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Abstract

Reinforcement Learning from Human Feedback
(RLHF) has emerged as a pivotal technique for
aligning artificial intelligence systems with hu-
man values, achieving remarkable success in
fine-tuning large language models. However,
existing RLHF frameworks often assume that
human preferences are relatively homogeneous
and can be captured by a single, unified reward
model. This assumption overlooks the inher-
ent diversity and heterogeneity across individu-
als, limiting the adaptability of RLHF to person-
alized scenarios and risking misalignments that
can diminish user satisfaction and trust in Al sys-
tems. In this paper, we address these challenges
by introducing Low-Rank Adaptation (LoRA)
into the personalized RLHF framework. We ap-
ply LoRA in the the aggregated parameter space
of all personalized reward functions, thereby en-
abling efficient learning of personalized reward
models from potentially limited local datasets.
Our approach exploits potential shared structures
among the local ground-truth reward models
while allowing for individual adaptation, without
relying on restrictive assumptions about shared
representations as in prior works. We further
establish sample complexity guarantees for our
method. Theoretical analysis demonstrates the
effectiveness of the proposed approach in cap-
turing both shared and individual-specific struc-
tures within heterogeneous human preferences,
addressing the dual challenge of personalization
requirements and practical data constraints. Ex-
perimental results on real-world datasets corrob-
orate the efficiency of our algorithm in the per-
sonalized RLHF setting.
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1 Introduction

The rapid development and widespread use of Large Lan-
guage Models (LLMs) have transformed fields like natu-
ral language processing, content generation, and human-
computer interaction. Models such as GPT-4 (Achiam
et al., 2023), BERT (Devlin et al., 2019), and their suc-
cessors have exhibited remarkable capabilities in under-
standing and generating text, enabling applications rang-
ing from automated customer service to advanced creative
tools. This “boom” of LLMs has not only broadened AI’s
potential but also underscored the critical need to ensure
that these models align with human values and preferences.

To help this alignment, Reinforcement Learning from Hu-
man Feedback (RLHF) (Ouyang et al., 2022; Christiano
et al., 2023) plays a key role as a fine-tuning method of
LLMs. This method ensures that the generated responses
are contextually appropriate and aligned with ethical and
social norms (Ouyang et al., 2022). By incorporating hu-
man feedback into the fine-tuning process, RLHF bridges
the gap between the raw generative power of LLMs and
the requirements of real-world applications, improving the
quality and safety of Al-generated content.

Current RLHF frameworks, such as Bai et al. (2022); Wang
et al. (2024a), essentially assume that human preferences
are relatively homogeneous and can be effectively cap-
tured by a single, unified reward model. This simplifica-
tion overlooks the inherent diversity and heterogeneity in
human preferences, which can vary significantly across in-
dividuals. Such an oversimplification limits the adaptabil-
ity of RLHF to personalized scenarios and risks, introduc-
ing misalignments that could diminish user satisfaction and
trust in Al systems. A straightforward approach to han-
dling heterogeneous human preferences is learning person-
alized reward functions for each labeler using traditional
RLHF methods, such as Ouyang et al. (2022). However,
this method faces a significant challenge: preference data
from individual users may be insufficient to construct ac-
curate reward models for each human labeler. Recently,
several studies have proposed empirical methods to address
this challenge. For example, Li et al. (2024) introduced a
personalized direct preference optimization method within
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the personalized RLHF framework. Similarly, Poddar et al.
(2024) presented a class of multi-modal RLHF methods
that infer user-specific latent variables and then learn per-
sonalized reward models conditioned on them. In addi-
tion to empirical approaches, some works have provided
methods with theoretical guarantees. Specifically, Zhong
et al. (2024) conducted a theoretical analysis assuming that
human reward functions are linear with shared represen-
tations. Extending this line of work, Park et al. (2024)
considered a more general setting where the representa-
tion function is a general (nonlinear) function of the feature

mapping.

On the other hand, since first introduced by Hu et al.
(2021), Low-Rank Adaptation (LoRA) has quickly be-
come a prominent method for fine-tuning LLMs to reduce
the number of trainable parameters and prevent overfit-
ting (Houlsby et al., 2019; Huang et al., 2023). Some recent
works have proposed to combine RLHF with LoRA to en-
hance the fine-tuning of LLMs using human feedback. For
instance, researchers have explored integrating LoRA into
the RLHF framework to efficiently incorporate human pref-
erences while maintaining model performance (Santacroce
et al., 2023; Sun et al., 2023; Sidahmed et al., 2024). How-
ever, these approaches primarily focus on general adapta-
tion and do not address the challenges of heterogeneous
feedback from diverse users.

In this paper, we address the challenges of personalized
RLHF by introducing personalized LoRA with a shared
component into the personalized RLHF framework. By
leveraging LoRA, we effectively learn individual reward
models that capture human users’ heterogeneous prefer-
ences with limited data. To the best of our knowledge,
LoRA has not been previously explored in the context of
personalized RLHF, making our approach a novel contribu-
tion to the field. Our major contributions are summarized
as follows:

* We propose an algorithm named Personalized LoRA
with Shared Component (P-ShareLoRA) for RLHF,
which leverages the shared components of LoRA mod-
ules to learn the personalized reward functions effi-
ciently. Rigorous theoretical analysis demonstrates that
P-ShareLoRA can effectively reduce sample complex-
ity, compared with both the full-parameter fine-tuning
method and the standard LoRA method without param-
eter sharing. To the best of our knowledge, this is the
first work that theoretically demonstrates the benefits of
LoRA with shared components in RLHFE.

* Unlike existing analytical frameworks for personalized
RLHF which typically enforce strict constraints on the
reward model structures, such as linear representa-
tions (Zhong et al., 2024) or shared representations with
linear heads (Park et al., 2024), we develop novel tech-
nical approaches to address the challenges from the un-

structured reward functions. Specifically, we propose a
new Lagrange remainder-based method that allows us
to prove that LoORA modules with shared components
can approximate the optimal low-rank structure of the
ground truth parameter matrix. Building on this, we fur-
ther prove an upper bound on the distance between the
optimal reward function and the learned reward function
with shared parameters. The theoretical results demon-
strate that the expected return under the policies derived
with the learned reward functions are near-optimal (up
to a bias term related to the preference diversity among
users).

e Experiments on the Reddit TL;DR dataset (Stiennon
et al., 2020) validate the effectiveness of the proposed
approach. Specifically, our approach achieves a predic-
tion accuracy of 74.65% on Llama-3 8B and 66.93% on
GPT-J 6B, which outperforms the SOTA algorithms that
achieve 73.25% on Llama-3 8B and 66.13% on GPT-
J 6B, respectively. Those empirical results corroborate
our theory, demonstrating the advantage of LoRA with
shared components for personalized RLHF.

2 Related Works

Reinforcement Learning from Human Feedback. Re-
inforcement Learning from Human Feedback (RLHF) has
demonstrated considerable success across various practical
applications, especially in aligning Al models with human
values and preferences. One of the most prominent applica-
tions of RLHF is in fine-tuning large language models, as
exemplified by OpenAI’s ChatGPT (Ouyang et al., 2022)
and GPT-4 (Achiam et al., 2023). Additionally, RLHF has
been explored in computer vision tasks (Lee et al., 2023;
Xu et al., 2024). Furthermore, RLHF has been widely
adopted in domains that involve high-risk decision-making,
such as healthcare (Yu et al., 2021), robotics (Abramson
et al., 2022; Hwang et al., 2024; Thumm et al., 2024), and
autonomous driving (Wu et al., 2023; Chen et al., 2023),
where alignment with human preferences is critical for en-
suring safety and addressing ethical considerations.

From a theoretical standpoint, studies of RLHF have gar-
nered increasing research interest. Zhu et al. (2023) exam-
ine the Bradley-Terry-Luce model (Bradley & Terry, 1952)
within the context of a linear reward framework, while
Zhan et al. (2023) extend these results to more general
classes of reward functions. Similarly, Li et al. (2023) in-
troduce a pessimistic algorithm that is provably efficient for
dynamic discrete choice models. All these works focus on
settings with offline preference data. In the online setting,
Xu et al. (2020) and Pacchiano et al. (2021) study tabu-
lar online RLHF. Wang et al. (2024a) theoretically demon-
strate that preference-based RL can be directly addressed
using existing reward-based RL algorithms by utilizing a
preference-to-reward model. Xiong et al. (2024) present
a provable iterative Direct Preference Optimization (DPO)
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algorithm for online settings. Ye et al. (2024) provide a the-
oretical analysis of RLHF under a general preference ora-
cle, proposing sample-efficient algorithms for both offline
and online settings.

Some recent studies have extended RLHF to personalized
alignment for diverse user groups and individuals. Zhao
et al. (2023) introduce Group Preference Optimization
(GPO), which addresses group-level heterogeneity through
a mixture of shared and personalized architectures. Addi-
tionally, Ramesh et al. (2024) propose Group Robust Pref-
erence Optimization (GRPO), a reward-free RLHF frame-
work that handles heterogeneous preferences by optimiz-
ing for worst-case group outcomes. Beyond group-level
alignment, other works focus on individual personalization.
For instance, Li et al. (2024) develop a Personalized RLHF
method that jointly learns a lightweight user model along-
side the policy model to capture each user’s unique prefer-
ences, leading to responses more closely aligned with indi-
vidual tastes than non-personalized RLHF. Besides, Poddar
et al. (2024) introduce a variational latent preference frame-
work that infers a user-specific latent variable on which
both the learned reward model and the policy rely.

In addition to the empirical studies, recent works have also
established theoretical guarantees for personalized RLHF.
Siththaranjan et al. (2023) show that traditional RLHF
models that implicitly aggregate preferences can lead to
undesirable outcomes. They introduce Distributional Pref-
erence Learning (DPL) to mitigate this issue. Chakraborty
et al. (2024) group individual reward models into distinct
subsets and propose a MaxMin alignment objective in-
spired by Egalitarian principles. Zhong et al. (2024) inves-
tigate a setting where local optimal reward functions share
a linear representation combined with personalized linear
heads, theoretically demonstrating that aggregating multi-
ple preferences across different parties can overcome the
shortcomings of traditional RLHF that only learn a single
reward function. Building on this, Park et al. (2024) gen-
eralize the reward function model of Zhong et al. (2024)
by introducing a general representation function combined
with personalized linear heads.

Low-Rank Adaptation (LoRA). The rapid scaling of
pre-trained language models has led to significant chal-
lenges in fine-tuning these models for downstream tasks
due to the substantial computational and storage require-
ments. To address this, Low-Rank Adaptation (LoRA)
has been proposed as an efficient fine-tuning approach (Hu
et al., 2021). The vanilla LoRA keeps the original model
weights frozen and injects trainable low-rank matrices into
each layer of the Transformer architecture. This strategy
dramatically reduces the number of trainable parameters
and computational overhead, making it feasible to adapt
large models on limited hardware resources (Valipour et al.,
2022; Zhang et al., 2023; Kopiczko et al., 2023; Dettmers

et al., 2024; Hayou et al., 2024; Liu et al., 2024b).

Recently, several studies have focused on implementing
LoRA in multi-task settings. Huang et al. (2023) intro-
duce LoraHub, which enables the composition and shar-
ing of LoRA modules trained on diverse tasks. Luo et al.
(2024) consider LoRA as a Mixture of Experts (MoE),
treating these small adaptation modules as experts focusing
on unique aspects. Shen et al. (2024) introduce MixLoRA,
treats LORA modules as experts and uses a dynamic factor
selection method to select modules for combination. Tang
et al. (2023) propose partial linearization, where they lin-
earize only the adapter modules—the parts adjusted during
fine-tuning—and apply “task arithmetic” to combine these
linearized adapters from different tasks. In the federated
learning setting, Wang et al. (2024b) introduces a stacking-
based aggregation technique for LoRA adapters, enabling
efficient fine-tuning across clients.

To effectively learn LoRA modules in a multi-task set-
ting, some recent studies consider sharing partial param-
eters among different tasks or clients. Sun et al. (2024)
introduce FFA-LoRA, which keeps one of the LoRA mod-
ules fixed while updating only the other during local train-
ing. Similarly, Kuo et al. (2024) propose a method in
which certain parameters within the locally downloaded
LoRA modules remain unchanged, while the rest are up-
dated. HydraLoRA (Tian et al., 2024) extends this idea
by incorporating LoRA modules with a shared low-rank
matrix in a Mixture-of-Experts (MoE) framework. Addi-
tionally, FedSA-LoRA (Guo et al., 2024) observes that in
a federated learning setup, one transformation matrix pri-
marily captures generalizable knowledge, while the other
learns client-specific adaptations. Building on this insight,
they employ a hybrid approach that combines shared global
components with personalized local updates. 7o the best of
our knowledge, the theoretical implications of using shared
LoRA parameters in RLHF remain unexplored.

3 Problem Formulation

Notation. Bold uppercase letters (e.g., X) denote matri-
ces. The function diag(zy,...,xz4) represents a d x d di-
agonal matrix with diagonal entries x1,...,24. The in-
ner product of vectors x and y is denoted by (x,y), and
the Euclidean norm of a vector z is represented by ||z||2.
For a matrix X, the operator (spectral) norm is denoted
by ||X]|2, and its Frobenius norm by || X||#. The k-th
largest singular value of X is denoted by o4 (X). For a
matrix X € R¥>4 we use vec(X) € R%9 to denote
the vector obtained by column-wise vectorizing X, i.e.,
vee(X)" = [z],..., 2 ], where z; is the i-th column of
X. The identity matrix of size d x d is denoted by I.

Markov Decision Processes. We consider the tabu-
lar finite-horizon Markov Decision Process (MDP) to
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model the Reinforcement Learning from Human Feedback
(RLHF) setting with [N human labelers (or users), each
with their own reward function. A MDP M is represented
by the tuple M = (S, A, H, (Py)nem),t = (Ti)ie[n])s
where S is the set of states, defined as all possible prompts
or questions; A is the set of actions, representing poten-
tial answers or responses to these questions; H denotes the
length of the horizon; Py, : S x A — A(S) is the state tran-
sition probability at step h € [H], with A(S) being the set
of probability distributions over S; and r; : T +— [—R, R]
is the reward function for each individual ¢ € [N], where
T := (S x A) denotes the set of all possible trajecto-
ries 7 = (s1,0a1, 82,09, .- ., SH,ay). The MDP concludes
at an absorbing termination state with zero reward after H
steps. A policy is defined as a sequence m = ()L,
where each 77, : (S x A)"~! x S — A(A) maps the his-
tory and current state to a distribution over actions at step
h. The expected cumulative reward of a policy 7 for indi-
vidual ¢ is given by J(7;7;) := Ermr[ri(7)].

Relationship between Preference and Reward Func-
tions. Given two trajectories 7y and 71, we introduce a
random variable o € {0, 1} to represent the preference out-
come: We seto = 1if 79 > 71 (i.e., 79 is preferred over
1), and o = 0 if 79 < 7 (i.e., 7y is preferred over 79).
We model the probability that individual ¢ € [N] prefers 7
over i as P, (0 =1 | 79,71) = ®(ri(10) —;(71)), where
® : R — [0, 1] is a monotonically increasing function satis-
fying ®(z) + ®(—z) = 1 and log ® () is a Lipschitz con-
tinuous and strongly convex function. A common choice
for @ is the sigmoid function o(z) = 1/(1 + =), which
maps real-valued inputs to the range [0,1]. This func-
tion corresponds to the Bradley-Terry-Luce (BTL) model,
which is commonly used to model the relationship be-
tween preferences and rewards. We define the preference
probability vector induced by the reward functions r as
PT(O | T(),Tl) = (Prl (0 ‘ T(),Tl), ey PTN(O ‘ T(),Tl))T,
where P, represents the collective preference probabilities
across all individuals, and P,, denotes the preference prob-
ability induced by the reward function r; for individual 7.

Personalized Reward Functions. We consider the nat-
urally diverse individual human preferences and aim to
learn personalized reward models for each individual. As a
first step, we assume each reward function r; is parameter-
ized by ©; € R4*% and we denote it as 7, : T —
R. We denote the aggregated reward vector as rg :=
(7'@1, oo ,7‘@N)T, where ® € R%*Ndz js the aggregated
parameter matrix defined by ® = [@ 1, .., O N] .

Let 0 denote the column-wise vectorization of @, i.e., § =
vec(®). Then, we make the following assumption.

Assumption 1. For any trajectory T, the reward function
re () satisfies Lipschitz continuity ||Vore (7)|| < Ly and
Lipschitz smoothness |Vire ()| < Lo for L1, Ly > 0.

Note that the gradient operator V and the Laplacian V? are
applied to the vectorized parameter matrix 6. Assumption 1
is a standard assumption similar to those in related RLHF
studies, such as Zhu et al. (2023).

Define the set of valid parameters for the reward function
as

s:={@|@; e Rx®, ||o;|F < B, vie [N},
(3.1)

and the corresponding class of reward functions as

Gr(S) = {(r@i('))iem ’ ©c S} : (3.2)

The boundedness condition ||©;||z < B (B is a positive
constant) in Equation (3.1), together with Assumption 1,
ensures that the reward function is bounded, which is a
standard assumption adopted in related works (Zhan et al.,
2023; Zhong et al., 2024).

Throughout this paper, we let r* = (r’f, e ,7"]*\,) denote
the underlying true human reward functions with corre-
sponding ground truth parameters @* = [©7, -, O%].
We assume that r* € G,.(S) to ensure that the true reward
functions are within the considered function class.

Learning Personalized Reward Functions via LoRA.
Motivated by LoRA that is widely adopted for the fine-
tuning of LLMs (Sidahmed et al., 2024), we assume
the system starts from initialized reward model param-
eters @Mt = [@it ... @  Denote the low-rank
adaptation matrice for the reward models as A® =
[A®q,--- ,AOy]. Then, after the adaptation, the set of
valid parameters for the personalized reward model be-
comes

SLoRA :{@ ‘ © = @' + A®, rank(A©;) < k,

|A®:]r < B,vi € [N]}. (33)

Note that the LoRA module is typically represented in a
low-rank factorization form, i.e., as the product of two
lower-dimensional matrices: A®; = B; W, where B, €
R% %k and W, € RF*92  n the function class gr@m,
the individual LoRA modules A®; are independent. To
leverage potential common structures among the individ-
ual LoRA modules, as observed in recent works (Zhu et al.,
2024; Guo et al., 2024; Tian et al., 2024), we assume that
the B, matrices are shared across all users, i.e., B; = B for
all 4. Under this constraint, the aggregated matrix A® can
be expressed as A@ = B[Wy,--- , Wy, which implies
that A® becomes a low-rank matrix with rank(A®) < k,
since rank(B) < k. Consequently, when B is shared
across all LoRA modules, the parameter set is equivalent
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to:
SShareLoRA :{6 ‘ e - @init 4 A@, rank(A@) <k

|A®;||r < B,Vi € [N}}. (3.4)

To leverage the potential common structure among individ-
ual LoRA modules, we utilize the parameter set SSPareLoRA
which allows us to learn LoRA modules with shared pa-
rameters across users effectively. This low-rank con-
straint leverages shared structures among users’ prefer-
ences, allowing the model to capture common patterns
while adapting to individual differences. The aggregated
low-rank adaptation A® results in local low-rank adapta-
tions {A®;}, which incorporate a shared matrix B and
distinct individual adaptation matrices W, i.e., A®; =
BW,. Intuitively, the shared matrix B preserves common
directions for parameter updating, while W captures indi-
vidual adaptation along those dimensions.

Given a collection of preference datasets for individual
users, denoted as D; = {( ), zo’ 2(]1))}] ., our ob-
jective is to estimate the ground -truth reward function r*
by combining the learned shared-parameter LoORA matri-
ces w1th1n 8> ShareLoRA . We define the aggregated dataset as
D= Ul 1DZ, with |D | = N, forall i € [N]. Our anal-
ysis can be extended to scenarios where the dataset sizes
vary across individuals, i.e., |D;| = N,,; for each i. The
optimization problem is then formulated as follows:

N Np
F(@;ﬁ) = ZZlogP@i ( () ‘Tzo, ZJ1)>

i=1 j=1
(3.5)
to simplify the notation.

max
© ¢ SShareLoRA

where we use Pg denote P,.g

Algorithm 1 P-ShareLoRA for RLHF

1: Input: Dataset D = Uieln] ﬁi; initial parameters
@it reference policy f¢; ref-
2: Obtain model update A® by solving Equation (3.5) :

A® argmax F (@;'5)
A®:© ¢ SShareLoRA

3: Construct confidence sets {R;}, by

RZ‘ — {’f‘(—)
(3.6)

4: Compute policy with respect to R; for all i € [N] by

= By lrs(7)])
3.7)

i arg errlljax min (J(m;7s)

5: Output: (A(:)7 (Ti)ien)-

4 Algorithm Design and Analysis

4.1 Algorithm: P-ShareLoRA for RLHF

In this section, we present our proposed algorithm, Person-
alized LoRA with Shared Component (P-ShareLoRA)
for RLHF, to effectively learn personalized reward func-
tions and compute corresponding policies for each individ-
ual user.

The algorithm begins by initializing the reward function for
each user i by ®"*, The core of the algorithm involves
estimating the personalized reward models by optimizing
low-rank adaptations A®. Specifically, we obtain A© by
solving the optimization problem defined in Equation (3.5).

After obtaining ©, we construct confidence sets {R;} for
each user’s reward function parameters. Each set R; is de-
signed to ensure that the distance between the parameter
matrix of the reward function and the empirical estimation
obtained by solving Equation (3.5) remains within a tol-
erance level (, thereby providing a robust confidence re-
gion for the reward functions. Finally, we compute each
user’s personalized policy 7; by solving a robust optimiza-
tion problem. For each individual ¢ € [N], we determine
the policy that maximizes the difference between its ex-
pected cumulative reward J(7; 7;) and the expected reward
of the reference policy fi; rr, €valuated under the worst-
case reward function within the confidence set R;. The
algorithm outputs the estimated reward model parameters
© and the set of personalized policies (7;);c[n). We note
that without pessimism (i.e., the confidence set of reward
functions reduces to a singleton R; = {rg }), the opti-
mization objective simplifies to the vanilla RLHF objective.
P-ShareLoRA is detailed in Algorithm 1.

4.2 Definitions and Assumptions

Before formally presenting our main theoretical results of
Algorithm 1, we introduce the following definitions and as-
sumptions. We start by defining two diversity metrics over
human preference on different labelers.

Definition 4.1 (Diversity Metrics). Given the aggregated
ground-truth parameter matrix ®* = [OF,...,0%]
and initialization parameter matrices {@®™*}, we define
the difference matrix A®* = [AOF,..., AOY], where
A®F = O — @i“it for each useri. Let o1 > 09 > -+ + >
Omin{d,,Ndy} be the singular values of A®*. We then de-
fine the condition number v and the summation of tail sin-

2
o min{dq,Nd2} 2
Wka Z‘cail = Z g;

i=k+1 1
Remark 1. The condition number v, as defined in (Tripu-
raneni et al., 2021), quantifies the alignment of parame-
ter differences between the ground truth model parameters
and the initialization across users. Specifically, it consid-
ers the magnitude of the k-th largest singular value of the
difference matrix A®*, normalized by the number of users

gular values Yin51 as v =
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N. Note that due to the constraint in S, for fixed Einit,
the bounded total energy of ©*, i.e., ||©*||% < NB?, im-
plies the total energy of A®* is also bounded. Therefore,
a larger v indicates that the top-k leading singular val-
ues are significantly larger than the subsequent ones. This
dominance suggests that A®7 across users are primarily
aligned along a few principal directions, indicating low di-
versity. Conversely, a smaller v indicates high diversity
across different directions.

The tail sum .3 measures the total variance not captured
by the top k singular values of A®*. It is calculated by
summing the squares of the singular values from o1 on-
ward, quantifying the residual “energy” beyond a rank-k
approximation. A smaller ;) suggests that the top k sin-
gular values capture most of the variance, implying that
a low-rank adaptation effectively represents the essential
variability among users for accurate modeling of reward
functions.

These diversity metrics capture the preference diversity
among users. Intuitively, users with similar preferences
will be less diverse and could benefit more from a shared
LoRA model.

Next, to capture the complexity of the reward function
class, we introduce the concept of the bracketing number
for reward vectors.

Definition 4.2 (Bracketing Number for Reward Vec-
tors (Park et al., 2024)). For a reward vector r € G,, an
e-bracket is a pair of functions (g1, g2) such that for all
(r0,71) € T x T, |lg1(70,71) — ga(70,71)[1 < € and
91(10,71) < Pr(:|10,71) < 92(70,71). The e-bracketing
number of G, denoted by Ng, (€), is the minimal number
of e-brackets required to cover all r in G,.

Definition 4.2 is adapted from the definition of bracketing
numbers in Park et al. (2024); Zhan et al. (2023), which
captures the complexity of the function class in terms of its
parameter dimensions.

We assume a uniform concentration property for the ex-
pected Euclidean distance between rg, (10) — 7o, (71) and
re,(70) — re,(m1) over the offline data. We note that
this expected Euclidean distance can be seen as the dis-
tance between two reward functions re, and rg, (Zhan
et al., 2023), therefore the concentration property ensures
that with a sufficiently large sample size N, empirical data
reliably approximates these distance for all pairs of reward
functions in G,..

Assumption 2 (Uniform Concentration). Given distribu-
tions po and 1, and two reward functions parameterized
by ©1 and ©s, respectively, we define the expected and

empirical squared difference of reward discrepancies as

D®17®2 (HO;Ul) = E [(7“@1 (TO) —Te, (Tl)_

To~HO, TIV 1

(re.(10) — re,(11)))?],

- 1 4 ,
D@h@Q (/1*07/141) = N Z [(TQI(Tg) - 7’@1(’7'1])—
{T&,Tf}ED

(re.(73) — reu (1)),
where D is a dataset satisfies |D| = N and all
trajectory pairs {17, 7} € D are sampled from g
and py respectively.  Then, for any 6 € (0,1],
there exists a number N, /Gy, 1o, t1,9) such that for
any N > Nuy(Gr, o, t1,9), the empirical esti-
mate De, @,(10, 1) of De, e, (to, 1) satisfies the
following inequality with probability at least 1 — §
er all re,,re, € G 09De, e,(lo,m) <
D@)h@g (/1'07/11) < 1'1D@1,®2(/~L07M1)'

Assumption 2 indicates that the empirical estimate
De, @, (o, p1) closely approximates the true value
De, e, (o, 1) with high probability. This assumption is
crucial in our context because it ensures that, given a suffi-
ciently large sample size N, the empirical data provides a
reliable approximation of the expected squared differences
in reward discrepancies across all pairs of reward func-
tions in G,.. A similar assumption is adopted by Zhan et al.
(2023) and proved to be held when the reward function is
constructed by a linear representation and linear local head
(Zhong et al., 2024). We note that this assumption is anal-
ogous to the uniform concentration results commonly used
in statistical learning, where empirical estimates converge
uniformly to their expected values over a class of functions
(see, e.g., Vershynin (2018); Du et al. (2020); Tripuraneni
et al. (2021)). It is a mild assumption and can be satis-
fied for various function classes. For example, polynomial
functions of bounded degrees satisfy this assumption.

4.3 Main Results

Building upon the aforementioned definitions and assump-
tions, we now present our main theoretical results. For ease
of exposition, we denote G,.(SShaeLoRA) by G/

First, we demonstrate that the column space of A@, ob-
tained via Algorithm 1, closely approximates the optimal
rank-k representation of A®*. For the low-rank matrix
A®, let its SVD bg A® = BXV'T. Consequently, the
column space of A® is spanned by the orthonormal matrix
B, ie., span{A®} = span{B}.

For A®*, we define its optimal rank-k approximation as

©®° = argmin ||AO®* — AO| . 4.1

A®:rank(AO®)=Fk

Existing results in low-rank matrix factorization (Golub &
Van Loan, 2013) indicate that the solution must satisfy
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e° = UkAkV;, where Ay is a £ x k diagonal matrix
containing the top-k singular values of A®*, and U, and
V, are the corresponding left and right singular vectors, re-
spectively. Let B® = Uy, and W® = A, V|, which yields
©° = B®W?. Therefore, the column space of the optimal
rank-k estimation of A®* is given by B®, and the corre-
sponding LoRA module for each individual reward func-
tion can be expressed as: A®; = BWY for all i € [N],
where W = [W$ .- W¢/].

To quantify the closeness between the subspaces spanned
by B and B®, we employ the principal angle distance, as
detailed in Appendix A. Utilizing this metric, we establish
the following theorem.

Theorem 4.1. (Closeness between B and B®). Suppose
Assumption 1 holds. For any § € (0, 1], with probability at
least 1 — 0, it holds that

dist(B, B®)

1 1 \1\ 1 [Sen
< 1 , L IRy T
= Cl\/NNpV ©8 <Ngr (NNP) 5> VTN

where ¢1 > 0 is a constant.

The detailed proof is deferred to Appendix C.

Remark 2. In Theorem 4.1, we demonstrate that the prin-
cipal angle distance between B and B°® decreases as the
condition number increases. This implies that when the k-
th singular value approaches the maximum singular value
of A®*, which is upper bounded by a constant due to the
assumption in Equation (3.2) that ||A®}||r is bounded,
the principal angle distance diminishes. This suggests
that greater similarity among human users contributes to
a more accurate estimate B.

Furthermore, the bias term in Theorem 4.1, given by

l\ / % decreases as the condition number increases and
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as the sum of the tail singular values decreases. Specifi-
cally, the bias term vanishes when all tail components are
zero, meaning it disappears if there exists a ground-truth
low-rank representation B* such that A®@F = B*W* for
alli € [N].

In Theorem 4.1, the principal angle distance is also influ-
enced by the bracketing number Ng,. We establish an up-
per bound on this quantity in the following proposition:

Proposition 1. Suppose Assumption 1 holds. Then, the
bracketing number for function class Ng; satisfies

log (Ng, ((NN,)™1)/6) < O(k(dy + Nds) log(NN,/9)).

4.2)

The proof is deferred to Appendix C. We observe that the
reward function class G,(S), as defined in Equation (3.2),
has a bracketing number satisfying

log (Ng, (NNp)™1)/8) < O(Ndidzlog(NN,/4))

This result indicates that the bound for G, is significantly
improved compared with full-parameter fine-tuning when
dy > k.

Besides, when each LoRA module is learned individually
(i.e., ® € SWRA) the reward function class G,(S"0RA)
satisfies

log (Ng, ((NN,)™1)/6) < O(Nk(dy +ds) log(N N, /5))

Compared to Equation (4.2), our shared-component LoRA
method reduces the bracketing number by decreasing the
term from Ndik to di k.

Next, we establish a bound on the gap in expected value
functions between the target policy 7; (o and the estimated
policy 7; for each individual ¢ € [N]. In this context, ; i
serves as a benchmark for evaluating the performance of
m;; for instance, it may represent the optimal policy 7 as-
sociated with the true reward function 7.

Theorem 4.2. (Individual Expected Value Function

Gap). Suppose Assumption 1 and Assumption 2
hold. For any 6§ € (0,1], with probability at
least 1 — 6, the output 7; for any client i satisfies

J(ﬂ—i,tar; T:) - J(%ﬂ T‘:)

B log (%;(ﬁ,,)%) | Kz +log(X) L B,
= NN,v N, NN T

where b; is defined as b; := ||AOF — @f”; and cg > 0 is
a constant.

Proof Sketch. We face two core challenges in our anal-
ysis. First, the reward functions are inferred from prefer-
ence data rather than observed directly, introducing estima-
tion noise that must be carefully controlled. Second, due to
the low-rank structure imposed on the LoRA modules, the
globally optimal shared LoRA may not perfectly capture
the ground-truth reward parameters for each local dataset.
This misalignment complicates the analysis of how well a
single shared solution performs across different local tasks.

To address the first challenge, we leverage the continuity to
translate small deviations in preference space into bounded
deviations in parameter space. For the second challenge,
we develop a Lagrange remainder-based analysis that quan-
tifies the approximation error introduced by the low-rank
constraint. Although perfect recovery is not guaranteed, we
show that the resulting estimation error remains bounded.

The proof consists of three major steps: (1) Upper bound
the distance between the column space between A® and
A®* (Theorem B.1); (2) Analyze the distance between
the learned reward function from algorithm 17; and ground
truth reward function r} (Theorem B.3); (3) Showing the
value function of the learn policy is close to the reference
policy (Theorem B.2).

In Step 1, we utilize the existing result of MLE estimates
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over the preference dataset, upper bound the distance be-
tween the estimated share component LoRA matrix with
the ground truth parameter matrix, and then use the Davis-
Kahan theorem to bound the corresponding distance be-
tween the column space of these two matrices.

In Step 2, for learned reward function with parameter ma-
trix @ BW and optimal low-rank approximated re-
ward function parameterized by @7 = B°W?, we de-
compose the distance between the two functions into two
part: distance between B and B, Wthh already bounded
in Step 1, and the distance between WZ and W7 For this
distance, we carefully analyze the geometry of the reward
function around the local optimal and utilize the Lagrange
remainder to construct a delicate quadratic form of the gra-
dient for W, therefore upper bound the distance between
W, and W¢.

In Step 3, we use the result from Step 2 along with As-
sumption 2 to show that the expected Euclidean distance
between re,(79) — re, (1) and re,(79) — re,(m1) is
small. Applying the pessimism mechanism from Algo-
rithm 1, we then demonstrate that the difference between
the value function of the learned policy and that of the ref-
erence policy is upper bounded by the Euclidean distance
between reward functions.

A natural extension of the individual expected value func-
tion gap is the averaged bound, which provides insights into
the general performance across all clients.

Corollary 4.1. (Averaged Expected Value Function Gap).
Suppose Assumption 1 and Assumption 2 hold. For any
S (() 1], with probability at least 1 —§, the output policies

{7} satisfy

DINC

1€[N]

. log (Mo, (w%,)3) L ket log(5) | 1 [S
= NN,v N, NN )

where c3 > 0 is a constant.

— J(@isri))

TI'Z Jary T

Remark 3 (Sample Complexity). For full-parameter fine-
tuning, the sample complexity required to ensure that the
averaged expected value function gap is less than € with
probability at least 1 — § is N, = O (% log (%)) (Zhu
etal., 2023). In contrast, when using Algorithm 1, the sam-
ple complexity required to achieve an averaged estimated

(Zge) s

_ (dik+Ndsk | (N

Therefore, when dy > k, the sample complexity is signifi-
cantly reduced, with the trade-off being introducing a bias
term in the estimation accuracy of the value function.

value function accuracy of 1 — € —

Moreover, Park et al. (2024) indicate that their representa-
tion learning-based method can learn an e-optimal policy
with a sample complexity of

dik+ Nk N
N, =0 (M e ()

Notably, in their setting, do is assumed to be 1, and the
ground truth reward functions are posited to share a com-
mon representation with linear heads. In contrast, our re-
sults demonstrate a similar sample complexity with an ad-

ditional bias term (%) 1/ in the accuracy. Importantly,
this bias term vanishes if a ground-truth low-rank repre-
sentation B* exists such that ©F = B*W* forall i € [N].
Hence, we can achieve similar sample complexity but for
the more general reward function class and without assum-
ing the existence of ground truth common representation.

5 Experimental Results

Models and Datasets. We implement the base-
line algorithms Share Rep, LoRA-local, and
LoRA-global, which will be introduced later, alongside
our proposed algorithms on two models: GPT-J 6B (Wang
& Komatsuzaki, 2021) and Llama-3 8B (Touvron et al.,
2023). This setup enables a comparison with the work
of Park et al. (2024). Implementation details for all
algorithms are provided in Appendix D.2, and the code is
publicly available®.

We empirically evaluate our algorithms on the text sum-
marization task using the Reddit TL;DR summarization
and human feedback dataset (Stiennon et al., 2020). This
dataset contains a broad range of user preferences, which
provides a particularly suitable setting for studying per-
sonalized feedback and allows us to validate the proposed
P-ShareLoRA method for learning individualized reward
functions. Following Park et al. (2024), we rank the label-
ers by the number of annotated comparisons in the training
split and select the top five workers. To balance the dataset,
we cap each worker’s samples to match the worker with the
fewest comparisons, resulting in 5,373 samples per worker
and 26,865 training samples in total. The same process is
applied to the validation set, yielding 1,238 samples per
worker and 6,190 validation samples overall.

Baselines. To evaluate our approach, we introduce two
naive baselines for comparison: LoRA-Global, in which
we train one shared LoRA module across all users; and
LoRA-Local, where for each labeler’s preference dataset,
we independently train a separate LoORA module, allowing
each user’s model to fully adapt to their specific preferences
without leveraging shared information across users.

To practically solve Equation (3.5), we propose three al-
ternative algorithms to obtain personalized LoRA mod-

“https://github.com/DonghaoLee/Shared-LoRA-Reward
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Figure 1: Prediction Accuracy of Different Algorithms.

ules with shared components: P-ShareLoRA (SI),
P-ShareLoRA (G) and P-ShareLoRA (WU).

The first algorithm, P-ShareLoRA (SI), where SI de-
notes Standard Initialization, initializes the shared B ma-
trix to zero for all users, while each personalized matrix A;
is initialized with samples from a normal distribution. Both
the shared B and the personalized A; matrices are updated
through optimizing the objective function outlined in Equa-
tion (3.5) using the adamW (Loshchilov, 2017) optimizer.

The second algorithm, P-~ShareLoRA (G), where G de-
notes Global, initializes the model by pre-training the
LoRA module on the entire user dataset, using the config-
uration from LoRA-Global. Training then proceeds in
the same manner as in P-ShareLoRA (SI) . The third al-
gorithm, P-ShareLoRA (WU) , where WU denotes warm-
up, employs a few preliminary warm-up steps using a
global adaptation module (similar to P-ShareLoRA (G))
before proceeding with user-specific training. Following
this phase, training continues as in P-ShareLoRA (ST).
Detailed pseudocode and parameter settings for each of
these algorithms are provided in Appendix D.1.

We additionally include the shared representation method
by Park et al. (2024) as another baseline, abbreviated as
“Share Rep” in Figure 1. In this algorithm, the first 70% of
the reward model’s layers are frozen as the shared represen-
tation, while the remaining 30% are treated as personalized
heads.

Results. For each method, we train it for a total of
3 epochs.  Specifically, the global pretraining phase
in P-ShareLoRA (G) is set to two epochs, while in
P-ShareLoRA (WU) it is set to 0.3 epochs. Following
these warm-up phases, we train P-ShareLoRA (G) and
P-ShareLoRA (WU) for one and 2.7 epochs, respectively,
ensuring that the total number of training steps remains uni-
form across all algorithms.

In Figure 1, we present the results of reward model fine-
tuning using different algorithms. The reported accuracy
represents the average accuracy across the test datasets
of the five labelers when preferences are estimated us-
ing each algorithm. The abbreviation PSL represents
P-ShareLoRA.

We observe that for both GPT-J 6B and Llama-3 8B
models, our proposed algorithms P-ShareLoRA (G)
and P-ShareLoRA (WU) demonstrate performance im-
provements over other baseline algorithms. Specifically,
P-ShareLoRA (G) achieves the most significant en-
hancement on GPT-J 6B, while P-ShareLoRA (WU) per-
forms best on Llama-3 8B. These empirical results vali-
date the effectiveness of our method, which leverages the
shared components of LoRA modules to adapt personal-
ized reward functions. Additional experimental results are
presented in Appendix D.3.

6 Conclusion

In this work, we introduced a novel algorithm that inte-
grates LoRA into the personalized RLHF framework to ef-
fectively align LLMs with diverse user preferences. By
applying LoRA to an aggregated parameter matrix, our
method captures individual user preferences while leverag-
ing shared structures, thereby improving the sample com-
plexity and enjoying the computational efficiency of LoRA.
Theoretical analysis demonstrates that P-ShareLoRA re-
sults in a low-rank approximation for the ground truth
aggregated parameter matrix and achieves near-optimal
policy performance, with performance discrepancies con-
trolled by the diversity of user preferences. Empirical eval-
uations on the Reddit TL;DR dataset exhibit performance
improvements compared to baseline algorithms.
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A Deferred Definitions and Preliminary Lemmas

In our proof, we assume that all reward models are initialized from the same initial parameter matrix, i.e., @) = @t for
any ¢ € [IN]. We note that our results can be straightforwardly generalized to the case with heterogeneous initialization.
Additionally, we use X (™) to represent the column-wise replication of matrix X N times, i.e., X") = [X, ..., X].

A.1 Deferred Definitions

Also, we introduce the following deferred definitions:
Definition A.1 (Principal Angle Distance (Jain et al., 2013)). Given By, By € R%* with orthonormal columns, the prin-

cipal angle distance between their column spaces is defined as

dist(B1,By) = IB:B{ — B,B; ||r = |B] Ba||r,

|
V2
where By is an orthonormal basis for the orthogonal complement of span(Bs), i.e., span(By) = span(Bz)*.

The principal angle distance is a standard metric for measuring the distance between subspaces (Jain et al., 2013; Collins
etal., 2021).

Definition A.2 (Bracketing Number for Single Reward (Zhan et al., 2023)). Consider the class G, of functions mapping
pairs of trajectories (179, 71) € T - T to preference probability vector. Specifically, each function r € G, maps (19,71) to
P.(- | 70,71) € R2 An e-bracket for G, is a pair of functions (g1, g2) mapping T -T to R? such that for all (19, 7,) € T-T:
(1). g1(10,71) < g2(10,71); (2). |lg1(70,71) — 92(70,71)||1 < € The e-bracketing number of G, denoted by Ng, (¢), is
the minimal number of e-brackets required to cover G, in the following sense: for any function r € G,., there exists an
e-bracket (g1, gv.2) such that for all (1o, 7) € T - T,

gb1(70,71) < Pr(- | 70, 71) < gv,2(70,71)-

Definition A.3 (Concentrability Coefficient (Zhan et al., 2023)). Given a reward vector class G, a human user i, a target
policy T, (Which could potentially be the optimal policy T} corresponding to the true reward r7), and a reference policy
Lref, the concentrability coefficient is defined as:

Ermortar, mimpize 75 (T0) = 77 (71) = 7i(70) + 73(71)]

Cr (gra Ttar, Mref Z) :=max{ 0, sup

r€G, \/IETO,nwref |:(7“;(TO) — ri*(ﬁ) —ri(70) + Ti(71)>2]

A.2 Preliminary Lemmas

Before presenting the proof, we introduce a few important lemmas.
Lemma 1 ((Zhan et al. (2023), Lemma 1, reward vector version)). For any 6 € (0,1], if r € G, with dataset D =

LE[N]D where D; = ={(o (J), fjo), l(Jl)) b Tl(]o) ~ Lo, T (j) ~ w1, and ol(j) ~ P (-7 (]) (])) there exist C; > 0
such that

() 7_ ©)
DS 10g< o s ;jf) < C1log(NG, (1/(NN,))/0)

i€[N] jE€[Np] ,( J |TZO711

holds.

Lemma 2 ((Liu et al. (2022), Proposition 14, scalar version)). For any é € (0, 1], with probability at least 1 — 6, if r € G/,
with dataset D = {(O(j),TéJ)7T1(]))]€ (M)} Where T(J) ~ Lo, T(J) ~ 1, and o) ~ P (- \T(J) (J)),

Bpoin [I1Pr( | 767, 7Y = P | 77, )]

Cs P. O(j) | T(J’ (J))>
< == Z log ( +log(Ng: (1/M) /)
M\ S Pr(oW) | 7 £

holds where Cy > 0 is a constant.
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Lemma 3 ((L1u etal. (2022) Proposmon 14, vector version)). Forany § € (0, 1), with probability at least 1 — 6 ifregl,
with dataset D = Usev ]D where D; = {(o; @ l(JO), 1(1) b Tl(JO) ~ o, T, (J) ~ 1, ando(J) ~ D |7' (j))

% 3 Bug [1PC 177 = Py (17, )]

ZE[N]

(oD | 7D 7D
v (X% 10g<P”( |' (J)Jfﬁ;)+log<Ng;<1/<NNp>>/5>

P \ie[N] jEIN,] Py, (ol

holds where Cy > 0 is a constant.

Lemma 4. For any use i € [N, we have the following inequality holds:

3 Do ®(r (70) — 73 (m)) — log ®(r (7o) — r5(m))] < 2LLyy | 2

1€[N]

Proof. From the L-Lipschitz continuity of the function log ®(x), for any trajectories 7y and 71, we have
log ®(r} (7o) — 77 (11)) —log ®(r{ (7o) — 77 (11))| < L|ri(70) — v} (1) = (70) + 77 (71)]-

Recalling that 7} (7) = r(7;0}) and r{(7) = r(7; ©F), from the L;-Lipschitz continuity of the function r(7; @) with
respect to ®, we have

[ri (o) — 7 (1) — 17 (10) + 7§ ()| < 2L'[|©F — ©F ||
Therefore,
1 * *
N > Irf(ro) = 77 (m1) = (o) + 75 (7))
1€[N]
1
< % 3 0300~ rim) = ri() + re(m)?

i€[N]

1
< 2Ly NHQ* - ©°|%.

Note that ®° can be derived from the truncated singular value decomposition (SVD) of ®*, retaining only the top k
singular values and their corresponding singular vectors (Golub & Van Loan, 2013; Liu et al., 2024a). Consequently, we

have
- > [ri(r0) = 77 (m1) = r{(70) + 7 (m1)| < 2L ypar!
N 7 i\l i A\T1)] > 1 N .

i€E[N]

Therefore, we finally have

LS g 0007 () = 17()) — o (v () — 15(m))| < 2Ly

ZE[N
O
Lemma 5. For local reward models parameterized by ®1, . .., © y, suppose there exists a constant 6 > 0 such that
Z EMOaMl |:HP® ( T’LO’ 2(‘]1)) P@* ( |Tz(%)7 ZI)H :| <6
1E€[N]

then, for some constant C > 0, it holds that dist(B, B®) < % < C3 wherev = oy, ((6*]):@* )
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Proof. From the Mean Value Theorem, there exists a constant C' > 0 such that

|®— o2 <C Z B pin {|‘P@1< |7—10’ “) — Po: ( |7'20’ I(Jl)) I ] < C6.
i€[N]

Define §" := min; <;<g k+1<j<min{d,Nds} |0:(©*) — 0;(©)]. Then, we observe that

5 = i (©%) — 0;(©)] = 5(©%).
1§i§k,k+1§r§‘lgrlnin{d1,Nd2}‘U( ) = 0i(®)] = 0k(07)

Next, by applying the Davis-Kahan Theorem, we obtain

_ * |12

ist?(B,B°) < )
dist"(B,B%) = 5 S o2(©%) " Nv

This is the desired result. O

B Training from Scratch

In this section, we present our theoretical analysis, focusing on the case where the initialization is set to zero, i.e., the initial
parameter matrix is ©° = 09'92, Consequently, A®* = ©*.

With zero initialization, we define the class of reward functions G, in which a low-rank adaptation matrix with shared
representations is learned as the parameter matrix for each individual reward function. Specifically, G.. is defined as:

G, = {(Tei('))ie[N] © c RU NG rank(©) =k, |©;||r < B, Vi € [N]}’

where ® denotes the aggregated parameter matrix across all individuals, subject to a rank constraint k. Additionally, each
individual parameter matrix ©; satisfies the Frobenius norm constraint ||©;||r < B. We state our theoretical results under
zero initialization as follows:

Theorem B.1. (Closeness between B and B®). For any § € (0, 1], with probability at least 1 — 6, it holds that

R 1 Ytai
dist(B, B°) < \/ v 08 ey (1/(NN,))/8) + [ =5
p

where ¢ > 0 is a constant, v is the condition number as defined earlier, 3,5 represents the aggregate tail singular values
and Ng; (-) denotes the beacketing number of the function class G,,.

Theorem B.2. (Individual Expected Value Function Gap). For any user i € [N] and any § € (0, 1], set ¢ in Equation (3.6)

as
log (Ng, (1/(NNp))/6) 1 [Sean  kds +log(N/6)
_ * o 2 r P - tai 2 Bl
¢ 2L2 (mm 1©7 - &2l + NN,v oV N T N, ) 8.1

where c3 > 0 is a constant. Then, with probability at least 1 — 0, the output policy T; for client i satisfies

J(Tri,tar; ’I":) - J(%i; ’f‘:()

lo N/ 1/(NN, 1) 1 Eai kd 1 N/§
. 63<”@;_®§|§+ 8 oy (1/(NN,))/0) | 1, [T | s + logt />>,
p

p

Corollary B.1. (Averaged Expected Value Function Gap). For any 6 € (0, 1], set ¢ as in Equation (B.1). If N > u?Y¢an,
then, with probability at least 1 — 6, the output policies {7;}I\, satisfy the following inequality:

1 * &L log(Ng: (1/(NN,))/6) "
N;(J(ﬂ'i,mr;ri)*J(’]Ti,ri)) §C4\/ g L +\/7’

p

where ¢4 > 0 is a constant.
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B.1 Proof of Theorem B.1

Theorem B.1. (Closeness between B and B®). Forany § € (0, 1], with probability at least 1 — 6, it holds that

thll
N

dist(B, B°®) < Cl\/lev,,y log(Ng, (1/(NN))/d) +

where c¢1 > 0 is a constant, v is the condition number as defined earlier, 3,5 represents the aggregate tail singular values
and Ng; (-) denotes the beacketing number of the function class G,,.

Proof. Consider the events &1 and &; defined by the satisfaction of the conditions in Lemma 1 and Lemma 3, respectively,
with the confidence parameter adjusted to § < ¢/2. This adjustment guarantees that P(£; N &) > 1 — 4. Consequently,
we conduct our analysis conditioned on the event £ N &s.

From Lemma 4 we have

Z Z log P+ ( () | 7, (J) ) Z Z log Pes (ogj) |7-l(]0), (j)) + cNpy/N Ziair.

N]j€[Np) 1€[N] jE€[Nyp]

Using the definition of e gives:

Z > logPo; (o |78 7Y) < D Y togPe, (o [ 74, 7Y) + N/ N T

N]j€E[Ny] i€[N] FE[Ny]

Therefore, it follows that:

P (O(j) |Téy) (]))

( | 7 (J) (J))
<> > log + cNp/ N Egain

D D log , ,
ey \Pr (00 17, 70) | TR ER P (00 7 ,Tf”)
Nt ()
< log <5NN + eNpy/N Seat.

By Lemma 3 we have:

L5 [ (182 o (A

1

€[N
Cy Z Z 1 P@,*, ( zJ |71(J0)7 z(jl)) . Ng; (N}Vp)
= 0og og | ————=
NN \ vy jem] Po. ( 9|79, Z<31>> 5
1 1
Cs Ng; (NN,,) Ng; (NNP)
< N Crlog | ———"% | +eNyv/N St +log | ——5—%
_ 03 1 Ngl/” (N}Vp) + C Etauil
~ NN, % 5 N

for any re € R(D), where Cs = C5(Cy + 1). By the mean value theorem, for any re € R(D), we obtain:

% > Buom [|(7‘®,:(Ti,o) —re,(7i,1)) — (ri(ri0) — T?(Tz‘,l))ﬂ

ie[N]
Z E P, | () )_ P, *( ()
105141 Q; Tio T, zl ) (S T T, 11 ) ¥ (B.2)
ZG[N]
Csk? Ng,(1/(NN)) o [ Dtail
< 1 r C .
= NN, Og( 5 HeR Ty
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Therefore, combining with Lemma 5 gives

dist (B, B%) < -0 log(NG, (1/(NN,)/6) + © 2y [ Z2a,
12 14

) CcC CccC Yiai
1B — B < dis(B.B°) < 2-00% g0, (1/(V,))/8) + 20502, [ B

p

Also, we obtain

This proves the theorem. O

B.2 Proof of Theorem B.2

Before formally proving Theorem B.2, we present the following theorem as an intermediate result.

Theorem B.3. For any § € (0, 1), with probability at least 1 — ¢, it holds that
1 : . L2

+ 2 |06, —16,(0)) — (re; (7)) — re: (r7)|

« 1 Ng, (1/(NN, 1 [Son  kdy +log(N/6
< ¢y (|ei_eg§+mu1@g< 5.0/ p>>)+ym+ 2o />>7
P P

where Cg > 0 is a constant.

Proof. Recall that for a function rg parameterized by the matrix ® € R% N9 we use 74 to denote the same function
parameterized by the vector 6, where 8 = vec(®). To begin, by leveraging the continuity of 7g(+), we can establish the
following inequality:

‘(Téi (Ti(yj('))) -7, (Ti(ﬂ))) _ (ng (Ti(,{))) _ ’I“@*( (J)))‘

(1o, (1)) — 16, G)) — (res (1) — v (x| +aLlj@; — &% (B.3)

F

<2

=201z, (D) — 5, 0) — 1o 0L3) — e G|+ 4L@; — ©%13

Next, we focus on obtaining an upper bound for the first part of the right-hand side of the above inequality. Using the

Lagrange form of the remainder in the Taylor expansion of rj (7, (7; (J )) we get

ro (18) — 15 (113)) = Vorg, (rS) T (07 - 6;).

Therefore, there exist 0_0 and 6, such that

. . . . T —~
(rop (78) = 702 (7)) = (1, (712) = 15,(7)) = (Vora, (1) = Vor, (=) (67 B5).

Then, we obtain the following:

(g (759)) = oz (1)) — (15, (753) =g, (D))

2 2

< 2| (Vurg r9) - Vorg (7)) 2 =) +

4| (Tora, (058 = Vrg () 07 =)

T 2
+4](Fura, () = Targ 0)) 02 -0 ®H

2
+16L1 167 — 0,|° .
N———

B

’(Vere o) = Vorg, 1)) @3 - )

Ai,j
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Our remaining proof contains three major steps: (1) Step 1: bounding the summation of A; ; over j; (2) Step 2: bounding
the term 5;; and (3) Step 3: combining the bounds for A; ; and B; to obtain the final result. We now proceed with the
proof of the first step.

Step 1: Bounding the summation of 4; ; over j.

Regarding the term A; ;, let us denote w{ = vec(W7). Then, we have
(Vorg, () = Vorg, () (6 ~ )
= (Vorg (-12) = Varg (7 (”)) (62 + (Iy, ® B)w? — (I, ® B)w? — §;).

Utilizing the fact that 8¢ = (I, ® B®)wy, it follows that

2

Aiﬂ‘ <2 ‘ (Vg?“e ( ) Vere ( € )))T ((Id2 ® BO)w? _ (Id2 ® ﬁ)wf)

‘(Vw (4 ) Vorg (T, (J))) ((Id2 ® B)w? — (I, ®]§)1’BZ) 2

2

(<_)4L<Id2®B°>—<Id2®1§>||2||w§|2+2](ver9( D)~ Vorg, (D)) (s, © B)(ws — )

2

)

~ N T =N
o ALIB = BIEIWE I +2| (Vorg, (053) = Turg () Ty B)w? - 0)

where inequality (¢) follows from the L- Lipschitz continuity of the function ro(-) with respect to 6, and equality (i) is
derived from the facts that ||(I;, ® B®) — (I4, ® B)||2 =[B° - (Is, ® B)||2 and [|w?||? = ||[W?||%. Next, we define

= Z (I, 2 B)T (vgra( D) = Vors (r “’)) (vgro( 1) = Vorg (7 j))>T(Id2®]§).

]EN

Following the definition of ii, we further derive the following inequality:

o Z A j <AL|B® = B’ Wg|[3 + 2l[wf — @% . (B.5)
jGN

Now, we consider the following optimization problem:

max TN Z IOg (Ta, ®B)w1( J |T’LO’ z(Jl))

w;
JG[NP]

The solution to this optimization problem is given by w; = arg max f(w;). To proceed with the analysis, let us denote
w

xl(.j - (1o, B)uw, (Tl.%)) ~ (1, ©B)w, (Ti(?i)). Using this notation, the gradient of the objective function can be expressed

as follows:

w) =L @)ooy ) o —
Vi) =g 3 (et =0 - Sl =)

(L ©B) (Vg oy (1) = Vi, oye, (T2)):
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and

1 (I)/(Sc(j)) ) (I)/( (J))
V2 f(w;) = (21 o9 ) Ty 6 )
= 3 (Gt e =0~ LEBTE =)
(L ©B) (V27 (1, iy (T0) = V71, by (1) (La, © B)
1 ' (x (J))(I)(mgj))_@/(xz(j)
"

2 .
%) ) 1(01(‘]) =0)
®(z;")
" (— NP (— )y —
L ¥ a)e(al)

(B.6)
5 i I(OEJ) — 1))
o(-a)?
B\ T (@)

- (Ia, ® B) (VT(Id ®1§)w1( i, o) VT(Id @B)w; (71J1 ))

(V7080 (00) = Vi, iy, (7)) | (s, @ B).
From the Lagrange form of the remainder in the Taylor expansion, there exist w; such that

F(@:) = f(w]) + Vf(w)) " (@; — wf) + (@; — wf) "V2f () (D; — w). (B.7)

To handle the (@; — wf) T V2 f(w;)(w; — w?) term, we define

1 |
Z (I, @ B)T ( ity wByws (To0) = V7, e <a>)>.
€N,

(w ()~ vr ((j)))T(I % B)
Ia, ®B)w? (Tay @B)w? Tid d2

and let ¢; and ¢} be the maximum and minimum positive constants, respectively, such that for any 4, |w;|| < B, and any
vector u, the following inequality holds:

1
cru! Bdu SF Z u'

(4)
(L @ B) T (Y7, oy () = V7, aBy (7))
P jen,

(4) j
'(Vrld@)B) (10) = Vr1d®1§)w((

(B.8)
T oy
() (i, @ Bu < u’Shu.
Combining this with inequality (B.6), we obtain

(@ — w) TV f (@) (@ — uf) < —

R o' xl(_]') ) ' _xl(j) )
F(wi —w))T Y ( ( %) )I(OEJ) =0)— (7(1»))1(02@ = 1))
b jemmy) N D7) O(—z;")
. (Id2 &® B)T(v2’r‘ 2®B)wi (7'1("{))) _ v2r(1d2 ®]§)Wi (Ti(?l)))(ldg ® B)({l}z _ IUf)
— cxca(is — ) TS @ — u)

where ¢y = min, (‘D’<f)2;g;§f)‘l’( ) Then, from the smoothness of ry we have

1 R . ,
N 2 (@ —w) L 0 B) (Vg om0, (100) = Vora,, emy, (711

) (La, ® B)(@; — w?)
) (1o, ® B) " 1y, © B)(@;
— Lyjld — wf|?

max, (P’ (x)/®(x)) we have

(@; — w?) TV f (@) (Wi — wf) < —crea(a;
Combining with Equation (B.7) gives

—wy)

Letcs =

—w?) TS (Wi — w) + e3Lo|@; — w2

cre2(W; — wi) " (@; — wf) — e3Lollw; — wf|* < Vf(wf)' (wf — @;). (B.9)
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From the smoothness of f(w), we have

F(@0) < J) + ()T (@ ) + 25— w

<>||2

using the fact f(@;) > f(wf) we have

7% < EVf(w?)T(wf — @) (B.10)

|w; — w
K L,2 1

Then, combining the above inequality with Equation (B.9), we conclude that for any A > 0 the following inequality holds

creals = uf o < (142002 ) V) (u - )
< (1 ; zﬁ) V£ ()T (w? — )| B.11)
< (1420 2 ) IV S0l a1 02 = Bl
Observe that for any A > 0, the introduced AI term will ensure X% + Al is a full rank since X is a PSD matrix. For all ¢,

we define a random vector V € R™V> as follows:

@(rg*w“)) rox ()
®(rgs (1) — m*(r“)))

@’ (7“9* (7-(])) ros (‘r(]))) ) "
(I’(Tf’*(T(”) ’"e*(T(”)) W-p- CI)(TGZ(Ti,jl)—Tef(Ti,j()))

Vij =

Also, define V/ € RN» as follows:

[€)] [€)]
<I>’(T(Id2 ®B)wd (Ti,JO )77”(1(12 @B)w (Ti,Jl )

[€)) [€))
‘1’(’"(1(,12 ®B)w? (Ti,70 )_7"(1dl2 ®B)w? (Ti,Jl )
gV @' (r e (TN =1 arwe (7)) _ .
(I, @B)wo\Ti1 (I, @B)w®\Ti0
- d2 - - d2 - - w.p. q)(’l“g,* (T(])) — To* (T(j)))
‘i’(’r . (T-(J))—'r _ 0(_,_(.7))) i 7,1 i 2,0
(1d2®B)w;> i1 (1g, ®B)w$ \"i,0

Therefore, V f(w$) can be rewritten as

) ()
Z (e, ® B)" (vr(1d2®]§)wf(7_i,]0 ) — VTI@B(IdQ(gE)wg (1))

JG[N;D]
(4) (4)
=— Z Vi )(Ia, ®B) (V?”(Id2®]§) o (T J) VT (Lay ®1§)w§(7'i,j1 ))
JE[NP]
S\ T (4)
+ Fp Z Vij(La, ® B) (VT(Id ®B)wo( ) VT(1d2®1§)w§ (Ti,Jl ))
JEIN]

Then we obtain

||Vf(w§>)||(z:g+A1)f1

1 ~ .
< N Z (‘/z{j — Vi) Ta, ® B)T(VT(1d2®1§)w (, i, o) vr (La, ®B)w? (Ti(ﬂ)))
P jelng) (S9+AD)-1 (B.12)

N Z Vij(La, ®B)T(VT(Id2®]§)w°( 10) VT(1d2®1§)w;> (Ti(,Jl)))
pje[Np] (S4AD)—1
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Next, we bound the first term on the right-hand side of Equation (B.12). By the Mean Value Theorem, we have

(@) _ 2 (y)
@ (x) @ (y)

<&z —yl, for x,y € [—2Rmax, 2Rmax)- Therefore, we can write:

Vi —Vigl <€ ‘7"9* 7 0 —Te; (Ti(,Jl)) ~T14,@B)w? (Tz'(,jo)) 7 (14, 8B)wg (Ti(,Jl))

(@) _
< 2L§]9;—9§+o§—(1d2®3)w7

< 2107 - 07 + 2L | (L, © BY) = (L, @ B) | - ]
= 21¢|©; — BOWS ||+ 2L¢ [B° - B[ (Wl

where inequality () follows from the L-Lipschitz continuity of rg(-).

Then, we have

1 =T (9)
HN Z (Vi/,j - Vi;)B (VT (Tay ®B)w<>( ) VT (1s, ®B)W? (Tz',jl ))
(S2+AD1 (B.13)

< 20LE|1O; — BOW|[p + 2CLE||B° - B||[W{|
for constant C.
Next, we bound the second term on the right-hand side of Equation (B.12). Let V; € R™» be the vector such that
[Vi]; = Vi ; forall j € [Np] and we define

1 . N
M; = — G/ (Is, ® B)(Z7 + \I) ' (I, ® B) ' G;

NP
where
Gi = [V, eByue () = Vg emus (1) V7, by (T0™) = V7, by ("))
As shown in Zhu et al. (2023), the matrix M, satisfies the following properties:
TM) <L (MY <y M S
Furthermore, consider that the variables V; ; are centered sub-Gaussian random variables, as IE[Vi,j] = 0 and V; ; are

bounded. Consequently, by applying Bernstein’s inequality, we obtain

Z Vij(Ta, ® B) (VT(1d2 ®B)ws (Ti(,JO)) - VT(Id2 @B)w? (Ti(,]l)))
JG[N}

log(N
= VMY < oy | et LostND)
Np

with probability at least 1 — 6/(2N), where Cy > 0 is constant.

(Zg+A1)— (B.14)

Subsequently, by substituting Equation (B.13) and Equation (B.14) into Equation (B.12), we obtain

V(W) (zo4an—1

kdy + log(N/6)

< 20L¢ || — BOW? ||, +2CL¢ |[BY — B - [W¢ | + C4 -
p

kedy + log(N/6)

N, ’

<2CL¢||®; — OF|| +2CLEB HBQ - EH +C

where the final inequality leverages the facts that B°W? = ©¢ and |[W?||r < B.
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Furthermore, utilizing Theorem B.1, we obtain

IV F(W)[Ese o) (B.15)
1 Ngt (L (NN 1 [Sean kds + log(N/6)

<c’ *_ @93 r P z ai _

<C (II@Z @ZIIF+Nprlog< 5 )+V\/ ~ N, , (B.16)

where C’ > 0 is a constant.

Notably, from Equation (B.11), by defining ¢ = % we have

1@ = wfllse < \fNVL @3 e yagy 1 + 2ABIV S @) lme43n) - (B.17)

Therefore, by setting

cC’ o2 1 Ng: (1/(NNp)) 1 [Yan  kdy +1og(N/9)
-~ * _ @9 1 v -
2B \/'92 Ol + N, 108 < 5 VN Tt N, ’

and by combining Equation (B.16) with Equation (B.19), we obtain

A=

s — wg |3 (B.18)
1 Ng, (1/(NNy)) 1 [San | kda +log(N/6)

<VacC | |er — > 1 4 P 1 D . B.1

<V2cC <||®1 o7 + NN og( 5 >+ At N, (B.19)

Note that by combining Equation (B.5) with Equation (B.8) we have

1 12 _
O Ay S 4LB? HBQ—BH 2, [lug — @il (B.20)
P jen,

From Theorem B.1, we have
CC Ng' (1/(NN, cc Yitai
||B—B°||2FS2NN3V10g( A /5( ”))>+2 V“/{“,/ ;\}1. (B.21)
p

Thus, by combining Equation (B.19), Equation (B.20), and Equation (B.21), we conclude that there exists a constant
C5 > 0 such that

1 2 1 Nb’ (1/(NNp)) 1 /Y kds + log(N/d)
E < e - 6° ~r / ] )
N .Az,] < Cs <|| i i H + NN,v log ( 5 + L N + N, (B.22)

P jen,

Step 2: Bounding term B;.
Note that from Equation (B.10), we have

. 2 . .
[[@; — wi||* < Evf(wf)T(wf — ;) < IV (W) lmopan -1 [|w; — @illso a1

Therefore, we obtain

I = w12 < VIV L @) e yagy 1 + 21V @) g oam 2 [10F — Bl

Let

. CC/ 2 1 Ng/ (1/(NNP)) 1 Etail kdg + lOg(N/(S)
< & x_@° - 2.
A<min< 1, 2B\/”®l ®z||F—|—Nprlog( 3 +1/ N + N ,

p
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using Equation (B.16) and Equation (B.17), we obtain

_ 1 Not /(NN 1 [Sen kds + log(N/6)
C_a®l?2 < * _ @®°12 g, p - tail 2 g
@ — w1 < Co <|@z R G S R e SENCESY

p

for a constant Cs > 0. Leveraging the smoothness of r(-) with respect to 6, we obtain the bound

~ ~ ~ 2
Bij < (0. = (L, © Byus | + || (Lo, ® Byu — 67]))
~ 2

< (Il — will + BIB - B°) .

Therefore, applying Theorem 4.1 and using Equation (B.23) we obtain

1 Not (NN 1 [Som kds + log(N/6)
< * _ @°2 1 L P hl a B.24
B’L;] <Cr <|®z 61 HF + NNpl/ 0g ( ) ) + v N + Np ( )

Step 3: Putting A; ; and B; ; together.

Combining Equation (B.4), Equation (B.22) and Equation (B.24) we have

1 , ) . .
N 2 |G = o () = 5,8 5 (7))
FE[Np]

1 Ng, (1/ (NN, U [Sen | kds + log(N/5
< Cy <|@;@;>2F+NNV10g< g, ( /é p))>+y\/?+ 2+]$g( /))7
P p

where C7 > 0 is a constant. Therefore, combining with Equation (B.3) we obtain
)2

‘ 2

1 . ; . .
7 2 |re.(nd) —re,(ni)) — (re; (1) — re: (117))
P jelNy]

< L (2 (7 DY = e (19DY) = (e (79 — 1o (e + 4L, | ©F — @22
s 3, \Ti.0 5, (Ti1 02 (70) —Teos(1;7))| +4L1©] il
P jelN]
1 Nor(1/(NN)\ 1 [Sean . kds + log(N/6)
<Cs (e - o3 1 - £ -y H
— 8<| 7 1HF+NNPV Og( (5 +l/ N + Np 1)
where C's > 0 is a constant. The proof is thus complete. O

Also, we introduce the following short lemma to upper bound the expected squared difference between the true reward
differences and their estimates use Appendix B.2.

Lemma 6. Assume Assumption 2 holds. For any 6 € (0,1], if N > N,f(Gr, 1o, p1, 6), with probability at least 1 — 6, we
have

ToO~HO,T1~Y 1

1 Ng, (1/ (NN, 1 [Son | kds +log(N/s
< Cy <|®;@g;+NNVIOg< g, ( /; p>))+y\/?+ 2+]3g( /))7
P p

where Cg > 0 is a constant.

B | () = s () = (5,000 = 0|

Proof. From Assumption 2, if N > Nyuit(G., o, pt1, 0), with probability at least 1 — J, we have

B {|n 0 o) - (5.0 = 0|

TON MO, T1Y 1

1.1
<5 Dl

P JE[Np]

! N, (L/(NN L[S | kds +log(N/3
§08<|®;—@§§+NNVIOg< AN 1 B /))7
P p

. . . . 2
(ro; (%) = o (7)) = (rg, (7D = 75,7

i
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where Cg > 0 is a constant. This is the desired result. O

With the assistance of Lemma 6, we are now prepared to prove Theorem B.2.
Theorem B.2. (Individual Expected Value Function Gap). For any user i € [N] and any § € (0, 1], set ¢ in Equation (3.6)

as
(=25 (min |or — @32 + 8 Wo, (1) (NN,))/0) i@+ o + 10g(N/6)>7 (B.1)

2L% \ieln)' " ! NN,v N,

where cg > 0 is a constant. Then, with probability at least 1 — 0, the output policy 7; for client i satisfies

J(Tri,mr; ’I":() - J(%Za ’I“:()

log (NG, (1/(NNy))/8) 1 [Swanr  kdz +log(N/d
<.les <||@z*®§i>|?DJr og ( GTJ(W/V(V p))/)JrV\/?+ 2+]3g( /)>.
p

p

i 1nf

Proof. To simplify notation, let C,. = Cr.(Gp, T tar, i ref, ¢). Following the approach in Park et al. (2024), define 7%
argmin,.cr, (J(m, ;) = Erop, o[ri(7)]). By the continuity of 7 and the definition of R, for any policy , we have

(i) = Fi(7i0)) = (r™ (1i1) = 5™ (730)| < LaC.
Thus, it follows that
J(Tiars 7)) — J (@i 77)
= (J(Tiari 7}) — B i e [ri(T)]) = (J (@i 7)) — Er i e [ri(m)])
< (J(migar; 77) = Erpsy [ (T)]) = (J (m s i) — B [l (7))
+ (JFs1E™) = Brpay o (P2 (1)) = (J @i 77) = Bropry 17 (7))
(Tigars 77) = B 17 (1)) = (T (i ar; 7215 ) = B s, (7))

(J -E (
B, gmors s (75 (Ti1) = 77 (Ti0)) = (12 (73.1) — 2™ (73.0))] + La¢

< Cr\/]Euo,m U(T?(Ti,l) =7 (7i0)) = (Fal7in) — ﬂ(ﬁ,o))ﬂ +1ag

1 Ng: (1/(NN,)) 1 [Stan  kda + log(N/§)
< 2 x _ o 2 1 ” p - ai
< \[ccs (nel O+ gy tor (T ) g 2[R R

where C' > 0 is a constant. The proof is thus complete. O

IN

IN

B.3 Proof of Corollary B.1

Corollary B.1. (Averaged Expected Value Function Gap). For any § € (0,1], set ¢ as in Equation (B.1). If N > p?Sian,
then, with probability at least 1 — 6, the output policies {7;}I\_, satisfy the following inequality:

N r 5 tai
72 7szr, z J(ﬁi;T?))<C4\/log( gr(]lv/]i[NNp))/ )+ﬁ7

p

where c4 > 0 is a constant.

Proof. From Theorem B.2, by summing over ¢ € [N], we obtain the following inequality:

1
N Z J(Tri,lar; ’f‘:) - J(TF“ T )
€[N

1 2 1 Ng' (1/(NNp)) 1 [ Xan kds —|—1O€(N/5)
< - x_@° | % 1 /2t
A ;U:V] 197 = &%l + N, 108 ( 5 VN T N,
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Furthermore, we can derive the following bound:

1 . ~
N Z J(Tiar; 7)) — J(ﬂ';a 7)
€[N

1 Ng; (1/(NN,)) 1 [Sean | kdo +log(N/6)
= C4<NNp1/10g< 5 )+y\/ N T N, '

Etall

Here, the inequality holds because % < i for N > ;1?Y;.q1. This proves the corollary. O

C Deferred Proofs in Section 4.3

First, we introduce two auxiliary lemmas.

Lemma 7. For reward function r, suppose Assumption 1 holds. Then, we have

1 Ytai
i Z ‘log ®(r7(10) — i (11)) — log ®(r@mic @0 (T0) + remi o0 (7’1))’ <oLL/y/ ]tvl.

1€[N]
Proof. From the L-Lipschitz continuity of the function log ®(x), for any trajectories 7y and 71, we have
‘10g ®(r}(m0) —ri(11)) — log ®(r@mit @0 (T0) — remi @0 (7'1))‘
S L ’T:(To) — 7”;((7'1) — r@init+@? (T()) =+ T@init+@;> (’7’1)‘ .

From the L’-Lipschitz continuity of the function r(7; ®) with respect to ©, we have

73 (10) = 71 (11) = Temi s 02 (T0) + remios (Tl)] <2I/|®F — @M — @2 p.

Therefore, we have

_ Z ’ 7'1) — T@nmur@o (To) + T@xnlt+@0 (Tl)’
ze[N]

1 2
< v 3 (r) = 71 (m) = et rep (7o) + remin e (1))
1€E[N]

1 -
< 2L/\/N|@* — @init, (V) _ (..)oH%

1
- 2L’\/N|A®* - @°|2.

Note that ®° can be derived from the truncated SVD of A®*, retaining the top k singular values (Golub & Van Loan,
2013; Liu et al., 2024a). Consequently, we have

/Z ail
Tl) — T@mn+@o (T()) + r@nnt+®0 (7'1)‘ < 2L/ ]tV

16 N]

Then we obtain

which completes the proof. O
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Lemma 8. For local reward models parameterized by {©;}N | with ©; = O™ + A@,, if there exists a constant § > 0

such that
ZEMO’M [||P@i( |T1(JO), 11) ( |T7.07 zl)H}

1€[N]
then for B, B® € R4* with orthonormal columns satisfies span(B) = span(A®) and span(B®) = span(A®*), there

exists a constant C > 0 such that

_ * __ (@init,(N)\||2
80 - (@ — @™ )5 _ 5
)? N

dist(B, B®) <

_ (AT re*
where v =0y | ~——FHx— .

Proof. From the Mean Value Theorem, there exists a constant C' > 0 such that
1© =1} < C Y By [P, (- 17:0.70) = Por (- 178,73) IP] < ca.
16[ ]
Define §" := min; <;< k+1<j<min{d,,Nds} |0:(AO*) — 0;(A®)]|. Then, we observe that

§ = min 0,(A®%) — 0, (AB)] = 0, (AO¥).

1<i<k,k+1<j<min{d1,Nd2}
Next, by applying the Davis-Kahan Theorem, we obtain

|A®* — AO|2 5 5
< =0C——.
(0')2 <Crnen = “m

dist*(B, B°) <
This proves the lemma. O

C.1 Proof of Proposition 1

SShareLoRA )

In this section, we introduce the upper bound for the bracketing number of function class Gy ( , which is denoted

by G,..
Proposition 1. Suppose Assumption 1 holds. Then, the bracketing number for function class Ng; satisfies

log (Ng, ((NN,)™1)/8) < O(k(dy + Nds) log(NN,/5)). 4.2)
Proof. We start from the zero initialization case, therefore G/. is equilvant to:
Gr = {(re,(Dicpy) |© € RU ™M, rank(®) = k. ©i]r < B, Vi € [N]}.
Similar to the proof in Zhan et al. (2023, Proposition 1), we denote by F the function class
Fo={Uiie

Let Zr(e) denote the e-bracket number with respect to the (o, norm. Therefore, there exist a set F satisfies |F| =
Zr(e/4N) such that for any (fi(-)) e[| € Gr, there exist (fi(-)) € F such that

Fi(0,71) = Prylo =11 70, 7). (ri())seqn) € 9o -

i€[N]

TSOUFI | fi(0,71) — fi(r0,71)| < W Vi € [N].

Given (f;);e[n). construct a bracket (g1, g2):
lg91(0 =70, 7)ls = fi = ﬁa [91(0 = Olro,71)]i =1~ fi — ﬁ,

[g2(0 = 1|70, 71)]s = fi + ﬁa [92(0 = 0|70, 71)]i =1 — fi +
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Then, we observe that (g1, g2) satisfies g1 (70, 71) < 92(70,71), |l91(70,71) — g2(70,71) |1 < € and g1(70,71) < Pr(- |
T0,71) < ga2(70,71). Therefore, our goal is to bound Zx(e/4N). From the mean value theorem, for a,b € [-2R,2R],
there exist constant Cr = max,¢c[—_2r,2r] |®'(a)| such that

|®(b) — @(a)| < Crlb—al.
Denote f = [f1,---, fn] ', we obtain

| fi(10,71) = fi(70,71)| < CRlr(r0) — 7(11) — 7'(10) + 7' (71)]
< 2CRL1||vec(®) — vec(®')||
= 2CRL, ||diag(B)vec(W) — diag(B')vec(W')||
< 20RLy ||vec(W) — vec(W')|| + 20 L, B ||diag(B) — diag(B')|

[vec(B)] B [Vec(B')]

< max{1, B}2CrL, ec(W) vec(W)

(C.1)

Denote C; = max{1, B} - 2CgL,. From Equation (C.1), we conclude that the ¢/4N-bracket number Zr(e/4N) is
bounded by the ¢’-covering number of a (d; k + Ndsk)-dimensional ball centered at the origin with radius B with respect
to the /5 norm, where

/ €

T 4N -max{1, B} - 2CrL;

According to Wainwright (2019), this covering number is upper bounded by O ((dik + Ndzk)log (£)). There-
fore, for ¢ = 1/(NN,), we conclude that the covering number Ng: (1/(NN,)) is upper bounded by
O ((d1k + Nd2k)log(INN,)). We note that for gr‘@,m , following the same proof process, we can show that

remi < O ((dik + Ndak). log(NN,)) .
The proof is thus complete. O

C.2 Proof of Theorem 4.1

We note that the proof of Theorem 4.1 is a natural extension of the argument used in Theorem B.1 as detailed in Appendix B.

Theorem 4.1. (Closeness between B and B®). Suppose Assumption I holds. For any § € (0, 1], with probability at least
1 — 4, it holds that

dist(B, B°)

1 1 \1\ 1 [
< ] , )y o,/ Sl
= cl\/NNpV ©8 <Ngr (NNP) 5) e

where c1 > 0 is a constant.

Proof. We define the event &1, &5 as satisfying Lemma 1, Lemma 3 with § < §/2, respectively, so we have P(£; N &) >
1 — 5. We will only consider the under event £; N & . From Lemma 4, we have

ST N logPer (0 7,79 < 30 N log Peoyemi (0 [ 75, 7)) + eNpy/NSean,

i€[N] jE[Np] i€[N] j€[Np]

Then, from the definition of (:), we have

Z Z log Pe: (0; @) |7'(]O)7 11 Z Z log Pg ( (J) \T(JO), 11 ) + cNp/ NE¢ai.

i€[N] jE[Np] i€[N] jE[Np]



Renpu Liu, Peng Wang, Donghao Li, Cong Shen, Jing Yang"

Therefore, similar to the proof in Corollary B.1, we obtain that

% > Euoun [|(T®i (Ti0) —re,(Ti1)) — (r] (7i0) —Tf(Ti,l))ﬂ
1€[N]

2
K
< N Z E#o,,ul [HP@ ( |7—Z(]0), z(jl)’ ) P@*( |Tz(JO)7 1(11), )” } .
IOg(Ng (1/(NN,))/8) + Cyr? Etail.
NN ~

Combining this with Lemma 8, we obtain

. CCs Ng,. (1/(NN,)) CCy Ytail

o I p 2 ai
dist*(B, B°®) < NNz/lOg< 5 + » K4/ N
Additionally, we have

IB — B3 < dist®(B,B°) < —<* log (Ngr(l/é(NNp))> 4 GG 52,/2;5“.

NN,v v

Hence, the proof is complete. O

C.3 Proof of Theorem 4.2

We set the tolerance level ¢ in Algorithm 1 to satisfy

log (Mo; (347) /9) 1 [Sew . ko +log (%)
< * o2 - tail 2 g% )
¢ < x| min |67 - O7[F+ NN,v SV N, : €3

where ¢4 > 0 is a constant. In Theorem 4.2, we build upon the proof established for Theorem B.2 in Appendix B.

Theorem 4.2. (Individual Expected Value Function Gap). Suppose Assumption 1 and Assumption 2
hold. For any 6 € (0,1], with probability at least 1 — 6, the output T; for any client i satisfies

J(ﬂ-i,tar; T:) - J(%’H ’I":)

log (Ng;(ﬁvp)%) kdy +1og(X) 1 [T
<eco + +-
NN,v Ny v N

+b;
where b; is defined as b; := ||A@F — @f”% and cy > 0 is a constant.

Proof. Recall that A®; = ©F — O™ and ©° = argming, ., (@)= |© — AO*||. By leveraging the continuity of
re(+), we can establish the following inequality:

|(re, (1) — 16, (79)) — (re; (¢2) — e (hD)|

. _ . N2
<2|(re, (1) ~ 16,(1))) — (remt 102 (111) — remirop (1)) +4L] 2O} — ©FI%.
Therefore, similar to our proof in Appendix B.2, we will show that with probability at least 1 — 4§, we have

J(Tri,tar; ri) - J(%Zv T:)

., (IIAG: _ o2 4 OB WG /(N N,))/6) iﬁ* kdy -I-log(N/é)).

NN,v N,

This concludes the proof. O
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C.4 Proof of Corollary 4.1

We set the tolerance level ¢ in Algorithm 1 as defined in Equation (C.3). Similarly, the proof of Corollary 4.1 follows that
of Corollary B.1 presented in Appendix B.

Corollary 4.1. (Averaged Expected Value Function Gap). Suppose Assumption 1 and Assumption 2 hold. For any § €
(0, 1), with probability at least 1 — 6, the output policies {7;}}¥_, satisfy

=~ Z 7Tz tarvrz J(%“T:))

ZE[N

oo (e (Vo E) ke blog() 1 [S
= NN,v N, NN )

where c3 > 0 is a constant.

Proof. From Theorem 4.2, by summing over ¢ € [N], we obtain the following inequality:

1 ~
N Z J(T"i,tar? 7“:) - J(W;§ T:)

1€[N]
1 ) 1 Ng: (1/(NN,)) 1 \/ﬁ kdy + log(N/6)
< — *_ @° r it
=W ‘gw 197 =&l + ¥, 1°g< 5 A N,

Similar to the proof for Corollary B.1, we have

- 1 No:(1/(NN)Y 1 \/ﬁ kds +log(N/d)
1 - < A D < ai .
E 71'7 tars T 1 J(ﬂ'zvrz) =G <NNpV log ( ) ) * v N + N,

’LE[N] p

This is the desired result. O
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D Experiment Details

D.1 Algorithms

In this section, we present the practical algorithms used for empirical evaluation. Algorithm 2 outlines the P-ShareLoRA
algorithm with a warm-up phase. Notably, by setting the number of warm-up epochs 7, = 0, Algorithm 2 re-
duces to the vanilla P-ShareLoRA algorithm. Conversely, setting 7T, = Tgioba transforms the algorithm into
global-P-ShareLoRA. We define the per-sample function as f(®; 0,79, 71) := log Pe (0 | 7o, 71).

Algorithm 2 P-ShareLoRA for RLHF (with warm-up)

Input: Pre-trained model parameters W; Human preference dataset 13; Rank r; Scheduled learning rate nt; Number of
warm-up epochs T,; Number of epochs T'.

Initialize: Low-rank matrices A € R4*", B € R4, B, ¢ R"™*? Vi € [N] (e.g., randomly or zeros).

Freeze pre-trained weights .

Warm-up phase:

for each epoch t =1to T do

for each {0\"’, Z(JO), T )} € Ddo
Compute f(WJrAtBt;og]) @) (J))

) ’LO’ Ti
Update AT <« AY — 'V 40 f.
Update B! < Bt — 'V p: f.
end for
end for
Running P-ShareLoRA:
Set Al « ATw B! + BTw Vie[N].
for each epoch ¢t = 1to 7" do
for each random sampled {7, Z(jo)7 (,jl)} € Ddo

Compute f(W + A'BY; EJ ) TZ%), Ti(’jl)).
Update AT« At — 'V 4¢ f.
Update B{™' < B! — 'V f.
end for '
end for
Policy optimization by PPO-C1ip (Schulman et al., 2017):
Initialize policy parameters for each agent 6;, Vi € [N].
for each PPO iteration £ = 1 to K do
for each agent ¢ = 1 to N in parallel do
Collect a set of trajectories D; by running policy m:.
Compute rewards rt(i) and advantage estimates Eﬁl) using GAE.
Compute the PPO surrogate loss:

LSUP(g,) = E, [mln( (Ht)At ,cllp( (Qt) 1—¢1+ e) A(Z )}

(41 .(®)
whee p!?(6;) = 7015
779;;‘“(“751 |s¢”)
Update 01! «+ 07 — nt Vo LEHP,
end for
end for

Output: Fine-tuned model parameters for each reward model AT, {BT}¥ | Fine-tuned model parameters for each
local policy {5}V .

We also detail the baseline algorithms LoRA-global and LoRA-1ocal in Algorithm 3 and Algorithm 4 for comparison.
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Algorithm 3 Baseline algorithm 1: LoRA-global

Input: Pre-trained model parameters W; Human preference dataset 73; Rank r; Learning rate n; Number of epochs
TGiobal-

Initialize: Low-rank matrices A € R4*", B € R"*9 (e.g., randomly or zeros).

Freeze pre-trained weights W.

for each epoch ¢t = 1 to Tgjopa do

for each random sampled {O(J ) @) 20 )} € Ddo

’ z 0> z
Compute f(W + A'BY; (J), Z(jo), TL(l ).
Update A"« A* — nV 4i f.
Update B!t <~ Bt —nVp:f.
end for
end for
Output: Fine-tuned model parameters for a global reward model A7cov | BTGioba

Algorithm 4 Baseline algorithm 2: LoRA-1local

Input: Pre-trained model parameters W; Human preference dataset 73; Rank r; Learning rate n; Number of epochs
T]ocal-

Initialize: Low-rank matrices A; € R4*", B; € R™*¢ Vj € [N] (e.g., randomly or zeros).

Freeze pre-trained weights W.

for each agent i = 1 to N in parallel do

for each epoch t = 1 to Tjocq do

for each random sampled {0(] ) , l(jo), I(J )} € D; do

Compute f(W + ALB!; o, @) Z(]O)ﬂ'l(jl))
Update AlT! « At — V4t f.
Update B! ™! < B! — )V p: f.
end for
end for
end for

Output: Fine-tuned model parameters for each reward model { AT} N | { BT} N |

D.2 Implementation Details

Hyperparamters. For all experiments conducted using both Vanilla LoRA (LoRA-global and LoRA-local) and
P-ShareLoRA based algorithms, we employed a batch size of 128. The initial learning rate was set to 5 - 1075, with
a linear scheduler applied to adjust the learning rate during training. For both GPT-J 6B and Llama3 8B models, the
maximum token length was set to 2048. The rank % in all LoRA modules was fixed at 32, and the scaling factor « was set
to 16. To simplify training, we applied LoRA only to the Q (query) and K (key) matrices for both models.

In the case of the P-ShareLoRA (G) , the initialization process was critical for ensuring effective fine-tuning. Specifically,
the personalized A matrices and the shared B matrix were initialized using the A and B matrices obtained after two epochs
of training with the LoRA-global method. Following this initialization, the PLAS model was fine-tuned for an additional
epoch to refine the parameters further.

To maintain a fair comparison between P-ShareLoRA (G) and the other training methods, we adjusted the starting
learning rate for P-ShareLoRA (G) . Given that a learning rate scheduler was used, the initial learning rate for PLAS-FT
was set to one-third of the original learning rate, specifically 1.67 - 10~°. This adjustment ensures that the fine-tuning
process operates under comparable training dynamics as the baseline methods.

All experiments were implemented based on TRL', and additional hyperparameters were kept consistent across different
methods.

Computational Resources. Our experiments were conducted using two NVIDIA A100 80GB GPUs. Training

"https://huggingface.co/docs/trl/en/index
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P-LoRAShare (SI) on asingle GPU took around six hours, but this time could be reduced with multi-GPU training.

D.3 Additional Experiment Results

Individual Labeler Performance. In Section 5, we present the averaged preference estimation accuracy across all
five labelers. In this section, we also provide the results of the separate estimation accuracy for each labeler in Fig-
ure 2. We observe that our proposed methods, P-ShareLoRA (SI), P-ShareLoRA (G), and P-ShareLoRA (WU),
consistently outperform the baseline methods LoRA-global and LoRA-local for most of the labelers. Specifi-
cally, P-ShareLoRA (WU) achieves the highest accuracy for most labelers, peaking at 0.7803 for Labeler 1. While
P-ShareLoRA (SI) and P-ShareLoRA (G) also show significant improvements over the baseline methods for label-
ers 0,1 and 2.

0.800
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B LoRA-local
0.775 B P-ShareLoRA(SI)
B P-ShareLoRA(G)
0.750 Emm P-ShareLoRA(WU)
0.725
>
o
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5 0.700
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<
0.675
0.650
0.625
0.600-

Labeler 0 Labeler 1 Labeler 2 Labeler 3 Labeler 4

Figure 2: Accuracies of Different Methods Across Labelers (Llama3 8B)

Share Down-projection VS Share Up-projection. Previous works (Tian et al., 2024; Guo et al., 2024) have observed that
the cosine similarity among down-projection matrices (A matrices) is significantly higher than that among up-projection
matrices (B matrices). They interpret this as indicating that the down-projection matrices serve as a shared representation,
mapping the input into a common representation space. Based on this observation, they introduce methods of sharing
down-projection matrices among clients or experts. In contrast, our study finds that sharing the up-projection matrices (B
matrices) yields better performance, as illustrated in Figure 3. Specifically, the approach of sharing B matrices consistently
outperforms the method of sharing A matrices across all labelers and for both GPT-J 6B and Llama 3 8B models.

Shared Component Models
[ Share A GPT]
I Share B Llama3

Accuracy

Labeler 0 Labeler 1 Labeler 2 Labeler 3 Labeler 4 Averaged

Figure 3: Compare Accuracy between Share A and Share B
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