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Abstract. This paper addresses the Dubins path planning problem for
vehicles in 3D space. In particular, we consider the problem of comput-
ing CSC paths — paths that consist of a circular arc (C) followed by a
straight segment (S) followed by a circular arc (C). These paths are useful
for vehicles such as fixed-wing aircraft and underwater submersibles that
are subject to lower bounds on turn radius. We present a new parame-
terization that reduces the 3D CSC planning problem to a search over 2
variables, thus lowering search complexity, while also providing gradients
that assist that search. We use these equations with a numerical solver to
explore numbers and types of solutions computed for a variety of planar
and 3D scenarios. Our method successfully computes CSC paths for the
large majority of test cases, indicating that it could be useful for future
generation of robust, efficient curvature-constrained trajectories.
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1 Introduction

Aircraft and underwater vehicles are often subject to control constraints, limiting
their ability to make sharp turns. These vehicles require robust planning algo-
rithms to successfully navigate their environments, avoid obstacles, and reach
their goal destinations. The Dubins vehicle model (where vehicles have a lower
bound on turn radius) is a well-studied model for car-like vehicles in 2D. A nat-
ural extension is to apply these models to 3D vehicles.Dubins paths enhance the
efficiency and safety of robotic systems in areas including logistics [14], surveil-
lance [9], search and rescue operations [16], and even in robot design [5, 10].
Thus, understanding and optimizing Dubins paths hold immense practical im-
portance in modern robotics research and applications. However, it is challenging
to accurately classify the solution space for the Dubins problem in 3D.

Background on the 3D Dubins Path Planning Problem In this paper,
we investigate a solution method for computing 3D Dubins paths of the CSC
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type. Consider a vehicle moving in 3D space. Let x € R3 be the position of the
vehicle and R € SO(3) be its orientation. Let v = x € R? and w € R?® denote
the vehicle’s linear velocity and angular velocity, respectively.

For a fixed-wing aircraft [1,7,13,15,18,24], underwater drone or submersible |7,
27| performing low-dynamic maneuvers and simple navigation and waypoint
route-planning, a model of the vehicle’s motion is the 3D Dubins model:

{V:wxv (1)

w=u,|u|| < umaz-

That is to say, the vehicle moves at constant forward speed, and the control input
u to the system is the angular velocity only, which is subject to a upper bound
in magnitude u;,q,. Both the system’s forward speed ||v|| and w4, are dictated
by the particular system, and, without loss of generality, it is often assumed
that ||v|| = 1. This is a full 3D path-planning problem, where other works [3,
6,11,17,19, 23, 25, 26] address a different mathematical problem by modeling
fixed-wing unmanned aerial systems through decoupling 3D path-planning into
a 2D problem and elevation with a climb rate constraint. Note that for our
simplified 3D model, the full orientation R of the vehicle is not important since
the angular velocity w can be specified arbitrarily as long as it satisfies the upper
bound constraint.> Thus, the system’s current state can be fully characterized
by x and v, where * indicates the normalized vector.

Let x;,V; be the starting position and orientation of a 3D vehicle, and x¢, V¢
its goal position and orientation. The Dubins path planning problem is:

Problem 1 (3D Dubins Planning). Given an initial configuration (x;,V;), a final
configuration (x5, V), and a control input upper bound w4, find the shortest-
length path between points x; and xy such that the initial and final directions
are given by v; and V¢, respectively, subject to Eq. (1).

Since the vehicle velocity is constant, this problem can be equivalently defined
as finding a shortest length path with a curvature constraint:

Problem 2. Given an initial configuration (x;,V;), a final configuration (xy, v ),
and a control input upper bound 4., find the shortest-length path between
points x; and x; such that the initial and final directions are given by ¥; and
V¢ and the path curvature does not exceed 1/Umqz.

This model is an extension to the 2D classical Dubins model first introduced
in 1957 in [8] for a car-like vehicle that can only move forward in the plane
at constant speed with bounded minimum turn radius, and various approaches
exist to find optimal paths. One common method involves the application of

3 In a real vehicle, the elements of w would be subject to constraints from the ve-
hicle design (e.g, the propeller configuration of an underwater vehicle) and the full
orientation R would be required to relate each control input to w. We make the
assumption that vehicle is equally able to turn in any direction for simplicity. Other
works [6,11,17,23,25-27] have addressed models where directionality matters.
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the Pontryagin’s Maximum Principle, which provides necessary conditions for
an optimal control problem [20]. This principle implies that the optimal trajec-
tories solving this problem are of bang-bang type (arcs of the maximal possible
curvature) connected, possibly, by sliding trajectories. A careful analysis reveals
that the sliding trajectories need to be straight lines [4,21]. Further, the number
of fragments is at most three. Dubins [8] proved that optimal trajectories must
necessarily fall into one of two forms: CSC or CCC, where C denotes a circular
arc of radius 1/uq, and S a straight line segment. For any initial and final con-
figuration, the Dubins set is defined to be the six admissible paths LSL, RSR,
RSL, LSR, RLR, and LRL, with L. denoting a left turn and R a right turn.

When the problem is extended to 3D, trajectories must still be of bang-bang
type, but the optimal trajectories now consist of helicoidal trajectories (spiraling
around a cylinder with constant gain), including a special case when the gain is
zero, i.e., the trajectory is planar (an arc). As in the planar case, sliding regimes
are possible and, again, can be shown to consist of straight lines. One can ask
whether the helicoidal trajectories are truly necessary. To this end, [22] showed
that there exist pairs of initial and final configurations such that helicoidal tra-
jectories are strictly shorter than any CSC or CCC paths, and [25] constructed
these 3D helical paths. For many practical purposes, the CSC or CCC paths are
far more desirable since they are easier to parameterize geometrically and easier
to implement in practice, as each of the fragments is planar.

In this paper, we focus on an efficient algorithm for computing CSC trajec-
tories connecting two 3D configurations and satisfying Eq. 1:

Problem 3 (3D CSC Paths). Given an initial configuration (x;, v;), a final con-
figuration (xy,vy), and a minimum radius of curvature r, find valid CSC paths
between points x; and x; such that the initial and final directions are given by
v; and vy and the path curvature does not exceed 1/r.

Existing approaches often face limitations that restrict their generality. Hota
and Ghose [13] provide a geometric formulation for finding 3D CSC Dubins
paths that requires numerically solving a nonlinear system of equations with five
unknown variables, but the solution only applies when initial and final points
are sufficiently far apart. Further, they did analyze how the number of solutions
vary with the 3D configuration space. Some 3D path planning algorithms rely
on optimal control methods [1,6,24]. While they are computationally tractable,
they do not admit an analytical solution and are only resolution complete. Other
numerical methods involving iterative procedures such as optimization for a non-
linear programming formulation [11] and RRT [17] can fail to converge to the
optimal solution for certain 3D cases and require exhaustive search. Recent work
in [2] computes up to 7 valid 3D CSC Dubins paths, but the formulation of the
Dubins problem as a 6R manipulator and solving for the analytical solutions of
the inverse-kinematics does not address applicability to real-time path-planning
that gradient-based numerical solvers enable.

Contributions We present a parametrization of the 3D CSC Dubins problem
that simplifies computation of an optimal path, reducing the problem to a nu-
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Fig.1: Parametrization of 3D CSC Paths (a) A straight line in the h
direction intersects with lines through the starting and ending configurations,
resulting in two possibilities for the starting point p; and two possibilities for
ending point py. (b-e) Type 1-4 starting and ending circles.

merical search over two variables, h; and hy. We ignore for now the problem of
CCC paths, leaving that for future investigation.

For CSC paths, we develop closed-form equations (Section 2) that describe
the desired initial and final configurations as a function of h; and hy, thereby
allowing one to take gradients of the equations with respect to these parameters.
This gradient can assist a numerical solver when the paths are more geometrically
complex. We characterize the solution space of 3D CSC Dubins paths in both
planar and non-planar cases (Section 3), and we show how the new formulation
improves the detection of 3D CSC Dubins path solutions compared to an existing
work [12].

2 Parametrization of the 3D Dubins Planning Problem

To start, we observe that regardless the orientations of the initial and final
configurations, the initial CS component of the path is planar, and so is the final
SC component of the path. Further, if the line along which the S component
lies is known, then the planes containing the two C components are completely
defined. Let us introduce two new points

which lie on the lines defined by the initial and final configurations, respectively.
Assume that the S component of the CSC path lies on the line from h; to hy.
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We define h to be the normalized vector corresponding to h ¢ — h;. The initial
C component of the path must lie in the plane defined by x; and the vectors v;
and fl, and similarly for the final C component. Figure 1 shows in gray lines how
this plane and the resulting C components change with h; and hy.

Consider the initial C component. There are two circles of radius r that lie
tangent both to the line defined by x; and v; and to the line defined by h; and
h; and correctly oriented for the vehicle to transition from an initial orientation
of ¥; to a straight-line orientation of h. The centers of these circles are

ci:hiiH%ihGi—fl) (3)

We will use ¢;; to indicate the + solution and c;s to indicate the — solution. The
point of tangency between the circle and the line defined by (x;,V;) can then be
computed as the projection of ¢; onto the line:

pi =X tpivi, pi=hit (1—f1"7i> (4)

Again, we will use p;; (and equivalently, p;1) to indicate the + solution and p;o
(Pi2) to indicate the — solution. The same analysis can be conducted for the
final C component, where the center is defined as cy, resulting in:

N r N
Py =Xy +psvy, prhf:tiA(l—h-Vf) (5)
Vy x hH

The points h; and hy correctly identify the desired CSC path if one of p;; or
pi2 is x; and one of ps; or pse is x¢ such that the scalar quantities satisfy:

pi1=0 or pp=0
6
{pf;l:O or pp=0 (6)

We categorize these solution types in Table 1 with the geometries shown in Fig. 1.

Path Directionality While the given equations ensure that the directions of
circular arc components are consistent with the directions of the given h vector,
it is possible for the intersection between the starting circle centered around c;
and the line from h; to hy to occur “before” the intersection between the ending
circle centered around c; and the line. For this situation, the vehicle would

Table 1: Solution Types

Regular Switched

Pi1 =0 | pia =0 i1 =0 | pir =
pf1 =0 | Typel | Type 3 p;1 =0 | Type5 | Type 7
pf2 =0 | Type 2 | Type 4 P2 =0 | Type 6 | Type 8
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Fig. 2: Path Directionality (a) Example of a “switched” solution where the
straight line path is traveling along the —h direction. (b) Example of an invalid
switched-type computed path in 3D where the —h direction travels away from
the ending point. (c) Example of a an invalid regular-type computed path in 3D
where the h direction travels away from the ending point.

have to travel in the reverse direction along the straight line component, from
hs to h;. We therefore consider four additional solution types, corresponding
to “switched” situations in which the vehicle must travel along the straight line
segment in the reverse direction. These paths can be computed using the same
equations as for the regular case, except replacing h with —h. That is,
pr=h;+ _ (1+h-\?i), p; = Xi + piv; (7)
v x —h|

r

\Aff X —le

pp=hy £ (1+fl"7f), P} =X +psVy. (8)

We still use pj; (and equivalently, p};) to indicate the + solution and p}, (p};)
to indicate the — solution, and similarly for py and p%.
Similarly to the regular situation, when the scalar quantities satisfy

pihp =0 or pih=0 9
pi; =0 or e =10 (9)
11 P2

we have the desired CSC path. We categorize these solution types in Table 1.

Full Solution Set Thus, for any given initial and final configuration, there
are 8 possible solution types. It is not necessarily the case that every solution
type yields a solution, and in some cases, there are multiple unique paths of one
solution type.

Additionally, it is possible for the solution for h; and ks to be invalid even if
the equations are satisfied. In particular, the direction of the straight line path,
either h or —fl, may be in the opposite direction of the desired ending point.
Invalid paths can be identified as follows:
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1. Regular solutions invalid when (¢ — ¢;) - h < 0 as shown in Fig. 2(b).
2. Switched solutions invalid when (cf — ¢;) - h > 0 as shown in Fig. 2(c).

2.1 Extracting the CSC Path

The components of the resulting CSC path can be extracted from h; and hy.
For the initial C component, the plane on which the arc lies is defined by the
vectors v; and h. The center of the circular arc can be computed according to
Eq. 3. The arc length 6; is given by

cos™ ! ({;i . fl), pi < hy

0; = .
2m —cos ™! (f/i . h),pi > hy

(10)

These same equations also hold for the final circular arc. The S component
consists of the line between h; and hy where it intersects with the initial and
final arc. For the initial arc, the intersection d; € R?® can be found by projecting
the center of the circle onto the vector h:

d; = |:(Cz —h;) fl} h+h, (11)

and similarly for the final arc. Then the S component is the straight line path
from d; to dy. This segment is in the h direction for regular type paths and
in the —h direction for switched type paths. The two arcs together with the
straight line form the CSC path.

2.2 Gradients

The previous subsections have demonstrated that it is possible to solve for CSC
Dubins paths as a system of two equations on two scalar variables h; an hy.
These closed-form equations admit gradients, which allow us to solve them more
efficiently using numerical solvers.

These derivatives take the following form:

op; —r(l—h-¥)(¥;i x —h) - (Vi x —a;))  r(a;- V)

on ~* 95  —BJ? ox—h L0
Opi _ , —r(1l=hvi)(¥i x —h) - (Vi x —ay)  1(ay %) (13)
Ohy [ x —h]? [ x —h|
Opy _  —r(1- h- V) (¥ x jfl) (v x —ai)  r(ai-Vy) (14)
Ohi Vg x —hl? [V x —h]|
Opy _  —r(1- h-¥p) (¥ x —Aﬁ) (v x —ay)) _ rlag-vy) (15)
Ohy [V x —hlf? [V > —h]|
where
.- dh _ (ﬁ-oi)ﬁ—@ dh  —(h-vp)h+v; 16)

a = — =
dh; ~ |y — by T~ dhy Ihy — hy]|
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The + in the equations corresponds to derivatives of p;; or psy with respect to
h; and hy, and the — corresponds to derivatives of p;a or pyo with respect to
h; and hy. Derivatives for switched equations p; and p} are identical except for

replacing h with —h.

3 Experimental Results

Given initial configuration x;, ¥; and final configuration xy, vy, we set x; = p;
and x; = py and solve for h; and hy for each solution type. We implement a CSC
path solver in Python using scipy.optimize.fsolve to solve the equations in
Sec. 2. Tests were conducted on an 8-core AMD Ryzen 7 5825U processor with
16 GB RAM. Solutions for each pair of equations (Types 1-8) are computed
over the variables h; and hy and using the gradients given in Sec. 2.2. We filter
out invalid solutions that may stem from either failure of the numerical solver
to converge (which may be detected by checking the values of p; and py) or
from directional inconsistencies as mentioned in Sec. 2. We test the effectiveness
and versatility of these 8 equations in detecting possible CSC paths for both
non-planar and planar cases. All of the tests are conducted with r = 1.

3.1 Example Solutions

We begin by testing specific planar and non-planar cases to explore the solver’s
ability to compute different solution types. For both planar and non-planar cases,
the difficulty of the problem seems to depend on the proximity of the starting

and ending positions..

Planar Cases We begin by examining the planar case for which methods for
computing solutions are well-established. When the initial and final points are
sufficiently far apart, then all four types of regular solutions exist and the equa-
tions for p; and py are fairly well-behaved. Figure 3 shows the solutions for
x; — [0,0, —o0] and xy = [0,0,0]. Values for h; and hs corresponding to p; = 0
are shown in red, and values corresponding to py = 0 are shown in blue. All
of the curves are smooth and approach horizontal (p; = 0) and vertical lines
(pi = 0) with straightforward intersections representing candidate solutions as
x; — [0,0,—00]. This makes sense since as the starting and ending positions
move further apart, changes in h; will have less of an effect on the position
of p;, and similarly for the effect of h; on ps. We thus expect that solving
for CSC paths when starting and ending positions are far to be straightfor-
ward for a standard numerical solver.For example, Figure 4 shows results for
one test condition where the starting and ending points are "sufficiently far":

4 Additional examples can be found in the supplementary materials included in the
full paper, submitted on https://arxiv.org/ titled Reparametrization of 8D CSC
Dubins Paths Enabling 2D Search
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Fig. 3: Solution plots: x; = [0,0,0],v; = [1,0,0] = ¥v;. x; = [0,0, —10] (left)
vs x; = [0,0 — 100] (right). Values for h; and hy correspond to p; = 0 (red) and
ps = 0 (blue). The (1) annotation indicates p;1 and pyi curves and (2) marks p;o
and pyp curves. Intersections marked by green checks are valid solutions. Insets
in 4 corners show the solution types, with hashes indicating cutting out a portion
of the path due to points being far apart. Green and purple lines indicate the
starting and ending directions, respectively. The final CSC path is in orange.

x; = [0,0,0],x; = [-1,0,3],¥v;, = [0,0,1], ¥ = %[1,0, 1]. Similarly to the pre-
vious example, this case produces 4 regular-type solutions, one of each type. The
solutions were all found in 0.038 s with fewer than 10 solver iterations for each
solution type.

More challenging cases occur when the starting and ending positions are
close together. In these cases, not all regular-type solutions are valid, or even
exist. Figure 5 shows the results for one such test condition: x; = [0,0,0],x; =
[0,1.01,1],v; = [0,0,1],v¢ = \/%7[0, 1,4]. The solver is able to successfully find
all valid solutions for this case. We begin to see non-regular type solutions rep-
resented by intersections of dotted lines on the plot, and there are only 3 valid
solutions since there is no straight line path between an initial right-turning arc
and a final left-turning arc. One solution of Type 6 was found but was filtered
as having an invalid straight segment direction. The solver took 0.146 s to find
all of the solutions due to the need to filter out more solutions that either do

not exist or are invalid.

Non-Planar Cases The same equations extend to 3D scenarios, showing sim-
ilar trends for starting and ending positions that are close or far apart. Figure 6
shows the results for one 3D case where the starting and ending positions are
sufficiently far apart in distance: x; = [0,0,0],x5 = [3,0,—1],¥; = [0,0,1],V, =
\/%[2, 4,1]. Similarly to the planar tests, this is fairly easy for the solver, pro-
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a) Type 1 Solution b) Type 2 Solution
(hi he) = (—0.263,-0.759) (R, hy) = (—0.090,0.524)

y /
\_ Pr ':h, Iterations: 6

X X
c) Type 3 Solution d) Type 4 Solution
(hi hy) = (0.357,-0.906) (hi,}}f) = (0.095,0.529)

/11 Iterations: 6

Fig.4: 2D Problem Case 1 (Far): x; = [0,0,0],x; = [-1,0,3],¥; =
[0,0,1],%vf = %[1,0,1]. (Left) Solution plot for regular solutions of p; (red)
and py (blue). Intersections marked by green checks show the (h;, hy) solution
pairs. (Right) CSC paths for each solution type 1-4 marked on the left.

ducing all four solutions (one of each regular type) in 0.031 s and requiring fewer
than 10 solver iterations for each solution pair.

When starting and ending positions are close together in 3D, similarly to
the planar case, there are not only solutions of the four regular types. Fig-
ure 7 shows the results for one such example: x; = [0,0,0],xy = [-1,0,3],Vv; =
%[1, 1,1],¥v¢ = [0,0,1] The solver found all intersection points in 0.061 s. The
number of iterations required for the numerical solver to find solutions increases
when the starting and ending positions are close together, and some equation

pairs produce invalid (h;,hy) solutions that need to be filtered out.

3.2 Slices of Planar and Non-Planar Solution Spaces

To explore the solution space and the difficulty of computing solution paths, we
sweep a range of starting and ending configurations for both 2D and 3D cases.

Planar Solution Spaces Fixing the starting point at x; = [0,0,0] and the
starting direction at v; = [1,0,0], we investigate the solution space for planar
cases by varying the end position x¢ = [z, 0, z] and direction v = [—sin(6), 0, cos(6)]
for values of z, z € [—6, 6] and @ € [0, 27). The initial guess for the solver is set at
h; = hy = 0. Figure 8 shows the results. Slices of the problem space are colored
according to the number of solutions (regular and switched) found. The solver
is able to find at least one solution for most inputs. Further, the solver produces
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a) Type 1 Solution b) Type 2 Solution
(hi hy) = (—0.363,-0.230)  (h;, hy) = (—0.317,0.187)

s
___hi/ Iterations: 6
5 {@

Y ¢) Type 4 Solution
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Fig.5: 2D Problem Case 1 (Close): x; = [0,0,0],x; = [0,1.01,1],V; =
[0,0,1], vy = \/%[07 1,4]. (Left) Solution plot for regular solutions of p; (solid
red), regular solutions of py (solid blue), switched solutions of p} (dotted red),
and switched solutions of p} (dotted blue). Intersections marked by green checks
show the (h;, hy) valid solution pairs, and black xs show invalid solutions. (Right)
CSC paths for each solution type. A Type 3 solution does not exist in this case.

expected symmetries. For example, as shown 8(a), when 6 = 0, the starting and
ending directions are aligned, so we expect that the number of solutions should
be symmetric around z = 0. If = 0, the number of solutions should be sym-
metric about # = 7, shown in Figure 8(b). Finally, when fixing the z coordinate
in x; = [z,0, 2], the number of solutions should be symmetric about = 0 and
6 = m, as shown in the Figure 8(c).

Similarly to the qualitative observations on our individual test cases, the plots
reveal that when the starting and ending positions are far apart, the solver is able
to find 4 regular solutions much of the time. However, as the distance between
starting and ending position decreases, the number of regular solutions also
decreases, and switched solutions must be found. We did not compute the true
number of solutions for each of the tested scenarios. It remains to be determined
for some of the cases where fewer solutions were found whether it is because
there are fewer solutions or because the solver did not find them all.

Non-Planar Solution Spaces Extending to non-planar problems, we consider
the following situation. Fixing the starting point at x; = [0, 0, 0] and the starting
direction at v; = [0, 0, 1], we analyze the solution space of a simplified non-planar
problem where we vary the ending point x; = [z, 0, 2] and the ending direction
vy = [sin(¢),cos(¢),0] for values of x,z € [—6,6] and ¢ € [0,27). The initial
guess for the solver is set at h; = hy = 0. Figure 9 shows the results.
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a) Type 1 Solution b) Type 2 Solution
(hs hy) = (—1.050,—0.836) (hs, hy) = (—0.973,0.530)

4 Pi Iterations: 8 " Iterations: 7

X
c) Type 3 Solution d) Type 4 Solution
(hsy hy) = (4.516,-1.187) (hi, hy) = (2.280,0.742)
Ry

5; lterations: 9 b} terations: 7

Fig.6: 3D Problem Case 1 (Far): x; = [0,0,0],x; = [3,0,—1],v; =
[0,0,1],¥5 = \/%[2,4, 1]. (Left) Solution plot for regular solutions of p; (red)
and ps (blue). Intersections marked by green checks show the (h;, hy) solution
pairs. (Right) CSC paths for each solution type 1-4 marked on the left.

Again, the produced solution space shows expected symmetries. When fixing
x = 0, the solution space has vertical “stripes” to indicate that changing the an-
gle ¢ does not change the number of solutions (Figure 9(a)). Additionally, fixing
some value of z, (in this case z = —1) makes the number of solutions symmetric
about ¢ = 7 since the relative alignment between the starting and ending direc-
tions would be equivalent (Figure 9(b)). Finally, the number of solutions found
is rotationally symmetric about the starting position. That is, if we fix ¢ = ¢
for ¥; = [sin(¢1), cos(¢1), 0] and vary xy = [z, 0, z|, the landscape of the number
of solutions for the slice where ¢ = m — ¢ is a mirror image (Figure 9(c-d)).

Similar to the planar case, the outer edges of the plots, corresponding to the
final configuration being farther away, produce in many cases the four regular
solutions for h; and hy. We also observe that non-planar cases with a sufficiently
small distance between initial and final configurations result in 5 solutions, which
must contain a switched solution. This behavior cannot be achieved by planar
cases, since it is limited to four possible combinations between the circles.

3.3 Varying Starting Seeds

In some cases, there are multiple solutions for a single solution type. Using a
numerical solver, at most one of these solutions will be found, and the per-
formance of the solver depends on the starting seed. We investigate this ef-
fect on a case where the starting and ending points are close enough that the
valid h;, hy values are not the four regular solutions. When x; = [0,0,0],x; =
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a) Type 1 Solution b) Type 2 Solution
(hi hy) = (—1.386,-6.573)  (h;, hy) = (=0.334,0.918)

-6
x 0—2
2" Iterations: 10

y
c) Type 4 Solution d) Type 8 Solution
(i, hy) = (0.782,1.300) (hi hy) = (1.268,2.165)

0 . 0 .
2" lterations: 15 2 Iterations: 16

y y

Fig.7: 3D Problem Case 1 (Close): x; = [0,0,0],xy = [-1,0,3],v; =
£[1,1,1],v5 = [0,0,1]. (Left) Solution plot for regular solutions of p; (solid
red), regular solutions of ps (solid blue), switched solutions of p} (dotted red),
and switched solutions of p} (dotted blue). Intersections marked by green checks
show the (h;, h¢) valid solution pairs, and black xs show invalid solutions. There
are 3 regular, 1 switched, and 3 invalid (Type 5, 7, 8) solutions. (Right) CSC
paths for each of the solution types marked on the left.

1 solution of switched type

1 regular solution

2 solutions including switched type

2 regular solutions

% -4 -2 0 2 4 6
x 3 solutions including switched type

© 27

3 regular solutions
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4m/3 4 solutions including switched type

6 (rad)
)

2m/3 4 regular solutions

3
= 5 solutions including switched type

6 -4 2 0 2 4 6 6 -4 -2 0 2 4 6
x x

Fig.8: Planar Solution Spaces (a) x — z plane when § = 0. (b) z — 6 plane
when = = 0. (c-d) = — @ plane when z = —1 (left) and z = 3 (right).

[1.059,0,—4.588],v; = [0,0,1],vy = [-0.361,0,0.932], there are two switched
type 6 solutions (p; > h;, py<h 7). Figure 10 shows which solutions are found
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(@ 2]

1 solution of switched type

1 regular solution

2 solutions including switched type

2 regular solutions

3 solutions including switched type

© s
3 regular solutions

4 solutions including switched type

4 regular solutions

5 solutions including switched type

-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6
x x

Fig.9: Non-planar Solution Spaces (a) z — ¢ plane when 2 = 0. (b) z — ¢
plane when z = —1. (c-d) x — z plane slice when ¢ = 7 — 2 rad (left) and and
x — z plane slice when ¢ = 2 rad (right).
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St s o0 Starting Seeds for h;
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Fig.10: Effect of Initial Starting Seeds (Left) Solution plot for x; =
[0,0,0],x; = [1.059,0,—4.588],¥; = [0,0,1], vy = [-0.361,0,0.932] with multi-
ple type 6 solutions. (Right) Solver convergence behavior for the Type 6 solution,
depending on initial h;, hy seeds. Yellow areas converge to the Type 2 solution
h; = —1.804, hy = 3.004 that geometrically looks very close to a Type 6.

for different starting seed values. We find that when varying the initial guesses
for h; and hy, the solver is able to converge to one of the intersection points in
almost all cases. However, the solution that the solver converges to is incredibly
sensitive to the starting seed, indicating that it may be difficult to force the
solver to find a different solution, even if it is known that others exist.

3.4 Performance Comparison

Efficacy of Gradient Inclusion in Solving for Solutions Our equations
admit gradients, which may provide the solver with some assistance in converging
to a valid solution.
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Fig. 11: Effect of Gradients on Numerical Solver and Comparison to [13]
(Left) Number of additional solutions found when using fsolve with minus
without the gradient for 18,000 random cases. (Right) Number of solutions found
when using fsolve with our formulation minus [13] for 18,000 random cases.

We run a test with x; = [0,0,0],v; = [0,0, 1] and 18,000 random final con-
figurations and initial guesses for h; and hy. For each final configuration and
initial guess combination, we compute the CSC path solutions with and with-
out the gradients and compare the number of solutions found (Figure 11). In
the majority (95%) of cases, the solver finds the same solutions with and with-
out the gradient. However, when the initial and final configurations are close
together with large orientation differences, the gradient makes the calculation
easier, helping the solver to find up to 2 more solutions. This makes sense since
the closer the initial and final positions are, the more influence the alignment of
the directions will have over orientations of the arc and straight line components.

Comparison with Existing Method [13] Finally, we analyze how solving
these equations compares to existing solution methods. We refer to [13], which
is a different geometrical derivation for 3D CSC Dubins paths resulting in a
nonlinear system of equations over five variables. We input the associated equa-
tions into fsolve and run the solver on the same 18,000 test cases as above and
compare the number of solutions found (Figure 11).

In all cases, the number of solutions found using our simplified formulation
is at least as many as that found using [13], and in the large majority of cases
(95.7%), our formulation is able to produce more solution paths: 4.39% of the
time we find the same number of solutions, 13.63% of the time we find one more
solution, 21.31% of the time we find two more solutions, 59.65% of the time we
find three more solutions, and 1.07% of the time we find four more solutions.
We observe that our formulation produces a larger number of valid solutions
when the distance between the initial and final configuration is small and, in
some cases, the formulation in [13] is unable to produce any solutions at all.
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We therefore conclude that our simplified formulation is able to streamline and
robustify the computation of CSC paths.

Note that for this test, we did not vary the initial seeds, and the quality of the
output may change if multiple solution attempts are made. The time taken to
solve each system of equations, for our formulation (with and without gradients)
or for [13], was approximately 0.01 s per test case.

4 Conclusion

We investigate the path planning problem for 3D Dubins vehicles, focusing par-
ticularly on CSC paths, and we present a parameterization of the problem for
computing solution paths by solving a system of 2 nonlinear equations. We have
shown that these equations can be written explicitly from the input positions and
orientations, and that we can write analytical derivatives for these equations. We
have used these equations together with the off-the-shelf Python fsolve solver
and present results for multiple valid paths for a number of inputs. Further,
we have demonstrated the ability to find more valid solutions than an existing
geometric method [13], even at small distances between initial and final configu-
rations, a limitation that other approaches have encountered. When the starting
and ending positions are far apart, almost all solution types produce valid paths.
However, when the starting and ending positions are close, some solution types
do not produce valid paths, and others produce multiple valid paths. We have
started to characterize empirically when these different situations occur. Future
work includes a more rigorous study of the solution space for this problem.

We observe that our empirical results highly depend on the behavior of the
numerical solver being used. In particular, for solution types that have multiple
valid solutions, the generated output depends on the initial seed for the solver. In
this paper, we used the fsolve solver, which may produce outputs that are not
the closest solution (in terms of h;, h; distance) to the initial seed. However, at
the same time, we were able to compute analytical derivatives for the equations
that we used. We therefore expect that these gradients can be used in gradient-
descent based algorithms to search for solutions that are close to an initial guess
and reduce variability in the output. These approaches may be useful for fu-
ture work in real-time planning for 3D vehicles, where small adjustments to the
current path may be preferred over large changes. Future work includes further
investigation into improving consistency of output solutions for these scenarios.
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