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Abstract

Reinforcement Learning from Human Feedback

(RLHF) has emerged as a pivotal technique for

aligning artificial intelligence systems with hu-

man values, achieving remarkable success in

fine-tuning large language models. However,

existing RLHF frameworks often assume that

human preferences are relatively homogeneous

and can be captured by a single, unified reward

model. This assumption overlooks the inher-

ent diversity and heterogeneity across individu-

als, limiting the adaptability of RLHF to person-

alized scenarios and risking misalignments that

can diminish user satisfaction and trust in AI sys-

tems. In this paper, we address these challenges

by introducing Low-Rank Adaptation (LoRA)

into the personalized RLHF framework. We ap-

ply LoRA in the the aggregated parameter space

of all personalized reward functions, thereby en-

abling efficient learning of personalized reward

models from potentially limited local datasets.

Our approach exploits potential shared structures

among the local ground-truth reward models

while allowing for individual adaptation, without

relying on restrictive assumptions about shared

representations as in prior works. We further

establish sample complexity guarantees for our

method. Theoretical analysis demonstrates the

effectiveness of the proposed approach in cap-

turing both shared and individual-specific struc-

tures within heterogeneous human preferences,

addressing the dual challenge of personalization

requirements and practical data constraints. Ex-

perimental results on real-world datasets corrob-

orate the efficiency of our algorithm in the per-

sonalized RLHF setting.
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1 Introduction

The rapid development and widespread use of Large Lan-

guage Models (LLMs) have transformed fields like natu-

ral language processing, content generation, and human-

computer interaction. Models such as GPT-4 (Achiam

et al., 2023), BERT (Devlin et al., 2019), and their suc-

cessors have exhibited remarkable capabilities in under-

standing and generating text, enabling applications rang-

ing from automated customer service to advanced creative

tools. This “boom” of LLMs has not only broadened AI’s

potential but also underscored the critical need to ensure

that these models align with human values and preferences.

To help this alignment, Reinforcement Learning from Hu-

man Feedback (RLHF) (Ouyang et al., 2022; Christiano

et al., 2023) plays a key role as a fine-tuning method of

LLMs. This method ensures that the generated responses

are contextually appropriate and aligned with ethical and

social norms (Ouyang et al., 2022). By incorporating hu-

man feedback into the fine-tuning process, RLHF bridges

the gap between the raw generative power of LLMs and

the requirements of real-world applications, improving the

quality and safety of AI-generated content.

Current RLHF frameworks, such as Bai et al. (2022); Wang

et al. (2024a), essentially assume that human preferences

are relatively homogeneous and can be effectively cap-

tured by a single, unified reward model. This simplifica-

tion overlooks the inherent diversity and heterogeneity in

human preferences, which can vary significantly across in-

dividuals. Such an oversimplification limits the adaptabil-

ity of RLHF to personalized scenarios and risks, introduc-

ing misalignments that could diminish user satisfaction and

trust in AI systems. A straightforward approach to han-

dling heterogeneous human preferences is learning person-

alized reward functions for each labeler using traditional

RLHF methods, such as Ouyang et al. (2022). However,

this method faces a significant challenge: preference data

from individual users may be insufficient to construct ac-

curate reward models for each human labeler. Recently,

several studies have proposed empirical methods to address

this challenge. For example, Li et al. (2024) introduced a

personalized direct preference optimization method within
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the personalized RLHF framework. Similarly, Poddar et al.

(2024) presented a class of multi-modal RLHF methods

that infer user-specific latent variables and then learn per-

sonalized reward models conditioned on them. In addi-

tion to empirical approaches, some works have provided

methods with theoretical guarantees. Specifically, Zhong

et al. (2024) conducted a theoretical analysis assuming that

human reward functions are linear with shared represen-

tations. Extending this line of work, Park et al. (2024)

considered a more general setting where the representa-

tion function is a general (nonlinear) function of the feature

mapping.

On the other hand, since first introduced by Hu et al.

(2021), Low-Rank Adaptation (LoRA) has quickly be-

come a prominent method for fine-tuning LLMs to reduce

the number of trainable parameters and prevent overfit-

ting (Houlsby et al., 2019; Huang et al., 2023). Some recent

works have proposed to combine RLHF with LoRA to en-

hance the fine-tuning of LLMs using human feedback. For

instance, researchers have explored integrating LoRA into

the RLHF framework to efficiently incorporate human pref-

erences while maintaining model performance (Santacroce

et al., 2023; Sun et al., 2023; Sidahmed et al., 2024). How-

ever, these approaches primarily focus on general adapta-

tion and do not address the challenges of heterogeneous

feedback from diverse users.

In this paper, we address the challenges of personalized

RLHF by introducing personalized LoRA with a shared

component into the personalized RLHF framework. By

leveraging LoRA, we effectively learn individual reward

models that capture human users’ heterogeneous prefer-

ences with limited data. To the best of our knowledge,

LoRA has not been previously explored in the context of

personalized RLHF, making our approach a novel contribu-

tion to the field. Our major contributions are summarized

as follows:

• We propose an algorithm named Personalized LoRA

with Shared Component (P-ShareLoRA) for RLHF,

which leverages the shared components of LoRA mod-

ules to learn the personalized reward functions effi-

ciently. Rigorous theoretical analysis demonstrates that

P-ShareLoRA can effectively reduce sample complex-

ity, compared with both the full-parameter fine-tuning

method and the standard LoRA method without param-

eter sharing. To the best of our knowledge, this is the

first work that theoretically demonstrates the benefits of

LoRA with shared components in RLHF.

• Unlike existing analytical frameworks for personalized

RLHF which typically enforce strict constraints on the

reward model structures, such as linear representa-

tions (Zhong et al., 2024) or shared representations with

linear heads (Park et al., 2024), we develop novel tech-

nical approaches to address the challenges from the un-

structured reward functions. Specifically, we propose a

new Lagrange remainder-based method that allows us

to prove that LoRA modules with shared components

can approximate the optimal low-rank structure of the

ground truth parameter matrix. Building on this, we fur-

ther prove an upper bound on the distance between the

optimal reward function and the learned reward function

with shared parameters. The theoretical results demon-

strate that the expected return under the policies derived

with the learned reward functions are near-optimal (up

to a bias term related to the preference diversity among

users).

• Experiments on the Reddit TL;DR dataset (Stiennon

et al., 2020) validate the effectiveness of the proposed

approach. Specifically, our approach achieves a predic-

tion accuracy of 74.65% on Llama-3 8B and 66.93% on

GPT-J 6B, which outperforms the SOTA algorithms that

achieve 73.25% on Llama-3 8B and 66.13% on GPT-

J 6B, respectively. Those empirical results corroborate

our theory, demonstrating the advantage of LoRA with

shared components for personalized RLHF.

2 Related Works

Reinforcement Learning from Human Feedback. Re-

inforcement Learning from Human Feedback (RLHF) has

demonstrated considerable success across various practical

applications, especially in aligning AI models with human

values and preferences. One of the most prominent applica-

tions of RLHF is in fine-tuning large language models, as

exemplified by OpenAI’s ChatGPT (Ouyang et al., 2022)

and GPT-4 (Achiam et al., 2023). Additionally, RLHF has

been explored in computer vision tasks (Lee et al., 2023;

Xu et al., 2024). Furthermore, RLHF has been widely

adopted in domains that involve high-risk decision-making,

such as healthcare (Yu et al., 2021), robotics (Abramson

et al., 2022; Hwang et al., 2024; Thumm et al., 2024), and

autonomous driving (Wu et al., 2023; Chen et al., 2023),

where alignment with human preferences is critical for en-

suring safety and addressing ethical considerations.

From a theoretical standpoint, studies of RLHF have gar-

nered increasing research interest. Zhu et al. (2023) exam-

ine the Bradley-Terry-Luce model (Bradley & Terry, 1952)

within the context of a linear reward framework, while

Zhan et al. (2023) extend these results to more general

classes of reward functions. Similarly, Li et al. (2023) in-

troduce a pessimistic algorithm that is provably efficient for

dynamic discrete choice models. All these works focus on

settings with offline preference data. In the online setting,

Xu et al. (2020) and Pacchiano et al. (2021) study tabu-

lar online RLHF. Wang et al. (2024a) theoretically demon-

strate that preference-based RL can be directly addressed

using existing reward-based RL algorithms by utilizing a

preference-to-reward model. Xiong et al. (2024) present

a provable iterative Direct Preference Optimization (DPO)
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algorithm for online settings. Ye et al. (2024) provide a the-

oretical analysis of RLHF under a general preference ora-

cle, proposing sample-efficient algorithms for both offline

and online settings.

Some recent studies have extended RLHF to personalized

alignment for diverse user groups and individuals. Zhao

et al. (2023) introduce Group Preference Optimization

(GPO), which addresses group-level heterogeneity through

a mixture of shared and personalized architectures. Addi-

tionally, Ramesh et al. (2024) propose Group Robust Pref-

erence Optimization (GRPO), a reward-free RLHF frame-

work that handles heterogeneous preferences by optimiz-

ing for worst-case group outcomes. Beyond group-level

alignment, other works focus on individual personalization.

For instance, Li et al. (2024) develop a Personalized RLHF

method that jointly learns a lightweight user model along-

side the policy model to capture each user’s unique prefer-

ences, leading to responses more closely aligned with indi-

vidual tastes than non-personalized RLHF. Besides, Poddar

et al. (2024) introduce a variational latent preference frame-

work that infers a user-specific latent variable on which

both the learned reward model and the policy rely.

In addition to the empirical studies, recent works have also

established theoretical guarantees for personalized RLHF.

Siththaranjan et al. (2023) show that traditional RLHF

models that implicitly aggregate preferences can lead to

undesirable outcomes. They introduce Distributional Pref-

erence Learning (DPL) to mitigate this issue. Chakraborty

et al. (2024) group individual reward models into distinct

subsets and propose a MaxMin alignment objective in-

spired by Egalitarian principles. Zhong et al. (2024) inves-

tigate a setting where local optimal reward functions share

a linear representation combined with personalized linear

heads, theoretically demonstrating that aggregating multi-

ple preferences across different parties can overcome the

shortcomings of traditional RLHF that only learn a single

reward function. Building on this, Park et al. (2024) gen-

eralize the reward function model of Zhong et al. (2024)

by introducing a general representation function combined

with personalized linear heads.

Low-Rank Adaptation (LoRA). The rapid scaling of

pre-trained language models has led to significant chal-

lenges in fine-tuning these models for downstream tasks

due to the substantial computational and storage require-

ments. To address this, Low-Rank Adaptation (LoRA)

has been proposed as an efficient fine-tuning approach (Hu

et al., 2021). The vanilla LoRA keeps the original model

weights frozen and injects trainable low-rank matrices into

each layer of the Transformer architecture. This strategy

dramatically reduces the number of trainable parameters

and computational overhead, making it feasible to adapt

large models on limited hardware resources (Valipour et al.,

2022; Zhang et al., 2023; Kopiczko et al., 2023; Dettmers

et al., 2024; Hayou et al., 2024; Liu et al., 2024b).

Recently, several studies have focused on implementing

LoRA in multi-task settings. Huang et al. (2023) intro-

duce LoraHub, which enables the composition and shar-

ing of LoRA modules trained on diverse tasks. Luo et al.

(2024) consider LoRA as a Mixture of Experts (MoE),

treating these small adaptation modules as experts focusing

on unique aspects. Shen et al. (2024) introduce MixLoRA,

treats LoRA modules as experts and uses a dynamic factor

selection method to select modules for combination. Tang

et al. (2023) propose partial linearization, where they lin-

earize only the adapter modules—the parts adjusted during

fine-tuning—and apply “task arithmetic” to combine these

linearized adapters from different tasks. In the federated

learning setting, Wang et al. (2024b) introduces a stacking-

based aggregation technique for LoRA adapters, enabling

efficient fine-tuning across clients.

To effectively learn LoRA modules in a multi-task set-

ting, some recent studies consider sharing partial param-

eters among different tasks or clients. Sun et al. (2024)

introduce FFA-LoRA, which keeps one of the LoRA mod-

ules fixed while updating only the other during local train-

ing. Similarly, Kuo et al. (2024) propose a method in

which certain parameters within the locally downloaded

LoRA modules remain unchanged, while the rest are up-

dated. HydraLoRA (Tian et al., 2024) extends this idea

by incorporating LoRA modules with a shared low-rank

matrix in a Mixture-of-Experts (MoE) framework. Addi-

tionally, FedSA-LoRA (Guo et al., 2024) observes that in

a federated learning setup, one transformation matrix pri-

marily captures generalizable knowledge, while the other

learns client-specific adaptations. Building on this insight,

they employ a hybrid approach that combines shared global

components with personalized local updates. To the best of

our knowledge, the theoretical implications of using shared

LoRA parameters in RLHF remain unexplored.

3 Problem Formulation

Notation. Bold uppercase letters (e.g., X) denote matri-

ces. The function diag(x1, . . . , xd) represents a d × d di-

agonal matrix with diagonal entries x1, . . . , xd. The in-

ner product of vectors x and y is denoted by ïx, yð, and

the Euclidean norm of a vector x is represented by ∥x∥2.

For a matrix X, the operator (spectral) norm is denoted

by ∥X∥2, and its Frobenius norm by ∥X∥F . The k-th

largest singular value of X is denoted by Ãk(X). For a

matrix X ∈ R
d1×d2 , we use vec(X) ∈ R

d1d2 to denote

the vector obtained by column-wise vectorizing X, i.e.,

vec(X)¦ = [x¦
1 , . . . , x

¦
d2
], where xi is the i-th column of

X. The identity matrix of size d× d is denoted by Id.

Markov Decision Processes. We consider the tabu-

lar finite-horizon Markov Decision Process (MDP) to
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model the Reinforcement Learning from Human Feedback

(RLHF) setting with N human labelers (or users), each

with their own reward function. A MDPM is represented

by the tuple M = (S,A, H, (Ph)h∈[H], r = (ri)i∈[N ]),
where S is the set of states, defined as all possible prompts

or questions; A is the set of actions, representing poten-

tial answers or responses to these questions; H denotes the

length of the horizon; Ph : S×A → ∆(S) is the state tran-

sition probability at step h ∈ [H], with ∆(S) being the set

of probability distributions over S; and ri : T 7→ [−R,R]
is the reward function for each individual i ∈ [N ], where

T := (S × A)H denotes the set of all possible trajecto-

ries Ä = (s1, a1, s2, a2, . . . , sH , aH). The MDP concludes

at an absorbing termination state with zero reward after H
steps. A policy is defined as a sequence Ã = (Ãh)

H
h=1,

where each Ãh : (S × A)h−1 × S → ∆(A) maps the his-

tory and current state to a distribution over actions at step

h. The expected cumulative reward of a policy Ã for indi-

vidual i is given by J(Ã; ri) := EÄ∼Ã[ri(Ä)].

Relationship between Preference and Reward Func-

tions. Given two trajectories Ä0 and Ä1, we introduce a

random variable o ∈ {0, 1} to represent the preference out-

come: We set o = 1 if Ä0 { Ä1 (i.e., Ä0 is preferred over

Ä1), and o = 0 if Ä0 z Ä1 (i.e., Ä1 is preferred over Ä0).

We model the probability that individual i ∈ [N ] prefers Ä0
over Ä1 as Pri(o = 1 | Ä0, Ä1) = Φ

(
ri(Ä0)−ri(Ä1)

)
, where

Φ : R→ [0, 1] is a monotonically increasing function satis-

fying Φ(x) + Φ(−x) = 1 and log Φ(x) is a Lipschitz con-

tinuous and strongly convex function. A common choice

for Φ is the sigmoid function Ã(x) = 1/(1 + e−x), which

maps real-valued inputs to the range [0, 1]. This func-

tion corresponds to the Bradley-Terry-Luce (BTL) model,

which is commonly used to model the relationship be-

tween preferences and rewards. We define the preference

probability vector induced by the reward functions r as

Pr(o | Ä0, Ä1) = (Pr1(o | Ä0, Ä1), . . . , PrN (o | Ä0, Ä1))¦,

where Pr represents the collective preference probabilities

across all individuals, and Pri denotes the preference prob-

ability induced by the reward function ri for individual i.

Personalized Reward Functions. We consider the nat-

urally diverse individual human preferences and aim to

learn personalized reward models for each individual. As a

first step, we assume each reward function ri is parameter-

ized by Θi ∈ R
d1×d2 , and we denote it as rΘi

: T →
R. We denote the aggregated reward vector as rΘ :=(
rΘ1 , . . . , rΘN

)⊺
, where Θ ∈ R

d1×Nd2 is the aggregated

parameter matrix defined by Θ =
[
Θ1, . . . , ΘN

]
.

Let ¹ denote the column-wise vectorization of Θ, i.e., ¹ =
vec(Θ). Then, we make the following assumption.

Assumption 1. For any trajectory Ä , the reward function

rΘ(Ä) satisfies Lipschitz continuity ∥∇¹rΘ(Ä)∥ f L1 and

Lipschitz smoothness ∥∇2
¹rΘ(Ä)∥ f L2 for L1, L2 > 0.

Note that the gradient operator∇ and the Laplacian∇2 are

applied to the vectorized parameter matrix ¹. Assumption 1

is a standard assumption similar to those in related RLHF

studies, such as Zhu et al. (2023).

Define the set of valid parameters for the reward function

as

S :=
{
Θ

∣∣∣Θi ∈ R
d1×d2 , ∥Θi∥F f B, ∀i ∈ [N ]

}
,

(3.1)

and the corresponding class of reward functions as

Gr(S) =
{(

rΘi
(·)
)
i∈[N ]

∣∣∣Θ ∈ S
}
. (3.2)

The boundedness condition ∥Θi∥F f B (B is a positive

constant) in Equation (3.1), together with Assumption 1,

ensures that the reward function is bounded, which is a

standard assumption adopted in related works (Zhan et al.,

2023; Zhong et al., 2024).

Throughout this paper, we let r⋆ =
(
r⋆1 , . . . , r

⋆
N

)
denote

the underlying true human reward functions with corre-

sponding ground truth parameters Θ
∗ = [Θ∗

1, · · · ,Θ⋆
N ].

We assume that r⋆ ∈ Gr(S) to ensure that the true reward

functions are within the considered function class.

Learning Personalized Reward Functions via LoRA.

Motivated by LoRA that is widely adopted for the fine-

tuning of LLMs (Sidahmed et al., 2024), we assume

the system starts from initialized reward model param-

eters Θ
init = [Θinit

1 , · · · ,Θinit
N ]. Denote the low-rank

adaptation matrice for the reward models as ∆Θ =
[∆Θ1, · · · ,∆ΘN ]. Then, after the adaptation, the set of

valid parameters for the personalized reward model be-

comes

SLoRA =
{
Θ

∣∣∣Θ = Θ
init +∆Θ, rank(∆Θi) f k,

∥∆Θi∥F f B, ∀i ∈ [N ]
}
. (3.3)

Note that the LoRA module is typically represented in a

low-rank factorization form, i.e., as the product of two

lower-dimensional matrices: ∆Θi = BiWi, where Bi ∈
R

d1×k and Wi ∈ R
k×d2 . In the function class Gr|Θinit ,

the individual LoRA modules ∆Θi are independent. To

leverage potential common structures among the individ-

ual LoRA modules, as observed in recent works (Zhu et al.,

2024; Guo et al., 2024; Tian et al., 2024), we assume that

the Bi matrices are shared across all users, i.e., Bi = B for

all i. Under this constraint, the aggregated matrix ∆Θ can

be expressed as ∆Θ = B[W1, · · · ,WN ], which implies

that ∆Θ becomes a low-rank matrix with rank(∆Θ) f k,

since rank(B) f k. Consequently, when B is shared

across all LoRA modules, the parameter set is equivalent



Renpu Liu, Peng Wang, Donghao Li, Cong Shen, Jing Yang*

to:

SShareLoRA =
{
Θ

∣∣∣Θ = Θ
init +∆Θ, rank(∆Θ) f k,

∥∆Θi∥F f B, ∀i ∈ [N ]
}
. (3.4)

To leverage the potential common structure among individ-

ual LoRA modules, we utilize the parameter set SShareLoRA,

which allows us to learn LoRA modules with shared pa-

rameters across users effectively. This low-rank con-

straint leverages shared structures among users’ prefer-

ences, allowing the model to capture common patterns

while adapting to individual differences. The aggregated

low-rank adaptation ∆Θ results in local low-rank adapta-

tions {∆Θi}, which incorporate a shared matrix B and

distinct individual adaptation matrices Wi, i.e., ∆Θi =
BWi. Intuitively, the shared matrix B preserves common

directions for parameter updating, while Wi captures indi-

vidual adaptation along those dimensions.

Given a collection of preference datasets for individual

users, denoted as D̂i = {(o(j)i , Ä
(j)
i,0 , Ä

(j)
i,1 )}

Np

j=1, our ob-

jective is to estimate the ground-truth reward function r
⋆

by combining the learned shared-parameter LoRA matri-

ces within SShareLoRA. We define the aggregated dataset as

D̂ =
⋃N

i=1 D̂i, with |D̂i| = Np for all i ∈ [N ]. Our anal-

ysis can be extended to scenarios where the dataset sizes

vary across individuals, i.e., |D̂i| = Np,i for each i. The

optimization problem is then formulated as follows:

max
Θ∈SShareLoRA

F
(
Θ; D̂

)
=

N∑

i=1

Np∑

j=1

logPΘi

(
o
(j)
i | Ä

(j)
i,0 , Ä

(j)
i,1

)
,

(3.5)

where we use PΘ denote PrΘ to simplify the notation.

Algorithm 1 P-ShareLoRA for RLHF

1: Input: Dataset D̂ = ∪i∈[N ]D̂i; initial parameters

Θ
init; reference policy µi,ref.

2: Obtain model update ∆Θ̂ by solving Equation (3.5) :

∆Θ̂← argmax
∆Θ̂:Θ∈SShareLoRA

F
(
Θ; D̂

)

3: Construct confidence sets {Ri}Ni=1 by

Ri←
{
rΘi

∣∣∣Θi=Θ
init
i +∆Θi, ∥∆Θi−∆Θ̂i∥2F f·

}

(3.6)

4: Compute policy with respect toRi for all i ∈ [N ] by

Ã̂i ← argmax
Ã∈Π

min
ri∈Ri

(
J(Ã; ri)− EÄ∼µi,ref

[ri(Ä)]
)

(3.7)

5: Output: (∆Θ̂, (Ã̂i)i∈[N ]).

4 Algorithm Design and Analysis

4.1 Algorithm: P-ShareLoRA for RLHF

In this section, we present our proposed algorithm, Person-

alized LoRA with Shared Component (P-ShareLoRA)

for RLHF, to effectively learn personalized reward func-

tions and compute corresponding policies for each individ-

ual user.

The algorithm begins by initializing the reward function for

each user i by Θ
init
i . The core of the algorithm involves

estimating the personalized reward models by optimizing

low-rank adaptations ∆Θ̂. Specifically, we obtain ∆Θ̂ by

solving the optimization problem defined in Equation (3.5).

After obtaining Θ̂, we construct confidence sets {Ri} for

each user’s reward function parameters. Each set Ri is de-

signed to ensure that the distance between the parameter

matrix of the reward function and the empirical estimation

obtained by solving Equation (3.5) remains within a tol-

erance level ·, thereby providing a robust confidence re-

gion for the reward functions. Finally, we compute each

user’s personalized policy Ã̂i by solving a robust optimiza-

tion problem. For each individual i ∈ [N ], we determine

the policy that maximizes the difference between its ex-

pected cumulative reward J(Ã; ri) and the expected reward

of the reference policy µi,ref, evaluated under the worst-

case reward function within the confidence set Ri. The

algorithm outputs the estimated reward model parameters

Θ̂ and the set of personalized policies (Ã̂i)i∈[N ]. We note

that without pessimism (i.e., the confidence set of reward

functions reduces to a singleton Ri = {r
Θ̂i
}), the opti-

mization objective simplifies to the vanilla RLHF objective.

P-ShareLoRA is detailed in Algorithm 1.

4.2 Definitions and Assumptions

Before formally presenting our main theoretical results of

Algorithm 1, we introduce the following definitions and as-

sumptions. We start by defining two diversity metrics over

human preference on different labelers.

Definition 4.1 (Diversity Metrics). Given the aggregated

ground-truth parameter matrix Θ
⋆ = [Θ⋆

1, . . . ,Θ
⋆
N ]

and initialization parameter matrices {Θinit
i }, we define

the difference matrix ∆Θ
⋆ = [∆Θ

⋆
1, . . . ,∆Θ

⋆
N ], where

∆Θ
⋆
i = Θ

⋆
i −Θ

init
i for each user i. Let Ã1 g Ã2 g · · · g

Ãmin{d1,Nd2} be the singular values of ∆Θ
⋆. We then de-

fine the condition number ¿ and the summation of tail sin-

gular values Σtail as ¿ =
Ã2
k

N ,Σtail =
∑min{d1,Nd2}

i=k+1 Ã2
i .

Remark 1. The condition number ¿, as defined in (Tripu-

raneni et al., 2021), quantifies the alignment of parame-

ter differences between the ground truth model parameters

and the initialization across users. Specifically, it consid-

ers the magnitude of the k-th largest singular value of the

difference matrix ∆Θ
⋆, normalized by the number of users
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N . Note that due to the constraint in S , for fixed Θ
init,

the bounded total energy of Θ⋆, i.e., ∥Θ⋆∥2F f NB2, im-

plies the total energy of ∆Θ
⋆ is also bounded. Therefore,

a larger ¿ indicates that the top-k leading singular val-

ues are significantly larger than the subsequent ones. This

dominance suggests that ∆Θ
⋆
i across users are primarily

aligned along a few principal directions, indicating low di-

versity. Conversely, a smaller ¿ indicates high diversity

across different directions.

The tail sum Σtail measures the total variance not captured

by the top k singular values of ∆Θ
⋆. It is calculated by

summing the squares of the singular values from Ãk+1 on-

ward, quantifying the residual “energy” beyond a rank-k
approximation. A smaller Σtail suggests that the top k sin-

gular values capture most of the variance, implying that

a low-rank adaptation effectively represents the essential

variability among users for accurate modeling of reward

functions.

These diversity metrics capture the preference diversity

among users. Intuitively, users with similar preferences

will be less diverse and could benefit more from a shared

LoRA model.

Next, to capture the complexity of the reward function

class, we introduce the concept of the bracketing number

for reward vectors.

Definition 4.2 (Bracketing Number for Reward Vec-

tors (Park et al., 2024)). For a reward vector r ∈ Gr , an

ϵ-bracket is a pair of functions (g1, g2) such that for all

(Ä0, Ä1) ∈ T × T , ∥g1(Ä0, Ä1) − g2(Ä0, Ä1)∥1 f ϵ, and

g1(Ä0, Ä1) f Pr(·|Ä0, Ä1) f g2(Ä0, Ä1). The ϵ-bracketing

number of Gr , denoted by NGr
(ϵ), is the minimal number

of ϵ-brackets required to cover all r in Gr .

Definition 4.2 is adapted from the definition of bracketing

numbers in Park et al. (2024); Zhan et al. (2023), which

captures the complexity of the function class in terms of its

parameter dimensions.

We assume a uniform concentration property for the ex-

pected Euclidean distance between rΘ1
(Ä0)− rΘ1

(Ä1) and

rΘ2(Ä0) − rΘ2(Ä1) over the offline data. We note that

this expected Euclidean distance can be seen as the dis-

tance between two reward functions rΘ1
and rΘ2

(Zhan

et al., 2023), therefore the concentration property ensures

that with a sufficiently large sample size N , empirical data

reliably approximates these distance for all pairs of reward

functions in Gr.

Assumption 2 (Uniform Concentration). Given distribu-

tions µ0 and µ1, and two reward functions parameterized

by Θ1 and Θ2, respectively, we define the expected and

empirical squared difference of reward discrepancies as

DΘ1,Θ2(µ0, µ1) = E
Ä0∼µ0, Ä1∼µ1

[(
rΘ1(Ä0)− rΘ1(Ä1)−

(
rΘ2

(Ä0)− rΘ2
(Ä1)

))2]
,

D̂Θ1,Θ2
(µ0, µ1) =

1

N

∑

{Äj
0 ,Ä

j
1}∈D

[(
rΘ1(Ä

j
0 )− rΘ1(Ä

j
1 )−

(
rΘ2

(Ä j0 )− rΘ2
(Ä j1 )

))2]
,

where D is a dataset satisfies |D| = N and all

trajectory pairs {Ä j0 , Ä j1} ∈ D are sampled from µ0

and µ1 respectively. Then, for any ¶ ∈ (0, 1],
there exists a number Nunif(Gr, µ0, µ1, ¶) such that for

any N g Nunif(Gr, µ0, µ1, ¶), the empirical esti-

mate D̂Θ1,Θ2
(µ0, µ1) of DΘ1,Θ2

(µ0, µ1) satisfies the

following inequality with probability at least 1 − ¶
for all rΘ1

, rΘ2
∈ Gr: 0.9DΘ1,Θ2

(µ0, µ1) f
D̂Θ1,Θ2(µ0, µ1) f 1.1DΘ1,Θ2(µ0, µ1).

Assumption 2 indicates that the empirical estimate

D̂Θ1,Θ2
(µ0, µ1) closely approximates the true value

DΘ1,Θ2
(µ0, µ1) with high probability. This assumption is

crucial in our context because it ensures that, given a suffi-

ciently large sample size N , the empirical data provides a

reliable approximation of the expected squared differences

in reward discrepancies across all pairs of reward func-

tions in Gr. A similar assumption is adopted by Zhan et al.

(2023) and proved to be held when the reward function is

constructed by a linear representation and linear local head

(Zhong et al., 2024). We note that this assumption is anal-

ogous to the uniform concentration results commonly used

in statistical learning, where empirical estimates converge

uniformly to their expected values over a class of functions

(see, e.g., Vershynin (2018); Du et al. (2020); Tripuraneni

et al. (2021)). It is a mild assumption and can be satis-

fied for various function classes. For example, polynomial

functions of bounded degrees satisfy this assumption.

4.3 Main Results

Building upon the aforementioned definitions and assump-

tions, we now present our main theoretical results. For ease

of exposition, we denote Gr(SShareLoRA) by G′
r
.

First, we demonstrate that the column space of ∆Θ̂, ob-

tained via Algorithm 1, closely approximates the optimal

rank-k representation of ∆Θ
⋆. For the low-rank matrix

∆Θ̂, let its SVD be ∆Θ̂ = B̂Σ̂V̂
¦. Consequently, the

column space of ∆Θ̂ is spanned by the orthonormal matrix

B̂, i.e., span{∆Θ̂} = span{B̂}.
For ∆Θ

⋆, we define its optimal rank-k approximation as

Θ
⋄ = argmin

∆Θ: rank(∆Θ)=k

∥∆Θ
⋆ −∆Θ∥F . (4.1)

Existing results in low-rank matrix factorization (Golub &

Van Loan, 2013) indicate that the solution must satisfy
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Θ
⋄ = UkΛkV

¦
k , where Λk is a k × k diagonal matrix

containing the top-k singular values of ∆Θ
⋆, and Uk and

Vk are the corresponding left and right singular vectors, re-

spectively. Let B⋄ = Uk and W
⋄ = ΛkV

¦
k , which yields

Θ
⋄ = B

⋄
W

⋄. Therefore, the column space of the optimal

rank-k estimation of ∆Θ
⋆ is given by B

⋄, and the corre-

sponding LoRA module for each individual reward func-

tion can be expressed as: ∆Θi = BW
⋄
i for all i ∈ [N ],

where W
⋄ = [W⋄

1 · · ·W⋄
N ].

To quantify the closeness between the subspaces spanned

by B̂ and B
⋄, we employ the principal angle distance, as

detailed in Appendix A. Utilizing this metric, we establish

the following theorem.

Theorem 4.1. (Closeness between B̂ and B
⋄). Suppose

Assumption 1 holds. For any ¶ ∈ (0, 1], with probability at

least 1− ¶, it holds that

dist(B̂,B⋄)

f c1

√
1

NNp¿
log

(
NG′

r

(
1

NNp

)
1

¶

)
+

1

¿

√
Σtail

N
,

where c1 > 0 is a constant.

The detailed proof is deferred to Appendix C.

Remark 2. In Theorem 4.1, we demonstrate that the prin-

cipal angle distance between B̂ and B
⋄ decreases as the

condition number increases. This implies that when the k-

th singular value approaches the maximum singular value

of ∆Θ
⋆, which is upper bounded by a constant due to the

assumption in Equation (3.2) that ∥∆Θ
⋆
i ∥F is bounded,

the principal angle distance diminishes. This suggests

that greater similarity among human users contributes to

a more accurate estimate B̂.

Furthermore, the bias term in Theorem 4.1, given by

1
¿

√
Σtail

N , decreases as the condition number increases and

as the sum of the tail singular values decreases. Specifi-

cally, the bias term vanishes when all tail components are

zero, meaning it disappears if there exists a ground-truth

low-rank representation B
⋆ such that ∆Θ

⋆
i = B

⋆
W

⋆ for

all i ∈ [N ].

In Theorem 4.1, the principal angle distance is also influ-

enced by the bracketing number NG′
r
. We establish an up-

per bound on this quantity in the following proposition:

Proposition 1. Suppose Assumption 1 holds. Then, the

bracketing number for function class NG′
r

satisfies

log
(
NG′

r
((NNp)

−1)/¶
)
f O

(
k(d1 +Nd2) log(NNp/¶)

)
.

(4.2)

The proof is deferred to Appendix C. We observe that the

reward function class Gr(S), as defined in Equation (3.2),

has a bracketing number satisfying

log
(
NGr

((NNp)
−1)/¶

)
f O

(
Nd1d2 log(NNp/¶)

)

This result indicates that the bound for G′r is significantly

improved compared with full-parameter fine-tuning when

d1 k k.

Besides, when each LoRA module is learned individually

(i.e., Θ ∈ SLoRA), the reward function class Gr(SLoRA)
satisfies

log
(
NGr

((NNp)
−1)/¶

)
f O

(
Nk(d1+d2) log(NNp/¶)

)

Compared to Equation (4.2), our shared-component LoRA

method reduces the bracketing number by decreasing the

term from Nd1k to d1k.

Next, we establish a bound on the gap in expected value

functions between the target policy Ãi,tar and the estimated

policy Ã̂i for each individual i ∈ [N ]. In this context, Ãi,tar

serves as a benchmark for evaluating the performance of

Ã̂i; for instance, it may represent the optimal policy Ã⋆
i as-

sociated with the true reward function r⋆i .

Theorem 4.2. (Individual Expected Value Function

Gap). Suppose Assumption 1 and Assumption 2

hold. For any ¶ ∈ (0, 1], with probability at

least 1 − ¶, the output Ã̂i for any client i satisfies

J(Ãi,tar; r
⋆
i )− J(Ã̂i; r

⋆
i )

f c2

√√√√√


log
(
NG′

r

( 1
NNp

) 1¶

)

NNp¿
+

kd2 + log(N¶ )

Np
+

1

¿

√
Σtail

N
+ bi




where bi is defined as bi := ∥∆Θ
⋆
i −Θ

⋄
i ∥2F and c2 > 0 is

a constant.

Proof Sketch. We face two core challenges in our anal-

ysis. First, the reward functions are inferred from prefer-

ence data rather than observed directly, introducing estima-

tion noise that must be carefully controlled. Second, due to

the low-rank structure imposed on the LoRA modules, the

globally optimal shared LoRA may not perfectly capture

the ground-truth reward parameters for each local dataset.

This misalignment complicates the analysis of how well a

single shared solution performs across different local tasks.

To address the first challenge, we leverage the continuity to

translate small deviations in preference space into bounded

deviations in parameter space. For the second challenge,

we develop a Lagrange remainder-based analysis that quan-

tifies the approximation error introduced by the low-rank

constraint. Although perfect recovery is not guaranteed, we

show that the resulting estimation error remains bounded.

The proof consists of three major steps: (1) Upper bound

the distance between the column space between ∆Θ̂ and

∆Θ
⋆ (Theorem B.1); (2) Analyze the distance between

the learned reward function from algorithm 1r̂i and ground

truth reward function r⋆i (Theorem B.3); (3) Showing the

value function of the learn policy is close to the reference

policy (Theorem B.2).

In Step 1, we utilize the existing result of MLE estimates
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over the preference dataset, upper bound the distance be-

tween the estimated share component LoRA matrix with

the ground truth parameter matrix, and then use the Davis-

Kahan theorem to bound the corresponding distance be-

tween the column space of these two matrices.

In Step 2, for learned reward function with parameter ma-

trix Θ̂i = B̂Ŵi and optimal low-rank approximated re-

ward function parameterized by Θ
⋄
i = B

⋄
W

⋄
i , we de-

compose the distance between the two functions into two

part: distance between B̂ and B
⋄, which already bounded

in Step 1, and the distance between Ŵi and W
⋄
i . For this

distance, we carefully analyze the geometry of the reward

function around the local optimal and utilize the Lagrange

remainder to construct a delicate quadratic form of the gra-

dient for W, therefore upper bound the distance between

Ŵi and W
⋄
i .

In Step 3, we use the result from Step 2 along with As-

sumption 2 to show that the expected Euclidean distance

between rΘ1(Ä0) − rΘ1(Ä1) and rΘ2(Ä0) − rΘ2(Ä1) is

small. Applying the pessimism mechanism from Algo-

rithm 1, we then demonstrate that the difference between

the value function of the learned policy and that of the ref-

erence policy is upper bounded by the Euclidean distance

between reward functions.

A natural extension of the individual expected value func-

tion gap is the averaged bound, which provides insights into

the general performance across all clients.

Corollary 4.1. (Averaged Expected Value Function Gap).

Suppose Assumption 1 and Assumption 2 hold. For any

¶ ∈ (0, 1], with probability at least 1−¶, the output policies

{Ã̂i}Ni=1 satisfy

1

N

∑

i∈[N ]

(J(πi,tar; r
⋆
i )− J(π̂i; r

⋆
i ))

≤ c3

√√√√√




log

(
NG′

r

( 1
NNp

) 1
¶

)

NNpν
+

kd2 + log(N
¶
)

Np

+
1

ν

√
Σtail

N



,

where c3 > 0 is a constant.

Remark 3 (Sample Complexity). For full-parameter fine-

tuning, the sample complexity required to ensure that the

averaged expected value function gap is less than ϵ with

probability at least 1 − ¶ is Np = O
(
d1d2

ϵ log
(
N
¶

))
(Zhu

et al., 2023). In contrast, when using Algorithm 1, the sam-

ple complexity required to achieve an averaged estimated

value function accuracy of 1− ϵ−
(
Σtail

N

)1/4
is

Np = O
(
d1k +Nd2k

Nϵ
log

(
N

¶

))
.

Therefore, when d1 k k, the sample complexity is signifi-

cantly reduced, with the trade-off being introducing a bias

term in the estimation accuracy of the value function.

Moreover, Park et al. (2024) indicate that their representa-

tion learning-based method can learn an ϵ-optimal policy

with a sample complexity of

Np = O
(
d1k +Nk

Nϵ
log

(
N

¶

))
.

Notably, in their setting, d2 is assumed to be 1, and the

ground truth reward functions are posited to share a com-

mon representation with linear heads. In contrast, our re-

sults demonstrate a similar sample complexity with an ad-

ditional bias term
(
Σtail

N

)1/4
in the accuracy. Importantly,

this bias term vanishes if a ground-truth low-rank repre-

sentation B
⋆ exists such that Θ⋆

i = B
⋆
W

⋆ for all i ∈ [N ].
Hence, we can achieve similar sample complexity but for

the more general reward function class and without assum-

ing the existence of ground truth common representation.

5 Experimental Results

Models and Datasets. We implement the base-

line algorithms Share Rep, LoRA-local, and

LoRA-global, which will be introduced later, alongside

our proposed algorithms on two models: GPT-J 6B (Wang

& Komatsuzaki, 2021) and Llama-3 8B (Touvron et al.,

2023). This setup enables a comparison with the work

of Park et al. (2024). Implementation details for all

algorithms are provided in Appendix D.2, and the code is

publicly available*.

We empirically evaluate our algorithms on the text sum-

marization task using the Reddit TL;DR summarization

and human feedback dataset (Stiennon et al., 2020). This

dataset contains a broad range of user preferences, which

provides a particularly suitable setting for studying per-

sonalized feedback and allows us to validate the proposed

P-ShareLoRA method for learning individualized reward

functions. Following Park et al. (2024), we rank the label-

ers by the number of annotated comparisons in the training

split and select the top five workers. To balance the dataset,

we cap each worker’s samples to match the worker with the

fewest comparisons, resulting in 5,373 samples per worker

and 26,865 training samples in total. The same process is

applied to the validation set, yielding 1,238 samples per

worker and 6,190 validation samples overall.

Baselines. To evaluate our approach, we introduce two

naive baselines for comparison: LoRA-Global, in which

we train one shared LoRA module across all users; and

LoRA-Local, where for each labeler’s preference dataset,

we independently train a separate LoRA module, allowing

each user’s model to fully adapt to their specific preferences

without leveraging shared information across users.

To practically solve Equation (3.5), we propose three al-

ternative algorithms to obtain personalized LoRA mod-

*https://github.com/DonghaoLee/Shared-LoRA-Reward
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Figure 1: Prediction Accuracy of Different Algorithms.

ules with shared components: P-ShareLoRA(SI),

P-ShareLoRA(G) and P-ShareLoRA(WU).

The first algorithm, P-ShareLoRA(SI), where SI de-

notes Standard Initialization, initializes the shared B ma-

trix to zero for all users, while each personalized matrix Ai

is initialized with samples from a normal distribution. Both

the shared B and the personalized Ai matrices are updated

through optimizing the objective function outlined in Equa-

tion (3.5) using the adamW (Loshchilov, 2017) optimizer.

The second algorithm, P-ShareLoRA(G), where G de-

notes Global, initializes the model by pre-training the

LoRA module on the entire user dataset, using the config-

uration from LoRA-Global. Training then proceeds in

the same manner as in P-ShareLoRA(SI). The third al-

gorithm, P-ShareLoRA(WU), where WU denotes warm-

up, employs a few preliminary warm-up steps using a

global adaptation module (similar to P-ShareLoRA(G))

before proceeding with user-specific training. Following

this phase, training continues as in P-ShareLoRA(SI).

Detailed pseudocode and parameter settings for each of

these algorithms are provided in Appendix D.1.

We additionally include the shared representation method

by Park et al. (2024) as another baseline, abbreviated as

“Share Rep” in Figure 1. In this algorithm, the first 70% of

the reward model’s layers are frozen as the shared represen-

tation, while the remaining 30% are treated as personalized

heads.

Results. For each method, we train it for a total of

3 epochs. Specifically, the global pretraining phase

in P-ShareLoRA(G) is set to two epochs, while in

P-ShareLoRA(WU) it is set to 0.3 epochs. Following

these warm-up phases, we train P-ShareLoRA(G) and

P-ShareLoRA(WU) for one and 2.7 epochs, respectively,

ensuring that the total number of training steps remains uni-

form across all algorithms.

In Figure 1, we present the results of reward model fine-

tuning using different algorithms. The reported accuracy

represents the average accuracy across the test datasets

of the five labelers when preferences are estimated us-

ing each algorithm. The abbreviation PSL represents

P-ShareLoRA.

We observe that for both GPT-J 6B and Llama-3 8B

models, our proposed algorithms P-ShareLoRA(G)

and P-ShareLoRA(WU) demonstrate performance im-

provements over other baseline algorithms. Specifically,

P-ShareLoRA(G) achieves the most significant en-

hancement on GPT-J 6B, while P-ShareLoRA(WU) per-

forms best on Llama-3 8B. These empirical results vali-

date the effectiveness of our method, which leverages the

shared components of LoRA modules to adapt personal-

ized reward functions. Additional experimental results are

presented in Appendix D.3.

6 Conclusion

In this work, we introduced a novel algorithm that inte-

grates LoRA into the personalized RLHF framework to ef-

fectively align LLMs with diverse user preferences. By

applying LoRA to an aggregated parameter matrix, our

method captures individual user preferences while leverag-

ing shared structures, thereby improving the sample com-

plexity and enjoying the computational efficiency of LoRA.

Theoretical analysis demonstrates that P-ShareLoRA re-

sults in a low-rank approximation for the ground truth

aggregated parameter matrix and achieves near-optimal

policy performance, with performance discrepancies con-

trolled by the diversity of user preferences. Empirical eval-

uations on the Reddit TL;DR dataset exhibit performance

improvements compared to baseline algorithms.
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A Deferred Definitions and Preliminary Lemmas

In our proof, we assume that all reward models are initialized from the same initial parameter matrix, i.e., Θ0
i = Θ

init for

any i ∈ [N ]. We note that our results can be straightforwardly generalized to the case with heterogeneous initialization.

Additionally, we use X
(N) to represent the column-wise replication of matrix X N times, i.e., X(N) = [X, . . . ,X].

A.1 Deferred Definitions

Also, we introduce the following deferred definitions:

Definition A.1 (Principal Angle Distance (Jain et al., 2013)). Given B1,B2 ∈ R
d·k with orthonormal columns, the prin-

cipal angle distance between their column spaces is defined as

dist(B1,B2) =
1√
2
∥B1B

¦
1 −B2B

¦
2 ∥F = ∥B¦

1 B̄2∥F ,

where B̄2 is an orthonormal basis for the orthogonal complement of span(B2), i.e., span(B̄2) = span(B2)
§.

The principal angle distance is a standard metric for measuring the distance between subspaces (Jain et al., 2013; Collins

et al., 2021).

Definition A.2 (Bracketing Number for Single Reward (Zhan et al., 2023)). Consider the class Gr of functions mapping

pairs of trajectories (Ä0, Ä1) ∈ T · T to preference probability vector. Specifically, each function r ∈ Gr maps (Ä0, Ä1) to

Pr(· | Ä0, Ä1) ∈ R
2. An ϵ-bracket for Gr is a pair of functions (g1, g2) mapping T ·T to R

2 such that for all (Ä0, Ä1) ∈ T ·T :

(1). g1(Ä0, Ä1) f g2(Ä0, Ä1); (2). ∥g1(Ä0, Ä1) − g2(Ä0, Ä1)∥1 f ϵ The ϵ-bracketing number of Gr, denoted by NGr
(ϵ), is

the minimal number of ϵ-brackets required to cover Gr in the following sense: for any function r ∈ Gr , there exists an

ϵ-bracket (gb,1, gb,2) such that for all (Ä0, Ä1) ∈ T · T ,

gb,1(Ä0, Ä1) f Pr(· | Ä0, Ä1) f gb,2(Ä0, Ä1).

Definition A.3 (Concentrability Coefficient (Zhan et al., 2023)). Given a reward vector class Gr , a human user i, a target

policy Ãtar (which could potentially be the optimal policy Ã⋆
i corresponding to the true reward r⋆i ), and a reference policy

µref , the concentrability coefficient is defined as:

Cr (Gr, Ãtar, µref , i) := max




0, sup

r∈Gr

EÄ0∼Ãtar, Ä1∼µref
[r⋆i (Ä0)− r⋆i (Ä1)− ri(Ä0) + ri(Ä1)]√

EÄ0, Ä1∼µref

[
(r⋆i (Ä0)− r⋆i (Ä1)− ri(Ä0) + ri(Ä1))

2
]





.

A.2 Preliminary Lemmas

Before presenting the proof, we introduce a few important lemmas.

Lemma 1 ((Zhan et al. (2023), Lemma 1, reward vector version)). For any ¶ ∈ (0, 1], if r ∈ Gr , with dataset D̂ =

∪i∈[N ]D̂i where D̂i = {(o(j)i , Ä
(j)
i,0 , Ä

(j)
i,1 )j∈[Np]}, Ä

(j)
i,0 ∼ µ0, Ä

(j)
i,1 ∼ µ1, and o

(j)
i ∼ Pr⋆

i
(·|Ä (j)0 , Ä

(j)
1 ), there exist C1 > 0

such that

∑

i∈[N ]

∑

j∈[Np]

log

(
Pri(o

(j)
i | Ä

(j)
i,0 , Ä

(j)
i,1 )

Pr⋆
i
(o

(j)
i | Ä

(j)
i,0 , Ä

(j)
i,1 )

)
f C1 log(NGr

(1/(NNp))/¶)

holds.

Lemma 2 ((Liu et al. (2022), Proposition 14, scalar version)). For any ¶ ∈ (0, 1], with probability at least 1− ¶, if r ∈ G′r,

with dataset D̂ = {(o(j), Ä (j)0 , Ä
(j)
1 )j∈[M ]} where Ä

(j)
0 ∼ µ0, Ä

(j)
1 ∼ µ1, and o(j) ∼ Pr⋆(·|Ä (j)0 , Ä

(j)
1 ),

Eµ0,µ1

[
∥Pr(· | Ä (j)0 , Ä

(j)
1 )− Pr⋆(· | Ä (j)0 , Ä

(j)
1 )∥21

]

f C2

M


 ∑

j∈[M ]

log

(
Pr⋆(o

(j) | Ä (j)0 , Ä
(j)
1 )

Pr(o(j) | Ä (j)0 , Ä
(j)
1 )

)
+ log(NG′

r
(1/M)/¶)




holds where C2 > 0 is a constant.
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Lemma 3 ((Liu et al. (2022), Proposition 14, vector version)). For any ¶ ∈ (0, 1], with probability at least 1−¶, if r ∈ G′
r
,

with dataset D̂ = ∪i∈[N ]D̂i where D̂i = {(o(j)i , Ä
(j)
i,0 , Ä

(j)
i,1 )j∈[Np]}, Ä

(j)
i,0 ∼ µ0, Ä

(j)
i,1 ∼ µ1, and o

(j)
i ∼ Pr⋆

i
(·|Ä (j)0 , Ä

(j)
1 ),

1

N

∑

i∈[N ]

Eµ0,µ1

[
∥Pri(· | Ä (j)0 , Ä

(j)
1 )− Pr⋆

i
(· | Ä (j)0 , Ä

(j)
1 )∥21

]

f C2

NNp


∑

i∈[N ]

∑

j∈[Np]

log

(
Pr⋆

i
(o(j) | Ä (j)0 , Ä

(j)
1 )

Pri(o
(j) | Ä (j)0 , Ä

(j)
1 )

)
+ log(NG′

r

(1/(NNp))/¶)




holds where C2 > 0 is a constant.

Lemma 4. For any use i ∈ [N ], we have the following inequality holds:

1

N

∑

i∈[N ]

|log Φ(r⋆i (Ä0)− r⋆i (Ä1))− log Φ(r⋄i (Ä0)− r⋄i (Ä1))| f 2LL1

√
Σtail

N
.

Proof. From the L-Lipschitz continuity of the function log Φ(x), for any trajectories Ä0 and Ä1, we have

|log Φ(r⋆i (Ä0)− r⋆i (Ä1))− log Φ(r⋄i (Ä0)− r⋄i (Ä1))| f L |r⋆i (Ä0)− r⋆i (Ä1)− r⋄i (Ä0) + r⋄i (Ä1)| .

Recalling that r⋆i (Ä) = r(Ä ;Θ⋆
i ) and r⋄i (Ä) = r(Ä ;Θ⋄

i ), from the L1-Lipschitz continuity of the function r(Ä ;Θ) with

respect to Θ, we have

|r⋆i (Ä0)− r⋆i (Ä1)− r⋄i (Ä0) + r⋄i (Ä1)| f 2L′∥Θ⋆
i −Θ

⋄
i ∥F .

Therefore,

1

N

∑

i∈[N ]

|r⋆i (Ä0)− r⋆i (Ä1)− r⋄i (Ä0) + r⋄i (Ä1)|

f
√√√√ 1

N

∑

i∈[N ]

(r⋆i (Ä0)− r⋆i (Ä1)− r⋄i (Ä0) + r⋄i (Ä1))
2

f 2L1

√
1

N
∥Θ⋆ −Θ⋄∥2F .

Note that Θ⋄ can be derived from the truncated singular value decomposition (SVD) of Θ
⋆, retaining only the top k

singular values and their corresponding singular vectors (Golub & Van Loan, 2013; Liu et al., 2024a). Consequently, we

have

1

N

∑

i∈[N ]

|r⋆i (Ä0)− r⋆i (Ä1)− r⋄i (Ä0) + r⋄i (Ä1)| f 2L1

√
Σtail

N
.

Therefore, we finally have

1

N

∑

i∈[N ]

|log Φ(r⋆i (Ä0)− r⋆i (Ä1))− log Φ(r⋄i (Ä0)− r⋄i (Ä1))| f 2LL1

√
Σtail

N
.

Lemma 5. For local reward models parameterized by Θ1, . . . ,ΘN , suppose there exists a constant ¶ > 0 such that

∑

i∈[N ]

Eµ0,µ1

[∥∥∥PΘi

(
· | Ä (j)i,0 , Ä

(j)
i,1

)
− PΘ⋆

i

(
· | Ä (j)i,0 , Ä

(j)
i,1

)∥∥∥
2
]
f ¶,

then, for some constant C > 0, it holds that dist(B,B⋄) f ∥Θ−Θ
⋆∥2

F

(¶′)2 f C ¶
N¿ where ¿ = Ãk

(
(Θ⋆)TΘ

⋆

N

)
.
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Proof. From the Mean Value Theorem, there exists a constant C > 0 such that

∥Θ−Θ
⋆∥2F f C

∑

i∈[N ]

Eµ0,µ1

[
∥PΘi

(
· | Ä (j)i,0 , Ä

(j)
i,1

)
− PΘ⋆

i

(
· | Ä (j)i,0 , Ä

(j)
i,1

)
∥2
]
f C¶.

Define ¶′ := min1fifk,k+1fjfmin{d1,Nd2} |Ãi(Θ
⋆)− Ãj(Θ)|. Then, we observe that

¶′ = min
1fifk,k+1fjfmin{d1,Nd2}

|Ãi(Θ
⋆)− Ãj(Θ)| = Ãk(Θ

⋆).

Next, by applying the Davis-Kahan Theorem, we obtain

dist2(B,B⋄) f ∥Θ−Θ
⋆∥2F

(¶′)2
f C

¶

Ã2
k(Θ

⋆)
= C

¶

N¿
.

This is the desired result.

B Training from Scratch

In this section, we present our theoretical analysis, focusing on the case where the initialization is set to zero, i.e., the initial

parameter matrix is Θ0 = 0
d1·d2 . Consequently, ∆Θ

⋆ = Θ
⋆.

With zero initialization, we define the class of reward functions G′r, in which a low-rank adaptation matrix with shared

representations is learned as the parameter matrix for each individual reward function. Specifically, G′r is defined as:

G′
r
=
{
(rΘi

(·))i∈[N ]

∣∣∣Θ ∈ R
d1·Nd2 , rank(Θ) = k, ∥Θi∥F f B, ∀i ∈ [N ]

}
,

where Θ denotes the aggregated parameter matrix across all individuals, subject to a rank constraint k. Additionally, each

individual parameter matrix Θi satisfies the Frobenius norm constraint ∥Θi∥F f B. We state our theoretical results under

zero initialization as follows:

Theorem B.1. (Closeness between B̂ and B
⋄). For any ¶ ∈ (0, 1], with probability at least 1− ¶, it holds that

dist(B̂,B⋄) f c1

√
1

NNp¿
log(NG′

r

(1/(NNp))/¶) +
1

¿

√
Σtail

N
.

where c1 > 0 is a constant, ¿ is the condition number as defined earlier, Σtail represents the aggregate tail singular values

and NG′
r

(·) denotes the beacketing number of the function class G′
r
.

Theorem B.2. (Individual Expected Value Function Gap). For any user i ∈ [N ] and any ¶ ∈ (0, 1], set · in Equation (3.6)

as

· =

√√√√ c3
2L2

1

(
min
i∈[N ]

∥Θ⋆
i −Θ⋄

i ∥
2
F +

log
(
NG′

r

(1/(NNp))/¶
)

NNp¿
+

1

¿

√
Σtail

N
+

kd2 + log(N/¶)

Np

)
, (B.1)

where c3 > 0 is a constant. Then, with probability at least 1− ¶, the output policy Ã̂i for client i satisfies

J(Ãi,tar; r
⋆
i )− J(Ã̂i; r

⋆
i )

f

√√√√c3

(
∥Θ⋆

i −Θ⋄
i ∥

2
F +

log
(
NG′

r

(1/(NNp))/¶
)

NNp¿
+

1

¿

√
Σtail

N
+

kd2 + log(N/¶)

Np

)
.

Corollary B.1. (Averaged Expected Value Function Gap). For any ¶ ∈ (0, 1], set · as in Equation (B.1). If N g µ2Σtail,

then, with probability at least 1− ¶, the output policies {Ã̂i}Ni=1 satisfy the following inequality:

1

N

N∑

i=1

(J(Ãi,tar; r
⋆
i )− J(Ã̂i; r

⋆
i )) f c4

√
log(NG′

r

(1/(NNp))/¶)

NNp
+

√
Σtail

N
,

where c4 > 0 is a constant.
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B.1 Proof of Theorem B.1

Theorem B.1. (Closeness between B̂ and B
⋄). For any ¶ ∈ (0, 1], with probability at least 1− ¶, it holds that

dist(B̂,B⋄) f c1

√
1

NNp¿
log(NG′

r

(1/(NNp))/¶) +
1

¿

√
Σtail

N
.

where c1 > 0 is a constant, ¿ is the condition number as defined earlier, Σtail represents the aggregate tail singular values

and NG′
r

(·) denotes the beacketing number of the function class G′
r
.

Proof. Consider the events E1 and E2 defined by the satisfaction of the conditions in Lemma 1 and Lemma 3, respectively,

with the confidence parameter adjusted to ¶ ← ¶/2. This adjustment guarantees that P(E1 ∩ E2) g 1 − ¶. Consequently,

we conduct our analysis conditioned on the event E1 ∩ E2.

From Lemma 4 we have
∑

i∈[N ]

∑

j∈[Np]

logPΘ⋆
i

(
o
(j)
i | Ä

(j)
i,0 , Ä

(j)
i,1

)
f
∑

i∈[N ]

∑

j∈[Np]

logPΘ⋄
i

(
o
(j)
i | Ä

(j)
i,0 , Ä

(j)
i,1

)
+ cNp

√
N Σtail.

Using the definition of Θ̂ gives:

∑

i∈[N ]

∑

j∈[Np]

logPΘ⋆
i

(
o
(j)
i | Ä

(j)
i,0 , Ä

(j)
i,1

)
f
∑

i∈[N ]

∑

j∈[Np]

logP
Θ̂i

(
o
(j)
i | Ä

(j)
i,0 , Ä

(j)
i,1

)
+ cNp

√
N Σtail.

Therefore, it follows that:

∑

i∈[N ]

∑

j∈[Np]

log



Pr⋆

i

(
o(j) | Ä (j)0 , Ä

(j)
1

)

Pri

(
o(j) | Ä (j)0 , Ä

(j)
1

)


 f

∑

i∈[N ]

∑

j∈[Np]

log



Pr⋄

i

(
o(j) | Ä (j)0 , Ä

(j)
1

)

Pri

(
o(j) | Ä (j)0 , Ä

(j)
1

)


+ cNp

√
N Σtail

f log



NG′

r

(
1

NNp

)

¶


+ cNp

√
N Σtail.

By Lemma 3 we have:

1

N

∑

i∈[N ]

Eµ0,µ1

[∥∥∥PΘi

(
· | Ä (j)i,0 , Ä

(j)
i,1

)
− PΘ⋆

i

(
· | Ä (j)i,0 , Ä

(j)
i,1

)∥∥∥
2

1

]

f C2

NNp


∑

i∈[N ]

∑

j∈[Np]

log



PΘ⋆

i

(
o
(j)
i | Ä

(j)
i,0 , Ä

(j)
i,1

)

PΘi

(
o
(j)
i | Ä

(j)
i,0 , Ä

(j)
i,1

)


+ log



NG′

r

(
1

NNp

)

¶






f C2

NNp


C1 log



NG′

r

(
1

NNp

)

¶


+ cNp

√
N Σtail + log



NG′

r

(
1

NNp

)

¶






=
C3

NNp
log



NG′

r

(
1

NNp

)

¶


+ C4

√
Σtail

N
,

for any rΘ ∈ R(D̂), where C3 = C2(C1 + 1). By the mean value theorem, for any rΘ ∈ R(D̂), we obtain:

1

N

∑

i∈[N ]

Eµ0,µ1

[
|(rΘi

(Äi,0)− rΘi
(Äi,1))− (r⋆i (Äi,0)− r⋆i (Äi,1))|2

]

f »2

N

∑

i∈[N ]

Eµ0,µ1

[∥∥∥PΘi
(· | Ä (j)i,0 , Ä

(j)
i,1 , i)− PΘ⋆

i
(· | Ä (j)i,0 , Ä

(j)
i,1 , i)

∥∥∥
2

1

]

f C3»
2

NNp
log

(NG′
r
(1/(NNp))

¶

)
+ C4»

2

√
Σtail

N
.

(B.2)
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Therefore, combining with Lemma 5 gives

dist2(B,B⋄) f CC3

NNp¿
log(NG′

r

(1/(NNp))/¶) +
CC4

¿
»2

√
Σtail

N
.

Also, we obtain

∥B−B
⋄∥2F f dist2(B,B⋄) f 2

CC3

NNp¿
log(NG′

r

(1/(NNp))/¶) + 2
CC4

¿
»2

√
Σtail

N
.

This proves the theorem.

B.2 Proof of Theorem B.2

Before formally proving Theorem B.2, we present the following theorem as an intermediate result.

Theorem B.3. For any ¶ ∈ (0, 1], with probability at least 1− ¶, it holds that

1

Np

∑

j∈[Np]

∣∣∣(r
Θ̂i

(Ä
(j)
i,0 )− r

Θ̂i
(Ä

(j)
i,1 ))− (rΘ⋆

i
(Ä

(j)
i,0 )− rΘ⋆

i
(Ä

(j)
i,1 ))

∣∣∣
2

f C8

(
∥Θ⋆

i −Θ
⋄
i ∥2F +

1

NNp¿
log

(NG′
r

(1/(NNp))

¶

)
+

1

¿

√
Σtail

N
+

kd2 + log(N/¶)

Np

)
,

where C8 > 0 is a constant.

Proof. Recall that for a function rΘ parameterized by the matrix Θ ∈ R
d1·Nd2 , we use r¹ to denote the same function

parameterized by the vector ¹, where ¹ = vec(Θ). To begin, by leveraging the continuity of rΘ(·), we can establish the

following inequality:

∣∣∣(r
Θ̂i

(Ä
(j)
i,0 )− r

Θ̂i
(Ä

(j)
i,1 ))− (rΘ⋆

i
(Ä

(j)
i,0 )− rΘ⋆

i
(Ä

(j)
i,1 ))

∣∣∣
2

F

f 2
∣∣∣(r

Θ̂i
(Ä

(j)
i,0 )− r

Θ̂i
(Ä

(j)
i,1 ))− (rΘ⋄

i
(Ä

(j)
i,0 )− rΘ⋄

i
(Ä

(j)
i,1 ))

∣∣∣
2

+ 4L∥Θ⋆
i −Θ

⋄
i ∥2

= 2
∣∣∣(r¹̂i(Ä

(j)
i,0 )− r¹̂i(Ä

(j)
i,1 ))− (r¹⋄

i
(Ä

(j)
i,0 )− r¹⋄

i
(Ä

(j)
i,1 ))

∣∣∣
2

+ 4L∥Θ⋆
i −Θ

⋄
i ∥2F .

(B.3)

Next, we focus on obtaining an upper bound for the first part of the right-hand side of the above inequality. Using the

Lagrange form of the remainder in the Taylor expansion of r¹̂i(Ä
(j)
i,0 ), we get

r¹⋄
i
(Ä

(j)
i,0 )− r¹̂i(Ä

(j)
i,0 ) = ∇¹r¹̄i(Ä

(j)
i,0 )

¦(¹⋄i − ¹̂i).

Therefore, there exist ¹̄0 and ¹̄1 such that

(r¹⋄
i
(Ä

(j)
i,0 )− r¹⋄

i
(Ä

(j)
i,1 ))− (r¹̂i(Ä

(j)
i,0 )− r¹̂i(Ä

(j)
i,1 )) =

(
∇¹r¹̄0(Ä

(j)
i,0 )−∇¹r¹̄1(Ä

(j)
i,1 )
)¦

(¹⋄i − ¹̂i).

Then, we obtain the following:

∣∣∣(r¹⋄
i
(Ä

(j)
i,0 )− r¹⋄

i
(Ä

(j)
i,1 ))− (r¹̂i(Ä

(j)
i,0 )− r¹̂i(Ä

(j)
i,1 ))

∣∣∣
2

f 2

∣∣∣∣
(
∇¹r¹̂i(Ä

(j)
i,0 )−∇¹r¹̂i(Ä

(j)
i,1 )
)¦

(¹⋄i − ¹̂i)

∣∣∣∣
2

+ 4

∣∣∣∣
(
∇¹r¹̄0(Ä

(j)
i,0 )−∇¹r¹̂i(Ä

(j)
i,0 )
)¦

(¹⋄i − ¹̂i)

∣∣∣∣
2

+ 4

∣∣∣∣
(
∇¹r¹̄1(Ä

(j)
i,1 )−∇¹r¹̂i(Ä

(j)
i,1 )
)¦

(¹⋄i − ¹̂i)

∣∣∣∣
2

f 2

∣∣∣∣
(
∇¹r¹̂i(Ä

(j)
i,0 )−∇¹r¹̂i(Ä

(j)
i,1 )
)¦

(¹⋄i − ¹̂i)

∣∣∣∣
2

︸ ︷︷ ︸
Ai,j

+16L1 ∥¹⋄i − ¹̂i∥2︸ ︷︷ ︸
Bi

.

(B.4)
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Our remaining proof contains three major steps: (1) Step 1: bounding the summation of Ai,j over j; (2) Step 2: bounding

the term Bi; and (3) Step 3: combining the bounds for Ai,j and Bi to obtain the final result. We now proceed with the

proof of the first step.

Step 1: Bounding the summation of Ai,j over j.

Regarding the term Ai,j , let us denote w⋄
i = vec(W⋄

i ). Then, we have

(
∇¹r¹̂i(Ä

(j)
i,0 )−∇¹r¹̂i(Ä

(j)
i,1 )
)¦

(¹⋄i − ¹̂i)

=
(
∇¹r¹̂i(Ä

(j)
i,0 )−∇¹r¹̂i(Ä

(j)
i,1 )
)¦ (

¹⋄i + (Id2
¹ B̂)w⋄

i − (Id2
¹ B̂)w⋄

i − ¹̂i
)
.

Utilizing the fact that ¹⋄i = (Id2 ¹B
⋄)w⋄

i , it follows that

Ai,j f 2

∣∣∣∣
(
∇¹r¹̂i(Ä

(j)
i,0 )−∇¹r¹̂i(Ä

(j)
i,1 )
)¦ (

(Id2
¹B

⋄)w⋄
i − (Id2

¹ B̂)w⋄
i

)∣∣∣∣
2

+ 2

∣∣∣∣
(
∇¹r¹̂i(Ä

(j)
i,0 )−∇¹r¹̂i(Ä

(j)
i,1 )
)¦ (

(Id2
¹ B̂)w⋄

i − (Id2
¹ B̂)ŵi

)∣∣∣∣
2

f
(i)

4L∥(Id2
¹B

⋄)− (Id2
¹ B̂)∥2∥w⋄

i ∥2 + 2

∣∣∣∣
(
∇¹r¹̂i(Ä

(j)
i,0 )−∇¹r¹̂i(Ä

(j)
i,1 )
)¦

(Id2
¹ B̂)(w⋄

i − ŵi)

∣∣∣∣
2

=
(ii)

4L∥B⋄ − B̂∥2∥W⋄
i ∥2F + 2

∣∣∣∣
(
∇¹r¹̂i(Ä

(j)
i,0 )−∇¹r¹̂i(Ä

(j)
i,1 )
)¦

(Id2
¹ B̂)(w⋄

i − ŵi)

∣∣∣∣
2

,

where inequality (i) follows from the L-Lipschitz continuity of the function r¹(·) with respect to ¹, and equality (ii) is

derived from the facts that ∥(Id2 ¹B
⋄)− (Id2 ¹ B̂)∥2 = ∥B⋄ − (Id2 ¹ B̂)∥2 and ∥w⋄

i ∥2 = ∥W⋄
i ∥2F . Next, we define

Σ̂i =
1

Np

∑

j∈Np

(Id2
¹ B̂)¦

(
∇¹r¹̂i(Ä

(j)
i,0 )−∇¹r¹̂i(Ä

(j)
i,1 )
)(
∇¹r¹̂i(Ä

(j)
i,0 )−∇¹r¹̂i(Ä

(j)
i,1 )
)¦

(Id2
¹ B̂).

Following the definition of Σ̂i, we further derive the following inequality:

1

Np

∑

j∈Np

Ai,j f 4L∥B⋄ − B̂∥2∥W⋄
i ∥2F + 2∥w⋄

i − ŵi∥2
Σ̂i

. (B.5)

Now, we consider the following optimization problem:

max
wi

f(wi) :=
1

Np

∑

j∈[Np]

logP(Id2¹B̂)wi
(o

(j)
i | Ä

(j)
i,0 , Ä

(j)
i,1 ).

The solution to this optimization problem is given by ŵi = argmax
w

f(wi). To proceed with the analysis, let us denote

x
(j)
i = r(Id2¹B̂)wi

(Ä
(j)
i,0 ) − r(Id2¹B̂)wi

(Ä
(j)
i,1 ). Using this notation, the gradient of the objective function can be expressed

as follows:

∇f(wi) =
1

Np

∑

j∈[Np]

(
Φ′(x

(j)
i )

Φ(x
(j)
i )

111(o
(j)
i = 0)− Φ′(−x(j)

i )

Φ(−x(j)
i )

111(o
(j)
i = 1)

)

· (Id2
¹ B̂)¦

(
∇r(Id2¹B̂)wi

(Ä
(j)
i,0 )−∇r(Id2¹B̂)wi

(Ä
(j)
i,1 )
)
,
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and

∇2f(wi) =
1

Np

∑

j∈[Np]

(
Φ′(x

(j)
i )

Φ(x
(j)
i )

111(o
(j)
i = 0)− Φ′(−x(j)

i )

Φ(−x(j)
i )

111(o
(j)
i = 1)

)

· (Id2
¹ B̂)¦

(
∇2r(Id2¹B̂)wi

(Ä
(j)
i,0 )−∇2r(Id2¹B̂)wi

(Ä
(j)
i,1 )
)
(Id2
¹ B̂)

+
1

Np

∑

j∈[Np]

(
Φ′′(x

(j)
i )Φ(x

(j)
i )− Φ′(x

(j)
i )2

Φ(x
(j)
i )2

111(o
(j)
i = 0)

+
Φ′′(−x(j)

i )Φ(−x(j)
i )− Φ′(−x(j)

i )2

Φ(−x(j)
i )2

111(o
(j)
i = 1)

)

· (Id2
¹ B̂)¦

(
∇r(Id2¹B̂)wi

(Ä
(j)
i,0 )−∇r(Id2¹B̂)wi

(Ä
(j)
i,1 )
)

·
(
∇r(Id2¹B̂)wi

(Ä
(j)
i,0 )−∇r(Id2¹B̂)wi

(Ä
(j)
i,1 )
)¦

(Id2
¹ B̂).

(B.6)

From the Lagrange form of the remainder in the Taylor expansion, there exist w̄i such that

f(ŵi) = f(w⋄
i ) +∇f(w⋄

i )
¦(ŵi − w⋄

i ) + (ŵi − w⋄
i )

¦∇2f(w̄i)(ŵi − w⋄
i ). (B.7)

To handle the (ŵi − w⋄
i )

¦∇2f(w̄i)(ŵi − w⋄
i ) term, we define

Σ
⋄
i =

1

Np

∑

j∈Np

(Id2
¹ B̂)¦

(
∇r(Id2¹B̂)w⋄

i
(Ä

(j)
i,0 )−∇r(Id2¹B̂)w⋄

i
(Ä

(j)
i,1 )
)
·

(
∇r(Id2¹B̂)w⋄

i
(Ä

(j)
i,0 )−∇r(Id2¹B̂)w⋄

i
(Ä

(j)
i,1 )
)¦

(Id2 ¹ B̂),

and let c1 and c′1 be the maximum and minimum positive constants, respectively, such that for any i, ∥wi∥ f B, and any

vector u, the following inequality holds:

c1 u
¦
Σ

⋄
i u f

1

Np

∑

j∈Np

u¦(Id2 ¹ B̂)¦
(
∇r(Id2¹B̂)wi

(Ä
(j)
i,0 )−∇r(Id2¹B̂)wi

(Ä
(j)
i,1 )
)

·
(
∇r(Id2¹B̂)wi

(Ä
(j)
i,0 )−∇r(Id2¹B̂)wi

(Ä
(j)
i,1 )
)¦

(Id2 ¹ B̂)u f c′1 u
¦
Σ

⋄
i u.

(B.8)

Combining this with inequality (B.6), we obtain:

(ŵi − w⋄
i )

¦∇2f(w̄i)(ŵi − w⋄
i ) f

1

Np
(ŵi − w⋄

i )
¦
∑

j∈[Np]

(
Φ′(x

(j)
i )

Φ(x
(j)
i )

111(o
(j)
i = 0)− Φ′(−x(j)

i )

Φ(−x(j)
i )

111(o
(j)
i = 1)

)

· (Id2
¹ B̂)¦

(
∇2r(Id2¹B̂)wi

(Ä
(j)
i,0 )−∇2r(Id2¹B̂)wi

(Ä
(j)
i,1 )
)
(Id2
¹ B̂)(ŵi − w⋄

i )

− c1c2(ŵi − w⋄
i )

¦
Σ

⋄
i (ŵi − w⋄

i ),

where c2 = minx

(
Φ′(x)2−Φ′′(x)Φ(x)

Φ(x)2

)
. Then, from the smoothness of r¹ we have:

1

Np

∑

j∈[Np]

(ŵi − w⋄
i )

¦(Id2
¹ B̂)¦

(
∇2r(Id2¹B̂)wi

(Ä
(j)
i,0 )−∇2r(Id2¹B̂)wi

(Ä
(j)
i,1 )
)
(Id2
¹ B̂)(ŵi − w⋄

i )

f L2(ŵi − w⋄
i )

¦(Id2 ¹ B̂)¦(Id2 ¹ B̂)(ŵi − w⋄
i )

= L2∥ŵi − w⋄
i ∥2

Let c3 = maxx (Φ
′(x)/Φ(x)) we have

(ŵi − w⋄
i )

¦∇2f(w̄i)(ŵi − w⋄
i ) f −c1c2(ŵi − w⋄

i )
¦
Σ

⋄
i (ŵi − w⋄

i ) + c3L2∥ŵi − w⋄
i ∥2.

Combining with Equation (B.7) gives

c1c2(ŵi − w⋄
i )

¦
Σ

⋄
i (ŵi − w⋄

i )− c3L2∥ŵi − w⋄
i ∥2 f ∇f(w⋄

i )
¦(w⋄

i − ŵi). (B.9)
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From the smoothness of f(w), we have

f(ŵi) f f(w⋄
i ) +∇f(w⋄

i )
¦(ŵi − w⋄

i ) +
L′
2

2
∥ŵi − w⋄

i ∥2,

using the fact f(ŵi) g f(w⋄
i ) we have

∥ŵi − w⋄
i ∥2 f

2

L′
2

∇f(w⋄
i )

¦(w⋄
i − ŵi). (B.10)

Then, combining the above inequality with Equation (B.9), we conclude that for any ¼ > 0 the following inequality holds

c1c2∥ŵi − w⋄
i ∥2Σ⋄ f

(
1 + 2c3

L2

L′
2

)
∇f(w⋄

i )
¦(w⋄

i − ŵi)

f
(
1 + 2c3

L2

L′
2

)
|∇f(w⋄

i )
¦(w⋄

i − ŵi)|

f
(
1 + 2c3

L2

L′
2

)
∥∇f(w⋄

i )∥(Σ⋄+¼I)−1∥w⋄
i − ŵi∥Σ⋄+¼I.

(B.11)

Observe that for any ¼ > 0, the introduced ¼I term will ensure Σ
⋄
i + ¼I is a full rank since Σ

⋄
i is a PSD matrix. For all i,

we define a random vector V ∈ R
Np as follows:

Vi,j =





Φ′(r¹⋆
i
(Ä

(j)
i,0 )−r¹⋆

i
(Ä

(j)
i,1 ))

Φ(r¹⋆
i
(Ä

(j)
i,0 )−r¹⋆

i
(Ä

(j)
i,1 ))

w.p. Φ(r¹⋆
i
(Ä

(j)
i,0 )− r¹⋆

i
(Ä

(j)
i,1 ))

−Φ′(r¹⋆
i
(Ä

(j)
i,1 )−r¹⋆

i
(Ä

(j)
i,0 ))

Φ(r¹⋆
i
(Ä

(j)
i,1 )−r¹⋆

i
(Ä

(j)
i,0 ))

w.p. Φ(r¹⋆
i
(Ä

(j)
i,1 )− r¹⋆

i
(Ä

(j)
i,0 ))

Also, define V ′
i ∈ R

Np as follows:

V ′
i,j =





Φ′(r(Id2¹B̂)w⋄
i
(Ä

(j)
i,0 )−r(Id2¹B̂)w⋄

i
(Ä

(j)
i,1 ))

Φ(r(Id2¹B̂)w⋄
i
(Ä

(j)
i,0 )−r(Id2¹B̂)w⋄

i
(Ä

(j)
i,1 ))

w.p. Φ(r¹⋆
i
(Ä

(j)
i,0 )− r¹⋆

i
(Ä

(j)
i,1 ))

−
Φ′(r(Id2¹B̂)w⋄

i
(Ä

(j)
i,1 )−r(Id2¹B̂)w⋄

i
(Ä

(j)
i,0 ))

Φ(r(Id2¹B̂)w⋄
i
(Ä

(j)
i,1 )−r(Id2¹B̂)w⋄

i
(Ä

(j)
i,0 ))

w.p. Φ(r¹⋆
i
(Ä

(j)
i,1 )− r¹⋆

i
(Ä

(j)
i,0 ))

Therefore, ∇f(w⋄
i ) can be rewritten as

∇f(w⋄
i ) =

1

Np

∑

j∈[Np]

V ′
i,j(Id2

¹ B̂)¦
(
∇r(Id2¹B̂)w⋄

i
(Ä

(j)
i,0 )−∇rI¹B(Id2¹B̂)w⋄

i
(Ä

(j)
i,1 )
)

=
1

Np

∑

j∈[Np]

(V ′
i,j − Vi,j)(Id2

¹ B̂)¦
(
∇r(Id2¹B̂)w⋄

i
(Ä

(j)
i,0 )−∇r(Id2¹B̂)w⋄

i
(Ä

(j)
i,1 )
)

+
1

Np

∑

j∈[Np]

Vi,j(Id2 ¹ B̂)¦
(
∇r(Id2¹B̂)w⋄

i
(Ä

(j)
i,0 )−∇r(Id2¹B̂)w⋄

i
(Ä

(j)
i,1 )
)
.

Then we obtain

∥∇f(w⋄
i )∥(Σ⋄

i
+¼I)−1

f

∥∥∥∥∥∥
1

Np

∑

j∈[Np]

(V ′
i,j − Vi,j)(Id2 ¹ B̂)¦

(
∇r(Id2¹B̂)w⋄

i
(Ä

(j)
i,0 )−∇r(Id2¹B̂)w⋄

i
(Ä

(j)
i,1 )
)
∥∥∥∥∥∥
(Σ⋄

i
+¼I)−1

+

∥∥∥∥∥∥
1

Np

∑

j∈[Np]

Vi,j(Id2
¹ B̂)¦

(
∇r(Id2¹B̂)w⋄

i
(Ä

(j)
i,0 )−∇r(Id2¹B̂)w⋄

i
(Ä

(j)
i,1 )
)
∥∥∥∥∥∥
(Σ⋄

i
+¼I)−1

.

(B.12)
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Next, we bound the first term on the right-hand side of Equation (B.12). By the Mean Value Theorem, we have∣∣∣Φ
′(x)

Φ(x) −
Φ′(y)
Φ(y)

∣∣∣ f À|x− y|, for x, y ∈ [−2Rmax, 2Rmax]. Therefore, we can write:

|V ′
i,j − Vi,j | f À

∣∣∣r¹⋆
i
(Ä

(j)
i,0 )− r¹⋆

i
(Ä

(j)
i,1 )− r(Id2¹B̂)w⋄

i
(Ä

(j)
i,0 ) + r(Id2¹B̂)w⋄

i
(Ä

(j)
i,1 )
∣∣∣

(i)

f 2LÀ
∥∥∥¹⋆i − ¹⋄i + ¹⋄i − (Id2

¹ B̂)w⋄
i

∥∥∥

f 2LÀ ∥¹⋆i − ¹⋄i ∥+ 2LÀ
∥∥∥(Id2

¹B
⋄)− (Id2

¹ B̂)
∥∥∥ · ∥w⋄

i ∥

= 2LÀ∥Θ⋆
i −B

⋄
W

⋄
i ∥F + 2LÀ

∥∥∥B⋄ − B̂

∥∥∥ ∥W⋄
i ∥F ,

where inequality (i) follows from the L-Lipschitz continuity of rΘ(·).
Then, we have

∥∥∥∥
1

Np

∑

j∈[Np]

(V ′
i,j − Vi,j)B̂

¦
(
∇r(Id2¹B̂)W⋄

i
(Ä

(j)
i,0 )−∇r(Id2¹B̂)W⋄

i
(Ä

(j)
i,1 )
)∥∥∥∥

(Σ⋄
i
+¼I)−1

f 2CLÀ∥Θ⋆
i −B

⋄
W

⋄
i ∥F + 2CLÀ

∥∥B⋄ − B̂
∥∥∥W⋄

i ∥F
(B.13)

for constant C.

Next, we bound the second term on the right-hand side of Equation (B.12). Let Vi ∈ R
Np be the vector such that

[Vi]j = Vi,j for all j ∈ [Np] and we define

Mi :=
1

N2
p

G
¦
i (Id2

¹ B̂)(Σ⋄
i + ¼I)−1(Id2

¹ B̂)¦Gi

where

Gi =
[
∇r(Id2¹B̂)w⋄

i
(Ä

(1)
i,0 )−∇r(Id2¹B̂)w⋄

i
(Ä

(1)
i,1 ) · · · ∇r(Id2¹B̂)w⋄

i
(Ä

(Np)
i,0 )−∇r(Id2¹B̂)w⋄

i
(Ä

(Np)
i,1 )

]
.

As shown in Zhu et al. (2023), the matrix Mi satisfies the following properties:

Tr(Mi) f
d2k

Np
, Tr

(
M

2
i

)
f d2k

N2
p

, ∥Mi∥F f
1

Np
.

Furthermore, consider that the variables Vi,j are centered sub-Gaussian random variables, as E[Vi,j ] = 0 and Vi,j are

bounded. Consequently, by applying Bernstein’s inequality, we obtain

∥∥∥∥∥∥
1

Np

∑

j∈[Np]

Vi,j(Id2
¹ B̂)¦

(
∇r(Id2¹B̂)w⋄

i
(Ä

(j)
i,0 )−∇r(Id2¹B̂)w⋄

i
(Ä

(j)
i,1 )
)
∥∥∥∥∥∥
(Σ⋄

i
+¼I)−1

=
√

V ¦
i MiVi f C4

√
kd2 + log(N/¶)

Np
,

(B.14)

with probability at least 1− ¶/(2N), where C4 > 0 is constant.

Subsequently, by substituting Equation (B.13) and Equation (B.14) into Equation (B.12), we obtain

∥∇f(W⋄
i )∥(Σ⋄

i
+¼I)−1

f 2CLÀ ∥Θ⋆
i −B

⋄
W

⋄
i ∥F + 2CLÀ

∥∥∥B⋄ − B̂

∥∥∥ · ∥W⋄
i ∥F + C4

√
kd2 + log(N/¶)

Np

f 2CLÀ ∥Θ⋆
i −Θ

⋄
i ∥F + 2CLÀB

∥∥∥B⋄ − B̂

∥∥∥+ C4

√
kd2 + log(N/¶)

Np
,

where the final inequality leverages the facts that B⋄
W

⋄
i = Θ

⋄
i and ∥W⋄

i ∥F f B.
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Furthermore, utilizing Theorem B.1, we obtain

∥∇f(W⋄
i )∥2(Σ⋄

i
+¼I)−1 (B.15)

f C ′

(
∥Θ⋆

i −Θ
⋄
i ∥2F +

1

NNp¿
log

(NG′
r

(1/(NNp))

¶

)
+

1

¿

√
Σtail

N
+

kd2 + log(N/¶)

Np

)
, (B.16)

where C ′ > 0 is a constant.

Notably, from Equation (B.11), by defining c = 1+2c3
c1c2

we have

∥ŵi − w⋄
i ∥Σ⋄ f

√
c2∥∇f(w⋄

i )∥2(Σ⋄
i
+¼I)−1 + 2c¼B∥∇f(w⋄

i )∥(Σ⋄
i
+¼I)−1 . (B.17)

Therefore, by setting

¼ =
cC ′

2B

√
∥Θ⋆

i −Θ⋄
i ∥

2
F +

1

NNp¿
log

(NG′
r

(1/(NNp))

¶

)
+

1

¿

√
Σtail

N
+

kd2 + log(N/¶)

Np
,

and by combining Equation (B.16) with Equation (B.19), we obtain

∥ŵi − w⋄
i ∥2Σ⋄ (B.18)

f
√
2 cC ′

(
∥Θ⋆

i −Θ
⋄
i ∥2F +

1

NNp¿
log

(NG′
r

(1/(NNp))

¶

)
+

1

¿

√
Σtail

N
+

kd2 + log(N/¶)

Np

)
. (B.19)

Note that by combining Equation (B.5) with Equation (B.8) we have

1

Np

∑

j∈Np

Ai,j f 4LB2
∥∥∥B⋄ − B̂

∥∥∥
2

+ 2c′1 ∥w⋄
i − ŵi∥2Σ⋄

i
. (B.20)

From Theorem B.1, we have

∥B−B
⋄∥2F f 2

CC3

NNp¿
log

(NG′
r

(1/(NNp))

¶

)
+ 2

CC4

¿
»2

√
Σtail

N
. (B.21)

Thus, by combining Equation (B.19), Equation (B.20), and Equation (B.21), we conclude that there exists a constant

C5 > 0 such that

1

Np

∑

j∈Np

Ai,j f C5

(
∥Θ⋆

i −Θ
⋄
i ∥2 +

1

NNp¿
log

(NG′
r

(1/(NNp))

¶

)
+

1

¿

√
Σtail

N
+

kd2 + log(N/¶)

Np

)
. (B.22)

Step 2: Bounding term Bi.
Note that from Equation (B.10), we have

∥ŵi − w⋄
i ∥2 f

2

L2
∇f(w⋄

i )
¦(w⋄

i − ŵi) f ∥∇f(w⋄
i )∥(Σ⋄

i
+¼I)−1∥w⋄

i − ŵi∥Σ⋄
i
+¼I.

Therefore, we obtain

∥ŵi − w⋄
i ∥2 f

√
¼2∥∇f(w⋄

i )∥2(Σ⋄
i
+¼I)−1 + 2∥∇f(w⋄

i )∥(Σ⋄
i
+¼I)−1∥w⋄

i − ŵi∥Σ⋄
i
.

Let

¼ f min



1,

cC ′

2B

√
∥Θ⋆

i −Θ⋄
i ∥

2
F +

1

NNp¿
log

(NG′
r

(1/(NNp))

¶

)
+

1

¿

√
Σtail

N
+

kd2 + log(N/¶)

Np



 ,



A Shared Low-Rank Adaptation Approach to Personalized RLHF

using Equation (B.16) and Equation (B.17), we obtain

∥ŵi − w⋄
i ∥2 f C6

(
∥Θ⋆

i −Θ
⋄
i ∥2F +

1

NNp¿
log

(NG′
r

(1/(NNp))

¶

)
+

1

¿

√
Σtail

N
+

kd2 + log(N/¶)

Np

)
, (B.23)

for a constant C6 g 0. Leveraging the smoothness of r¹(·) with respect to ¹, we obtain the bound

Bi,j f
(
∥¹̂i − (Id2 ¹ B̂)w⋄

i ∥+ ∥(Id2 ¹ B̂)w⋄
i − ¹⋄i ∥

)2

f
(
∥ŵi − w⋄

i ∥+B∥B̂−B
⋄∥
)2

.

Therefore, applying Theorem 4.1 and using Equation (B.23) we obtain

Bi,j f C7

(
∥Θ⋆

i −Θ
⋄
i ∥2F +

1

NNp¿
log

(NG′
r

(1/(NNp))

¶

)
+

1

¿

√
Σtail

N
+

kd2 + log(N/¶)

Np

)
(B.24)

Step 3: Putting Ai,j and Bi,j together.

Combining Equation (B.4), Equation (B.22) and Equation (B.24) we have

1

Np

∑

j∈[Np]

∣∣∣(r¹⋄
i
(Ä

(j)
i,0 )− r¹⋄

i
(Ä

(j)
i,1 ))− (r¹̂i(Ä

(j)
i,0 )− r¹̂i(Ä

(j)
i,1 ))

∣∣∣
2

f C7

(
∥Θ⋆

i −Θ
⋄
i ∥2F +

1

NNp¿
log

(NG′
r

(1/(NNp))

¶

)
+

1

¿

√
Σtail

N
+

kd2 + log(N/¶)

Np

)
,

where C7 > 0 is a constant. Therefore, combining with Equation (B.3) we obtain

1

Np

∑

j∈[Np]

∣∣∣(r
Θ̂i

(Ä
(j)
i,0 )− r

Θ̂i
(Ä

(j)
i,1 ))− (rΘ⋆

i
(Ä

(j)
i,0 )− rΘ⋆

i
(Ä

(j)
i,1 ))

∣∣∣
2

f 1

Np

∑

j∈[Np]

∣∣∣(r¹̂i(Ä
(j)
i,0 )− r¹̂i(Ä

(j)
i,1 ))− (r¹⋄

i
(Ä

(j)
i,0 )− r¹⋄

i
(Ä

(j)
i,1 ))

∣∣∣
2

+ 4L1∥Θ⋆
i −Θ

⋄
i ∥2

f C8

(
∥Θ⋆

i −Θ
⋄
i ∥2F +

1

NNp¿
log

(NG′
r

(1/(NNp))

¶

)
+

1

¿

√
Σtail

N
+

kd2 + log(N/¶)

Np

)
,

where C8 > 0 is a constant. The proof is thus complete.

Also, we introduce the following short lemma to upper bound the expected squared difference between the true reward

differences and their estimates use Appendix B.2.

Lemma 6. Assume Assumption 2 holds. For any ¶ ∈ (0, 1], if N g Nunif(Gr, µ0, µ1, ¶), with probability at least 1− ¶, we

have

E
Ä0∼µ0,Ä1∼µ1

[∣∣∣(r¹⋆
i
(Ä0)− r¹⋆

i
(Ä1))− (r¹̂i(Ä0)− r¹̂i(Ä1))

∣∣∣
2
]

f C9

(
∥Θ⋆

i −Θ
⋄
i ∥2F +

1

NNp¿
log

(NG′
r

(1/(NNp))

¶

)
+

1

¿

√
Σtail

N
+

kd2 + log(N/¶)

Np

)
,

where C8 > 0 is a constant.

Proof. From Assumption 2, if N g Nunif(Gr, µ0, µ1, ¶), with probability at least 1− ¶, we have

E
Ä0∼µ0,Ä1∼µ1

[∣∣∣(r¹⋆
i
(Ä0)− r¹⋆

i
(Ä1))− (r¹̂i(Ä0)− r¹̂i(Ä1))

∣∣∣
2
]

f 1.1

Np

∑

j∈[Np]

∣∣∣(r¹⋆
i
(Ä

(j)
i,0 )− r¹⋆

i
(Ä

(j)
i,1 ))− (r¹̂i(Ä

(j)
i,0 )− r¹̂i(Ä

(j)
i,1 ))

∣∣∣
2

f C8

(
∥Θ⋆

i −Θ
⋄
i ∥2F +

1

NNp¿
log

(NG′
r

(1/(NNp))

¶

)
+

1

¿

√
Σtail

N
+

kd2 + log(N/¶)

Np

)
,
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where C8 > 0 is a constant. This is the desired result.

With the assistance of Lemma 6, we are now prepared to prove Theorem B.2.

Theorem B.2. (Individual Expected Value Function Gap). For any user i ∈ [N ] and any ¶ ∈ (0, 1], set · in Equation (3.6)

as

· =

√√√√ c3
2L2

1

(
min
i∈[N ]

∥Θ⋆
i −Θ⋄

i ∥
2
F +

log
(
NG′

r

(1/(NNp))/¶
)

NNp¿
+

1

¿

√
Σtail

N
+

kd2 + log(N/¶)

Np

)
, (B.1)

where c3 > 0 is a constant. Then, with probability at least 1− ¶, the output policy Ã̂i for client i satisfies

J(Ãi,tar; r
⋆
i )− J(Ã̂i; r

⋆
i )

f

√√√√c3

(
∥Θ⋆

i −Θ⋄
i ∥

2
F +

log
(
NG′

r

(1/(NNp))/¶
)

NNp¿
+

1

¿

√
Σtail

N
+

kd2 + log(N/¶)

Np

)
.

Proof. To simplify notation, let Cr = Cr(Gr, Ãi,tar, µi,ref, i). Following the approach in Park et al. (2024), define ri,inf
Ã :=

argmin
r∈Ri

(
J(Ã, ri)− EÄ∼µi,ref

[ri(Ä)]
)
. By the continuity of r and the definition ofRi, for any policy Ã, we have

|r̂i(Äi,1)− r̂i(Äi,0))− (ri,inf
Ã (Äi,1)− ri,inf

Ã (Äi,0)| f L1·.

Thus, it follows that

J(Ãi,tar; r
⋆
i )− J(Ã̂i; r

⋆
i )

= (J(Ãi,tar; r
⋆
i )− EÄ∼µi,ref

[r⋆i (Ä)])− (J(Ã̂i; r
⋆
i )− EÄ∼µi,ref

[r⋆i (Ä)])

f (J(Ãi,tar; r
⋆
i )− EÄ∼µi,ref

[r⋆i (Ä)])− (J(Ãi,tar; r
i,inf
Ãi,tar

)− EÄ∼µi,ref
[ri,inf

Ãi,tar
(Ä)])

+ (J(Ã̂i; r
i,inf

Ã̂i
)− EÄ∼µi,ref

(ri,inf

Ã̂i
(Ä)))− (J(Ã̂i; r

⋆
i )− EÄ∼µi,ref

[r⋆i (Ä)])

f (J(Ãi,tar; r
⋆
i )− EÄ∼µi,ref

[r⋆i (Ä)])− (J(Ãi,tar; r
i,inf
Ãi,tar

)− EÄ∼µi,ref
[ri,inf

Ãi,tar
(Ä)])

f EÄi,0∼Ãi,tar,Äi,1∼µi,ref
[(r⋆i (Äi,1)− r⋆i (Äi,0))− (ri,inf

Ãi,tar
(Äi,1)− ri,inf

Ãi,tar
(Äi,0))] + L1·

f Cr

√
Eµ0,µ1

[∣∣(r⋆i (Äi,1)− r⋆i (Äi,0))− (r̂i(Äi,1)− r̂i(Äi,0))
∣∣2
]
+ L1·

f

√√√√CC2
r

(
∥Θ⋆

i −Θ⋄
i ∥

2
F +

1

NNp¿
log

(NG′
r

(1/(NNp))

¶

)
+

1

¿

√
Σtail

N
+

kd2 + log(N/¶)

Np

)

where C > 0 is a constant. The proof is thus complete.

B.3 Proof of Corollary B.1

Corollary B.1. (Averaged Expected Value Function Gap). For any ¶ ∈ (0, 1], set · as in Equation (B.1). If N g µ2Σtail,

then, with probability at least 1− ¶, the output policies {Ã̂i}Ni=1 satisfy the following inequality:

1

N

N∑

i=1

(J(Ãi,tar; r
⋆
i )− J(Ã̂i; r

⋆
i )) f c4

√
log(NG′

r

(1/(NNp))/¶)

NNp
+

√
Σtail

N
,

where c4 > 0 is a constant.

Proof. From Theorem B.2, by summing over i ∈ [N ], we obtain the following inequality:

1

N

∑

i∈[N ]

J(Ãi,tar; r
⋆
i )− J(Ã̂′

i; r
⋆
i )

f

√√√√√c3


 1

N

∑

i∈[N ]

∥Θ⋆
i −Θ⋄

i ∥
2
F +

1

NNp¿
log

(NG′
r

(1/(NNp))

¶

)
+

1

¿

√
Σtail

N
+

kd2 + log(N/¶)

Np


.
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Furthermore, we can derive the following bound:

1

N

∑

i∈[N ]

J(Ãi,tar; r
⋆
i )− J(Ã̂′

i; r
⋆
i )

f

√√√√c4

(
1

NNp¿
log

(NG′
r

(1/(NNp))

¶

)
+

1

¿

√
Σtail

N
+

kd2 + log(N/¶)

Np

)
.

Here, the inequality holds because Σtail

N f 1
µ

√
Σtail

N for N g µ2Σtail. This proves the corollary.

C Deferred Proofs in Section 4.3

First, we introduce two auxiliary lemmas.

Lemma 7. For reward function r, suppose Assumption 1 holds. Then, we have

1

N

∑

i∈[N ]

∣∣∣log Φ(r⋆i (Ä0)− r⋆i (Ä1))− log Φ(rΘinit+Θ⋄
i
(Ä0) + rΘinit+Θ⋄

i
(Ä1))

∣∣∣ f 2LL′

√
Σtail

N
.

Proof. From the L-Lipschitz continuity of the function log Φ(x), for any trajectories Ä0 and Ä1, we have

∣∣∣log Φ(r⋆i (Ä0)− r⋆i (Ä1))− log Φ(rΘinit+Θ⋄
i
(Ä0)− rΘinit+Θ⋄

i
(Ä1))

∣∣∣

f L
∣∣∣r⋆i (Ä0)− r⋆i (Ä1)− rΘinit+Θ⋄

i
(Ä0) + rΘinit+Θ⋄

i
(Ä1)

∣∣∣ .

From the L′-Lipschitz continuity of the function r(Ä ;Θ) with respect to Θ, we have

∣∣∣r⋆i (Ä0)− r⋆i (Ä1)− rΘinit+Θ⋄
i
(Ä0) + rΘinit+Θ⋄

i
(Ä1)

∣∣∣ f 2L′∥Θ⋆
i −Θ

init −Θ
⋄
i ∥F .

Therefore, we have

1

N

∑

i∈[N ]

∣∣∣r⋆i (Ä0)− r⋆i (Ä1)− rΘinit+Θ⋄
i
(Ä0) + rΘinit+Θ⋄

i
(Ä1)

∣∣∣

f
√√√√ 1

N

∑

i∈[N ]

(
r⋆i (Ä0)− r⋆i (Ä1)− rΘinit+Θ⋄

i
(Ä0) + rΘinit+Θ⋄

i
(Ä1)

)2

f 2L′

√
1

N
∥Θ⋆ −Θinit,(N) −Θ⋄∥2F

= 2L′

√
1

N
∥∆Θ⋆ −Θ⋄∥2F .

Note that Θ⋄ can be derived from the truncated SVD of ∆Θ
⋆, retaining the top k singular values (Golub & Van Loan,

2013; Liu et al., 2024a). Consequently, we have

1

N

∑

i∈[N ]

∣∣∣r⋆i (Ä0)− r⋆i (Ä1)− rΘinit+Θ⋄
i
(Ä0) + rΘinit+Θ⋄

i
(Ä1)

∣∣∣ f 2L′

√
Σtail

N
.

Then we obtain

1

N

∑

i∈[N ]

∣∣∣log Φ(r⋆i (Ä0)− r⋆i (Ä1))− log Φ(rΘinit+Θ⋄
i
(Ä0) + rΘinit+Θ⋄

i
(Ä1))

∣∣∣ f 2LL′

√
Σtail

N
,

which completes the proof.
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Lemma 8. For local reward models parameterized by {Θi}Ni=1 with Θi = Θ
init +∆Θi, if there exists a constant ¶ > 0

such that

∑

i∈[N ]

Eµ0,µ1

[
∥PΘi

(
· | Ä (j)i,0 , Ä

(j)
i,1

)
− PΘ⋆

i

(
· | Ä (j)i,0 , Ä

(j)
i,1

)
∥2
]
f ¶,

then for B, B⋄ ∈ R
d1·k with orthonormal columns satisfies span(B) = span(∆Θ) and span(B⋄) = span(∆Θ

⋆), there

exists a constant C > 0 such that

dist(B,B⋄) f ∥∆Θ− (Θ⋆ −Θ
init,(N))∥2F

(¶′)2
f C

¶

N¿
,

where ¿ = Ãk

(
(∆Θ

⋆)T∆Θ
⋆

N

)
.

Proof. From the Mean Value Theorem, there exists a constant C > 0 such that

∥Θ−Θ
⋆∥2F f C

∑

i∈[N ]

Eµ0,µ1

[
∥PΘi

(
· | Ä (j)i,0 , Ä

(j)
i,1

)
− PΘ⋆

i

(
· | Ä (j)i,0 , Ä

(j)
i,1

)
∥2
]
f C¶.

Define ¶′ := min1fifk,k+1fjfmin{d1,Nd2} |Ãi(∆Θ
⋆)− Ãj(∆Θ)|. Then, we observe that

¶′ = min
1fifk,k+1fjfmin{d1,Nd2}

|Ãi(∆Θ
⋆)− Ãj(∆Θ)| = Ãk(∆Θ

⋆).

Next, by applying the Davis-Kahan Theorem, we obtain

dist2(B,B⋄) f ∥∆Θ
⋆ −∆Θ∥2F
(¶′)2

f C
¶

Ã2
k(∆Θ⋆)

= C
¶

N¿
.

This proves the lemma.

C.1 Proof of Proposition 1

In this section, we introduce the upper bound for the bracketing number of function class Gr(SShareLoRA), which is denoted

by G′
r
.

Proposition 1. Suppose Assumption 1 holds. Then, the bracketing number for function class NG′
r

satisfies

log
(
NG′

r
((NNp)

−1)/¶
)
f O

(
k(d1 +Nd2) log(NNp/¶)

)
. (4.2)

Proof. We start from the zero initialization case, therefore G′
r

is equilvant to:

G′
r
=
{
(rΘi

(·))i∈[N ]

∣∣∣Θ ∈ R
d1·Nd2 , rank(Θ) = k, ∥Θi∥F f B, ∀i ∈ [N ]

}
.

Similar to the proof in Zhan et al. (2023, Proposition 1), we denote by F the function class

Fr =
{
(fi(·))i∈[N ]

∣∣∣ fi(Ä0, Ä1) = Pri(o = 1 | Ä0, Ä1), (ri(·))i∈[N ] ∈ G′r
}
.

Let IF (ϵ) denote the ϵ-bracket number with respect to the ℓ∞ norm. Therefore, there exist a set F̄ satisfies |F̄ | =
IF (ϵ/4N) such that for any (fi(·))i∈[N ] ∈ Gr , there exist

(
f̄i(·)

)
i∈[N ]

∈ F̄ such that

sup
Ä0,Ä1

∣∣fi(Ä0, Ä1)− f̄i(Ä0, Ä1)
∣∣ f ϵ

4N
, ∀i ∈ [N ].

Given (f̄i)i∈[N ], construct a bracket (g1, g2):

[g1(o = 1|Ä0, Ä1)]i = f̄i −
ϵ

4N
, [g1(o = 0|Ä0, Ä1)]i = 1− f̄i −

ϵ

4N
,

[g2(o = 1|Ä0, Ä1)]i = f̄i +
ϵ

4N
, [g2(o = 0|Ä0, Ä1)]i = 1− f̄i +

ϵ

4N
.
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Then, we observe that (g1, g2) satisfies g1(Ä0, Ä1) f g2(Ä0, Ä1), ∥g1(Ä0, Ä1) − g2(Ä0, Ä1)∥1 f ϵ and g1(Ä0, Ä1) f Pr(· |
Ä0, Ä1) f g2(Ä0, Ä1). Therefore, our goal is to bound IF (ϵ/4N). From the mean value theorem, for a, b ∈ [−2R, 2R],
there exist constant CR = maxa∈[−2R,2R] |Φ′(a)| such that

|Φ(b)− Φ(a)| f CR|b− a|.

Denote f = [f1, · · · , fN ]¦, we obtain

∣∣fi(Ä0, Ä1)− f̄i(Ä0, Ä1)
∣∣ f CR|r(Ä0)− r(Ä1)− r′(Ä0) + r′(Ä1)|
f 2CRL1∥vec(Θ)− vec(Θ′)∥
= 2CRL1 ∥diag(B)vec(W)− diag(B′)vec(W′)∥
f 2CRL1 ∥vec(W)− vec(W′)∥+ 2CRL1B ∥diag(B)− diag(B′)∥

f max{1, B}2CRL1

∥∥∥∥
[
vec(B)
vec(W)

]
−
[
vec(B′)
vec(W′)

]∥∥∥∥. (C.1)

Denote C ′
R = max{1, B} · 2CRL1. From Equation (C.1), we conclude that the ϵ/4N -bracket number IF (ϵ/4N) is

bounded by the ϵ′-covering number of a (d1k +Nd2k)-dimensional ball centered at the origin with radius B with respect

to the ℓ2 norm, where

ϵ′ =
ϵ

4N ·max{1, B} · 2CRL1
.

According to Wainwright (2019), this covering number is upper bounded by O
(
(d1k +Nd2k) log

(
N
ϵ

))
. There-

fore, for ϵ = 1/(NNp), we conclude that the covering number NG′
r

(1/(NNp)) is upper bounded by

O ((d1k +Nd2k) log(NNp)). We note that for G′
r|Θinit , following the same proof process, we can show that

G′
r|Θinit f O ((d1k +Nd2k). log(NNp)) .

The proof is thus complete.

C.2 Proof of Theorem 4.1

We note that the proof of Theorem 4.1 is a natural extension of the argument used in Theorem B.1 as detailed in Appendix B.

Theorem 4.1. (Closeness between B̂ and B
⋄). Suppose Assumption 1 holds. For any ¶ ∈ (0, 1], with probability at least

1− ¶, it holds that

dist(B̂,B⋄)

f c1

√
1

NNp¿
log

(
NG′

r

(
1

NNp

)
1

¶

)
+

1

¿

√
Σtail

N
,

where c1 > 0 is a constant.

Proof. We define the event E1, E2 as satisfying Lemma 1, Lemma 3 with ¶ ← ¶/2, respectively, so we have P(E1 ∩ E2) >
1− ¶. We will only consider the under event E1 ∩ E2. From Lemma 4, we have

∑

i∈[N ]

∑

j∈[Np]

logPΘ⋆
i
(o

(j)
i | Ä

(j)
i,0 , Ä

(j)
i,1 ) f

∑

i∈[N ]

∑

j∈[Np]

logPΘ⋄
i
+Θinit(o

(j)
i | Ä

(j)
i,0 , Ä

(j)
i,1 ) + cNp

√
NΣtail,

Then, from the definition of Θ̂, we have

∑

i∈[N ]

∑

j∈[Np]

logPΘ⋆
i
(o

(j)
i | Ä

(j)
i,0 , Ä

(j)
i,1 ) f

∑

i∈[N ]

∑

j∈[Np]

logP
Θ̂i

(o
(j)
i | Ä

(j)
i,0 , Ä

(j)
i,1 ) + cNp

√
NΣtail.
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Therefore, similar to the proof in Corollary B.1, we obtain that

1

N

∑

i∈[N ]

Eµ0,µ1

[
|(rΘi

(Äi,0)− rΘi
(Äi,1))− (r⋆i (Äi,0)− r⋆i (Äi,1))|2

]

f »2

N

∑

i∈[N ]

Eµ0,µ1

[
∥PΘi

(· | Ä (j)i,0 , Ä
(j)
i,1 , i)− PΘ⋆

i
(· | Ä (j)i,0 , Ä

(j)
i,1 , i)∥21

]

f C3»
2

NNp
log(NGr

(1/(NNp))/¶) + C4»
2

√
Σtail

N
.

(C.2)

Combining this with Lemma 8, we obtain

dist2(B,B⋄) f CC3

NNp¿
log

(NGr
(1/(NNp))

¶

)
+

CC4

¿
»2

√
Σtail

N
.

Additionally, we have

∥B−B
⋄∥2F f dist2(B,B⋄) f CC3

NNp¿
log

(NGr
(1/(NNp))

¶

)
+

CC4

¿
»2

√
Σtail

N
.

Hence, the proof is complete.

C.3 Proof of Theorem 4.2

We set the tolerance level · in Algorithm 1 to satisfy

· f c4

√√√√
min
i∈[N ]

∥Θ⋆
i −Θ⋄

i ∥
2
F +

log
(
NG′

r

(
1

NNp

)
/¶
)

NNp¿
+

1

¿

√
Σtail

N
+

kd2 + log
(
N
¶

)

Np
, (C.3)

where c4 > 0 is a constant. In Theorem 4.2, we build upon the proof established for Theorem B.2 in Appendix B.

Theorem 4.2. (Individual Expected Value Function Gap). Suppose Assumption 1 and Assumption 2

hold. For any ¶ ∈ (0, 1], with probability at least 1 − ¶, the output Ã̂i for any client i satisfies

J(Ãi,tar; r
⋆
i )− J(Ã̂i; r

⋆
i )

f c2

√√√√√


log
(
NG′

r

( 1
NNp

) 1¶

)

NNp¿
+

kd2 + log(N¶ )

Np
+

1

¿

√
Σtail

N
+ bi




where bi is defined as bi := ∥∆Θ
⋆
i −Θ

⋄
i ∥2F and c2 > 0 is a constant.

Proof. Recall that ∆Θ
⋆
i = Θ

⋆
i − Θ

init and Θ
⋄ = argminΘ:rank(Θ)=k ∥Θ − ∆Θ

⋆∥. By leveraging the continuity of

rΘ(·), we can establish the following inequality:

∣∣∣(r
Θ̂i

(Ä
(j)
i,0 )− r

Θ̂i
(Ä

(j)
i,1 ))− (rΘ⋆

i
(Ä

(j)
i,0 )− rΘ⋆

i
(Ä

(j)
i,1 ))

∣∣∣
2

f 2
∣∣∣(r

Θ̂i
(Ä

(j)
i,0 )− r

Θ̂i
(Ä

(j)
i,1 ))− (rΘinit+Θ⋄

i
(Ä

(j)
i,0 )− rΘinit+Θ⋄

i
(Ä

(j)
i,1 ))

∣∣∣
2

+ 4L∥∆Θ
⋆
i −Θ

⋄
i ∥2.

Therefore, similar to our proof in Appendix B.2, we will show that with probability at least 1− ¶, we have

J(Ãi,tar; ri)− J(Ã̂i; r
⋆
i )

f c2

√√√√
(
∥∆Θ⋆

i −Θ⋄
i ∥

2
F +

log (NGr
(1/(NNp))/¶)

NNp¿
+

1

¿

√
Σtail

N
+

kd2 + log(N/¶)

Np

)
.

This concludes the proof.
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C.4 Proof of Corollary 4.1

We set the tolerance level · in Algorithm 1 as defined in Equation (C.3). Similarly, the proof of Corollary 4.1 follows that

of Corollary B.1 presented in Appendix B.

Corollary 4.1. (Averaged Expected Value Function Gap). Suppose Assumption 1 and Assumption 2 hold. For any ¶ ∈
(0, 1], with probability at least 1− ¶, the output policies {Ã̂i}Ni=1 satisfy

1

N

∑

i∈[N ]

(J(πi,tar; r
⋆
i )− J(π̂i; r

⋆
i ))

≤ c3

√√√√√




log

(
NG′

r

( 1
NNp

) 1
¶

)

NNpν
+

kd2 + log(N
¶
)

Np

+
1

ν

√
Σtail

N



,

where c3 > 0 is a constant.

Proof. From Theorem 4.2, by summing over i ∈ [N ], we obtain the following inequality:

1

N

∑

i∈[N ]

J(Ãi,tar; r
⋆
i )− J(Ã̂′

i; r
⋆
i )

f c2

√√√√√


 1

N

∑

i∈[N ]

∥Θ⋆
i −Θ⋄

i ∥
2
F +

1

NNp¿
log

(NG′
r

(1/(NNp))

¶

)
+

1

¿

√
Σtail

N
+

kd2 + log(N/¶)

Np


.

Similar to the proof for Corollary B.1, we have

1

N

∑

i∈[N ]

J(Ãi,tar; r
⋆
i )− J(Ã̂′

i; r
⋆
i ) f c3

√√√√
(

1

NNp¿
log

(NG′
r

(1/(NNp))

¶

)
+

1

¿

√
Σtail

N
+

kd2 + log(N/¶)

Np

)
.

This is the desired result.
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D Experiment Details

D.1 Algorithms

In this section, we present the practical algorithms used for empirical evaluation. Algorithm 2 outlines the P-ShareLoRA

algorithm with a warm-up phase. Notably, by setting the number of warm-up epochs Tw = 0, Algorithm 2 re-

duces to the vanilla P-ShareLoRA algorithm. Conversely, setting Tw = TGlobal transforms the algorithm into

global-P-ShareLoRA. We define the per-sample function as f(Θ; o, Ä0, Ä1) := logPΘ(o | Ä0, Ä1).

Algorithm 2 P-ShareLoRA for RLHF (with warm-up)

Input: Pre-trained model parameters W ; Human preference dataset D̂; Rank r; Scheduled learning rate ¸t; Number of

warm-up epochs Tw; Number of epochs T .

Initialize: Low-rank matrices A ∈ R
d×r, B ∈ R

r×d, Bi ∈ R
r×d ∀i ∈ [N ] (e.g., randomly or zeros).

Freeze pre-trained weights W .

Warm-up phase:

for each epoch t = 1 to Tw do

for each {o(j)i , Ä
(j)
i,0 , Ä

(j)
i,1 } ∈ D̂ do

Compute f(W +AtBt; o
(j)
i , Ä

(j)
i,0 , Ä

(j)
i,1 ).

Update At+1 ← At − ¸t∇Atf .

Update Bt+1 ← Bt − ¸t∇Btf .

end for

end for

Running P-ShareLoRA:

Set A1 ← ATw , B1
i ← BTw ∀i ∈ [N ].

for each epoch t = 1 to T do

for each random sampled {o(j)i , Ä
(j)
i,0 , Ä

(j)
i,1 } ∈ D̂ do

Compute f(W +AtBt
i ; o

(j)
i , Ä

(j)
i,0 , Ä

(j)
i,1 ).

Update At+1 ← At − ¸t∇Atf .

Update Bt+1
i ← Bt

i − ¸t∇Bt
i
f .

end for

end for

Policy optimization by PPO-Clip (Schulman et al., 2017):

Initialize policy parameters for each agent ¹i, ∀i ∈ [N ].
for each PPO iteration k = 1 to K do

for each agent i = 1 to N in parallel do

Collect a set of trajectories Di by running policy Ã¹t
i
.

Compute rewards r
(i)
t and advantage estimates Â

(i)
t using GAE.

Compute the PPO surrogate loss:

LCLIP
i (¹i) = Et

[
min

(
Ä
(i)
t (¹ti)Â

(i)
t , clip

(
Ä
(i)
t (¹ti), 1− ϵ, 1 + ϵ

)
Â

(i)
t

)]
,

where Ä
(i)
t (¹i) =

Ã¹i(a
(i)
t |s(i)t )

Ã¹old
i
(a

(i)
t |s(i)t )

.

Update ¹t+1
i ← ¹ti − ¸t∇¹LCLIP

i .

end for

end for

Output: Fine-tuned model parameters for each reward model AT , {BT
i }Ni=1; Fine-tuned model parameters for each

local policy {¹Ki }Ni=1.

We also detail the baseline algorithms LoRA-global and LoRA-local in Algorithm 3 and Algorithm 4 for comparison.
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Algorithm 3 Baseline algorithm 1: LoRA-global

Input: Pre-trained model parameters W ; Human preference dataset D̂; Rank r; Learning rate ¸; Number of epochs

TGlobal.

Initialize: Low-rank matrices A ∈ R
d×r, B ∈ R

r×d (e.g., randomly or zeros).

Freeze pre-trained weights W .

for each epoch t = 1 to TGlobal do

for each random sampled {o(j)i , Ä
(j)
i,0 , Ä

(j)
i,1 } ∈ D̂ do

Compute f(W +AtBt; o
(j)
i , Ä

(j)
i,0 , Ä

(j)
i,1 ).

Update At+1 ← At − ¸∇Atf .

Update Bt+1 ← Bt − ¸∇Btf .

end for

end for

Output: Fine-tuned model parameters for a global reward model ATGlobal , BTGlobal .

Algorithm 4 Baseline algorithm 2: LoRA-local

Input: Pre-trained model parameters W ; Human preference dataset D̂; Rank r; Learning rate ¸; Number of epochs

Tlocal.

Initialize: Low-rank matrices Ai ∈ R
d×r, Bi ∈ R

r×d ∀i ∈ [N ] (e.g., randomly or zeros).

Freeze pre-trained weights W .

for each agent i = 1 to N in parallel do

for each epoch t = 1 to Tlocal do

for each random sampled {o(j)i , Ä
(j)
i,0 , Ä

(j)
i,1 } ∈ D̂i do

Compute f(W +At
iB

t
i ; o

(j)
i , Ä

(j)
i,0 , Ä

(j)
i,1 ).

Update At+1
i ← At − ¸∇Atf .

Update Bt+1
i ← Bt − ¸∇Btf .

end for

end for

end for

Output: Fine-tuned model parameters for each reward model {ATlocal

i }Ni=1, {BTlocal

i }Ni=1.

D.2 Implementation Details

Hyperparamters. For all experiments conducted using both Vanilla LoRA (LoRA-global and LoRA-local) and

P-ShareLoRA based algorithms, we employed a batch size of 128. The initial learning rate was set to 5 · 10−5, with

a linear scheduler applied to adjust the learning rate during training. For both GPT-J 6B and Llama3 8B models, the

maximum token length was set to 2048. The rank k in all LoRA modules was fixed at 32, and the scaling factor ³ was set

to 16. To simplify training, we applied LoRA only to the Q (query) and K (key) matrices for both models.

In the case of the P-ShareLoRA(G), the initialization process was critical for ensuring effective fine-tuning. Specifically,

the personalized A matrices and the shared B matrix were initialized using the A and B matrices obtained after two epochs

of training with the LoRA-globalmethod. Following this initialization, the PLAS model was fine-tuned for an additional

epoch to refine the parameters further.

To maintain a fair comparison between P-ShareLoRA(G) and the other training methods, we adjusted the starting

learning rate for P-ShareLoRA(G). Given that a learning rate scheduler was used, the initial learning rate for PLAS-FT

was set to one-third of the original learning rate, specifically 1.67 · 10−5. This adjustment ensures that the fine-tuning

process operates under comparable training dynamics as the baseline methods.

All experiments were implemented based on TRL†, and additional hyperparameters were kept consistent across different

methods.

Computational Resources. Our experiments were conducted using two NVIDIA A100 80GB GPUs. Training

†https://huggingface.co/docs/trl/en/index
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P-LoRAShare(SI) on a single GPU took around six hours, but this time could be reduced with multi-GPU training.

D.3 Additional Experiment Results

Individual Labeler Performance. In Section 5, we present the averaged preference estimation accuracy across all

five labelers. In this section, we also provide the results of the separate estimation accuracy for each labeler in Fig-

ure 2. We observe that our proposed methods, P-ShareLoRA(SI), P-ShareLoRA(G), and P-ShareLoRA(WU),

consistently outperform the baseline methods LoRA-global and LoRA-local for most of the labelers. Specifi-

cally, P-ShareLoRA(WU) achieves the highest accuracy for most labelers, peaking at 0.7803 for Labeler 1. While

P-ShareLoRA(SI) and P-ShareLoRA(G) also show significant improvements over the baseline methods for label-

ers 0,1 and 2.
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Figure 2: Accuracies of Different Methods Across Labelers (Llama3 8B)

Share Down-projection VS Share Up-projection. Previous works (Tian et al., 2024; Guo et al., 2024) have observed that

the cosine similarity among down-projection matrices (A matrices) is significantly higher than that among up-projection

matrices (B matrices). They interpret this as indicating that the down-projection matrices serve as a shared representation,

mapping the input into a common representation space. Based on this observation, they introduce methods of sharing

down-projection matrices among clients or experts. In contrast, our study finds that sharing the up-projection matrices (B
matrices) yields better performance, as illustrated in Figure 3. Specifically, the approach of sharing B matrices consistently

outperforms the method of sharing A matrices across all labelers and for both GPT-J 6B and Llama 3 8B models.
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Figure 3: Compare Accuracy between Share A and Share B
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