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Abstract—Pre-trained Transformers, through in-context learn-
ing (ICL), have demonstrated exceptional capabilities to adapt
to new tasks using example prompts without model update.
Transformer-based wireless receivers, where prompts consist of
the pilot data in the form of transmitted and received signal
pairs, have shown high estimation accuracy when pilot data are
abundant. However, pilot information is often costly and limited
in practice. In this work, we propose the DEcision Feedback IN-
ContExt Detection (DEFINED) solution as a new wireless receiver
design, which bypasses channel estimation and directly performs
symbol detection using the (sometimes extremely) limited pilot
data. The key innovation in DEFINED is the proposed decision
feedback mechanism in ICL, where we sequentially incorporate
the detected symbols into the prompts to improve the detec-
tions for subsequent symbols. Extensive experiments across a
broad range of wireless communication settings demonstrate
that DEFINED achieves significant performance improvements,
in some cases only needing a single pilot pair.

I. INTRODUCTION

Wireless receiver symbol detection focuses on identifying

the transmitted symbols over fading channels with varying

signal-to-noise ratios (SNRs). Traditional methods typically

follow a two-step process: first estimating the channel using,

e.g., the Minimum Mean Square Error (MMSE) estimator, and

then performing symbol detection using the estimated channel.

However, this approach can be computationally intensive and

is impacted by the channel estimation quality. Data-driven

approaches, such as deep learning models [1], [2] that di-

rectly learn channel estimators and symbol detectors, offer an

alternative. However, deep neural networks (DNNs) require a

large amount of data and often perform poorly in the low-data

regime. More importantly, adapting pre-trained DNNs to new

wireless conditions remains a challenge [3].

Advances in Transformer models, particularly decoder-only

architectures like GPT [4], have demonstrated impressive

performance across various fields. Recent result [5] shows

that pre-trained Transformers can generalize to new tasks

during inference through in-context learning (ICL), without

requiring explicit model updates. Specifically, given an input

of the form (y1, f(y1), . . . , yn, f(yn), yquery), a pre-trained

Transformer can approximate f(yquery) based on the provided

context, where (y1, . . . , yn, yquery) represents features and f
can represent various classes of functions [6].
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Wireless symbol detection, which involves estimating trans-

mitted symbols from noisy received signals, aligns well with

the ICL frameworks. [7] introduces Transformers for this

task using ICL, framing it as a regression problem with

Mean Square Error (MSE) loss and achieving near-MMSE

performance. Later works expand this framework: [8] extends

it to MIMO systems, and [9] demonstrates its robustness in

multi-user MIMO environments. Meanwhile, [10] employs

language models to reformulate detection as a linguistic task.

These advances highlight Transformers as a powerful tool for

addressing wireless communication challenges.

Despite these successes, prior studies face limitations. Most

approaches treat detection as a regression task, requiring

MSE-based objectives and post-processing to map continuous

outputs to discrete symbols. Additionally, many require ample

pilot pairs, which may not be possible in practice, and large

models increase inference costs, limiting real-world feasibility.

Inspired by decision feedback in wireless communication

(e.g., decision feedback equalizers over multi-path fading

channels), we propose a new prompt design by incorporating

decision pairs. Specifically, we combine the current received

signal with the model’s detection as pairs, merging them

with previous prompts to form a new, larger prompt for

subsequent symbol detection. Our DEFINED model uses a

carefully designed mixture training process to achieve high

performance with limited pilots (sometimes only a single pilot)

and maintain accuracy with sufficient pilots. Extensive ex-

periments across modulation schemes validate our approach’s

effectiveness. To summarize, our main contributions include:

• We develop a Transformer model that jointly performs

channel estimation and symbol detection. The key inno-

vation in DEFINED is leveraging decision feedback with

limited pilot data to expand the effective context length

and enhance performance.

• We design a mixed training process for DEFINED that

achieves high performance improvement with limited

pilots and strong accuracy with sufficient pilot data,

making the model adaptable to practical scenarios.

• We validate our approach with experiments across mul-

tiple modulation schemes.

II. SYSTEM MODEL AND CANONICAL METHODS

A. Wireless Model

To more clearly illustrate our design, we consider a canon-

ical receiver symbol detection problem over a standard nar-



rowband wireless fading channel. Specifically, we focus on an

(Nr × Nt) MIMO system, where the channel is represented

by an Nr×Nt complex-valued matrix Ht at time t, following

a distribution PH . We normalize the channel coefficients such

that each entry in Ht has a unit variance. The received signal at

time t is expressed as: yt = Htxt+zt, where the channel noise

zt ∈ C
Nr is modeled as a complex additive white Gaussian

noise vector with zero mean and covariance matrix σ2I . Each

entry of the input vector xt ∈ C
Nt is sampled uniformly

at random from a given constellation set X (e.g., QPSK or

16QAM), and this modulation process is independently and

identically distributed (i.i.d.) across both time and space. We

normalize the signal to ensure a unit average total transmit

power, i.e. E[∥xt∥
2] = 1. The average signal-to-noise ratio

(SNR) at any receive antenna is given by SNR = 1/σ2.

We focus on the block-fading channel model [11] in this

paper, where the channel Ht remains constant over a coherent

time period of T time slots, and is i.i.d. across different

coherence periods. In other words, Ht = hl, ∀t = (l − 1)T +
1, · · · , lT for the l-th coherence period where hl is drawn i.i.d.

from PH . Correspondingly, the data transmission is organized

into frames, where each frame has a length that is at most T .

The frame structure is designed such that the first k transmitted

symbols are known and pre-determined pilot symbols, whose

original purposes include assisting the receiver to perform

channel estimation of hl so that it can perform coherent

symbol detection. In other words, based on the reception of a

few pilot pairs Dk = {(y1, x1), · · · , (yk, xk)}, the goal is to

design a demodulator that accurately recovers the transmitted

symbol xk+1, · · · , xT from the received signal yk+1, · · · , yT
with high probability.

B. Canonical Methods for Symbol Detection

In the traditional approach, the receiver first estimates the

channel using pilot signals, then performs symbol detection

on the received signal yt via hypothesis testing for each t =
k+1, · · · , T . Typically, the (Linear) MMSE estimator is used

for channel estimation, and the MMSE channel estimate Ĥ
is given by: ĤMMSE

k = Y X†(XX† + σ2I)−1, where X is

the pilot matrix and Y is the received signal matrix. With

the estimated channel, the transmitted symbol x̂t is detected

by projecting yt onto the closest symbol in the modulation

constellation X as: x̂t = argminx∈X ∥Ĥx − yt∥
2, ∀t = k +

1, · · · , T.
This two-step process treats channel estimation and symbol

detection as separate tasks. Such decoupling can result in

suboptimal detection, particularly under noisy conditions or

limited pilot data [12]. Optimal estimators like MMSE rely

on precise statistical models of the channel and noise, which

are often hard to obtain. Additionally, these estimators are

computationally intensive due to matrix inversions and poste-

rior probability calculations, making them less appealing for

real-time applications in high-dimensional systems.

To address these challenges, data-driven methods [13] have

been explored for joint channel estimation and symbol de-

tection. Deep learning architectures have shown promise [1],

[2], [14]–[16], but their high data requirements [17] and poor

adaptability to varying channel conditions without retraining

limit their real-world applicability [3].

III. IN-CONTEXT LEARNING-BASED SYMBOL DETECTION

ICL for symbol detection leverages the structure of wireless

communication frames, particularly in block-fading channels

where channel conditions remain stable during the coher-

ent time. Within each frame, pilot signals are followed by

subsequent received signals, which naturally align with the

Transformer architecture’s strength in processing sequence-

based inputs. The Transformer’s ability to model dependencies

among sequential data allows it to capture complex relation-

ships within transmitted signals, making it highly effective for

symbol detection tasks.

In this section, we introduce the ICL-based symbol detection

method. We first formulate the symbol detection problem,

and then present the ICL implementation using a popular

Transformer model GPT-2, which also serves as the backbone

of our proposed solution1.

A. ICL-based Problem Formulation

Each ICL detection task τ corresponds to a latent channel

H and a channel noise level σ2, following the unknown joint

distribution Pτ = PHPσ2 . The ICL-based symbol detection

does not have prior knowledge of the specific task τ and

is provided only with a prompt Sτ
t = (Dτ

k , yt), consisting

of k target pairs, Dτ
k = {(y1, x1), · · · , (yk, xk)}, which are

sampled from the conditional distribution Px,y|τ and serve

as in-context examples for the current task τ , along with yt,
∀t = k + 1, · · · , T .

As previously mentioned, each context pair (xi, yi) and the

inference pair (yt, xt) are i.i.d. samples given task τ . For

block-fading channels, the context set Dτ
k , also referred to as

pilot signals in wireless communication, enhances the channel

estimation, thereby improving the reliability and accuracy of

data transmission. We note that a significant advantage of

the proposed solution is that there is no need to change the

existing frame structure or the design of pilot signals. Rather,

the innovation is entirely at the receiver side where we leverage

the pilot and decoded signals in a different way. This is an

important advantage in practice as it allows for (backward)

compatibility with the existing standard.

The goal of symbol detection is to identify the correspond-

ing input signal xt for the new query signal yt from the

same task. The ICL-based detection makes its decision as

follows: x̂t = fθ(S
τ
t ), where θ represents the parameters of the

model. The detection for the query is measured by the Symbol

Error Rate (SER), which is the frequency at which transmitted

symbols are incorrectly decoded. The expected SER for the

new query with k contexts, taking the expectation over the

task distribution for ∀k = 1, · · · , T − 1, is defined as:

SERk(θ) = EτEDτ

k
,yt|τ [fθ(D

τ
k , yt) ̸= xt] . (1)

1We use GPT-2 with elaborated design choices as a concrete example
throughout the paper. However, the proposed principle can be easily adapted
to other Transformer architectures.



B. Vanilla In-Context Symbol Detection

Transformer models have emerged as powerful tools for

symbol detection [18], leveraging their ability to capture

long-range dependencies. This approach to wireless symbol

detection was introduced in [7], [8]. The input-output struc-

ture is illustrated in Figure 1. With a causal masked self-

attention mechanism, the model outputs the detection x̂t at

the corresponding position of yt, relying only on known

preceding contexts and the received signal. During the forward

process, the Transformer solves k + 1 detection problems

for the same task τ , using an increasing number of pilot

data points. Their results in [7], [8] demonstrate that the

Transformer exhibits strong capabilities in symbol estimation

within context, without requiring explicit model updates.

Fig. 1. Decoder-only Transformer architecture for ICL-based symbol detec-
tion with k pilots. Detection output applies to ∀t = k + 1, · · · , T .

IV. DECISION FEEDBACK IN-CONTEXT DETECTION

The vanilla ICL approaches for symbol detection require

sufficient context to achieve accurate estimation, which is often

impractical in real-world scenarios. Pilot signals are costly and

limited, reducing their adaptability for practical applications.

For situations where the number of pilots is small, neither

conventional two-stage (channel estimation then symbol detec-

tion) nor vanilla ICL solutions can achieve good performance.

Furthermore, these approaches generally formulate the symbol

detection task as a regression problem, as in [8], [9], [19],

where a Transformer is trained to minimize the MSE loss.

Although their models achieve performance comparable to the

optimal MMSE estimator for x, an additional projection step

is required to map the output to the appropriate transmitted

symbol, leading to a mismatch and losing optimality.

In contrast, we directly define the problem as a classification

task, enabling the model to jointly learn channel estimation

and symbol detection while directly measuring the SER during

inference. Additionally, we generalize the approach to effec-

tively handle scenarios where pilot information is highly lim-

ited by sequentially feeding back the already decoded symbol

pairs as noisy pilots and incorporating them as part of the

prompt. Our model demonstrates robust performance even in

challenging conditions with only a single pilot, outperforming

previous ICL models that struggle with insufficient pilot data.

At the same time, it maintains high accuracy when sufficient

pilot data is available.

Inspired by the decision-feedback concepts in wireless com-

munication, we propose the DEcision Feedback IN-ContExt

Detection (DEFINED) method for symbol detection, as shown

Fig. 2. DEFINED model architecture with k pilots and (t−k− 1) decision
feedback contexts to detect xt, ∀t = k + 1, · · · , T .

in Figure 2. The DEFINED model extends the prompt by

incorporating the previously received signals and detection

decisions alongside prior prompts to improve subsequent de-

tections. While traditional decision-feedback equalizers (DFE)

focus on inter-symbol interference (ISI), our study addresses

narrowband channels without ISI. Nevertheless, decision feed-

back is effective here due to the latent common channel. Noisy

feedback also provides valuable information, further refining

model detection.

A. Model Parameters

Our specific Transformer model is designed with an embed-

ding dimension of de = 64, L = 8 layers, and h = 8 attention

heads, resulting in approximately 0.42 million parameters,

which is significantly smaller compared to large language

models (LLMs) commonly applied in wireless communication

tasks, such as those discussed by [10], [20]. For instance, even

LLMs like GPT-J 6B contain over 6 billion parameters, making

them approximately 14,000 times larger than our model. This

compact size not only enables deployment on edge devices but

also significantly shortens the inference time, enabling low-

latency detection at the receiver.

B. Training Details

In this section, we describe our data generation process

and the training of the DEFINED model. Training includes a

pre-training phase to equip the model with general predictive

abilities and speed up convergence, followed by fine-tuning to

adapt the model to scenarios with limited pilot data.

1) Data Generation: We generate data according to the

wireless communication model described in Section III-A.

Specifically, we consider both SISO and 2x2 MIMO systems

and explore various modulation schemes, including BPSK,

QPSK, 16QAM, and 64QAM. For each wireless system and

modulation task, we generate prompts consisting of sequences

with T pilot pairs, with the maximum sequence length set

to T = 31. Both systems operate under a Rayleigh fading

channel, where the channel coefficient is sampled as H ∼
PH = CN (0, 1). The channel noise is sampled i.i.d. from a

Gaussian distribution zt ∼ CN (0, σ2I). Within each block,

the noise variance σ2 is constant and shared across all noise

samples. However, for different blocks, σ2 is i.i.d. sampled

from a uniform distribution Pσ2 over the range [σ2
min, σ

2
max]

to improves adaptability. This variability applies only during



training, while evaluation is conducted at fixed SNR levels for

controlled performance assessment.

2) ICL Pre-training: We delve into the details of model

training, which is divided into two phases, as shown in

Figure 3. First, we define ICL-training and ICL-testing as

operations on ground-truth data, represented by the clean

prompt: SICL
t = {y1, x1, . . . , yt−1, xt−1, yt}, for t =

1, 2, · · · , T. On the other hand, DF-training and

DF-testing use iteratively decoded sequences with

k pilot data and model decision feedback, which

operate on the decision feedback prompt: SDF
t =

{y1, x1, · · · , yk, xk, yk+1, x̂k+1, . . . , yt−1, x̂t−1, yt}, for t =
k + 1, . . . , T, where each estimation x̂t relies on the first k
pilot points and prior model decisions.

Fig. 3. The training process includes pre-training on clean data, followed
by fine-tuning on a mixed dataset of clean and decision feedback noisy data.
The model demonstrates strong performance, adapting to both limited and
sufficient pilot scenarios during symbol detection (i.e., inference).

We define the loss functions for the ICL-training and DF-

training models. The adopted loss function is the cross-entropy

loss between the model’s output and the ground-truth labels:

LICL(θ) =
1

NT

N
∑

i=1

T
∑

t=1

loss
(

fθ(S
ICL
t,i ), xt,i

)

, (2)

LDF(θ) =
1

N(T − k)

N
∑

i=1

T
∑

t=k+1

loss
(

fθ(S
DF
t,i ), xt,i

)

. (3)

where θ represents the model parameters, and N is the number

of samples.

DF-training is trained with limited pilot data and utilizes

self-sampled labels, where noisy feedback is combined with

previous contexts to generate new contexts. This process is

time-intensive, as each detection and feedback step requires a

model forward pass. Additionally, noisy data complicates con-

vergence, which can cause the model to struggle to converge

effectively. Training the Transformer with ICL-training and

testing under DF-testing introduces a data mismatch: training

uses clean data, while testing involves noise. Despite this

mismatch, we observed that the Transformer’s performance

demonstrates significant robustness to noise during DF-testing

and maintains acceptable performance. ICL-training is also

about ten times faster than DF-training, as it eliminates data

sampling and operates solely on clean data.

Considering all factors, our final proposed solution is to per-

form ICL-training first, followed by tailored DF-training. Here,

ICL-training serves as pre-training, while tailored DF-training

acts as fine-tuning, similar to the pre-training and fine-tuning

process used in LLMs. Training epochs are carefully structured

into two phases, as shown in Figure 3. In the first phase, the

model converges just before reaching a plateau, at which point

we transition to the tailored DF-training method. During this

transition, a spike in the training loss is observed due to the

shift in the training data distribution. As shown later, ICL pre-

training not only accelerates convergence but also improves

recognition of clean data and ICL-testing performance.

3) Decision Feedback Fine-tuning: Instead of vanilla DF

training in the second phase, we employ a carefully designed

fine-tuning process. The loss function is constructed as a linear

combination of the previously defined losses in Equations (2)

and (3), where α controls the balance between them, and the

hyperparameter α is set to 0.7 during model training,

Lfine-tuning(θ) = αLDF (θ) + (1− α)LICL(θ). (4)

As explained in the pre-training phase, after ICL pre-

training, the model is capable of general symbol detection,

performing well on detections with clean data and, to some

extent, on detections using the decision feedback method.

Furthermore, in the fine-tuning process, the training loss

is designed to emphasize decision feedback detection while

retaining the model’s ability to handle clean data.

Training on both clean and noisy data enhances the robust-

ness of the Transformer model by exposing it to a more diverse

dataset. Ultimately, we propose that a single Transformer

model can be trained to perform both ICL-testing and DF-

testing, making our DEFINED model adaptable for practical

wireless systems. For example, in scenarios with sufficient

pilot information, the model can operate in the ICL manner.

However, in challenging situations – common in real-world ap-

plications – where pilots are limited and difficult to acquire, the

model can utilize previous decisions to improve performance

in subsequent symbol detection.

V. EXPERIMENT

We analyze DEFINED’s performance against baselines al-

gorithms under both ICL-testing and DF-testing, represented

by the ”DEFINED-ICL” and ”DEFINED-DF” curves, respec-

tively. Our model not only performs well with sufficient pilot

data but also exhibits significant improvements in limited-pilot

scenarios by effectively utilizing noisy feedback. Moreover,

DEFINED demonstrates strong performance in complex mod-

ulation tasks, highlighting the Transformer’s ability to capture

geometric structures within modulation constellations.

A. Baseline Algorithms

We introduce several baseline algorithms, including the ICL

method, the MMSE algorithm, and MMSE-DF, a decision-

feedback variant of MMSE.

1) In-Context Learning: We train a Transformer from

scratch using vanilla ICL-training and evaluate the SER for

both ICL-testing and DF-testing, shown as “ICL-ICL” and

“ICL-DF” curves in the figures, respectively.



(a) SISO BPSK at SNR = 5dB with 1 Pilot,
gainDF = 11.2%

(b) SISO QPSK at SNR = 10dB with 1 Pilot,
gainDF = 11.6%

(c) SISO 16QAM at SNR = 20dB with 1
Pilot, gainDF = 43.7%

(d) SISO 64QAM at SNR = 25dB with 1
Pilot, gainDF = 45.6%

(e) MIMO BPSK at SNR = 10dB with 2
Pilots, gainDF = 16.8%

(f) MIMO QPSK at SNR = 15dB with 2
Pilots, gainDF = 38.6%

Fig. 4. SISO performance for BPSK, QPSK, 16QAM, and 64QAM with one pilot, and 2×2 MIMO for BPSK and QPSK with two pilots. The X-axis shows
context sequence length, where the t-th point for ∗-ICL uses t ground truth pilots and ∗-DF-Pk uses k clean pilots and (t− k) decision feedback noisy pairs.

2) MMSE Algorithm: This is a coherent detection algo-

rithm, which first estimates the channel with the assistance

of pilots and then performs detections for the subsequent

received signals using the estimated channel. In the case of

Rayleigh fading, both the channel and noise follow complex

Gaussian distributions. The MMSE estimator for H is given

by: ĤMMSE
k = Y X†(XX† + σ2I)−1. With the t-th received

signal yt, the transmitted symbol xt is estimated by projection

onto the closest symbol in X :

x̂t = argmin
x∈X

∥ĤMMSE
k x− yt∥

2, ∀t = k + 1, · · · , T. (5)

With k pilot pairs, the mean SER is computed, shown as a

horizontal line labeled ”MMSE-Pk”.

3) MMSE-DF Algorithm: MMSE-DF is an extension of the

previous MMSE solution by sequentially using the decision

feedback data as if they were new pilot pairs. Starting with k
pilots, we compute the MMSE estimator of H and detect x̂k+1

using yk+1 as in Equation (5). The decision pair (yk+1, x̂k+1)
merges with the existing dataset, and iteratively used to detect

each signal until x̂T . We plot the SER against the decision

feedback-extended context sequence length.

B. Experimental Results

During testing, we sample 80,000 prompts to compute the

mean SER. Results for BPSK, QPSK, 16QAM, and 64QAM

in SISO, and BPSK and QPSK in 2 × 2 MIMO, plot SER

against context sequence length, as shown in Figure 4. The t-
th point represents the SER of x̂t+1 using t contexts, omitting

the 0-th point (random guessing) due to high SER.

To quantify the SER improvement with increasing con-

text length under DF-testing, we define the gain metric as:

gainDF =
(

SERk(θ)−SERT−1(θ)
SERk(θ)

)

× 100%, which represents the

percentage reduction in SER as the context length increases

from k to (T − 1), starting from k known pilots.
1) Comparison with Baseline Algorithms: The MMSE

algorithm is shown alongside horizontal lines representing

MMSE performance with k pilots and with full (30) pilots,

respectively. The ICL-ICL line, for the model trained and

tested with ICL method, shows that with 30 pilots, the

Transformer slightly outperforms the MMSE algorithm during

ICL testing. This improvement arises from model’s ability

to perform channel estimation and symbol detection jointly,

leveraging the synergy between these tasks.

The DEFINED-DF line denotes the performance of our

proposed model during DF-testing, showing a marked SER

reduction as more decision feedback data is incorporated.

For instance, in Figure 4d, for 64QAM with one pilot, the

SER decreases from 0.206 to 0.112 as the feedback context

sequence length increases, achieving a 45.6% SER gain.

This confirms that the Transformer can effectively use noisy

feedback to improve detections with limited pilot data.

Our model also performs well in ICL-testing, as indicated

by the DEFINED-ICL line, which aligns closely with the ICL-

ICL line. This result suggests that ICL pre-training, followed

by carefully designed loss functions during decision feedback

fine-tuning, allows the model to learn effectively from clean

data. Additionally, our DEFINED model adapts well to real-

world symbol detection, excelling with ample pilot data and

performing effectively even with a single pilot.

The ICL-DF line, which represents a Transformer trained

with ICL method but tested under DF conditions, performs

significantly worse than our model, nearly coinciding with

the MMSE-DF line. This observation highlights that models

trained solely on clean data struggle with noisy feedback, as

they simply treat all feedback data as clean. This underscores



the importance of DF fine-tuning for handling noisy feedback.

2) Comparison with Different SNRs and Varying Pilot

Lengths: At high SNR levels, reduced data noise enables more

accurate detection from pilot data, enhancing DEFINED model

performance and accentuating the downward SER trend. How-

ever, at very high SNRs, the already low initial SER limits

further improvement. Our DEFINED model also performs

robustly with minimal pilot data, including the extreme single-

pilot cases. As pilot data increases, all algorithms show

improved performance in DF inference.

3) Comparison with Different Modulation Schemes: We

conduct experiments using BPSK, QPSK, 16QAM, and

64QAM modulations in the SISO system, representing clas-

sification tasks with 2, 4, 16, and 64 classes, respectively. As

modulation complexity increases, the detection task becomes

more challenging, but we observe greater performance im-

provements with complex schemes, as reflected by a more

pronounced SER decrease with additional feedback data in

our DEFINED model.

Analysis of the Transformer’s output logit vector shows that

nearly all of the incorrect detections occur within a small

region around the ground-truth label in the constellation. This

“typical error event” [11] suggests that even incorrect detec-

tions carry valuable information, as the noisy label is often

near the correct one, enhancing the model’s detections. Thus,

as modulation complexity increases, the compact constellation

set allows noisy feedback to provide more useful information,

leading to better SER gains with added feedback data.

These findings demonstrate that our DEFINED model ef-

fectively captures the constellation set’s geometry. It not only

learns detections but also recognizes relationships between

classes, often assigning higher probabilities to neighboring

labels when errors occur. Due to inherent data noise – e.g.,

channel fading and additive noise – received signals with

nearby latent labels in the constellation may overlap. As a

result, the model sees adjacent labels as close neighbors,

letting its detections retain valuable information, even when

they are not entirely accurate.

4) MIMO Results: The results for MIMO systems with

BPSK and QPSK using two pilots are shown in Figures 4e

and 4f. Compared across different modulation schemes, SNR

levels, our DEFINED model can still perform well for high

dimensional detection problems. In fact, DEFINED exhibits

a more pronounced decrease in SER with the inclusion of

additional decision feedback data, leveraging the underlying

communication system structure more effectively.

VI. CONCLUSION

Inspired by the decision feedback mechanism in wireless

receiver designs, we proposed DEFINED to enhance symbol

detection by incorporating decision pairs into the prompts of

Transformer. Our approach achieved significant performance

gains with limited pilot data while maintaining high accu-

racy with sufficient pilot data, demonstrating its adaptability

for practical scenarios. Extensive experiments across various

modulation schemes validated the robustness and flexibility

of our model. These contributions highlighted the potential

of Transformers, underscoring their capabilities for future

wireless communication systems.
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