this, we adopt a pointwise supremum approach
based on underestimating affine functions of g over P . The
convex envelope at any point is determined by solving a
constrained optimization problem.
Theorem 3.5. Let g be a convex function defined over a
polytope P , and let (x0, y0) 2 P be a reference point.
The convex envelope of g at (x0, y0) is the solution to the
optimization problem:

L0
d(w) = Convg,P (x0, y0) = max c, subject to:

g(xi, yi)� [a(xi � x0) + b(yi � y0) + c] � 0,

min
x2[x1

j ,x
2
j ]
[g(x,mjx+ qj)� a(x� x0)�

b(mjx+ qj � y0)� c] � 0,

8ej 2 E0(P ), 8(xi, yi) 2 V 0(P )

(16)

where V
0(P ) ✓ V (P ) denotes the subset of vertices of P

that do not belong to edges in E
0(P ), and E

0(P ) represents
the set of edges of P along which L(x, y) is strictly convex.

In the vertex constraints, L(xi, yi) ensures that the affine
function defined by a, b, and c underestimates L(x, y) at
each vertex. In the edge constraints, L(x,mjx + qj) en-
forces the underestimation of L(x, y) along each edge ej ,
where mj and qj describe the edge as a linear function
y = mjx + qj . The strict convexity of f ensures that the
minimum value over an edge occurs either at its endpoints
or at a critical point within the interval.

Thus, our optimization objective is defined as:

Lt =
X

x2G

max
w2SV

��Lx(w)� L0
x(w)

�� (17)

where Lx(w) represents the original loss function parame-
terized by the data sample x, and L

0
x
(w) denotes its convex

approximation. Here, SV is the polytope formed using V

as the vertices, and G is the set of the group centers.

This formulation ensures that we identify a set of data sam-
ples d such that Ld(w) approximates a convex function
as closely as possible. To ensure the model behaves pre-
dictably during unlearning, the group centers are carefully
positioned on these optimized data points. This placement
reduces instability caused by the non-convexity of the loss
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function and ensures the parameters are adjusted smoothly
and effectively throughout the process.

By assembling different pieces together, we provide the
pseudo code of our DDPA method in Algorithm 1 in Ap-
pendix D.

4. Experimental Evaluation
In this section, we evaluate the effectiveness of our Dynamic
Delayed Poisoning Attack (DDPA) method compared to sev-
eral state-of-the-art machine unlearning robustness attack
methods. Through comprehensive experiments on multi-
ple representative classification tasks, we demonstrate that
DDPA achieves a significantly higher attack success rate
across various settings. Please refer to the appendixF for
detailed experimental settings and additional results.

Datasets and Models. We conduct experiments on two
widely-used image classification datasets and one sentiment
classification dataset: CIFAR-100 (Krizhevsky, 2009), Tiny
ImageNet (Le & Yang, 2015), and SST-2 (Socher et al.,
2013). The classifiers are trained on their respective training
sets and evaluated on their test sets. For CIFAR-100, we use
the VGG16 (Simonyan & Zisserman, 2015) model for image
classification. On Tiny ImageNet, we train ResNet-18 (He
et al., 2015) for image classification. For sentiment classifi-
cation on SST-2, we fine-tune LLaMA-3B (Grattafiori et al.,
2024) using LoRA. The detailed descriptions of the datasets
and models are presented in Appendix F.

Baselines. We compare DDPA with nine state-of-the-art
machine unlearning attack methods. AwoP (Liu et al.,
2024e) amplifies trigger effects by injecting them into the
frequency domain and requesting selective instance removal.
MUECPA (Di et al., 2024) introduces poison and cam-
ouflage points to evade detection. SSCSF (ZHAO et al.,
2023) optimizes crafted data update requests to exploit un-
learning vulnerabilities. BAU (Zhang et al., 2023) conceals
backdoors with mitigation samples and reactivates them
via unlearning. UBA-inf (Huang et al., 2024b) enhances
stealth and attack efficacy using label correction and influ-
ence functions. RMBMU (Ma et al., 2024) unlearns infor-
mative benign data to destabilize the model. DABF (Shin &
Park, 2024) injects and conceals backdoors to bypass detec-
tion. AdvUA (Zhao et al., 2024) selects unlearning samples
near victim samples to maximize adversarial impact. EV-
MUS (Hu et al., 2024) moves data to decision boundaries to
maximize unlearning effects. To the best of our knowledge,
this work is the first to determine attack targets during the
unlearning phase, enabling arbitrary target attacks and mul-
tiple attacks within the unlearning data budget. For detailed
descriptions of each baseline, please refer to the appendix
A.

Evaluation Metrics. We evaluate the performance of the

Figure 2: VGG-16 + CIFAR-100 (5 Unlearning Request)
Time Comparison

attack based on the attack success rate (ASR), defined as the
percentage of inputs that were successfully manipulated to
achieve the objective of the adversary. For targeted attacks,
ASR measures the proportion of samples misclassified into
the target class. For untargeted attacks, ASR quantifies
the proportion of samples misclassified into any incorrect
class. In addition, we measure test accuracy (BA) and train
accuracy (TA) degradation on benign inputs to assess the
collateral impact on model performance.

Variants of DDPA method. We evaluate two variants of
DDPA to highlight the advantages of different techniques.
DDPA-S utilizes only the simplex method to maximize and
generate an effective operational space. DDPA-C employs
only Convex Polyhedral Approximation to ensure stabil-
ity in constructing thrust vectors (group centers). DDPA
operates with the full support of both simplex method and
convex polyhedral aooriximation.

Attack performance on various dataset with different
unlearning algorithms. Table 1 presents the TA, BA and
ASR scores of five machine unlearning algorithms evaluated
on test data arcoss 12 attack models. For each attack model
,we reserve 5%, 10% and 20% of the training dataset as the
attack dataset. The conceal setting represents the evaluation
before the unlearning attack, while unlearn refers to the
results after the attack is applied.For targeted attacks, we
observe that across all 12 attack methods, DDPA maintains
an ASR of 0 before unlearning, while achieving relatively
high test accuracy in most cases, even without data augmen-
tation. This indicates that the poisoning dataset constructed
by DDPA is highly stealthy. After the unlearning attack,
DDPA achieves the highest ASR and the lowest BA, demon-
strating its effectiveness in executing a successful attack.
Compared to other attack models across the five machine
unlearning algorithms, DDPA achieves an average ASR
increase of 22.74%, 16.07%, and 21.45%, while reducing
BA by 15.76%, 11.41%, and 2.27% on VGG16-CIFAR100,
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Table 1: Unlearning Performance on VGG-16 with CIFAR100 (5% Unlearned)

Method B/A Unlearn First-Order Second-Order Unroll-SGD Amnesiac SISA
TA BA ASR TA BA ASR TA BA ASR TA BA ASR TA BA ASR

AwoP Conceal 98.98 48.05 22.60 98.89 49.08 17.30 98.54 49.33 14.90 98.46 50.33 20.70 98.98 49.90 15.32
Unlearn 97.64 47.00 86.00 97.21 47.74 89.00 97.37 47.42 85.00 96.90 46.67 85.00 97.81 46.48 65.00

MUECPA Conceal 98.02 55.14 0.00 98.26 49.10 0.00 98.04 49.42 0.00 98.27 49.28 0.00 98.33 49.38 0.00
Unlearn 95.01 46.43 80.40 97.25 47.54 88.10 97.19 47.37 86.80 96.54 45.95 82.20 97.20 47.10 85.38

SSCSF Conceal 99.98 47.75 0.00 99.95 47.73 0.00 99.78 49.67 0.00 99.58 49.38 0.00 98.75 47.80 0.00
Unlearn 98.72 45.07 80.00 97.39 47.75 90.00 97.46 47.43 86.93 97.17 44.82 88.00 97.22 45.51 86.26

BAU Conceal 98.24 46.38 0.00 98.06 43.64 0.00 98.04 46.42 0.00 98.53 47.30 0.00 98.68 47.26 0.00
Unlearn 96.28 44.73 80.00 96.56 45.42 78.00 97.90 43.17 70.80 96.98 42.73 79.80 97.45 45.20 80.00

UBA-Inf Conceal 98.50 55.40 15.00 98.83 56.41 9.13 98.97 55.46 16.57 98.34 56.86 13.18 98.40 51.27 16.27
Unlearn 97.23 54.41 89.00 97.34 54.67 85.83 97.41 52.18 84.98 96.68 50.17 84.62 96.24 46.26 81.52

RMBMU Conceal 97.64 47.73 0.00 97.82 47.14 0.00 97.69 47.83 0.00 97.72 47.89 0.00 97.15 47.20 0.00
Unlearn 95.28 46.24 85.00 96.38 46.67 86.00 96.76 45.40 84.38 95.02 44.89 85.00 96.90 45.25 86.74

DABF Conceal 98.46 48.74 0.63 98.16 48.02 0.13 98.39 48.97 0.52 98.88 48.04 0.00 98.28 48.14 0.67
Unlearn 97.64 46.69 86.00 97.47 47.68 81.21 97.24 45.48 85.00 96.81 42.44 87.11 97.14 46.14 84.45

AdvUA Conceal 98.86 46.37 0.00 98.55 47.14 0.00 98.73 47.73 0.00 98.49 47.44 0.00 98.56 47.19 0.00
Unlearn 96.49 45.29 80.20 96.38 45.42 85.52 97.07 45.39 83.57 96.63 45.57 85.34 96.69 45.83 83.68

EVMUS Conceal 99.37 51.71 0.00 98.89 50.70 0.28 98.31 50.51 0.37 98.60 51.02 0.33 98.79 46.02 1.89
Unlearn 98.97 50.62 79.20 96.07 46.99 81.77 97.90 46.36 67.66 94.31 47.62 73.61 97.29 45.36 79.26

DDPA Conceal 96.97 48.26 0.00 96.87 48.74 0.00 98.36 48.64 0.00 98.27 47.11 0.00 98.45 47.76 0.00
Unlearn 94.54 44.09 92.00 95.60 44.43 91.00 97.89 44.25 88.00 95.48 41.56 89.40 95.81 43.18 89.69

DDPA-C Conceal 97.57 48.60 0.00 96.77 47.13 0.00 98.23 47.55 0.00 97.85 46.65 0.00 97.92 46.32 0.00
Unlearn 95.45 45.58 80.00 95.35 45.93 80.20 96.86 46.86 80.40 95.58 43.59 81.20 95.16 44.11 80.60

DDPA-S Conceal 96.42 48.37 0.00 96.90 47.38 0.00 98.19 47.33 0.00 98.63 46.42 0.00 98.01 46.06 0.00
Unlearn 95.70 45.18 81.30 95.30 45.15 82.30 96.16 45.58 81.60 96.46 43.53 82.40 95.65 44.75 81.90

(a) ASR(target) (b) ASR(untarget)

Figure 3: Attack Success Rate (ASR) comparison for target and untarget attacks.

Figure 4: Time comparison for different
methods in the ablation study.

ResNet18-Tiny-ImageNet, and LLaMA-3B-SST-2 respec-
tively. In addition, the promising performance of DDPA
with all machine unlearning algorithms implies that DDPA
has greate potential as a general attack solution to other
machine unlearning methods, which is desirable in practice.

Evaluation of target-agnostic attack performance. Fig-
ure 5 evaluates the flexibility of our method in a target-
agnostic attack setting, where the attack target is unknown
during the construction of the poisoned dataset. Since other
attack methods require predefining a single target during
poisoning and cannot adjust the target during the unlearn-
ing attack phase, we relax this constraint for comparison.
Specifically, we assume they have prior knowledge of 5,
10, or 20 potential target classes, forcing them to distribute
their poisoning budget across all potential targets rather than
focusing on a single one. As the number of potential target
classes increases, we observe a significant drop in ASR for

other attack methods, while DDPA maintains a high ASR.
In the targeted attack setting, DDPA achieves a maximum
ASR of 88.3%, whereas the lowest ASR among other meth-
ods is 5.9%. In the untargeted attack setting, DDPA reaches
91.6% ASR, while the lowest-performing method achieves
only 6.3%. These results demonstrate DDPA’s flexibility in
adapting to different attack targets, allowing it to effectively
execute unlearning attacks against any target.

Running time with multi-attacks Figure 2 evaluates the
efficiency of our method in executing multiple attacks within
a predefined poisoning budget. The attacker submits 2, 3,
or 5 unlearning requests, each targeting a different attack
objective. Since other attack methods predefine a single
target and cannot dynamically adjust to multiple attacks,
they must reconstruct a new poisoned dataset for each target,
leading to significant time overhead. In contrast, DDPA
uses a single pre-constructed dataset, eliminating the need
for additional poisoning steps. As a result, DDPA efficiently

8
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Figure 5: VGG-16 + CIFAR-100 (20 target) ASR Compari-
son

Table 2: Distribution Test Results on Two Model-Dataset
Combinations

VGG16 + CIFAR-100
Shapiro-Wilk D’Agostino’s K2

p-value Anderson-Darling
Value 0.55669 0.30275 0.24373

ResNet-18 + Tiny ImageNet
Shapiro-Wilk D’Agostino’s K2

p-value Anderson-Darling
Value 0.67146 0.35562 0.35510

executes multiple attacks across different datasets with mini-
mal time cost. Compared to other methods, DDPA achieves
the lowest running time, demonstrating its scalability and
efficiency in multi-target attack scenarios.

Ablation study. Figure 4 presents the attack performance
of two DDPA variants across five unlearning algorithms
on CIFAR-100, Tiny-ImageNet, and SST-2. We observe
that the full DDPA method achieves the lowest BA and the
highest ASR in both targeted and untargeted attack settings,
consistently outperforming other versions. A reasonable ex-
planation is that our simplex method effectively maximizes
the operational space while minimizing computational com-
plexity, allowing for precise and efficient control of parame-
ter manipulation during unlearning. In addition, our Convex
Polyhedral Approximation stabilizes the behavior of thrust
vectors (group centers) by mitigating the impact of loss func-
tion non-convexity, ensuring that parameter updates follow
a structured and predictable trajectory.

Impact of Unlearning Ratio Figure 3 evaluates the impact
of the unlearning ratio on ASR, ranging from 5% to 20%
across CIFAR-100, Tiny-ImageNet, and SST-2. We observe
that ASR increases as the percentage of unlearned samples
grows, as larger unlearning sets amplify the disturbance
to model parameters, making them more susceptible to at-
tack. Notably, our method consistently achieves the highest
ASR across all unlearning ratios, outperforming all other
baselines.

Validation of the Gaussian Assumption We validate the
Gaussian assumption using the Shapiro–Wilk, D’Agostino’s
K

2, and Anderson–Darling tests. For VGG16 on CIFAR-
100, the p-values are 0.55669 (Shapiro–Wilk) and 0.30275
(K2), with an Anderson–Darling statistic of 0.24373. For
ResNet18 on Tiny ImageNet, the values are 0.67146,
0.35562, and 0.35510, respectively. All results fall within
standard thresholds for normality: p > 0.05 and Ander-
son–Darling statistic ¡ 0.787. These consistent results across
models and datasets support the Gaussian assumption, as
shown in Table 2.

Table 3: Stealthiness Evaluation on ResNet-18 with Tiny
ImageNet

Method NC PB AEVA
AwoP -2.29 0.06 -0.97

MUECPA -2.08 -0.53 -0.63
SSCSF -0.49 -1.19 -0.84
BAU -2.43 -2.62 0.16

UBA-Inf -0.80 -0.50 0.44
RMBMU -2.21 0.13 -1.33

DABF -0.19 -0.09 -0.11
AdvUA -0.15 -0.13 -2.01
EVMUS -1.21 -2.49 -2.43

our 0.32 0.29 0.59

Anomaly Detection Analysis We report anomaly indices
from three established detection methods: Neural Cleanse
(NC), a perceptual similarity-based method (PB), and
Autoencoder-based Variational Analysis (AEVA). These
detectors assign class-wise anomaly scores, where values
below –2.0 are typically considered indicative of backdoor
behavior. As shown in Table 3, our method achieves scores
of 0.322 (NC), 0.29 (PB), and 0.59 (AEVA), all comfortably
above the standard detection threshold. These results are
also consistently higher than those of baseline approaches,
indicating that our attack does not leave strong or easily
detectable backdoor traces.

5. Conclusions
In this work, we proposed a novel attack framework for ma-
chine unlearning (MU) that introduces a target-agnostic, on-
demand attack strategy, enabling adversaries to dynamically
specify arbitrary targets and efficiently execute multiple at-
tack requests post-deployment. First, we leverage convex
polyhedral approximation to identify stable group centers.
Second, we employ the simplex method to construct a regu-
lar simplex over the group centers, maximizing parameter
space coverage and allowing precise control over attack tra-
jectories. Finally, we theoretically analyze the proportion of
the parameter space occupied by the constructed simplex,
providing guarantees on its effectiveness in guiding MU
attacks.
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To the best of our knowledge, this work is the first to intro-
duce a dynamic delayed poisoning attack (DDPA) frame-
work specifically designed for machine unlearning sys-
tems. Unlike existing methods, which require the prede-
fined choice of attack targets during the poisoning dataset
construction phase, our approach offers dynamic flexibil-
ity by delaying the selection of backdoor triggers and tar-
geted attack objectives until after model training. Inspired
by thrust vector control, a technique widely employed in
aerospace engineering, our method strategically organizes
data samples as ”propellers” to manipulate model parame-
ters efficiently during the unlearning process. Furthermore,
we leverage convex polyhedral approximations to stabilize
the loss function and ensure precise control over parameter
updates, mitigating the unpredictable behavior introduced
by non-convexity.

Our framework can play a critical role in evaluating and
fortifying the robustness of machine unlearning systems,
which are increasingly integrated into privacy-sensitive ap-
plications such as autonomous vehicles, healthcare analytics,
and personalized AI systems. While primarily theoretical,
we expect our findings to provide valuable insights into
the vulnerabilities of unlearning systems and inspire the
development of robust defense mechanisms. This paper
is expected to produce a positive impact by improving the
understanding of adversarial risks in unlearning scenarios,
without posing immediate societal risks such as security,
privacy, or fairness concerns.

An important contribution of this paper is the development
of a geometry-driven poisoning strategy that dynamically
adapts to changing adversarial objectives. By combining
simplex-based data organization and convex approximation
techniques, we ensure that the poisoning dataset remains
highly effective across various unlearning configurations.
Theoretical analysis supports the efficiency of this approach,
with our findings showing significant attack success rates

under strict data removal budgets. This work not only un-
derscores the need for robust defenses against adversarial
exploitation but also provides a foundation for future re-
search in adversarial unlearning scenarios.
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A. Related Work
Trustworthy machine learning, which focuses on developing and deploying machine learning models that are not only
accurate but also robust, private, fair, and explainable, has attracted active research in recent years (Palanisamy et al., 2018;
Zhou et al., 2020b; Zhang et al., 2020; Zhou et al., 2021; Zhao et al., 2021; Ren et al., 2021; Zhang et al., 2021c;b;a; Zhou
et al., 2022; Jin et al., 2022b; Zhang et al., 2022; Jin et al., 2022a;b; Che et al., 2022; Zhang et al., 2022; Liu et al., 2022a;
Che et al., 2023b; Ren et al., 2023; Che et al., 2023a; Liu et al., 2023; 2024b;a; Zhou et al., 2024; Xiao et al., 2024; Liu
et al., 2024d;c; Zhou et al., 2010; 2009; Cheng et al., 2011; Zhou & Liu, 2012; Cheng et al., 2012; Zhou & Liu, 2013; Su
et al., 2013; Zhang et al., 2013; Zhou & Liu, 2014; Su et al., 2015; Zhou & Liu, 2015; Zhou et al., 2015a; Bao et al., 2015;
Zhou et al., 2015b; 2016; Zhou, 2017; Zhou et al., 2018b;a; Ren et al., 2019; Zhou et al., 2019b;a;c; Zhou & Liu, 2019; Wu
et al., 2020; 2021b; Zhou et al., 2020c;a; Jin et al., 2021; Wu et al., 2021c;a; Zhou et al., 2022; Guimu Guo & Zhou, 2022).

Machine Unlearning. Machine unlearning, also known as selective forgetting (Cao & Yang, 2015; Golatkar et al., 2020a;
Shibata et al., 2021) or data removal/deletion (Ginart et al., 2019; Guo et al., 2023), focuese on eliminating the influence of
specific subsets of training data on a pre-trained model (Garg et al., 2020a; Gupta et al., 2021; Nguyen et al., 2022; Wu et al.,
2022). Current methods for machine unlearning can be broadly categorized into two main approaches, as outlined below.

(1) Exact machine unlearning algorithms aim to produce a model that performs identically to one trained from scratch,
entirely excluding the data to be forgotten. The most straightforward approach, known as naive retraining, involves removing
the data to be unlearned and retraining the model from scratch. However, this method incurs substantial computational and
time costs. A notable exact unlearning method is Sharded, Isolated, Sliced, and Aggregated training (SISA) (Bourtoule et al.,
2021). In SISA, the original training dataset is partitioned into multiple disjoint shards, with each training instance assigned
to only one shard. Upon receiving an unlearning request, the model onwer retrains only the shard containing the affected
data, significantly reducing retraining costs. The final prediction for a given instance is derived by aggregating predictions
from all isolated shard models. Recent research has introduced innovative techniques to further enhance the efficiency and
performance of exact unlearning. Methods such as dataset partitioning mechanisms and the use of lightweight adapters have
been proposed to reduce the computational overhead while maintaining high accuracy (Chowdhury et al., 2024; Aldaghri
et al., 2020; Yan et al., 2022; Kumar et al., 2022; Dukler et al., 2023; Golatkar et al., 2023; Pratama & Gambetta, 2024;
Yang et al., 2024).

(2) Approximate machine unlearning methods aim to efficiently approximate the removal of specific training data’s influence
on a model without retraining from scratch. Notable approaches include first-order and second-order based unlearning
methods (Warnecke et al., 2023), both of which transform changes in training data into closed-form parameter updates
to derive the unlearned model. First-order methods leverage the first-order Taylor series expansion of the model, while
second-order methods employ the inverse Hessian matrix of second-order derivatives to adjust the parameters. Another
noteworthy method is UnrollSGD (Thudi et al., 2022), which formulates a gradient-based unlearning technique by extending
a sequence of stochastic gradient descent (SGD) updates through a Taylor series. To reverse the effect of the unlearning
data during the SGD stPS, this method adds the gradients of the unlearning data, computed with respect to the initial model
weights, to the final model weights. Additionally, Amnesiac unlearning method (Graves et al., 2020) selectively reverses
parameter updates associated with sensitive data by tracking which examples appeared in each training batch, providing a
time-efficient mechanism with minimal impact on the model’s overall performance. Recent research has introduced several
innovative techniques to further improve the efficiency and effectiveness of approximate unlearning. For instance, methods
based on influence functions estimate the impact of removing a specific data point by leveraging approximations, enabling
computationally efficient adjustments to the model (Guo et al., 2023; Sekhari et al., 2021; Suriyakumar & Wilson, 2022;
Mehta et al., 2022; Wu et al., 2022; Tanno et al., 2022). Re-optimization techniques iteratively fine-tune the model after
data removal, ensuring that the influence of the data is eliminated while maintaining overall performance (Zhang et al.,
2024; Park et al., 2024; Golatkar et al., 2020a;b; 2021). Gradient update methods incrementally adjust model parameters
to account for the addition or removal of data points, providing a lightweight and scalable solution (Huang et al., 2024a;
Hoang et al., 2023; Neel et al., 2020a; Gu et al., 2024; Cao et al., 2022; Neel et al., 2020b; Liu et al., 2022b). Additionally,
graph unlearning addresses the challenges posed by graph-structured data, where inherent dependencies between nodes and
edges require tailored strategies to forget specific elements without disrupting the graph’s structure (Li et al., 2024; Wu et al.,
2023a; Zhang, 2024; Yi & Wei, 2024;?; Wu et al., 2023b; Cheng et al., 2023; Chien et al., 2023).

Poisoning-based Backdoor Attacks. Poisoning-based backdoor attacks aim to embed hidden backdoors into machine
learning models by manipulating the training data. In this work, we focus on the problem of poisoning attacks, which
involve modifying the training data to implant backdoors into the model. A model compromised through such an attack
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functions normally on benign inputs but consistently misclassifies inputs containing a specific trigger pattern to the attacker’s
desired target class (Gu et al., 2019; Chen et al., 2017; Nguyen & Tran, 2020; Zeng et al., 2022; Barni et al., 2019; Li et al.,
2021a; Liu et al., 2018; Nguyen & Tran, 2021; Liu et al., 2020; Sarkar et al., 2020; Li et al., 2021b; Liao et al., 2018; Tan &
Shokri, 2020; Cheng et al., 2021; Garg et al., 2020b; Bauman et al., 2018; Yao et al., 2019; Bagdasaryan & Shmatikov,
2021; Yang et al., 2022). These attacks typically involve the injection of poisoned samples into the training dataset, where
each poisoned sample contains the predefined trigger. Consequently, the model learns to associate the trigger pattern with
the target class during training, resulting in backdoor behavior at the testing stage when the same trigger pattern is present.
Recent research on poisoning-based backdoor attacks can be categorized based on the type of triggers, the domain of
application, and the optimization strategies employed. For trigger design, studies have proposed a variety of approaches,
including adversarial noise combined with indiscriminate poisoning (Yu et al., 2024), kernel-based transformations (Gong
et al., 2024), autoencoder-generated triggers (Xue et al., 2024), and low-frequency perturbations (Qiao et al., 2024). Other
works emphasize invisibility and robustness by leveraging singular value decomposition (SVD) to embed imperceptible
backdoors (Chen & Xu, 2024) or exploiting natural phenomena, such as fog (Ni et al., 2023), to seamlessly integrate
triggers into the data. In terms of domain-specific applications, approaches like image scaling (Wu et al., 2023c) and deep
steganography focus on vision tasks, while IQ sequence-based attacks target wireless communication systems (Huang et al.,
2023). Backdoor attacks in generative models, targeting components like tokenizers or the language model (Vice et al.,
2023), further extend the scope of these threats. Optimization-driven methods refine the effectiveness and stealthiness of
attacks, including bi-level optimization with sparsity constraints (Gao et al., 2024), dynamic algorithms for manipulating
decision boundaries (Ma et al., 2023), and gradient-based trigger generation techniques (Zhao et al., 2023). Additionally,
innovative strategies have introduced physical-world triggers, such as uniform color space shifts (Jiang et al., 2023) and
backdoor patches designed for camera inputs (Yuan et al., 2023). Some studies focus on enhancing attack stealth through
natural integration of triggers or propose multi-stage frameworks that optimize attack success rates while maintaining high
robustness (Rathbun et al., 2024b;a).

Attacks on Machine Unlearning. Machine unlearning focuese on removing the influence of specific data from a trained
model, as discussed earlier. However, existing work on machine unlearning often overlook the risks associated with
malicious unlearning requests, whcih can lead to model misclassifications. Recent studies have begun to explore the
vulnerabilities introduced during the unlearning process and propose novel attack strategies that exploit these weaknesses.

For instance, AwoP introduces backdoor attacks by injecting triggers into the frequency domain of images and submitting
malicious unlearning requests to amplify the backdoor effect, causing misclassification of triggered inputs (Liu et al.,
2024e). MUECPA leverages camouflage datapoints to obscure the impact of poisoned datasets, making them more
challenging to detect during training (Di et al., 2024). SSCSF explores selective forgetting attacks, addressing both
static scenarios—where all malicious requests are submitted simultaneously—and sequential scenarios optimized through
stochastic control frameworks (ZHAO et al., 2023). Another approach, BAU, constructs poisoned and mitigation samples to
train a seemingly benign model, later exploiting unlearning requests to activate backdoors gradually (Zhang et al., 2023).

Innovative methods such as UBA-Inf use label correction and influence functions to create camouflage samples, enhancing
both stealth and attack performance (Huang et al., 2024b). RMBMU takes a different approach by unlearning well-prepared
benign data, causing a sudden collapse in model performance due to its reliance on these contributions during training (Ma
et al., 2024). DABF employs a two-phase strategy to inject and temporarily conceal backdoors, reactivating them after partial
model updates (Shin & Park, 2024). AdvUA aligns unlearning samples with adversarial directions, increasing the model’s
vulnerability to targeted attacks (Zhao et al., 2024). Finally, EVMUS amplifies the impact of unlearning by strategically
moving data points to the model’s decision boundary, maximizing the effect on the model’s predictive capability (Hu et al.,
2024).

While these approaches demonstrate the growing sophistication of attacks on machine unlearning, they share several
limitations. Most require a predefined target when constructing the poisoning dataset, preventing flexibility in adapting
attack objectives during the unlearning phase. Furthermore, these methods typically target a single objective and cannot
attack multiple targets within a given unlearn data budget. Additionally, many rely on access to the training dataset, which
may not always be feasible. Our proposed method effectively addresses these limitations by enabling adaptive multi-target
attacks within a constrained unlearn data budget while eliminating the dependency on direct access to the training dataset.

C. Proof of Theorems
3.1 provides a way to represent the position of a point relative to a simplex using barycentric coordinates.
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Definition 3.1 (Barycentric Coordinates in a Simplex). Let A be an n-dimensional simplex in Rn, with vertices denoted as
{A1, A2, . . . , An+1}, and let M be any point in Rn. Define Vi for i = 1, . . . , n+ 1 as the volume of the simplex formed by
replacing the i-th vertex of {A1, A2, . . . , An+1} with M . The barycentric coordinates of M with respect to the simplex are
given as the ratios:

V1 : V2 : · · · : Vn+1.

If the dimensions of the convex hulls conv{A1, . . . , Ai�1,M,Ai+1, . . . , An+1} and conv{A1, . . . , An+1} \A are both n,
the above ratios uniquely define the location of M relative to the simplex.

Furthermore, suppose A is a regular simplex, and let Bn

2 denote its inscribed ball. Denote the tangent points of Bn

2 with
each face of A by {Bi : i = 1, . . . , n+ 1}. If the vertices of A are {A1, . . . , An+1}, the barycentric coordinates of each
tangent point Bi, with respect to the simplex vertices, are given by:

✓
1

n
, . . . ,

1

n
, 0,

1

n
, . . . ,

1

n

◆
,

where the 0 appears in the i-th position (corresponding to the vertex Ai) and all other components are 1
n

.

Theorem 3.1. The John ellipsoid of a regular simplex is its inscribed ball. Let A be a regular simplex in Rn with vertices
{A1, A2, . . . , An+1} and B

n

2 as its inscribed ball. Denote by {Bi, i = 1, ..., n+ 1} the tangent points which is opposite to
{Ai, i = 1, ..., n+ 1} respectivelyy. For positive weights ci = n

n+1 (i = 1, . . . , n+ 1), the barycentric sum satisfies:

n+1X

i=1

ciBi =

✓
1

n+ 1
, . . . ,

1

n+ 1

◆
(18)

Additionally, the solution to the representation of any point x 2 Rn in the simplex is:

↵ =

✓
n

n+ 1
hu1, xi, . . . ,

n

n+ 1
hun+1, xi

◆
(19)

where {u1, . . . , un+1} are unit normal vectors.

Proof. According to Definition 3.3, to prove that the John ellipsoid of a regular simplex is its inscribed ball, we verify two
key properties: the barycentric sum of the tangent points and the representation of any point x 2 Rn within the simplex.

Let A be a regular simplex in Rn with vertices {A1, A2, . . . , An+1}, and let Bn

2 denote its inscribed ball. Denote the tangent
points of Bn

2 opposite to {Ai} as {Bi, i = 1, . . . , n+ 1}. The barycentric coordinates of Bi are:

Bi =

✓
1

n
, . . . ,

1

n
, 0,

1

n
, . . . ,

1

n

◆
,

where 0 occupies the i-th position. Clearly, the barycentric coordinates of the origin are:
✓

1

n+ 1
, . . . ,

1

n+ 1

◆
.

Let ci = n

n+1 for i = 1, . . . , n+ 1. Then, we have:

n+1X

i=1

ciBi =

✓
1

n+ 1
, . . . ,

1

n+ 1

◆
.

This confirms the barycentric sum property.

Next, we examine the representation of points within the simplex. For any x 2 Rn, it holds that:

x =
n+1X

i=1

cihx, uiiui,
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where ci =
n

n+1 . Since A is an n-dimensional simplex, the n+ 1 vectors {u1, u2, . . . , un+1} span Rn, i.e.,

span{u1, u2, . . . , un+1} = Rn
.

Define ↵ = (↵1, . . . ,↵n+1) and � = (hu1, xi, . . . , hun+1, xi). The matrix D is defined as:

D =

2

6664

hu1, u1i hu1, u2i . . . hu1, un+1i
hu2, u1i hu2, u2i . . . hu2, un+1i

...
...

. . .
...

hun+1, u1i hun+1, u2i . . . hun+1, un+1i

3

7775
.

This gives the equation system:
D↵

> = �
>
.

Each element hui, uji represents the cosine of the angle between the outer normal vectors ui and uj . Denote by Fi and Fj

the faces whose outer normal vectors are ui and uj , respectively. The dihedral angle \(Fi, Fj) between Fi and Fj is related
to hui, uji as:

hui, uji = � cos\(Fi, Fj).

The cosine of the dihedral angle satisfies:

cos\(Fi, Fj) =
Sji

Sj

,

where Sj is the (n� 1)-dimensional volume of face Fj , and Sji is the volume of the projection of Fj onto Fi along ui. For
a regular simplex, the volumes Sj and Sji are proportional, with:

Sji

Sj

=
1

n
.

Thus, the matrix D becomes:

D =

2

6664

1 � 1
n

. . . � 1
n

� 1
n

1 . . . � 1
n

...
...

. . .
...

� 1
n
� 1

n
. . . 1

3

7775
.

Finally, let:

↵ =

✓
n

n+ 1
hu1, xi, . . . ,

n

n+ 1
hun+1, xi

◆
.

Since ↵ satisfies the equation system, any point x 2 Rn can be expressed as:

x =
n+1X

i=1

↵iui.

This completes the proof that the John ellipsoid of a regular simplex is its inscribed ball.

Theorem 4 establishes the relationship between integrable functions and unit vectors satisfying specific equality conditions,
providing a bound on the integral product. Theorem 5 extends this by identifying the necessary conditions for equality,
ensuring the unit vectors form an orthonormal basis in Rn.

Theorem 3.6 (Brascamp-Lieb inequality). Let {ui}mi=1 be a sequence of unit vectors in Rn and {ci}mi=1 be a sequence of
positive real numbers satisfying:

mX

i=1

ciui ⌦ ui = In,
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where In is the identity matrix. For a sequence of integrable functions fi : R ! [0,1), i = 1, . . . ,m, the following
inequality holds: Z

Rn

mY

i=1

fi(hui, xi)cidx 
mY

i=1

✓Z

R
fi(t)dt

◆ci

.

Theorem 3.7 (Generalization of convolution inequality). Let {ui}mi=1 and {ci}mi=1 satisfy the conditions of Theorem 4, and
let {fi}mi=1 be a sequence of functions, nonzero in L1(R) and not the density of a Gaussian distribution. The equality in
Theorem 4 holds if and only if:

m = n, and {ui}mi=1 forms an orthonormal basis of Rn
.

Theorem 3.2. A simplex C in Rn is regular if and only if its John ellipsoid is the unit ball Bn

2 . If Bn

2 is the John ellipsoid of
C, then B

n

2 must be tangent to each face Fi of C. Conversely, if C is a regular simplex, its John ellipsoid is necessarily B
n

2 ,
as the regularity ensures symmetry and equal tangency conditions.

The volume of C satisfies:

Vol(C) =

p
nn(n+ 1)n+1

n!
,

which is the exact volume of a regular simplex with its inscribed ball being B
n

2 . Furthermore, for the unit normal vectors
{vi}n+1

i=1 corresponding to the faces of C, the inner product between any two distinct vectors satisfies:

hvi, vji = �
n+ 1

n2
, i 6= j (20)

This establishes that the regularity of a simplex is directly characterized by the tangency, volume, and inner product
properties of its John ellipsoid.

Proof. To establish that a simplex C in Rn is regular if and only if its John ellipsoid is the unit ball Bn

2 , we proceed by
proving both directions.

Assume that Bn

2 is the John ellipsoid of C. By definition, Bn

2 is the largest volume ellipsoid inscribed in C, tangent to each
face Fi of C. Denote the tangent points by {Bi, i = 1, . . . , n + 1}. Let {ui, i = 1, . . . , n + 1} be the outer unit normal
vectors of the faces of the simplex.

The barycentric sum must satisfy:
n+1X

i=1

ciui ⌦ ui = In,

and
n+1X

i=1

ciui = 0,

where ci > 0 are the weights ensuring that Bn

2 is the John ellipsoid.

Define the set K = {x 2 Rn : (x, ui)  1, i = 1, . . . , n+ 1}. Since the tangent points {Bi} are on the boundary of C and
B

n

2 , we observe that K ✓ C. The tangency condition implies that K and C share the same boundary points, hence K = C.

To confirm that C is regular, consider Rn+1 as Rn ⇥ R. Let the vectors:

vi =

r
n

n+ 1

✓
�ui,

1p
n

◆
, i = 1, . . . , n+ 1,

and assign weights:

di =
n+ 1

n
ci, i = 1, . . . , n+ 1.

The above definitions ensure that:
n+1X

i=1

divi ⌦ vi = In+1.
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Define the function sequence {fi(t)} as:

fi(t) =

(
e
�t
, t � 0,

0, t < 0.

For any x 2 Rn+1, let:

F (x) =
n+1Y

i=1

fi (hvi, xi)di
.

By Theorem 4, we have:
Z

Rn

F (x)dx 
n+1Y

i=1

✓Z

R
fi(t)dt

◆di

= 1.

Following the integration, using results from [Ba2], we calculate:

e
�
p
n+1rVol(K)  e

�
p
n+1r

r
nVol(K) =) Vol(K) 

p
nn(n+ 1)n+1

n!
.

This matches the volume of a regular simplex with its inscribed ball being B
n

2 .

Observe the construction of {fi} and Theorem 5, which shows that equality holds in the volume bound, and {vi}n+1
i=1 forms

an orthonormal basis in Rn+1. For any two vectors of this basis:

vi =

r
n

n+ 1

✓
�ui,

1p
n

◆
, vj =

r
n

n+ 1

✓
�uj ,

1p
n

◆
,

we compute:

hvi, vji =
n

n+ 1
hui, uji+

1

n+ 1
.

For i 6= j:

hui, uji = �
n+ 1

n2
.

Because the vectors {ui}n+1
i=1 are normal to the n+ 1 faces of the simplex K, this confirms that K is a regular simplex.

This completes the proof.

Theorem 3.3. A regular simplex can be quantified by how closely it satisfies the conditions of the John ellipsoid. For a
given set of group centers V = {v1, v2, . . . , vn}, let I denote the identity matrix, vi represent individual group centers, and
T denote the total number of group centers. Define the regularity measure based on the group centers V as:

�(V ) =
1

T

TX

t=1

exp

 
�
kI �

P
n

i=1 civi ⌦ vik
2

2�2

!
(21)

where �
2 = 1

2⇡ is the variance of the Gaussian function.

Proof. The goal is to establish that the defined regularity measure �(V ) quantifies how closely a given set of group centers
V = {v1, v2, . . . , vn} satisfies the conditions of a regular simplex, characterized by the John ellipsoid being the unit ball
B

n

2 .

A regular simplex aligns with the John ellipsoid if and only if its group centers satisfy specific geometric and algebraic
properties. These include symmetry, tangency of the ellipsoid to the simplex faces, and uniform distribution of the group
centers. To capture these properties mathematically, the Frobenius norm kI�

P
n

i=1 civi⌦ vik2 measures the deviation from
the identity matrix I , which represents an ideal configuration of the group centers. The function �(V ) is then defined as:

�(V ) =
1

T

TX

t=1

exp

 
�
kI �

P
n

i=1 civi ⌦ vik
2

2�2

!
,
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where ci > 0 are weights, and �
2 = 1

2⇡ is the variance of the Gaussian function.

To prove that �(V ) serves as a valid regularity measure, consider the term kI�
P

n

i=1 civi⌦vik2. Let M = I�
P

n

i=1 civi⌦vi,
where M represents the deviation matrix. The Frobenius norm of M is:

kMk2 = trace(M>
M).

Expanding M
>
M , we have:

M
>
M =

 
I �

nX

i=1

civi ⌦ vi

!> 
I �

nX

i=1

civi ⌦ vi

!
.

Simplifying the terms, we obtain:

kMk2 = trace(I>I)� 2 trace

 
I
>

nX

i=1

civi ⌦ vi

!
+ trace

2

4
 

nX

i=1

civi ⌦ vi

!>
0

@
nX

j=1

cjvj ⌦ vj

1

A

3

5 .

The first term trace(I>I) simplifies to n, the dimensionality of I . The second term evaluates to:

trace

 
I
>

nX

i=1

civi ⌦ vi

!
=

nX

i=1

ci.

The third term expands as:

trace

2

4
 

nX

i=1

civi ⌦ vi

!>
0

@
nX

j=1

cjvj ⌦ vj

1

A

3

5 =
nX

i=1

nX

j=1

cicjhvi, vji2,

where hvi, vji denotes the inner product between the group centers vi and vj .

Combining these results, we obtain:

kMk2 = n� 2
nX

i=1

ci +
nX

i=1

nX

j=1

cicjhvi, vji2.

The Gaussian function exp
⇣
�kMk2

2�2

⌘
applies a penalty to configurations with higher deviation kMk2, emphasizing those

closer to the identity matrix. By summing this weighted measure over T configurations and normalizing, �(V ) provides a
robust measure of regularity across multiple simplex configurations.

The term �
2 = 1

2⇡ controls the sensitivity of the Gaussian function, ensuring that minor deviations from regularity are not
overly penalized, while significant deviations are sharply discouraged.

Thus, �(V ) effectively quantifies the regularity of a simplex by penalizing deviations from the identity matrix. Its formulation
ensures that the measure aligns with the geometric and algebraic conditions of the John ellipsoid, completing the proof.

The definition 3.4 establishes the property of logarithmic concavity, ensuring a specific structure of functions where the
weighted averages of the inputs produce outputs bounded by a geometric mean.

Definition 3.4 (Logarithmically Concave Function). A function f : Rn ! R is called logarithmically concave if for any
x, y 2 Rn and 0 < � < 1,

f(�x+ (1� �)y) � f(x)�f(y)1��
.

The lemma 3.5 provides an inequality for integrals involving logarithmically concave functions, facilitating bounds for
complex integrals in optimization and probabilistic analysis.
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Lemma 3.5. Let G : R! [0,1) be a logarithmically concave function and k > 0. Then:

G(0)k
Z 1

0
G(x)xk

dx  �(k + 1)

✓Z 1

0
G(x)dx

◆k+1

.

The lemma 3.6 bounds products of weighted integrals of logarithmically concave functions, which is critical for deriving
inequalities in functional analysis and probability theory.

Lemma 3.6. Let f be a positive logarithmically concave function on R. Then:

✓Z 1

0
f(x)e�x

dx

◆✓Z 1

0
f(x)(1 + x)dx

◆

✓Z 1

0
f(x)dx

◆2

.

Theorem 3.4. Following (Li et al., 2015; Pearce et al., 2020; de G. Matthews et al., 2018), assume the parameter
space follows a Gaussian distribution in Rd. The proportion of the parameter space (PS) occupied by the constructed
(n� 1)-dimensional simplex (S)is:

⇢ =
Vol(S)
Vol(PS)

=

p
n+ 1�

�
m

2 + 1
�

(n� 1)! l ⇡m/2
p
2�m

(22)

where � is the Gamma function, � represents the standard deviation of the Gaussian distribution defining the spread of
the parameter space, m is the dimensionality of the Gaussian parameter space, and l is the edge length of the constructed
simplex.

Proof. To establish the proportion ⇢ of the parameter space (PS) occupied by the constructed (n� 1)-dimensional simplex,
we calculate the ratio of the simplex volume Vol(S) to the PS volume Vol(PS).

The parameter space corresponds to the high-probability region of a Gaussian distribution in Rd, defined by the probability
density function:

f(x) =
1

(2⇡�2)m/2
exp

✓
�kx� µk2

2�2

◆
(23)

where m is the dimensionality of the Gaussian space, µ is the mean, and �
2 is the variance. The PS can be approximated by

a ball centered at µ with radius R, enclosing a specified probability mass P . Assuming R =
p
2�, the radius corresponds to

approximately 95% of the probability mass for a standard Gaussian distribution. The volume of this m-dimensional ball is
given by:

Vol(PS) =
⇡
m/2

R
m

�
�
m

2 + 1
� (24)

Substituting R =
p
2�, we have:

Vol(PS) =
⇡
m/2(
p
2�)m

�
�
m

2 + 1
� (25)

Define functions f : R! [0,1) and F : Rn+1 ! [0,1) by:

f(x) =

(
e
�x

, x � 0,

0, x < 0,

and

F (x) =
n+1Y

j=1

f(xj),

where x = (x1, x2, . . . , xn+1) 2 Rn+1. Let H be a hyperplane with
P

n+1
j=1 aj = 0, where a = (a1, a2, . . . , an+1).

For a fixed t > 0, F is constant on St, and:

Voln�1(H \ St) = t
n�1Voln�1(H \ S1).
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A change of coordinates gives:

Z

H

F dVolH =

Z

H

n+1Y

j=1

f(xj) dVolH =

Z 1

0
e
�s

p
n+1Voln�1(H \ S

s/
p
n+1) ds,

which simplifies to: Z

H

F dVolH = (n� 1)!(n+ 1)�1/2Voln�1(H \ S1).

Thus:

Voln�1(H \ S1) =

p
n+ 1

(n� 1)!

Z

H

F dVolH .

Next, using the Fourier inversion formula, denote the characteristic function of the random variable Y by �Y :

�Pn+1
j=1 ajXj

(t) =
n+1Y

j=1

�Xj (ajt) =
n+1Y

j=1

1

1 + iajt
.

From the Fourier inversion:

G(s) =
1

2⇡

Z 1

�1

n+1Y

j=1

1

1 + iajt
e
ist

dt.

Assuming aj 6= 0 for all j, we simplify to:

Z

H

F dVolH = G(0) =
1

2⇡

Z 1

�1

n+1Y

j=1

1

1 + iajt
dt.

Applying Hölder’s inequality, and using
P

n+1
j=1 a

2
j
= 1:

Z

H

F dVolH 
1

2⇡

n+1Y

j=1

✓Z 1

�1

1

(1 + iajt)2
dt

◆1/2

.

The integral evaluates to: Z

H

F dVolH 
1

l
,

with equality if and only if n� 1 of the aj are zero.

Now consider |aj | > 1
l

for some j. Without loss of generality, assume a1 >
1
l
. The convolution of densities (h ⇤ g)(t) is:

(h ⇤ g)(0) =
Z 1

�1
h(x)g(�x) dx.

Using Lemma 1.3: Z 1

0
e
�y

g(�a1y) dy 
1

a1

✓Z 1

0
g(�a1y) dy

◆2

.

Thus: Z

H

F dVolH 
1

l
.

Then, the constructed (n� 1)-dimensional simplex S, characterized by edge length l, has a volume:

Vol(S) =
p
n+ 1

(n� 1)!l
(26)
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The proportion of the PS occupied by the simplex is:

⇢ =
Vol(S)
Vol(PS)

(27)

Substituting the expressions for Vol(S) and Vol(PS), we get:

⇢ =

p
n+1

(n�1)! l
n�1

⇡m/2(
p
2�)m

�(m
2 +1)

(28)

Simplifying, this becomes:

⇢ =

p
n+ 1�

�
m

2 + 1
�

(n� 1)! l ⇡m/2
p
2�m

(29)

Here, the term �
�
m

2 + 1
�

arises from the volume formula of the m-dimensional Gaussian ball, while
p
n+ 1 reflects the

geometric property of the constructed simplex. The normalization factor (n� 1)! accounts for the simplex dimensionality,
and the terms l and � represent the edge length and Gaussian spread, respectively. This relationship explicitly quantifies the
proportion of the high-probability Gaussian region occupied by the constructed simplex. Thus, the theorem is proven.

Theorem 3.5. Let g be a convex function defined over a polytope P , and let (x0, y0) 2 P be a reference point. The convex
envelope of g at (x0, y0) is the solution to the optimization problem:

Convg,P (x0, y0) = max c, subject to:
g(xi, yi)� [a(xi � x0) + b(yi � y0) + c] � 0, 8(xi, yi) 2 V

0(P ),

min
x2[x1

j ,x
2
j ]
[g(x,mjx+ qj)� a(x� x0)� b(mjx+ qj � y0)� c] � 0, 8ej 2 E

0(P ),

where V
0(P ) ✓ V (P ) and E

0(P ) denote the subsets of vertices and edges, respectively.

Proof. The proof begins by establishing the constraints necessary for the convex envelope at the reference point (x0, y0).
First, consider the vertices (xi, yi) 2 V

0(P ), where V
0(P ) ✓ V (P ) excludes vertices lying on edges in E

0(P ). At each
vertex, the inequality

g(xi, yi)� [a(xi � x0) + b(yi � y0) + c] � 0

ensures that the affine function defined by a, b, and c underestimates g(x, y). The underestimation at these discrete points
guarantees feasibility of the optimization problem with respect to the vertices.

Next, we analyze the constraints along the edges ej 2 E
0(P ), where E

0(P ) consists of edges along which g(x, y) exhibits
strict convexity. Each edge ej is parameterized by a linear function:

y = mjx+ qj ,

where mj and qj define the slope and intercept of the edge. Along each edge, the strict convexity of g(x, y) implies that the
minimum value of the following expression:

g(x,mjx+ qj)� a(x� x0)� b(mjx+ qj � y0)� c

occurs either at one of the endpoints x1
j
, x

2
j

of the edge or at a critical point sj(a, b) within the interval [x1
j
, x

2
j
]. To enforce

the underestimation constraint along the edge, it is required that

min
x2[x1

j ,x
2
j ]
[g(x,mjx+ qj)� a(x� x0)� b(mjx+ qj � y0)� c] � 0.

This constraint can be reformulated by analyzing the unconstrained minimum point sj(a, b) of:

fej (x) = g(x,mjx+ qj)� a(x� x0)� b(mjx+ qj � y0).
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If sj(a, b) lies within the interval [x1
j
, x

2
j
], the minimum occurs at sj(a, b). Otherwise, the minimum occurs at one of the

endpoints x1
j

or x2
j
. Using the strict convexity of g(x, y), the first derivative of fej with respect to x determines the nature of

sj(a, b):
@

@x
fej (x) = gx(x,mjx+ qj) +mjgy(x,mjx+ qj)� a� bmj .

The sign of this derivative at the endpoints x1
j

and x
2
j

allows us to evaluate whether sj(a, b) lies inside or outside the interval
[x1

j
, x

2
j
].

Combining the vertex and edge constraints, the convex envelope is expressed as the solution to the following optimization
problem:

Convg,P (x0, y0) = max c,

subject to:
g(xi, yi)� [a(xi � x0) + b(yi � y0) + c] � 0, 8(xi, yi) 2 V

0(P ),

gj(a, b) + ax0 + by0 � bqj � c, 8ej 2 E
0(P ),

where gj(a, b) is defined as:

gj(a, b) =

8
><

>:

fej (x
1
j
), if f 0

ej
(x1

j
) � 0,

fej (x
2
j
), if f 0

ej
(x2

j
)  0,

fej (sj(a, b)), otherwise.

where hj(a, b) corresponds to the minimum value at the critical point sj(a, b). By the strict convexity of g(x, y), sj(a, b)
is unique and determined by the derivative f

0
ej
(sj(a, b)) = a+ bmj . The continuity of hj and its derivatives depends on

sj(a, b), which is given by:
@sj

@a
(a, b) = �sj(a, b),

@sj

@b
(a, b) = �(mjsj(a, b)).

Substituting into the derivative of hj , we have:

@hj

@a
(a, b) = f

0
ej
(sj(a, b))

@sj

@a
� sj(a, b),

and similarly for @hj

@b
(a, b). Since fej (x) is strictly convex, its derivatives are continuous, ensuring the differentiability of

hj(a, b).

Finally, the convexity of gj(a, b) and the differentiability of its components l1
j
, l

2
j
, hj ensure that the edge-related constraints

are continuously differentiable. Combined with the vertex constraints, this proves that the entire optimization problem is
convex with continuously differentiable constraints.

This concludes the proof.

D. Algorithm

Algorithm 1 Generate Poisoned Dataset
Input: Target model f , initial parameters w0 at t0, loss function L, number of group centers n
Output: Poisoned dataset Du

Construct f 0 as a convex approximation of f
Set the number of propeller groups n
Initialize group centers V = {v1, v2, . . . , vn}
while Not Converge do
V  argminV Lt + Ls

end while
for vi 2 V do

Sample data Di from N (vi,�2)
end forreturn

S
v

i=1 Di
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Based on the methods described in Section 3.2 and Section 3.3, we summarize the stPS to construct the poisoned dataset.
As described in Algorithm 1, the construction of the poisoning dataset begins with the initialization of the group centers,
which serve as the key thrust points. The positions of these group centers are then optimized through convex optimization
to stabilize the thrust directions and ensure precise control of the model’s parameters during the unlearning process. A
critical step in this process is the construction of a regular simplex using the optimized group centers, which maximizes the
operational space available for parameter adjustments. This ensures that the model can efficiently and effectively control its
parameters within the desired range. Finally, data is sampled around the group centers based on a predefined distribution to
generate the poisoning dataset, which enables the attacker to exert precise influence on the model during the unlearning
attack phase.

E. Attack Settings
To evaluate the performance of DDPA, we use the following unlearning methods to implement the attack: first-order-based,
second-order-based, Unrolling SGD, Amnesiac, and SISA. Following prior studies, the attack budget is set between 5% and
20% of the training dataset. In our experimental setup, the model is pre-trained on the clean training dataset along with
the poisoning dataset generated using our proposed method. The proportion of poisoning samples in the training set is
determined by the attack budget. After pre-training, our attack method is implemented under both targeted and untargeted
attack scenarios. In the targeted scenario, the attacker manipulates the unlearning process to cause the model to misclassify
specific inputs into a target class chosen by the attacker. In the untargeted scenario, the attacker aims to disrupt the model’s
predictions, causing it to produce incorrect outputs without a specific target class in mind. These scenarios evaluate the
flexibility and effectiveness of the proposed method in different adversarial settings.

F. Experimental Details
Environment. The experiments were conducted on a compute server running on Red Hat Enterprise Linux 7.2 with 2
CPUs of Intel Xeon E5-2650 v4 (at 2.66 GHz) and 8 GPUs of NVIDIA GeForce GTX 2080 Ti (with 11 GB of GDDR6
on a 352-bit memory bus and memory bandwidth in the neighborhood of 620GB/s) and 4 GPUs of NVIDIA H100 (each
with 80GB of HBM2e memory on a 5120-bit memory bus, offering a memory bandwidth of approximately 3TB/s),256GB
of RAM, and 1TB of HDD. Overall, the experiments took about 10 days in a shared resource setting. We expect that a
consumer-grade single-GPU machine could complete the full set of experiments in around 21-23 days, if its full resources
were dedicated. The codes were implemented in Python 3.7.10 and PyTorch 1.9.0. Since the datasets used are all public
datasets and our methodologies and the hyperparameter settings are explicitly described in section 4 and F, our codes and
experiments can be easily reproduced on top of a GPU server.

Training. We conduct experiments on three standard datasets: CIFAR-100, Tiny ImageNet, and SST-2, covering image and
sentiment classification tasks. The datasets are publicly available and are widely used for non-commercial research and
educational purposes. For CIFAR-100, we use 50,000 examples for training and 10,000 examples for testing, training a
VGG16 model for image classification over 150 epochs. On Tiny ImageNet, we use 100,000 examples for training and
10,000 examples for testing, training a ResNet-18 model for image classification over 150 epochs. For SST-2, we use 20,000
examples for training and 872 examples for testing, fine-tuning a LLaMA-3B model with LoRA for sentiment classification
over 10 epochs. All neural networks are trained using SGD optimization, starting with an initial learning rate of 0.1 and a
batch size of 64. Each experiment is repeated three times to ensure stable and reliable results.

Implementation. For 9 state-of-art machine unlearning attack methods of AwoP (Liu et al., 2024e),MUECPA (Di et al.,
2024),SSCSF (ZHAO et al., 2023),BAU (Zhang et al., 2023),UBA-Inf (Huang et al., 2024b), RMBMU (Ma et al., 2024),
DABF (Shin & Park, 2024), AdvUA (Zhao et al., 2024), EVMUS (Hu et al., 2024), we utilized the same model architecture
as the official open-source implementation and default parameter settings provided by the original authors in all experiments.
All hyperparameters are standard values from reference codes or prior works. We validate the performance of different
attack methods with a rang of unlearing ratio 2 {5%, 10%, 20%}, which are commonly used in related studies. For the
image datasets, CIFAR-100 and Tiny ImageNet, all models were trained for 150 epochs using a batch size of 128 and
a learning rate of 0.1. For the sentiment dataset SST-2, all models were trained for 50 epochs with a batch size of 8
and a learning rate of 4e-4. These training settings were chosen to align with best practices in the literature and ensure
consistent comparisons across the experiments. The above open-source codes from the GitHub are licensed under the MIT
License, which only requires preservation of copyright and license notices and includes the permissions of commercial use,
modification, distribution, and private use.
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For our DDPA method, we performed hyperparameter selection by performing a parameter unlearning ratio
2 {5%, 10%, 20%}, Group center V 2 {5, 10, 15, 20, 25}, unlearning rate 2 {1e�3

, 4e�3
, 1e�4

, 4e�4
, 1e�5}.

For the image datasets, CIFAR-100 and Tiny ImageNet, training epoch2 {30, 60, 90, 120, 150}, learning rate 2
{0.001, 0.005, 0.01, 0.05, 0.1}. We select the bets parameters over 100 epochs of training and evaluate the model at
test time. For the sentiment dataset SST-2, training epoch2 {10, 25, 50, 100}, learning rate 2 {1e�4

, 3e�4
, 4e�4

, 5e�5}.
We select the bets parameters over 50 epochs of training and evaluate the model at test time.

Hyperparameter settings. Unless otherwise explicitly stated, we used the following default parameter settings in the
experiments. As shown in Table 4

Parameter Value
Training data on SST-2 20,000
Test data ratio on SST-2 872
Training data on CIFRA100 5,000
Test data on CIFRA100 1,000
Training data on Tiny-ImageNet 100,000
Test data on Tiny-ImageNet 10,000
Group Center V 5
Training epochs of the DDPA on image dataset 150
Training epochs of the DDPA on sentiment dataset 50
Batch size for training the model on image dataset 128
Batch size for training the model on sentiment dataset 8
Learning rate on image dataset 0.1
Learning rate on sentiment dataset 1e-4

Table 4: Model parameters and settings

F.1. Additional Experiments

Attack performance on various dataset with different unlearning algorithms. Table 5 - 22 presents the TA, BA and
ASR scores of five machine unlearning algorithms evaluated on test data arcoss 12 attack models. For each attack model ,we
reserve 5%, 10% and 20% of the training dataset as the attack dataset. The conceal setting represents the evaluation before
the unlearning attack, while unlearn refers to the results after the attack is applied. For targeted attacks, we observe that
across all 12 attack methods, DDPA maintains an ASR of 0 before unlearning, while achieving relatively high test accuracy
in most cases. This indicates that the poisoning dataset constructed by DDPA is highly stealthy. After the unlearning
attack, DDPA achieves the highest ASR and the lowest BA, demonstrating its effectiveness in executing a successful
attack. Compared to other attack models across the five machine unlearning algorithms, DDPA achieves an average ASR
increase of 22.74%, 16.07%, and 21.45%, while reducing BA by 15.76%, 11.41%, and 2.27% on VGG16-CIFAR100,
ResNet18-Tiny-ImageNet, and LLaMA-3B-SST-2 respectively. In addition, the promising performance of DDPA with
all machine unlearning algorithms implies that DDPA has greate potential as a general attack solution to other machine
unlearning methods, which is desirable in practice.
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Table 5: Unlearning Performance on VGG-16 with CIFAR100 (10% Unlearned)-targeted

Method B/A Unlearn First-Order Second-Order Unroll-SGD Amnesiac SISA
TA BA ASR TA BA ASR TA BA ASR TA BA ASR TA BA ASR

AwoP Conceal 98.10 49.30 23.10 98.33 49.52 24.65 98.46 48.72 31.00 98.86 49.25 27.70 98.97 49.09 23.82
Unlearn 96.89 45.23 88.60 96.59 44.72 87.25 96.70 45.32 88.66 96.74 45.76 89.00 97.50 46.18 88.30

MUECPA Conceal 98.16 46.22 2.00 98.26 49.54 0.00 97.04 47.42 0.00 92.97 47.28 0.20 98.46 47.10 0.20
Unlearn 97.71 44.99 86.40 97.25 45.68 88.10 82.19 44.42 85.80 85.64 43.58 85.20 96.63 45.50 84.95

SSCSF Conceal 99.40 49.50 0.00 98.12 48.04 0.00 98.52 48.30 0.00 98.58 49.15 0.00 98.66 47.26 0.00
Unlearn 96.89 45.50 89.30 96.93 44.90 88.73 95.15 44.69 85.00 96.64 45.08 89.60 96.71 45.24 88.00

BAU Conceal 98.36 46.47 0.00 98.36 46.47 0.00 98.78 47.36 0.00 98.31 47.70 0.00 98.24 47.46 0.00
Unlearn 95.82 43.40 86.90 96.02 43.32 87.40 95.92 45.67 88.00 96.14 44.93 88.40 96.74 45.06 89.00

UBA-Inf Conceal 98.26 50.74 9.20 98.04 49.30 7.60 98.86 50.21 16.28 98.77 49.72 12.46 98.05 49.93 13.55
Unlearn 96.71 44.83 87.60 96.73 44.05 90.00 96.04 45.13 89.40 96.36 45.06 90.00 96.93 43.99 86.31

RMBMU Conceal 98.94 47.04 5.20 98.73 47.40 1.60 98.68 47.53 0.00 98.33 48.89 0.00 98.16 48.69 0.00
Unlearn 96.00 44.94 87.60 97.42 44.44 89.40 97.02 44.38 88.40 97.55 45.36 88.40 96.98 45.18 87.80

DABF Conceal 98.26 48.04 0.34 98.54 48.26 1.24 98.78 48.15 0.82 98.67 48.88 0.70 98.35 48.94 2.40
Unlearn 96.28 43.62 85.30 96.09 44.73 86.20 96.02 44.29 89.00 96.63 43.94 89.20 96.75 45.06 88.90

AdvUA Conceal 98.47 47.53 0.00 98.57 47.40 0.00 98.46 48.80 0.00 98.77 48.80 0.00 98.54 48.65 0.00
Unlearn 95.75 43.60 88.30 96.20 44.60 87.60 96.31 45.72 87.60 96.79 45.03 89.60 96.40 45.54 89.00

EVMUS Conceal 99.45 50.36 2.90 99.94 49.09 0.76 98.85 49.61 1.64 98.83 49.52 0.80 99.26 48.62 1.24
Unlearn 96.64 45.58 84.90 96.30 44.45 86.00 96.82 45.76 86.40 96.75 44.87 88.00 97.09 45.75 88.20

DDPA Conceal 98.75 47.86 0.00 98.94 48.61 0.00 98.65 48.99 0.00 98.61 48.11 0.00 98.66 48.56 0.00
Unlearn 95.81 43.18 90.00 95.93 43.23 90.60 94.48 43.32 92.00 95.87 43.07 91.00 95.09 44.24 90.00

DDPA-C Conceal 98.01 46.32 0.00 98.29 47.82 0.00 98.11 47.28 0.00 98.16 48.11 0.00 98.19 48.48 0.00
Unlearn 95.35 44.04 82.10 95.21 44.77 80.20 94.43 44.17 81.80 95.35 44.61 81.20 95.23 45.51 80.00

DDPA-S Conceal 98.04 46.39 0.00 98.43 47.01 0.00 98.17 47.58 0.00 98.79 47.91 0.00 98.45 47.79 0.00
Unlearn 95.18 44.53 83.00 95.30 45.43 81.50 93.95 44.55 82.00 96.11 44.24 83.40 95.60 45.53 83.00

Table 6: Unlearning Performance on VGG-16 with CIFAR100 (20% Unlearned)-targeted

Method B/A Unlearn First-Order Second-Order Unroll-SGD Amnesiac SISA
TA BA ASR TA BA ASR TA BA ASR TA BA ASR TA BA ASR

AwoP Conceal 98.91 49.12 19.64 98.20 49.25 26.39 98.96 48.68 24.74 98.70 48.65 23.10 98.98 49.11 0.00
Unlearn 96.32 43.28 90.20 96.65 43.73 90.00 97.03 43.11 92.10 96.97 42.98 90.00 96.63 44.70 90.40

MUECPA Conceal 96.73 52.79 0.00 98.18 48.39 1.00 98.84 47.92 0.40 96.96 41.59 0.60 98.45 47.52 1.20
Unlearn 90.25 48.74 90.00 97.08 42.69 93.80 95.50 44.70 92.68 87.33 37.52 88.00 94.21 42.69 91.60

SSCSF Conceal 98.42 48.83 0.00 98.56 48.87 0.00 98.86 48.48 0.00 98.54 48.62 0.00 98.62 48.37 0.00
Unlearn 97.50 43.27 91.00 96.27 42.87 90.60 96.98 42.37 91.60 96.28 42.13 90.00 96.12 42.79 91.20

BAU Conceal 98.46 47.79 0.00 98.14 48.22 0.00 98.14 48.33 0.00 98.47 48.40 0.00 97.82 48.86 0.00
Unlearn 96.78 43.26 89.00 96.19 42.44 90.00 95.78 42.79 90.20 96.65 42.38 89.60 95.14 43.73 90.40

UBA-Inf Conceal 99.34 50.33 16.32 98.83 49.72 9.82 98.91 50.05 6.24 99.09 49.41 12.80 98.22 50.87 16.31
Unlearn 97.30 44.82 92.60 97.41 43.15 91.40 96.55 44.35 91.20 96.70 43.51 91.00 92.47 41.89 92.34

RMBMU Conceal 98.20 48.61 7.00 98.01 48.18 0.20 98.09 49.47 2.60 98.88 48.23 0.60 98.57 48.75 3.40
Unlearn 97.97 42.51 81.40 96.91 43.68 87.40 96.33 42.75 86.00 96.34 43.33 85.00 95.65 42.82 89.00

DABF Conceal 98.26 48.23 0.00 98.93 48.90 0.00 98.45 48.85 0.00 98.29 48.36 0.00 97.92 48.10 0.00
Unlearn 96.30 43.24 90.00 97.05 43.79 91.20 96.27 43.18 91.00 96.33 42.36 90.00 95.65 42.35 89.80

AdvUA Conceal 98.84 48.42 0.00 98.19 48.37 0.00 98.70 48.55 0.00 98.54 48.67 0.00 98.41 48.33 0.00
Unlearn 96.63 43.36 90.60 95.62 42.78 91.00 95.93 43.64 90.20 94.92 42.46 91.20 95.90 43.76 90.00

EVMUS Conceal 99.24 50.13 1.92 98.85 49.36 0.27 99.31 49.82 2.50 98.89 49.61 1.94 98.86 49.88 1.11
Unlearn 97.67 45.09 89.20 96.64 43.96 90.00 96.55 44.25 90.60 96.35 43.37 91.20 96.33 44.70 91.00

DDPA Conceal 98.95 48.81 0.00 98.93 48.61 0.00 98.48 48.99 0.00 98.61 48.37 0.00 98.93 48.56 0.00
Unlearn 95.49 42.18 96.00 95.07 42.23 95.00 95.11 42.01 94.00 95.87 41.07 95.60 95.09 42.02 94.80

DDPA-C Conceal 98.24 47.10 0.00 98.31 47.85 0.00 98.07 48.03 0.00 98.37 48.11 0.00 98.29 47.50 0.00
Unlearn 95.59 43.53 88.00 94.99 43.68 89.20 95.26 43.10 89.20 95.62 42.48 90.00 95.56 43.30 89.90

DDPA-S Conceal 98.33 48.28 0.00 98.63 47.13 0.00 98.19 48.45 0.00 98.54 47.47 0.00 98.04 47.51 0.00
Unlearn 95.03 43.20 90.00 95.34 43.29 90.20 95.04 44.43 90.10 95.27 42.50 91.20 95.16 43.41 91.70
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Table 7: Unlearning Performance on ResNet-18 with Tiny ImageNet (5% Unlearned)-targeted

Method B/A Unlearn First-Order Second-Order Unroll-SGD Amnesiac SISA
TA BA ASR TA BA ASR TA BA ASR TA BA ASR TA BA ASR

AwoP Conceal 98.97 42.15 21.23 98.58 41.69 16.43 98.51 41.10 17.82 98.74 42.04 23.21 98.88 42.59 21.49
Unlearn 96.64 36.73 80.00 97.05 37.30 80.40 96.14 36.90 80.00 96.33 36.71 81.20 96.79 36.27 81.52

MUECPA Conceal 98.76 42.78 0.00 98.03 43.39 0.00 98.14 42.69 0.00 97.98 42.39 0.00 97.21 43.15 0.00
Unlearn 96.48 36.49 81.00 96.46 37.42 82.60 96.95 36.63 85.20 95.98 36.53 84.00 94.91 36.13 84.00

SSCSF Conceal 99.76 41.42 0.00 99.76 41.73 0.00 99.78 41.67 0.00 99.58 41.38 0.00 98.75 41.80 0.00
Unlearn 97.72 35.75 80.00 97.39 36.07 82.40 97.46 35.82 86.00 96.17 35.43 84.20 96.22 35.51 86.26

BAU Conceal 98.98 40.73 0.00 99.95 41.42 0.00 98.83 40.67 0.00 99.58 41.32 0.00 98.75 41.32 0.00
Unlearn 95.72 33.75 80.00 96.39 35.07 83.20 95.46 34.82 86.93 96.17 34.43 83.40 96.22 34.51 85.20

UBA-Inf Conceal 98.96 41.09 13.67 98.53 40.33 11.34 98.79 41.68 10.24 98.64 41.38 11.63 98.49 41.30 10.26
Unlearn 97.16 37.33 81.00 97.29 37.59 83.91 96.14 36.91 82.13 96.59 36.90 81.00 97.15 38.64 81.27

RMBMU Conceal 97.64 40.73 0.00 98.02 40.14 0.00 97.69 41.83 0.00 97.62 40.89 0.00 98.15 47.20 0.00
Unlearn 95.28 33.24 80.20 95.38 34.67 84.30 95.76 33.40 84.38 96.02 32.89 85.00 95.92 33.25 86.74

DABF Conceal 98.32 41.63 0.43 98.18 42.02 0.13 98.39 41.97 1.54 98.88 42.04 0.00 98.34 41.14 0.78
Unlearn 96.64 35.69 82.00 95.78 36.08 81.21 97.24 35.48 85.00 95.81 34.94 86.14 96.04 34.64 84.45

AdvUA Conceal 98.86 41.37 0.00 98.45 41.14 0.00 98.73 41.73 0.00 98.49 41.44 0.00 98.56 42.19 0.00
Unlearn 96.49 35.29 80.00 96.38 35.86 84.20 96.81 34.88 83.60 96.63 35.57 85.34 96.69 35.83 83.48

EVMUS Conceal 99.36 41.71 1.23 98.88 40.82 0.48 98.31 40.51 0.37 98.60 41.02 0.33 98.64 41.02 1.89
Unlearn 97.86 35.62 80.00 96.07 36.04 81.20 96.92 35.56 67.66 94.31 34.62 73.61 96.29 35.43 79.30

DDPA Conceal 98.98 41.84 0.00 98.83 43.44 0.00 98.74 43.68 0.00 98.68 42.70 0.00 98.49 42.37 0.00
Unlearn 96.36 33.53 86.00 96.81 34.18 88.00 95.24 33.06 90.00 96.02 32.10 88.60 96.07 33.11 89.20

DDPA-C Conceal 98.09 40.23 0.00 98.01 40.17 0.00 98.40 42.44 0.00 98.47 41.54 0.00 98.16 41.39 0.00
Unlearn 96.55 35.86 80.20 96.25 37.17 80.00 94.63 35.09 81.20 95.33 34.17 82.30 96.18 34.21 81.20

DDPA-S Conceal 98.38 40.24 0.00 98.43 41.05 0.00 98.64 42.49 0.00 98.45 41.60 0.00 98.30 41.71 0.00
Unlearn 96.06 35.17 81.60 96.52 35.72 82.40 95.73 35.29 81.60 95.63 33.48 83.40 95.42 34.89 82.70

Table 8: Unlearning Performance on ResNet-18 with Tiny ImageNet (10% Unlearned)-targeted

Method B/A Unlearn First-Order Second-Order Unroll-SGD Amnesiac SISA
TA BA ASR TA BA ASR TA BA ASR TA BA ASR TA BA ASR

AwoP Conceal 98.24 42.93 22.18 98.43 42.52 24.69 98.29 41.72 28.94 98.86 42.05 26.57 98.97 43.47 18.92
Unlearn 96.54 35.23 88.40 95.68 36.72 87.30 95.54 35.37 86.80 96.74 35.78 88.60 96.43 35.93 86.31

MUECPA Conceal 98.05 40.44 2.34 98.13 40.47 0.53 97.29 40.78 0.26 96.97 40.28 0.20 98.46 41.01 0.76
Unlearn 96.11 34.43 86.40 95.47 35.14 88.10 92.19 33.43 79.64 89.64 33.04 62.20 96.19 35.25 84.00

SSCSF Conceal 98.25 43.23 0.00 98.12 42.60 0.00 98.14 42.59 0.00 98.83 42.32 0.00 98.84 43.26 0.00
Unlearn 96.89 35.07 88.20 95.93 36.72 88.20 95.28 34.98 85.40 95.64 35.43 86.60 96.46 34.84 88.00

BAU Conceal 98.36 40.65 0.00 97.83 40.34 0.00 98.40 40.38 0.00 99.16 41.84 0.00 98.07 41.41 0.00
Unlearn 95.60 33.80 86.40 94.94 36.15 87.40 95.84 35.22 88.20 96.28 34.75 88.40 96.74 36.06 89.20

UBA-Inf Conceal 99.22 43.58 9.58 98.79 44.03 16.57 99.16 41.66 11.08 98.86 42.66 17.18 98.81 42.47 12.62
Unlearn 96.75 37.45 89.80 96.39 37.87 89.26 95.26 36.61 84.26 95.23 36.08 85.00 96.99 36.93 86.77

RMBMU Conceal 98.94 42.15 4.28 98.76 41.54 9.79 98.83 42.19 3.45 98.30 41.75 3.64 98.67 41.98 2.84
Unlearn 96.00 34.94 87.00 97.45 35.17 89.40 97.02 34.15 88.40 96.19 33.83 88.40 96.98 45.18 86.40

DABF Conceal 98.26 42.17 3.19 98.54 42.62 2.79 98.78 41.49 1.57 98.36 42.24 0.13 98.49 42.58 3.90
Unlearn 96.77 33.51 86.70 97.28 36.54 86.30 96.95 34.40 88.20 97.27 33.56 87.30 95.82 35.49 88.20

AdvUA Conceal 98.20 42.19 0.00 98.60 43.08 0.00 98.18 42.34 0.00 98.68 42.74 0.00 98.54 41.75 0.00
Unlearn 96.79 33.48 83.40 96.55 35.70 86.40 96.31 34.68 87.20 95.98 35.68 88.90 96.03 35.25 89.00

EVMUS Conceal 99.80 45.68 4.11 99.94 46.31 1.11 98.62 45.97 2.17 98.20 46.25 0.46 99.63 46.17 1.63
Unlearn 97.42 37.38 85.80 97.57 38.61 85.80 96.20 36.86 86.40 96.93 36.30 88.00 97.05 35.60 89.20

DDPA Conceal 98.77 43.95 0.00 98.51 44.57 0.00 98.12 43.01 0.00 97.87 43.57 0.00 98.08 42.87 0.00
Unlearn 95.49 33.20 90.20 95.90 34.36 92.40 96.44 33.61 90.60 95.19 31.08 90.20 96.72 32.29 91.40

DDPA-C Conceal 98.62 42.35 0.00 98.47 43.29 0.00 98.24 41.87 0.00 98.08 42.13 0.00 98.15 41.74 0.00
Unlearn 96.03 34.17 83.10 95.81 35.24 82.60 96.21 34.62 83.10 95.76 33.58 83.30 96.43 33.71 82.20

DDPA-S Conceal 98.48 42.02 0.00 98.19 42.89 0.00 97.93 41.56 0.00 97.67 41.83 0.00 98.02 42.13 0.00
Unlearn 96.12 35.49 85.30 96.34 36.25 86.30 96.08 35.74 86.20 95.91 34.83 85.20 96.28 35.12 86.80
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Table 9: Unlearning Performance on ResNet-18 with Tiny ImageNet (20% Unlearned)-targeted

Method B/A Unlearn First-Order Second-Order Unroll-SGD Amnesiac SISA
TA BA ASR TA BA ASR TA BA ASR TA BA ASR TA BA ASR

AwoP Conceal 98.77 45.37 18.51 98.62 45.78 26.24 97.91 44.33 25.26 98.78 43.67 24.63 98.74 43.06 23.73
Unlearn 96.36 31.48 89.10 96.48 32.22 90.00 95.62 30.62 90.90 95.74 30.26 90.00 94.23 30.03 90.40

MUECPA Conceal 97.88 43.46 0.00 98.63 42.39 1.81 98.84 43.58 4.90 97.96 41.59 0.60 98.45 43.52 1.20
Unlearn 95.40 32.65 90.00 96.47 33.69 93.80 96.54 32.33 92.68 95.81 32.52 88.00 94.21 32.69 91.60

SSCSF Conceal 98.42 42.84 0.00 98.81 43.59 0.00 98.39 42.72 0.00 98.70 40.34 0.00 98.76 41.09 0.00
Unlearn 96.58 33.35 90.20 96.00 34.72 92.70 97.17 33.70 90.60 95.38 30.57 90.00 95.11 32.04 90.60

BAU Conceal 98.81 40.09 0.00 98.14 42.81 0.00 98.82 41.95 0.00 98.05 42.06 0.00 98.24 42.80 0.00
Unlearn 95.72 31.11 88.60 96.19 33.77 90.00 95.78 31.93 90.20 96.34 30.58 89.80 95.28 31.01 90.40

UBA-Inf Conceal 99.19 42.51 13.67 98.95 41.62 15.66 98.83 41.43 11.22 98.41 40.43 13.35 98.69 42.28 14.86
Unlearn 96.89 34.33 90.12 95.43 35.72 90.40 95.27 34.30 89.60 94.70 34.76 90.00 97.71 36.35 89.72

RMBMU Conceal 98.65 42.04 7.42 98.10 42.89 2.40 98.72 43.29 2.29 97.47 43.47 1.68 98.67 42.49 7.21
Unlearn 97.54 32.46 88.10 96.91 33.72 89.50 96.47 32.29 88.70 95.05 31.08 86.90 95.55 30.86 89.00

DABF Conceal 97.93 43.63 0.00 98.36 43.48 0.00 97.85 42.81 0.00 98.01 43.14 0.00 97.86 42.60 0.00
Unlearn 95.11 31.83 90.20 96.81 33.35 91.60 96.25 31.96 91.00 96.49 30.39 90.00 95.23 30.18 90.00

AdvUA Conceal 98.57 42.67 0.00 98.67 42.93 0.00 97.93 41.93 0.00 98.15 42.91 0.00 98.72 43.22 0.00
Unlearn 96.24 32.24 90.60 95.62 33.35 91.00 96.35 32.35 90.10 94.91 31.18 90.80 95.60 30.79 90.00

EVMUS Conceal 98.70 44.85 1.21 98.64 45.52 8.11 99.06 43.69 5.13 98.88 44.72 3.11 98.57 43.85 7.01
Unlearn 97.67 30.12 88.30 96.15 31.08 89.80 96.28 30.52 90.00 96.11 28.65 86.00 96.66 29.04 86.40

DDPA Conceal 98.42 45.65 0.00 98.74 45.61 0.00 98.27 45.69 0.00 98.84 45.69 0.00 98.72 45.56 0.00
Unlearn 95.35 30.04 94.30 95.40 30.86 95.00 95.19 30.12 94.60 95.67 28.04 95.60 95.59 28.69 94.90

DDPA-C Conceal 98.34 44.92 0.00 98.52 45.21 0.00 98.15 45.03 0.00 98.64 44.91 0.00 98.43 44.88 0.00
Unlearn 95.02 31.12 89.20 95.18 31.58 90.10 95.29 30.84 89.40 95.08 29.92 89.80 95.21 30.33 89.60

DDPA-S Conceal 98.19 44.78 0.00 98.25 45.06 0.00 98.08 44.84 0.00 98.37 44.71 0.00 98.29 44.69 0.00
Unlearn 95.17 31.56 90.30 95.36 31.74 91.40 95.23 30.96 90.80 95.43 29.88 90.20 95.28 30.47 90.70

Table 10: Unlearning Performance on LLama-3b with SST-2 (5% Unlearned)-targeted

Method B/A Unlearn First-Order Second-Order Unroll-SGD Amnesiac SISA
TA BA ASR TA BA ASR TA BA ASR TA BA ASR TA BA ASR

AwoP Conceal 93.56 90.67 23.42 93.28 90.79 19.87 93.78 90.50 21.76 93.46 90.35 23.57 92.18 91.14 18.59
Unlearn 91.24 87.12 74.69 91.52 88.71 73.46 91.15 86.54 72.50 90.28 84.74 71.00 90.27 86.15 71.00

MUECPA Conceal 94.51 89.21 0.00 93.72 90.27 0.00 93.34 90.45 0.00 92.71 90.59 0.00 92.38 91.17 0.00
Unlearn 92.68 87.06 70.19 91.78 87.97 70.21 91.48 87.30 71.20 90.29 85.45 73.40 91.54 86.04 74.60

SSCSF Conceal 95.16 90.17 0.00 95.03 90.14 0.00 95.46 91.33 0.00 95.75 91.84 0.00 95.28 90.53 0.00
Unlearn 92.70 87.16 70.76 92.81 88.24 71.18 93.03 87.93 70.60 92.88 85.40 70.20 92.91 86.23 70.20

BAU Conceal 90.33 89.63 0.00 91.05 89.59 0.00 91.62 90.35 0.00 92.16 90.78 0.00 92.42 90.69 0.00
Unlearn 88.71 87.86 71.71 89.91 88.18 71.54 89.99 86.52 70.20 89.96 84.23 72.10 90.04 85.81 69.40

UBA-Inf Conceal 95.70 91.39 12.37 95.87 91.31 14.73 95.29 91.80 13.50 95.63 92.18 11.41 95.79 91.13 15.76
Unlearn 92.61 87.32 76.01 92.16 88.12 78.70 93.80 87.85 78.70 91.98 85.12 79.04 92.81 87.52 78.90

RMBMU Conceal 93.81 90.09 0.00 92.84 90.69 0.00 93.15 90.06 0.00 92.99 90.75 0.00 93.08 90.33 0.00
Unlearn 91.82 88.21 72.38 91.69 87.47 72.00 91.51 87.78 71.10 89.74 84.36 71.00 90.43 86.39 72.00

DABF Conceal 91.89 89.75 2.42 92.37 90.08 9.23 91.13 90.05 6.95 92.43 90.22 5.81 91.61 90.59 2.11
Unlearn 89.60 87.18 69.88 90.25 88.49 70.20 89.48 87.14 70.00 88.98 83.94 70.00 89.37 87.07 70.00

AdvUA Conceal 91.72 89.93 0.00 91.57 89.98 0.00 92.60 90.02 0.00 92.66 90.17 0.00 92.10 90.15 0.00
Unlearn 89.09 87.16 71.90 90.47 88.02 71.50 90.49 87.19 71.00 89.55 84.68 72.00 90.79 87.41 70.70

EVMUS Conceal 93.58 90.39 6.32 93.38 90.88 7.17 93.11 90.53 4.20 92.49 91.19 6.51 93.77 90.28 8.71
Unlearn 91.14 87.63 68.35 92.42 88.54 67.50 91.12 87.10 65.40 89.91 83.36 64.20 90.14 86.96 62.00

DDPA Conceal 95.51 91.86 0.00 95.46 92.94 0.00 95.84 92.84 0.00 95.18 92.67 0.00 95.12 91.96 0.00
Unlearn 92.45 86.32 80.92 93.14 87.01 81.75 92.97 86.35 80.70 91.14 83.08 82.00 92.38 85.03 81.20

DDPA-C Conceal 95.12 91.23 0.00 94.89 91.45 0.00 94.34 92.01 0.00 94.78 90.98 0.00 94.43 91.78 0.00
Unlearn 93.34 87.78 72.45 92.56 88.12 71.78 92.23 87.34 72.12 90.34 85.12 73.12 91.76 86.41 72.12

DDPA-S Conceal 94.45 90.89 0.00 94.23 91.01 0.00 94.67 91.56 0.00 94.12 91.34 0.00 94.89 92.01 0.00
Unlearn 92.48 87.56 74.01 92.12 87.83 73.56 92.45 87.02 73.12 90.78 84.67 72.45 91.67 87.38 72.00
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Table 11: Unlearning Performance on LLama-3b with SST-2 (10% Unlearned)-targeted

Method B/A Unlearn First-Order Second-Order Unroll-SGD Amnesiac SISA
TA BA ASR TA BA ASR TA BA ASR TA BA ASR TA BA ASR

AwoP Conceal 93.42 90.45 24.83 93.11 90.56 21.32 93.56 90.23 22.98 93.22 90.12 24.61 92.08 90.91 20.71
Unlearn 90.58 86.45 78.56 91.04 87.89 76.34 90.48 85.67 75.21 89.91 83.45 74.12 89.86 85.04 73.85

MUECPA Conceal 94.34 88.98 0.00 93.53 89.91 0.00 93.26 90.02 0.00 92.58 90.21 0.00 92.21 90.84 0.00
Unlearn 91.56 86.31 76.89 90.84 87.02 76.54 90.73 86.25 76.02 89.87 84.39 75.32 90.12 85.61 74.96

SSCSF Conceal 94.89 89.85 0.00 94.74 90.04 0.00 95.12 91.12 0.00 95.31 91.51 0.00 94.98 90.23 0.00
Unlearn 91.92 86.45 74.62 92.11 87.54 73.98 91.87 87.23 73.41 91.83 84.21 73.19 91.74 85.43 73.01

BAU Conceal 90.12 89.35 0.00 90.89 89.24 0.00 91.23 90.01 0.00 91.89 90.43 0.00 91.93 90.26 0.00
Unlearn 88.23 86.34 73.84 89.14 87.12 73.32 89.07 85.89 72.41 89.03 84.12 73.02 89.21 85.04 72.94

UBA-Inf Conceal 95.51 91.18 14.36 95.72 91.03 16.52 95.14 91.42 15.04 95.42 91.89 13.56 95.56 91.04 17.09
Unlearn 91.87 86.58 81.42 91.56 87.41 80.61 91.79 86.72 83.05 90.78 84.09 82.14 91.21 85.49 81.85

RMBMU Conceal 93.45 89.82 0.00 92.54 90.28 0.00 92.86 89.74 0.00 92.71 90.33 0.00 93.01 89.98 0.00
Unlearn 90.62 87.12 76.43 90.41 86.78 76.01 90.28 86.12 75.61 88.54 83.45 74.92 89.72 84.61 75.13

DABF Conceal 91.62 89.42 3.45 92.15 89.79 11.56 90.89 89.65 8.34 91.98 89.98 7.12 91.51 90.12 5.56
Unlearn 88.45 86.34 74.51 89.14 87.21 73.89 88.73 86.41 73.02 88.42 83.67 72.71 88.89 86.12 72.54

AdvUA Conceal 91.32 89.62 0.00 91.08 89.73 0.00 92.18 89.84 0.00 92.34 90.01 0.00 91.79 89.92 0.00
Unlearn 88.67 86.73 74.87 89.71 87.43 74.12 89.69 86.87 73.45 88.91 83.54 74.21 89.57 86.41 73.89

EVMUS Conceal 93.23 90.12 7.84 93.02 90.47 9.67 92.87 90.21 6.91 92.23 90.78 8.21 93.45 90.11 10.20
Unlearn 90.54 86.92 73.42 91.41 87.56 72.13 90.32 86.47 71.54 89.03 82.71 71.02 89.76 85.21 70.91

DDPA Conceal 95.41 91.56 0.00 95.12 92.45 0.00 95.72 92.21 0.00 95.01 92.05 0.00 95.07 91.58 0.00
Unlearn 91.89 85.87 84.56 92.23 86.52 83.89 91.98 85.76 83.12 90.52 82.12 82.45 91.12 84.09 82.31

DDPA-C Conceal 94.89 91.07 0.00 94.67 92.11 0.00 95.45 91.89 0.00 94.81 90.52 0.00 94.95 90.79 0.00
Unlearn 91.67 86.12 75.34 91.01 87.45 74.78 91.34 86.48 74.12 91.79 83.33 73.20 91.15 85.82 73.50

DDPA-S Conceal 95.12 90.78 0.00 95.33 91.90 0.00 94.53 90.42 0.00 95.06 91.61 0.00 95.06 91.41 0.00
Unlearn 91.76 86.34 76.12 92.23 88.81 75.00 91.69 86.13 75.40 90.37 83.10 75.40 90.68 85.77 74.80

Table 12: Unlearning Performance on LLama-3b with SST-2 (20% Unlearned)-targeted

Method B/A Unlearn First-Order Second-Order Unroll-SGD Amnesiac SISA
TA BA ASR TA BA ASR TA BA ASR TA BA ASR TA BA ASR

AwoP Conceal 93.12 89.98 28.90 92.84 90.11 25.40 92.98 89.14 26.80 92.12 88.56 27.30 91.24 89.01 26.10
Unlearn 85.67 81.12 85.30 86.78 82.45 83.60 85.45 80.89 84.20 84.12 78.76 84.90 84.76 79.35 83.70

MUECPA Conceal 93.87 88.12 0.00 93.14 88.76 0.00 92.98 88.56 0.00 92.34 88.45 0.00 91.89 88.23 0.00
Unlearn 86.12 81.34 80.10 86.34 82.12 79.40 85.98 81.56 81.30 83.78 78.67 79.80 84.34 79.12 80.70

SSCSF Conceal 94.12 89.43 0.00 93.87 89.12 0.00 94.23 90.78 0.00 94.01 89.45 0.00 93.78 89.23 0.00
Unlearn 85.89 81.23 78.40 86.34 82.34 77.90 85.78 80.45 77.40 84.56 77.98 76.80 85.12 78.56 77.20

BAU Conceal 89.23 89.56 0.00 88.78 87.34 0.00 89.34 87.45 0.00 89.78 87.67 0.00 90.12 87.43 0.00
Unlearn 84.12 79.34 77.30 85.34 80.34 76.80 84.89 78.76 75.40 83.67 76.45 76.10 84.12 77.12 75.80

UBA-Inf Conceal 94.89 90.12 21.80 94.56 89.78 19.20 94.34 90.45 20.60 94.12 90.67 18.40 94.01 89.98 19.70
Unlearn 85.34 80.12 83.40 85.78 80.98 81.30 85.12 79.34 80.70 83.78 76.12 79.80 84.34 78.12 82.10

RMBMU Conceal 92.67 88.45 0.00 91.78 88.89 0.00 92.01 88.12 0.00 91.87 88.34 0.00 91.56 88.01 0.00
Unlearn 84.89 80.34 78.60 85.12 81.45 78.10 84.34 79.87 77.40 82.34 76.67 76.80 83.78 77.89 77.10

DABF Conceal 90.56 87.89 6.20 90.12 87.67 5.80 89.78 87.34 6.10 90.23 87.56 5.90 89.78 87.34 6.30
Unlearn 84.23 79.67 76.40 84.78 80.12 76.10 84.12 78.67 75.80 83.01 75.34 75.40 83.78 77.12 76.20

AdvUA Conceal 89.78 87.01 0.00 89.34 87.12 0.00 90.12 87.34 0.00 90.34 87.45 0.00 89.98 87.12 0.00
Unlearn 83.67 79.34 75.30 84.45 80.12 74.80 83.89 79.34 74.60 82.89 75.34 73.90 83.12 77.12 74.80

EVMUS Conceal 91.67 88.12 12.40 91.34 88.45 11.20 91.23 88.12 11.70 91.01 88.34 10.80 91.78 88.01 11.30
Unlearn 84.89 79.87 73.40 85.12 80.12 72.10 84.56 79.01 71.80 83.23 75.12 71.20 83.89 77.12 72.60

DDPA Conceal 95.12 90.34 0.00 94.89 90.67 0.00 95.23 90.12 0.00 94.87 91.45 0.00 95.78 92.12 0.00
Unlearn 85.34 79.08 86.30 85.67 80.12 87.40 85.12 78.67 85.80 84.87 75.78 84.60 85.78 77.45 86.90

DDPA-C Conceal 93.78 90.45 0.00 94.54 91.78 0.00 94.89 92.12 0.00 95.03 91.34 0.00 94.45 92.01 0.00
Unlearn 86.45 81.12 79.80 86.78 82.34 78.40 87.23 81.56 78.10 85.67 77.34 77.60 86.12 80.17 78.30

DDPA-S Conceal 94.12 90.12 0.00 95.01 92.34 0.00 94.28 90.01 0.00 94.86 92.68 0.00 94.67 90.56 0.00
Unlearn 85.67 80.89 80.20 86.12 82.01 79.60 86.34 80.78 78.40 84.89 76.67 78.10 85.45 79.23 78.80
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Table 13: Unlearning Performance on VGG-16 with CIFAR100 (5% Unlearned) - untargeted

Method B/A Unlearn First-Order Second-Order Unroll-SGD Amnesiac SISA (shard 3)
TA BA ASR TA BA ASR TA BA ASR TA BA ASR TA BA ASR

AwoP Conceal 98.91 48.12 22.8 98.72 48.96 17.1 98.55 49.41 15.2 98.46 50.25 21.2 98.83 49.68 15.8
Unlearn 96.51 41.78 91.20 96.62 42.14 92.7 96.24 41.23 91.40 95.94 40.89 90.9 96.38 41.45 92.10

MUECPA Conceal 98.12 55.24 0.00 98.06 49.18 0.00 98.21 49.29 0.00 98.33 49.14 0.00 98.27 49.21 0.00
Unlearn 95.32 43.61 86.10 95.47 43.89 87.20 95.64 43.37 86.70 95.12 42.98 85.90 95.38 43.26 86.50

SSCSF Conceal 99.92 47.82 0.00 99.78 47.75 0.00 99.68 49.59 0.00 99.54 49.26 0.00 98.84 47.83 0.00
Unlearn 97.84 42.04 89.40 97.67 42.49 90.10 97.48 41.98 89.20 97.36 41.56 89.50 97.68 42.03 89.80

BAU Conceal 98.34 46.54 0.00 98.17 43.82 0.00 98.19 46.54 0.00 98.49 47.38 0.00 98.63 47.21 0.00
Unlearn 95.18 39.78 85.40 95.32 40.14 85.90 95.27 39.68 85.10 95.02 39.21 84.80 95.23 39.74 85.30

UBA-Inf Conceal 98.51 55.32 15.20 98.62 56.19 11.70 98.88 55.34 15.90 98.39 56.51 13.60 98.24 51.17 15.40
Unlearn 96.84 45.13 93.10 96.72 46.29 92.70 96.61 45.92 91.80 96.32 43.64 91.40 96.48 43.04 92.30

RMBMU Conceal 97.73 47.64 0.00 97.69 47.24 0.00 97.58 47.72 0.00 97.69 47.68 0.00 97.22 47.16 0.00
Unlearn 94.79 42.18 89.10 94.64 42.36 88.90 94.42 42.08 88.40 94.26 41.79 88.20 94.62 42.12 88.80

DABF Conceal 98.54 48.62 0.70 98.34 48.02 0.12 98.49 48.72 0.62 98.75 48.08 0.00 98.41 48.19 0.71
Unlearn 96.94 41.78 89.30 96.73 42.02 88.50 96.38 41.53 88.20 96.12 41.08 87.90 96.34 41.62 88.70

AdvUA Conceal 98.78 46.42 0.00 98.47 47.21 0.00 98.64 47.69 0.00 98.45 47.39 0.00 98.52 47.23 0.00
Unlearn 95.64 41.62 88.20 95.41 41.74 88.90 95.34 41.31 88.40 95.14 41.12 88.30 95.43 41.45 88.60

EVMUS Conceal 99.37 51.72 0.00 98.92 50.90 0.32 98.45 50.52 0.41 98.63 50.94 0.36 98.71 46.13 1.92
Unlearn 97.81 43.87 84.60 97.32 44.12 83.40 97.06 43.59 83.10 96.52 43.24 82.90 96.98 43.68 83.60

DDPA Conceal 98.53 47.86 0.00 98.42 48.33 0.00 98.31 48.62 0.00 98.67 47.94 0.00 98.58 47.78 0.00
Unlearn 95.78 40.92 94.60 95.34 41.21 93.40 95.12 40.76 92.80 94.85 39.67 93.10 95.04 40.12 93.70

DDPA-C Conceal 96.87 48.24 0.00 96.72 48.61 0.00 98.42 48.51 0.00 98.24 47.02 0.00 98.41 47.83 0.00
Unlearn 94.31 38.12 95.10 94.96 39.61 93.60 95.74 38.32 92.90 95.03 36.78 93.20 95.42 37.08 93.50

DDPA-S Conceal 97.47 48.11 0.00 96.68 47.13 0.00 98.13 47.72 0.00 97.95 46.61 0.00 97.82 46.41 0.00
Unlearn 95.41 42.13 88.10 95.26 42.41 87.40 95.07 41.94 86.90 94.85 41.52 87.10 95.23 41.74 87.30

Table 14: Unlearning Performance on VGG-16 with CIFAR100 (10% Unlearned) - untargeted

Method B/A Unlearn First-Order Second-Order Unroll-SGD Amnesiac SISA
TA BA ASR TA BA ASR TA BA ASR TA BA ASR TA BA ASR

AwoP Conceal 98.87 47.62 25.8 98.79 48.33 21.40 98.66 48.78 18.60 98.45 49.54 22.10 98.62 48.92 20.50
Unlearn 96.48 38.82 92.10 96.32 39.21 93.60 96.14 38.66 91.40 95.92 37.88 91.80 96.27 38.22 92.50

MUECPA Conceal 98.03 55.44 0.00 98.22 49.28 0.00 98.12 49.54 0.00 98.34 49.47 0.00 98.27 49.36 0.00
Unlearn 94.91 40.94 87.80 94.87 41.28 88.90 94.58 40.74 87.30 94.32 40.12 86.50 94.65 40.54 87.5

SSCSF Conceal 99.85 47.72 0.00 99.76 47.56 0.00 99.69 49.39 0.00 99.53 49.02 0.00 98.88 47.68 0.00
Unlearn 97.78 38.88 91.30 97.53 39.21 91.80 97.34 38.74 91.10 97.21 37.89 91.60 97.49 38.42 91.70

BAU Conceal 98.41 46.72 0.00 98.24 44.21 0.00 98.27 46.74 0.00 98.45 47.18 0.00 98.56 47.04 0.00
Unlearn 94.82 37.74 89.50 94.64 38.12 89.80 94.58 37.58 89.20 94.41 36.98 88.90 94.63 37.24 89.30

UBA-Inf Conceal 98.42 55.54 18.20 98.67 56.67 14.70 98.81 55.84 19.50 98.32 56.03 16.80 98.19 50.87 18.30
Unlearn 96.51 47.73 94.60 96.38 47.94 94.10 96.22 47.56 93.70 96.08 46.82 93.20 96.35 47.23 93.90

RMBMU Conceal 97.74 47.82 0.00 97.68 47.34 0.00 97.57 47.84 0.00 97.64 47.78 0.00 97.18 47.32 0.00
Unlearn 94.28 39.12 91.40 94.21 39.34 91.10 94.08 38.96 90.70 94.02 38.52 90.30 94.23 38.84 91.20

DABF Conceal 98.51 48.92 0.72 98.32 48.28 0.16 98.43 48.87 0.69 98.65 48.22 0.00 98.42 48.43 0.74
Unlearn 96.62 38.43 91.60 96.48 38.72 91.30 96.14 38.28 90.80 95.78 37.89 90.40 96.12 38.22 91.20

AdvUA Conceal 98.72 46.84 0.00 98.54 47.43 0.00 98.67 47.92 0.00 98.46 47.48 0.00 98.53 47.26 0.00
Unlearn 95.84 38.72 90.40 95.61 39.01 90.90 95.42 38.64 90.20 95.21 38.34 90.10 95.63 38.54 90.50

EVMUS Conceal 99.48 51.92 0.00 98.98 50.84 0.41 98.59 50.62 0.51 98.75 51.23 0.47 98.83 46.34 2.12
Unlearn 97.91 40.12 86.40 97.44 40.56 85.70 97.28 39.98 85.40 96.81 39.58 85.20 97.29 39.87 85.60

DDPA Conceal 96.92 48.74 0.00 96.78 48.91 0.00 98.52 48.73 0.00 98.36 47.68 0.00 98.42 47.92 0.00
Unlearn 94.61 36.72 95.30 94.92 38.19 94.60 95.68 37.94 93.90 95.14 35.85 94.20 95.62 36.41 94.50

DDPA-C Conceal 97.64 48.34 0.00 97.13 47.68 0.00 98.14 47.88 0.00 97.95 46.84 0.00 97.84 46.61 0.00
Unlearn 95.32 39.62 92.20 95.14 39.84 91.80 94.97 39.52 91.30 94.82 38.92 91.10 95.23 39.12 91.70

DDPA-S Conceal 96.81 48.42 0.00 96.78 47.74 0.00 98.23 47.63 0.00 98.42 47.12 0.00 98.25 46.94 0.00
Unlearn 94.81 39.31 92.90 94.73 39.48 92.30 94.54 39.12 92.10 94.42 38.89 91.90 94.76 39.02 92.50
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Table 15: Unlearning Performance on VGG-16 with CIFAR100 (20% Unlearned) - Untarget Experiment

Method B/A Unlearn First-Order Second-Order Unroll-SGD Amnesiac SISA
TA BA ASR TA BA ASR TA BA ASR TA BA ASR TA BA ASR

AwoP Conceal 98.94 47.65 28.60 98.79 48.14 23.80 98.66 48.52 21.90 98.45 49.32 27.40 98.57 48.85 25.60
Unlearn 94.78 35.12 95.80 94.64 35.56 96.20 94.53 35.01 95.30 94.34 34.36 95.60 94.71 34.79 96.00

MUECPA Conceal 98.01 54.62 0.00 98.12 48.91 0.00 98.06 49.27 0.00 98.18 49.22 0.00 98.14 49.18 0.00
Unlearn 93.56 38.84 91.80 93.42 39.16 92.10 93.34 38.63 91.20 93.18 37.98 90.70 93.48 38.24 91.40

SSCSF Conceal 99.83 46.91 0.00 99.72 46.74 0.00 99.65 48.67 0.00 99.51 48.23 0.00 98.82 46.78 0.00
Unlearn 96.91 33.82 94.30 96.65 34.13 94.70 96.49 33.78 93.90 96.32 33.14 94.20 96.61 33.54 94.60

BAU Conceal 98.36 45.74 0.00 98.14 42.91 0.00 98.27 45.81 0.00 98.38 46.24 0.00 98.43 46.18 0.00
Unlearn 93.81 32.84 93.60 93.62 33.12 93.90 93.54 32.68 93.10 93.41 32.14 92.80 93.59 32.43 93.40

UBA-Inf Conceal 98.45 54.12 20.10 98.64 55.17 16.40 98.78 54.84 21.30 98.27 54.23 18.20 98.14 50.57 19.70
Unlearn 95.34 41.53 95.30 95.23 41.82 95.80 95.12 41.32 96.70 95.01 40.78 96.20 95.27 41.08 97.20

RMBMU Conceal 97.61 46.91 0.00 97.54 46.34 0.00 97.47 46.92 0.00 97.53 46.87 0.00 97.14 46.42 0.00
Unlearn 93.21 33.45 94.30 93.14 33.68 94.10 93.04 33.24 93.60 92.88 32.78 93.10 93.18 33.08 93.90

DABF Conceal 98.44 47.91 1.02 98.23 47.38 0.42 98.37 47.84 0.89 98.62 47.14 0.00 98.41 47.26 0.86
Unlearn 95.84 33.74 93.70 95.62 33.98 93.40 95.47 33.61 92.80 95.23 33.18 92.30 95.59 33.43 93.20

AdvUA Conceal 98.64 45.34 0.00 98.52 46.14 0.00 98.68 46.74 0.00 98.41 46.38 0.00 98.49 46.17 0.00
Unlearn 94.94 34.73 93.40 94.71 34.89 93.80 94.54 34.52 93.20 94.32 34.18 92.90 94.68 34.42 93.50

EVMUS Conceal 99.34 50.84 0.00 98.85 49.74 0.71 98.46 49.53 0.81 98.62 50.14 0.68 98.74 45.97 3.12
Unlearn 96.79 35.41 91.8 96.44 35.82 91.30 96.32 35.21 91.10 96.08 34.72 90.60 96.48 35.04 91.40

DDPA Conceal 96.86 47.84 0.00 96.62 48.14 0.00 98.27 47.94 0.00 98.16 46.68 0.00 98.24 46.92 0.00
Unlearn 93.64 33.42 97.80 93.84 33.89 97.40 94.27 33.56 95.30 93.82 32.64 95.40 94.18 33.08 95.70

DDPA-C Conceal 97.48 47.43 0.00 97.14 46.74 0.00 98.06 46.94 0.00 97.81 45.82 0.00 97.69 45.54 0.00
Unlearn 94.41 34.82 94.30 94.14 35.12 93.80 93.97 34.72 93.40 93.82 34.14 93.10 94.18 34.46 93.60

DDPA-S Conceal 96.78 47.61 0.00 96.74 46.82 0.00 98.12 46.72 0.00 98.24 46.11 0.00 98.08 45.84 0.00
Unlearn 93.82 34.58 94.80 93.76 34.74 94.10 93.54 34.32 93.60 93.41 34.12 93.20 93.68 34.27 93.90

Table 16: Unlearning Performance on ResNet-18 with Tiny ImageNet (5% Unlearned) - untarget

Method B/A Unlearn First-Order Second-Order Unroll-SGD Amnesiac SISA
TA BA ASR TA BA ASR TA BA ASR TA BA ASR TA BA ASR

AwoP Conceal 98.92 42.15 27.80 98.84 42.38 25.10 98.73 42.04 23.40 98.66 42.51 26.70 98.54 42.19 24.80
Unlearn 96.62 32.34 92.40 96.47 32.22 92.10 96.31 32.04 91.60 96.08 31.87 91.90 96.22 32.12 92.00

MUECPA Conceal 97.92 43.85 0.00 98.01 44.12 0.00 98.04 43.97 0.00 98.18 43.78 0.00 98.09 43.92 0.00
Unlearn 96.41 33.98 88.20 96.29 33.82 88.80 96.14 33.64 88.10 95.98 33.28 87.40 96.21 33.59 88.50

SSCSF Conceal 99.86 40.87 0.00 99.73 41.13 0.00 99.66 41.02 0.00 99.52 40.91 0.00 98.91 40.72 0.00
Unlearn 96.93 31.24 92.50 96.77 31.47 92.80 96.53 31.14 92.20 96.28 30.78 91.80 96.47 31.02 92.30

BAU Conceal 98.42 40.26 0.00 98.34 40.54 0.00 98.19 40.48 0.00 98.32 40.32 0.00 98.47 40.41 0.00
Unlearn 94.83 30.48 90.30 94.64 30.71 90.70 94.57 30.43 90.10 94.31 30.08 89.60 94.52 30.34 90.20

UBA-Inf Conceal 98.38 41.94 22.40 98.47 42.07 19.60 98.62 41.72 23.50 98.51 41.96 21.30 98.32 41.83 22.20
Unlearn 95.24 33.91 95.40 95.12 34.02 94.80 95.04 33.74 94.30 94.78 33.22 93.70 95.11 33.56 94.60

RMBMU Conceal 97.53 39.83 0.00 97.41 39.71 0.00 97.37 39.84 0.00 97.45 39.72 0.00 97.14 39.61 0.00
Unlearn 94.68 29.78 93.80 94.54 29.96 93.40 94.38 29.61 93.10 94.22 29.32 92.60 94.49 29.47 93.30

DABF Conceal 98.39 40.81 1.86 98.29 40.64 1.34 98.24 40.72 1.65 98.42 40.38 1.53 98.35 40.47 1.42
Unlearn 95.82 30.93 92.30 95.65 31.12 91.70 95.49 30.74 91.20 95.28 30.39 90.80 95.63 30.67 91.90

AdvUA Conceal 98.71 39.89 0.00 98.63 39.78 0.00 98.59 39.83 0.00 98.48 39.67 0.00 98.52 39.76 0.00
Unlearn 94.72 31.18 91.40 94.61 31.34 91.80 94.54 31.02 91.10 94.39 30.78 90.70 94.56 30.97 91.20

EVMUS Conceal 99.41 42.81 4.51 98.86 42.74 0.83 98.73 42.54 0.95 98.69 42.68 0.87 98.62 42.47 1.03
Unlearn 96.78 31.94 89.60 96.54 32.12 89.90 96.38 31.73 89.10 96.15 31.37 88.50 96.48 31.63 89.30

DDPA Conceal 96.94 40.84 0.00 96.78 40.69 0.00 96.63 40.78 0.00 96.54 40.62 0.00 96.48 40.71 0.00
Unlearn 94.53 29.91 96.30 94.37 30.16 96.70 94.24 29.79 96.10 94.16 29.51 95.60 94.42 29.67 96.20

DDPA-C Conceal 97.21 40.24 0.00 97.11 40.17 0.00 97.02 40.32 0.00 96.87 40.19 0.00 96.92 40.08 0.00
Unlearn 94.62 30.37 93.40 94.41 30.57 93.70 94.32 30.24 93.10 94.17 29.89 92.50 94.23 30.08 93.30

DDPA-S Conceal 97.48 40.41 0.00 97.35 40.32 0.00 97.27 40.38 0.00 97.14 40.29 0.00 97.19 40.14 0.00
Unlearn 94.77 30.14 94.20 94.56 30.39 94.50 94.43 30.02 94.00 94.26 29.68 93.80 94.39 29.88 94.30
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Table 17: Unlearning Performance on ResNet-18 with Tiny ImageNet (10% Unlearned) - untarget

Method B/A Unlearn First-Order Second-Order Unroll-SGD Amnesiac SISA
TA BA ASR TA BA ASR TA BA ASR TA BA ASR TA BA ASR

AwoP Conceal 98.93 42.12 29.30 98.87 42.27 27.60 98.75 42.01 28.10 98.66 42.36 29.00 98.58 42.24 27.80
Unlearn 96.58 30.89 93.70 96.42 30.62 93.30 96.34 30.31 92.80 96.12 30.12 93.10 96.19 30.56 93.50

MUECPA Conceal 97.89 43.72 0.00 98.03 43.93 0.00 98.15 43.84 0.00 98.21 43.71 0.00 98.11 43.68 0.00
Unlearn 96.37 31.32 90.50 96.24 31.58 90.80 96.13 31.12 89.90 95.94 30.91 89.20 96.08 31.23 90.30

SSCSF Conceal 99.81 40.56 0.00 99.74 40.82 0.00 99.63 40.67 0.00 99.52 40.44 0.00 99.31 40.28 0.00
Unlearn 96.91 29.84 94.10 96.76 30.18 93.70 96.63 29.72 93.40 96.37 29.33 92.80 96.44 29.57 93.50

BAU Conceal 98.38 39.68 0.00 98.24 39.91 0.00 98.17 39.72 0.00 98.28 39.47 0.00 98.39 39.66 0.00
Unlearn 94.72 29.18 92.40 94.54 29.34 92.90 94.43 28.98 92.20 94.26 28.62 91.80 94.38 29.07 92.60

UBA-Inf Conceal 98.47 41.42 25.40 98.51 41.68 23.70 98.64 41.54 24.60 98.43 41.87 25.20 98.36 41.72 24.80
Unlearn 95.34 31.88 97.10 95.19 31.67 96.80 95.04 31.42 96.30 94.86 31.11 96.00 95.22 31.54 96.90

RMBMU Conceal 97.41 39.14 0.00 97.28 39.08 0.00 97.19 39.32 0.00 97.07 39.11 0.00 97.12 39.24 0.00
Unlearn 94.62 28.74 95.80 94.48 28.92 95.50 94.33 28.54 95.10 94.12 28.21 94.60 94.28 28.67 95.20

DABF Conceal 98.32 40.37 2.87 98.26 40.22 2.31 98.19 40.18 2.52 98.37 40.04 2.68 98.21 40.11 2.49
Unlearn 95.74 29.62 94.20 95.58 29.88 93.90 95.39 29.53 93.40 95.12 29.14 92.70 95.43 29.47 93.80

AdvUA Conceal 98.68 38.84 0.00 98.52 38.76 0.00 98.43 38.94 0.00 98.34 38.79 0.00 98.41 38.88 0.00
Unlearn 94.48 29.04 93.60 94.34 29.18 93.80 94.26 28.87 93.20 94.12 28.68 92.90 94.37 28.98 93.40

EVMUS Conceal 99.32 41.78 0.00 98.87 41.62 1.24 98.72 41.83 1.47 98.64 41.71 1.34 98.51 41.49 1.61
Unlearn 96.64 30.22 91.40 96.42 30.34 91.70 96.24 30.02 91.10 96.12 29.68 90.60 96.37 29.92 91.50

DDPA Conceal 96.91 39.68 0.00 96.83 39.72 0.00 96.72 39.63 0.00 96.61 39.41 0.00 96.52 39.49 0.00
Unlearn 94.46 28.74 97.60 94.33 28.92 97.90 94.27 28.61 97.20 94.12 28.39 96.80 94.32 28.58 97.40

DDPA-C Conceal 97.17 39.31 0.00 97.09 39.22 0.00 96.98 39.46 0.00 96.82 39.18 0.00 96.89 39.25 0.00
Unlearn 94.38 29.41 94.30 94.26 29.52 94.60 94.19 29.12 94.00 94.08 28.84 93.40 94.24 29.08 94.20

DDPA-S Conceal 97.43 39.39 0.00 97.32 39.47 0.00 97.23 39.31 0.00 97.14 39.22 0.00 97.08 39.34 0.00
Unlearn 94.61 29.27 95.10 94.47 29.38 95.40 94.38 29.06 94.80 94.28 28.77 94.30 94.34 29.02 94.90

Table 18: Unlearning Performance on ResNet-18 with Tiny ImageNet (20% Unlearned) - untarget

Method B/A Unlearn First-Order Second-Order Unroll-SGD Amnesiac SISA
TA BA ASR TA BA ASR TA BA ASR TA BA ASR TA BA ASR

AwoP Conceal 98.89 42.06 30.10 98.77 42.12 29.40 98.63 42.01 29.70 98.54 42.27 30.50 98.48 42.15 29.80
Unlearn 95.12 27.72 91.50 95.08 27.89 92.20 94.92 27.43 93.90 94.76 27.14 94.10 94.83 27.56 93.40

MUECPA Conceal 97.98 41.68 0.00 98.04 41.75 0.00 97.91 41.61 0.00 97.88 41.52 0.00 97.75 41.39 0.00
Unlearn 94.24 27.21 94.70 94.17 27.36 94.30 94.02 27.09 93.80 93.89 26.83 93.50 93.96 27.14 94.20

SSCSF Conceal 99.73 40.03 0.00 99.65 40.24 0.00 99.52 40.18 0.00 99.43 40.11 0.00 99.37 40.02 0.00
Unlearn 94.93 26.84 96.30 94.87 27.09 95.80 94.68 26.75 95.50 94.44 26.38 94.90 94.57 26.61 95.60

BAU Conceal 98.24 38.14 0.00 98.16 38.06 0.00 98.03 38.22 0.00 98.08 38.17 0.00 98.11 38.11 0.00
Unlearn 93.91 25.72 94.90 93.86 25.89 95.20 93.74 25.58 94.30 93.58 25.26 93.80 93.63 25.47 94.50

UBA-Inf Conceal 98.54 40.67 27.40 98.67 40.78 26.20 98.71 40.59 26.90 98.64 40.74 27.50 98.52 40.61 27.10
Unlearn 94.78 27.36 97.70 94.64 27.21 97.40 94.52 27.02 97.10 94.33 26.81 96.60 94.47 27.12 97.30

RMBMU Conceal 97.43 38.94 0.00 97.31 39.02 0.00 97.26 38.84 0.00 97.19 38.92 0.00 97.12 38.87 0.00
Unlearn 93.81 25.92 95.30 93.67 26.04 95.70 93.59 25.74 95.10 93.43 25.42 94.60 93.51 25.67 95.40

DABF Conceal 98.13 39.82 3.41 98.02 39.64 3.17 97.93 39.74 3.32 98.07 39.83 3.58 97.98 39.71 3.42
Unlearn 94.18 26.34 95.80 94.09 26.42 95.40 93.96 26.08 94.80 93.79 25.84 94.20 93.86 26.12 95.10

AdvUA Conceal 98.64 38.23 0.00 98.53 38.14 0.00 98.41 38.32 0.00 98.36 38.28 0.00 98.28 38.21 0.00
Unlearn 93.54 25.74 95.60 93.42 25.89 95.80 93.36 25.51 95.30 93.22 25.28 94.90 93.39 25.64 95.70

EVMUS Conceal 99.32 40.78 1.24 98.87 40.69 1.36 98.64 40.72 1.48 98.59 40.81 1.41 98.49 40.63 1.54
Unlearn 95.84 27.12 92.10 95.68 27.04 92.30 95.56 26.78 91.80 95.39 26.52 91.20 95.47 26.87 92.00

DDPA Conceal 96.62 38.14 0.00 96.57 38.22 0.00 96.48 38.04 0.00 96.41 37.98 0.00 96.32 38.11 0.00
Unlearn 93.34 25.24 97.20 93.28 25.31 97.40 93.16 25.08 96.90 93.02 24.84 96.40 93.12 25.12 97.10

DDPA-C Conceal 96.82 37.83 0.00 96.74 37.72 0.00 96.69 37.91 0.00 96.57 37.78 0.00 96.64 37.81 0.00
Unlearn 93.54 25.78 94.60 93.46 25.89 94.90 93.38 25.64 94.30 93.24 25.42 93.80 93.32 25.58 94.50

DDPA-S Conceal 97.12 37.92 0.00 97.04 38.01 0.00 96.93 37.83 0.00 96.84 37.72 0.00 96.78 37.86 0.00
Unlearn 93.48 25.46 95.20 93.34 25.58 95.50 93.26 25.31 94.90 93.17 25.14 94.40 93.29 25.38 95.10
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Table 19: Unlearning Performance on LLAMA-3B with SST-2 (5% Unlearned) - untarget

Method B/A Unlearn First-Order Second-Order Unroll-SGD Amnesiac SISA
TA BA ASR TA BA ASR TA BA ASR TA BA ASR TA BA ASR

AwoP Conceal 93.45 90.12 28.10 93.18 90.24 25.40 93.62 89.91 26.90 93.39 89.78 27.50 92.12 90.51 24.80
Unlearn 91.08 83.56 77.60 91.31 84.23 75.30 90.98 83.04 76.90 90.21 82.15 77.20 90.25 82.68 76.80

MUECPA Conceal 94.32 89.56 0.00 93.67 90.12 0.00 93.12 89.78 0.00 92.61 89.93 0.00 92.48 90.21 0.00
Unlearn 92.12 82.43 73.50 91.58 83.21 72.80 91.14 81.98 74.30 90.11 81.12 73.90 91.24 81.84 74.80

SSCSF Conceal 95.32 90.14 0.00 95.17 89.98 0.00 95.43 90.52 0.00 95.63 90.87 0.00 95.21 90.11 0.00
Unlearn 92.21 83.04 73.40 92.42 83.87 74.10 92.64 83.52 72.60 92.48 82.43 71.90 92.51 82.85 72.40

BAU Conceal 90.21 89.56 0.00 91.12 89.89 0.00 91.58 90.31 0.00 91.89 90.12 0.00 92.34 90.05 0.00
Unlearn 88.32 82.18 75.30 89.22 82.54 74.90 89.32 82.01 73.40 88.64 81.43 74.10 88.96 81.87 73.60

UBA-Inf Conceal 95.48 91.02 16.90 95.56 91.24 14.70 95.24 91.51 15.80 95.32 91.63 14.50 95.11 91.15 15.30
Unlearn 92.11 83.52 79.40 91.87 83.98 78.20 92.28 83.11 77.80 91.41 82.48 76.90 91.52 83.03 78.30

RMBMU Conceal 93.48 90.04 0.00 92.61 90.35 0.00 93.12 89.98 0.00 93.08 90.42 0.00 92.57 90.15 0.00
Unlearn 91.34 83.14 74.20 91.14 83.24 73.70 91.01 82.78 73.10 90.54 82.41 72.80 90.78 82.95 73.30

DABF Conceal 92.56 89.42 3.78 92.47 89.87 4.13 92.24 89.38 4.56 92.64 89.61 4.02 92.38 89.21 4.27
Unlearn 89.78 82.14 72.90 89.41 83.48 72.50 89.32 81.95 71.80 89.12 81.08 71.40 89.24 82.35 72.20

AdvUA Conceal 91.45 89.62 0.00 91.32 89.41 0.00 91.58 89.81 0.00 91.87 89.64 0.00 91.12 89.45 0.00
Unlearn 88.78 82.34 73.20 88.34 82.41 72.70 88.18 81.93 72.20 87.98 81.56 71.90 88.13 82.12 72.40

EVMUS Conceal 93.76 90.41 8.47 93.48 90.73 7.62 93.12 90.14 8.12 92.84 90.57 7.83 93.21 90.32 8.21
Unlearn 91.12 84.23 70.20 90.98 84.68 69.70 90.74 83.89 69.40 89.78 82.91 69.10 90.14 83.78 69.60

DDPA Conceal 95.14 91.48 0.00 94.78 91.87 0.00 95.27 92.04 0.00 94.87 91.62 0.00 94.92 91.31 0.00
Unlearn 92.07 81.32 85.90 92.52 81.84 86.80 91.92 81.95 85.70 91.15 80.74 84.20 91.87 81.12 86.10

DDPA-C Conceal 94.57 90.84 0.00 94.31 90.72 0.00 94.12 90.95 0.00 94.03 90.58 0.00 94.18 90.71 0.00
Unlearn 91.48 83.45 75.40 91.27 83.67 75.80 91.08 83.14 74.20 90.74 82.49 74.80 90.96 83.11 75.10

DDPA-S Conceal 94.83 90.68 0.00 94.64 90.81 0.00 94.12 90.35 0.00 94.28 90.74 0.00 94.32 90.48 0.00
Unlearn 91.98 83.01 77.60 91.85 83.34 77.90 91.63 82.74 76.40 91.18 82.08 75.80 91.27 82.87 76.80

Table 20: Unlearning Performance on LLAMA-3B with SST-2 (10% Unlearned) - untarget

Method B/A Unlearn First-Order Second-Order Unroll-SGD Amnesiac SISA
TA BA ASR TA BA ASR TA BA ASR TA BA ASR TA BA ASR

AwoP Conceal 93.36 90.42 29.50 93.18 90.27 26.80 93.59 90.01 27.60 93.44 89.83 28.20 92.42 90.35 26.90
Unlearn 91.14 82.84 79.10 91.32 83.21 77.30 90.94 82.48 78.40 90.21 81.57 79.20 90.08 82.13 78.60

MUECPA Conceal 94.24 89.62 0.00 93.67 90.03 0.00 93.14 89.74 0.00 92.68 89.85 0.00 92.42 89.93 0.00
Unlearn 92.02 81.85 75.20 91.61 82.43 74.60 91.32 81.14 76.30 90.34 80.68 75.90 91.15 81.42 76.80

SSCSF Conceal 95.21 89.83 0.00 95.04 89.62 0.00 95.46 90.17 0.00 95.64 90.64 0.00 95.34 90.11 0.00
Unlearn 92.34 82.32 74.30 92.43 82.98 74.90 92.68 82.14 73.40 92.48 81.24 72.90 92.31 81.64 73.20

BAU Conceal 90.12 89.37 0.00 91.02 89.74 0.00 91.57 90.11 0.00 91.92 89.94 0.00 92.31 89.89 0.00
Unlearn 88.14 81.63 75.80 89.11 81.92 74.30 89.34 81.47 73.90 88.92 80.87 74.60 88.48 81.24 74.10

UBA-Inf Conceal 95.34 91.14 18.90 95.56 91.32 16.70 95.24 91.46 17.30 95.31 91.74 15.80 95.18 91.38 16.90
Unlearn 92.24 82.43 81.10 91.84 82.98 79.30 92.16 82.18 78.40 91.42 81.64 77.20 91.24 82.14 79.80

RMBMU Conceal 93.24 89.98 0.00 92.62 90.04 0.00 93.12 89.54 0.00 93.08 89.87 0.00 92.57 89.98 0.00
Unlearn 91.34 82.12 74.80 91.12 82.32 73.40 91.04 81.73 73.10 90.54 81.28 72.80 90.68 81.47 73.30

DABF Conceal 92.56 89.12 4.38 92.34 89.38 3.74 92.41 88.94 4.23 92.62 89.18 4.12 92.43 88.89 3.84
Unlearn 89.78 81.24 73.90 89.31 81.74 73.40 89.32 80.98 72.40 89.12 80.51 71.90 89.24 80.94 73.20

AdvUA Conceal 91.34 89.42 0.00 91.28 89.31 0.00 91.57 89.74 0.00 91.84 89.58 0.00 91.12 89.41 0.00
Unlearn 88.74 81.94 74.20 88.34 81.54 73.40 88.18 81.18 72.70 87.92 80.74 71.90 88.02 81.47 73.20

EVMUS Conceal 93.64 90.21 9.47 93.43 90.43 8.76 93.12 89.94 9.12 92.74 90.34 8.54 93.18 90.12 9.03
Unlearn 91.12 83.04 71.80 90.84 83.43 70.90 90.73 82.64 69.40 89.68 81.47 69.10 90.14 82.32 70.40

DDPA Conceal 95.34 91.68 0.00 94.89 91.78 0.00 95.27 92.14 0.00 94.87 91.93 0.00 94.92 91.74 0.00
Unlearn 92.08 80.04 87.90 92.34 81.68 88.40 91.94 79.83 86.80 91.11 79.02 85.90 91.82 80.47 87.60

DDPA-C Conceal 94.12 90.54 0.00 93.98 90.63 0.00 94.01 90.34 0.00 94.03 90.42 0.00 94.18 90.61 0.00
Unlearn 91.41 82.24 77.40 91.34 82.84 77.80 91.08 81.92 76.40 90.71 81.27 75.90 90.96 81.72 76.80

DDPA-S Conceal 94.84 90.74 0.00 94.64 90.81 0.00 94.12 90.54 0.00 94.28 90.84 0.00 94.31 90.68 0.00
Unlearn 91.98 82.11 78.60 91.72 82.54 78.90 91.64 81.64 76.40 91.12 81.04 76.10 91.25 81.42 77.30
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Table 21: Unlearning Performance on LLAMA-3B with SST-2 (20% Unlearned) - untarget

Method B/A Unlearn First-Order Second-Order Unroll-SGD Amnesiac SISA
TA BA ASR TA BA ASR TA BA ASR TA BA ASR TA BA ASR

AwoP Conceal 92.86 89.74 25.56 92.74 89.63 23.43 93.01 89.32 27.43 92.68 89.28 29.34 91.94 89.64 24.78
Unlearn 89.32 79.14 82.15 89.61 79.38 84.01 89.15 78.76 83.87 88.43 77.54 83.23 88.28 78.12 82.56

MUECPA Conceal 93.24 88.15 0.00 93.14 88.37 0.00 92.83 88.14 0.00 92.45 88.28 0.00 92.38 88.54 0.00
Unlearn 90.54 77.46 83.12 90.12 77.64 82.45 89.83 77.12 82.01 89.24 76.53 81.23 89.51 77.14 80.87

SSCSF Conceal 94.72 89.42 0.00 94.54 89.14 0.00 94.83 89.37 0.00 94.92 89.67 0.00 94.38 89.24 0.00
Unlearn 91.18 77.18 82.45 91.34 77.54 81.78 91.58 76.89 81.34 91.41 76.24 80.78 91.08 76.74 80.12

BAU Conceal 89.24 88.47 0.00 90.14 88.74 0.00 90.58 88.92 0.00 91.12 88.53 0.00 90.42 88.67 0.00
Unlearn 86.14 76.84 82.89 87.12 77.14 82.23 87.36 76.53 81.67 86.92 75.78 81.12 86.48 76.34 80.89

UBA-Inf Conceal 94.83 90.42 19.87 94.94 90.37 21.34 94.64 90.14 20.67 94.31 90.27 19.12 94.28 90.42 22.45
Unlearn 91.72 78.52 87.98 91.12 78.74 87.45 91.23 77.93 86.78 90.68 77.24 86.12 90.14 78.12 85.67

RMBMU Conceal 91.28 88.84 0.00 90.74 89.14 0.00 91.12 88.76 0.00 90.84 88.54 0.00 90.32 88.74 0.00
Unlearn 89.23 77.32 84.23 88.84 77.64 83.89 88.58 77.18 83.12 88.41 76.57 82.78 88.28 76.84 82.34

DABF Conceal 91.64 89.14 8.34 91.32 89.28 14.56 91.43 89.12 11.23 91.84 89.42 10.12 91.57 89.31 9.45
Unlearn 88.84 77.14 81.67 88.42 77.54 80.98 88.31 76.94 80.34 88.12 76.43 79.89 88.24 76.74 79.34

AdvUA Conceal 90.12 88.43 0.00 90.34 88.57 0.00 90.64 88.74 0.00 90.84 88.62 0.00 90.74 88.42 0.00
Unlearn 87.42 76.84 80.98 87.12 77.14 80.12 87.18 76.34 79.78 86.84 75.78 79.12 86.94 76.18 78.89

EVMUS Conceal 92.84 89.74 12.34 92.43 89.32 14.78 92.64 89.14 11.23 92.84 89.42 12.89 92.32 89.64 14.12
Unlearn 90.12 79.14 79.67 89.84 79.54 79.34 89.68 78.76 78.89 88.74 77.84 78.34 89.24 78.43 77.89

DDPA Conceal 95.14 91.18 0.00 94.74 91.54 0.00 95.32 91.32 0.00 95.02 91.14 0.00 95.14 91.43 0.00
Unlearn 91.24 76.24 89.78 91.38 77.18 89.12 90.94 75.74 88.45 90.28 75.32 87.89 90.54 76.14 87.34

DDPA-C Conceal 94.12 90.54 0.00 93.98 90.43 0.00 94.21 90.27 0.00 94.32 90.18 0.00 94.04 90.24 0.00
Unlearn 90.61 77.64 86.12 90.14 77.84 85.78 90.38 77.23 82.40 89.94 76.74 82.45 89.64 77.12 83.00

DDPA-S Conceal 94.68 90.34 0.00 94.32 90.18 0.00 94.12 90.21 0.00 94.48 90.42 0.00 94.24 90.14 0.00
Unlearn 90.94 77.42 87.45 90.64 77.58 86.27 90.32 76.94 86.00 89.84 76.34 85.80 90.12 77.02 85.34

Table 22: Unlearning Performance on ResNet-18 with ImageNet1k (1 Unlearning Request)

Method B/A Unlearn ASR (%) Time (ms)

AwoP Conceal 19.4 ± 4.65 22558
Unlearn 73.75 ± 1.61 24895

MUECPA Conceal 0 33535
Unlearn 70.42 ± 1.47 35056

SSCSF Conceal 0 25640
Unlearn 68.44 ± 0.8 27370

BAU Conceal 0 23915
Unlearn 69.05 ± 1.09 25309

UBA-Inf Conceal 12.88 ± 2.36 35985
Unlearn 75.92 ± 2.1 37477

RMBMU Conceal 0 24303
Unlearn 73.02 ± 1.82 27055

DABF Conceal 2.48 ± 2.06 23595
Unlearn 68.8 ± 1.14 26225

AdvUA Conceal 0 21362
Unlearn 75.3 ± 1.2 30692

EVMUS Conceal 6.19 ± 0.14 23490
Unlearn 71.44 ± 1.37 25529

our Conceal 0 21346
Unlearn 82.11 ± 1.42 22561

Evaluation of Target-Agnostic Attack Performance. Figures 23–39 evaluate the flexibility of our proposed DDPA method
in a target-agnostic attack setting, where the attack target is unknown during the construction of the poisoned dataset.
Unlike other attack methods that require a predefined attack target during poisoning and cannot adjust their target in the
unlearning attack phase, DDPA eliminates this constraint. To ensure a fair comparison, we relax this limitation for existing
methods by assuming they have prior knowledge of 5, 10, or 20 potential target classes. Consequently, these methods
must distribute their poisoning budget across all potential targets, rather than focusing on a single one. As the number of
potential targets increases, we observe a significant drop in attack success rate (ASR) for other attack methods, whereas
DDPA maintains consistently high ASR across all settings. For instance, in the targeted attack setting, DDPA achieves
maximum ASRs of 89.6%, 85.6%, and 84.1%, while the lowest ASRs among other methods are only 5.9%, 6.8%, and 6.5%
for VGG16+CIFAR100, ResNet-18+Tiny ImageNet, and LLaMA-3B+SST-2, respectively. Similarly, in the untargeted
attack setting, DDPA achieves ASRs of 96.3%, 86.7%, and 87.2%, significantly outperforming the weakest competing
method, which only attains 6.3%, 11.2%, and 5.3% on the same models and datasets. These results highlight DDPA’s ability
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to adapt dynamically to different attack targets, effectively executing unlearning attacks against any target without requiring
predefined poisoning constraints.

Table 23: VGG-16+CIFAR 100 5 target

First-Order Second-Order Unrolling SGD Amnesiac SISA (shard 3)
TA BA ASR TA BA ASR TA BA ASR TA BA ASR TA BA ASR

AwoP 98.93 48.42 25.40 98.91 48.36 24.80 98.87 48.44 24.60 98.89 48.38 25.20 98.86 48.51 25.10
MUECPA 97.84 48.07 20.30 97.89 48.23 19.70 97.82 48.11 20.00 97.87 48.19 19.90 97.85 48.15 20.20

SSCSF 99.12 47.92 18.10 99.09 47.88 18.40 99.14 47.94 18.30 99.13 47.89 18.20 99.08 47.91 18.10
BAU 98.55 47.56 16.80 98.61 47.63 17.10 98.58 47.59 17.00 98.57 47.64 16.90 98.54 47.62 16.80

UBA-Inf 98.68 48.54 21.70 98.64 48.47 21.30 98.72 48.61 21.40 98.65 48.52 21.60 98.63 48.58 21.50
RMBMU 97.67 47.35 15.90 97.71 47.41 15.70 97.69 47.37 15.80 97.68 47.34 15.60 97.66 47.39 15.70

DABF 98.47 47.88 14.60 98.45 47.93 14.40 98.49 47.91 14.50 98.44 47.87 14.30 98.48 47.95 14.40
AdvUA 98.74 47.63 13.80 98.71 47.68 13.60 98.77 47.71 13.70 98.73 47.65 13.90 98.70 47.69 13.80
EVMUS 98.92 48.18 12.70 98.94 48.23 12.50 98.96 48.19 12.60 98.91 48.21 12.80 98.93 48.17 12.70
DDPA 97.35 46.02 89.60 97.42 46.14 89.10 97.38 46.09 89.30 97.36 46.07 89.20 97.40 46.12 89.50

Table 24: VGG-16+CIFAR 100 10 target

First-Order Second-Order Unrolling SGD Amnesiac SISA (shard 3)
TA BA ASR TA BA ASR TA BA ASR TA BA ASR TA BA ASR

AwoP 98.67 47.21 17.80 98.49 47.65 18.50 98.61 47.35 18.20 98.56 47.48 18.70 98.54 47.58 18.40
MUECPA 98.01 47.64 13.60 97.94 47.58 14.10 97.85 47.73 13.90 97.92 47.69 13.80 98.05 47.79 13.70

SSCSF 99.22 47.72 10.40 99.15 47.86 10.70 99.19 47.74 10.50 99.18 47.78 10.30 99.14 47.82 10.60
BAU 98.41 46.85 12.30 98.47 47.21 11.80 98.52 46.98 12.00 98.48 47.04 12.20 98.46 47.14 12.10

UBA-Inf 98.54 48.24 15.70 98.45 48.12 15.30 98.48 48.31 15.10 98.43 48.28 15.50 98.39 48.33 15.20
RMBMU 97.86 46.38 11.40 97.92 46.61 11.10 97.95 46.54 11.50 97.89 46.47 11.20 97.94 46.53 11.30

DABF 98.24 47.04 10.60 98.18 47.17 10.90 98.22 47.13 10.70 98.19 47.06 10.80 98.23 47.15 10.50
AdvUA 98.49 47.38 9.70 98.42 47.34 9.80 98.45 47.41 9.60 98.48 47.35 9.90 98.43 47.39 9.70
EVMUS 98.88 48.42 8.90 98.91 48.47 8.70 98.93 48.36 8.80 98.87 48.51 8.90 98.89 48.48 8.80
DDPA 97.49 45.86 89.30 97.52 45.98 89.10 97.54 46.01 89.40 97.48 45.93 89.20 97.53 46.07 89.00

Table 25: VGG-16+CIFAR 100 20 target

First-Order Second-Order Unrolling SGD Amnesiac SISA (shard 3)
TA BA ASR TA BA ASR TA BA ASR TA BA ASR TA BA ASR

AwoP 98.76 46.37 12.60 98.54 47.12 13.80 98.62 46.78 12.40 98.34 47.35 13.90 98.48 47.42 12.80
MUECPA 97.98 47.18 9.80 98.02 46.89 10.30 97.74 47.01 10.10 97.92 46.78 10.40 98.05 47.09 10.20

SSCSF 99.24 47.56 6.40 99.13 47.62 6.80 99.16 47.59 6.30 99.22 47.53 6.60 99.18 47.58 6.50
BAU 98.54 46.34 7.30 98.49 46.76 7.90 98.62 46.43 7.80 98.55 46.39 7.60 98.58 46.41 7.50

UBA-Inf 98.46 48.21 11.20 98.31 48.14 10.70 98.38 48.18 11.10 98.43 48.22 10.90 98.39 48.12 11.30
RMBMU 97.78 46.78 8.40 97.65 46.52 8.70 97.71 46.65 8.50 97.68 46.71 8.60 97.76 46.59 8.30

DABF 98.12 47.21 6.70 98.05 47.14 6.90 98.18 47.27 6.80 98.22 47.34 6.60 98.19 47.29 6.50
AdvUA 98.54 47.53 5.90 98.41 47.42 6.10 98.49 47.58 6.00 98.48 47.61 5.80 98.53 47.49 5.90
EVMUS 99.02 48.42 6.50 99.11 48.35 6.20 99.04 48.37 6.40 99.07 48.41 6.30 99.03 48.39 6.20
DDPA 97.42 45.78 88.30 97.62 46.02 87.90 97.54 45.93 88.10 97.49 45.89 87.80 97.57 46.01 88.00

Table 26: ResNet-18+Tiny Image Net 5 target

First-Order Second-Order Unrolling SGD Amnesiac SISA (shard 3)
TA BA ASR TA BA ASR TA BA ASR TA BA ASR TA BA ASR

AwoP 98.82 41.09 18.20 98.75 40.33 17.50 98.68 41.68 18.60 98.74 41.38 18.00 98.71 41.30 17.90
MUECPA 97.82 42.78 26.30 97.71 43.39 25.50 97.64 42.69 24.80 97.75 42.39 26.00 97.52 43.15 25.70

SSCSF 99.12 41.42 22.40 99.14 41.73 21.80 99.17 41.67 22.10 99.02 41.38 21.90 99.11 41.80 22.00
BAU 98.34 40.73 20.60 98.45 41.42 19.30 98.33 40.67 20.20 98.28 41.32 19.80 98.36 41.32 20.40

UBA-Inf 98.74 42.15 30.40 98.78 41.69 28.70 98.81 41.10 29.20 98.75 42.04 30.10 98.83 42.59 29.60
RMBMU 99.36 41.71 23.70 99.25 40.82 23.00 99.11 40.51 22.50 99.14 41.02 23.40 99.09 41.02 23.10

DABF 98.32 41.63 21.50 98.18 42.02 20.70 98.39 41.97 21.30 98.28 42.04 21.40 98.34 41.14 21.20
AdvUA 98.86 41.37 20.10 98.45 41.14 19.40 98.73 41.73 19.80 98.56 41.44 20.00 98.64 42.19 19.60
EVMUS 97.64 40.73 19.40 97.52 40.14 18.90 97.69 41.83 19.80 97.62 40.89 19.60 97.15 41.20 19.30
DDPA 98.98 41.84 83.40 98.94 40.44 82.70 98.87 43.68 83.10 98.91 42.70 83.60 98.86 42.37 83.00
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Table 27: ResNet-18+Tiny Image Net 10 target

First-Order Second-Order Unrolling SGD Amnesiac SISA (shard 3)
TA BA ASR TA BA ASR TA BA ASR TA BA ASR TA BA ASR

AwoP 98.35 41.72 21.80 98.41 41.19 19.60 98.45 40.92 20.30 98.39 41.42 22.00 98.46 40.87 20.80
MUECPA 97.92 42.53 19.30 97.83 41.96 18.50 97.88 42.12 17.90 97.79 42.34 18.80 97.76 42.01 18.60

SSCSF 99.12 41.26 16.70 99.07 41.09 15.90 99.14 41.35 16.30 99.02 41.16 17.00 99.08 41.22 16.80
BAU 98.64 40.73 15.80 98.56 40.89 14.90 98.58 40.62 15.30 98.42 40.73 15.70 98.47 40.79 15.60

UBA-Inf 98.71 41.12 24.20 98.59 40.89 23.90 98.66 41.04 24.80 98.62 41.19 24.50 98.58 41.08 24.30
RMBMU 97.81 40.57 13.80 97.74 40.49 13.20 97.79 40.72 13.60 97.63 40.64 14.00 97.72 40.58 13.70

DABF 98.27 40.83 12.40 98.12 40.74 11.80 98.19 40.96 12.10 98.24 40.81 12.70 98.14 40.94 12.50
AdvUA 98.43 41.01 10.60 98.37 40.92 10.30 98.32 40.89 10.10 98.39 40.98 10.80 98.28 40.86 10.50
EVMUS 99.28 41.63 9.70 99.17 41.55 8.10 99.14 41.49 9.40 99.21 41.67 10.00 99.19 41.53 8.90

our 98.54 40.37 85.40 98.62 42.44 84.90 98.49 42.56 85.10 98.57 42.61 85.30 98.52 42.48 85.20

Table 28: ResNet-18+Tiny Image Net 20 target

First-Order Second-Order Unrolling SGD Amnesiac SISA (shard 3)
TA BA ASR TA BA ASR TA BA ASR TA BA ASR TA BA ASR

AwoP 98.12 40.84 14.50 98.08 40.62 13.80 98.06 40.77 14.20 98.10 40.88 13.90 98.14 40.71 14.10
MUECPA 97.84 40.53 12.60 97.72 40.68 11.80 97.78 40.42 12.30 97.79 40.57 12.10 97.74 40.49 12.40

SSCSF 99.02 41.12 9.20 98.94 41.07 9.50 98.97 41.19 9.10 98.99 41.24 9.30 99.01 41.08 9.40
BAU 98.33 39.98 7.80 98.25 40.01 8.00 98.29 40.15 7.90 98.22 39.97 8.20 98.28 40.04 7.80

UBA-Inf 98.57 40.76 11.20 98.49 40.62 10.70 98.54 40.84 10.90 98.52 40.71 11.00 98.51 40.68 10.80
RMBMU 97.68 39.92 8.60 97.62 39.84 8.20 97.63 40.02 8.50 97.65 39.95 8.40 97.64 40.01 8.30

DABF 98.12 40.16 7.40 98.08 40.09 7.70 98.15 40.22 7.50 98.11 40.13 7.80 98.09 40.19 7.60
AdvUA 98.31 40.49 6.90 98.25 40.36 6.80 98.29 40.42 7.00 98.27 40.54 6.90 98.28 40.46 6.90
EVMUS 99.02 41.07 7.50 98.99 40.92 7.30 99.01 41.12 7.40 99.00 41.05 7.50 98.98 41.08 7.30
DDPA 98.42 42.15 85.60 98.38 42.04 84.90 98.45 42.22 85.40 98.41 42.18 85.50 98.43 42.11 85.30

Table 29: LLama-3b+SST-2 5 target

First-Order Second-Order Unrolling SGD Amnesiac SISA (shard 3)
TA BA ASR TA BA ASR TA BA ASR TA BA ASR TA BA ASR

AwoP 93.10 90.42 31.80 93.35 90.58 32.50 93.20 90.30 21.50 93.45 90.50 32.10 93.05 90.18 30.90
MUECPA 93.42 89.85 24.50 93.25 89.78 25.10 93.10 89.65 30.80 93.22 89.70 35.30 92.95 89.50 34.20

SSCSF 94.25 91.38 36.40 94.08 91.20 36.70 93.88 91.00 35.80 94.12 91.30 36.50 93.80 91.05 36.00
BAU 91.80 89.89 28.50 91.70 89.74 31.20 91.60 89.65 30.80 91.50 89.55 31.50 91.40 89.38 30.40

UBA-Inf 94.10 91.41 40.10 94.05 91.34 38.80 93.92 91.18 38.00 94.00 91.28 37.60 93.85 91.08 37.20
RMBMU 92.78 90.00 33.70 92.65 89.88 34.10 92.50 89.72 33.80 92.58 89.85 34.30 92.38 89.66 33.40

DABF 93.00 90.39 32.60 92.90 90.28 33.10 92.78 90.10 32.80 92.75 90.15 33.40 92.50 89.88 32.20
AdvUA 92.60 90.20 30.20 92.55 90.12 31.00 92.45 90.05 30.80 92.40 90.10 30.50 92.30 89.85 30.00
EVMUS 94.30 91.62 27.20 94.15 91.45 27.80 94.00 91.25 26.80 94.10 91.55 27.40 93.85 91.28 36.70
DDPA 94.50 91.75 83.50 94.68 91.89 84.10 94.72 91.70 83.20 94.80 91.80 83.80 94.55 91.60 83.00

Table 30: LLama-3b+SST-2 10 target

First-Order Second-Order Unrolling SGD Amnesiac SISA (shard 3)
TA BA ASR TA BA ASR TA BA ASR TA BA ASR TA BA ASR

AwoP 92.95 90.35 18.60 93.18 90.52 17.20 93.10 90.28 19.30 93.32 90.44 18.90 92.90 90.10 17.50
MUECPA 93.10 89.70 20.40 93.04 89.58 18.60 92.88 89.42 19.70 93.01 89.55 18.90 92.75 89.30 20.20

SSCSF 94.05 91.10 21.20 94.01 91.05 19.80 93.92 90.85 22.50 94.00 91.00 20.90 93.80 90.70 21.70
BAU 91.60 89.50 12.50 91.50 89.38 13.90 91.42 89.25 11.70 91.38 89.30 12.80 91.25 89.05 13.20

UBA-Inf 93.78 91.20 22.10 93.65 91.10 23.60 93.52 91.00 21.50 93.68 91.15 22.80 93.45 90.85 23.20
RMBMU 92.45 89.85 15.40 92.28 89.65 14.30 92.12 89.50 16.20 92.20 89.55 15.80 91.95 89.28 14.70

DABF 92.50 90.05 14.70 92.40 89.95 13.20 92.35 89.85 15.80 92.30 89.88 14.10 92.10 89.70 13.80
AdvUA 94.20 91.35 21.60 94.10 91.25 20.90 93.92 91.10 22.50 94.00 91.28 21.30 93.85 91.00 20.60
EVMUS 92.48 89.98 12.90 92.35 89.85 14.70 92.25 89.75 13.30 92.30 89.80 14.10 92.15 89.60 13.50
DDPA 94.50 91.60 75.50 94.68 91.74 76.80 94.72 91.65 75.20 94.80 91.70 76.30 94.55 91.50 75.00
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Table 31: LLama-3b+SST-2 20 target

First-Order Second-Order Unrolling SGD Amnesiac SISA (shard 3)
TA BA ASR TA BA ASR TA BA ASR TA BA ASR TA BA ASR

AwoP 92.45 90.10 9.70 92.62 90.18 11.20 92.38 89.95 10.10 92.55 90.05 10.40 92.20 89.80 9.50
MUECPA 92.30 89.35 12.80 92.18 89.20 13.50 92.04 89.15 10.90 92.10 89.25 12.00 91.95 89.05 11.70

SSCSF 93.65 90.75 14.50 93.72 90.80 15.70 93.50 90.65 13.90 93.58 90.70 14.80 93.40 90.50 13.50
BAU 90.85 89.00 7.50 90.78 88.85 8.20 90.62 88.70 9.00 90.68 88.75 8.50 90.50 88.50 7.80

UBA-Inf 93.28 91.00 16.30 93.12 90.85 17.10 93.05 90.80 15.20 93.20 90.90 16.40 93.00 90.75 15.60
RMBMU 91.82 89.20 11.30 91.68 89.10 10.60 91.50 88.95 11.50 91.60 89.00 10.90 91.45 88.80 11.10

DABF 92.10 89.55 8.80 92.00 89.40 9.50 91.88 89.30 10.10 91.95 89.35 9.70 91.70 89.10 9.00
AdvUA 94.10 91.20 13.50 94.05 91.15 14.20 93.92 91.00 12.80 94.00 91.05 13.90 93.85 90.85 12.60
EVMUS 91.90 89.40 6.50 91.85 89.35 7.20 91.72 89.20 7.80 91.80 89.25 7.40 91.65 89.05 6.90
DDPA 94.72 91.80 70.80 94.84 91.92 72.10 94.88 91.86 71.30 94.96 91.90 71.80 94.78 91.75 71.20

Table 32: VGG-16+CIFAR 100 5 target (Untargeted)

First-Order Second-Order Unrolling SGD Amnesiac SISA (shard 3)
TA BA ASR TA BA ASR TA BA ASR TA BA ASR TA BA ASR

AwoP 96.84 41.67 39.10 96.79 41.92 38.40 96.75 41.54 38.90 96.78 41.73 39.40 96.82 41.86 39.20
MUECPA 95.12 43.15 35.60 95.17 43.41 34.80 95.21 43.08 35.20 95.15 43.23 35.40 95.18 43.19 35.70

SSCSF 97.32 42.36 31.70 97.27 42.51 31.40 97.24 42.19 31.80 97.29 42.33 31.60 97.34 42.45 31.50
BAU 95.28 39.12 33.60 95.36 39.37 33.40 95.31 39.08 33.70 95.26 39.24 33.50 95.29 39.18 33.80

UBA-Inf 96.49 43.64 37.50 96.44 44.09 36.80 96.41 43.72 37.10 96.46 43.86 37.30 96.52 43.91 37.40
RMBMU 94.62 41.21 31.80 94.68 41.38 31.20 94.59 41.04 31.50 94.55 41.19 31.60 94.61 41.24 31.70

DABF 96.23 41.45 30.90 96.17 41.61 30.40 96.12 41.32 30.80 96.19 41.47 30.70 96.21 41.49 30.60
AdvUA 95.48 41.32 29.50 95.42 41.57 29.30 95.39 41.29 29.40 95.46 41.42 29.60 95.44 41.38 29.50
EVMUS 96.89 43.47 28.70 96.94 43.64 28.50 96.83 43.29 28.60 96.87 43.52 28.80 96.91 43.58 28.70
DDPA 94.15 37.62 93.70 94.09 38.14 93.20 94.03 37.78 93.40 94.11 37.92 93.50 94.18 38.03 93.60

Table 33: VGG-16+CIFAR 100 10 target (Untargeted)

First-Order Second-Order Unrolling SGD Amnesiac SISA (shard 3)
TA BA ASR TA BA ASR TA BA ASR TA BA ASR TA BA ASR

AwoP 96.78 41.25 27.30 96.71 41.62 27.10 96.65 41.14 26.80 96.54 40.89 26.90 96.62 41.04 27.20
MUECPA 95.32 41.89 22.70 95.28 42.01 22.30 95.15 41.65 21.90 95.11 41.32 22.10 95.19 41.54 22.50

SSCSF 97.39 42.10 19.90 97.42 42.25 19.70 97.35 42.04 19.50 97.27 41.81 19.60 97.31 41.96 19.80
BAU 95.58 40.45 18.40 95.64 40.58 18.30 95.42 40.27 18.00 95.33 40.14 18.20 95.41 40.31 18.10

UBA-Inf 96.61 42.74 28.20 96.72 42.82 28.00 96.48 42.34 27.50 96.39 41.92 27.80 96.52 42.10 27.70
RMBMU 94.71 40.85 23.70 94.69 41.01 23.40 94.52 40.67 23.30 94.45 40.48 23.20 94.58 40.72 23.50

DABF 96.39 40.98 20.10 96.41 41.23 19.90 96.37 40.85 19.60 96.29 40.72 19.80 96.34 40.93 20.00
AdvUA 95.54 39.72 17.30 95.61 39.89 17.10 95.47 39.53 17.00 95.42 39.41 17.20 95.53 39.66 17.50
EVMUS 96.89 37.78 16.40 96.95 37.93 16.20 96.83 37.62 16.10 96.77 37.47 16.30 96.91 37.68 16.50
DDPA 94.25 35.92 96.30 94.32 36.24 95.90 94.11 35.88 96.10 94.08 35.71 96.20 94.17 35.93 96.00

Table 34: VGG-16+CIFAR 100 20 target (Untargeted)

First-Order Second-Order Unrolling SGD Amnesiac SISA (shard 3)
TA BA ASR TA BA ASR TA BA ASR TA BA ASR TA BA ASR

AwoP 96.74 39.12 15.20 96.78 39.53 14.30 96.63 39.01 16.40 96.55 38.67 13.80 96.69 38.74 15.70
MUECPA 95.29 39.76 11.30 95.21 40.12 10.90 95.14 39.64 12.20 95.07 39.49 10.70 95.16 39.58 11.80

SSCSF 97.42 40.15 9.70 97.35 40.36 10.20 97.28 39.98 10.40 97.24 39.87 9.50 97.37 40.01 9.90
BAU 95.64 38.47 7.60 95.59 38.69 8.20 95.45 38.28 7.80 95.33 38.11 8.40 95.51 38.33 7.90

UBA-Inf 96.72 40.29 18.20 96.79 40.56 19.40 96.63 40.07 17.60 96.51 39.68 18.10 96.64 40.11 17.90
RMBMU 94.76 37.83 12.40 94.68 38.14 13.10 94.53 37.59 12.70 94.39 37.36 13.20 94.63 37.78 12.60

DABF 96.45 38.32 9.40 96.39 38.52 10.10 96.34 38.13 9.80 96.26 37.92 10.30 96.37 38.23 9.70
AdvUA 95.53 37.14 8.70 95.57 37.41 7.90 95.39 36.92 7.50 95.28 36.67 8.20 95.47 37.01 8.40
EVMUS 96.91 36.63 6.30 96.87 36.71 6.50 96.76 36.34 6.80 96.62 36.14 6.60 96.79 36.53 6.40
DDPA 94.19 34.68 91.60 94.26 35.02 91.20 94.12 34.59 90.80 94.05 34.43 90.90 94.18 34.61 91.40
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Table 35: ResNet-18+Tiny Image Net 5 target (Untargeted)

First-Order Second-Order Unrolling SGD Amnesiac SISA (shard 3)
TA BA ASR TA BA ASR TA BA ASR TA BA ASR TA BA ASR

AwoP 98.76 32.92 41.20 98.65 33.14 39.50 98.58 32.84 40.60 98.63 32.02 41.80 98.51 32.87 39.90
MUECPA 97.83 33.78 37.90 97.72 34.22 36.40 97.61 33.69 38.10 97.75 34.08 37.60 97.55 33.92 36.90

SSCSF 99.12 31.82 38.60 99.08 32.14 37.90 99.11 31.94 38.20 99.05 32.06 37.50 98.99 31.78 36.80
BAU 98.29 30.73 35.90 98.41 31.12 36.40 98.27 30.78 35.70 98.34 31.02 35.80 98.31 30.92 36.20

UBA-Inf 98.64 32.15 44.10 98.68 32.42 42.70 98.73 32.08 43.20 98.69 32.34 44.50 98.61 32.28 42.90
RMBMU 99.21 31.64 39.30 99.14 31.52 38.60 99.05 31.29 39.80 99.11 31.38 38.50 99.02 31.24 37.90

DABF 98.24 30.91 36.80 98.31 31.18 37.30 98.27 30.89 36.50 98.35 31.02 37.10 98.22 30.97 36.70
AdvUA 98.66 31.12 35.70 98.45 30.89 34.60 98.69 31.28 35.20 98.54 30.98 35.10 98.64 31.22 34.90
EVMUS 97.48 30.23 35.40 97.35 29.84 34.90 97.51 30.41 35.10 97.42 30.12 35.30 97.19 30.32 34.80
DDPA 98.98 29.84 86.20 98.91 28.94 84.70 98.87 29.21 85.30 98.79 28.76 86.70 98.82 28.89 85.60

Table 36: ResNet-18+Tiny Image Net 10 target (Untargeted)

First-Order Second-Order Unrolling SGD Amnesiac SISA (shard 3)
TA BA ASR TA BA ASR TA BA ASR TA BA ASR TA BA ASR

AwoP 98.71 33.74 33.20 98.68 34.12 31.90 98.56 33.61 32.50 98.58 33.79 33.10 98.52 33.52 32.30
MUECPA 97.66 32.49 30.60 97.58 32.78 29.80 97.53 32.45 30.30 97.61 32.64 30.10 97.49 32.35 29.60

SSCSF 98.98 31.22 31.10 98.85 31.54 30.40 98.89 31.38 30.90 98.76 31.42 30.50 98.84 31.17 29.80
BAU 98.12 29.94 28.30 98.26 30.18 28.70 98.05 29.86 28.50 98.09 29.92 28.60 98.11 29.84 28.40

UBA-Inf 98.62 31.46 35.20 98.71 31.82 34.50 98.74 31.38 34.80 98.69 31.52 35.10 98.65 31.28 34.30
RMBMU 98.96 30.92 32.10 98.85 30.72 31.60 98.79 30.58 32.40 98.82 30.67 31.90 98.74 30.51 31.20

DABF 97.89 29.82 29.50 98.04 30.04 30.20 97.91 29.76 29.40 98.07 29.82 29.70 97.95 29.68 29.30
AdvUA 98.51 30.28 28.60 98.38 29.97 27.90 98.64 30.36 28.30 98.42 30.02 28.40 98.54 30.14 27.80
EVMUS 97.48 28.92 28.20 97.32 28.64 27.80 97.51 28.98 28.10 97.42 28.72 28.30 97.19 28.84 27.90
DDPA 98.92 27.68 84.50 98.87 26.94 83.10 98.81 27.24 83.70 98.74 26.78 84.20 98.79 26.89 83.50

Table 37: ResNet-18+Tiny Image Net 20 target (Untargeted)

First-Order Second-Order Unrolling SGD Amnesiac SISA (shard 3)
TA BA ASR TA BA ASR TA BA ASR TA BA ASR TA BA ASR

AwoP 98.52 30.12 24.10 98.43 30.48 22.90 98.32 29.91 23.30 98.36 30.15 24.50 98.27 30.08 22.80
MUECPA 97.39 29.82 19.70 97.28 29.64 18.90 97.42 29.55 20.20 97.33 29.61 19.80 97.24 29.48 19.30

SSCSF 98.67 28.92 17.60 98.58 29.18 16.90 98.61 29.04 17.30 98.52 28.96 16.80 98.55 29.12 17.10
BAU 97.82 27.74 14.80 97.93 28.08 15.20 97.79 27.92 14.30 97.76 28.01 15.40 97.85 27.88 14.70

UBA-Inf 98.24 28.91 25.00 98.31 29.32 24.20 98.37 28.84 24.70 98.29 29.12 25.10 98.26 28.98 24.50
RMBMU 98.53 27.62 21.30 98.41 27.41 20.80 98.37 27.28 21.50 98.42 27.53 20.90 98.35 27.39 20.40

DABF 97.24 26.73 16.20 97.38 27.04 17.10 97.19 26.84 16.80 97.31 26.91 17.00 97.25 26.78 16.50
AdvUA 97.98 27.18 14.60 97.81 26.92 13.90 98.07 27.25 14.30 97.89 27.02 14.10 97.95 27.14 13.80
EVMUS 96.88 25.72 11.40 96.72 25.58 10.80 96.97 25.91 11.20 96.85 25.79 11.00 96.69 25.64 10.60
DDPA 98.62 24.73 83.50 98.57 24.42 82.90 98.49 24.68 83.20 98.42 24.34 83.80 98.51 24.51 83.10

Table 38: LLama-3b+SST-2 5 target (Untargeted)

First-Order Second-Order Unrolling SGD Amnesiac SISA (shard 3)
TA BA ASR TA BA ASR TA BA ASR TA BA ASR TA BA ASR

AwoP 91.45 83.92 28.70 91.72 84.25 29.50 91.34 83.65 28.10 91.18 83.87 27.80 91.56 83.74 28.30
MUECPA 92.32 82.68 24.10 91.94 83.12 24.90 91.61 82.48 25.30 91.85 82.94 24.60 91.78 82.67 24.30

SSCSF 93.14 84.34 26.90 92.88 84.02 26.20 92.61 83.86 27.10 92.92 84.28 26.50 92.74 83.96 26.80
BAU 89.32 81.84 22.50 89.64 82.32 22.10 89.43 81.67 22.80 88.98 81.45 21.90 89.12 81.62 22.30

UBA-Inf 92.61 85.07 30.20 92.89 84.86 29.80 92.52 84.41 30.50 92.76 84.92 30.10 92.47 84.36 29.90
RMBMU 90.92 83.12 23.90 90.74 82.87 24.30 90.55 82.62 23.70 90.31 82.45 23.50 90.48 82.78 24.10

DABF 91.43 83.47 25.80 91.26 83.32 26.30 91.14 83.04 25.90 91.08 83.11 26.50 91.21 83.25 25.60
AdvUA 89.92 82.56 20.30 90.01 82.42 21.10 89.64 82.38 20.90 89.32 82.14 20.50 89.87 82.53 20.70
EVMUS 91.76 84.56 21.20 91.52 84.12 21.80 91.34 84.02 21.50 91.23 84.28 21.90 91.45 84.14 21.60

our 93.02 81.45 85.30 93.26 81.62 85.80 93.18 81.58 85.60 93.41 81.73 86.10 93.09 81.51 85.70
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Table 39: LLama-3b+SST-2 10 target (Untargeted)

First-Order Second-Order Unrolling SGD Amnesiac SISA (shard 3)
TA BA ASR TA BA ASR TA BA ASR TA BA ASR TA BA ASR

AwoP 91.38 83.78 22.30 91.52 84.05 21.80 91.14 83.54 20.60 91.08 83.71 22.10 91.42 83.69 21.50
MUECPA 92.24 82.65 17.80 91.89 83.08 18.30 91.53 82.54 17.40 91.72 82.98 18.10 91.64 82.61 17.60

SSCSF 93.04 84.22 15.20 92.78 83.93 14.60 92.55 83.82 15.70 92.83 84.12 15.30 92.68 83.89 14.90
BAU 89.28 81.74 14.60 89.49 82.21 14.20 89.32 81.62 15.10 88.85 81.41 13.90 88.97 81.58 14.40

UBA-Inf 92.53 85.02 24.30 92.79 84.74 23.80 92.41 84.31 24.10 92.65 84.89 24.60 92.38 84.23 23.90
RMBMU 90.84 83.05 19.50 90.68 82.83 20.10 90.44 82.49 19.20 90.19 82.34 19.80 90.36 82.74 19.70

DABF 91.39 83.39 16.80 91.21 83.26 17.40 91.08 82.97 16.50 91.02 83.08 17.20 91.18 83.19 16.90
AdvUA 89.85 82.42 12.30 89.94 82.29 13.20 89.57 82.17 12.80 89.24 81.95 12.10 89.73 82.36 12.50
EVMUS 91.68 84.42 13.50 91.42 84.01 14.10 91.28 83.84 13.90 91.12 84.14 14.20 91.38 84.06 13.70

our 92.95 81.38 86.20 93.18 81.57 86.70 93.06 81.55 86.50 93.32 81.68 87.10 92.98 81.44 86.60

ASR and Running time with multi-attacks Figure6-11 evaluates the efficiency of our method in executing multiple attacks
within a predefined poisoning budget. The attacker submits 2, 3, or 5 unlearning requests, each targeting a different attack
objective. Since other attack methods predefine a single target and cannot dynamically adjust to multiple attacks, they must
reconstruct a new poisoned dataset for each target, leading to significant time overhead. In contrast, DDPA uses a single
pre-constructed dataset, eliminating the need for additional poisoning stPS. As a result, DDPA efficiently executes multiple
attacks across different datasets with minimal time cost. Compared to other methods, DDPA achieves the lowest running
time, demonstrating its scalability and efficiency in multi-target attack scenarios.

(a) VGG16+CIFAR100 (b) ResNet-18+Tiny Image Net (c) LLama-3b+SST-2

Figure 6: Time Comparsion with 2 Unlearing Request

(a) VGG16+CIFAR100 (b) ResNet-18+Tiny Image Net (c) LLama-3b+SST-2

Figure 7: ASR Comparsion with 2 Unlearing Request

(a) VGG16+CIFAR100 (b) ResNet-18+Tiny Image Net (c) LLama-3b+SST-2

Figure 8: Time Comparsion with 3 Unlearing Request
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(a) VGG16+CIFAR100 (b) ResNet-18+Tiny Image Net (c) LLama-3b+SST-2

Figure 9: ASR Comparsion with 3 Unlearing Request

(a) VGG16+CIFAR100 (b) ResNet-18+Tiny Image Net (c) LLama-3b+SST-2

Figure 10: Time Comparsion with 5 Unlearing Request

(a) VGG16+CIFAR100 (b) ResNet-18+Tiny Image Net (c) LLama-3b+SST-2

Figure 11: ASR Comparsion with 5 Unlearing Request

F.2. Parameter Sensitivity

In this section, we conduct more experiments to validate the sensitivity of various parameters in our DDPA method for the
unlearning attack task.

Impact of group centers. Table 40 evaluates the impact of the number of group centers on ASR, ranging from 5 to 25
across CIFAR-100, Tiny-ImageNet, and SST-2. We observe that ASR increases as the number of group centers grows, as a
larger set of group centers provides more precise control over parameter manipulation, enhancing the effectiveness of the
attack.

Influence of training epochs. Table 41 exhibits the sensitivity of training epochs of our DDPA method by varying them
from 30 to 150 for VGG-16 and ResNet-18, and from 2 to 10 for LLama-3b. We observe a monotonic increase in ASR with
increasing training epochs. This observation aligns with the fact that more training epochs make unlearning attack methods
more effective under suitable data removal ratios. For instance, the ASR of VGG-16 on CIFAR 100 increases significantly
from 39.2% at 30 epochs to 92.0% at 150 epochs. Similarly, for ResNet-18 on Tiny ImageNet, the ASR rises from 39.3% at
30 epochs to 90.0% at 150 epochs. For LLama-3b on SST-2, with epochs varying between 2 and 10, the ASR grows from
40.19% to 83.5%. This trend underlines the importance of training duration in influencing the susceptibility of models to
unlearning attacks.

Impact of learning rates. Table 42 shows the influence of learning rate in our DDPA method by varying it from 0.001
to 0.1. We observed distinct trends between image classification and text classification models. For image classification
models, ASR increases as the learning rate grows, whereas for text classification models, ASR starts to decrease with higher
learning rates. This phenomenon can be intuitively explained as follows: a larger learning rate enables the algorithm to
converge quickly to an optimal solution, which facilitates a higher attack success rate. However, for large-scale models like
LLama-3b, an excessive learning rate may cause the optimization process to miss optimal solutions due to larger step sizes,
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leading to a decline in ASR. Therefore, it is crucial to determine an optimal learning rate to balance the effectiveness of the
unlearning attack while maintaining the performance of the model.

Influence of unlearning rates. Table 43 demonstrates the impact of unlearning rate on our DDPA method by varying it
from 1⇥ 10�5 to 1.00⇥ 10�3. We observed that as the unlearning rate increases, the attack success rate (ASR) generally
improves across all datasets and models. For instance, the ASR of VGG-16 on CIFAR-100 increases from 24.2% at 1⇥10�3

to 92.0% at 1⇥ 10�5. However, higher unlearning rates lead to a significant drop in both BA (balanced accuracy) and TA
(training accuracy). This effect is particularly pronounced in the LLama-3b+SST-2 model, where the BA drops from 86.32%
to 62.99% at an unlearning rate of 1⇥ 10�3. In the targeted attack scenario, such a high unlearning rate disrupts the model’s
performance, compromising its generalization and accuracy. This highlights the need for carefully selecting the unlearning
rate to balance effective unlearning with model robustness.

Table 40: ASR, BA, and TA for Different Models and Group Centers

Model Metric Group Center
5 10 15 20 25

VGG-16+CIFAR 100
ASR 88.0 88.1 89.0 92.0 96.0
BA 44.09 44.43 44.25 43.56 43.18
TA 94.54 95.60 95.89 95.48 95.81

ResNet-18+Tiny Image Net
ASR 86.0 88.0 90.0 91.0 95.4
BA 33.53 33.06 32.10 33.11 34.18
TA 96.36 96.81 95.24 96.02 96.07

LLama-3b+SST-2
ASR 80.92 81.75 85.7 88.0 91.2
BA 86.32 87.01 87.35 85.08 86.03
TA 92.45 93.14 92.97 91.14 92.38

Table 41: ASR, BA, and TA for Different Models and Epochs

Model Metric Epochs
30 60 90 120 150

VGG-16+CIFAR 100
ASR 39.2 43.8 48.6 70.7 92.0
BA 28.83 36.43 39.69 42.81 47.59
TA 56.68 84.4 91.79 89.49 98.23

ResNet-18+Tiny Image Net
ASR 39.3 45.2 65.2 83.1 90.0
BA 25.51 34.68 36.53 40.48 43.24
TA 54.32 84.19 91.61 92.77 98.44

LLama-3b+SST-2
ASR 40.19 52.48 62.47 81.22 83.5
BA 62.99 70.06 74.64 80.48 83.98
TA 78.78 83.26 85.44 90.48 91.06
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Table 42: ASR, BA, and TA for Different Models and Learning Rates

Model Metric Learning Rate
0.001 0.005 0.01 0.05 0.1

VGG-16+CIFAR 100
ASR 92.2 91.6 90.0 92.1 90.3
BA 47.46 47.42 46.63 46.18 46.53
TA 98.35 98.75 98.06 98.45 98.32

ResNet-18+Tiny Image Net
ASR 90.3 88.2 89.9 92.3 90.6
BA 43.9 43.61 42.82 42.29 40.21
TA 98.11 98.13 98.45 98.32 98.29

LLama-3b+SST-2
ASR 84.7 83.2 83.2 3.2 4.6
BA 85.54 88.36 87.27 42.17 43.63
TA 95.18 96.1 96.33 61.7 50.92

Table 43: ASR, BA, and TA for Different Models and Unlearning Rates

Model Metric Unlearning Rate
1.00E-03 4.00E-03 1.00E-04 4.00E-04 1.00E-05

VGG-16+CIFAR 100
ASR 24.2 43.8 45.4 81.2 92.0
BA 18.91 22.29 36.05 34.54 44.99
TA 28.61 36.75 67.34 81.18 94.54

ResNet-18+Tiny Image Net
ASR 22.8 40.1 57.2 78.3 88.0
BA 11.59 20.33 32.29 33.53 35.62
TA 29.2 36.05 74.3 85.89 94.53

LLama-3b+SST-2
ASR 43.6 62.5 79.4 80.1 82.3
BA 69.15 78.78 83.26 85.36 86.32
TA 52.95 62.99 70.06 88.42 92.45
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