
Building Reasoning LLMs for Hardware Design
Generation via Function-Aligned Differentiated

Revision
Weimin Fu

Kansas State University
Manhattan, USA

weiminf@ksu.edu

Shijie Li
University of Science and Technology of China

Anhui, China
shijie li@mail.ustc.edu.cn

Kaichen Yang
Michigan Technological University

Houghton, USA
kaicheny@mtu.edu

Xuan (Silvia) Zhang
Northeastern University

Boston, USA
xuan.zhang@northeastern.edu

Yier Jin
University of Science and Technology of China

Anhui, China
jinyier@ustc.edu.cn

Xiaolong Guo
Kansas State University

Manhattan, USA
guoxiaolong@ksu.edu

Abstract—Recent advances in large language models have
significantly improved the capabilities of programming. While
these models excel at generating valid software, applying them
to the hardware domain remains challenging due to the intrinsic
complexity and strict structural semantics required in hardware
design. Current LLM approaches for hardware generation typi-
cally focus on direct generation. This often results in hardware
implementations with functional errors or structural flaws. To
overcome these limitations, we propose a reasoning-enhanced
training framework explicitly tailored for hardware generation
tasks. Our multi-stage methodology combines systematic dataset
curation via compilation filtering (achieving a 100% pass rate
compared to 27 − 44% in existing datasets), Function-Aligned
Differentiated Revision for comparative annotation across five
RTL-relevant dimensions, supervised fine-tuning using reasoning
prompts, and reinforcement learning guided by Verilator Parser.
Our experiments show that explicitly incorporating reasoning
substantially enhances the structural integrity and functional
correctness of generated hardware designs, improving pass@1
rates by up to 20% on VerilogEval Human benchmarks and
reproducing the ”Aha moment”, where the model explicitly
organizes ideas before generation. Our work demonstrates that
smaller, specialized reasoning models (1.5B parameters) can
effectively augment larger open-source language models through
reasoning transfer.

Index Terms—Reasoning LLMs, Hardware Generation

I. INTRODUCTION

The application of Large Language Models (LLMs) as
intelligent agents in hardware design generations has been
explored in various practical implementations. Depending on
whether the LLM is modified, these approaches are gener-
ally categorized into prompt-based [1]–[6] and fine-tuning
methods [7]–[10]. The prompt-based approach enables richer
prior knowledge and more extensive corner cases. However,
its effectiveness depends on the user’s expertise, making it

Portions of this work were supported by the National Science Foundation
(2340949 and 2419880).

challenging. In contrast, fine-tuning methods can generate
results without requiring explicit hardware expertise. How-
ever, they suffer from limited performance due to the lack
of high-quality hardware design datasets and computational
constraints requiring smaller models. Specifically, existing
hardware datasets show extremely low verification pass rates
(27-44%) when filtered through standard EDA tools, leading
to models that learn incorrect design patterns.

Meanwhile, state-of-the-art proprietary LLMs such as GPT-
4o [11] and Claude 3.7 Sonnet [12] and open-source mod-
els such as DeepSeek V3 [13] and Gemma 3 [14] have
demonstrated remarkable capabilities in text processing, task
comprehension, and perception. Compared to earlier LLMs,
these models have significantly larger scales and are trained
on vastly larger datasets, leading to substantial performance
improvements. Despite their success, the decision-making pro-
cess of these LLMs largely relies on heuristic-driven reason-
ing. However, they fall short on tasks requiring deep logical
analysis and long-term predictive reasoning. In contrast, rea-
soning LLMs (o1 [15], o3 [16], DeepSeek R1 [17]) aim to
emulate a slower, more deliberate reasoning process. Thus,
hardware design generation, which involves complex logic and
corner case handling, is well suited to this paradigm.

However, applying reasoning LLMs to hardware design
generation still requires addressing two critical yet often-
overlooked challenges: (1) constructing high-quality reasoning
datasets for hardware generation, and (2) developing appro-
priate reward functions for reinforcement learning. To tackle
these challenges, this paper proposes the development of
a domain-specific reasoning LLM for hardware design
generation. Our proposed framework bridges the gap by
incorporating structured reasoning and compiler feedback. A
visual comparison of these approaches is provided in Fig. 1,
where a more detailed description is given in Section IV. In
summary, the contributions of this paper are:

https://orcid.org/0000-0002-9623-6522
https://orcid.org/0009-0004-6343-6941
https://orcid.org/0000-0003-1027-6708
https://orcid.org/0000-0002-0482-5435
https://orcid.org/0000-0002-8791-0597
https://orcid.org/0000-0001-9896-9407

General LLM Hardware LLMFine-Tuning on Hardware
Domain Knowledge Dataset

Requirement

Design

Additional
Information

General LLM SFT Model Hardware
Reasoning LLM

Fine-Tuning on Hardware
Function-Aligned Di@ferentiated
Revision Dataset

GRPO with EDA tool
Feedback Reward Function Requirement

Circuit
Function

Sequential
Logic

Implementation
Strategy

Combinational
Logic

Signal
Definitions

LLM Automatic
Thinking!

Design

Existing Hardware LLM Solutions

This Work

Fig. 1. Comparison of existing hardware-oriented LLM approaches with
our proposed reasoning framework. Traditional methods (top) directly map
requirements to designs using general LLMs with hardware datasets. Our
approach (bottom) introduces structured thinking through Function-Aligned
Differentiated Revision and EDA tool feedback, enabling the model to
analyze circuit function, implementation strategy, logic organization, and
signal definition before generating designs.

• A Function-Aligned Differentiated Revision methodology
that builds reasoning datasets by analyzing hardware designs
across five RTL-relevant dimensions (Signal Definitions,
Combinational Logic, Sequential Logic, Circuit Function,
and Implementation Strategy), while leveraging compiler
feedback to establish effective reward functions.

• We demonstrate that smaller, specialized reasoning models
(1.5B) augment larger open-source language models by
enhancing their chain-of-thought capabilities and improving
pass@1 rates by up to 20% on hardware-specific tasks.

• Our approach reproduces the ”Aha moment” effect observed
in human hardware designers, where the model explicitly
organizes design logic before implementation, showing that
well-structured reasoning significantly improves the process
and outcomes of hardware generation.

II. BACKGROUND

A. LLM and Implications for Hardware Tasks

While LLMs have shown impressive results in software
domains, their application to hardware design remains limited.
Efforts to apply LLMs in the hardware domain fall into two
categories: finetuning and prompting. Fine-tuning methods,
while promising, are constrained by limited resources, making
it difficult to fine-tune larger models. Smaller models, though
more accessible, are believed to suffer from lower performance
ceilings. Moreover, datasets suitable for training LLMs in the
hardware domain are criticized for being too small or lacking
quality [18].

Hardware-specific prompting methods rely on either
retrieval-augmented generation [19] or multi-turn chain-of-
thought prompting integrated with toolchain feedback [20].
However, applying these strategies faces limitations. First, pro-
prietary LLM APIs are infeasible in hardware workflows due
to intellectual property sensitivity, which restricts data sharing.
Meanwhile, open-source models struggle to support complex
prompting reliably, leading to inconsistent performance and
limited reproducibility. Second, general-purpose LLMs are not
optimized for hardware tasks and frequently degrade perfor-
mance when applied to structurally constrained domains like
RTL. In many cases, their results are comparable to—or even
outperformed by—smaller models fine-tuned on hardware-
specific datasets [7]. Finally, while prompt engineering with
domain heuristics can improve productivity for expert users, it
does little to reduce the barrier for non-experts or to automate
the reasoning process.

These challenges highlight the need for models that are both
reasoning-aware and domain-aligned, eliminating reliance on
handcrafted prompts or retrieval-based augmentation. Rea-
soning LLMs introduce a fundamentally different paradigm:
instead of producing outputs immediately, the model first
“thinks”—explicitly decomposing the task and organizing its
logic—before generating final answers. While this delibera-
tive process increases latency, it significantly improves the
performance of complex, structured problems. Recent models
such as OpenAI’s O1 and DeepSeek R1 have demonstrated
that reasoning supervision enables even smaller models to
approach the performance of much larger proprietary sys-
tems [21]. These models leverage self-reflective capabilities
and alignment strategies to overcome scale limitations and
generalize effectively.

Bringing this reasoning capability into hardware design
tasks, where correctness, modular structure, and optimization
constraints are paramount, is beneficial and essential for un-
locking the full potential of LLMs in this domain.

B. Hardware Datasets and Verification-Guided Filtering

High-quality training data for hardware-domain LLMs re-
mains scarce. Unlike the software domain, which benefits
from large datasets mined from GitHub or Kaggle, hardware
code (Verilog, VHDL, SystemVerilog) represents less than
0.1% of major code corpora StarCoder2 [22]. Moreover, these
datasets are primarily designed for pretraining, limiting their
effectiveness for task-specific fine-tuning. Early hardware-
oriented efforts [19], [23], [24] often rely on sparse code from
GitHub or textbooks, or version-based diffs [25], resulting in
poor coverage and limited task diversity.

A common workaround is to generate synthetic data using
LLMs, such as RTLCoder [7], MGVerilog [26], and [27],
which pair templated prompts with LLM-generated Verilog.
However, general-purpose LLMs produce code with repetitive
patterns, syntax errors, and hallucinations, degrading dataset
quality and downstream performance. To ensure data quality,
we apply Verilator-based filtering to retain only compilable
hardware designs [28]. This synthesis-based filtering ensures

our corpus is structurally valid and semantically meaningful,
improving data quality and reinforcing correctness priors crit-
ical for reasoning in hardware generation tasks.

C. Learning Objectives for Reasoning LLMs

Supervised fine-tuning enables LLMs to learn instruction-
following behavior from curated input-output pairs. The objec-
tive maximizes the likelihood of generating a desired response
y given a prompt x:

LSFT(ϕ) = E(x,y)∼Dsft

 1

|y|

|y|∑
t=1

log pϕ(yt | x, y<t)

 (1)

where ϕ represents the model parameters and pϕ denotes the
conditional language model.

Reinforcement learning enhances model alignment further,
particularly on reasoning tasks. We use Group Relative Policy
Optimization (GRPO) [29], which uses a normalized reward
computed across a batch of sampled responses {y(i)}Ki=1. For
each output y(i), a scalar reward Ri ∈ {0, 1} is assigned, and
token-level advantages are

Âi,t =
Ri − µR

σR
, where µR =

1

K

K∑
j=1

Rj ,

σR =

√√√√ 1

K

K∑
j=1

(Rj − µR)2 (2)

The GRPO objective is

LGRPO(ϕ) =
1

K

K∑
i=1

1

|y(i)|

|y(i)|∑
t=1[

pϕ(y
(i)
t | x, y(i)<t)

pϕold(y
(i)
t | x, y(i)<t)

Âi,t − λ · KL(pϕ ∥ pref)

]
(3)

where pref is a reference policy (the orignal model) and λ is
a coefficient balancing exploration and stability.

In our framework, supervised fine-tuning first establishes
core reasoning capabilities from hardware-specific corpora,
which are then further refined using GRPO to encourage
structurally and semantically correct code generation under
reinforcement feedback.

III. REASONING HARDWARE LLM AND EXPERIMENTAL
RESULTS

To develop hardware-specialized reasoning capabilities in
large language models, we design a multi-stage training frame-
work consisting of four major components: (1) Verilog-centric
dataset construction, (2) functionality-aware comparative an-
notation via Function-Aligned Differentiated Reasoning, (3)
supervised fine-tuning with semantically rich prompts, and
(4) reinforcement learning through GRPO, guided by a parser
reward function. For clarity and consistency, we present exper-
imental results alongside the description of each corresponding
component in this section.

A. Experimental Setup and Environmental Impact Assessment

Our training utilized models from the Qwen2.5 [30](1.5B,
7B, 14B, 32B). All training and inference operations were
conducted on a cluster of seven AMD MI210 GPUs. We
employed the dataset constructed as described in subsequent
sections. We leveraged QWQ-32B [31] for all data synthe-
sis tasks. For the Supervised Fine-Tuning phase, we imple-
mented FlashAttention-2 [32] and Galore [33] optimizations
for the 1.5B model, while employing PISSA [34] for non-
1.5B models. GRPO loss calculation is based on trl [35].
Cumulative training across all experiments was 1, 013 hours,
with estimated energy consumption of 2, 553 kWh, resulting in
greenhouse gas emissions (CO2-equivalent) of approximately
0.88 tonnes.

B. Dataset Curation via Verilog Compilation Filtering

We source open-source RTL hardware designs written in
Verilog and SystemVerilog. The raw corpus Draw = {di}Ni=1

comprises heterogeneous design artifacts with varying struc-
tural and syntactic quality. To address the low compilation
success rates observed in prior datasets (Section II-B), we
apply a strict Verilator-based filtering strategy. Specifically,
we retain only those designs that pass both the parsing and
elaboration stages of Verilator without errors:

Dvalid = {di ∈ Draw | Verilator(di) = pass}

This filtering step is essential, as many existing datasets, es-
pecially those from LLMs, lack transparency about the model
version and often contain non-compilable or semantically
invalid code. While modern LLMs still struggle with hardware
synthesis, earlier models tend to produce more syntax and
logic errors.

To quantify the extent of this issue, we report the Verilator
pass rates of several public datasets in Table I.

TABLE I
COMPILATION FILTERING RESULTS USING VERILATOR ACROSS PUBLIC

DATASETS

Source Amount Parser Pass Ratio
MGVerilog [26] 43, 792 19, 411 44%
RTLCoder [7] 26, 532 11, 056 42%
[27] 68, 122 18, 392 27%

Our Raw dataset 48, 969 48, 969 100%

1) Failure Mode Analysis: To better understand the causes
behind compilation failures, we analyze a sample of Verilog
files rejected by Verilator. We identify three representative
categories that highlight common LLM-specific issues.

• Hallucinated Modules or Missing Dependencies: The
model instantiates modules that do not exist or are not
accompanied.
module top; xlslice slice_inst();

endmodule

• Syntax Errors: Invalid grammar such as misplaced op-
erators or malformed module definitions.
module top. endmodule

• Hardware Semantics Violations: Violations such as
assigning to input ports or bit-width mismatches.
module top(input wire a); always @(*) a =

1; endmodule

LLM-generated hardware datasets, while large in scale,
often contain syntactic or semantic errors due to hallucination
and insufficient domain grounding. When such erroneous data
is used for downstream finetuning, it can lead to an unintended
”distillation of errors”—a process in which incorrect design
patterns and faulty logic are repeatedly reinforced across
training stages. This feedback loop results in a gradual degra-
dation of model quality, ultimately impairing the reasoning
and generation capabilities of subsequent models. Therefore,
rigorous data filtering is not only beneficial but essential
to safeguard the integrity of LLM training pipelines in the
hardware domain.

C. Function-Aligned Differentiated Revision (FADR)

To support reasoning supervision grounded in hardware
semantics, we introduce Function-Aligned Differentiated Re-
vision (FADR). This approach begins by categorizing verified
RTL designs into functional groups Gk, each representing a
canonical hardware function such as counters, FIFOs, multi-
plexers, or ALUs. Designs within the same group implement
equivalent behavior but differ in structural choices, encoding
conventions, and control logic organization.

FADR focuses on systematically comparing design pairs
(d(a), d(b)) ∈ Gk within the same group to identify and
describe their implementation-level differences. These differ-
ences often involve rewiring of finite-state machines, changes
to reset and enable protocols, or the introduction of logic
for corner-case handling. Unlike raw diff-style comparisons,
FADR emphasizes semantic relevance and domain-specific
abstraction.

Our methodology draws inspiration from the 5W1H ap-
proach [18], which introduces structured templates for hard-
ware bug explanation. However, 5W1H relies on journalistic
heuristics ill-suited for RTL-level semantics. Instead, FADR
reinterprets the idea of structured inquiry by introducing
five RTL-specific reasoning dimensions: Signal Definitions,
Combinational Logic, Sequential Logic, Circuit Function,
and Implementation Strategy. These dimensions reflect typ-
ical axes of divergence among semantically equivalent RTL
designs.

For each functional group, we prompt a large language
model (QWQ-32B) to conduct pairwise reasoning over veri-
fied designs and summarize their differences using the five-
dimensional FADR template. This process produces inter-
pretable, structured rationales grounded in hardware engineer-
ing intuition. Each resulting instance is encoded as a triplet
(q, r, a), where q = d(a) is the original design, r is the five-
part FADR reasoning output, and a = d(b) is the target design.

For example, within the “counter” category, FADR may
capture a structural difference where one design uses
synchronous reset logic (always @(posedge clk) with
if (reset)) and another uses asynchronous reset (always

@(posedge clk or posedge reset_async)),
while also introducing an overflow signal and corresponding
combinational detection logic. The FADR output highlights
differences in signal declaration, sequential behavior, and
high-level design intent.

We construct 11, 590 FADR-aligned reasoning samples.
While the reasoning content is structured and domain-aware, it
is also template-driven and lacks elements of spontaneous self-
reflection. This motivates subsequent refinement stages that
promote more flexible and introspective reasoning patterns in
the model.

D. Supervised Fine-Tuning with Functional Prompts

We focus on the task of hardware code generation from
functional specifications. Rather than directly mapping a high-
level instruction to Verilog code, we introduce a structured
intermediate reasoning process to guide generation.

Each training sample consists of three components: (1)
Instruction, describing the functional goal, (2) Reasoning,
outlining the design rationale across five RTL aspects from
Section III-C and (3) Answer, the corresponding Verilog code.
This structured reasoning step acts as explicit guidance for
code generation. The model is fine-tuned using a standard
causal language modeling loss (Eq. 1).

1) Acquiring Hardware Design Capability through Fine-
Tuning: Fine-tuning significantly enhances LLMs‘ hardware
generation capabilities. As shown in Fig. 2, the 1.5B model
exhibits minimal ability to generate hardware code prior to
fine-tuning, but demonstrates substantial improvement after
training. A similar trend is observed for the 7B model.
These results suggest that task-specific fine-tuning consistently
improves LLM performance on hardware design tasks.

pass@1 pass@5 pass@10
0

5

10

15

20

25

30
Base
SFT

(a) 1.5B VerilogEval Human

pass@1 pass@5 pass@10
0

10

20

30

40 Base
SFT

(b) 1.5B VerilogEval Machine

pass@1 pass@5 pass@10
0

10

20

30

40

50
Base
SFT

(c) 7B VerilogEval Human

pass@1 pass@5 pass@10
0

10

20

30

40

50

60

70 Base
SFT

(d) 7B VerilogEval Machine

Fig. 2. Fine-tuning with datasets incorporating thinking processes yields
significant performance improvements. The orange bars represent the base
model—models without fine-tuning—and their performance on the Human
and Machine subtasks of VerilogEval. The red bars show the results after
fine-tuning with datasets that include thinking processes.

2) Scaling Effects and Observations: From a scaling per-
spective, while fine-tuning significantly improves model per-
formance, it does not overcome the inherent scaling laws
of LLMs. As shown in Fig. 3, performance increases with
parameter size under identical fine-tuning conditions. Using
proprietary GPT-4o as a reference, models reach parity on
the VerilogEval Human benchmark at 33B parameters, and on
VerilogEval Machine at 14B. We identify the 14B–33B range
as a potential sweet spot for hardware-domain LLMs, where
models offer strong performance while remaining feasible
for deployment on consumer-grade hardware, enhancing their
practical applicability.

1.5B 7B 14B 33B
0

20

40

60

80

GPT 4o

pass@1 pass@5 pass@10

(a) VerilogEval Human

1.5B 7B 14B 33B
0

20

40

60

80

GPT 4o

pass@1 pass@5 pass@10

(b) VerilogEval Machine

Fig. 3. Scaling Effects of Parameter Size on Hardware Generation Per-
formance with Reasoning-Augmented Fine-Tuning. Reasoning fine-tuning
enables near-GPT-4o performance on VerilogEval with mid-size models
(14–33B), offering a cost-effective alternative for hardware generation.

3) Ablation Study: Effectiveness of Reasoning-Augmented
Data: We conduct an ablation study to assess the contribution
of the reasoning component. Specifically, we compare models
trained on datasets with and without the reasoning step and
models trained on each of the three raw data sources individ-
ually. The baseline uses only Verilator-filtered hardware de-
signs paired with functional descriptions, while the reasoning-
enhanced dataset includes explicit multi-part explanations that
guide the model’s generation process.

As shown in Fig. 4, on the more challenging VerilogEval
Human benchmark, models trained with reasoning consistently
outperform not only their non-reasoning counterparts, but also
models trained on the three raw datasets. Notably, this im-
provement is achieved despite the reasoning dataset being only
one-third to one-sixth the size of the raw datasets, indicating
that the performance gains arise from data quality rather than
quantity. This result echoes findings in [36], which show that
introducing structured reasoning—even without reinforcement
learning—can significantly benefit model performance.

However, the advantage is less pronounced on the Ver-
ilogEval Machine subset. In some cases, reasoning-trained
models perform slightly worse. We attribute this to limitations
in the MachineEval benchmark, which its original authors have
since deprecated due to concerns about reliability. We include
these results for completeness.

E. Reinforcement Learning with Parser Rewards

To further refine the model’s capacity for producing correct
and interpretable outputs, we apply GRPO training with binary
reward function. For each prompt, a set of candidate outputs

SFT

No thinking
Emilgoh

MGVerilog
RTLCoder

0

5

10

15

20

25

30
pass@1 pass@5 pass@10

(a) 1.5B VerilogEval Human

SFT

No thinking
Emilgoh

MGVerilog
RTLCoder

0

10

20

30

40 pass@1 pass@5 pass@10

(b) 1.5B VerilogEval Machine

SFT

No thinking
Emilgoh

MGVerilog
RTLCoder

0

10

20

30

40

50
pass@1 pass@5 pass@10

(c) 7B VerilogEval Human

SFT

No thinking
Emilgoh

MGVerilog
RTLCoder

0

10

20

30

40

50

60

70 pass@1 pass@5 pass@10

(d) 7B VerilogEval Machine

Fig. 4. Ablation study comparing models trained with reasoning-augmented
data, non-reasoning data, and three raw datasets. On the VerilogEval Human
benchmark, reasoning-trained models consistently outperform all baselines,
despite using significantly less data. On the Machine subset, the advantage is
less clear, potentially due to known limitations in the benchmark itself.

{ŷi}Gi=1 is sampled. Each output is scored using two reward
components.

• Format Reward (rfmt): 1 if the output conforms to the re-
quired nested format < thinking > ... < /thinking ><
answer > ... < /answer >; 0 otherwise.

• Syntax Reward (rsyn): 1 if the code segment within
< answer > ... < /answer > passes Verilator syntax
parsing; 0 otherwise.

The total reward is defined as ri = rfmt + rsyn, and is normal-
ized across the batch to compute the token-wise advantage in
Equation 2.

1) Reinforcement Learning with GRPO on 1.5B Model:
During the training process, one MI210 GPU is designated
as the reference server, responsible for computing the logits
of the base SFT model. The remaining six MI210 GPUs
perform GRPO-based optimization in parallel. Within each re-
inforcement learning step, the model generates eight candidate
responses per prompt, and their relative quality is compared
to compute the policy advantage. Training is optimized using
DeepSpeed for efficient multi-GPU communication. In this
experiment, we focus on the 1.5B model.

After 1, 000 reinforcement learning steps—corresponding to
the first 1, 000 examples in the dataset—we observe notable
improvements in the model’s generative performance. As
shown in Table II, the GRPO-trained model (RL) consistently
outperforms the SFT-only baseline across most evaluation
metrics. However, it still lags behind larger models such as
7B and beyond, highlighting that RL alone cannot overcome
the benefits of scaling.

Interestingly, we observe distinct behavioral patterns in the
reasoning-enhanced model. Its failure cases often stem from
either (i) overthinking when input information is insufficient,

leading to reasoning dead ends, or (ii) weak Verilog coding
ability despite correct high-level reasoning.

For example, when designing a 4-bit comparator, the model
demonstrates the ”Aha moment” effect, where it first organizes
the high-level design structure before proceeding to implemen-
tation. The model decomposes the problem into logical steps
that mirror human intuition: identifying that a bitwise compar-
ison from MSB to LSB is required, with equality depending
on all bits matching and the greater-than condition determined
by the first differing bit. The model also strategically selects
a parallel combinational logic implementation, demonstrating
awareness of hardware constraints like logic depth and timing.
This organization of thought before implementation mimics
the cognitive process of experienced hardware designers, even
though the final code still contained implementation errors.

In another case, after a brief initial analysis, the model
becomes trapped in excessive self-questioning and ultimately
fails due to perceived input ambiguity.

TABLE II
COMPARISON OF SFT AND GRPO-TRAINED MODELS ON VERILOGEVAL.

Stage
VerilogEval Human VerilogEval Machine

pass@1 pass@5 pass@10 pass@1 pass@5 pass@10

SFT 6.96 19.70 25.90 8.18 27.40 39.00

RL(GRPO) 8.00 23.33 40.00 6.00 26.67 42.00

2) Reasoning Transfer: Reinforcement-Trained Prompts for
General LLMs: In our final experiment, we investigate
whether the reasoning generated by the reinforcement-trained
1.5B model can enhance the performance of a general-purpose
LLM. Specifically, we extract the <thinking> block from
the output and prepend it, along with the original prompt, to
the input of the general LLM, Qwen 32B. Since this setup
involves two separate model generations, we report only the
pass@1 performance.

As shown in Fig. 5, this reasoning transfer significantly
improves the Qwen-32B model’s performance on the bench-
mark, indicating that the reasoning output effectively serves as
a high-quality, structured prompt. This behavior is reminiscent
of standard prompting methods; however, in our case, the
prompts are automatically learned via reinforcement train-
ing. Despite these gains, the performance still falls short of
that achieved by models directly fine-tuned on reasoning-
augmented datasets. Thus, the RL-trained model acts as an
automatic reasoning prompt generator, bridging the gap be-
tween raw LLMs and reasoning-aware performance.

IV. RELATED WORK

We organize related work according to the architectural
comparison in Fig. 1, which highlights the key differences
between traditional LLM-based hardware design pipelines
(top) and our reasoning-enhanced framework (bottom).
(1) Fine-Tuning with Raw Hardware Datasets:

As shown in the upper right of Fig. 1, many prior works
fine-tune LLMs directly on Verilog code paired with functional

Qwen3
2 B
Plus Th

inking SFT
0

10

20

30

40

50

60

70
Human Machine

Fig. 5. Injecting <thinking> blocks from the GRPO-trained 1.5B model
into a general LLM (Qwen-32B) significantly improves pass@1 performance

descriptions, without intermediate reasoning steps. Repre-
sentative examples include RTLCoder [7], MGVerilog [26],
and Emilgoh [27], which rely on large-scale synthetic data.
However, these datasets often have low quality and poor
verification pass rates. In contrast, our work improves data
quality through verilator-based filtering and the building of a
reasoning process.
(2) Prompting-Based Approaches:

Prompting methods, exemplified by VerilogReader [6], treat
LLMs as passive code readers that generate outputs based on
expert-crafted prompts. As shown in the upper left portion
of Fig. 1, these approaches bypass intermediate reasoning and
depend heavily on prompt engineering. Our framework instead
introduces a structured reasoning stage, enabling the model to
decompose and plan the design logic before code generation
autonomously.
(3) Closed-Source Proprietary Models:

Commercial efforts like NVIDIA’s ChipNeMo [37] demon-
strate strong performance using proprietary chip design data.
However, reproducibility and extensibility remain limited as
they are not publicly released. Our approach, shown in the
lower part of Fig. 1, complements open-source datasets with
a transparent, reasoning-aware training pipeline.
(4) Reasoning-Capable LLMs:

Recent evaluations, such as the study by Collini et al. [38],
show that reasoning-oriented models like DeepSeek-R1 and
OpenAI’s O1 series exhibit structured internal logic when
applied to hardware-related tasks. Building on this observation,
we adopt reasoning-capable LLMs as the backbone of our
framework and incorporate domain-specific supervision via
FADR and compiler-guided reinforcement learning. This en-
ables the model to analyze signal definitions, logic structures,
and functional intent before generation.

V. DISCUSSION

A. Why do we not compare with proprietary reasoning LLMs?

Too expensive. Reasoning LLMs charge by token, and
multi-step reasoning increases tokens per generation. In our
experiments, this would raise the cost of a single test pass to
a high level, exceeding thousands of USD per batch.

Moreover, preliminary tests using OpenAI’s Web interface
reveal minimal performance gaps between GPT-4o and O1 on
hardware tasks. This is expected, as proprietary models are not
explicitly trained with hardware reasoning data or integrated

with verification during training. As such, their reasoning
behavior in hardware settings does not significantly differ from
general-purpose models.

B. Why is Verilator selected as the reward function?

Verilator is widely regarded as a gold standard in the
open-source hardware community. Any well-maintained open-
source hardware project is expected to pass Verilator sim-
ulation, making it a reliable validator. Unlike purely static
syntax checkers, Verilator performs executable simulation and
produces a strict abstract syntax tree, providing a robust form
of syntactic and structural validation. While we do not run
full simulations during training, we utilize Verilator to extract
ASTs and detect code structure issues. The average runtime
is 0.1098s per sample, or approximately 1s per batch of
8 generations, which is negligible compared to the 150s
required for a single reinforcement learning step.

Although faster alternatives exist, such as Pyverilog’s AST
parser, which averages only 0.0016s per sample, compatibility
remains challenging. In our tests, 92.27% of designs that pass
Verilator fail to parse under Pyverilog due to limited syntax
support. Incorporating other EDA tools remains a promising
direction, but the inherent slowness of hardware simulation
may present practical bottlenecks, particularly for non-static,
dynamic reward functions.

C. Why is GRPO training performed only on the 1.5B model?

Due to platform constraints, we were limited to training
models up to 3B parameters during the reinforcement learning
stage. As a result, we conducted complete GRPO training
only on the 1.5B model. Nevertheless, all reasoning-fine-
tuned models developed in this work will be released, and
we encourage the community to further explore reinforcement
learning on larger models such as our 32B SFT checkpoint.
This opens the door to building even more powerful reasoning-
aware hardware generation models.

VI. CONCLUSION

We presented a reasoning-enhanced training framework for
hardware domain reasoning LLM. Our approach significantly
improves the’ structural correctness and functional fidelity of
generated hardware designs, even when using smaller models.
Through extensive experiments, we demonstrate that incorpo-
rating explicit reasoning enhances standalone performance and
is a transferable mechanism for improving general-purpose
LLMs. By open-sourcing the models, we aim to lower the
barrier to entry for research in reasoning LLM for hardware
generation and encourage broader adoption.

Future work includes scaling reinforcement training to
larger models, integrating dynamic EDA feedback, and extend-
ing reasoning capabilities to broader tasks such as verification
and layout generation. We believe reasoning LLMs mark a
critical step toward democratizing intelligent hardware design.

REFERENCES

[1] J. Blocklove, S. Garg et al., “Evaluating llms for hardware design
and test,” CoRR, vol. abs/2405.02326, p. 6, 2024. [Online]. Available:
https://doi.org/10.48550/arXiv.2405.02326

[2] Z. Mi, R. Zheng et al., “Promptv: Leveraging llm-powered multi-
agent prompting for high-quality verilog generation,” CoRR, vol.
abs/2412.11014, p. 5, 2024. [Online]. Available: https://doi.org/10.
48550/arXiv.2412.11014

[3] R. Qiu, G. L. Zhang et al., “Correctbench: Automatic testbench
generation with functional self-correction using llms for HDL
design,” CoRR, vol. abs/2411.08510, p. 7, 2024. [Online]. Available:
https://doi.org/10.48550/arXiv.2411.08510

[4] K. Thorat, J. Zhao et al., “Advanced large language model (llm)-
driven verilog development: Enhancing power, performance, and area
optimization in code synthesis,” CoRR, vol. abs/2312.01022, p. 8, 2023.
[Online]. Available: https://doi.org/10.48550/arXiv.2312.01022

[5] Y. Tsai, M. Liu, and H. Ren, “Rtlfixer: Automatically fixing RTL syntax
errors with large language models,” CoRR, vol. abs/2311.16543, p. 7,
2023. [Online]. Available: https://doi.org/10.48550/arXiv.2311.16543

[6] R. Ma, Y. Yang et al., “Verilogreader: Llm-aided hardware test
generation,” CoRR, vol. abs/2406.04373, p. 5, 2024. [Online].
Available: https://doi.org/10.48550/arXiv.2406.04373

[7] S. Liu, W. Fang et al., “Rtlcoder: Fully open-source and efficient llm-
assisted rtl code generation technique,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. Early Access, pp.
1–1, 2024.

[8] F. Cui, C. Yin et al., “Origen:enhancing rtl code generation with code-to-
code augmentation and self-reflection,” CoRR, vol. abs/2407.16237, p. 9,
2024. [Online]. Available: https://doi.org/10.48550/arXiv.2407.16237

[9] Y. Zhao, D. Huang et al., “Codev: Empowering llms
for verilog generation through multi-level summarization,”
CoRR, vol. abs/2407.10424, p. 16, 2024. [Online]. Available:
https://doi.org/10.48550/arXiv.2407.10424

[10] N. Wang, B. Yao et al., “Large language model for verilog generation
with golden code feedback,” CoRR, vol. abs/2407.18271, p. 9, 2024.
[Online]. Available: https://doi.org/10.48550/arXiv.2407.18271

[11] OpenAI, “Chatgpt-4o,” https://openai.com/chatgpt, 2024.
[12] Anthropic, “Claude 3.7 sonnet,” https://www.anthropic.com/claude,

2025.
[13] DeepSeek-AI, A. Liu et al., “Deepseek-v3 technical report,” CoRR, vol.

abs/2412.19437, 2024. [Online]. Available: https://doi.org/10.48550/
arXiv.2412.19437

[14] G. Team, “Gemma 3,” 2025. [Online]. Available: https://goo.gle/
Gemma3Report

[15] OpenAI, “Learning to reason with LLMs,” 9 2024, [Online]. Available:
https://openai.com/index/learning-to-reason-with-llms/.

[16] ——, “OpenAI o3-mini,” 1 2025, [Online]. Available: https://openai.
com/index/openai-o3-mini/.

[17] DeepSeek-AI, D. Guo et al., “Deepseek-r1: Incentivizing reasoning ca-
pability in llms via reinforcement learning,” CoRR, vol. abs/2501.12948,
2025. [Online]. Available: https://doi.org/10.48550/arXiv.2501.12948

[18] W. Fu, S. Li et al., “A generalize hardware debugging approach for
large language models semi-synthetic, datasets,” IEEE Transactions on
Circuits and Systems I: Regular Papers, vol. 72, no. 2, pp. 623–636,
2025.

[19] M. Gao, J. Zhao et al., “Autovcoder: A systematic framework
for automated verilog code generation using llms,” in 42nd IEEE
International Conference on Computer Design, ICCD 2024, Milan,
Italy, November 18-20, 2024. IEEE, 2024, pp. 162–169. [Online].
Available: https://doi.org/10.1109/ICCD63220.2024.00033

[20] C. Ho, H. Ren, and B. Khailany, “Verilogcoder: Autonomous verilog
coding agents with graph-based planning and abstract syntax tree
(ast)-based waveform tracing tool,” in AAAI-25, Sponsored by the
Association for the Advancement of Artificial Intelligence, February
25 - March 4, 2025, Philadelphia, PA, USA, T. Walsh, J. Shah, and
Z. Kolter, Eds. AAAI Press, 2025, pp. 300–307. [Online]. Available:
https://doi.org/10.1609/aaai.v39i1.32007

[21] N. Team, “Sky-t1: Train your own o1 preview model within $450,”
https://novasky-ai.github.io/posts/sky-t1, 2025, accessed: 2025-01-09.

[22] A. Lozhkov, R. Li et al., “Starcoder 2 and the stack v2: The next
generation,” arXiv preprint arXiv:2402.19173, 2024.

https://doi.org/10.48550/arXiv.2405.02326
https://doi.org/10.48550/arXiv.2412.11014
https://doi.org/10.48550/arXiv.2412.11014
https://doi.org/10.48550/arXiv.2411.08510
https://doi.org/10.48550/arXiv.2312.01022
https://doi.org/10.48550/arXiv.2311.16543
https://doi.org/10.48550/arXiv.2406.04373
https://doi.org/10.48550/arXiv.2407.16237
https://doi.org/10.48550/arXiv.2407.10424
https://doi.org/10.48550/arXiv.2407.18271
https://doi.org/10.48550/arXiv.2412.19437
https://doi.org/10.48550/arXiv.2412.19437
https://goo.gle/Gemma3Report
https://goo.gle/Gemma3Report
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/openai-o3-mini/
https://openai.com/index/openai-o3-mini/
https://doi.org/10.48550/arXiv.2501.12948
https://doi.org/10.1109/ICCD63220.2024.00033
https://doi.org/10.1609/aaai.v39i1.32007

[23] Z. Pei, H. Zhen et al., “Betterv: Controlled verilog generation
with discriminative guidance,” in Forty-first International Conference
on Machine Learning, ICML 2024, Vienna, Austria, July 21-27,
2024. OpenReview.net, 2024. [Online]. Available: https://openreview.
net/forum?id=jKnW7r7de1

[24] K. Xu, J. Sun et al., “MEIC: re-thinking RTL debug automation
using llms,” in Proceedings of the 43rd IEEE/ACM International
Conference on Computer-Aided Design, ICCAD 2024, Newark Liberty
International Airport Marriott, NJ, USA, October 27-31, 2024, J. Xiong
and R. Wille, Eds. ACM, 2024, pp. 100:1–100:9. [Online]. Available:
https://doi.org/10.1145/3676536.3676801

[25] W. Fu, K. Yang et al., “Llm4sechw: Leveraging domain specific large
language model for hardware debugging,” CoRR, vol. abs/2401.16448,
2024. [Online]. Available: https://doi.org/10.48550/arXiv.2401.16448

[26] Y. Zhang, Z. Yu et al., “Mg-verilog: Multi-grained dataset towards
enhanced llm-assisted verilog generation,” CoRR, vol. abs/2407.01910,
2024. [Online]. Available: https://doi.org/10.48550/arXiv.2407.01910

[27] E. Goh, M. Xiang et al., “From english to ASIC: hardware
implementation with large language model,” CoRR, vol. abs/2403.07039,
2024. [Online]. Available: https://doi.org/10.48550/arXiv.2403.07039

[28] W. Snyder, “Verilator: Open simulation-growing up,” DVClub Bristol,
2013.

[29] Z. Shao, P. Wang et al., “Deepseekmath: Pushing the limits of
mathematical reasoning in open language models,” CoRR, vol.
abs/2402.03300, 2024. [Online]. Available: https://doi.org/10.48550/
arXiv.2402.03300

[30] A. Yang, B. Yang et al., “Qwen2.5 technical report,” arXiv preprint
arXiv:2412.15115, 2024.

[31] Q. Team, “Qwq-32b: Embracing the power of reinforcement
learning,” March 2025. [Online]. Available: https://qwenlm.github.
io/blog/qwq-32b/

[32] T. Dao, “Flashattention-2: Faster attention with better parallelism
and work partitioning,” in The Twelfth International Conference
on Learning Representations, ICLR 2024, Vienna, Austria, May
7-11, 2024. OpenReview.net, 2024. [Online]. Available: https:
//openreview.net/forum?id=mZn2Xyh9Ec

[33] J. Zhao, Z. Zhang et al., “Galore: Memory-efficient LLM training by
gradient low-rank projection,” in Forty-first International Conference
on Machine Learning, ICML 2024, Vienna, Austria, July 21-27,
2024. OpenReview.net, 2024. [Online]. Available: https://openreview.
net/forum?id=hYHsrKDiX7

[34] F. Meng, Z. Wang, and M. Zhang, “Pissa: Principal singular
values and singular vectors adaptation of large language models,”
in Advances in Neural Information Processing Systems 38:
Annual Conference on Neural Information Processing Systems
2024, NeurIPS 2024, Vancouver, BC, Canada, December 10
- 15, 2024, A. Globersons, L. Mackey et al., Eds., 2024.
[Online]. Available: http://papers.nips.cc/paper files/paper/2024/hash/
db36f4d603cc9e3a2a5e10b93e6428f2-Abstract-Conference.html

[35] L. von Werra, Y. Belkada et al., “TRL: Transformer Reinforcement
Learning,” https://github.com/huggingface/trl, 2023, if you use this soft-
ware, please cite it using the metadata from this file.

[36] K. Gandhi, A. Chakravarthy et al., “Cognitive behaviors that
enable self-improving reasoners, or, four habits of highly effective
stars,” CoRR, vol. abs/2503.01307, 2025. [Online]. Available: https:
//doi.org/10.48550/arXiv.2503.01307

[37] M. Liu, T.-D. Ene et al., “Chipnemo: Domain-adapted llms for chip
design,” arXiv preprint arXiv:2311.00176, 2023.

[38] L. Collini, A. Hennessee et al., “Can reasoning models reason about
hardware? an agentic hls perspective,” arXiv preprint arXiv:2503.12721,
2025.

https://openreview.net/forum?id=jKnW7r7de1
https://openreview.net/forum?id=jKnW7r7de1
https://doi.org/10.1145/3676536.3676801
https://doi.org/10.48550/arXiv.2401.16448
https://doi.org/10.48550/arXiv.2407.01910
https://doi.org/10.48550/arXiv.2403.07039
https://doi.org/10.48550/arXiv.2402.03300
https://doi.org/10.48550/arXiv.2402.03300
https://qwenlm.github.io/blog/qwq-32b/
https://qwenlm.github.io/blog/qwq-32b/
https://openreview.net/forum?id=mZn2Xyh9Ec
https://openreview.net/forum?id=mZn2Xyh9Ec
https://openreview.net/forum?id=hYHsrKDiX7
https://openreview.net/forum?id=hYHsrKDiX7
http://papers.nips.cc/paper_files/paper/2024/hash/db36f4d603cc9e3a2a5e10b93e6428f2-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/db36f4d603cc9e3a2a5e10b93e6428f2-Abstract-Conference.html
https://github.com/huggingface/trl
https://doi.org/10.48550/arXiv.2503.01307
https://doi.org/10.48550/arXiv.2503.01307

	Introduction
	Background
	LLM and Implications for Hardware Tasks
	Hardware Datasets and Verification-Guided Filtering
	Learning Objectives for Reasoning LLMs

	Reasoning Hardware LLM and Experimental Results
	Experimental Setup and Environmental Impact Assessment
	Dataset Curation via Verilog Compilation Filtering
	Failure Mode Analysis

	Function-Aligned Differentiated Revision (FADR)
	Supervised Fine-Tuning with Functional Prompts
	Acquiring Hardware Design Capability through Fine-Tuning
	Scaling Effects and Observations
	Ablation Study: Effectiveness of Reasoning-Augmented Data

	Reinforcement Learning with Parser Rewards
	Reinforcement Learning with GRPO on 1.5B Model
	Reasoning Transfer: Reinforcement-Trained Prompts for General LLMs

	Related Work
	Discussion
	Why do we not compare with proprietary reasoning LLMs?
	Why is Verilator selected as the reward function?
	Why is GRPO training performed only on the 1.5B model?

	Conclusion
	References

