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Abstract

Language recognition tasks are fundamental in

natural language processing (NLP) and have been

widely used to benchmark the performance of

large language models (LLMs). These tasks also

play a crucial role in explaining the working mech-

anisms of transformers. In this work, we focus on

two representative tasks in the category of regular

language recognition, known as ‘even pairs’ and

‘parity check’, the aim of which is to determine

whether the occurrences of certain subsequences

in a given sequence are even. Our goal is to ex-

plore how a one-layer transformer, consisting of

an attention layer followed by a linear layer, learns

to solve these tasks by theoretically analyzing its

training dynamics under gradient descent. While

even pairs can be solved directly by a one-layer

transformer, parity check need to be solved by

integrating Chain-of-Thought (CoT), either into

the inference stage of a transformer well-trained

for the even pairs task, or into the training of a

one-layer transformer. For both problems, our

analysis shows that the joint training of attention

and linear layers exhibits two distinct phases. In

the first phase, the attention layer grows rapidly,

mapping data sequences into separable vectors.

In the second phase, the attention layer becomes

stable, while the linear layer grows logarithmi-

cally and approaches in direction to a max-margin

hyperplane that correctly separates the attention

layer outputs into positive and negative samples,

and the loss decreases at a rate of O(1/t). Our

experiments validate those theoretical results.
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1. Introduction

Transformers (Vaswani et al., 2017) have become founda-

tional in modern machine learning, revolutionizing natural

language processing (NLP) tasks such as language model-

ing (Devlin et al., 2018), translation (Wang et al., 2019),

and text generation (Radford et al., 2019). Among these,

language recognition tasks are fundamental to NLP and

are widely used to benchmark the empirical performance of

large language models (LLMs) (Bhattamishra et al., 2020;

Deletang et al., 2023). Beyond their practical applications,

these tasks hold significant potential for uncovering the un-

derlying working mechanism of transformers. A growing

body of research has explored the expressiveness and learn-

ability of transformers in these settings (Strobl et al., 2024;

Hahn & Rofin, 2024; Chiang & Cholak, 2022; Merrill &

Sabharwal, 2023; Hahn, 2020). Despite this, there has been

little effort to understand transformers’ training dynamics

in language recognition tasks.

In this work, we take the first step towards bridging this gap

by focusing on two fundamental pattern recognition tasks

in formal language recognition, known as ‘even pairs’ and

‘parity check’ problems, and explore how transformers can

be trained to learn these tasks from a theoretical perspective.

Specifically, the objective of the ‘even pairs’ problem is to

determine whether the total number of specific subsequences

in a binary sequence is even, and the objective of the ‘parity

check’ problem is to determine whether the total occurrence

of a single pattern is even. These tasks are particularly

compelling for studying transformers because they require

the model to recognize parity constraints and capture global

dependencies across long sequences, which are essential

for real-world applications such as syntax parsing and error

detection in communication systems.

For the two problems of our interest, the even pairs prob-

lem has not been studied before theoretically. The parity

check problem has recently been studied in Kim & Suzuki

(2024b); Wen et al. (2024), which characterized the train-

ing dynamics of CoT for learning parity. However, Kim &

Suzuki (2024b) analyzed the training of an attention layer

only, leaving more general characterization of joint train-

ing of feed-forward and attention layers yet to be studied.

Wen et al. (2024) analyzed three iteration steps in training
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without establishing the convergence of the entire training

process. Our goal is to develop a more general training

dynamics characterization, including joint training of the

attention and linear feed-forward layers, the convergence

rate of the loss functions, and the implicit bias of the train-

ing parameters. Furthermore, while both the ‘even pairs’

and ‘parity check’ problems are classification tasks, existing

theoretical studies on transformers in classification settings

(Li et al., 2023; Tarzanagh et al., 2023b;a; Vasudeva et al.,

2024; Deora et al., 2023; Yang et al., 2024a; Magen et al.,

2024; Jiang et al., 2024; Sakamoto & Sato, 2024) have pri-

marily focused on cases where class distinctions are based

on identifiable features. In contrast, these language recog-

nition tasks will pose unique challenges, which require the

transformer to leverage its attention mechanism to uncover

intricate dependencies inherent in data sequences. By ex-

ploring these tasks, our work will offer new insights into the

fundamental mechanism of transformers.

In this work, we investigate how a one-layer transformer,

consisting of an attention layer followed by a linear layer,

learns to perform the ‘even pairs’ and ‘parity check’ tasks.

We will theoretically analyze the model dynamics during

the training process of gradient descent, and examine how

transformer parameters will be guided to converge to a so-

lution with implicit bias. Here, we will jointly analyze the

training process of the attention layer and linear layer, which

will be significantly different from most existing analysis

of the training dynamics of transformers for classification

problems, where joint training is not studied (Huang et al.,

2024a; Tarzanagh et al., 2023b; Kim & Suzuki, 2024b; Li

et al., 2024b).

Our major contributions are four-fold:

First, for the even pairs problem, we identify two distinct

learning phases. In Phase 1, both linear and attention layers

grow rapidly, inducing separable outputs of the attention

layer. In Phase 2, the attention layer remains almost un-

changed, while the dynamics of the linear layer is governed

by an implicit bias, which converges in direction to the

max-margin hyperplane that correctly separates the atten-

tion layer’s outputs into positive and negative samples. We

also show that the loss function decays to the global min-

imum sublinearly in time. To the best of our knowledge,

this is the first theoretical study on the training dynamics of

transformers for the even pairs problem.

Second, we innovatively leverage the insights from the even

pairs problem and Chain-of-Thought (CoT) to solve the par-

ity check problem through two different approaches. In the

first approach, we introduce truncated CoT into the infer-

ence stage of a trained transformer. We demonstrate that a

transformer, well-trained on the even pairs problem but with-

out CoT training, can successfully solve the parity check

problem in a zero-shot manner (without any additional train-

ing) using truncated CoT inference. Such a surprising result

is based on the intricate connection between the even pairs

problem and the parity check problem. For the second ap-

proach, it trains a one-layer transformer with CoT under

teacher forcing, where we further include the training loss

of even pairs to stabilize the training process. We show

that with a two-phase training process, similarly to that of

the even pairs problem, gradient descent provably renders a

one-layer transformer that can solve parity check via CoT.

Third, we introduce a novel analytical technique for study-

ing joint training of attention and linear layers. Specifically,

we employ higher-order Taylor expansions to precisely an-

alyze the coupling between gradients of two layers and its

impact on parameter updates in Phase 1. Then we incorpo-

rate implicit bias principles to further characterize the train-

ing dynamics in Phase 2. Since all parameters are actively

updated, we must bound the perturbations in the attention

layer and analyze their effects on the linear layer. This is

achieved by carefully designing the scaling factor in the

attention mechanism, which not only stabilizes training but

also underscores its critical role in transformer architectures.

Finally, we conduct experiments to validate our theoreti-

cal findings, demonstrating consistent parameter growth,

alignment behavior, and loss convergence.

2. Related Work

Due to the recent extensive theoretical studies of transform-

ers from various perspectives, the following summary will

mainly focus on the training dynamics characterization for

transformers, which is highly relevant to this paper.

Learning regular language recognition problems via

transformers. Regular language recognition tasks are fun-

damental to NLP and are widely used to benchmark the em-

pirical performance of large language models (LLMs) (Bhat-

tamishra et al., 2020; Deletang et al., 2023). Theoreti-

cal understanding of transformers for solving these tasks

are mainly focusing on the expressiveness and learnabil-

ity Strobl et al. (2024); Hahn & Rofin (2024); Chiang &

Cholak (2022); Merrill & Sabharwal (2023); Hahn (2020).

Among these studies, several negative results highlight the

limitations of transformers in learning problems such as par-

ity checking. Notably, Merrill & Sabharwal (2023) demon-

strated that chain-of-thought (CoT) reasoning significantly

enhances the expressive power of transformers. We refer

readers to the comprehensive survey by Strobl et al. (2024)

for a detailed discussion on the expressiveness and learn-

ability of transformers. Regarding the study on the training

transformers, Kim & Suzuki (2024b); Wen et al. (2024)

showed that it is impossible to successfully learn the parity

check problem by applying transformer once. They further

developed CoT method and showed that attention model
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with CoT can be trained to provably learn parity check. Dif-

ferently from Kim & Suzuki (2024b), our work analyzed

the softmax attention model jointly trained with a linear

layer with CoT for learning parity check. Our CoT training

design is also different from that in Kim & Suzuki (2024b).

Further, Wen et al. (2024) studied the sample complexity

of training a one-layer transformer for learning complex

parity problems. They analyzed three steps in the training

procedure without establishing the convergence of the entire

training process, which is one of our focuses here.

Training dynamics of transformers with CoT. CoT is

a powerful technique that enables transformers to solve

more complex tasks by breaking down problem-solving into

intermediate reasoning steps (Wei et al., 2022; Kojima et al.,

2022). Recently, training dynamics of transformers with

CoT has been studied in Kim & Suzuki (2024b); Wen et al.

(2024) for the parity problems (as discussed above) and in

Li et al. (2024a) for in-context supervised learning.

Training dynamics of transformers for classification

problems. A recent active line of research has focused

on studying the training dynamics of transformers for clas-

sification problems. Tarzanagh et al. (2023b;a) showed that

the training dynamics of an attention layer for a classifi-

cation problem is equivalent to a support vector machine

problem. Further, Vasudeva et al. (2024) established the

convergence rate for the training of a one-layer transformer

for a classification problem. Li et al. (2023) characterized

the training dynamics of vision transformers and provide a

converging upper bound on the generalization error. Deora

et al. (2023) studied the training and generalization error

under the neural tangent kernel (NTK) regime. Yang et al.

(2024a) characterized the training dynamics of gradient flow

for a word co-occurrence recognition problem. Magen et al.

(2024); Jiang et al. (2024); Sakamoto & Sato (2024) studied

the benign overfitting of transformers in learning classifica-

tion tasks. Although the problems of our interest here (i.e.,

even pairs and parity check) generally fall into the classifica-

tion problem, these language recognition tasks pose unique

challenges that require transformer to leverage its attention

mechanism to uncover intricate dependencies inherent in

data sequences, which have not been addressed in previous

studies of the conventional classification problems.

Training dynamics of transformers for other problems.

Due to the rapidly increasing studies in this area, we include

only some example papers in each of the following topics.

In order to understand the working mechanism of transform-

ers, training dynamics has been intensively investigated

for various machine learning problems, for example, in-

context learning problems in Ahn et al. (2024); Mahankali

et al. (2023); Zhang et al. (2023); Huang et al. (2023); Cui

et al. (2024); Cheng et al. (2023); Kim & Suzuki (2024a);

Nichani et al. (2024); Chen et al. (2024); Chen & Li (2024);

Yang et al. (2024b), next-token prediction (NTP) in Tian

et al. (2023a;b); Li et al. (2024b); Huang et al. (2024a);

Thrampoulidis (2024), unsupervised learning in Huang et al.

(2024b), regression problem in Boix-Adsera et al. (2023),

etc. Those studies for the classification problem and CoT

training have been discussed above.

Implicit bias. Our analysis of the convergence guarantee

develops implicit bias of gradient descent for transformers.

Such characterization has been previously established in

Soudry et al. (2018); Nacson et al. (2019); Ji & Telgarsky

(2021); Ji et al. (2021) for gradient descent-based optimiza-

tion and in Phuong & Lampert (2020); Frei et al. (2022);

Kou et al. (2024) for training ReLU/Leaky-ReLU networks

on orthogonal data. More studies along this line can be

found in a comprehensive survey Vardi (2023). Most rele-

vant to our study are the recent works Huang et al. (2024a)

and Tarzanagh et al. (2023b;a); Sheen et al. (2024), which

established implicit bias for training transformers for next-

token prediction and classification problems, respectively.

Differently from those work on transformers, our study here

focuses on the even pairs and parity check problems, which

have unique structures not captured in those work.

3. Problem Formulation

Notations. All vectors considered in this paper are column

vectors. For a matrix W , ∥W∥ represents its Frobenious

norm. For a vector v, we use [v]i to denote the i-th coor-

dinate of v. We use {ei}i∈[d] to denote the canonical basis

of Rd. We use ϕ(v) to denote the softmax function, i.e.,

[ϕ(v)]i = exp(vi)/
∑

j exp(e
¦
j v), which can be applied

to any vector with arbitrary dimension. The inner product

ïA,Bð of two matrices or vectors A,B equals Trace(AB¦)
Trace(AB¦). For a set X , we use Xn to denote the Carte-

sian product of n copies of X , and Xfn = ∪n
k=1X k.

In this work, we consider pattern recognition tasks in the

context of formal language recognition, which challenges

the ability of machine learning models such as transformers

to recognize patterns over long sequences.

First, we introduce the general pattern recognition task in

binary sequence. The set of all binary sequences is denoted

by {a,b}fLmax , where Lmax is the maximum length of

the sequence. The pattern of interest is a set of sequences

P = {p1, . . . , pn} ¢ {a,b}fLmax . Given a sequence X
and a pattern P , let NP be the number of total matching

subsequences in X , where a subsequence of X matches if

it equals some pi ∈ P . The pattern recognition task is to

determine whether NP satisfies a predefined condition, such

as whether NP is even.

In the following, we describe two representative tasks that

are particularly interesting in the study of regular language

recognition due to their simple formulation and inherent
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learning challenges. More details about formal language

recognition (which includes regular and non-regular lan-

guage recognition) can be found in Deletang et al. (2023).

Even pairs. The pattern of interest is P = {ab,ba}. For

example, in the sequence X = aabba, there is one ab and

one ba, resulting in a total of two, which is even.

Parity check. The pattern of interest is P = {b}. In other

words, this task is simply to determine whether the number

of bs in a binary string X ∈ {a,b}L is even or odd.

Although even pairs may appear to involve more complex

pattern recognition than parity check, it can be shown that

this task is equivalent to determining whether the first and

last tokens of the sequence are equal, which can be solved

in O(1) time (Deletang et al., 2023). However, parity check

usually requires O(L) time complexity given an L-length

sequence since we need to check every token at least once.

In this work, our aim is to apply transformer models to solve

these problems while leveraging these tasks to understand

the underlying working mechanisms of transformer models.

Embedding strategy. We employ the following embedding

strategy for each input binary sequence. For a token a at

position ℓ, its embedding is given by Ea
ℓ = e2ℓ−1, and for

a token b at position ℓ, its embedding is given by Eb
ℓ =

e2ℓ. Such an embedding ensures that token embeddings

are orthogonal to each other, which is a widely adopted

condition for transformers.

One-layer transformer. We consider a one-layer trans-

former, denoted as T¹ : R
d×Lmax → R, which takes a

sequence of token embeddings as input and outputs a scaler

value, and ¹ includes all trainable parameters of the trans-

former. Specifically, let X = [x1, . . . , xL] denote the

input sequence, where xℓ ∈ R
d for each 1 f ℓ f L

and L is the length of the sequence. Let the value, key

and query matrices be denoted by Wv,Wk,Wq ∈ R
d×d.

Then, the attention layer is given by Wv

∑L
ℓ=1 xℓφℓ, where

φℓ = [ϕ(X¦WkWqxL/¼)]ℓ, and ¼ ∈ R is a scaling pa-

rameter. Hence, the one-layer transformer has the form

T¹(X) = WuWv

∑L
ℓ=1 xℓφℓ, where Wu ∈ R

1×d de-

notes the linear feed-forward layer. For simplicity, we

reparameterize WuWv as u and WkWq as W , as com-

monly taken in Huang et al. (2023); Tian et al. (2023a);

Li et al. (2024b). Hence, the transformer is reformulated as

T¹(X) = u¦∑L
ℓ=1 xℓφℓ, where φℓ = [ϕ(X¦WxL/¼)]ℓ,

and all trainable parameters are captured in ¹ = (u,W ).
We will call W and u respectively as attention and linear

layer parameters.

When the transformer is used to for the regular language

recognition tasks, for a given input X , it will take the sign

(i.e., 1 or −1) of the transformer output T¹(X) as the pre-

dicted label. For the even pairs task, a positive predicted

label 1 means the input sequence contains even pairs, and

−1 otherwise. Similarly, for the parity check task, a positive

predicted label 1 means the input sequence contains even

number of the pattern of interest, and −1 otherwise.

Learning objective. We adopt the logistic loss for these

binary classification tasks. We denote I = ∪Lmax

L=1 IL as the

training dataset, where IL denotes the set of all length-L se-

quences. An individual training data consists of a sequence

X(n) = [x
(n)
1 , . . . , x

(n)
L ] and a label yn ∈ {1,−1}, where

n is the index of the data. With slight abuse of notation,

we also use the notation n ∈ IL to indicate that X(n) has

length L. Then, the loss function can be expressed as:

L(u,W )

=
∑Lmax

L=1
1

|IL|
∑

n∈IL
log
(

1 + exp
(

−ynT¹(X
(n))
))

.

The use of 1/|IL| in the loss function ensures that sequences

of different lengths contribute equally to training.

Our goal is to train the transformer to minimize the loss

function, i.e., to solve the problem min¹=(u,W ) L(u,W ).
We adopt a 2-phase gradient descent (GD) to minimize the

loss function L(u,W ) as follows. We adopt zero initializa-

tion, i.e., ¹0 = 0. Then at early steps t f t0 (to be specified

later), we update ¹ = (u,W ) as follows:

ut+1 = ut − ¸∇uLt, Wt+1 = Wt − ¸¼∇WLt,

where ¸ is the learning rate, and Lt is the abbreviation of

L(ut,Wt).

After step t0, we update ¹ as follows:

ut+1 = ut − ¸∇uLt, Wt+1 = Wt − ¸∇WLt

We remark that such a learning rate schedule can be viewed

as an approximation of GD with decaying learning rate or

Adam (Kingma, 2014). To be more specific, Adam updates

the parameter in the form of ¹t+1 = ¹t − ¸mt/
√
vt + ϵ,

where mt ≈ gt, vt ≈ g2t , ϵ is a positive constant, and gt is

the gradient. Thus, during the early training steps, Adam’s

update behaves closely to the high learning rate regime in

GD. In the subsequent training steps when the gradient is

relatively small, Adam behaves similar to vanilla GD due to

the constant ϵ in the denominator
√
vt + ϵ.

4. Even Pairs Problem

In this section, we characterize the training dynamics of a

one-layer transformer for learning the even pairs task. For

simplicity, we choose IL = {a,b}L.
Key challenges. The key challenge in this analysis arises

from the joint training of the linear and attention layers. The

intertwined updates of these layers create a coupled stochas-

tic process, complicating the analysis of parameter evolution.
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Furthermore, since every token contributes to both positive

and negative samples, this leads to gradient cancellation

during analysis, making the analysis more difficult.

To address the above challenges, we employ higher-order

Taylor expansions to precisely analyze the coupling between

gradients of two layers and its impact on parameter updates.

We next present our results for these two phases and explain

the insights that these results imply. Before we proceed, we

introduce the following concepts.

Token score. We define the token score of Ew
ℓ , w ∈ {a, b}

as ïut, E
w
ℓ ð, which quantifies the alignment between the

token embedding and the linear layer.

Attention score. For a given attention layer Wt, we define

the (raw) attention score of Ew
ℓ as ïEw

ℓ ,WtE
w′

L ð, w, w′ ∈
{a, b}. For token xℓ, its attention weight is given by

φℓ = [ϕ(X¦WtxL)]ℓ, which is proportional to the exponen-

tial of its attention score. Importantly, it is the differences

between the attention scores of different tokens that govern

the attention weight distribution.

Relationship with the transformer output. Consequently,

the transformer output T(X) for an input X is a weighted

average of the token scores of xℓ, with the attention weights

φℓ serving as the weighting factors.

4.1. Phase 1: Rapid Growth of Token and Attention

Scores

In Phase 1 of training, the linear and attention layers exhibit

mutually reinforcing dynamics, with the featuring dynamics

captured in the following theorem.

Theorem 4.1 (Phase 1). Let −w denote the flip of token

w ∈ {a,b}. Choose ¼ = Ω(L2
max), t0 = O(1/(¸Lmax)),

and ¸ = O(min{1/Lmax, 1/¼
2/3}). Then, for all t f t0,

the parameters evolve as follows:

(1) The dynamics of linear layer u is governed by the fol-

lowing inequalities.

ïut, E
w
1 ð = Θ(¸t), ∀w,

ïut, E
w
ℓ ð = −Θ(¸2t2), ∀ℓ g 2, ∀w,

ïut, E
w
2 − Ew

ℓ ð f −Ω(¸2t2), ∀ℓ g 3, ∀w.

(2) The dynamics of attention layer W is governed by the

following inequalities. For any length L f Lmax, we have

ïEw
1 − Ew′

ℓ ,WtE
w
L ð g Ω(¸2t2), ∀ℓ g 2, ∀w,w′

ïEw′

ℓ − E−w
1 ,WtE

w
L ð g Ω(¸2t2), ∀ℓ g 2, ∀w,w′

ïEw′

2 − Ew′′

ℓ ,WtE
w
L ð g Ω(¸4t), ∀ℓ g 3, ∀w,w′, w′′.

Theorem 4.1 characterizes the following featuring dynamics

of the linear and attention layers in Phase 1. (a) The first

equation of part (1) indicates that there is a rapid growth of

the first token score. This is because sequences of length

L = 1 (which always have positive labels) dominate the

early training, and create an initial bias for the first token. (b)

The first two equations of part (2) indicate that the attention

weight of the first token increases in positive samples (where

last token Ew
L and first token Ew

1 share the same value w),

and is suppressed in negative samples. In other words,

the attention layer allocates more weights on non-leading

tokens (with ℓ g 2) in negative samples. Consequently,

the transformer output of the negative samples relies more

on the token scores at non-leading positions. In order to

minimize the loss, those token scores become increasingly

negative, as shown in the second equation of part (1). (c) The

last equation of part (1) indicates that the token score of the

second token decreases faster than other non-leading tokens,

as it appears more frequently across samples. This rapid

token score decrease drives the attention layer to allocate

more attention weight on it over other non-leading tokens

to reduce the loss, as shown in the last equation in part (2).

Due to the fact that attention weight is determined by the

differences between attention scores, Theorem 4.1 suggests

that at the end of Phase 1, the attention layer focuses on the

first token (with φ
(n,t0)
1 > 1/L for length-L samples) in pos-

itive samples, and on the second token (with φ
(n,t0)
2 > 1/L

for length-L samples) in negative samples. Hence, the atten-

tion layer maps data samples to satisfy a separable property.

To be more specific, we first introduce the definition of

separable data.

Definition 4.2 (Separable dataset). A dataset of d-

dimensional vectors and their labels {(v(n), yn)}Nn=1 are

separable if there exists u ∈ R
d such that

ïu, ynv(n)ð > 0, ∀1 f n f N.

Intuitively speaking, a dataset is separable indicates that

there exists a hyperplane that can correctly separate the

positive and negative samples into two half-spaces.

At the end of Phase 1, the attention layer Wt0 maps data

samples to
∑L

ℓ=1 x
(n)
ℓ φ

(n,t0)
ℓ . It can be shown that if the

linear layer has parameter u = Ea
1 + Eb

1 − Ea
2 − Eb

2 , then,

the predicted label of the data sample, which is the sign of

u¦∑L
ℓ=1 x

(n)
ℓ φ

(n,t0)
ℓ , matches with the ground-truth label

yn, i.e., ïu, yn
∑L

ℓ=1 x
(n)
ℓ φ

(n,t0)
ℓ ð > 0 for all n. Thus, we

have the following proposition.

Proposition 4.3. Let v(n) =
∑L

ℓ=1 x
(n)
ℓ φ

(n,t0)
ℓ with label

yn. Then, at the end of phase 1, the dataset {(v(n), yn)} is

separable by u = Ea
1 + Eb

1 − Ea
2 − Eb

2 .

We note that at the end of Phase 1, the linear layer is trained

to be ut0 , which may not necessarily separate the attention

layer’s outputs. In fact, the continual training into Phase

2 will further update the linear layer, so that the attention

layer’s outputs can be separated by it.
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4.2. Phase 2: Margin Maximization and Implicit Bias

In this phase, the transformer shifts focus from rapid feature

alignment to margin maximization, driven by the implicit

bias of gradient descent.

Since the outputs of the attention layer at the end of Phase 1

become separable, we can define the max-margin solution

of the corresponding separating hyperplane as follows.

u∗
EP = argmin ∥u∥

s.t.
〈

u, yn
∑L

ℓ=1 x
(n)
ℓ φ

(n,t0)
ℓ

〉

g 1, ∀n ∈ I.

The following theorem characterizes the training dynamics

of Phase 2, which shows that the linear layer will converge

to the above max-margin solution in direction.

Theorem 4.4 (Phase 2). There exists a constant t2 = Ω(1)
and T = O(¼2/3/(¸Lmax)), such that for t2 f t f T , we

have ∥ut∥ g Ω(log t), and

〈

ut

∥ut∥ ,
u∗

EP

∥u∗

EP ∥

〉

g 1− 1
2

(

1
6∥u∗

EP ∥ − 1
∥ut∥

)2

.

Moreover, we have ∥Wt −Wt0∥ f O(1).

Theorem 4.4 characterizes the following dynamics of the

linear and attention layers in Phase 2. (a) The norm ∥ut∥ of

the linear layer continues to grow logarithmically to increase

the classification margin. (b) The updates of the attention

layer Wt is negligible due to the scaling factor ¼, as indi-

cated by ∥Wt −Wt0∥ f O(1). Hence, attention patterns at

the end of Phase 1 persist, i.e., in both positive and negative

samples, the attention scores of the first and second tokens

still dominate, respectively. (c) The linear layer u enters a

regime governed by implicit bias, which converges to the

max-margin solution for separating the attention layer’s out-

puts. This dynamics is also observed in an empirical work

(Merrill et al., 2021).

Theorem 4.5 (Convergence of loss). For t f T , we have

Lt = O
(

Lmax∥u∗

EP ∥2

¸
√
t

)

.

Theorem 4.5 indicates that the loss converges to O
(

¸1/2

¼1/3

)

.

Therefore, as long as the scaling factor ¼ = Ω(¸
2/3

ϵ3 ), the

loss can achieve arbitrarily small value ϵ. The full proof in

this section can be found in Appendix B.

In summary, the trained transformer utilizes its attention to

decide if two tokens are equal and the linear layer increases

the classification margin and enable fast loss decay.

5. Parity Check Problem

The parity check problem is generally considered to be more

difficult than the even pairs problem. For instance, it has

been shown in Pérez et al. (2021) that it is impossible to

recognize parity by applying transformer once. However,

it has recently been shown in Kim & Suzuki (2024b) that

chain-of-thought (CoT) can serve as an advanced approach

to solving such a task.

In this section, we provide two new approaches to solv-

ing the parity check problem, by integrating CoT with the

solution for the even pairs problem studied in Section 4.

The first approach solves parity check by applying the one-

layer transformer well-trained for even pairs via a truncated

CoT-type inference, which does not require any additional

training. The second approach trains a one-layer transformer

with CoT under teacher forcing, where GD provably renders

a transformer that solves the parity check problem.

5.1. Approach 1: Inference via Truncated CoT

Inspired by the 2-state machine, we show that by simply tak-

ing inference via truncated CoT, the one-layer transformer

well-trained for the even pairs problem can solve parity

check efficiently without additional training.

To formalize this, we first outline the method to solve parity

check through the lens of a 2-state finite automaton. Recall

that the parity check problem is to determine whether the

number of bs in a binary string X ∈ {a,b}L is even or

odd. Given an X = w1w2 · · ·wL, the automaton initializes

its state s1 to w1 and updates st for t g 2 sequentially as

follows. At each step t g 2, the state transits to st+1 = a

if st = wt+1, or st+1 = b if st ̸= wt+1. For example,

for X = abb, the state transitions are s1 = a → s2 = b

(as s1 ̸= w2 = b) → s3 = a (as s2 = w3 = b). The

character a of the last state indicates that the sequence takes

even parity (we equate 1 with token a and −1 with token

b). It is worth noting that the core step of parity check

involves comparing two characters each time, which is also

performed in even pairs except that the characters to be

checked are fixed to be the first and last tokens.

Inspired by this observation, we propose the following in-

ference method via truncated CoT to solve parity check.

Inference via truncated CoT. Recall that the even pairs

problem is equivalent to labeling whether the first and the

last tokens are the same. Hence, the transformer trained

for even pairs can provide correct labels for such a task

during the inference. We thus propose truncated CoT that

leverages the label predicted by the trained transformer for

even pairs iteratively to obtain the answer for parity check.

Such an inference process runs as follows, with the pseu-

docode provided in Algorithm 1. Given a binary sequence

X = w1 · · ·wL, at each iteration t ∈ {1, . . . , L−1} of CoT,

it performs the following steps: (1) check whether the first

and the last tokens of X are equal by applying the one-layer

transformer trained for even pairs; (2) append the predicted

6
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Algorithm 1 Truncated CoT

Input: Binary sequence X = w1 · · ·wL

for t ∈ {1, . . . , L− 1} do

Predict yt = T¹T (X)
Let wL+t = a if yt = 1 and wL+t = b if yt = −1.

Update X = wt+1 · · ·wL+t.

end for

Output yL−1.

label y = a or y = b to the end of the sequence X (we

equate 1 with token a and −1 with token b); (3) remove the

first token in X to maintain the sequence length. Then after

L− 1 iterations, the final prediction provides the parity of

the original input sequence.

5.2. Approach 2: Training with CoT under Teacher

Forcing

In this section, we train a one-layer transformer with the full

version of Chain-of-Thought (CoT) to solve the parity check

problem. Unlike the truncated CoT described in Section 5.1,

we keep the original sequence and only append the predicted

label to the end of the sequence at each iteration.

To explain how we train a one-layer transformer to execute

CoT learning of parity, we first describe how the parity of a

sequence can be obtained via CoT step by step.

For a given sequence X = w1 · · ·wL0
with length L0, we

generate CoT inputs X1, . . . , XL0−1 and their correspond-

ing labels to learn the parity as follows. First, let X1 = X .

For each t ∈ {1, . . . , L0 − 1}, take Xt and compare its to-

kens wL0+t−1 and wt. If they are the same, let wL0+t = a;

otherwise, let wL0+t = b. Then set wL0+t to be the la-

bel of Xt, and append wL0+t to the end of Xt to obtain

Xt+1 = w1 · · ·wL0+t for the next step of CoT. Finally, the

label w2L0−1 is the parity of X (See Figure 1).

Figure 1. An illustration of CoT on input abb, where L0 = 3.

Training design. To train a transformer to learn each step

1 f t f L0 − 1 of CoT, our dataset should be labeled

to compare the token wL0+t−1 (last token of the input se-

quence of the current CoT step) and wt, and such a label is

used to train (supervise) the transformer to conduct the t-th
step of CoT correctly. Thus, to train the t-th step of CoT, we

use the set IL of length-L sequences (where L = L0+t−1),

and for each sequence X(n) ∈ IL, set its label ypn to be 1 if

the last token matches the token at position L−L0 +1 = t,
and −1 otherwise. The superscript ‘p’ in ypn indicates that

the label is constructed for parity check. Thus, the train-

ing of CoT will use data sequences with length L where

L0 f L f 2L0 − 1 and the total loss is given by

LCoT (u,W )

=
∑2L0−1

L=L0

1
|IL|

∑

n∈IL
log
(

1 + exp
(

−ypnT¹(X
(n))
))

,

where we adopt the one-layer transformer described in Sec-

tion 3 with the dimension d g 2L0 − 2.

Furthermore, we observe in our experiments that if

we directly train transformers over the above CoT loss

LCoT (u,W ), the gradient vanishes. Interestingly, initializ-

ing transformer by that trained for even pairs helps to avoid

such a case. Motivated by such an observation, we introduce

the even pairs loss to regularize the training process. To this

end, we include data sequences with length L < L0 for the

even pairs loss, and label those sequences by their even pairs

labels. Namely, for any sequence X(n), where n ∈ IL with

L f L0, set the label yen to be 1 if the last token matches

the first token, and −1 otherwise. The superscript ‘e’ in yen
indicates that the label is constructed for even pairs. These

data sequences provide a regularization loss given by

LReg(u,W )

=
∑L0−1

L=1
1

|IL|
∑

n∈IL
log
(

1 + exp
(

−yenT¹(X
(n))
))

.

The role of the regularization loss is to initially guide the

linear layer to rapidly increase along the direction of solving

even pairs problems, which will also initialize the parame-

ters to learn parity check in a stable way. We note that such

regularization is also equivalent to data mixing technique.

Hence, the total training loss for parity check is given by

LParity = LCoT (u,W ) + LReg(u,W ). (1)

We minimize the above loss function by gradient descent as

described in Section 3 for training the parity check problem.

In the following, we choose IL = {a,b}L for simplicity.

5.3. Training Dynamics of Approach 2

The training process of CoT under teacher forcing can also

be divided into two training phases. Below, we present the

theoretical characterization of those two phases.

Theorem 5.1 (Phase 1). Let −w denote the flip of token w ∈
{a,b}. Choose ¼ = Ω(L2

max) and t0 = O(1/(¸Lmax)).
Then, for all t f t0, the parameters evolve as follows:

(1) The dynamics of linear layer u is governed by the fol-
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lowing inequalities.

ïut, E
w
1 ð = Θ(¸t), ∀w,

ïut, E
w
ℓ ð = −Θ(¸2t2), ∀ℓ g 2, ∀w,

ïut, E
w
2 − Ew

ℓ ð f −Ω(¸2t2), ∀ℓ g 3, ∀w.

(2) The dynamics of the attention layer W is governed by

the following inequalities. For any length L < L0, we have

ïEw
1 − Ew′

ℓ ,WtE
w
L ð g Ω(¸2t2), ∀ℓ g 2, ∀w,w′,

ïEw′

ℓ − E−w
1 ,WtE

w
L ð g Ω(¸2t2), ∀ℓ g 2, ∀w,w′,

ïEw′

2 − Ew′′

ℓ ,WtE
w
L ð g Ω(¸4t), ∀ℓ g 3, ∀w,w′, w′′.

For length L g L0, let ℓ0 = L− L0 + 1, and we have

ïE−w
ℓ0

− Ew′

ℓ ,WtE
w
L ð g Ω(¸2t2), ∀ℓ ̸= ℓ0, ∀w,w′,

ïEw′

ℓ − E−w
ℓ0

,WtE
w
L ð g Ω(¸2t2), ∀ℓ ̸= ℓ0, ∀w,w′,

ïEw′

1 − Ew′′

ℓ ,WtE
w
L ð g Ω(¸4t), ∀ℓ ̸= 1, ℓ0, ∀w,w′, w′′.

Since the loss function in Equation (1) is regularized by

the loss of even pairs, the linear layer u exhibits the same

dynamics as the even pairs problem in Theorem 4.1. The

key difference between CoT training in Theorem 5.1 and

even pairs training in Theorem 4.1 lies in attention dynamics

on sequences with length L g L0, which are labeled for

CoT training of parity check. In particular, the last three

inequalities in Theorem 5.1 suggests that it is the token at

position L− L0 + 1 that differs most from other tokens.

At the end of Phase 1, the outputs of the attention layer

are also separable. Namely, there exists a linear classifier

that provides correct labels for all CoT steps, i.e., labels

all training sequences with length L0 f L f 2L0 − 1
correctly. As a by-product, such a linear classifier also

provides correct even pairs labels for the sequences with

L < L0. For those separable data sequences, we define thee

max-margin solution for the separating hyperplane as

u∗
CoT = argmin ∥u∥,

s.t.
〈

u, yn
∑L(X(n))

ℓ=1 x
(n)
ℓ φ

(n,t0)
ℓ

〉

g 1, ∀n ∈ I,

where L(X(n)) denotes the length of X(n). Note that u∗
CoT

slightly abuses notation as the dataset also includes se-

quences with lengths L < L0 for even pairs.

The following theorem shows that the training enters Phase 2

if we continue to update the parameters by gradient descent,

during which the attention layer has negligible change, but

the linear layer converges to the max-margin solution u∗
CoT .

Theorem 5.2 (Phase 2). There exists a constant t2 = Ω(1)
and T = O(¼2/3/(¸Lmax)), such that for t2 f t f T , we

Figure 2. Results of one-layer transformer on even pairs. From the

left to the right: (1) Loss decay over training. (2) Token scores at

first three positions. (3) Attention scores in length-3 sequences.

Figure 3. Results of one-layer transformer on parity check. From

the left to the right: (1) Loss decay over training. (2) Token scores

at first three positions. (3) Attention scores in length-5 sequences.

have ∥ut∥ g Ω(log t), and

〈

ut

∥ut∥ ,
u∗

CoT

∥u∗

CoT ∥

〉

g 1− 1
2

(

1
6∥u∗

CoT ∥ − 1
∥ut∥

)2

.

Moreover, we have ∥Wt −Wt0∥ f O(1).

The above theorem also implies that the total loss converges

sublinearly, which further implies that both the CoT and

regularization losses enjoy the same decay rate.

Theorem 5.3. For t f T , we have LParity,t =

O
(

Lmax∥u∗

CoT ∥2

¸
√
t

)

.

6. Experiments

In this section, we provide experiments on synthetic datasets

to verify our theoretical findings. Specifically, we choose

Lmax = 6, L0 = 4. Then, we train u and W by gradient

descent with step size ¸ = 0.1. We choose t0 = 100, and

¼ = 2. As observed in Figures 2 and 3, the first plot in

each figure shows the rapid decay of the loss to the global

minimum. The second plot shows the dynamics of token

scores at the first three positions, where the first token score

grows (blue curve) and the second and third token scores de-

crease (green and orange curves) during training. The third

plot illustrates dynamics of the attention weights, where

the first token receives more attention in positive samples

(blue curve) and less attention in negative samples (orange

curve). These plots validate our theoretical findings on dy-

namics of token scores and attention scores characterized

in Theorem 4.1 and Theorem 5.1. Furthermore, the ver-

tical blue dashed line in these plots indicates the end of

first phase. The vertical orange dashed line in these plots
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indicates t2 ≈ 600 in Theorem 4.4 and Theorem 5.2, where

∥ut∥ starts to grow logarithmically (second plot of both

figures).

Additional Experiments. In Appendix D, we conduct more

experiments on different configurations of scaling parameter

¼ and the two-phase learning dynamics.

All experiments are conducted on a PC equipped with an

i5-12400F processor and 16GB of memory.

7. Conclusion

In this work, we provide a theoretical characterizing of

two training phases to uncover how a one-layer transformer

can be trained to solve two regular language recognition

problems: even pairs and parity check. In order to charac-

terize the joint training of attention and linear layers, we

employ higher-order Taylor expansions to precisely ana-

lyze the coupling between gradients of two layers and its

impact on parameter updates. Our results not only offer

deeper insights into the training behavior of transformers

but also highlight the critical role of CoT in solving par-

ity problems. Experimental validation further supports our

theoretical findings, confirming key aspects of parameter

evolution and convergence. The analysis tools developed in

this work can be useful for future understanding the implicit

biases and training dynamics of transformers in structured

learning tasks.
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A. Auxiliary Lemmas and Equations

Lemma A.1 (Gao & Pavel (2017)). The softmax function with scaling factor ¼ is 1
¼ -Lipschitz continuous. Mathematically,

we have

∥ϕ(x/¼)− ϕ(y/¼)∥ f 1

¼
∥x− y∥.

By Lemma A.1 and φ
(n,t)
ℓ =

exp
(

ïx(n)
ℓ ,Wtx

(n)
L ð/¼

)

∑

ℓ′ exp
(

ïx(n)

ℓ′
,Wx

(n)
L ð/¼

) , we have the following inequalities, which will be itensively used in

the subsequence proofs.

|φ(n,t)
ℓ − φ

(n,t′)
ℓ | f

√

√

√

√

L
∑

ℓ=1

|φ(n,t)
ℓ − φ

(n,t′)
ℓ |2 f ∥Wt −Wt′∥

¼

Let J(x) = log(1 + e−x) be the logistic loss. We also frequently use the following Taylor expansion about −J ′(x).

|J(x)′ − J(x′)′| f |x− x′|,
∣

∣

∣

∣

1

1 + exp(x)
−
(

1

2
− 1

4
x

)∣

∣

∣

∣

f x3. (2)

A.1. Gradients Calculation

Recall that the loss at time step t is

Lt =

Lmax
∑

L=1

1

2L

∑

n∈IL

J

(

ynu
¦
t

∑

ℓ

x
(n)
ℓ φ

(n,t)
ℓ

)

.

For simplicity, we use the following notation. For each sample n and time step t, we define

J ′
(n,t) = − 1

1 + exp(ynTt(X(n)))
,

where Tt(X
(n)) = u¦

t

∑

ℓ x
(n)
ℓ φ

(n,t)
ℓ . Therefore, the gradients can be written as follows. The gradients at time t are



























∇uLt =

Lmax
∑

L=1

1

2L

∑

n∈IL

J ′
(n,t)yn

∑

ℓ

x
(n)
ℓ φ

(n,t)
ℓ

∇WLt =
1

¼

Lmax
∑

L=2

1

2L

∑

n∈IL

J ′
(n,t)yn

∑

ℓ

u¦
t x

(n)
ℓ φ

(n,t)
ℓ

(

x
(n)
ℓ −

∑

ℓ′

φ
(n,t)
ℓ′ x

(n)
ℓ′

)

(x
(n)
L )¦

Note that ∥∇uLt∥ f Lmax and ∥∇WLt∥ f ∥ut∥Lmax/¼. We will also frequently use the following projection of gradients

on each token embeddings.







































































ï∇uLt, E
w
ℓ ð =

∑

Lgℓ

1

2L

∑

n∈IL,C(x
(n)
ℓ )=w

J ′
(n,t)ynφ

(n,t)
ℓ ,

ïEw
1 , (∇WLt)E

w
L ð =

1

2L

∑

n∈IL,C(x
(n)
1 )=C(x

(n)
L )=w

J ′
(n,t)φ

(n,t)
1

(

u¦
t x

(n)
1 − T(X(n))

)

,

〈

E−w
1 , (∇WLt)E

w
L

〉

= − 1

2L

∑

n∈IL,C(x
(n)
1 ) ̸=C(x

(n)
L )=w

J ′
(n,t)φ

(n,t)
1

(

u¦
t x

(n)
1 − T(X(n))

)

,

ïEw
ℓ , (∇WLt)E

w
L ð =

1

2L

∑

n∈IL,C(x
(n)
ℓ )=C(x

(n)
L )=w

J ′
(n,t)ynφ

(n,t)
ℓ

(

u¦
t x

(n)
ℓ − T(X(n))

)

,

where C(x
(n)
ℓ ) is the character of token embedding x

(n)
ℓ . For example, C(Ew

ℓ ) = w.
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B. Proofs of Even Pairs Problem

In this section, we provide the full proof of training dynamics of transformers on even pairs problem. Before proceeding to

analyzing phase 1 and phase 2, we first show that the token scores only depend on the position, which helps us to reduce the

complexity of the subsequent proof.

Lemma B.1. During the entire training process, for any w ∈ {a,b}, we have

ïut, E
w
ℓ ð =

〈

ut, E
−w
ℓ

〉

, ∀ℓ g 1.

For attention scores, we have the following equalities.

{

ïEw
1 ,WtE

w
L ð =

〈

E−w
1 ,WtE

−w
L

〉

.

ïEw
ℓ ,WtE

w
L ð =

〈

E−w
ℓ ,WtE

w
L

〉

, ∀ℓ g 2.

Proof. Note that the results are valid for t = 0. Assume the results hold at time t, we aim to prove the results hold for t+ 1.

It suffices to prove the following equalities.

ï∇uLt, E
w
ℓ ð =

〈

∇uLt, E
−w
ℓ

〉

, ∀ℓ g 1, (3)

ïEw
ℓ , (∇WLt)E

w
L ð =

〈

E−w
ℓ , (∇WLt)E

w
L

〉

, ∀ℓ g 2, (4)

ïEw
1 , (∇WLt)E

w
L ð =

〈

E−w
1 , (∇WLt)E

−w
L

〉

. (5)

We first show that Equation (3) is true.

For ℓ g 2, we have

ï∇uLt, E
w
ℓ ð =

∑

Lgℓ

∑

n∈IL,C(x
(n)
ℓ )=w

J ′
(n,t)ynφ

(n,t)
ℓ

=
∑

Lgℓ

∑

n∈IL,C(x
(n)
ℓ )=w

−1

1 + exp(ynTt(X
(n)
L ))

ynφ
(n,t)
ℓ .

For any n ∈ IL satisfying C(x
(n)
ℓ ) = w, let n′ be the sample that only replace w with −w at the ℓ-th position. Then, due

to the induction hypothesis, we have φ
(n,t)
ℓ = φ

(n′,t)
ℓ , and Tt(X

(n)
L ) = Tt(X

(n′)
L ). Since ℓ g 2, changing one token at the

position ℓ does not change the label, we have yn = yn′ . Therefore, we have

ï∇uLt, E
w
ℓ ð =

〈

∇uLt, E
−w
ℓ

〉

, ∀ℓ g 2.

For ℓ = 1, we have,

ï∇uLt, E
w
1 ð =

∑

Lg1

∑

n∈IL,C(x
(n)
1 )=w

J ′
(n,t)ynφ

(n,t)
1

=
∑

Lg1

∑

n∈IL,C(x
(n)
1 )=w

−1

1 + exp(ynTt(X
(n)
L ))

ynφ
(n,t)
1

Now, for any n ∈ IL satisfying C(x
(n)
1 ) = w, let n′ be the sample that flips the first and the last token at the same time.

Then, due to the induction hypothesis, we have φ
(n,t)
ℓ = φ

(n′,t)
ℓ , yn = yn′ and Tt(X

(n)
L ) = Tt(X

n′

L ). Therefore, we have

ï∇uLt, E
w
1 ð =

〈

∇uLt, E
−w
1

〉

.

We conclude that Equation (3) is true.

13
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Then, we show that Equation (4) is true. For ℓ g 2, we have

ïEw
ℓ , (∇WLt)E

w
L ð =

1

2L

∑

n∈IL,C(x
(n)
ℓ )=C(x

(n)
L )=w

J ′
(n,t)ynφ

(n,t)
ℓ

(

u¦
t x

(n)
ℓ − Tt(X

(n)
L )

)

=
1

2L

∑

n∈IL,C(x
(n)
ℓ )=C(x

(n)
L )=w

−1

1 + exp
(

ynTt(X(n))
)ynφ

(n,t)
ℓ

(

u¦
t x

(n)
ℓ − Tt(X

(n)
L )

)

For any n ∈ IL satistyfing C(x
(n)
ℓ ) = C(x

(n)
L ) = w, let n′ be the sample that only replace w with −w at the ℓ-th position.

Then, due to the induction hypothesis, we have φ
(n,t)
ℓ = φ

(n′,t)
ℓ , and Tt(X

(n)
L ) = Tt(X

(n′)
L ). Since ℓ g 2, changing one

token at the position ℓ does not change the label, we have yn = yn′ . Therefore, we have

ïEw
ℓ , (∇WLt)E

w
L ð =

〈

E−w
ℓ , (∇WLt)E

w
L

〉

, ∀ℓ g 2.

We conclude that Equation (4) is true.

Finally, we show that Equation (5) is true.

Note that

ïEw
1 , (∇WLt)E

w
L ð =

1

2L

∑

n∈IL,C(x
(n)
1 )=C(x

(n)
L )=w

J ′
(n,t)φ

(n,t)
1

(

u¦
t x

(n)
1 − Tt(X

(n)
L )

)

=
1

2L

∑

n∈IL,C(x
(n)
1 )=C(x

(n)
L )=w

−1

1 + exp
(

ynTt(X
(n)
L )

)φ
(n,t)
1

(

u¦
t x

(n)
1 − Tt(X

(n)
L )

)

Now, for any n ∈ IL satisfying C(x
(n)
1 ) = C(x

(n)
L ) = w, let n′ be the sample that flips the first and the last token at the

same time, i.e., C(x
(n′)
1 ) = C(x

(n′)
L ) = −w. Then, due to the induction hypothesis, we have φ

(n,t)
ℓ = φ

(n′,t)
ℓ , yn = yn′ and

Tt(X
(n)
L ) = Tt(X

(n′)
L ). Therefore, we have

ï∇uLt, E
w
1 ð =

〈

∇uLt, E
−w
1

〉

.

We conclude that Equation (5) is true.

Therefore, the proof is complete by induction.

Due to above lemma, for each length L, we only need to analyze two types of sequence, i.e., the one with positive label

and the one with negative label. We use X
(+)
L = [Ew

1 , E
w
2 , . . . , E

w
L s] to represent the sequence with positive labels, and

X
(−)
L = [E−w

1 , Ew
2 , . . . , E

2
L] to represent the sequence with negative labels.

B.1. Phase 1

In this section, we characterize the training dynamics in phase 1. In general, we prove the results by induction. First, we

characterize the initialization dynamics.

Lemma B.2 (Initialization). At the beginning (t = 2, 3), for the linear layer, we have

ïu2, E
w
1 ð = Θ(¸t), ∀w,

ïu2, E
w
ℓ ð = −Θ(¸2t2), ∀ℓ g 2, ∀w,

ïu2, E
w
2 − Ew

ℓ ð f −Ω(¸2t2), ∀ℓ g 3, ∀w.

For the attention layer, we have

ïEw
1 − Ew

2 ,W3E
w
L ð g Ω

(

¸2

L

)

, ∀w,

14
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〈

E−w
1 − Ew

2 ,W3E
w
L

〉

f −Ω

(

¸2

L

)

, ∀w,

ïEw
2 − Ew

ℓ ,W3E
w
L ð g Ω

(

¸2

L

)

, ∀ℓ g 3, ∀w.

Proof. Since J(n,0) =
1
2 , and φ

(n,0)
ℓ = 1

L for n ∈ IL (the length is L), we have

ïu1, E
w
1 ð = ¸ï−∇uL0, E

w
1 ð

= ¸

Lmax
∑

L=1

1

2L

∑

n∈IL,C(x
(n)
ℓ )=w

(−J ′
(n,0))ynφ

(n,0)
1

=
¸

4
,

where the last equality is due to the cancellation between positive and negative samples whose length is greater than 1. Due

to the same reason, for any ℓ g 2, we have

ïu1, E
w
ℓ ð = ¸ï−∇uL0, E

w
ℓ ð

= ¸

Lmax
∑

L=2

1

2L

∑

n∈IL,C(x
(n)
ℓ )=w

(−J ′
(n,0))ynφ

(n,0)
1

= 0

Regarding the attention, for any token Ew′

ℓ , we have

ïEw′

ℓ ,W1E
w
L ð = ¸¼ïE2

ℓ , (−∇WL1)E
w
L ð

=
1

2L

∑

n∈IL,C(x
(n)
ℓ )w′,C(x

(n)
L )=w

J ′
(n,0)ynφ

(n,0)
ℓ

(

u¦
0 x

(n)
ℓ − T0(X

(n))
)

= 0,

where the last inequality is due to the fact that u0 = 0.

In summary, at time step 1, only the token score at the first position increases, and all other token scores remain 0, and the

attention scores are all 0, resulting φ
(n,1)
ℓ = 1

L for n ∈ IL. Note that, we also have

−J ′
(n,1) =

1

1 + exp( ¸
4L )

, n ∈ I+L ; −J ′
(n,1) =

1

1 + exp(− ¸
4L )

, n ∈ I−L .

Next, we characterize the token scores and attention scores at time step 2.

ïu2, E
w
1 ð = ïu1, E

w
1 ð+ ¸ï−∇uL1, E

w
1 ð

=
¸

4
+ ¸

Lmax
∑

L=2

1

2L

∑

n∈IL,C(x
(n)
ℓ )=w

(−J ′
(n,0))ynφ

(n,0)
1

=
¸

4
+

¸

2

1

1 + exp(¸/4)
+

Lmax
∑

L=2

¸

2

(

1

1 + exp( ¸
4L )

− 1

1 + exp(− ¸
4L )

)

1

L

Thus,

∣

∣

∣

∣

ïu2, E
w
1 ð −

2¸

4

∣

∣

∣

∣

f ¸

2

∣

∣

∣

∣

1

1 + exp(¸/4)
− 1

2

∣

∣

∣

∣

+

Lmax
∑

L=2

¸

2L
· ¸

2L

15
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f 3¸2

8
,

where the last inequality is due to the Lipchitz continuity of f(x) = 1/(1+ex) (with Lipchitz constant 1) and
∑∞

L=2 1/L
2 f

1.

Similarly, for ℓ g 2, we have

ïu2, E
w
ℓ ð = ¸ï−∇uL1, E

w
ℓ ð

= ¸

Lmax
∑

L=ℓ

1

2L

∑

n∈IL,C(x
(n)
ℓ )=w

(−J ′
(n,1))ynφ

(n,0)
ℓ

=

Lmax
∑

L=ℓ

¸

2

(

1

1 + exp( ¸
4L )

− 1

1 + exp(− ¸
4L )

)

1

L

f −
Lmax
∑

L=ℓ

¸2

4L2

f − ¸2

4ℓ2
.

In addition, regarding the difference of token scores, we have

ïu2, E
w
2 − E2

ℓ ð =
Lmax
∑

L=2

¸

2

(

1

1 + exp( ¸
4L )

− 1

1 + exp(− ¸
4L )

)

1

L
−

Lmax
∑

L=ℓ

¸

2

(

1

1 + exp( ¸
4L )

− 1

1 + exp(− ¸
4L )

)

1

L

=

ℓ−1
∑

L=2

¸

2

(

1

1 + exp( ¸
4L )

− 1

1 + exp(− ¸
4L )

)

1

L

f −¸2

16
,

where ℓ g 3.

Therefore, we already prove that

ïu2, E
w
1 ð = Θ(¸t), ∀w,

ïu2, E
w
ℓ ð = −Θ(¸2t2), ∀ℓ g 2, ∀w,

ïu2, E
w
2 − Ew

ℓ ð f −Ω(¸2t2), ∀ℓ g 3, ∀w.

Next, we analyze the attention score.

¼ ïEw
1 − Ew

2 , (−∇WL1)E
w
L ð =

1

2L

∑

n∈I+
L

(−J ′
(n,1))φ

(n,1)
1

(

ïu1, E
w
1 ð −

¸

4L
)
)

− 1

2L

∑

n∈IL,C(x
(n)
2 )=w

(−J ′
(n,1))ynφ

(n,1)
2

(

ïut, E
w
2 ð −

¸

4L

)

=
1

8
· 1

1 + exp( ¸
4L )

· 1
L
[2ïu1, E

w
1 ð − ïu1, E

w
2 ð]

+
1

8

1

1 + exp(− ¸
4L )

· 1
L

(

ïu1, E
w
2 ð −

¸

4L

)

(a)

g 1

8L
· 1

1 + exp( ¸
4L )

[

¸ − 3¸2

4

]

+
1

8L

¸

2L
ïu1, E

w
2 ð

+
1

8L

1

1 + exp(− ¸
4L )

· ¸

4L

16



Training Dynamics of Transformers

(b)

g Ω
( ¸

L

)

,

where (a) is due to the Lipchitz continuity of f(x) = 1/(1 + ex), and (b) is due to ïu1, E
w
2 ð f −¸2/16.

Similarly, for negative samples, since, we only flip the label yn from 1 to -1, we directly have

¼
〈

E−w
1 − Ew

2 , (−∇WL1)E
w
L

〉

f −Ω
( ¸

L

)

.

Following the same argument and algebra, we have

¼ ïEw
1 − Ew

2 , (−∇WL2)E
w
L ð g Ω

( ¸

L

)

¼
〈

E−w
1 − Ew

2 , (−∇WL2)E
w
L

〉

f −Ω
( ¸

L

)

,

which implies that

ïEw
1 − Ew

2 ,W3E
w
L ð g Ω

(

¸2

L

)

〈

E−w
1 − Ew

2 ,W3E
w
L

〉

f −Ω

(

¸2

L

)

,

Since ïu1, E
w
ℓ ð = 0 for all ℓ g 2, we have

¼ ïEw
ℓ − Ew

ℓ′ , (−∇WL1)E
w
L ð = 0.

Finally, we aim to show that at time step t = 3, the attention layer also distinguishes between non-leading tokens. This can

be done by noting that ïu2, E
w
2 − E2

ℓ ð f −Ω(¸2). Specifically, we have

¸¼ïEw
2 − Ew

ℓ , (−∇WL2)E
w
L ð

=
¸

2L

∑

n∈IL,C(x
(n)
2 )=C(x

(n)
L )=w

(−J ′
(n,2))ynφ

(n,2)
2

(

ïu2, E
w
2 ð − T2(X

(n))
)

− ¸

2L

∑

n∈IL,C(x
(n)
ℓ )=C(x

(n)
L )=w

(−J ′
(n,2))ynφ

(n,2)
ℓ

(

ïu2, E
w
ℓ ð − T2(X

(n))
)

(a)
=

¸

8
(−J ′

(+,t))φ
(+,2)
2 [ïu2, E

w
2 ð − ïu2, E

w
ℓ ð]

− ¸

8
(−J ′

(−,t))φ
(−,2)
2 [ïu2, E

w
2 ð − ïu2, E

w
ℓ ð]

g Ω(¸4/L),

where (a) is due to the fact that φ
(n,2)
ℓ are equal for any ℓ g 2, and the last inequality follows from that ïu2, E

w
2 ð −

ïu2, E
w
ℓ ð f −Ω(¸2), and (−J ′

(+,2) − (−J ′
(−,2))) f −Ω(¸/L).

Thus, the proof is complete.

Then we prove Theorem 4.1 through induction. Note that the statement in the following is essentially the same as that in

Theorem 4.1 due to Lemma B.1.

Theorem B.3 (Restatement of Theorem 4.1). Choose ¼ = Ω(L2
max), t0 = O(1/(¸Lmax)), and ¸ =

O(min{1/Lmax, 1/¼
2/3}). we have

(1) The dynamics of linear layer u is governed by the following inequalities.

ïut, E
w
1 ð = Θ(¸t), ∀w ∈ {a,b},
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ïut, E
w
ℓ ð = −Θ(¸2t2), ∀ℓ g 2, ∀w ∈ {a,b},

ïut, E
w
2 − Ew

ℓ ð f −Ω(¸2t2), ∀w ∈ {a,b}

(2) The dynamics of attention layer W is governed by the following inequalities. For any length L f Lmax, we have

ïEw
1 − Ew

ℓ ,WtE
w
L ð g Ω(¸2t2/L), ∀ℓ g 2,

ïEw
2 − E−w

1 ,WtE
w
L ð g Ω(¸2t2/L), ∀ℓ g 2,

ïEw
2 − Ew

ℓ ,WtE
w
L ð g Ω

(

(

1 +
¸3t2

¼L3

)t
¸4

¼L

)

, ∀ℓ g 3,

Proof. By Lemma B.2, we know that the results hold true for t = 3. In the following, suppose the results are true for t.

We will intensively use the following fact that characterize the norm of attention parameter Wt. Since

∥∇WLt∥ f 2

Lmax
∑

L=2

1

2L

∑

n∈IL

∣

∣

∣

∣

∣

L
∑

ℓ=1

ïut, E
w
ℓ ðφ

(n,t)
ℓ

∣

∣

∣

∣

∣

f O(Lmax¸t),

we have

∥Wt∥ f
t−1
∑

s=0

¸∥∇WLs∥ f O(Lmax¸
2t2).

We first show that the dynamics of each token score ïut, E
w
ℓ ð is true.

For the first token, we have

ï−∇uLt, E
w
1 ð =

Lmax
∑

L=1

1

2L

∑

n∈IL,C(x
(n)
ℓ )=w

(−J ′
(n,t))ynφ

(n,t)
1

=
1

2
· 1

1 + exp (ïut, Ew
1 ð)

+

Lmax
∑

L=2

1

2L

∑

n∈IL,C(x
(n)
1 )=w

(−J ′
(n,0))ynφ

(n,0)
1

+

Lmax
∑

L=2

1

2L

∑

n∈IL,C(x
(n)
1 )=w

(

−J ′
(n,t) + J ′

(n,0)

)

ynφ
(n,0)
1

+

Lmax
∑

L=2

1

2L

∑

n∈IL,C(x
(n)
1 )=w

(−J ′
(n,t))yn

(

φ
(n,t)
1 − φ

(n,0)
1

)

(a)
=

1

4
+

1

2

(

1

1 + exp(ïut, Ew
1 ð)

− 1

2

)

+

Lmax
∑

L=2

1

2L

∑

n∈IL,C(x
(n)
1 )=w

(

−J ′
(n,t) + J ′

(n,0)

)

ynφ
(n,0)
1 +

Lmax
∑

L=2

1

2L

∑

n∈IL

(−J ′
(n,t))yn

(

φ
(n,t)
1 − φ

(n,0)
1

)

,

where (a) follows from the fact that J(n,0) =
1
2 , and φ

(n,0)
1 = 1

L if n ∈ IL.

Then, by the Lipchitz continuity (Lemma A.1), we have
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Hence,

∣

∣

∣

∣

ï−∇uLt, E
w
1 ð −

1

4

∣

∣

∣

∣

f 1

2
|ïut, E

w
1 ð|+

Lmax
∑

L=2

1

2L

∑

n∈IL,C(x
(n)
1 )=w

∣

∣

∣

∣

1

2
− 1

1 + exp(ynTt(X(n)))

∣

∣

∣

∣

1

L
+

Lmax
∑

L=2

1

2
· 2∥Wt∥

¼

(a)

f 1

2
|ïut, E

w
1 ð|+

Lmax
∑

L=2

1

2L

∑

n∈IL,C(x
(n)
1 )=w

1

L

(

1

4

∣

∣

∣Tt(X
(n))
∣

∣

∣+
∣

∣

∣Tt(X
(n))
∣

∣

∣

3
)

+
Lmax∥Wt∥

¼

(b)

f 1

2
|ïut, E

w
1 ð|+

Lmax
∑

L=2

1

2L

(

max
1fℓfL

|ïut, E
w
ℓ ð|
)

+
Lmax∥Wt∥

¼

f 1

2
|ïut, E

w
1 ð|(1 + logLmax) +

L2
max¸

2t2

¼
f O(¸t),

where (a) is due to Equation (2), (b) follows from ¸t = O(1), and the last inequality follows from ¼ = Ω(L2
max), and

induction hypothesis.

Similarly, for ℓ g 2, we have

ï−∇uLt, E
w
ℓ ð =

Lmax
∑

L=ℓ

1

2L

∑

n∈IL,C(x
(n)
ℓ )=w

(−J ′
(n,t))ynφ

(n,t)
ℓ

=

Lmax
∑

L=ℓ

1

2L







∑

n∈I+
L ,C(x

(n)
ℓ )=w

(−J ′
(n,t))φ

(n,t)
ℓ −

∑

n∈I−

L ,C(x
(n)
ℓ )=w

(−J ′
(n,t))φ

(n,t)
ℓ







=

Lmax
∑

L=ℓ

1

4

(

(−J ′
(+,t))φ

(+,t)
ℓ − (−J ′

(−,t))φ
(−,t)
ℓ

)

(a)

f
Lmax
∑

L=ℓ

1

4

(

1

2
− 1

4
Tt(X

(+)
L )− 1

2
− 1

4
Tt(X

(−)
L ) + Θ(|max

ℓ
ïut, E

w
ℓ ð|3)

)

φ
(−,t)
ℓ

(b)

f
Lmax
∑

L=ℓ

− 1

16

(

L
∑

ℓ′=1

(φ
(+,t)
ℓ′ + φ

(−,t)
ℓ′ )ïut, E

w
ℓ′ ð
)

φ
(−,t)
ℓ

(c)

f −Ω

(

Lmax
∑

L=ℓ

1

L

(

¸t

L
− 1

L

L
∑

ℓ′=2

¸2t2

))

= −Ω (¸t) ,

where (a) is due to Equation (2), (b) follows from ¸t = O(1), and (c) is due to the induction hypothesis.

In addition, for any ℓ g 3, we have

ï−∇uLt, E
w
2 − Ew

ℓ ð =
ℓ−1
∑

L=2

1

4

(

(−J ′
+,t)φ

(+,t)
2 − (−J ′

−,t)φ
(−,t)
2

)

+

Lmax
∑

L=ℓ

(

(−J ′
(+,t))(φ

(+,t)
2 − φ

(+,t)
ℓ )− (−J ′

(−,t))(φ
(−,t)
2 − φ

(−,t)
ℓ )

)

(a)

f −Ω (¸t)

+

Lmax
∑

L=ℓ

((

1

2
− 1

4
Tt(X

+)) +O(¸3t3)

)

(

φ
(+,t)
2 − φ

(+,t)
ℓ

)
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−
(

1

2
+

1

4
Tt(X

−) +O(¸3t3)

)

(

φ
(−,t)
2 − φ

(−,t)
ℓ

)

)

(b)

f −Ω(¸t) +

Lmax
∑

L=ℓ

∥Wt∥¸t
¼

f −Ω(¸t),

where (a) follows from the same argument of the previous analysis on ï−∇uLt, E
w
ℓ ð, and Equation (2), (b)) is due to the

fact that Tt(X
(n)) g 0, φ

(n,t)
2 − φ

(n,t)
ℓ g 0, and the last inequality follows from ¼ = Ω(L2

max).

Therefore,

∣

∣

∣

∣

ïut+1, E
w
1 ð −

¸(t+ 1)

4

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

t
∑

s=2

¸ ï−∇uLs, E
w
1 ð −

¸

4

∣

∣

∣

∣

∣

f O
(

¸2t2
)

Similarly, for ℓ g 2,

ïut+1, E
w
2 ð =

t
∑

s=2

¸ ï−∇uLs, E
w
2 ð

f −Ω(¸2t2).

In addition,

ïut+1, E
w
2 − Ew

ℓ ð =
t
∑

s=2

¸ ï−∇uLs, E
w
2 − Ew

ℓ ð

f −Ω(¸2t2).

We conclude that the dynamics of ut in Phase 1 is true.

Then, we show that the dynamics of Wt in Phase 1 is true.

In the following, we fix the length L, and focus on the L-th column of Wt.

We denote

A
(t)
12 = ïEw

1 − Ew
2 ,WtE

w
L ð

B
(t)
ℓ1 =

〈

Ew
ℓ − E−w

1 ,WtE
w
L

〉

A
(t)
2ℓ = ïEw

2 − Ew
ℓ ,WtE

w
L ð ,

which are three quantities we aim to analyze.

Due to the gradient update in phase 1, We have

A
(t+1)
12 −A

(t)
12 = ¸¼ ïEw

1 − Ew
2 , (−∇WLt)E

w
L ð

=
¸

2L

∑

n∈I+
L

(−J ′
(n,t))φ

(n,t)
1

(

ïut, E
w
1 ð − T(X(n))

)

− ¸

2L

∑

n∈IL,C(x
(n)
2 )=w

(−J ′
(n,t))ynφ

(n,t)
2

(

ïut, E
w
ℓ ð − T(X(n))

)

=
¸

8
(−J ′

(+,t))
[

φ
(+,t)
1

(

ïut, E
w
1 ð − T(X(+))

)

− φ
(+,t)
2

(

ïut, E
w
2 ð − T(X(+))

)]
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+
¸

8
(−J ′

(+,t))φ
(+,t)
1

(

ïut, E
w
1 ð − T(X(+))

)

+
1

8
(−J ′

(−,t))φ
(−,t)
2

(

ïut, E
w
2 ð − T(X(−))

)

(a)
=

¸

8

(

1

2
− 1

4
Tt(X

(+)) +O(|Tt(X(+))|3)
)

[

2φ
(+,t)
1 ïut, E

w
1 ð − φ

(+,t)
2 ïut, E

w
2 ð − (2φ

(+,t)
1 − φ

(+,t)
2 )T(X(+))

]

− ¸

8

(

1

2
+

1

4
T(X(−)) +O(|Tt(X(−))|3)

)

φ
(−,t)
2

(

|ïut, E
w
2 ð|+ |T(X(−))|

)

(b)

g ¸Ω

(

2

L
¸t− 1

L
¸2t2 − 1

L
¸t

)

− ¸O

(

1

L
¸2t2 +

1

L2
¸t

)

g Ω

(

¸2t

L

)

,

where (a) is due to Equation (2), and (b) follows from the induction hypothesis. Thus,

A
(t+1)
12 g

t
∑

s=2

(

A
(s+1)
12 −A

(s)
12

)

+A
(2)
12 = Ω

(

¸2t2

L

)

.

Similarly, for any ℓ g 2, we have

B
(t+1)
ℓ1 −B

(t)
ℓ1 = ¸¼ïEw

ℓ − E−w
1 , (−∇WLt)E

w
L ð

=
¸

2L

∑

n∈IL,C(x
(n)
ℓ )=C(x

(n)
L )=w

(−J ′
(n,t))ynφ

(n,t)
ℓ

(

ïut, E
w
ℓ ð − T(X(n))

)

+
¸

4
(−J(−,t))φ

(−,t)
1

(

ïut, E
w
1 ð − T(X(−))

)

=
¸

8
(−J ′

(−,t))
[

2φ
(−,t)
1 ïut, E

w
1 ð − φ

(−,t)
ℓ ïut, E

w
ℓ ð − (2φ

(−,t)
1 − φ

(−,t)
ℓ )T(X(−))

]

+
¸

8
(−J(+,t))φ

(+,t)
ℓ

(

ïut, E
w
ℓ ð − T(X(+))

)

(a)

g ¸Ω

(

2

L
¸t− 1

L
¸2t2 − 1

L
¸t

)

− ¸O

(

1

L
¸2t2 +

1

L2
¸t

)

g Ω

(

¸2t

L

)

,

where (a) is due to Equation (2), and the induction hypothesis. Thus,

B
(t+1)
ℓ1 g Ω

(

¸2t2

L

)

.

Finally, we show that the attention score at the second position surpasses those of other no-leading tokens.

We have

A
(t+1)
2ℓ −A

(t)
2ℓ = ¸¼ïEw

2 − Ew
ℓ , (−∇WLt)E

w
L ð

=
¸

2L

∑

n∈IL,C(x
(n)
2 )=C(x

(n)
L )=w

(−J ′
(n,t))ynφ

(n,t)
2

(

ïut, E
w
2 ð − T(X(n))

)

− ¸

2L

∑

n∈IL,C(x
(n)
ℓ )=C(x

(n)
L )=w

(−J ′
(n,t))ynφ

(n,t)
ℓ

(

ïut, E
w
ℓ ð − T(X(n))

)

=
¸

8
(−J ′

(+,t))
[

φ
(+,t)
2 ïut, E

w
2 ð − φ

(+,t)
ℓ ïut, E

w
ℓ ð − (φ

(+,t)
2 − φ

(+,t)
ℓ )T(X+)

]

− ¸

8
(−J ′

(−,t))
[

φ
(−,t)
2 ïut, E

w
2 ð − φ

(−,t)
ℓ ïut, E

w
ℓ ð − (φ

(−,t)
2 − φ

(−,t)
ℓ )T(X−)

]

= −¸

8
(−J ′

(+,t))
[

φ
(+,t)
2 ï−ut, E

w
2 ð − φ

(+,t)
ℓ ï−ut, E

w
ℓ ð+ (φ

(+,t)
2 − φ

(+,t)
ℓ )T(X+)

]

21



Training Dynamics of Transformers

+
¸

8
(−J ′

(−,t))
[

φ
(−,t)
2 ï−ut, E

w
2 ð − φ

(−,t)
ℓ ï−ut, E

w
ℓ ð+ (φ

(−,t)
2 − φ

(−,t)
ℓ )T(X−)

]

(a)
= −¸

8
(−J ′

(+,t))φ
(+,t)
ℓ

[

exp(A
(t)
2ℓ /¼)ï−ut, E

w
2 ð − ï−ut, E

w
ℓ ð+ (exp(A

(t)
2ℓ /¼)− 1)T(X+)

]

+
¸

8
(−J ′

(−,t))φ
(−,t)
ℓ

[

exp(A
(t)
2ℓ /¼)ï−ut, E

w
2 ð − ï−ut, E

w
ℓ ð+ (exp(A

(t)
2ℓ /¼)− 1)T(X+)

]

+
¸

8
(−J ′

(−,t))φ
(−,t)
ℓ

(

exp(A
(t)
2ℓ /¼)− 1

)

(T(X−)− T(X+))

=
¸

8

(

(−J ′
(−,t))φ

(−,t)
ℓ − (−J ′

(+,t))φ
(+,t)
ℓ

)

×
[

ï−ut, E
w
2 ð − ï−ut, E

w
ℓ ð+ (exp(A

(t)
2ℓ /¼)− 1)(ï−ut, E

w
2 ð+ T(X+))

]

+
¸

8
(−J ′

(−,t))φ
(−,t)
ℓ

(

exp(A
(t)
2ℓ /¼)− 1

)

(T(X−)− T(X+))

(b)

g ¸Ω

(

¸t

L

(

exp(A
(t)
2ℓ /¼)− 1

) ¸t

L

)

− ¸O

(

1

L

(

exp(A
(t)
2ℓ /¼)− 1

) Lmax¸
2t2

¼
¸t

)

(c)

g Ω

(

¸3t2

L
(
1

L2
− Lmax¸t

L¼
)

)

A
(t)
2ℓ

¼
,

where (a) follows from the definition of softmax, (b) is due to the induction hypothesis, and (c) is due to ¼ = Ω(Lmax). By

noting that A
(3)
2ℓ g ¸4/L, we have

A
(t)
2ℓ g Ω

(

(

1 +
¸3t2

¼L3

)t
¸4

¼L

)

.

We conclude that the dynamics of Wt in Phase 1 is true.

B.2. Phase 2

In this section, we analyze the training dynamics during Phase 2. Roughly speaking, both the linear layer’s parameter

vector ut and the attention layer’s parameters increase in norm over time. However, due to the scaling factor ¼, the linear

layer dominates the loss reduction, contributing more significantly to optimization progress than the attention layer. In the

following, we leverage implicit bias theory to demonstrate that the growth of ∥ut∥ induces a sublinear convergence rate for

the loss, governed by O(1/t). On the other hand, the attention layer does not change significantly.

First, we show that at the end of phase 1 (t = t0), the attention layer make data samples separable.

Proposition B.4 (Restatement of Proposition 4.3). Let v(n) =
∑L

ℓ=1 x
(n)
ℓ φ

(n,t0)
ℓ . Then, at the end of phase 1, the dataset

{(v(n), yn)} is separable.

Proof. Let u =
∑

w∈{a,b} (E
w
1 − Ew

2 ). Then, for any positive sequence, where yn = 1, we have

ïu, yn
L
∑

ℓ=1

x
(n)
ℓ φ

(n,t0)
ℓ ð = φ

(n,t0)
1 − φ

(n,t0)
2

= φ
(n,t0)
2 (exp (ïEw

1 − Ew
2 ,WtE

w
L ð)− 1)

> 0,

where the last inequality is due to Theorem 4.1.

Similarly, for any negative samples, we have

ïu, yn
L
∑

ℓ=1

x
(n)
ℓ φ

(n,t0)
ℓ ð = −φ

(n,t0)
1 + φ

(n,t0)
2

= φ
(n,t0)
1

(

exp
(

ïEw
2 − E−w

1 ,WtE
w
L ð
)

− 1
)
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> 0,

where the last inequality is due to Theorem 4.1.

Thus, The proof is complete.

Parameter setup. Before we present the technical lemmas, we first introduce two parameters. Let











T = min

{

¼
√

3∥u∗
EP ∥¸Lmax

,
¼2/3

22/3¸Lmax

}

=
¼2/3

22/3¸Lmax

C0 = 2 log 4Lmax + 2

We remark that since ¼ = Ω(L2
max), T is well defined. We first provide the property of T . Note that for any t, we have

∥ut∥ f ∥ut − ut2∥+ ∥ut2∥

f ¸

t
∑

s=0

∥∇uLt∥

f ¸Lmaxt

Similarly,

∥Wt −Wt0∥ f
t
∑

s=t0

¸

¼
∥∇WLt∥

f ¸

¼

t
∑

s=t0

∥us∥Lmax

f ¸2L2
maxt

2

¼

Therefore, for any t f T , we have

∥u∗
EP ∥∥Wt −Wt0∥ f ¼

3
and ∥ut∥∥Wt −Wt0∥ f ¼

2
.

Next, we provide the key lemma in phase 2, which characterizes the alignment of the gradient −∇uLt and the logarithm

growth of ∥ut∥.

Lemma B.5. Let u∗
EP be the solution of the following problem.

u∗
EP = argmin ∥u∥,

〈

u, yn

L
∑

ℓ=1

φ
(n,t0)
ℓ x

(n)
ℓ

〉

g 1, ∀n ∈ IL, L g 1.

Then, for all t0 < t f T , we have

〈

−∇uLt,
ut

∥ut∥

〉

f
(

1 +
C0∥u∗

EP ∥
∥ut∥

)〈

−∇uLt,
u∗
EP

∥u∗
EP ∥

〉

,

and

∥ut∥ g 3∥u∗
EP ∥
5

log(t− t0 − 1)− 3∥u∗
EP ∥
5

log
9∥u∗

EP ∥2
¸

.

Proof. First, note that for any t f T , we have the following lower bound of C0.

C0 g ¼ log 4Lmax + 2∥ut∥∥Wt −Wt0∥
¼− ∥u∗

EP ∥∥Wt −Wt0∥
.

23



Training Dynamics of Transformers

We aim to show that L
(

u∗
EP

(

∥ut∥
∥u∗

EP ∥ + C0

)

,Wt

)

f L(ut,Wt).

Since ut is not the optimal solution of the problem

argmin ∥u∥,
〈

u, yn

L
∑

ℓ=1

φ
(n,t0)
ℓ x

(n)
ℓ

〉

g 1, ∀n ∈ IL, L g 1,

we have at least one sample n of length L such that

〈

ut

∥ut∥
, yn

L
∑

ℓ=1

φ
(n,t0)
ℓ x

(n)
ℓ

〉

<
1

∥u∗
EP ∥

,

which implies there are at least 2L−1 samples satisfies the same inequality.

Hence, for this n, we have

ynTt(X
(n)) =

〈

ut, yn

L
∑

ℓ=1

φ
(n,t)
ℓ x

(n)
ℓ

〉

=

〈

ut, yn

L
∑

ℓ=1

φ
(n,t0)
ℓ x

(n)
ℓ

〉

+

〈

ut, yn

L
∑

ℓ=1

(φ
(n,t)
ℓ − φ

(n,t0)
ℓ )x

(n)
ℓ

〉

f ∥ut∥
∥u∗

EP ∥
+ ∥ut∥

∥Wt −Wt0∥
¼

,

where the inequality is due to the Cauchy’s inequality and the Lipchitz continuity of softmax function (Lemma A.1).

Thus,

L(ut,Wt) =

Lmax
∑

L=1

1

2L

∑

n∈IL

log
(

1 + exp
(

−ynTt(X
(n))
))

g 1

2
log

(

1 + exp

(

− ∥ut∥
∥u∗

EP ∥
− ∥ut∥∥Wt −Wt0∥

¼

))

g 1

4
exp

(

− ∥ut∥
∥u∗

EP ∥
− ∥ut∥∥Wt −Wt0∥

¼

)

,

where the last inequality follows from log(1 + x) > x
2 when x ∈ (0, 1).

On the other hand, we have

〈

u∗
EP , yn

L
∑

ℓ=1

φ
(n,t)
ℓ x

(n)
ℓ

〉

=

〈

u∗
EP , yn

L
∑

ℓ=1

φ
(n,t0)
ℓ x

(n)
ℓ

〉

+

〈

u∗
EP , yn

L
∑

ℓ=1

(φ
(n,t)
ℓ − φ

(n,t0)
ℓ )x

(n)
ℓ

〉

g 1− ∥ut0∥∗
∥Wt −Wt0∥

¼
,

where the inequality is due to the definition of u∗
EP and Cauchy’s inequality.

Thus,

L
(

u∗
EP

( ∥ut∥
∥u∗

EP ∥
+ C0

)

,Wt

)

f Lmax log

(

1 + exp

(

−
(

1− ∥u∗
EP ∥∥Wt −Wt0∥

¼

)( ∥ut∥
∥u∗

EP ∥
+ C0

)))

f Lmax exp

(

− ∥ut∥
∥u∗

EP ∥
+

∥ut∥∥Wt −Wt0∥
¼

)

exp

(

− log 4Lmax − 2
∥ut∥∥Wt −Wt0∥

¼

)

=
1

4
exp

(

− ∥ut∥
∥u∗

EP ∥
− ∥ut∥∥Wt −Wt0∥

¼

)
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Therefore, we conlucde that L
(

u∗
EP

(

∥ut∥
∥u∗

EP ∥ + C0

)

,Wt

)

f L(ut,Wt).

Since L(u,Wt) is convex respect to u for any Wt, by the first order optimality, we have
〈

∇uLt, u
∗
EP

( ∥ut∥
∥u∗

EP ∥
+ C0

)

− ut

〉

f 0

By rearranging, we conclude that
〈

−∇uLt,
ut

∥ut∥

〉

f
(

1 +
C0∥u∗

EP ∥
∥ut∥

)〈

−∇uLt,
u∗
EP

∥u∗
EP ∥

〉

.

.

Next, we show that the norm of ut grows at least logarithmically.

On one hand, we have

〈

−∇uLs,
u∗
EP

∥u∗
EP ∥

〉

=

Lmax
∑

L=1

1

2L

∑

n∈IL

(

−J ′
(n,s)

)

〈

ut0

∥u∗
EP ∥

,

L
∑

ℓ=1

φ
(n,s)
ℓ x

(n)
ℓ

〉

g
Lmax
∑

L=1

1

2L

∑

n∈IL

1

1 + exp(ynTs(X(n)))

(

1

∥u∗
EP ∥

− ∥Ws −Wt0∥
¼

)

(a)

g 1

2

1

1 + exp
(

∥us∥
∥u∗

EP ∥ + ∥ut∥∥Ws −Wt0∥/¼
)

(

1

∥u∗
EP ∥

− ∥Ws −Wt0∥
¼

)

(b)

g 1

3∥u∗
EP ∥

1

1 + 2 exp
(

∥us∥
∥u∗

EP ∥

) ,

where (a) follows from the non-optimality of us, and (b) is due to that ∥Ws −Wt0∥/¼ f 1
2∥ut∥

Thus,

∥us∥ g ¸

3∥u∗
EP ∥

s−1
∑

s′=t0

1

1 + 2 exp
(

∥us′∥
∥u∗

EP ∥

) − ∥ut0∥

Let tk = maxt{t|∀s f t, ∥us∥ f k}. We next show that tk has an upper bound.

We have for any t f tk,

k g ∥ut∥ g ¸

3∥u∗
EP ∥

(t− t0)

1 + 2 exp( k
∥u∗

EP ∥ )
− ∥ut0∥

Thus,

t− t0 f 3∥u∗
EP ∥
¸

(k + ∥ut0∥)
(

1 + 2 exp

(

k

∥u∗
EP ∥

))

f 9∥u∗
EP ∥2
¸

(

k

∥u∗
EP ∥

+ 1

)

exp

(

k

∥u∗
EP ∥

)

f 14∥u∗
EP ∥2
¸

(

2k

3∥u∗
EP ∥

+ 1

)

exp

(

k

∥u∗
EP ∥

)

f 14∥u∗
EP ∥2
¸

exp

(

5k

3∥u∗
EP ∥

)

,

where the last inequality is due to x+ 1 f ex. Hence, tk has upper bound:

tk − t0 f 14∥u∗
EP ∥2
¸

exp

(

5k

3∥u∗
EP ∥

)

.
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Therefore, by the definition of tk, we have

∥utk+1∥ > k

g 3∥u∗
EP ∥
5

log

(

¸

14∥u∗
EP ∥2

(tk − t0)

)

Equivalently, we have

∥ut∥ g 3∥u∗
EP ∥
5

log(t− t0 − 1)− 3∥u∗
EP ∥
5

log
14∥u∗

EP ∥2
¸

.

We conclude that the norm of ut grows at least logarithmically.

The proof is complete.

In the following, we show that there exists a threshold t2, such that after time step t2, the transformer can correctly label the

data, which eventually leads to loss decay.

Lemma B.6 (Formal version of Theorem 4.4). There exists t2 such that for any t g t2, we have

〈

ut

∥ut∥
,

u∗
EP

∥u∗
EP ∥

〉

g 1− 1

2

(

1

6∥u∗
EP ∥

− 1

∥ut∥

)2

,

and

ynTt(X
(n)) g 5∥ut∥

6∥u∗
EP ∥

. (6)

Proof. The proof consists of two parts that leverage Lemma B.5 in a different way. In the first part, we aim to find an

interval [t2, t3] such that the result holds. In the second part, we aim to prove that for any t g t3, the result holds.

Let

t1 = t0 + 1 +
14∥u∗

EP ∥2
¸

exp

(

5

3∆∥u∗
EP ∥

)

.

Then, we have

∥ut∥ g 1

∆
,

where ∆ will be determined later.

We aim to find an interval [t2, t3] such that Equation (6) is true.

By Lemma B.5, for t g t1, we have

〈

−∇uLt,
ut

∥ut∥

〉

f
(

1 +
C0∥u∗

EP ∥
∥ut∥

)〈

−∇uLt,
u∗
EP

∥u∗
EP ∥

〉

f (1 + ∆C0∥u∗
EP ∥)

〈

−∇uLt,
u∗
EP

∥u∗
EP ∥

〉

,

which implies

〈

ut+1 − ut,
u∗
EP

∥u∗
EP ∥

〉

g 1

1 + ∆C0∥u∗
EP ∥

〈

ut+1 − ut,
ut

∥ut∥

〉

g 1

1 + ∆C0∥u∗
EP ∥

(

∥ut+1∥ − ∥ut∥ −
∥ut+1 − ut∥2

2∥ut∥

)

g 1

1 + ∆C0∥u∗
EP ∥

(

∥ut+1∥ − ∥ut∥ −
¸2L2

max∆

2

)

.
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By telescoping from t1 to t− 1 and rearranging, we have

〈

ut

∥ut∥
,

u∗
EP

∥u∗
EP ∥

〉

g 1

1 + ∆C0∥u∗
EP ∥

(

1− ∥ut1∥
∥ut∥

− ¸2L2
max∆(t− t1)

2∥ut∥

)

− ∥ut1∥
∥ut∥

.

Now choose t2 such that

t2 = t0 + 1 +
9∥u∗

EP ∥
¸

exp

(

5∥ut1∥
3∆∥u∗

EP ∥

)

,

which gives us ∥ut∥ g ∥ut1∥
∆ .

Thus,

〈

ut

∥ut∥
,

u∗
EP

∥u∗
EP ∥

〉

g 1

1 + ∆C0∥u∗
EP ∥

(

1− ∥ut1∥
∥ut∥

− ¸2L2
max∆(t− t1)

2∥ut∥

)

− ∥ut1∥
∥ut∥

(a)

g 1− ∆C0∥u∗
EP ∥

1 + ∆C0∥u∗
EP ∥

− 2∥ut1∥/∥ut∥ − ¸2L2
max∆

3(t− t1)/2

g 1− ∆C0∥u∗
EP ∥

1 + ∆C0∥u∗
EP ∥

− 2∆− ¸2L2
max∆

3(t− t1)/2,

where (a) follows from ∥ut∥ g ∥ut1∥/∆ g 1/∆2, and the last inequality is due to that ∥ut1∥/∥ut∥ f ∆.

By choosing ∆ = Θ
(

1
C0∥u∗

EP ∥3

)

, and noting that t f T = ¼2/3

¸Lmax
, we conclude that for t ∈ [t2, T ], the following

inequalities hold.

∥

∥

∥

∥

ut

∥ut∥
− u∗

EP

∥u∗
EP ∥

∥

∥

∥

∥

=

√

2− 2

〈

ut

∥ut∥
,

u∗
EP

∥u∗
EP ∥

〉

f
√

2∆C0∥u∗
EP ∥

1 + ∆C0∥u∗
EP ∥

+ 4∆+ ¸2L2
max∆

2(t− t1)/2

f
√
∆
√

2C0∥u∗
EP ∥+ 4 + ¸2L2

max∆
2(t3 − t1)/2

f 1

6∥u∗
EP ∥

−∆

f 1

6∥u∗
EP ∥

− 1

∥ut∥
,

where the last inequality is due to that ∥ut∥ g 1/∆.

Hence,

ynTt(X
(n)) =

〈

ut, yn

L
∑

ℓ=1

φ
(n,t)
ℓ x

(n)
ℓ

〉

(a)

g
〈

ut, yn

L
∑

ℓ=1

φ
(n,t0)
ℓ x

(n)
ℓ

〉

− ∥ut∥∥Wt −Wt0∥
¼

=
∥ut∥
∥u∗

EP ∥

〈

u∗
EP , yn

L
∑

ℓ=1

φ
(n,t0)
ℓ x

(n)
ℓ

〉

+

〈

ut − ∥ut∥
u∗
EP

∥u∗
EP ∥

, yn

L
∑

ℓ=1

φ
(n,t0)
ℓ x

(n)
ℓ

〉

− ∥ut∥∥Wt −Wt0∥
¼

g ∥ut∥
∥u∗

EP ∥
− ∥ut∥

∥

∥

∥

∥

ut

∥ut∥
− ut0

∥u∗
EP ∥

∥

∥

∥

∥

− ∥ut∥∥Wt −Wt0∥
¼

(b)

g ∥ut∥
∥u∗

EP ∥
− ∥ut∥

(

1

6∥u∗
EP ∥

− 1

∥ut∥

)

− 1
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=
5∥ut∥
6∥u∗

EP ∥
,

where (a) follows from Cauchy’s inequality and the Lipchitz continuity of softmax function (Lemma A.1), and (b) is the

due that t f T .

The proof is complete.

Theorem B.7 (Restatement of Theorem 4.5). Recall that T = Θ
(

¼2/3

¸Lmax

)

. For any t f T , we have

Lt = O

(

Lmax∥u∗
EP ∥2

¸
√
t

)

Proof. By Lemmas B.5 and B.6, we have proved that for any T g t g t2, we have

ynTt(X
(n)) g 5∥ut∥

6∥u∗
EP ∥

, ∀n.

and

∥ut∥ g 3∥u∗
EP ∥
5

log
¸(t− t0 − 1)

14∥u∗
EP ∥2

.

Thus,

Lt =

Lmax
∑

L=1

1

2L
log
(

1 + exp(−ynTt(X
(n)))

)

f Lmax log

(

1 +
14∥u∗

EP ∥2
¸

1√
t− t0 − 1

)

f O

(

Lmax∥u∗
EP ∥2

¸
√
t

)

.

Finally, since T = Θ
(

¼2/3

¸Lmax

)

we note that

LT f O

(

¸1/2L2.5
max∥u∗

EP ∥2
¼1/3

)

.

C. Proofs of Parity Check Problem

In this section, we provide the proof of training dynamics of transformers on parity check with CoT. Our strategy is similar

to that used in Appendix B. Since once the data after the attention layer is separable, the analysis of the dynamics would be

the same. Hence, we omit the phase 2 analysis in parity check and focus on showing that at the end of phase 1, the attention

layer makes the data separable.

We first show that the token scores only depend on the position, which helps us to reduce the complexity of the subsequent

proof.

Lemma C.1. During the entire training process, for any w ∈ {a,b}, we have

ïut, E
w
ℓ ð =

〈

ut, E
−w
ℓ

〉

, ∀ℓ g 1.

For attention scores, when L < L0, we have the following equalities.
{

ïEw
1 ,WtE

w
L ð =

〈

E−w
1 ,WtE

−w
L

〉

.

ïEw
ℓ ,WtE

w
L ð =

〈

E−w
ℓ ,WtE

w
L

〉

, ∀ℓ g 2.
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When L g L0, let ℓ0 = L− L0 + 1, then we have the following equalities.

{
〈

Ew
ℓ0 ,WtE

w
L

〉

=
〈

E−w
ℓ0

,WtE
−w
L

〉

.

ïEw
ℓ ,WtE

w
L ð =

〈

E−w
ℓ ,WtE

w
L

〉

, ∀ℓ ̸= ℓ0.

Proof. We only check the last two equalities when L g L0, since the others can proved similarly to Lemma B.1.

Note that the results are valid for t = 0. Assume the results hold at time t, we aim to prove the results hold for t+ 1. It

suffices to prove the following equalities.

〈

Ew
ℓ0 , (−∇WLt)E

w
L

〉

=
〈

E−w
ℓ0

, (−∇WLt)E
−w
L

〉

. (7)

ïEw
ℓ , (−∇WLt)E

w
L ð =

〈

E−w
ℓ , (−∇WLt)E

w
L

〉

, ∀ℓ ̸= ℓ0. (8)

We first show that Equation (8) is true.

For ℓ ̸= ℓ0 = L− L0 + 1, we have

ïEw
ℓ , (∇WLt)E

w
L ð =

1

2L

∑

n∈IL,C(x
(n)
ℓ )=C(x

(n)
L )=w

J ′
(n,t)ynφ

(n,t)
ℓ

(

u¦
t x

(n)
ℓ − Tt(X

(n)
L )

)

=
1

2L

∑

n∈IL,C(x
(n)
ℓ )=C(x

(n)
L )=w

−1

1 + exp
(

ynTt(X(n))
)ynφ

(n,t)
ℓ

(

u¦
t x

(n)
ℓ − Tt(X

(n)
L )

)

For any n ∈ IL satistyfing C(x
(n)
ℓ ) = C(x

(n)
L ) = w, let n′ be the sample that only replace w with −w at the ℓ-th position.

Then, due to the induction hypothesis, we have φ
(n,t)
ℓ = φ

(n′,t)
ℓ , and Tt(X

(n)
L ) = Tt(X

(n′)
L ). Since ℓ g 2, changing one

token at the position ℓ does not change the label, we have yn = yn′ . Therefore, we have

ïEw
ℓ , (∇WLt)E

w
L ð =

〈

E−w
ℓ , (∇WLt)E

w
L

〉

, ∀ℓ g 2.

We conclude that Equation (8) is true.

Then, we show that Equation (7) is true.

Note that

〈

Ew
ℓ0 , (∇WLt)E

w
L

〉

=
1

2L

∑

n∈IL,C(x
(n)
ℓ0

)=C(x
(n)
L )=w

J ′
(n,t)φ

(n,t)
1

(

u¦
t x

(n)
1 − Tt(X

(n)
L )

)

=
1

2L

∑

n∈IL,C(x
(n)
ℓ0

)=C(x
(n)
L )=w

−1

1 + exp
(

ynTt(X
(n)
L )

)φ
(n,t)
1

(

u¦
t x

(n)
1 − Tt(X

(n)
L )

)

.

Now, for any n ∈ IL satisfying C(x
(n)
ℓ0

) = C(x
(n)
L ) = w, let n′ be the sample that flips the ℓ0-th and the last tokens at the

same time, i.e., C(x
(n′)
ℓ0

) = C(x
(n′)
L ) = −w. Then, due to the induction hypothesis, we have φ

(n,t)
ℓ = φ

(n′,t)
ℓ , yn = yn′ and

Tt(X
(n)
L ) = Tt(X

(n′)
L ). Therefore, we have

〈

Ew
ℓ0 , (∇WLt)E

w
L

〉

=
〈

E−w
ℓ0

, (∇WLt)E
−w
L

〉

.

We conclude that Equation (7) is true.

Therefore, the proof is complete by induction.
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Due to above lemma, for each length L, we only need to analyze two types of sequence, i.e., the one with positive label and

the one with negative label. We also use X
(+)
L = [Ew

1 , E
w
2 , . . . , E

w
L s] to represent the sequence with positive labels, and

X
(−)
L = [E−w

1 , Ew
2 , . . . , E

2
L] to represent the sequence with negative labels, similar to Appendix B.

Next, we characterize the initialization dynamics.

Lemma C.2 (Initialization). At the beginning (t = 2, 3), for the linear layer, we have

ïu2, E
w
1 ð = Θ(¸t), ∀w,

ïu2, E
w
ℓ ð = −Θ(¸2t2), ∀ℓ g 2, ∀w,

ïu2, E
w
2 − Ew

ℓ ð f −Ω(¸2t2), ∀ℓ g 3, ∀w.

For the attention layer, when L f L0 we have

ïEw
1 − Ew

2 ,W3E
w
L ð g Ω

(

¸2

L

)

, ∀w,

〈

E−w
1 − Ew

2 ,W3E
w
L

〉

f −Ω

(

¸2

L

)

, ∀w,

ïEw
2 − Ew

ℓ ,W3E
w
L ð g Ω

(

¸2

L

)

, ∀ℓ g 3, ∀w.

When L > L0, let ℓ0 = L− L0 + 1 we have

〈

E−w
ℓ0

− Ew
ℓ ,W3E

w
L

〉

g Ω

(

¸2

L

)

, ∀ℓ ̸= ℓ0, ∀w,

〈

Ew
ℓ − Ew

ℓ0 ,W3E
w
L

〉

g Ω

(

¸2

L

)

, ∀ℓ ̸= ℓ0, ∀w,

ïEw
1 − Ew

ℓ ,W3E
w
L ð g Ω

(

¸2

L

)

, ∀ℓ ̸= ℓ0, 1, ∀w.

Proof. Since J(n,0) =
1
2 , and φ

(n,0)
ℓ = 1

L for n ∈ IL (the length is L), we have

ïu1, E
w
1 ð = ¸ï−∇uL0, E

w
1 ð

= ¸

Lmax
∑

L=1

1

2L

∑

n∈IL,C(x
(n)
ℓ )=w

(−J ′
(n,0))ynφ

(n,0)
1

=
¸

4
,

where the last equality is due to the cancellation between positive and negative samples whose length is greater than 1. Due

to the same reason, for any ℓ g 2, we have

ïu1, E
w
ℓ ð = ¸ï−∇uL0, E

w
ℓ ð

= ¸

Lmax
∑

L=2

1

2L

∑

n∈IL,C(x
(n)
ℓ )=w

(−J ′
(n,0))ynφ

(n,0)
1

= 0

Regarding the attention, for any token Ew′

ℓ , we have

ïEw′

ℓ ,W1E
w
L ð = ¸¼ïE2

ℓ , (−∇WL1)E
w
L ð

=
1

2L

∑

n∈IL,C(x
(n)
ℓ )w′,C(x

(n)
L )=w

J ′
(n,0)ynφ

(n,0)
ℓ

(

u¦
0 x

(n)
ℓ − T0(X

(n))
)
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= 0,

where the last inequality is due to the fact that u0 = 0.

In summary, similar to what happens in even pairs problem, at time step 1, only the token score at the first position increases,

and all other token scores remain 0, and the attention scores are all 0, resulting φ
(n,1)
ℓ = 1

L for n ∈ IL. Note that, we also

have

−J ′
(n,1) =

1

1 + exp( ¸
4L )

, n ∈ I+L ; −J ′
(n,1) =

1

1 + exp(− ¸
4L )

, n ∈ I−L .

Next, we characterize the token scores and attention scores at time step 2.

ïu2, E
w
1 ð = ïu1, E

w
1 ð+ ¸ï−∇uL1, E

w
1 ð

=
¸

4
+ ¸

Lmax
∑

L=2

1

2L

∑

n∈IL,C(x
(n)
ℓ )=w

(−J ′
(n,0))ynφ

(n,0)
1

=
¸

4
+

¸

2

1

1 + exp(¸/4)
+

Lmax
∑

L=2

¸

2

(

1

1 + exp( ¸
4L )

− 1

1 + exp(− ¸
4L )

)

1

L

Thus,

∣

∣

∣

∣

ïu2, E
w
1 ð −

2¸

4

∣

∣

∣

∣

f ¸

2

∣

∣

∣

∣

1

1 + exp(¸/4)
− 1

2

∣

∣

∣

∣

+

Lmax
∑

L=2

¸

2L
· ¸

2L

f 3¸2

8
,

where the last inequality is due to the Lipchitz continuity of f(x) = 1/(1+ex) (with Lipchitz constant 1) and
∑∞

L=2 1/L
2 f

1.

Similarly, for ℓ g 2, we have

ïu2, E
w
ℓ ð = ¸ï−∇uL1, E

w
ℓ ð

= ¸

Lmax
∑

L=ℓ

1

2L

∑

n∈IL,C(x
(n)
ℓ )=w

(−J ′
(n,1))ynφ

(n,0)
ℓ

=

Lmax
∑

L=ℓ

¸

2

(

1

1 + exp( ¸
4L )

− 1

1 + exp(− ¸
4L )

)

1

L

f −
Lmax
∑

L=ℓ

¸2

4L2

f − ¸2

4ℓ2
.

In addition, regarding the difference of token scores, we have

ïu2, E
w
2 − E2

ℓ ð =
Lmax
∑

L=2

¸

2

(

1

1 + exp( ¸
4L )

− 1

1 + exp(− ¸
4L )

)

1

L
−

Lmax
∑

L=ℓ

¸

2

(

1

1 + exp( ¸
4L )

− 1

1 + exp(− ¸
4L )

)

1

L

=
ℓ−1
∑

L=2

¸

2

(

1

1 + exp( ¸
4L )

− 1

1 + exp(− ¸
4L )

)

1

L
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f −¸2

16
,

where ℓ g 3.

Therefore, we already prove that

ïu2, E
w
1 ð = Θ(¸t), ∀w,

ïu2, E
w
ℓ ð = −Θ(¸2t2), ∀ℓ g 2, ∀w,

ïu2, E
w
2 − Ew

ℓ ð f −Ω(¸2t2), ∀ℓ g 3, ∀w.

Next, we analyze the attention score. For any length L < L0, the proof follows the same steps in Lemma B.2. Here, we just

present the results.

¼ ïEw
1 − Ew

2 , (−∇WL1)E
w
L ð g Ω

( ¸

L

)

,

¼
〈

E−w
1 − Ew

2 , (−∇WL1)E
w
L

〉

f −Ω
( ¸

L

)

.

In addition,

¼ ïEw
1 − Ew

2 , (−∇WL2)E
w
L ð g Ω

( ¸

L

)

¼
〈

E−w
1 − Ew

2 , (−∇WL2)E
w
L

〉

f −Ω
( ¸

L

)

,

which implies that for any L f L0, we have

ïEw
1 − Ew

2 ,W3E
w
L ð g Ω

(

¸2

L

)

〈

E−w
1 − Ew

2 ,W3E
w
L

〉

f −Ω

(

¸2

L

)

,

Next, we show that the initial dynamics of attention scores in sequence with length L > L0.

Recall that ℓ0 = L− L0 + 1. We have

¼
〈

E−w
ℓ0

− Ew
1 , (−∇WL1)E

w
L

〉

= − 1

2L

∑

n∈I−

L

(−J ′
(n,1))φ

(n,1)
ℓ0

(

ïu1, E
w
ℓ0ð −

¸

4L
)
)

− 1

2L

∑

n∈IL,C(x
(n)
1 )=w

(−J ′
(n,1))ynφ

(n,1)
1

(

ïut, E
w
1 ð −

¸

4L

)

=
1

8
· 1

1 + exp(− ¸
4L )

· 1
L

[

−2ïu1, E
w
ℓ0ð+ ïu1, E

w
1 ð+

¸

4L

]

− 1

8

1

1 + exp( ¸
4L )

· 1
L

(

ïu1, E
w
1 ð −

¸

4L

)

(a)

g Ω
( ¸

L

)

,

where (a) is due to the Lipchitz continuity of f(x) = 1/(1 + ex) and ïu1, E
w
1 ð > Ω(¸).

Similarly,

¼
〈

Ew
ℓ0 − Ew

1 , (−∇WL1)E
w
L

〉

f −Ω
( ¸

L

)

,

Since ïu1, E
w
ℓ ð = 0 for all ℓ g 2, we have

¼ ïEw
ℓ − Ew

ℓ′ , (−∇WL1)E
w
L ð = 0.
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Finally, we aim to show that at time step t = 3, the attention layer also distinguishes between first and other tokens. This

can be done by noting that ïu2, E
w
1 − E2

ℓ ð g Ω(¸) for ℓ ̸= ℓ0. More importantly, φ
(+,2)
1 > φ

(−,2)
1 Specifically, we have

¸¼ïEw
1 − Ew

ℓ , (−∇WL2)E
w
L ð

=
¸

2L

∑

n∈IL,C(x
(n)
2 )=C(x

(n)
L )=w

(−J ′
(n,2))ynφ

(n,2)
1

(

ïu2, E
w
1 ð − T2(X

(n))
)

− ¸

2L

∑

n∈IL,C(x
(n)
ℓ )=C(x

(n)
L )=w

(−J ′
(n,2))ynφ

(n,2)
ℓ

(

ïu2, E
w
ℓ ð − T2(X

(n))
)

(a)
=

¸

8
(−J ′

(+,t))
[

φ
(+,2)
1 ïu2, E

w
1 ð − φ

(+,2)
ℓ ïu2, E

w
ℓ ð
]

− ¸

8
(−J ′

(−,t))
[

φ
(+,2)
1 ïu2, E

w
1 ð − φ

(+,2)
ℓ ïu2, E

w
ℓ ð
]

g Ω(¸4/L),

where (a) is due to the fact that φ
(n,2)
ℓ are equal for any ℓ g 2 and ℓ ̸= ℓ0, and the last inequality follows from that

ïu2, E
w
1 ð − ïu2, E

w
ℓ ð g Ω(¸).

Thus, the proof is complete.

For the rest of the proof, the steps follow the same as in Appendix B. Specifically, by induction, we have

Theorem C.3 (Phase 1). [Restatement of Theorem 5.1] Let −w denote the flip of token w ∈ {a,b}. Choose ¼ = Ω(L2
max)

and t0 = O(1/(¸Lmax)). Then, for all t f t0, the parameters evolve as follows:

(1) The dynamics of linear layer u is governed by the following inequalities.

ïut, E
w
1 ð = Θ(¸t), ∀w,

ïut, E
w
ℓ ð = −Θ(¸2t2), ∀ℓ g 2, ∀w,

ïut, E
w
2 − Ew

ℓ ð f −Ω(¸2t2), ∀ℓ g 3, ∀w.

(2) The dynamics of the attention layer W is governed by the following inequalities. For any length L < L0, we have

ïEw
1 − Ew′

ℓ ,WtE
w
L ð g Ω(¸2t2), ∀ℓ g 2, ∀w,w′,

ïEw′

ℓ − E−w
1 ,WtE

w
L ð g Ω(¸2t2), ∀ℓ g 2, ∀w,w′,

ïEw′

2 − Ew′′

ℓ ,WtE
w
L ð g Ω(¸4t), ∀ℓ g 3, ∀w,w′, w′′.

For length L g L0, let ℓ0 = L− L0 + 1, and we have

ïE−w
ℓ0

− Ew′

ℓ ,WtE
w
L ð g Ω(¸2t2), ∀ℓ ̸= ℓ0, ∀w,w′,

ïEw′

ℓ − E−w
ℓ0

,WtE
w
L ð g Ω(¸2t2), ∀ℓ ̸= ℓ0, ∀w,w′,

ïEw′

1 − Ew′′

ℓ ,WtE
w
L ð g Ω(¸4t), ∀ℓ ̸= 1, ℓ0, ∀w,w′, w′′.

Therefore, at the end of phase 1, i.e., t f t0, the dataset {(
∑L

ℓ=1 x
(n)
ℓ φ

(n,t0)
ℓ , yn)} is separable. This fact enable us to

performa the same implicit bias analysis as in Appendix B. Thus, we conclude that similar theorems Theorem 5.2 and

Theorem 5.3 hold true.

D. Additional Experiments

Imapct of the scaling parameter ¼. We first select two additional ¼ configurations for training on the Even Pairs task to

demonstrate that the training dynamics remain consistent with those reported in the main paper.

Two-phase dynamics. As shown in Figure 6, the two-phase phenomenon naturally emerges even when a fixed step size

is used throughout the entire gradient descent training process. Notably, this behavior also appears in real-world datasets:

Figure 7 demonstrates that the two-phase learning dynamics persist when training with NanoGPT (Karpathy, 2023).
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Figure 4. Training dynamics of learning Even pairs when λ = 10

Figure 5. Training dynamics of learning Even pairs when λ = 18 = L2

max/2

Figure 6. Training dynamics of training transformer on even pairs using vanilla GD (constant learning rate) and λ = 2.

Figure 7. Results of nanoGPT, trained on ’shakespeare’ dataset. Configuration: block-size=64, batch-size=12, n-layer=4, n-head=4,

n-embd=128
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