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Integrating Model-based Control and RL

for Sim2Real Transfer of Tight Insertion Policies
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Abstract— Object insertion under tight tolerances (<1mm) is
an important but challenging assembly task as even small errors
can result in undesirable contacts. Recent efforts focused on
Reinforcement Learning (RL), which often depends on careful
definition of dense reward functions. This work proposes an ef-
fective strategy for such tasks that integrates traditional model-
based control with RL to achieve improved insertion accuracy.
The policy is trained exclusively in simulation and is zero-shot
transferred to the real system. It employs a potential field-based
controller to acquire a model-based policy for inserting a plug
into a socket given full observability in simulation. This policy is
then integrated with residual RL, which is trained in simulation
given only a sparse, goal-reaching reward. A curriculum scheme
over observation noise and action magnitude is used for training
the residual RL policy. Both policy components use as input
the SE(3) poses of both the plug and the socket and return
the plug’s SE(3) pose transform, which is executed by a
robotic arm using a controller. The integrated policy is deployed
on the real system without further training or fine-tuning,
given a visual SE(3) object tracker. The proposed solution
and alternatives are evaluated across a variety of objects and
conditions in simulation and reality. The proposed approach
outperforms recent RL-based methods in this domain and prior
efforts with hybrid policies. Ablations highlight the impact of
each component of the approach. For more information please
refer to the corresponding website.

I. INTRODUCTION

This paper addresses object insertion under tight tolerances

(<1mm). Given visual tracking of the SE(3) object pose,

this work proposes a strategy for learning a policy for tight

insertion into a socket. A key feature of the proposed strategy

is that it first defines a model-based control solution, which

is then complemented with a residual policy trained via

Reinforcement Learning (RL) in simulation to address the

uncertainty arising from perception noise and contact dynam-

ics. The policy trained in simulation is directly deployable

on the real system without any fine-tuning.

Tight object insertion is applicable both in industrial

and domestic setups, from product part assembly to plug-

ging sockets of home devices. Thus, peg-in-hole challenges

have long been the focus of robotics research [?], [1]–[3]

as a contact-rich manipulation task. Nevertheless, the sub-

millimeter precision required to complete such tasks and the
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Fig. 1: Zero-shot transfer of the policy learned in simulation to a
real forceful insertion of an unseen plug and socket.

uncertainty regarding the objects’ states has limited the real-

world deployment of developed solutions.

Model-based efforts [3]–[6] have engineered control poli-

cies for insertion that can be effective for a well-instrumented

workspace setup. Such solutions, however, are brittle to

changes in the workspace, and do not generalize easily to

new objects. Recent data-driven approaches have attempted

to solve the problem by learning policies either from human

demonstrations [7], [8] or from online interaction via RL [9]–

[11]. They can generalize to new objects, nevertheless, they

require significant demonstration effort, reward engineering,

and incur high sample complexity. In particular, recent

work that is closely related to this paper, IndustReal [9],

demonstrated peg insertion accuracy at ∼85% under varying

initial conditions and perception noise through the use of RL

in simulation given dense reward engineering and curriculum

learning. While IndustReal is a state-of-the-art result in zero-

shot transfer of the RL policy trained in simulation, success

rate can be further improved, especially for workspace setups

that are less carefully instrumented.

The current work seeks to achieve higher success rates

in tight insertion tasks while minimizing engineering effort

and enabling zero-shot transfer from simulation to reality.

This is accomplished through the integration of model-based

reasoning, RL and other key components:

1. The method begins with a straightforward potential field

policy that operates over the SE(3) pose observations of

the plug and socket. This model-based policy evaluates to

near-perfect success rates under zero observation noise in

simulation, but its success rate decreases drastically with

observation noise.

2. A residual policy is trained using a reinforcement learning

(RL) objective with only sparse, goal-reaching rewards. The

output of the residual policy is added to the output of

the model-based policy. This residual policy is trained in

a physics-based simulator (IsaacGym [12]) with noisy pose



observations. The policy is trained to correct for errors in-

troduced by perception noise and unforeseen contacts during

real-world execution. A curriculum-based training scheme

incrementally increases the difficulty of the task, adjusting

the noise level of the plug’s pose observations and the

magnitude of the residual RL policy’s actions. As noise

increases, the policy relies more on the RL component and

less on the model-based potential field, ultimately balancing

out their contributions.

3. The combined policy is then transferred directly from

simulation to a real robot without fine-tuning. A vision-based

pose estimation module detects the socket’s configuration

and tracks the plug’s pose. The SE(3) plug transforms are

returned by the policy and converted into joint controls for

the robotic arm controller.

The accompanying experiments demonstrate that this inte-

grated approach significantly improves insertion task success

rates compared to alternatives, including IndustReal [9].

II. RELATED WORK

This section reviews prior efforts on tight insertion, rang-

ing from model-based to RL-based techniques.

Model-based Insertion Strategies Classical approaches

for robotic tight insertion rely on model-based planning and

control, that vary from integrating manipulation primitives

for fine assembly [2] to assembly-by-disassembly [13] and

continuous visual servoing [14]. Continuous object tracking

has also been integrated with passively adaptive mechanical

hardware for tight insertion [3]. In general, active and passive

compliance can be beneficial for insertion [4], [5], [15].

Some efforts focus on contact-based search strategies, such

as spiral and random motions. Various frameworks have

been proposed to discover such solutions, including Finite-

State Machine Controllers [16], Task-and-Motion Planning

[17] and tactile-based behavior trees [6]. Search assembly

strategies have been evaluated given position uncertainty

estimation [18]. Socket-location probability distributions can

be estimated to devise a search trajectory [19]. Deploying

the aforementioned model-based strategies for insertion in

the real world can be challenging due to pose uncertainties

of the plug and the socket.

Machine Learning Insertion Strategies Data-driven con-

trollers can help address the above challenges. Various meth-

ods which utilize multi-modal sensory input [20]–[22], learn

robust insertion policies from human demonstrations [8],

[23] and generalize over object geometries [24]. Large-scale,

high-fidelity simulation [9] can capture the wide distribution

of contacts that may be encountered in the real world. The

learning process can be accelerated when a well-defined

curriculum is used for the RL training [25]. A related

effort learns motion primitives for insertion [26]. Contact-

rich data can be exploited by training with tactile stimuli

[27], force/torque measurements [28], or a representation of

extrinsic contacts like Neural Contact Fields (NCF) [29].

Integrated Control and ML Insertion Strategies The

aforementioned learning-based techniques, however, exhibit

high data requirements, especially for tight tolerances. To

improve sample efficiency, prior work integrates RL and

classical control by using impedance controllers for assembly

tasks [11], [30]. Using RL to learn a residual policy given

a model-based policy can improve sample complexity[31],

[32]. Furthermore, these methods can work with demon-

stration data, dynamic movement primitives [33], [34] and

contact-aware, compliant feedback-based controllers [35]. A

key advantage of the proposed approach is that it trains

entirely in simulation using a simple model-based policy,

achieving a high success rate in real-world tight tolerance

insertion tasks.

III. METHOD

The robot is tasked to insert a grasped object (plug) into

a receptacle (socket) with sub-mm tolerance placed firmly

in the workspace. At every timestep t ∈ [0, T ], the state

is defined as sPt , where sPt ∈ SE(3) is the plug’s pose at

timestep t. Given the socket’s (static) pose sS ∈ SE(3), the

goal pose for the plug so that it is fully inserted into the

socket is denoted by sPG. The available observations ot =
{oPt , o

S} correspond to continuous estimates oPt ∈ SE(3) of

the plug’s pose and an estimate oS ∈ SE(3) of the socket’s

pose given visual input. The 3D object models of both the

plug and socket are known at the time of execution and

are denoted by ΓP and ΓS respectively. The objective is

to train a policy π(ot), which, during inference, given an

observation ot, outputs an action a ∈ SE(3) that corresponds

to transformations of the plug’s pose so that it eventually

reaches sPG.

Fig. 2 outlines the components of the proposed approach

for computing policy π(ot): (i) a simple model-based policy

outputs an action aPF
t using a potential field – this is

computed at every timestep during training and inference

in simulation and reality for the target geometries ΓP and

ΓS ; (ii) a residual RL policy’s action aRL
t is added to the

model-based policy’s action to provide the final output action

aTt ; (iii) training is performed in simulation over randomized

conditions to learn aRL
t so that aTt results in successful

insertions given sparse rewards and a curriculum; and, finally,

(iv) the resulting policy π(ot) is transferred to the real system

to solve tight insertion tasks involving novel geometries

relative to those seen during training.

A. Model-based Policy

The potential-field action aPF
t is computed given the plug

and socket’s observed poses (oPt , o
S) and their geometries

(ΓP , ΓS). aPF
t is a combination of an action arising from

an attractive potential aAtt
t , i.e., moving the plug towards the

goal sPG, and an action arising from a repulsive potential a
Rep
t ,

i.e., pushing the plug away from collisions with the socket.

Attractive Component A nominal, collision-free path for

the plug is defined to connect the goal plug pose sPG to a pose

with the same orientation above the socket along a straight

retraction path, as in Fig. 3. This nominal retraction path is

along the socket’s medial axis, i.e., the locus of equidistant

points from the socket’s inner walls. Then, k anchor poses



Fig. 2: From left to right: (a) A model-based policy is defined that generates a vector field under full observability. (b-c) An RL policy is
trained in simulation given noisy pose observations to provide a residual action that is added to the output of the model-based policy. A
sparse reward is provided only upon successful insertion (d) The final policy π is zero-shot transferred to the real world, where observations
come from a pose tracking module given RGB-D data. A controller translates the policy into robot joint controls.

are defined along the nominal path by discretizing it. For ev-

ery possible observation of the plug’s pose oPt , the attractive

potential computes the closest anchor pose on the nominal

path scl. If the distance between oPt and scl is above a

threshold, then the attractive potential returns aAtt
t = scl−oPt .

If the distance scl is below a threshold, then the anchor pose

snext along the nominal path that is closer to the goal than scl
is selected as the target. In this case, the attractive potential

returns an action vector aAtt
t = snext−oPt . Thus, the attractive

field points towards the nominal path far from it and points

more towards the goal pose close to the nominal path.

Fig. 3: (left) The attractive potential field moves the object towards
a nominal, straight-line insertion trajectory that leads to the goal
pose; (right) the repulsive component pushes the object away from
making contact with the socket, only when the object is close to it.

Repulsive Component The closest pair of points on the

plug pPt and the socket pSt are identified. If their distance

dt = ||pPt − pSt || falls below a threshold th, a repulsive

action is applied at the plug geometry’s origin (which here

is defined to be the plug’s bottom-center point), to move the

plug away from the socket. Otherwise, i.e., when dt > th,

the repulsive component is zero. To compute the repulsive

action, a virtual 3D force vector vt = pPt − pSt is computed.

A distance-normalized version of the virtual force vector vt
is defined as N (vt) and corresponds to a division of the

vector’s magnitude with the distance dt. This has the effect

that the magnitude of N (vt) increases as the peg approaches

the socket. Then, the repulsive action is computed as a
Rep
t =

J · N (vt), where J is the Jacobian matrix that relates the

coordinates of pPt to the plug’s frame. This component moves

the plug away from contact states that prohibit task success

in tight setups. Overall, its use reduces the need to carefully

tune the hyperparameters of the Attractive Field.

Potential Field The overall action combines the attractive

and repulsive actions with a weighted sum, where weights

wTr. and wRot. ∈ [0,1] (same for all objects) are applied to

the translational and rotational components.

B. Residual RL

The potential field actions succeed in insertion when the

ground-truth poses of the plug and socket are available,

e.g., in simulation. When these pose estimates are noisy,

as in the real world, the efficacy of the potential field-

based policy declines drastically (see Fig.4). To address this,

complementary actions aRL
t ∈ SE(3) are generated by a

residual Deep RL policy and added to the potential field

action. The RL policy accounts for uncertain estimations,

enabling successful task completion. The combined action

aTt = aPF
t + βaRL

t ,where β ∈ [0, 1] scales the contribution

of the two action components.

Sparse Rewards The model-based policy enables the use

of a sparse goal-reaching reward for training the residual

Deep RL component. A fixed positive reward is provided

if the plug is fully inserted into the socket. In addition, a

negative reward is defined for object-object inter-penetration

during contact as IssacGym allows for significant inter-

penetration between objects as noted in IndustReal [9].

This discourages RL from exploiting the simulation during

training.

Scaling and Noise Curriculum Training While training

the RL policy in simulation, uniform noise is added to

the ground-truth poses of both the plug and the socket. A



Fig. 4: Impact of observation noise on insertion trajectories: (left)
Under no noise, both the model-based controller with and without
the residual policy succeed. Residual RL helps to shorten trajec-
tories. (center) With low observation noise, the performance of
the model-based controller declines, but in combination with the
residual policy output, the performance is preserved. (right) At high
levels of noise, the model-based controller fails, while integrating
the residual RL policy effectively compensates for the noisy pose
estimate.

curriculum training strategy is implemented, where the plug

observation noise ranges from 0mm/0◦ to nmaxmm/n◦
max,

while the scaling parameter β ranges from 0 to 1. This

curriculum adapts the difficulty of the training task by

observing the success rate of insertion across multiple trials.

It increases the difficulty if the success rate exceeds 75%
and decreases it if the success rate falls below 50%. The

noise ranges increment or decrement by st respectively. This

adaptive approach trains the Deep RL policy to increase its

contribution towards the combined action as observation un-

certainty increases. During inference, the scaling parameter

β is set to 1.

RL architecture An asymmetric actor-critic architec-

ture is employed [36]. The actor network consists of a 3-

layer Multi-Layer Perceptron (MLP) and a 2-layer Long

Short-Term Memory (LSTM). The critic network consists

of a 3-layer MLP. Both networks input the estimated plug

and socket poses, and the critic additionally receives their

ground-truth poses as privileged information. The architec-

ture is trained with Proximal Policy Optimization (PPO) [37].

Training Randomization and Noise Conditions During

training, the socket pose is randomized within a range of

±10 cm in the x-y plane, 5 cm in the z-axis, and ±5◦

in yaw. The initial plug pose varies within ±10 mm in

the x-y plane and ±15◦ across roll, yaw, and pitch, while

being positioned 10 mm above the socket’s tip. To simulate

uncertain observations, the 6D observation noise for both the

plug and the socket is sampled i.i.d at each time-step from a

uniform distribution. This noise is constrained to a maximum

of ±5 mm/5◦ for the plug and ±1 mm/1◦ for the socket. The

noise curriculum step-size is set to st = 0.1mm.

C. Sim2Real Transfer and Real-World Components

The policy was trained using IsaacGym [12] on a model

of the Franka Emika Panda robot with a task impedance

controller. The policy was then deployed zero-shot in the

real world on a Kuka iiwa 14 manipulator with a Robotiq 3-

fingered gripper, that uses a position controller. The success-

ful transfer between the disparate simulation and real-world

setup is facilitated by the definition of actions over the plug’s

SE(3) pose space.

RGB-D Pose Tracker and Pose Control M3T [38],

an RGB-D-based pose tracker, provides an estimate of the

socket’s pose at the beginning of each trial as well as

dynamically tracking the plug’s pose across the trial (at

a frequency of 30Hz). Tracking accuracy reduces as the

plug nears and engages with the socket, due to increased

occlusions. The combination of the deployed tracker with

the proposed approach, results in a high insertion ratio. Task

failures due to object-gripper slippage [9] are addressed as

the policy reasons about the SE(3) pose of the plug and

socket in a closed-loop manner.

Fig. 5: Sim2Real policy transfer with 2 known (top) and 2 unknown
at training objects (bottom).

IV. RESULTS

Evaluated Object Categories The evaluation is per-

formed across three plug-socket categories. The first category

(Fig.6 (left)) includes small cylindrical and rectangular plugs

of widths 8, 12, and 16 mm with tolerances of approximately

0.5−0.6 mm, similar to NIST Taskboard Challenge bench-

mark [39] used for evaluation by IndustReal [9]. The second

category (Fig.6 (middle)) encompasses larger cylindrical and

rectangular sockets of 50mm width categorized into three

difficulty levels based on their tolerance: Easy (∼2 mm),

Medium (∼1 mm), and Hard (∼0.1 mm). The last category

of objects (Fig.6 (right)) is only used for real-world trials,

and corresponds to five household objects that have not been

seen during training: a 2-prong charger, a 3-prong charger, a

HAN-type connector, two types of cups, and a marker with

a marker holder.

Fig. 6: (left) 3D printed objects from IndustReal [9] with 0.5−0.6

mm tolerance. (middle) 3D printed custom objects with 2 mm
(Easy), 1 mm (Medium), and 0.1 mm (Hard) tolerance. (right)
Household objects not seen during training.

Evaluation in IsaacGym Table I evaluates the proposed

method and the alternatives in simulation. The evaluation

metric is the percentage of successful insertions for different

levels of maximum perception noise nmax. Noise is sampled

uniformly around the true states up to the value nmax. Three

different values of nmax are considered for plug transla-

tional/rotational noise respectively: 0mm/0◦, 1mm/1◦, and

5mm/5◦. For all scenarios with non-zero plug observation

noise, a corresponding noise of 1mm/1◦ was added to the

socket.

The proposed method is compared against IndustReal [9],

which also zero-shot transfers from Sim2Real but is an



TABLE I: Insertion Success Rates in Simulation

Fig. 6 (left) Objects Fig. 6 (middle) Objects

Method 0mm/0o 1mm/1o 5mm/5o 0mm/0o 1mm/1o 5mm/5o

IndustReal [9] 92.40±2.30% 88.60±2.41% n.a. 26.77±13.88% 27.09±13.61% n.a.

PF + Res.RL + Curr. of [11] 98.65±0.87% 98.44±0.55% 97.50±0.65% 95.28±3.39% 92.36±4.35% 33.87±6.66%

Ours 100.0±0.0% 96.10±1.92% 96.25±1.22% 99.09±0.91% 98.28±0.65% 95.88±1.86%

exclusively RL approach. The code for AutoMate [24], an

extension of IndustReal was not available while carrying

out this evaluation. The proposed approach is also evaluated

when using an alternative curriculum that transitions from

model-based control to residual RL over time, instead of as

a function of noise [11].

While evaluating IndustReal, observation noise of 1mm/1◦

is added only to the socket pose, as IndustReal operates over

the SE(3) pose of the end-effector, whereas the proposed

method operates over the SE(3) pose of the plug and socket.

Thus, for IndustReal, the results reported with 1mm/1◦ noise

are taken directly from the publication. IndustReal could not

be evaluated with 5mm/5◦ plug noise scenario as applying

high noise to the socket’s pose artificially collapses its

performance.

For the objects in Fig. 6 (left), a single policy was trained

across all objects for a fair comparison with IndustReal. For

the objects in Fig. 6 (middle), however, a dedicated policy

was trained for each object instance to prevent the easier

geometries from inflating the success rates while inserting

the more challenging objects. The evaluation task is to

insert these objects with the smallest tolerance. Similar to

IndustReal, all policies are trained and tested over 5 random

seeds and the mean and standard deviation of the insertion

successes are reported.

IndustReal does not rely on 3D models of the plug and

socket, whereas the proposed method requires them. To

ensure a fair comparison, the plug and socket are approx-

imated by their largest common bounding shape primitive

(box, cylinder, etc.) This approximation allows the proposed

method to operate without relying on specific instance 3D

models while inserting the objects in Fig.6 (left), (Table I

- left). The Potential Field (PF) policy generates the same

actions across all geometric instances, using a 3D bounding

box that approximates actual models. Since IndustReal trains

a single policy across all these objects, this adjustment

ensures alignment in model requirements for a fair compar-

ison. Given this setup, the residual RL component should

also compensate for the lack of a known 3D object model.

This approximation applies only to the PF controller, in

simulation, where no pose estimation is required. During

Sim2Real transfer, the trackeruses the full 3D object models.

Overall, the proposed method consistently outperforms In-

dustReal in simulation. The time-based curriculum [11] also

achieves high insertion success percentages for the objects of

Fig.6(left), which verifies the efficacy of the designed model-

based controller. The proposed success-based curriculum

strategy surpasses the time-based curriculum for all for the

objects of Fig. 6(middle), and a single object of Fig. 6 (left).

As the difficulty of the task increases, it is observed that the

difference in performance between the proposed method and

the comparison points becomes more evident.

Note that the proposed residual RL policy requires only

25% to 33% of the training time/samples reported in the In-

dustReal work, without access to a handcrafted dense reward

function. Our policy was fully trained in 2-3 hours using a

single GPU, while IndustReal reports a corresponding time

of 8-10 hours.

Fig. 7: Plug insertion in simulation (top) and real world (bottom).

Ablation over Residual RL strategies: Table II evaluates

variations in implementation of the proposed approach with

progressively increasing nmax values to gauge the impact of

noise levels. The first variation corresponds to applying only

the Potential Field (PF) policy. Then, an alternative approach

is tested where RL is used to learn the weights wTr. and

wRot. that combine the attractive and repulsive components

of the PF. Following this, variations of the proposed method

are evaluated with and without the proposed success-based

curriculum strategy. All variations of the proposed approach,

where residual actions are output by the deep RL module,

achieve high insertion rates for the tasks of Fig.6 (left). The

full proposed method is the most successful while attemt-

ping the harder insertion task of objects in Fig.6 (middle).

Simultaneously applying the noise-action curriculum ensures

that for every nmax value, the RL succeeds with the true

pose as observations before progressing to more difficult task

conditions. Combining this with the proposed success-based

curriculum accelerates convergence to a insertion policy

that achieves higher success rates than non-curriculum-based

training schemes.

Real-world Experimental Setup: Experiments were con-

ducted with the Kuka iiwa14 7-DOF manipulator in a min-

imally instrumented environment. An Intel RealSense D435

RGB-D camera was utilized to monitor the scene, capturing

the manipulator as it reached for, grasped, and positioned a



TABLE II: Ablation Study

Fig. 6 (left) Objects Fig. 6 (middle) Objects

Method 0mm/0° 1mm/1° 5mm/5° 0mm/0° 1mm/1° 5mm/5°

PF 98.91±0.89% 99.84±0.35% 3.28±1.69% 97.55±1.63% 97.81±1.58% 46.51±4.28%

PF + Learned Scaling w 90.47±3.51% 94.69±2.02% 11.72±2.45 % 89.21±2.44% 90.60±3.28% 7.76±3.71%

PF + Res.RL 99.53±0.70% 100.0±0.00% 97.66±1.56% 82.37±4.48% 63.48±5.52% 61.09±45.18%

PF + Res.RL + Learned Scaling β 98.28±0.65% 82.03±2.27% 84.69±4.12% 93.90±1.50% 92.34±2.67% 70.15±2.23%

Ours 100.0±0.00% 96.10±1.92% 96.25±1.22% 99.09±0.91% 98.28±0.65% 95.88±1.86%

target object at an randomized initial pose, 10mm above the

socket. The control actions from policy then take over until

the object is inserted (or time limits exceed). The socket was

rigidly affixed to the table with heavy-load mounting tape to

immobilize it.

(a) Comparison with IndustReal (b) Custom objects

Fig. 8: Real-world evaluation: Number of successful insertions over
10 trials for different objects.

Previously Seen Objects: Comparison with IndustReal in

the real-world is shown in Fig. 8 (left). The statistics for

IndustReal are derived from the corresponding publication.

IndustReal achieves sim-to-real transfer for the same robot

model, with a low-level task impedance controller and an

instrumented setup. The proposed method achieves higher

success rate across objects with less instrumentation and

while training over a disparate setup in simulation.

Additional sim-to-real-world trials were performed on the

more challenging objects of Fig. 6 (middle). The policy

was trained only on the Hard objects in simulation and

then evaluated in the real world on the Easy, Medium

and Hard objects. Fig. 8 (right) shows that the proposed

policy successfully inserted all instances of the Cylinder

effectively (10/10 successful trials). Similar results are shown

for the Easy and Medium Rectangular objects, while for the

Hard case of 0.1mm tolerance, the recorded success rate

drops. The Triangular objects were the most challenging

with recorded success rates of 6/10, 6/10, 3/10 for the Easy,

Medium, and Hardß cases respectively. Rotational alignment

of the plugs with respect to the socket is a crucial factor for

successful insertions in very low tolerance regimes.

Unseen household objects: The proposed method was also

tested on 5 unseen real-world objects (Fig. 6 right). The

policy was trained on the objects of Fig. 6 (left) and

then tested directly on the household objects, starting from

10 randomized initial plug poses for each object. Fig. 9

shows that the proposed policy consistently achieved high

success percentages for all test objects, demonstrating robust

performance even in scenarios requiring significant force

modulation (e.g., 2-prong, 3-prong, HAN-connector). These

results show good generalization to novel geometries.

Object IndustReal Ours

2-Prong Charger 10/10 10/10

3-Prong Charger 7/10 10/10

Cups - 10/10

Marker - 10/10

HAN Connector - 9/10

Fig. 9: Success rate for unseen household objects. Number of
successful insertions over 10 real-world trials each.

V. DISCUSSION

This paper proposes a hybrid approach for robotic in-

sertion, which leverages the strengths of both model-based

planning and data-driven methods, using a potential field as

a guiding policy that works well in noise-free scenarios. RL

enables the system to adapt to noise without requiring com-

plex reward engineering. The policy is trained exclusively in

simulation using sparse rewards and transferred zero-shot to

the real world with good accuracy.

While in industrial setup 3D models may be available,

the reliance on 3D models during inference may limit the

method’s applicability in service robotics. Future work will

explore how to waive this requirement, while still achieving

high accuracy and benefiting from model-based reasoning.

Furthermore, occlusions prevented tests on small objects,

indicating the need for fine-grained sensing.

Lastly, this work aims to inform how to solve general

contact-rich manipulation tasks with tight tolerances, e.g.

top-down insertion, while minimizing human engineering.

As IndustReal demonstrated, for top-down insertion it is

possible to design useful dense rewards. But it is not obvious

how to define dense rewards that work across contact-rich

manipulation tasks. The current effort indicates that the

combination of a model-based policy and sparse reward

residual RL can provide solutions in this domain. For other

manipulation tasks, the model-based policy may be defined

after a classical motion planner first generates successful

(more complex) manipulation solutions under full observ-

ability. These model-based policies can still guide residual

RL policies that work under partial observability and noise

in the real-world.
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