

12th National Conference
on Earthquake Engineering
Salt Lake City, Utah
27 June - 1 July 2022

Hosted by the Earthquake Engineering Research Institute

Shake Table Testing of a Frame-Spine System with Force-Limiting Connections

L. Fahnestock¹, R. Sause², J. Ricles³, B. Simpson⁴, M. Kurata⁵, T. Okazaki⁶, Y. Kawamata⁷,
Z. Tao⁸, J. Duke⁹, D. Rivera¹⁰, B. Astudillo¹¹, Y. Qie¹²

ABSTRACT

A novel structural system is being developed collaboratively by researchers from the United States and Japan to protect essential facilities, such as hospitals, where damage to the building and its contents and occupant injuries must be prevented and where continuity of operation must be maintained. The development is focusing on new construction, but it also has potential for use in seismic retrofit of deficient existing buildings. The new system employs practical structural components, including (1) flexible steel moment frames, (2) stiff steel elastic spines and (3) force-limiting connections (FLC) that connect the frames to the spines, to economically control building response and prevent damaging levels of displacement and acceleration. The

¹ Professor, Dept. of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA (email: fhnstck@illinois.edu)

² Joseph T. Stuart Professor, Dept. of Civil and Environmental Engineering, Lehigh University, Bethlehem, PA 18015, USA (email: rs0c@lehigh.edu)

³ Bruce G. Johnston Professor, Dept. of Civil and Environmental Engineering, Lehigh University, Bethlehem, PA 18015, USA (email: jmr5@lehigh.edu)

⁴ Assistant Professor, School of Civil and Construction Engineering, Oregon State University, Corvallis, OR 97331, USA (email: barbara.simpson@oregonstate.edu)

⁵ Associate Professor, Disaster Prevention Research Institute, Kyoto University, Uji-shi, Kyoto, 611-0011 JAPAN (email: kurata.masahiro.5c@kyoto-u.ac.jp)

⁶ Professor, Division of Architectural and Structural Design, Hokkaido University, Sapporo, Hokkaido, 060-0808 JAPAN (email: tokazaki@eng.hokudai.ac.jp)

⁷ Chief Researcher, Hyogo Earthquake Engineering Research Center, National Research Institute for Earth Science and Disaster Resilience, Miki-shi, Hyogo, 673-0515, JAPAN (email: kawamata@bosai.go.jp)

⁸ Graduate Research Assistant, Dept. of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA (email: zhuoqit2@illinois.edu)

⁹ Graduate Research Assistant, Dept. of Civil and Environmental Engineering, Lehigh University, Bethlehem, PA 18015, USA (email: jad418@lehigh.edu)

¹⁰ Graduate Research Assistant, School of Civil and Construction Engineering, Oregon State University, Corvallis, OR 97331, USA (email: riveratd@oregonstate.edu)

¹¹ Graduate Research Assistant, School of Civil and Construction Engineering, Oregon State University, Corvallis, OR 97331, USA (email: astudilb@oregonstate.edu)

¹² Doctor Student, Division of Architectural and Structural Design, Hokkaido University, Sapporo, Hokkaido, 060-0808 JAPAN (email: qieyi1990@eis.hokudai.ac.jp)

Fahnestock L, Sause R, Ricles J, Simpson B, Kurata M, Okazaki T, Kawamata Y, Tao Z, Duke J, Rivera D, Astudillo B, Qie Y. Shake Table Testing of a Frame-Spine System with Force-Limiting Connections. *Proceedings of the 12th National Conference in Earthquake Engineering*, Earthquake Engineering Research Institute, Salt Lake City, UT. 2022.

moment frames serve as the economical primary element of the system to resist a significant proportion of the lateral load, dissipate energy through controlled nonlinear response and provide persistent positive lateral stiffness. The spines distribute response evenly over the height of the building and prevent story mechanisms, and the FLC reduce higher-mode effects and provide supplemental energy dissipation. The full-scale shake-table testing of a building with the Frame-Spine-FLC System, which represents a hospital facility and includes realistic nonstructural components and medical equipment, validated the functionality of the structural system.

Introduction

Modern seismic lateral force-resisting systems (LFRS) are designed and detailed to exhibit stable and ductile response under strong earthquakes. However, the inelastic deformations and damage accumulated in such scenarios can lead to degraded stiffness and strength of the LFRS. In addition, a properly-designed LFRS is still susceptible to lateral demands concentrated in a limited number of stories and story mechanisms [1,2]. These effects can cause damage to drift-sensitive structural and nonstructural components, render repairs impractical, and even lead to building collapse. Dual systems, combining a stiff braced frame or wall with a flexible moment-resisting frame (MRF), possess an elastic restoring force from the MRF that at least partially mitigates concentrated lateral drifts after inelastic response in the braced frame or wall [3], but the frame action of the MRF is insufficient in distributing inelastic demands [4], and dual systems are still prone to developing story mechanisms. Instead, stiff elastic vertical structural components, or spines, can be combined with a ductile LFRS to impose a more uniform drift profile over the height of a building [5-11]. Spines are designed not to yield, thereby providing an elastic lateral load path to distribute demands more uniformly and delay or prevent story mechanisms. However, due to the lack of a nonlinear mechanism, higher-mode story shear and acceleration demands in such systems are not well constrained [12-17], and they can result in uneconomical or impractical proportioning of the spine and damage to acceleration-sensitive nonstructural components.

To mitigate floor-level force demands, recent work has used deformable force-limiting connections (FLC) to link each floor of a flexible gravity load-resisting system to a stiff LFRS [18-22]. The deformable elements within the FLC allow relative motion between the gravity system and LFRS, limiting the magnitude of the lateral forces transferred from each floor to the LFRS and resulting in reduced floor accelerations. Shake table tests and numerical simulations have validated the use of FLC with only modest relative deformation demands to achieve the above goals.

Herein, the benefits of the spine and FLC are combined to develop a practical and economical LFRS to control multi-modal seismic response and protect a building from damaging lateral drift and acceleration demands. The resulting Frame-Spine-FLC System is intended to provide enhanced building performance to protect structural and nonstructural components, especially those in essential facilities such as hospitals, where damage to the building and its contents and occupant injuries must be prevented.

Design Concept

The Frame-Spine-FLC System has several potential variations, and the configuration currently being studied consists of three primary components: (1) base steel MRFs, (2) stiff and strong elastic steel spines, and (3) FLC that connect the spines to the MRFs. The steel MRFs resist a portion of the lateral load and dissipate energy through ductile response. The spines are pinned at their bases and are designed to remain elastic, enforcing a nearly uniform story drift profile over the height of the MRF. The spines can mobilize the energy dissipation capacity of every story of the MRF, even an MRF with a severe tendency to form a story mechanism. The FLC limit the seismic forces transferred from the MRF to the spines, reducing the magnitude of the higher-mode acceleration demands compared to a Frame-Spine system without FLC.

Full-Scale Shake Table Test

To validate the concept of Frame-Spine-FLC System, full-scale shake table testing was performed for a building with the Frame-Spine-FLC System at the E-Defense shake-table facility, Hyogo Earthquake Engineering Research Center in Japan. Two sets of testing were performed, namely MRF-Spine tests and MRF-Spine-FLC tests. In the MRF-Spine tests, an MRF was connected to the spines by slip-critical bolted connections – thereby not restricting the shear transferred between the MRF and spines. In the MRF-Spine-FLC tests, the same MRF was connected to the spines by a combination of slip-critical bolted connections and FLC.

A record from the Sepulveda Valley Hospital during the 1994 Northridge earthquake was selected as the primary ground motion input based on its large spectral pseudo-accelerations near the second-mode period [23]. It was used in both the MRF-Spine tests and the MRF-Spine-FLC tests to allow direct comparison between acceleration and drift results. The JMA Kobe record from the 1995 Kobe earthquake was used for the MRF-Spine-FLC tests to provide additional insight into the behavior of the Frame-Spine-FLC System for differing ground motion characteristics.

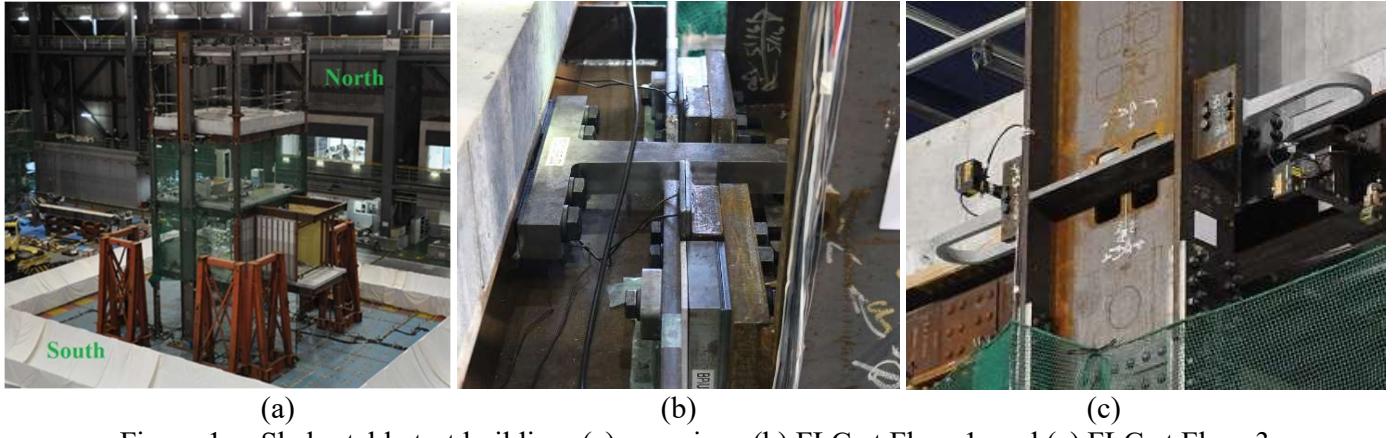


Figure 1. Shake-table test building: (a) overview, (b) FLC at Floor 1, and (c) FLC at Floor 3

The base MRF was adapted from an existing three-story building that was tested previously as base-isolated, and thus not damaged, for the Holistic Assessment of Seismic Damage in Medical Facilities portion of the Japanese project Enhancement of Resilience for Tokyo Metropolitan Area [24,25]. The three-story building on its own with column bases fixed can represent a hospital building in Anaheim, California. However, to demonstrate the capability of spines in helping a deficient MRF form a uniform drift profile, the base isolators were removed and the MRF column bases were placed on clevises to induce a tendency to form a severe story mechanism.

At the predicted second modal period of the three-story pinned-base building, the spectral acceleration of the Northridge ground motion was near the peak value. Thus, with the addition of spines, the building becomes stiffer, the second modal period shorter, and the spectral acceleration lower, which does not represent the common case for buildings with more than three stories. To address this issue, it was determined that the mass of the roof of the three-story building should be increased, and a fourth floor with the same mass should be added onto the top of the original building. In this way, after adding spines, the spectral acceleration calculated using the second modal period approaches the peak value, and higher-mode effects can be fully excited, as shown in Fig. 2. This additional story was designed and fabricated in the U.S., shipped to Japan, and added to the existing three-story building at E-Defense.

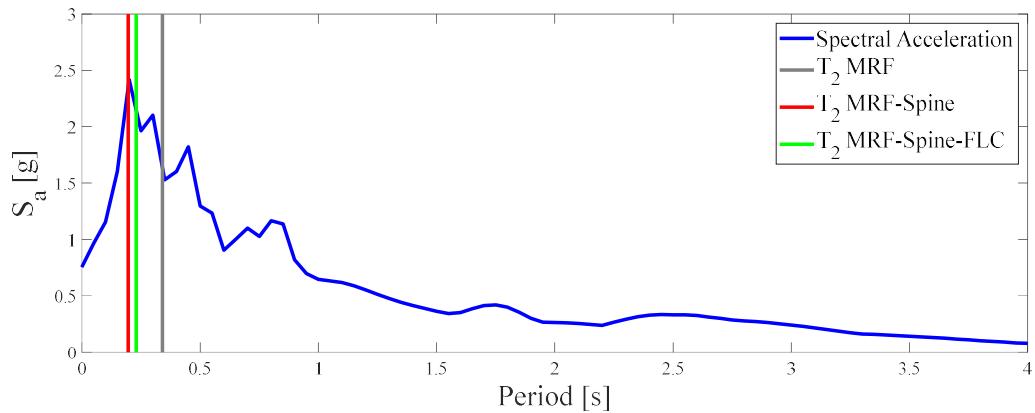


Figure 2. Spectral acceleration diagram of Northridge ground motion

As shake table testing was conducted along one primary building axis, spines were installed on only two sides of the building, as shown in Fig. 1. In the MRF-Spine tests, each spine was attached at all four floors, Floors 1-4, by slip-critical bolted connections. In the MRF-Spine-FLC tests, each spine was attached to Floors 1, 2 and 3 by FLC,

and attached to Floor 4 (the roof level) by a slip-critical bolted connection. The FLC at Floor 1 consisted of a yielding T-shaped cantilever, bearing plates and ties, as shown in Fig. 1(b). The FLC at Floor 2 consisted of bearing plates and ties only with no yielding element as the horizontal force transferred to the spine at this floor was intended to be zero. The FLC at Floor 3 consisted of two yielding U-shaped bars, bearing plates and ties, as shown in Fig. 1(c). The T-shaped cantilevers were customized elements developed at Lehigh University, and the U-shaped bars were standard NSUD40 elements produced by Nippon Steel Engineering Corporation.

Preliminary Test Results

Table 1 presents the peak floor accelerations from the 100% Northridge excitation for the MRF-Spine and MRF-Spine-FLC tests. Unrealistic spikes in the original acceleration records were identified and removed based on the plots of the first derivative of the acceleration with respect to time, i.e., the jerk [26]. Then, a sixth-order bi-directional Butterworth filter was used to remove high-frequency noise without causing phase distortion [27]. The acceleration records from two accelerometers on the same floor were averaged to approximately represent the acceleration at the center of each floor.

Table 1. Peak floor accelerations [g]

Configuration	Floor 1	Floor 2	Floor 3	Floor 4
MRF-Spine	1.66	1.98	1.05	1.14
MRF-Spine-FLC	1.35	1.38	0.91	0.90

The preliminary results demonstrate the capability of FLC in controlling floor accelerations. During the MRF-Spine test with 100% Northridge ground motion, accelerations were measured approaching 2g, at Floor 2 – which are large enough to cause damage to acceleration-sensitive nonstructural components. In the MRF-Frame-Spine test with the same ground motion, the peak acceleration at Floor 2 significantly decreased. Similar, if not as significant, reductions in accelerations were observed at other floor levels.

Conclusions

A novel structural system that employs stiff, elastic spines and force-limiting connections (FLC) has been developed to provide resilient response in a deficient base moment-resisting frame (MRF) building. Shake-table test results indicate that a more uniform story drift profile can be achieved in a MRF when elastic spines are added, and that increased floor accelerations from adding elastic spines can be reduced by implementing FLC.

Acknowledgments

The research described in this paper is funded by the U.S. National Science Foundation under the project Collaborative Research: Frame-Spine System with Force-Limiting Connections for Low-Damage Seismic-Resilient Buildings (CMMI 1928906, 1926326, and 1926365), and additional support is provided by the American Institute of Steel Construction, the Disaster Prevention Research Institute (DPRI) at Kyoto University, and JSPS KAKENHI Grant Number 20H00269. The research is also conducted in cooperation with a major Japanese research initiative, Enhancement of Resilience for Tokyo Metropolitan Area (P.I., Akira Nishitani, Waseda University), funded by the National Research Institute for Earth Science and Disaster Resilience (NIED) and the Ministry of Education, Culture, Sports, Science and Technology (MEXT). Within this project, a steel and protective systems team is focusing on Holistic Assessment of Seismic Damage in Medical Facilities (Lead, Masahiro Kurata, Kyoto University). Support for the E-Defense test that was provided by many additional organizations and people is gratefully recognized: Kouhei Hattori (Waseda University); Koichi Kajiwara (E-Defense Director); Nippon Steel; Nippon Steel Metal Products; Nippon Steel Engineering; Toyoki Kuroiwa and Masao Terashima (Nippon Steel Engineering); Schuff Steel; Liangjie Qi, Jiantao Huang and Taketo Kobayashi (DPRI); Ryosuke Matsuda (Hokkaido University); Yoshihiro Nitta (Ashikaga University); Nikkiso; Shinji Aida (Kyoto University Hospital); ATOM Medical; Satoko Osanai (Kousei Hospital), Aya Nomura (Ogaki City Hospital).

References

1. Suita K, Yamada S, Tada M, Kasai K, Matsuoka Y, Shimada Y. Collapse experiment on 4-story steel moment frame Part 2 Detail of collapse behavior. *Proceedings of the 14th World Conference on Earthquake Engineering*, Beijing, China, 2008.
2. Lignos DG, Krawinkler H, Whittaker AS. Prediction and validation of sidesway collapse of two scale models of a 4-story steel moment frame. *Earthquake Engineering and Structural Dynamics* 2011; **40** (7): 807-825.
3. Kiggins S, Uang CM. Reducing residual drift of buckling-restrained braced frames as a dual system. *Engineering Structures* 2006; **28** (11): 1525-1532.
4. Tremblay R. Achieving a stable inelastic seismic response for multi-story concentrically braced steel frames. *Engineering Journal* 2003; **40** (2): 111-129.
5. Tremblay R, Poncet L. Improving the seismic stability of concentrically braced steel frames. *Engineering Journal* 2007; **44** (2): 103-116.
6. Qu Z, Wada A, Motoyui S, Sakata H, Kishiki S. Pin supported walls for enhancing the seismic performance of building structures. *Earthquake Engineering and Structural Dynamics* 2012; **41** (14): 2075-2091.
7. Takeuchi T, Chen X, Matsui R. Seismic performance of controlled spine frames with energy-dissipating members. *Journal of Constructional Steel Research* 2015; **114**: 51-65.
8. Pollino M, Slovenec D, Qu B, Mosqueda G. Seismic rehabilitation of concentrically braced frames using stiff rocking cores. *Journal of Structural Engineering* 2017; **143** (9).
9. Grigorian C, Grigorian M. Performance control and efficient design of rocking-wall moment-frames. *Journal of Structural Engineering* 2016; **142** (2).
10. Laghi V, Palermo M, Gasparini G, Trombetti T. Strong-back system coupled with framed structure to control the building seismic response. *Journal of Civil & Environmental Engineering* 2017; **7** (2).
11. Simpson B, Mahin S. Experimental and numerical study of a strongback braced frame system to mitigate weak story behavior. *Journal of Structural Engineering* 2018; **144** (2).
12. Eberhard MO, Sozen MA. Behavior-based method to determine design shear in earthquake-resistant walls," *Journal of Structural Engineering* 1993; **119** (2): 619-640.
13. Kurama Y, Sause R, Pessiki S, Lu LW. Seismic response evaluation of unbonded post-tensioned precast walls. *ACI Structural Journal* 2002; **99** (5): 641-651.
14. Priestley MJN. Does capacity design do the job? An investigation of higher modes effects in cantilever walls. *Bulletin of the New Zealand Society for Earthquake Engineering* 2003; **36** (4): 276-292.
15. Roke D, Sause R, Ricles J, Gonner N. Design concepts for damage-free seismic resistant self-centering steel concentrically-braced frames. *Proceedings of the 14th World Conference on Earthquake Engineering*, Beijing, China, 2008.
16. Sause R, Ricles JM, Roke DA, Chancellor NB, Gonner N. Seismic performance of a self-centering rocking concentrically-braced frame. *Proceedings of the 9th U.S. National and 10th Canadian Conference on Earthquake Engineering*, Toronto, Canada, 2010.
17. Chen L, Tremblay R, Tirca L. Practical seismic design procedure for steel braced frames with segmental elastic spines. *Journal of Constructional Steel Research* 2019; **152**: 395-415.
18. Tsampras G. Deformable force-limiting floor diaphragm connection for earthquake-resistant buildings. Ph.D. Dissertation, Department of Civil and Environmental Engineering, Lehigh University, Bethlehem, USA, 2016.
19. Tsampras G, Sause R, Zhang D, Fleischman RB, Restrepo JI, Mar D, Maffei J. Development of deformable connection for earthquake-resistant buildings to reduce floor accelerations and force responses. *Earthquake Engineering and Structural Dynamics* 2016; **45** (9): 1473-1494.
20. Tsampras G, Sause R, Fleischman RB, Restrepo JI. Experimental study of deformable connection consisting of friction device and rubber bearings to connect floor system to lateral force resisting system. *Earthquake Engineering and Structural Dynamics* 2017; **47** (4): 1032-1053.
21. Tsampras G, Sause R, Fleischman R, Restrepo J, Zhang Z, Shakya U, Zhang D, Maffei J, Mar D. Experimental study of connection between floor system and lateral force resisting system. *Proceedings of the 11th U.S. National Conference on Earthquake Engineering*, Los Angeles, USA, 2018.
22. Zhang Z, Fleischman R, Restrepo J, Nema A, Zhang D, Guerrini G, Shakya U, Tsampras G, Sause R. Shake table test performance of an inertial force-limiting floor anchorage system. *Earthquake Engineering and Structural Dynamics* 2018; **47** (10):

1987-2011.

23. Rivera D. Numerical analysis of a spine as a retrofit of a moment-resisting frame. M.S. Thesis, Department of Civil and Construction Engineering, Oregon State University, Corvallis, USA, 2020.
24. Kurata M et al. E-Defense Shake Table Test of Steel Hospital building: Part I Test Plan. Summary for AIJ Annual Meeting, 2021. (in Japanese)
25. Kawamata Y et al. E-Defense Shake Table Test of Steel Hospital building: Part II Preliminary Report of Results. Summary for AIJ Annual Meeting, 2021. (in Japanese)
26. Seo CY, Sause R. Nonlinear structural response to low-cut filtered ground acceleration records. *Journal of Earthquake Engineering* 2013; **17** (8): 1212-1232.
27. Boore DM, Bommer JJ. Processing of strong-motion accelerograms: Needs, options and consequences. *Soil Dynamics and Earthquake Engineering* 2005; **25** (2): 93-115.