Algorithmic Design of Kinematic Trees Based on
CSC Dubins Planning for Link Shapes

Daniel Feshbach!0000—0001-5185-7395] \Y/ei_Hsi Chen!0000—0001-8523—1809]
Ling Xul0009-0002=-5343-7911] ' Fypyj] Schaumburg[0009—0002-0399-551X]

)
g[0009700037081373908]’ and Cynthia Sung[0000700027896771841]

Isabella Huan
General Robotics, Automation, Sensing & Perception (GRASP) Lab
University of Pennsylvania, 3101 Walnut St, Philadelphia, PA 19104, USA
{feshbach,weicc,xub,scemil, ihuangg, crsung}@seas.upenn. edu
https://sung.seas.upenn.edu/, https://www.grasp.upenn.edu/

Abstract. Computational tools for robot design require algorithms mov-
ing between several layers of abstraction including task, morphology,
kinematics, mechanism shapes, and actuation. In this paper we give a
linear-time algorithm mapping from kinematics to mechanism shape for
tree-structured linkages. Specifically, we take as input a tree whose nodes
are axes of motion (lines which joints rotate about or translate along)
along with types and sizes for joints on these axes, and a radius r for
a tubular bound on the link shapes. Our algorithm outputs the geome-
try for a kinematic tree instantiating these specifications such that the
neutral configuration has no self-intersection. Output designs have lin-
ear complexity. The algorithm approach is based on understanding the
mechanism design problem as a planning problem for link shapes, and
arranging the joints along their axes of motion to be appropriately spaced
and oriented such that feasible, non-intersecting paths exist linking them.
Since link bending is restricted by its tubular radius, this is a Dubins
planning problem, and to prove the correctness of our algorithm we also
prove a theorem about Dubins paths: if two point-direction pairs are
separated by a plane at least 2r from each, and the directions each have
non-negative dot product with the plane normal, then they are connected
by a radius-r CSC Dubins path with turn angles < 7. We implement our
design algorithm in code and provide a 3D printed example of a tubular
kinematic tree. The results provide an existence proof of tubular-shaped
kinematic trees implementing given axes of motion, and could be used as
a starting point for further optimization in an automated or algorithm-
assisted robot design system.

Keywords: Kinematics, Path Planning, Computational Geometry, Du-
bins Paths, Computational Robot Design
1 Introduction

When designing linkages for robots, it is necessary to achieve specified poses or
motions while avoiding self-intersection. Even with engineering expertise in nav-
igating layers of kinematic and geometric abstractions, this is challenging as the

https://sung.seas.upenn.edu/
https://www.grasp.upenn.edu/

2 D. Feshbach et al.

number of degrees of freedom scales up. Design algorithms mapping kinematic
specifications to mechanism shapes could help non-experts design robots and
assist experts in exploring the large space of morphologies. A foundational step
is characterizing what types of kinematics are possible to geometrically realize
with what classes of link and joint shapes. Here, we study kinematics specified
by joint axes of motion and linkage shapes abstracted by their tubular bounds.

1.1 Related Works

Our previous work [7] gives a design algorithm for tubular kinematic chains im-
plementing specified axes of motion, along with a catalog of tubular origami
patterns implementing links and revolute and prismatic joints. The approach
is based on understanding the robot design problem as a path planning prob-
lem for link shapes. Since the tubular radius constrains the bending curvature,
this is a 3D Dubins planning problem. Since higher-order joint types can be
constructed as sequences of revolute and prismatic joints [30], this algorithm
can make chains with arbitrary kinematics. However, the chain design algorithm
does not generalize to trees because it can involve looping “backwards” around
previously-generated parts of the linkage in ways that would make collision avoid-
ance guarantees between different branches elusive.

Computational Design Our work falls into the subfield of computational
robot design. The primary objectives of developing robotic design tools are to
reduce prerequisite expertise and enhance efficiency and reduce workload for the
designer. Current design tools help users create fabricable plans from structural
or functional specifications using modular composition [2822] and optimiza-
tion [6]. Interactive design [242] requires detailed specification of components
and placement, often followed by optimization to align with objectives [I5I12].
Automated design approaches translate task specifications into robot shapes
with methods such as evolutionary algorithms [T9/T3], search algorithms combin-
ing discrete modules [I4], or optimizations over parameterized modules [I]. Such
methods can give robot designs tailored to the desired goals, but lack formal
guarantees of design existence. In contrast, our work takes different input (gen-
eral kinematics specified by axis of motion, rather than task specifications) and
is guaranteed to produce a linkage shape implementing the given kinematics.
Another line of work addresses kinematic synthesis, producing axes of motion
for a kinematic chain [21], tree [26], or more general linkage [33] achieving given
positions or trajectories. Such approaches do not give specific linkage shapes
implementing their output kinematics, so they could be combined with our work
since we take axes of motion as input and give concrete designs as output.

Dubins Paths Our work is founded on Dubins path planning to find tubular
shapes linking joints together. A Dubins path is a continuously differentiable
path with a minimum turning radius r. Widely applied in motion planning for
turning-constrained vehicles [34120I5/18], theory characterizing Dubins paths has

Kinematic Trees With CSC Links 3

been studied in 2D and 3D. In 2D, shortest paths have form CSC or CCC (or
subsequences thereof), where S is a straight line segment and C is an arc of the
minimal radius [I0]. For 2D poses > 4r apart, shortest paths are CSC [25].

In 3D, shortest paths are either CSC paths, coplanar CCC paths with the
middle arc having turn angle > 7, or radius-r helicoidal (H) paths [27]. Com-
puting optimal paths is not analytically solved. For CSC paths, shortest paths
can be found numerically via a variety of constructions [IG/I7/3TI32/3]: for
example, [3] analytically reduces the problem to finding zeros of a degree-12
single-variable polynomial and then solves for zeros numerically. (Another line
of work extends 2D Dubins paths into a third dimension with its own separate
derivative constraint [8I20023]29], which is a mathematically different problem).

When using Dubins paths to represent linkage shapes, additional constraints
are needed to enforce that the linkage will not loop back to locally self-intersect.
If position-direction pairs are 4r away and separated by a plane whose normal
has non-negative dot product with each of the directions, then [7] conjectures
that they are connectable by a CSC path with turn angles < w. We prove that
conjecture here (Thm. [1)) and use it for our tree construction algorithm.

1.2 Contributions and Outline

We study the problem of designing kinematic trees implementing given axes of
motion: we prove this is solvable (Thm. with a design of linear complexity
by providing a construction algorithm (Alg. [I]) giving one such tree structured
as a series of bent cylinders. Alg. [l has essentially linear runtime (it can be
made linear by replacing certain unnecessary optimization-based heuristics with
procedures selecting any constraint-satisfying solution).

Our design approach involves placing joints along their given axes separated
and oriented such that Thm. [1| (conjectured in [7] and proven here) guarantees
they are connectable by CSC link paths which (to avoid local self-intersection)
have C arcs with turn angles < 7. Informally, Thm. [T] states that if two point-
direction pairs are separated by a plane at least 2r from each, and neither direc-
tion is “backwards” with respect to the plane normal, then they are connected by
a radius-r CSC Dubins path with turn angles < 7. This enables a plane sweep
technique for placing joints. We implement Alg. [I] in Python, building on our
repository from [II]. To show that the tubular abstraction corresponds to phys-
ically realizable shapes, our supplementary materialsE| give a preliminary sketch
of a modular generation procedure for 3D printing, and show a printed example
of a 3-fingered hand.

Sec. [2| defines terms, states the design problem for tubular kinematic trees
from kinematic specifications and motivates our choice of input and output struc-
tures. Sec. [3|states our tree design algorithm (Alg.[1]) and its runtime complexity.
Sec. [] discusses our implementation of the algorithm in Python, with example
results. Sec. |p| proves Thm. (1} and then Sec. |§| uses this to prove Thm. [2| (cor-
rectness of Alg. . Sec. [7| concludes with directions for future work.

!Supplementary materials can be found in the links for this paper’s entry under
“Related Publications” at https://sung.seas.upenn.edu/research/kinegami/|

https://sung.seas.upenn.edu/research/kinegami/

4 D. Feshbach et al.
2 Definitions and Problem Statement

2.1 General Kinematic Definitions

To define joints, links, and kinematic trees in general, we follow standards in the
robotics literature [30]. A joint is a connection between two structures constrain-
ing their relative motion. The relative position of the structures is described by a
state variable. A particular state value identified as neutral is typically encoded
as zero. A revolute joint allows rotation about a line called the axis of motion
(often encoded using Denavit-Hartenberg parameters): the state is a relative an-
gle about the axis. A prismatic joint allows translation along an axis of motion:
the state is a relative distance along it.

A link is a structure connecting joints. A link is rigid if its shape can vary
only by rigid transformations. A kinematic tree is a tree-structured assemblage of
links connected by joints. A configuration of a kinematic mechanism is a vector
of state variables for each joint. A configuration is wvalid if the corresponding
geometry has no self-intersection (except where rigidly attached joints and links
connect).

2.2 Problem Input and Output

When developing algorithms for mechanism design, choosing appropriate ab-
stractions for inputs and outputs involves balancing expressiveness, fabricability,
and computational efficiency concerns.

The key input to our algorithm is a tree of axes of motion on which to
place joints. We use these because they can exactly express degrees of freedom
appropriate for a mechanism’s goals while leaving enough design freedom to
allow provable guarantees (because there is infinite space on an axis along which
to place a joint).

As output, our design approach gives kinematic trees as a series of branching
and bending cylinders. This choice, and our overall design strategy, is based on
understanding linkage design as a path planning problem. Since any link takes
some amount of space it has some constraint on its bending radius, so it can be
understood as containing a Dubins path related to its shape:

Definition 1 ([27]). A (radius-r) Dubins path is a continuously differentiable
curve in R™ with minimum turning radius r, i.e., with mazimum curvature 1/r.
A C component of a Dubins path is an arc of radius r. An S component is
a line segment. A component may be degenerate (length 0). A CSC path is a
Dubins path composed of a C component, then an S component, then another C
component.

Then a Dubins path can be understood as characterizing a class of link shapes
contained within the extrusion of a circle along the path:

Definition 2. A tubular link is a rigid link bounded by the extrusion of a radius-
r circle along a radius-r Dubins path, called the centerline path of the link.

Kinematic Trees With CSC Links 5

A

v v
(a) Revolute joint with (b) Prismatic joint with (c) Revolute joint with
attachment type z attachment type z attachment type z

Fig. 1. Notation for tubular joints (Def. . The proximal base is in gray. The distal
base is in white, and is depicted in both the neutral state and a different state.

The tubular abstraction can express a wide variety of morphologies, but is
geometrically simple enough to be computationally practical and to be useful for
collision avoidance guarantees. It is also physically realizable, e.g. by 3D printing,
as we demonstrate in supplementary materials Sec. [A]

A tubular link connects to joints along its circular ends, so the corresponding
notion of a tubular joint is contained in cylinders swept forward from the circles
(notation is illustrated in Fig. [1]):

Definition 3. For a given radius r, a tubular joint 7; is a joint which, in the
neutral configuration, has its physical structure bounded by a radius-r cylinder.
It connects to incoming links at the proximal end of the cylinder and to outgoing
links at the distal end. The cylinder’s central axis direction a; is the attachment
direction to the links: the end tangent of the incoming link’s centerline path and
(in the neutral configuration) the start tangent of the outgoing path.

A tubular joint’s pose has position o at the cylinder center and orientation
(f{i Vi il) where % = line(o;,2;) is the axis of motion and &; € {X;,2;}. The
a; € {x;,z;} condition means that links can connect either along the azxis of
motion (as in most prismatic joints or in-axis revolute joints) or orthogonally
to it (as in elbow-like revolute joints).

Attachment directions are classified into binary attachment type a; € {z, z}
(the point of this distinction is that attachment direction is a vector requiring
the joint’s orientation to be defined, while attachment type can be used as part

of the joint specification prior to finding its specific orientation).
pProT

The cylinder’s base centers are called the proximal position 0; "~ = 0; — 5a;
and distal position 0! = o; + %éi respectively, where l; is the joint length.

A waypoint is an empty (i.e., length l; = 0), stateless tubular joint with
attachment direction &; = z; (useful for adding specifications on link paths).

We can now define tubular designs and the input specifications for their
kinematics:

6 D. Feshbach et al.

Definition 4. A tubular kinematic tree design T is a tree whose nodes are
tubular joints at specific poses and whose edges are annotated by tubular links
connecting these joints.

A design has fully specified geometry (joint poses and link paths). Our design
problem is to find such poses and paths from the kinematic specification:

Definition 5. A tubular joint kinematic specification is a tuple IC; = (<z_l>, li,a;)
consisting of the axis of motion <z_l->, length l;, and attachment type a; for a tubular
joint. A tubular tree kinematic specification Z is a tree whose nodes are joint
kinematic specifications K; and whose edges represent connectivity by a link.

Problem 1 (Tubular Kinematic Tree Design). Given a joint radius r and a
tubular tree kinematic specification L, find a radius-r tubular kinematic tree de-
sign T implementing the specification with the neutral configuration valid.

Thm. 2] proves that Alg. [I] solves Prob. [[in all cases.

3 Tubular Tree Construction Algorithm

Our algorithm (Alg. [1) takes in a tubular radius r and a kinematic tree spec-
ification Z (Def. [f]), and outputs a tubular kinematic tree design 7~ (Def.
instantiating the specification. The central challenge is to arrange joints along
their axes of motion with tubular links connecting them without intersection.

The algorithm builds off the work in [7] that designs tubular kinematic serial
chains. That algorithm proceeds along the chain and sequentially places joints
along their axes of motion, each one at least 4r outwards from a tangent plane
to the bounding sphere of the chain structure generated so far. The construction
suffices to avoid self-intersection in serial chains, but directly generalizing it to
trees can lead to intersections between branches. To avoid this, we propose to
place joints with positions strictly increasing in a consistent “forward” direction
and sweeping a plane forward in front of each new joint as we add it to the
structure. Joint placement order is based on a depth-first traversal of the input
specifications; branching paths proceed sideways outside the structure generated
so far and then forward to the other side of the plane.

Our algorithm begins by choosing a forward direction i not orthogonal to
any joint’s axis of motion. It places the root joint arbitrarily on its axis of motion
and initializes the bounding cylinder C about it facing n. Then it proceeds to
place joints one-by-one in depth-first order, putting each new joint J. along its

axis of motion such that its whole bounding sphere (radius be = 1/ (l./2)* + 72
about o.) is at least 4r in front of the end plane P of C, as in Fig. a). After
placing each new joint, it expands C to encompass the new joint and links while
preserving its direction as n, as in Fig. (b) Specifically, C is expanded sideways
and forward/backward as needed separately to encompass the bounding sphere
of a given joint and of the C components of each link: detailed procedures are

in supplementary materials (Alg. and Alg. [B.2)).

Kinematic Trees With CSC Links 7

When adding a new child of a parent that already has children, the algorithm
inserts intermediate waypoints to route the path sideways outside of C and then
forward to P before placing the new joint at least 4r in front of P (Fig. c))
Specifically, it places the first waypoint 47 in front of the bounding sphere of

Algorithm 3.1: ConstructKinematicTree(r, Z)

Input: Tubular radius r, tubular tree kinematic specification Z (each node is
a joint’s axis of motion %7, attachment type a; € {z, 2z}, and length [;)
Output: Tubular kinematic tree design 7~ implementing the specifications
with no self-intersection in the neutral configuration
1 N < any direction not orthogonal to any % as a heuristic, we choose
arg max, . g2 Ming, ez |A - unitDirection(%7) |
2 0p < any point along b=t
3 T < initialize tree to root Jp with pose (ForwardOrientation(%, n),00),
specified attachment type ao, and specified length [y

4 C < bounding cylinder in direction n of ball <oo, bo = (%0)2 + 7“2)

5 Po < current end plane of C
6 for index ¢ > 0 in depth-first traversal of Z do

7 p < index of parent(c)
8 if J, already has children in T then
9 0y, ¢ point closest to o, in P, + 4rn subject to being r out from C
10 Jw, < waypoint at 0., with z,,, = i (other axes chosen arbitrarily)
11 L., + radius-r extrusion of CSC path from (03", a,) to (0w, , 1)
12 Add Ju, to T as a child of J, linked by L.,
13 C < ExpandCylinderTolncludeLink (C, £.,,) //Alg.
14 Pw, < current end plane of C
15 Oy, ray(0yw,, 1) NPy,
16 L, < radius-r cylinder in direction n from 0y, t0 0w,
17 Jwy < waypoint at 0y, with Z,, = i (other axes chosen arbitrarily)
18 Add Ju, to T as a child of J,, linked by L.,
19 C < ExpandCylinderTolncludeLink (C, L.,) //Alg.
20 Puw, < current end plane of C
21 p < w2
22 end
23 | b.+ /()" +r> //Joint bounding radius
24 0. < any o. € <z—c> with signedDistance(Pp, 0.) > 4r + b.: as a heuristic,
we minimize ||oc — op]
25 Je + joint with pose (15‘01rvva1rd01rientation(<z_c>7), 0.), type ac, length I
26 a. + X, if ac = x, z. otherwise
27 L. + radius-r extrusion of CSC path from (03", 4,) to (02", a.)
28 Add J. to T as a child of J, linked by L.
29 C + ExpandCylinderTolncludeBall (C, o.,b.) //Alg.
30 C < ExpandCylinderToIncludeLink (C, £.) //Alg.
31 P. + end plane of C

32 end

8 D. Feshbach et al.

Fig.2. (a) If J. is the first child of J,, the algorithm places it along its axis of
motion %o as close as possible to J, such that its entire bounding sphere is beyond
P, = Pp + 4rir. (b) After placing J. along its axis, it is joint to [, with a tubular
link tracing a CSC dubins path, and the bounding cylinder C expands to include the
new link and the bounding ball of J.. (¢) If Jc is not the first child of J,, it adds
intermediate waypoints routing the path outside of and then around C.

the parent joint J,, and r out from C.Then it places the second waypoint on P
directly in front of the first. Both waypoints are oriented with a; = z; = n, i.e.,
they face directly forward.

Then to place J., the algorithm finds its bounding radius b, = (%)2 +7r2
and selects joint position o, € % such that its whole bounding sphere ball(o,, b..)
is at least 4r in front of P. Specifically (though arbitrarily), subject to those con-
straints the algorithm places o, as close as possible to the immediate predecessor
(its parent in Z if this is that parent’s first child to be added, the second way-
point if not). The algorithm orients 7. to ensure that a. is not facing backwards:
it sets z. to the forward direction of <z_c> and X, to the direction about <z_c> max-
imizing %, - n. This operation, called ForwardOrientation(Z),ﬁ), is written in
algorithm form in supplementary materials Alg.

For each input joint the algorithm insterts the joint itself and at most three
links and two waypoints, making the design complexity linear. It can be im-
plemented with linear runtime provided the heuristics on lines [I] and [24] are
replaced with procedures seeking any solution satisfying the constraints rather
than a heuristically “optimal” one.

4 Implementation and Results

We implement Alg. [1] in Python, building on our code base from [II] for se-
rial chains, and test it on several example input{’} Results are shown in Fig.
(a-c). Examples include (a) a serial chain with no branching, (b) a binary tree
with multiple layers and some intersecting and coincident joint axes (a “hard

2Parts of the code were written in the presence of GitHub Copilot auto-complete.

Kinematic Trees With CSC Links 9

(a) Serial chain generated by algorithm (b) Algorithm output involving

multiple layers of branching

(¢) Algorithm output given the axes of motion (d) Manually arranged joints for
from the 3D printed hand example 3D printed hand example

Fig. 3. Example tubular kinematic tree designs with the links in medium gray, joints
in dark blue, and axes of motion as dashed lines. (a) also has the bounding cylinder
and its end plane illustrated for the placement of its last joint. (a-c) are outputs of our
algorithm, while (d) has joints manually placed along the same specified axes as (c).

case” for self-intersection avoidance), and (c) a tree with three branches from
the same source and several joints in each of these branches. All inputs resulted
in valid designs implementing the given kinematics without self-intersection in
the neutral configuration. These examples are large (long limbed, with joints
spaced far apart) due to the algorithm’s conservative spacing of joints to guar-
antee self-intersection avoidance. For example, Fig. d) shows joints manually
placed along the same specification as Fig. c). This is the example fabricated
in supplementary materials Sec. [A]

5 Existence of CSC Paths with Turn Angle < 7

Alg. [[] works based on the premise that it is possible to grow an kinematic tree
by sweeping a plane in its normal direction n and placing new joints in front
of it. Specifically, it ensures that each new joint is at least 4r in front of the
previous and has attachment direction &; not facing backwards (i.e., &; -n > 0).

10 D. Feshbach et al.

To show that this makes them connectable by links without local self-collision,
we will require Thm. [I]

To prove Thm. [T} we will break down a CSC path into CS and SC components
where the S segments must connect and align along a plane P between them.
Since SC paths are just CS paths in reverse, we begin by proving properties of
CS paths ending in P, first in 2D and then in 3D. Fig. [illustrates notation.

Lemma 1 (2D CS Paths). In a plane Q, let O C Q be an oriented circle with
radius r parameterized by angle 0, and let O = Q — interior(O) be the portion
of Q on and outside of O. Define the proper tangent q' of a point q € O
as q = %%(q), the unit tangent agreeing with the circle orientation. Define
g : O — O as the function such that the proper tangent from g(p) points to p,

i.e., such that p € ray(g(p),g(p)’)-

1. The function g is well defined (i.e., for every point p € O, there exists a
unique point g(p) on O whose proper tangent points to p) and smooth.

2. Let £ C O be a line intersecting O at most at a single point, and g, be the
restriction of g to L. If £ does not intersect O, then gy is injective.

Proof. 1. Without loss of generality, say O is centered at the origin. Consider
an arbitrary point q € O in polar coordinates q = (r,8q4). For any ¢ > 0, let

fiqQ) =q+tq' €0 (1)

be the result of travelling a distance ¢ from q along q'. We can write this
map in polar coordinates as f; : O — IR, x S! given by

fi(q) = (V1?2 + 12, arctan(t/r) + 04) (2)

which is clearly injective (since r and ¢ are fixed, it is just a constant scaling
and rotation outwards). Its image is the circle about the origin of radius
V2 + 12, so we can define an inverse f; ' (p) from that larger circle to O.
Now, given any point p € O expressed in polar coordinates p = (||p|/, 0p), let
t = /||Ip||2 — 72.This gives f; ! (p) € O constructed to have proper tangent
point to p. This point is unique by injectivity of f; and since t = 1/||p||? — 72
is the only choice for t > 0 making ||p|| = V72 + 2.

This lets us define g by g(p) = f{l(p). In polar coordinates, this is

Moll2 — 12
gp)=f"'(p) = <r, 0p — arctan :) = <7‘, 0p — arctan W) (3)

which is smooth with respect to both 6, and ||p|| (since ||p|| > r).

2. Let £ C O — O be a line not intersecting O, and suppose p1,p2 € £ have
g(p1) = g(p2) which we will call q. Then the proper tangent of q points to
both p; and ps, i.e., p1,p2 € ray(q,q’) C £Nray(q,q’). Since £ does not
intersect O, it cannot be colinear with this ray, so it can only intersect it at
a single point. Therefore p; = ps. U

Kinematic Trees With CSC Links 11

(a) Lemma 1 notation (b) Lemma 2 notation

Fig. 4. Notation for (a) Lem.[I]and (b) Lem.

Next we will consider how CS paths behave in 3D. The radius-r arcs from
a point-direction pair (o, &) form a horn torus H parameterizable by arc turn
angle @ and azumith angle ¢ about line(o,d). For example, in a frame where
o=0andd= (0,0,1), the horn torus is

(1 + cosB) cos p
H(O,0) =1 (14 cosB)siny | . (4)
sin ¢

The following lemma gives smooth maps from P to points and tangents on H
corresponding to CS paths to P (see Fig. 4| for notation illustration).

Lemma 2 (3D CS Paths). Let (o,d) be a 8D Dubins pose and P be a plane.
Suppose o is at least 2r from P. Let H : St x St — R? be the horn torus of
radius-r arcs from (o,d), parameterized as H(0,) by turn angle 0 and azumith
. Then:

1. There exists a function h : P — H taking a given p € P and outputting a
point q = h(p) = H(0q, pq) on the torus such that:
(a) q is the arc endpoint of a CS path from (o,d) to p, i.e.,

oH
P=q+ t% (Oq, ©q) (5)

for some real t > 0, and
(b) q and p have the same azumith pq = @p.
2. Let n be the normal vector to P pointing towards the opposite side to o. If
fi-d >0, then the C arc in such a path has turn angle 04 € [0, 7).
If H does not intersect P, then h is injective.
Ifn-d>0, Athen h is smoqth.
Suppose i -d > 0, and let £ : P — S? be given by
5 10H
£(p) = - (h(p)) (6)

G Co

the S unit direction of the CS path implicitly defined by h. Then f is smooth.

12 D. Feshbach et al.

Proof. Note that since o is at least 2r from P, the only way H and P could
intersect is if o is exactly 2r from P and P is parallel to d. In this case, H and
P intersect at a single point with turn angle 6 = .

Given p € P, let pp be its azumith angle about (o, d) (if p is along line(o, d),
the azumith is not well defined but choosing any angle for it works for the
following). Let @ C IR® be the plane defined by azumith ¢p, and let O =
H(S', o) be the circle on H with azumith ¢}, (there are two torus circles on @,
one in direction ¢p and the other in direction m + ¢p: O is the former). Note
that £ = QNP is a line (the planes must intersect because they both contain p,
but cannot coincide completely because @) contains o ¢ P).

1. Applying Lem. in plane @ to line ¢, there exists a point gy(p) whose proper
tangent g(p)’ points to p. Then the arc along O to g(p), followed by the
segment in direction gy(p)’ to p, is a CS path from (o, &) to (p,ge(p)’). So
we can define h(p) = g/(p). O

2. Consider a point q = H(q, pq) With turn angle 64 € (7, 27), and suppose
that its proper tangent points towards P, i.e., ray(q,q’) intersects P. Let p
be the point of intersection: it must be a single point (rather than the whole
ray) because 04 # 7 so p ¢ P which means ray(q,q’) ¢ P.

Having turn angle 64 € (7, 27) means ray(q, q') points “backwards” to inter-
sect the Dubins axis line(o,d) behind 0. We will see below that if fi - d > 0
then q and p have opposite azumiths (i.e., in the ¢ = ¢4 plane they are
separated by the Dubins axis). Since h is defined to preserve azumith, this
means q # h(p). But p is the only point in P that the proper tangent from
q points to, so q € Im(h). Since no point with turn angle in (7, 27) is in
Im(h), all of the CS paths implicitly defined by h have turn angle in [0, 7].
Suppose f - d = 0, i.e., P is parallel to the Dubins axis. Since ray(q,q’)
points backwards towards the Dubins axis and intersects P, and P is at
least 2r from o and never intersects the Dubins axis, ray(q,q’) must cross
the Dubins axis before reaching P, so the azumith of p is ¢q + 7, not ¢q.

Alternatively, suppose 1 - d > 0. Since o is behind P relative to the A
direction by at least 2r, having n - d > 0 means P intersects the Dubins axis
in front of o: call this intersection point ps. Since ray(q,q’) intersects the
Dubins axis behind o, for p to occur between q and the Dubins axis means
that it is strictly behind H relative to d, so the line ¢ from p to p2 would
pass through #. But p, p2 are both on P so £ C P, so this would mean P
intersects H, which we noted above can only happen when P is parallel to
d (which contradicts - d > 0). O

3. Suppose H does not intersect P, and let pi,p2 be distinct points in P.
Since the Dubins axis intersects P at most once, at least one of them is
not at this intersection and thus has well-defined azumith. If their azumiths
differ, then h(p;) and h(ps) will have distinct azumiths (since h preserves
azumith) so h(p1) # h(pz). Otherwise they have the same azumith, so we
can apply Lem. [1| in their shared azumith plane @ with £ = P N Q and get
h(p1) = ge(p1) # ge(p2) = h(p2) because gy is injective (since £ C P does
not intersect H). O

Kinematic Trees With CSC Links 13

4. Suppose n-d > 0. Let 7 C H be the points on H whose proper tangents
point towards P.First we will deal with the case where H does not intersect
P, and therefore restricting the codomain of h to 7 makes h bijective. In this
case it has inverse h=! : 7 — P, and parameterizing 7 by turn angle § and
azumith ¢ gives a bijective parameterization of P as h=1(6,). Now to show
fis smooth, it suffices to show smoothness with respect to each parameter.
First, we will see that h is smooth with respect to the azumith ¢. Note that
fixing 0 along H defines a cone about the Dubins axis. The intersection of
this cone with P is a smooth curve (a half-hyperbola if i - d= 0, an ellipse
ifa-d> 0), so travelling along this curve in P represents rotating ¢ for
fixed 6. Since rotating ¢ for fixed defines a circle (which is a smooth curve)
along H, h is smooth with respect to ¢.

Second, we will consider varying 6 within a plane @ with fixed ¢ = ¢p.
Within @, there are two torus circles: O = H(S?, pp) is the one facing
towards p, but there is also *7O = H(S!, ¢, + 7) on the other side of 0. By
Lem. [1} we know gy is smooth, and taking the tangent with respect to 6 is
smooth, so h is smooth along the subset of £ = @ NP with azumith ¢ (as
opposed to o +m). If ni-d = 0, this subset is all of £ so we have smoothness of
f with respect to 5. Otherwise, we have to deal with where £ crosses over the
Dubins axis. Let s = ray(o, a) N ¢, and note that this is generated by 6 = 0.
At s the azumith is undefined, and on each side of it on ¢ the azumiths are
@ and @ + 7 respectively. Since the respective circles meet at o which has
0 = 0, the map gy from either circle agrees there, witnessing the continuity
of h at s. Furthermore, along each circle we have %g(f (0,¢) = rd, SO % =rd
is well-defined. Similarly, the symmetry between the circles (along with a
direction flip of 8 to account for the fact that travelling along ¢ decreases
6 along one circle but then increases it along the other) gives agreement
between sides of the subsequent derivatives with respect to 6.

Finally we return to the case where H intersects P. This can only happen if
f-d=0and they intersect at a single point pg. Letting ¢y = ray(po, pPp),
note that change in azumith is orthogonal to £y, and thus sweeping azumith
defines P by a line sweep. Therefore we can bijectively parameterize P by
azumith ¢ and distance s along the azumith-constant line. The same analysis
as above shows how h is smooth with respect to ¢. For smoothness with
respect to s, the only place where this differs from the above analysis for
6 is that ray(po,py) € P differs in s but has the same turn angle 7. This
exception does not break smoothness of h because pg is on the boundary of
7 (since increasing 6 past po makes the proper tangent not point to P). [

. We have shown h is smooth. The partial derivative %—7; is also smooth, as is

multiplying by % So f is the composition of smooth maps, and therefore it
is smooth. O

Now we can use the smoothness of the f maps to find a point on a plane

where the CS and SC paths on each side connect and align, proving Thm. [T}

14 D. Feshbach et al.

Fig. 5. Notation for the proof of Thm. [l} (a) in 3D and (b) in plane P.

Theorem 1 (3D CSC Paths With Bounded Turns). Let P be a plane
with normal n. Let 01,05 € R? be positions and 31 32 € S? be 3D unit vectors
indicating direction. Suppose 0 is at least 2r behind P, oz is at least 2r in front
of plane, oy at least 2r in front of P, n - d, >0, and i - d2 > 0. Then there
exists a CSC path whose turn angles are < m from 01 facing d, to o facing d,.

Proof. A valid CSC path is a CS path from (o1, dl) to (p,t) where p € P, then
an SC path from (p,t) to (o, dg). Let H1,Hs be the horn tori of radius-r arcs
from (01,&1) and (og, —&2) respectively. Since o7 is at least 2r behind P and
f-d; > 0, Lem. says there exists a smooth map fi:P— 52 giving the S
direction of a CS path from (oy, 611) to a given p € P. Considering the SC part
of the path in reverse and P oriented with —n, Lem. [2] similarly gives a smooth
map fg P — S? giving the S direction of a CS path from (02, —dg) to a given
p € P. We are looking for a point p € P inducing CS and SC paths that align,
i.e., a zero of the map s = f'l + fg. Note s is smooth because fl and f'g are.

Let f7,f],s” be the projections of f1, f'g, s onto P (smooth vector fields on
P). Let HT , H} be the projections of the tori onto P. Let B be any bounding ball
including both H; and Hs strictly in the interior, and let B” be its projection (a
disc) onto P. Now consider any point p € B” C P. Since f{’(p) is the direction
from a point on HJ (in the strict interior of BP) to p which is on the boundary,
fF (p) is transverse (non-tangent) to the circle and pointed outwards. The same
is true for f7 (p), and thus for s”. So s” is a vector field pointing transversely
outwards along the boundary of B”, so the Poincaré-Hopf Theorem [4] says it
must have a zero at some point po € B”. Since f;(py) and f5(po) are both unit
vectors and they point on opposite sides of P, f] (po) + f3 (po) = 0 implies that
fl(po) + f2(po) = s(po) = 0 as desired. This forms a CSC path from (0y,d;) to
(02,d2) with S direction fl(po) = —fg(po) intersecting P at pg. O

Kinematic Trees With CSC Links 15

6 Proof of Tubular Tree Construction Algorithm

Theorem [I] justifies how we space out the joints to ensure the existence of valid
link paths, so we are now ready to prove the correctness of Alg. [I]

Theorem 2 (Tubular Kinematic Tree Construction). Given a tubular
radius r and a tubular tree kinematic specification I, Alg. [1| outputs a tubu-
lar kinematic tree design T composed of radius-r tubes implementing the input
specifications with no self-intersection in the neutral configuration.

Proof. Our algorithm places joints with &7 = ¢ (0i,%i), and links joints based on
the input tree structure, ensuring the result satisfies the kinematic specification.
So showing correctness means verifying that (1) the construction succeeds (i.e.,
that all geometric operations are valid) and (2) that the resulting tree has no
self-intersection in the neutral configuration.

1. Most of our operations are direct constructions, but three require justifica-
tion that solutions exist: (a) the choice of a (line[I]), (b) the optimization
placing o. (line24)), and (c) the existence of CSC paths for links (lines

(a,b) The choices of i and o, are closely related: o, is constrained to be on %
and at least 4r 4 b, in front of P,. So a solution is guaranteed to exist if
<z_c> crosses Pp + (4r +bo)n, ie., if <z_c> is not orthogonal to n. Since there
are finitely many joint axes, there must exist a direction not orthogonal
to any of them (we prove this in supplementary materials Sec. , ie.,
where 1n-Z; > 0 for all axes. Choosing i to maximize the minimum |f1-Z;]|
achieves this.

(¢) To avoid local self-intersection, we need paths with turn angles < 7.
Since waypoint 2 is placed directly in front of waypoint 1, an S path
connects them. All other link cases are constructed such that the child’s
proximal position is > 4r farther (in n) than the parent’s distal position.
The algorithm orients each joint with &, - n > 0, so Thm. [I| (Sec. [5)
guarantees that there exists a CSC path from the parent to the child
with turn angles < 7.

2. To show there is no self-intersection, we first need to see that the bounding
cylinder correctly includes everything generated so far. It is expanded to
encompass the bounding balls of each new joint and of each link C arc: the
nontrivial part is to show that this also includes the link S components. Since
an S component in a CSC link is the convex combination of its end discs and
the end discs are contained in the C components’ respective bounding balls,
any convex set (including our cylinder) including the C bounding balls also
includes the S components.

Now we show by induction that there is no self-intersection except between

links from the same parent (which are allowed to intersect because they are

inherently rigidly attached). In the base case, the structure consists only of
the root joint so there is nothing else for it to intersect with. The inductive
step is to add a new joint J. as a child of [J,. Suppose as an inductive
hypothesis that the currently-generated structure has no self-intersection

16 D. Feshbach et al.

except between links from the same parent. Since the new link(s) and joint
we add for 7, are sequentially connected and move strictly forward, the new
structure does not intersect with itself. It remains to show that this does not
intersect anything previously generated except the allowed link intersection
at the distal end of 7.

Since links have C arc angles < 7 and joints cannot face backwards (i.e.,
4; -0 > 0), an outgoing link does not intersect with its parent joint 7, or
the incoming link to Jj,. Since the tree is generated depth-first and joints are
placed with bounding spheres are strictly increasing along n, we know that
anything that currently exists past P, is a descendent of J,. Furthermore,
since every child of p has bounding sphere beyond P), = P, + 4rn, anything
that already exists between P, and P, is part of another link directly from
Jp (which is permissible for the new link to intersect). Then the new link
exits C either in front (if this is the first child of Jp, in which case there is
nothing in front to intersect with) or out the side in between P, and P,
Then since the subsequent waypoints, links, and new joint are outside of C,
they cannot intersect anything previously generated. O

7 Conclusion

We prove that any kinematic specification with a tree morphology can be im-
plemented as a tubular structure of a given radius, justifying the validity and
generality of abstracting kinematic tree designs by their tubular skeleton. The
existence guarantee is based on a design algorithm which has essentially linear
runtime and gives linear-complexity designs, making it suitable as a step within
a system with more computationally intensive goals helping non-experts design
robots and helping experts explore high-degree-of-freedom morphologies.

As future work, we plan to incorporate additional constraints and objectives
in a design pipeline giving more practical results. On the input end, this may
leverage existing kinematic synthesis techniques [21I26] to turn task specifica-
tions into axes of motion which our algorithm then turns into a concrete design.
On the design end, this may include post-generation optimization to minimize
length, maximize compactness, or satisfy a space constraint. We are also inter-
ested in accounting for reachability and maneuverability properties (i.e., ensur-
ing self-collision avoidance in certain non-neutral configurations) and mechanical
analysis of actuators and forces. Finally, we plan to incorporate our algorithms
into an interactive graphical tool for human-in-the-loop design which outputs
fabricable files for origami or 3D printing.

Acknowledgments. Support for this project has been provided in part by NSF Grant
No. 2322898 and in part by the Army Research Office under the SLICE Multidisci-
plinary University Research Initiatives Program award under Grant W911NF1810327.
The authors also thank Gabriel Unger for fabrication advice, and thank a reviewer for
a much shorter and simpler proof of Lem. [3| (in supplementary materials).

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

Kinematic Trees With CSC Links 17

References

1.

10.

11.

12.

13.

14.

15.

de Almeida, T.C., Marri, S., Kress-Gazit, H.: Automated synthesis of modular
manipulators’ structure and control for continuous tasks around obstacles. In:
Robotics: Science and Systems (RSS) (2020). https://doi.org/10.15607 /RSS.2020.
XVI.030

Bécher, M., Coros, S., Thomaszewski, B.: Linkedit: Interactive linkage editing using
symbolic kinematics. ACM Transactions on Graphics 34(4), 1-8 (2015). https:
//doi.org/10.1145 /2766985

Baez, V.M., Navkar, N., Becker, A.T.: An analytic solution to the 3D CSC Du-
bins path problem. In: IEEE International Conference on Robotics and Automa-
tion (ICRA). pp. 7157-7163 (2024). |https://doi.org/10.1109/ICRA57147.2024.
10611360

Brasselet, J.P., Seade, J., Suwa, T.: Vector fields on Singular Varieties, Lecture
Notes in Mathematics, vol. 1987. Springer Berlin, Heidelberg (2009). https://doi.
org/10.1007/978-3-642-05205-7

Cai, W., Zhang, M., Zheng, Y.R.: Task assignment and path planning for multiple
autonomous underwater vehicles using 3D Dubins curves. Sensors 17(7) (2017).
https://doi.org/10.3390,/s17071607

Censi, A.: A class of co-design problems with cyclic constraints and their solution.
IEEE Robotics and Automation Letters 2(1), 96-103 (2016). https://doi.org/10.
1109/LRA.2016.2535127

Chen, W.H., Yang, W., Peach, L., Koditschek, D.E., Sung, C.R.: Kinegami: Algo-
rithmic design of compliant kinematic chains from tubular origami. IEEE Trans-
actions on Robotics 39(2), 1260-1280 (2023). https://doi.org/10.1109/TRO.2022.
3206711

Chitsaz, H., LaValle, S.M.: Time-optimal paths for a Dubins airplane. In: IEEE
Conference on Decision and Control (CDC). pp. 2379-2384 (2007). https://doi.
org/10.1109/CDC.2007.4434966

Cui, P., Yan, W., Wang, Y., et al.: Reactive path planning approach for dock-
ing robots in unknown environment. Journal of Advanced Transportation (2017).
https://doi.org/10.1155/2017 /6716820

Dubins, L.E.: On curves of minimal length with a constraint on average curvature,
and with prescribed initial and terminal positions and tangents. American Journal
of Mathematics 79(3), 497-516 (1957). https://doi.org/10.2307/2372560
Feshbach, D., Chen, W.H., Koditschek, D.E., Sung, C.: Kinegami: Open-source
software for creating kinematic chains from tubular origami. In: 8th International
Meeting on Origami in Science, Mathematics, and Education (80SME) (2024),
https://github.com/SungRoboticsGroup/KinegamiPython

Geilinger, M., Poranne, R., Desai, R., Thomaszewski, B., Coros, S.: Skaterbots:
optimization-based design and motion synthesis for robotic creatures with legs
and wheels. ACM Transactions on Graphics 37(4), 1-12 (2018). https://doi.org/
10.1145/3197517.3201368

Gupta, S., Singla, E.: Evolutionary robotics in two decades: a review. Sadhana 40,
1169-1184 (2015). https://doi.org,/10.1007/s12046-015-0357-7

Ha, S., Coros, S., Alspach, A., Bern, J.M., Kim, J., Yamane, K.: Computational
design of robotic devices from high-level motion specifications. IEEE Transactions
on Robotics 34(5), 1240-1251 (2018). [https: //doi.org/10.1109/TRO.2018.2830419
Ha, S., Coros, S., Alspach, A., Kim, J., Yamane, K.: Joint optimization of robot
design and motion parameters using the implicit function theorem. In: Robotics:
Science and Systems (RSS) (2017). |https://doi.org/10.15607 /rss.2017.xiii.003

https://doi.org/10.15607/RSS.2020.XVI.030
https://doi.org/10.15607/RSS.2020.XVI.030
https://doi.org/10.15607/RSS.2020.XVI.030
https://doi.org/10.15607/RSS.2020.XVI.030
https://doi.org/10.1145/2766985
https://doi.org/10.1145/2766985
https://doi.org/10.1145/2766985
https://doi.org/10.1145/2766985
https://doi.org/10.1109/ICRA57147.2024.10611360
https://doi.org/10.1109/ICRA57147.2024.10611360
https://doi.org/10.1109/ICRA57147.2024.10611360
https://doi.org/10.1109/ICRA57147.2024.10611360
https://doi.org/10.1007/978-3-642-05205-7
https://doi.org/10.1007/978-3-642-05205-7
https://doi.org/10.1007/978-3-642-05205-7
https://doi.org/10.1007/978-3-642-05205-7
https://doi.org/10.3390/s17071607
https://doi.org/10.3390/s17071607
https://doi.org/10.1109/LRA.2016.2535127
https://doi.org/10.1109/LRA.2016.2535127
https://doi.org/10.1109/LRA.2016.2535127
https://doi.org/10.1109/LRA.2016.2535127
https://doi.org/10.1109/TRO.2022.3206711
https://doi.org/10.1109/TRO.2022.3206711
https://doi.org/10.1109/TRO.2022.3206711
https://doi.org/10.1109/TRO.2022.3206711
https://doi.org/10.1109/CDC.2007.4434966
https://doi.org/10.1109/CDC.2007.4434966
https://doi.org/10.1109/CDC.2007.4434966
https://doi.org/10.1109/CDC.2007.4434966
https://doi.org/10.1155/2017/6716820
https://doi.org/10.1155/2017/6716820
https://doi.org/10.2307/2372560
https://doi.org/10.2307/2372560
https://github.com/SungRoboticsGroup/KinegamiPython
https://doi.org/10.1145/3197517.3201368
https://doi.org/10.1145/3197517.3201368
https://doi.org/10.1145/3197517.3201368
https://doi.org/10.1145/3197517.3201368
https://doi.org/10.1007/s12046-015-0357-7
https://doi.org/10.1007/s12046-015-0357-7
https://doi.org/10.1109/TRO.2018.2830419
https://doi.org/10.1109/TRO.2018.2830419
https://doi.org/10.15607/rss.2017.xiii.003
https://doi.org/10.15607/rss.2017.xiii.003

18

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

D. Feshbach et al.

Hota, S., Ghose, D.: Optimal geometrical path in 3D with curvature constraint.
In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
(2010). |https://doi.org/10.1109/TROS.2010.5653663

Indig, N., Ben-Asher, J.Z., Sigal, E.: Near-optimal minimum-time guidance under
spatial angular constraint in atmospheric flight. Journal of Guidance, Control, and
Dynamics 39(7), 1563—-1577 (2016). https://doi.org/10.2514/1.G006218
Karapetyan, N., Moulton, J., Lewis, J.S., Quattrini Li, A., O’Kane, J.M., Rek-
leitis, I.: Multi-robot Dubins coverage with autonomous surface vehicles. In:
IEEE International Conference on Robotics and Automation (ICRA) (2018).
https://doi.org/10.1109/ICRA.2018.8460661

Lipson, H., Pollack, J.B.: Automatic design and manufacture of robotic lifeforms.
Nature 406(6799), 974-978 (2000). https://doi.org/10.1038,/35023115
Lugo-Cardenas, 1., Flores, G., Salazar, S., Lozano, R.: Dubins path generation for
a fixed wing UAV. In: International Conference on Unmanned Aircraft Systems
(ICUAS). pp. 339-346 (2014). https://doi.org/10.1109/ICUAS.2014.6842272
McCarthy, J.M., Soh, G.S.: Geometric design of linkages, Interdisciplinary Applied
Mathematics, vol. 11. Springer New York, NY (2010). jhttps://doi.org/10.1007/
978-1-4419-7892-9

Mehta, A., DelPreto, J., Rus, D.: Integrated codesign of printable robots. Journal of
Mechanisms and Robotics 7(2), 021015 (2015). https://doi.org/10.1115/1.4029496
Owen, M., Beard, R.W., McLain, T.W.: Implementing Dubins airplane paths
on fixed-wing UAVs. In: Valavanis, K.P., Vachtsevanos, G.J. (eds.) Handbook
of Unmanned Aerial Vehicles, pp. 1677-1701. Springer, Dordrecht (2015). https:
//doi.org/10.1007/978-90-481-9707-1 120

Schulz, A., Sung, C., Spielberg, A., Zhao, W., Cheng, R., Grinspun, E., Rus, D.,
Matusik, W.: Interactive Robogami: An end-to-end system for design of robots
with ground locomotion. The International Journal of Robotics Research 36(10),
1131-1147 (2017). https://doi.org,/10.1177/0278364917723465

Shkel, A.M., Lumelsky, V.: Classification of the Dubins set. Robotics and Au-
tonomous Systems 34(4), 179-202 (2001). https://doi.org/10.1016 /S0921-8890(00)
00127-5

Simo-Serra, E., Perez-Gracia, A.: Kinematic synthesis using tree topologies.
Mechanism and Machine Theory 72, 94-113 (2014). |https://doi.org/10.1016/].
mechmachtheory.2013.10.004

Sussmann, H.: Shortest 3-dimensional paths with a prescribed curvature bound.
In: IEEE Conference on Decision and Control (CDC) (1995). jhttps://doi.org/10.
1109/CDC.1995.478997

Tosun, T., Jing, G., Kress-Gazit, H., Yim, M.: Computer-aided compositional de-
sign and verification for modular robots. In: Robotics Research: Volume 1, pp.
237-252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-51532-8 15
Vana, P., Alves Neto, A., Faigl, J., Macharet, D.G.: Minimal 3D Dubins path
with bounded curvature and pitch angle. In: IEEE International Conference on
Robotics and Automation (ICRA). pp. 8497-8503 (2020). https://doi.org/10.1109/
TICR.A40945.2020.9197084

Waldron, K.J., Schmiedeler, J.: Kinematics. In: Siciliano, B., Khatib, O. (eds.)
Springer Handbook of Robotics, pp. 11-36. Springer (2016). https://doi.org/10.
1007/978-3-540-30301-5 2

Wang, W., Li, P.: Towards finding the shortest-paths for 3D rigid bodies. In:
Robotics: Science and Systems (RSS) (2021). |https://doi.org/10.15607 /rss.2021.
xvii.(085

https://doi.org/10.1109/IROS.2010.5653663
https://doi.org/10.1109/IROS.2010.5653663
https://doi.org/10.2514/1.G006218
https://doi.org/10.2514/1.G006218
https://doi.org/10.1109/ICRA.2018.8460661
https://doi.org/10.1109/ICRA.2018.8460661
https://doi.org/10.1038/35023115
https://doi.org/10.1038/35023115
https://doi.org/10.1109/ICUAS.2014.6842272
https://doi.org/10.1109/ICUAS.2014.6842272
https://doi.org/10.1007/978-1-4419-7892-9
https://doi.org/10.1007/978-1-4419-7892-9
https://doi.org/10.1007/978-1-4419-7892-9
https://doi.org/10.1007/978-1-4419-7892-9
https://doi.org/10.1115/1.4029496
https://doi.org/10.1115/1.4029496
https://doi.org/10.1007/978-90-481-9707-1_120
https://doi.org/10.1007/978-90-481-9707-1_120
https://doi.org/10.1007/978-90-481-9707-1_120
https://doi.org/10.1007/978-90-481-9707-1_120
https://doi.org/10.1177/0278364917723465
https://doi.org/10.1177/0278364917723465
https://doi.org/10.1016/S0921-8890(00)00127-5
https://doi.org/10.1016/S0921-8890(00)00127-5
https://doi.org/10.1016/S0921-8890(00)00127-5
https://doi.org/10.1016/S0921-8890(00)00127-5
https://doi.org/10.1016/j.mechmachtheory.2013.10.004
https://doi.org/10.1016/j.mechmachtheory.2013.10.004
https://doi.org/10.1016/j.mechmachtheory.2013.10.004
https://doi.org/10.1016/j.mechmachtheory.2013.10.004
https://doi.org/10.1109/CDC.1995.478997
https://doi.org/10.1109/CDC.1995.478997
https://doi.org/10.1109/CDC.1995.478997
https://doi.org/10.1109/CDC.1995.478997
https://doi.org/10.1007/978-3-319-51532-8_15
https://doi.org/10.1007/978-3-319-51532-8_15
https://doi.org/10.1109/ICRA40945.2020.9197084
https://doi.org/10.1109/ICRA40945.2020.9197084
https://doi.org/10.1109/ICRA40945.2020.9197084
https://doi.org/10.1109/ICRA40945.2020.9197084
https://doi.org/10.1007/978-3-540-30301-5_2
https://doi.org/10.1007/978-3-540-30301-5_2
https://doi.org/10.1007/978-3-540-30301-5_2
https://doi.org/10.1007/978-3-540-30301-5_2
https://doi.org/10.15607/rss.2021.xvii.085
https://doi.org/10.15607/rss.2021.xvii.085
https://doi.org/10.15607/rss.2021.xvii.085
https://doi.org/10.15607/rss.2021.xvii.085

32.

33.

34.

Kinematic Trees With CSC Links 19

Xu, L., Baryshnikov, Y., Sung, C.: Reparametrization of 3D CSC Dubins paths
enabling 2D search. In: International Workshop on the Algorithmic Foundations
of Robotics (WAFR) (2024)

Yim, N.H., Ryu, J., Kim, Y.Y.: Big data approach for synthesizing a spatial link-
age mechanism. In: IEEE International Conference on Robotics and Automation
(ICRA). pp. 7433-7439. IEEE (2023). |https://doi.org/10.1109/ICRA48891.2023.
10161300

Yong, C., Barth, E.J.: Real-time dynamic path planning for Dubins’ nonholonomic
robot. In: IEEE Conference on Decision and Control (CDC) (2006). https://doi.
org/10.1109/CDC.2006.377829

https://doi.org/10.1109/ICRA48891.2023.10161300
https://doi.org/10.1109/ICRA48891.2023.10161300
https://doi.org/10.1109/ICRA48891.2023.10161300
https://doi.org/10.1109/ICRA48891.2023.10161300
https://doi.org/10.1109/CDC.2006.377829
https://doi.org/10.1109/CDC.2006.377829
https://doi.org/10.1109/CDC.2006.377829
https://doi.org/10.1109/CDC.2006.377829

Supplementary Materials:
Algorithmic Design of Kinematic Trees Based on
CSC Dubins Planning for Link Shapes

Daniel Feshbach[()()(]()f(]o(]l7518577395] Wei-Hsi Chen 0000700017852371809],
Lll’lg Xu[0009 0002—5343— 7911] Emil Schaumburg[ooog 0002—0399— 551X]

Isabella Huang[OOOQ 0003—-0813— 3908] and Cynthla Sung[OOOO 0002—8967— 1841]

General Robotics, Automation, Sensing & Perception (GRASP) Lab
University of Pennsylvania, 3101 Walnut St, Philadelphia, PA 19104, USA
{feshbach,weicc,xub,scemil,ihuangg, crsung}@seas.upenn.edu
https://sung.seas.upenn.edu/, https://www.grasp.upenn.edu/

A Modular Fabrication of Tubular Kinematic Trees via
3D Printing

To show that the tubular abstraction is physically realizable, we sketch a modular
fabrication procedure based on 3D printing and construct an example 3-finger
hand. The core idea is to break down a tubular kinematic tree design into its
component joints and links, and generate STL files of sequentially connectable
modules for each.

A.1 Modular Procedure

We have a set of parameterized module designs (Fig. for tubular links, string-
actuated revolute joints with link attachment direction & = x, and hemispherical
caps (example end effectors).

Links are generated as hollow circular extrusions along specified CSC Dubins
paths. Where a parent joint has multiple children (and thus multiple outgoing
connections), its outgoing paths are joined together where they connect to the
parent, generating a single branching link structure. Fig. a) shows an example
branching link, and Fig. c) shows a link for a non-branching link on a straight
line segment.

Revolute joints with link attachment direction & = % (i.e., orthogonal to
the axis of motion) are constructed as a proximal piece, a distal piece, and a
cylindrical pin connecting them, as shown in Fig. b). Each end has a hollow
cylinder on the inside. The distal side has a pair of holes on opposite ends to
which to tie strings to actuate the joint via antagonistic pulling. The proximal
side has holes to pass the strings back into the tube, so they can route inside the
previous links and joints to reach the root and be pulled externally. The string
attachment is depicted in Fig.

Both links and the proximal ends of joints have a grid of holes at the proximal
base to facilitate string routing and avoid entanglement. Module generation also

https://sung.seas.upenn.edu/
https://www.grasp.upenn.edu/

Kinematic Trees With CSC Links (Supplementary Materials) 21

3
o

a) Branch Link b) Revolute c) Straight Link d) Cap

Fig. A. CAD for (a) branch link, (b) revolute, (c) straight link, and (d) cap modules.

D
D s

Fig. B. Strings are tied to the revolute joint module at (1), loop around the outside,
are fed back in at (2), and are threaded through a grid hole at (3).

22 D. Feshbach et al.

incorporates screw size, wall thickness, and other parameters ensuring they can
attach together sequentially.

A.2 Hand Example

As an example of the fabrication system, we build a 3-fingered hand. The joints
are arranged manually, but the link shapes are generated algorithmically from
this arrangement (i.e., by finding CSC paths from the proximal pose of the
parent to the distal pose of the child). We choose axes of motion and joint
arrangements to enable the hand to have three distinct grasp types: spherical,
pinch, and cylindrical. The hand is fabricated from polylactide (PLA) on a Prusa
MINI 3D printer. The result is shown in Fig. [C] It successfully forms the expected
configurations to hold a ball, a piece of paper, and a cylinder. However, the joint
design and string routing could use further refinement to improve grip strength
and stability.

V2 %)

s &

(a) Spherical grasp (b) P;nch grasp (c) Cylindrical grasp

Fig. C. A 3D printed tubular hand performing (a) spherical, (b) pinch, and (c) cylin-
drical grasps. The clamp at the root fixes the actuating strings in each configuration.

Kinematic Trees With CSC Links (Supplementary Materials) 23

B Helper Operations for Tree Construction Algorithm

Alg.[Ilmaintains a bounding cylinder C of the structure generated so far, keeping
constant the direction n of its central axis. Alg. and Alg. specify how to
do expand the cylinder to include newly added structures while preserving the
direction as 1.

Meanwhile, Alg. defines how each joint is oriented about its axis of mo-
tion, ensuring that z; is along <z_Z> and that neither z; nor x; faces backwards
(relative to n).

Algorithm B.1: ExpandCylinderTolIncludeBall(C, o, b)

Input: Cylinder C, point o, radius b

Output: Cylinder C’ in the same direction as C, bounding C and ball(o, b)
(cs, ce) < start and end points of C central segment

A< (e —cs)/llce — el

S <+ plane(cs,)

¢, < ¢ + min(signedDistance(S, o) — p,0)i

P <« plane(ce, 1)

¢, + c. + min(signedDistance(P, o) + p,0)h

S’ + plane(c}, h)

O < minimal circle in 8’ bounding proj(C,S’) and circle(proj(o, S’), b)
C' + cylinder from O in direction 1 and length ||c. — c]|

© 00N O A WN -

Algorithm B.2: ExpandCylinderTolncludeLink(C, £, r)

Input: Cylinder C, CSC link £, tubular radius r
Output: Cylinder C’ in the same direction as C, bounding C and £
e1, ez < end points of S segment in £ centerline path
if L starting C arc is non-empty then
c; < center point of starting C arc in £ centerline path
‘ C' + ExpandCylinderTolncludeBall (C, c1, 2r)
else
| €’ + ExpandCylinderTolncludeBall (C, e1,)
end
if £ ending C arc is non-empty then
¢y « center point of ending C arc in £ centerline path
‘ C' + ExpandCylinderTolncludeBall (C, c2, 27)
else
‘ C' + ExpandCylinderTolncludeBall (C, ez,)
end

© 0 N o 0ok N

e
SV VR -

24 D. Feshbach et al.

Algorithm B.3: ForwardOrientation(‘z’,)

Input: Axis ‘Z’, unit vector fi not parallel to Z’

Output: Orientation (X,y,2) where z points along
1 Z < unit direction along =z signed such that z-n > 0
2 X < unit direction orthogonal to Z maximizing Xo - i
3y 2Z2XX

Z,%x-n>0,andz-n>0

C Proof That There Exists a Suitable Direction for n

Lemma 3 (Direction Existence). Given k lines £1,..., 0, in R", there exists a
unit vector i € R™ not orthogonal to any of these lines.

Proof. Since orthogonality is position-independent, we can suppose without loss
of generality that all the lines pass through the origin. The unit vectors orthogo-
nal to a line ¢; define a unit circle ¢; centered at the origin, which is a great circle

of the unit sphere centered at the origin. Since finitely many circles ¢y, ..., cg
cannot cover a sphere, there must exist a direction not orthogonal to any of these
lines. O

We thank a reviewer for this proof, which replaces a long inductive argument
that was mostly tedious notational book-keeping.

	Algorithmic Design of Kinematic Trees Based on CSC Dubins Planning for Link Shapes
	Supplementary Materials:Algorithmic Design of Kinematic Trees Based on CSC Dubins Planning for Link Shapes

