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Integrating Model-based Control and RL
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Abstract— Object insertion under tight tolerances (< 1mm) is
an important but challenging assembly task as even small errors
can result in undesirable contacts. Recent efforts focused on
Reinforcement Learning (RL), which often depends on careful
definition of dense reward functions. This work proposes an ef-
fective strategy for such tasks that integrates traditional model-
based control with RL to achieve improved insertion accuracy.
The policy is trained exclusively in simulation and is zero-shot
transferred to the real system. It employs a potential field-based
controller to acquire a model-based policy for inserting a plug
into a socket given full observability in simulation. This policy is
then integrated with residual RL, which is trained in simulation
given only a sparse, goal-reaching reward. A curriculum scheme
over observation noise and action magnitude is used for training
the residual RL policy. Both policy components use as input
the SE (3) poses of both the plug and the socket and return
the plug’s SE (3) pose transform, which is executed by a
robotic arm using a controller. The integrated policy is deployed
on the real system without further training or fine-tuning,
given a visual SE (3) object tracker. The proposed solution
and alternatives are evaluated across a variety of objects and
conditions in simulation and reality. The proposed approach
outperforms recent RL-based methods in this domain and prior
efforts with hybrid policies. Ablations highlight the impact of
each component of the approach. For more information please
refer to the corresponding website.

I. INTRODUCTION

This paper addresses object insertion under tight tolerances
(< 1mm). Given visual tracking of the SE (3) object pose,
this work proposes a strategy for learning a policy for tight
insertion into a socket. A key feature of the proposed strategy
is that it first defines a model-based control solution, which
is then complemented with a residual policy trained via
Reinforcement Learning (RL) in simulation to address the
uncertainty arising from perception noise and contact dynam-
ics. The policy trained in simulation is directly deployable
on the real system without any fine-tuning.

Tight object insertion is applicable both in industrial
and domestic setups, from product part assembly to plug-
ging sockets of home devices. Thus, peg-in-hole challenges
have long been the focus of robotics research [?], [1]-[3]
as a contact-rich manipulation task. Nevertheless, the sub-
millimeter precision required to complete such tasks and the
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Fig. 1: Zero-shot transfer of the policy learned in simulation to a
real forceful insertion of an unseen plug and socket.

uncertainty regarding the objects’ states has limited the real-
world deployment of developed solutions.

Model-based efforts [3]-[6] have engineered control poli-
cies for insertion that can be effective for a well-instrumented
workspace setup. Such solutions, however, are brittle to
changes in the workspace, and do not generalize easily to
new objects. Recent data-driven approaches have attempted
to solve the problem by learning policies either from human
demonstrations [7], [8] or from online interaction via RL [9]-
[11]. They can generalize to new objects, nevertheless, they
require significant demonstration effort, reward engineering,
and incur high sample complexity. In particular, recent
work that is closely related to this paper, IndustReal [9],
demonstrated peg insertion accuracy at ~85% under varying
initial conditions and perception noise through the use of RL
in simulation given dense reward engineering and curriculum
learning. While IndustReal is a state-of-the-art result in zero-
shot transfer of the RL policy trained in simulation, success
rate can be further improved, especially for workspace setups
that are less carefully instrumented.

The current work seeks to achieve higher success rates
in tight insertion tasks while minimizing engineering effort
and enabling zero-shot transfer from simulation to reality.
This is accomplished through the integration of model-based
reasoning, RL and other key components:

1. The method begins with a straightforward potential field
policy that operates over the SE (3) pose observations of
the plug and socket. This model-based policy evaluates to
near-perfect success rates under zero observation noise in
simulation, but its success rate decreases drastically with
observation noise.

2. A residual policy is trained using a reinforcement learning
(RL) objective with only sparse, goal-reaching rewards. The
output of the residual policy is added to the output of
the model-based policy. This residual policy is trained in
a physics-based simulator (IsaacGym [12]) with noisy pose



observations. The policy is trained to correct for errors in-
troduced by perception noise and unforeseen contacts during
real-world execution. A curriculum-based training scheme
incrementally increases the difficulty of the task, adjusting
the noise level of the plug’s pose observations and the
magnitude of the residual RL policy’s actions. As noise
increases, the policy relies more on the RL component and
less on the model-based potential field, ultimately balancing
out their contributions.
3. The combined policy is then transferred directly from
simulation to a real robot without fine-tuning. A vision-based
pose estimation module detects the socket’s configuration
and tracks the plug’s pose. The SE (3) plug transforms are
returned by the policy and converted into joint controls for
the robotic arm controller.

The accompanying experiments demonstrate that this inte-
grated approach significantly improves insertion task success
rates compared to alternatives, including IndustReal [9].

II. RELATED WORK

This section reviews prior efforts on tight insertion, rang-
ing from model-based to RL-based techniques.

Model-based Insertion Strategies Classical approaches
for robotic tight insertion rely on model-based planning and
control, that vary from integrating manipulation primitives
for fine assembly [2] to assembly-by-disassembly [13] and
continuous visual servoing [14]. Continuous object tracking
has also been integrated with passively adaptive mechanical
hardware for tight insertion [3]. In general, active and passive
compliance can be beneficial for insertion [4], [S], [15].
Some efforts focus on contact-based search strategies, such
as spiral and random motions. Various frameworks have
been proposed to discover such solutions, including Finite-
State Machine Controllers [16], Task-and-Motion Planning
[17] and tactile-based behavior trees [6]. Search assembly
strategies have been evaluated given position uncertainty
estimation [18]. Socket-location probability distributions can
be estimated to devise a search trajectory [19]. Deploying
the aforementioned model-based strategies for insertion in
the real world can be challenging due to pose uncertainties
of the plug and the socket.

Machine Learning Insertion Strategies Data-driven con-
trollers can help address the above challenges. Various meth-
ods which utilize multi-modal sensory input [20]-[22], learn
robust insertion policies from human demonstrations [8],
[23] and generalize over object geometries [24]. Large-scale,
high-fidelity simulation [9] can capture the wide distribution
of contacts that may be encountered in the real world. The
learning process can be accelerated when a well-defined
curriculum is used for the RL training [25]. A related
effort learns motion primitives for insertion [26]. Contact-
rich data can be exploited by training with tactile stimuli
[27], force/torque measurements [28], or a representation of
extrinsic contacts like Neural Contact Fields (NCF) [29].

Integrated Control and ML Insertion Strategies The
aforementioned learning-based techniques, however, exhibit
high data requirements, especially for tight tolerances. To

improve sample efficiency, prior work integrates RL and
classical control by using impedance controllers for assembly
tasks [11], [30]. Using RL to learn a residual policy given
a model-based policy can improve sample complexity[31],
[32]. Furthermore, these methods can work with demon-
stration data, dynamic movement primitives [33], [34] and
contact-aware, compliant feedback-based controllers [35]. A
key advantage of the proposed approach is that it trains
entirely in simulation using a simple model-based policy,
achieving a high success rate in real-world tight tolerance
insertion tasks.

III. METHOD

The robot is tasked to insert a grasped object (plug) into
a receptacle (socket) with sub-mm tolerance placed firmly
in the workspace. At every timestep ¢t € [0,T], the state
is defined as sf, where s’ € SE(3) is the plug’s pose at
timestep ¢. Given the socket’s (static) pose s° € SE(3), the
goal pose for the plug so that it is fully inserted into the
socket is denoted by sZ. The available observations o; =
{oF, 0%} correspond to continuous estimates o’ € SE(3) of
the plug’s pose and an estimate 0° € SE(3) of the socket’s
pose given visual input. The 3D object models of both the
plug and socket are known at the time of execution and
are denoted by '’ and T'® respectively. The objective is
to train a policy m(o;), which, during inference, given an
observation oy, outputs an action a € SE(3) that corresponds
to transformations of the plug’s pose so that it eventually
reaches sZ.

Fig. 2 outlines the components of the proposed approach
for computing policy m(o;): (i) a simple model-based policy
outputs an action aff using a potential field — this is
computed at every timestep during training and inference
in simulation and reality for the target geometries I' and
I'%; (ii) a residual RL policy’s action aR" is added to the
model-based policy’s action to provide the final output action
al’; (iii) training is performed in simulation over randomized
conditions to learn aX so that al results in successful
insertions given sparse rewards and a curriculum; and, finally,
(iv) the resulting policy 7(0;) is transferred to the real system
to solve tight insertion tasks involving novel geometries
relative to those seen during training.

A. Model-based Policy

The potential-field action aff is computed given the plug
and socket’s observed poses (of,0%) and their geometries
(T'P, T%). af¥ is a combination of an action arising from
an attractive potential a, i.e., moving the plug towards the
goal sg, and an action arising from a repulsive potential afeP ,
i.e., pushing the plug away from collisions with the socket.

Attractive Component A nominal, collision-free path for
the plug is defined to connect the goal plug pose sg to a pose
with the same orientation above the socket along a straight
retraction path, as in Fig. 3. This nominal retraction path is
along the socket’s medial axis, i.e., the locus of equidistant

points from the socket’s inner walls. Then, k anchor poses
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Fig. 2: From left to right: (a) A model-based policy is defined that generates a vector field under full observability. (b-c) An RL policy is
trained in simulation given noisy pose observations to provide a residual action that is added to the output of the model-based policy. A
sparse reward is provided only upon successful insertion (d) The final policy 7 is zero-shot transferred to the real world, where observations
come from a pose tracking module given RGB-D data. A controller translates the policy into robot joint controls.

are defined along the nominal path by discretizing it. For ev-
ery possible observation of the plug’s pose o, the attractive
potential computes the closest anchor pose on the nominal
path s.. If the distance between of and s, is above a
threshold, then the attractive potential returns af = s, —of .
If the distance s.; is below a threshold, then the anchor pose
Snext along the nominal path that is closer to the goal than s
is selected as the target. In this case, the attractive potential
returns an action vector af = s,,.,:—of . Thus, the attractive
field points towards the nominal path far from it and points

more towards the goal pose close to the nominal path.
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Fig. 3: (left) The attractive potential field moves the object towards
a nominal, straight-line insertion trajectory that leads to the goal
pose; (right) the repulsive component pushes the object away from
making contact with the socket, only when the object is close to it.

Repulsive Component The closest pair of points on the
plug p!’ and the socket p7 are identified. If their distance
di = |[pf’ — p?|| falls below a threshold th, a repulsive
action is applied at the plug geometry’s origin (which here
is defined to be the plug’s bottom-center point), to move the
plug away from the socket. Otherwise, i.e., when d; > th,
the repulsive component is zero. To compute the repulsive
action, a virtual 3D force vector v; = pJ — p; is computed.
A distance-normalized version of the virtual force vector v
is defined as N (v:) and corresponds to a division of the
vector’s magnitude with the distance d;. This has the effect

that the magnitude of ' (v;) increases as the peg approaches
the socket. Then, the repulsive action is computed as a} > =
J - N(v:), where J is the Jacobian matrix that relates the
coordinates of p!” to the plug’s frame. This component moves
the plug away from contact states that prohibit task success
in tight setups. Overall, its use reduces the need to carefully
tune the hyperparameters of the Attractive Field.

Potential Field The overall action combines the attractive
and repulsive actions with a weighted sum, where weights
w?™ and wf°* € [0,1] (same for all objects) are applied to
the translational and rotational components.

B. Residual RL

The potential field actions succeed in insertion when the
ground-truth poses of the plug and socket are available,
e.g., in simulation. When these pose estimates are noisy,
as in the real world, the efficacy of the potential field-
based policy declines drastically (see Fig.4). To address this,
complementary actions a/*" € SE(3) are generated by a
residual Deep RL policy and added to the potential field
action. The RL policy accounts for uncertain estimations,
enabling successful task completion. The combined action
al' = al'F + Bal*l where 3 € [0,1] scales the contribution
of the two action components.

Sparse Rewards The model-based policy enables the use
of a sparse goal-reaching reward for training the residual
Deep RL component. A fixed positive reward is provided
if the plug is fully inserted into the socket. In addition, a
negative reward is defined for object-object inter-penetration
during contact as IssacGym allows for significant inter-
penetration between objects as noted in IndustReal [9].
This discourages RL from exploiting the simulation during
training.

Scaling and Noise Curriculum Training While training
the RL policy in simulation, uniform noise is added to
the ground-truth poses of both the plug and the socket. A
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Fig. 4: Impact of observation noise on insertion trajectories: (left)
Under no noise, both the model-based controller with and without
the residual policy succeed. Residual RL helps to shorten trajec-
tories. (center) With low observation noise, the performance of
the model-based controller declines, but in combination with the
residual policy output, the performance is preserved. (right) At high
levels of noise, the model-based controller fails, while integrating
the residual RL policy effectively compensates for the noisy pose
estimate.
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curriculum training strategy is implemented, where the plug
observation noise ranges from Omm/0° to ny,qzmm/n; .,
while the scaling parameter § ranges from 0 to 1. This
curriculum adapts the difficulty of the training task by
observing the success rate of insertion across multiple trials.
It increases the difficulty if the success rate exceeds 75%
and decreases it if the success rate falls below 50%. The
noise ranges increment or decrement by st respectively. This
adaptive approach trains the Deep RL policy to increase its
contribution towards the combined action as observation un-
certainty increases. During inference, the scaling parameter
[ is set to 1.

RL architecture An asymmetric actor-critic architec-
ture is employed [36]. The actor network consists of a 3-
layer Multi-Layer Perceptron (MLP) and a 2-layer Long
Short-Term Memory (LSTM). The critic network consists
of a 3-layer MLP. Both networks input the estimated plug
and socket poses, and the critic additionally receives their
ground-truth poses as privileged information. The architec-
ture is trained with Proximal Policy Optimization (PPO) [37].

Training Randomization and Noise Conditions During
training, the socket pose is randomized within a range of
4+10 cm in the x-y plane, 5 cm in the z-axis, and +5°
in yaw. The initial plug pose varies within =10 mm in
the x-y plane and £15° across roll, yaw, and pitch, while
being positioned 10 mm above the socket’s tip. To simulate
uncertain observations, the 6D observation noise for both the
plug and the socket is sampled i.i.d at each time-step from a
uniform distribution. This noise is constrained to a maximum
of +5 mm/5° for the plug and £1 mm/1° for the socket. The
noise curriculum step-size is set to st = 0.1lmm.

C. Sim2Real Transfer and Real-World Components

The policy was trained using IsaacGym [12] on a model
of the Franka Emika Panda robot with a task impedance
controller. The policy was then deployed zero-shot in the
real world on a Kuka iiwa 14 manipulator with a Robotiq 3-
fingered gripper, that uses a position controller. The success-
ful transfer between the disparate simulation and real-world
setup is facilitated by the definition of actions over the plug’s
SE (3) pose space.

RGB-D Pose Tracker and Pose Control M3T [38],
an RGB-D-based pose tracker, provides an estimate of the
socket’s pose at the beginning of each trial as well as

dynamically tracking the plug’s pose across the trial (at
a frequency of 30Hz). Tracking accuracy reduces as the
plug nears and engages with the socket, due to increased
occlusions. The combination of the deployed tracker with
the proposed approach, results in a high insertion ratio. Task
failures due to object-gripper slippage [9] are addressed as
the policy reasons about the SE (3) pose of the plug and
socket in a closed-loop manner.

>

Fig. 5: Sim2Real policy transfer with 2 known (top) and 2 unknown
at training objects (bottom).

IV. RESULTS

Evaluated Object Categories The evaluation is per-
formed across three plug-socket categories. The first category
(Fig.6 (left)) includes small cylindrical and rectangular plugs
of widths 8, 12, and 16 mm with tolerances of approximately
0.5—0.6 mm, similar to NIST Taskboard Challenge bench-
mark [39] used for evaluation by IndustReal [9]. The second
category (Fig.6 (middle)) encompasses larger cylindrical and
rectangular sockets of 50mm width categorized into three
difficulty levels based on their tolerance: Easy (~2 mm),
Medium (~1 mm), and Hard (~0.1 mm). The last category
of objects (Fig.6 (right)) is only used for real-world trials,
and corresponds to five household objects that have not been
seen during training: a 2-prong charger, a 3-prong charger, a
HAN-type connector, two types of cups, and a marker with
a marker holder.

] N
Eaap 7 1V

Fig. 6: (left) 3D printed objects from IndustReal [9] with 0.5 — 0.6
mm tolerance. (middle) 3D printed custom objects with 2 mm
(Easy), 1 mm (Medium), and 0.1 mm (Hard) tolerance. (right)
Household objects not seen during training.

Evaluation in IsaacGym Table I evaluates the proposed
method and the alternatives in simulation. The evaluation
metric is the percentage of successful insertions for different
levels of maximum perception noise npn,x. Noise is sampled
uniformly around the true states up to the value ny,,x. Three
different values of ny.x are considered for plug transla-
tional/rotational noise respectively: Omm/0°, Imm/1°, and
Smm/5°. For all scenarios with non-zero plug observation
noise, a corresponding noise of 1mm/1° was added to the
socket.

The proposed method is compared against IndustReal [9],
which also zero-shot transfers from Sim2Real but is an



TABLE I: Insertion Success Rates in Simulation

Fig. 6 (left) Objects

Fig. 6 (middle) Objects

Method Omm/0° Imm/1° Smm/5° 0mm/0° 1mm/1° Smm/5°
IndustReal [9] 92.40+2.30% 88.60+2.41% na. 26.77+13.88% 27.09+13.61% n.a.

PF + Res.RL + Curr. of [11]  98.6540.87% 98.4440.55% 97.504-0.65% 95.284:3.39% 92.3644.35% 33.8746.66%
Ours 100.040.0% 96.10+£1.92% 96.25+1.22% 99.09+0.91% 98.28-+0.65% 95.88+1.86%

exclusively RL approach. The code for AutoMate [24], an
extension of IndustReal was not available while carrying
out this evaluation. The proposed approach is also evaluated
when using an alternative curriculum that transitions from
model-based control to residual RL over time, instead of as
a function of noise [11].

While evaluating IndustReal, observation noise of 1mm/1°
is added only to the socket pose, as IndustReal operates over
the SE (3) pose of the end-effector, whereas the proposed
method operates over the SE (3) pose of the plug and socket.
Thus, for IndustReal, the results reported with 1mm/1° noise
are taken directly from the publication. IndustReal could not
be evaluated with Smm/5° plug noise scenario as applying
high noise to the socket’s pose artificially collapses its
performance.

For the objects in Fig. 6 (left), a single policy was trained
across all objects for a fair comparison with IndustReal. For
the objects in Fig. 6 (middle), however, a dedicated policy
was trained for each object instance to prevent the easier
geometries from inflating the success rates while inserting
the more challenging objects. The evaluation task is to
insert these objects with the smallest tolerance. Similar to
IndustReal, all policies are trained and tested over 5 random
seeds and the mean and standard deviation of the insertion
successes are reported.

IndustReal does not rely on 3D models of the plug and
socket, whereas the proposed method requires them. To
ensure a fair comparison, the plug and socket are approx-
imated by their largest common bounding shape primitive
(box, cylinder, etc.) This approximation allows the proposed
method to operate without relying on specific instance 3D
models while inserting the objects in Fig.6 (left), (Table I
- left). The Potential Field (PF) policy generates the same
actions across all geometric instances, using a 3D bounding
box that approximates actual models. Since IndustReal trains
a single policy across all these objects, this adjustment
ensures alignment in model requirements for a fair compar-
ison. Given this setup, the residual RL component should
also compensate for the lack of a known 3D object model.
This approximation applies only to the PF controller, in
simulation, where no pose estimation is required. During
Sim2Real transfer, the trackeruses the full 3D object models.

Overall, the proposed method consistently outperforms In-
dustReal in simulation. The time-based curriculum [11] also
achieves high insertion success percentages for the objects of
Fig.6(left), which verifies the efficacy of the designed model-
based controller. The proposed success-based curriculum
strategy surpasses the time-based curriculum for all for the
objects of Fig. 6(middle), and a single object of Fig. 6 (left).
As the difficulty of the task increases, it is observed that the

difference in performance between the proposed method and
the comparison points becomes more evident.

Note that the proposed residual RL policy requires only
25% to 33% of the training time/samples reported in the In-
dustReal work, without access to a handcrafted dense reward
function. Our policy was fully trained in 2-3 hours using a
single GPU, while IndustReal reports a corresponding time
of 8-10 hours.

Fig. 7: Plug insertion in simulation (top) and real world (bottom).

Ablation over Residual RL strategies: Table II evaluates
variations in implementation of the proposed approach with
progressively increasing nm.x values to gauge the impact of
noise levels. The first variation corresponds to applying only
the Potential Field (PF) policy. Then, an alternative approach
is tested where RL is used to learn the weights w’™ and
w’° that combine the attractive and repulsive components
of the PF. Following this, variations of the proposed method
are evaluated with and without the proposed success-based
curriculum strategy. All variations of the proposed approach,
where residual actions are output by the deep RL module,
achieve high insertion rates for the tasks of Fig.6 (left). The
full proposed method is the most successful while attemt-
ping the harder insertion task of objects in Fig.6 (middle).
Simultaneously applying the noise-action curriculum ensures
that for every mp.,x value, the RL succeeds with the true
pose as observations before progressing to more difficult task
conditions. Combining this with the proposed success-based
curriculum accelerates convergence to a insertion policy
that achieves higher success rates than non-curriculum-based
training schemes.

Real-world Experimental Setup: Experiments were con-
ducted with the Kuka iiwal4 7-DOF manipulator in a min-
imally instrumented environment. An Intel RealSense D435
RGB-D camera was utilized to monitor the scene, capturing
the manipulator as it reached for, grasped, and positioned a



TABLE II: Ablation Study

Fig. 6 (left) Objects

Fig. 6 (middle) Objects

Method Omm/0° Imm/1° Smm/5° Omm/0° Imm/1° Smm/5°
PF 98.91:£0.89% 99.84:£0.35% 3.28+1.69% 97.55+1.63% 97.81£1.58% 46.51£4.28%
PF + Learned Scaling w 90.47+3.51% 94.69+2.02% 11.7242.45 % 89.2142.44% 90.60+3.28% 7.76+3.71%
PF + Res.RL 99.53+0.70% 100.0+0.00% 97.66-1.56% 82.3744.48% 63.48+5.52% 61.09+45.18%
PF + Res.RL + Learned Scaling 3 98.28+0.65% 82.03+2.27% 84.69+4.12% 93.90+1.50% 92.3442.67% 70.1542.23%
Ours 100.0+0.00% 96.10£1.92% 96.25+1.22% 99.09-£0.91% 98.28£0.65% 95.88+1.86%
target object at an randomized initial pose, 10mm above the Object IndustReal Ours
socket. The control actions from policy then take over until 2-Prong Charger 10/10 10/10
the object is inserted (or time limits exceed). The socket was 3-Prong Charger 7/10 10/10
rigidly affixed to the table with heavy-load mounting tape to Cups I T 10/10
immobilize it. Marker 10/10
IndustReal Objects Custom Objects HAN Connector _ 9/10
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Fig. 8: Real-world evaluation: Number of successful insertions over
10 trials for different objects.
Previously Seen Objects: Comparison with IndustReal in
the real-world is shown in Fig. 8 (left). The statistics for
IndustReal are derived from the corresponding publication.
IndustReal achieves sim-to-real transfer for the same robot
model, with a low-level task impedance controller and an
instrumented setup. The proposed method achieves higher
success rate across objects with less instrumentation and
while training over a disparate setup in simulation.
Additional sim-to-real-world trials were performed on the
more challenging objects of Fig. 6 (middle). The policy
was trained only on the Hard objects in simulation and
then evaluated in the real world on the Easy, Medium
and Hard objects. Fig. 8 (right) shows that the proposed
policy successfully inserted all instances of the Cylinder
effectively (10/10 successful trials). Similar results are shown
for the Easy and Medium Rectangular objects, while for the
Hard case of 0.1mm tolerance, the recorded success rate
drops. The Triangular objects were the most challenging
with recorded success rates of 6/10, 6/10, 3/10 for the Easy,
Medium, and Hard$ cases respectively. Rotational alignment
of the plugs with respect to the socket is a crucial factor for
successful insertions in very low tolerance regimes.
Unseen household objects: The proposed method was also
tested on 5 unseen real-world objects (Fig. 6 right). The
policy was trained on the objects of Fig. 6 (left) and
then tested directly on the household objects, starting from
10 randomized initial plug poses for each object. Fig. 9
shows that the proposed policy consistently achieved high
success percentages for all test objects, demonstrating robust
performance even in scenarios requiring significant force
modulation (e.g., 2-prong, 3-prong, HAN-connector). These
results show good generalization to novel geometries.

Fig. 9: Success rate for unseen household objects. Number of
successful insertions over 10 real-world trials each.

V. DISCUSSION

This paper proposes a hybrid approach for robotic in-
sertion, which leverages the strengths of both model-based
planning and data-driven methods, using a potential field as
a guiding policy that works well in noise-free scenarios. RL
enables the system to adapt to noise without requiring com-
plex reward engineering. The policy is trained exclusively in
simulation using sparse rewards and transferred zero-shot to
the real world with good accuracy.

While in industrial setup 3D models may be available,
the reliance on 3D models during inference may limit the
method’s applicability in service robotics. Future work will
explore how to waive this requirement, while still achieving
high accuracy and benefiting from model-based reasoning.
Furthermore, occlusions prevented tests on small objects,
indicating the need for fine-grained sensing.

Lastly, this work aims to inform how to solve general
contact-rich manipulation tasks with tight tolerances, e.g.
top-down insertion, while minimizing human engineering.
As IndustReal demonstrated, for top-down insertion it is
possible to design useful dense rewards. But it is not obvious
how to define dense rewards that work across contact-rich
manipulation tasks. The current effort indicates that the
combination of a model-based policy and sparse reward
residual RL can provide solutions in this domain. For other
manipulation tasks, the model-based policy may be defined
after a classical motion planner first generates successful
(more complex) manipulation solutions under full observ-
ability. These model-based policies can still guide residual
RL policies that work under partial observability and noise
in the real-world.
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