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Abstract

Although transformers have demonstrated impres-

sive capabilities for in-context learning (ICL) in

practice, theoretical understanding of the under-

lying mechanism that allows transformers to per-

form ICL is still in its infancy. This work aims to

theoretically study the training dynamics of trans-

formers for in-context classification tasks. We

demonstrate that, for in-context classification of

Gaussian mixtures under certain assumptions, a

single-layer transformer trained via gradient de-

scent converges to a globally optimal model at

a linear rate. We further quantify the impact of

the training and testing prompt lengths on the ICL

inference error of the trained transformer. We

show that when the lengths of training and test-

ing prompts are sufficiently large, the prediction

of the trained transformer approaches the ground

truth distribution of the labels. Experimental re-

sults corroborate the theoretical findings.

1. Introduction

Large language models (LLMs) based on the transformer

architecture (Vaswani et al., 2017) have demonstrated re-

markable in-context learning (ICL) abilities (Brown et al.,

2020). When given a prompt consisting of examples of a

learning task, these models can learn to solve this task for

new test examples without any parameter updating. This be-

havior has been empirically demonstrated in state-of-the-art

models on real-world tasks (OpenAI, 2023; Touvron et al.,

2023).

This impressive capacity of transformer-based models has

inspired many recent works aiming to understand the ICL
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abilities of transformers. A more comprehensive literature

review can be found in Appendix A. Garg et al. (2022) was

the first to study the ICL abilities of transformers for various

function classes. They empirically showed that transformers

can learn linear regression models in context. Later on, a

line of research was developed to theoretically explain how

transformers perform in-context linear regression. For ex-

ample, Akyürek et al. (2022); Von Oswald et al. (2023); Bai

et al. (2024); Fu et al. (2023); Giannou et al. (2024) showed

by construction that, some specially-designed transformers

can perform linear regression in context. Moreover, some re-

cent works such as Zhang et al. (2023a); Huang et al. (2023);

Chen et al. (2024) studied the training dynamics of a single-

layer transformer for in-context linear regression. They

proved the convergence of certain single-layer transformers

during training and showed that the trained transformers are

able to perform linear regression in context.

Building on the earlier works that largely focus on linear

regression problems, several recent papers have started to

investigate the ICL capabilities of transformers for classi-

fication problems. For instance, Bai et al. (2024) showed

that, by construction, multi-layer transformers can be ap-

proximately viewed as multiple steps of gradient descents

for logistic regression. Giannou et al. (2024) further show-

cased that the constructed transformers can approximately

perform Newton’s method for logistic regression. Lin &

Lee (2024) studied the dual operating modes for in-context

classification of Gaussian mixtures. However, their analy-

ses were based on the idealized Bayes-optimal next-token

predictor for ICL tasks and did not consider the training

dynamics of transformer models. Some recent works have

started to study the training dynamics of transformers for cer-

tain classification problems. For example, Li et al. (2024b)

proved that a single-layer transformer can be trained to

learn one-nearest neighbor in context. Li et al. (2024a)

studied the training dynamics of a single-layer transformer

for some binary classification tasks with finite, pairwise

orthogonal patterns. Frei & Vardi (2024) analyzed a linear

transformer model for in-context classification of Gaussian

mixtures, assuming additional conditions such as a suffi-

ciently large signal-to-noise ratio. However, all these works

(Li et al., 2024a;b; Frei & Vardi, 2024) only considered

the binary classification problems. The training dynamics
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of transformers for more general in-context classification

problems beyond the specific settings and assumptions in Li

et al. (2024a;b); Frei & Vardi (2024) remain largely under-

explored.

In this work, we study the training dynamics of a single-

layer transformer for both binary and multi-class classi-

fication of Gaussian mixtures during ICL, a fundamental

problem in machine learning. Our main contributions can

be summarized as follows:

• We prove that with appropriately distributed training data

(Assumptions 3.2, 4.2), a single-layer transformer trained

via gradient descent will converge to its global minimizer

at a linear rate (Theorems 3.3, 4.3) for both in-context

binary or multi-class classification problems. To the best

of our knowledge, we are the first to prove the training

convergence of transformers for in-context multi-class

classification. Moreover, our analysis reveals that the

trained single-layer transformer can be viewed as approxi-

mately implementing linear discriminant analysis (LDA).

• Due to the non-linearity of our loss function, we cannot

directly find the closed-form expression of the global

minimizer. Instead, we prove an important property that

the global minimizer consists of a constant plus an error

term that is induced by the finite training prompt length

(N ). We further show that the max norm of this error term

is bounded, and converges to zero at a rate of O(1/N).
• With properly distributed testing prompts (Assumptions

3.5, 4.4), we establish an upper bound of the inference

error (defined in Equation (3)) of the trained transformer

and quantify the impact of the training and testing prompt

lengths on this error. We further prove that when the

lengths of training prompts (N ) and testing prompts (M )

approach infinity, this error converges to zero at a rate

of O(1/N + 1/
√
M) , and the prediction of the trained

transformer has an identical distribution to that of the

ground-truth label (Theorems 3.6, 4.5).

2. Preliminaries

Notations. We denote [n] = {1, 2, . . . , n}. For a matrix

A ∈ R
m×n, we denote its Frobenius norm as ∥A∥F , and its

max norm as ∥A∥max = maxi∈[m],j∈[n] |Aij |. We use Aa,b

(or Aab) to represent the element of matrix A at the a-th

row and b-th column, and use Aa:c,b to represent a vector

of dimension c − a + 1 whose i-th element is A(a+i−1),b.

We denote the l2 norm of a vector as ∥ · ∥2. We denote the

all-zero vector of size n as 0n and the all-zero matrix of

size m × n as 0m×n. We use σ(x) := 1/(1 + exp(−x))
to denote the sigmoid function. We define softmax(·) :
R

k → (0, 1)k, and its i-th element as softmax(·)i, where

softmax(x)i = exp(xi)/(
∑k

j=1 exp(xj)).

2.1. Single-layer transformer

Given an input embedding matrix E ∈ R
de×dn , a single

head self-attention module FSA with width de will output

FSA(E;WV ,WK ,WQ)

=E +WV E · fattn

(
(WKE)¦WQE

ρ

)
, (1)

where WV ,WK ,WQ ∈ R
de×de are the value, key, and

query weight matrices, respectively, ρ > 0 is a normaliza-

tion factor, and fattn is an activation function for attention.

There are different choices of fattn; for example Vaswani

et al. (2017) adopts softmax.

In this work, similar to Zhang et al. (2023a); Wu et al.

(2023), we set fattn(x) = x and define WKQ =
(WK)¦WQ ∈ R

de×de . We use F to denote this simpli-

fied model. Then, the output of F with an input embedding

matrix E ∈ R
de×dn can be expressed as

F (E;WV ,WKQ) = E +WV E · E
¦WKQE

ρ
. (2)

In the following theoretical study and the subsequent experi-

ments (Section 5.2), we show that this simplified transformer

model has sufficient capability to approach the optimal clas-

sifier for the in-context classification of Gaussian mixtures.

2.2. In-context learning framework

We adopt a framework for in-context learning similar to

that used in Bai et al. (2024). Under this framework, the

model receives a prompt P = (D, xquery) comprising a set

of demonstrations D = {(xi, yi)}i∈[N ]
i.i.d.∼ P and a query

xquery ∼ Px, where P is the joint distribution of (x, y) and

Px is the marginal distribution of x. Here, xi ∈ R
d is an

in-context example, and yi is the corresponding label for

xi. For instance, in regression tasks, yi ∈ R is a scalar.

In this paper, we focus on classification tasks. Thus, the

range of yi can be any set containing c different elements,

such as {1, . . . , c}, for classification problems involving c
classes. The objective is to generate an output ŷquery that

approximates the target yquery ∼ Py|xquery
.

Since yquery is a discrete random variable, we use the total

variation distance to measure the difference between ŷquery
and yquery:

∆(yquery, ŷquery)

= sup
z∈R(yquery)

|P (yquery = z)− P (ŷquery = z) |, (3)

where R(yquery) is the range of yquery. When

∆(yquery, ŷquery) = 0, ŷquery has the same distribution as

yquery, which means the output of the model perfectly ap-

proximates yquery.
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Unlike standard supervised learning, each prompt Pτ can

be sampled from a different distribution Pτ in ICL. We say

that a model has the ICL capability if it can approximate

yτ,query for a broad range of Pτ ’s with fixed parameters.

3. In-context binary classification

In this section, we study the learning dynamics of a single-

layer transformer for in-context binary classification. It is a

special case of the general multi-class classification. As a

result, the analysis is more concise. The general in-context

multi-class classification problem is studied in Section 4.

We first introduce the prompt and the transformer struc-

ture we will use for in-context binary classification. The

prompt for in-context binary classification is denoted as

P = (x1, y1, . . . , xN , yN , xquery), where xi ∈ R
d and yi ∈

{−1, 1}. We can convert this prompt P into its correspond-

ing embedding matrix E(P ) in the following form:

E = E(P ) =

(
x1 x2 · · · xN xquery

y1 y2 · · · yN 0

)
. (4)

Similar to Huang et al. (2023); Wu et al. (2023); Ahn et al.

(2024), we set some of the parameters in our model to 0
or 1 to simplify the optimization problem, and consider

the parameters of our model (WV ,WKQ) in the following

sparse form:

WV =

(
0d×d 0d
0¦d 1

)
, WKQ =

(
W 0d
0¦d 0

)
, (5)

where W ∈ R
d×d. We set the normalization factor ρ equal

to the length of the prompt N . Let F (E(P );W ) be the

output matrix of the transformer. We then read out the

bottom-right entry of the output matrix through a sigmoid

function, and denote this output as ŷout. The output ŷout of

the transformer with prompt P and parameters W can be

expressed as

ŷout = σ
(
[F (E(P );W )](d+1),(N+1)

)

= σ

((
1

N

N∑

i=1

yix
¦
i

)
Wxquery

)
.

We denote the prediction of our model for xquery as ŷquery,
which is a random variable depending on ŷout. Consider

generating a random variable u uniformly on [0, 1]. If

u f ŷout, we output ŷquery = 1; if u > ŷout, we out-

put ŷquery = −1. Then, we have P (ŷquery = 1) = ŷout,
P (ŷquery = −1) = 1− ŷout.

3.1. Training procedure

We study the binary classification of two Gaussian mixtures

and use the following definition.

Definition 3.1. We say a data pair (x, y) ∼ Pb(µ0, µ1,Λ)
if y follows a Bernoulli distribution with P (y = −1) =
P (y = 1) = 1/2 and f(x|y = −1) = N(µ0,Λ), f(x|y =
1) = N(µ1,Λ), where µ0, µ1 ∈ R

d and Λ ∈ R
d×d is a

positive definite matrix.

We consider the case of B training tasks indexed by τ ∈ [B].
Each training task τ is associated with a prompt Pτ =
(xτ,1, yτ,1, . . . , xτ,N , yτ,N , xτ,query) and a corresponding la-

bel yτ,query. We make the following assumption in this sec-

tion.

Assumption 3.2. For each learning task τ ∈ [B], we as-

sume

(1) {xτ,i, yτ,i}Ni=1 and {xτ,query, yτ,query} i.i.d.∼
Pb(µτ,0, µτ,1,Λ).

(2) µτ,0 is randomly sampled from N(0, Id), µτ,1 =
Uτ,Λµτ,0 where Uτ,Λ = Λ1/2UτΛ

−1/2, and Uτ is uni-

formly distributed over the closed set of real unitary

matrices such that UτU
¦
τ = Id.

We denote the distribution of (µτ,0, µτ,1) as Pb
Ω(Λ). Note

that Uτ,Λ = Λ1/2UτΛ
−1/2 can be viewed as a linear trans-

formation that preserves the inner product of vectors in Λ−1-

weighted norm, and we have µ¦
τ,0Λ

−1µτ,0−µ¦
τ,1Λ

−1µτ,1 =
0.

Let ŷτ,out = σ([F (E(Pτ );W )](d+1),(N+1)) be the output

of our transformer for task τ . We define the empirical risk

over B independent tasks as

L̂(W ) =
1

2B

B∑

τ=1

−(1 + yτ,query) log(ŷτ,out)

− (1− yτ,query) log(1− ŷτ,out). (6)

Taking the limit of infinite training tasks B → ∞, the

expected training loss can be defined as

L(W ) = lim
B→∞

L̂(W ) = −1

2
E[(1 + yτ,query) log(ŷτ,out)

+ (1− yτ,query) log(1− ŷτ,out)], (7)

where the expectation is taken over (µτ,0, µτ,1) ∼ Pb
Ω(Λ),

{xτ,i, yτ,i}Ni=1, {xτ,query, yτ,query} i.i.d.∼ Pb(µτ,0, µτ,1,Λ).

Applying gradient descent over the expected training loss

(7), we have the following theorem.

Theorem 3.3. Under Assumption 3.2, the following state-

ments hold.

(1) Optimizing the training loss L(W ) in Equation (7)

with training prompt length N via gradient descent

W t+1 = W t− η∇L(W t), we have that for any t g 1,

∥W t −W ∗∥2F f exp(−t/κ)∥W 0 −W ∗∥2F , (8)
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where W 0 is the initial parameter and W ∗ is the global

minimizer of L(W ), and κ = l/α. Here α, l are con-

stants satisfying

α f λmin(∇2L(W )) f λmax(∇2L(W )) f l, (9)

where α > 0, l < ∞, W ∈ RW , RW = {W ∈
R

d×d | ∥W −W ∗∥F f ∥W 0 −W ∗∥F }.

(2) Define G = 1
2W

∗−Λ−1, q = xτ,query, µ = µτ,1−µτ,0,

u = 2(µτ,1 + µτ,0), and a = µ¦Λ−1q for simplicity.

Then we have

∥G∥max

f 1

N
∥S−1(E[σ′(a)(4qq¦ +

1

4
uu¦Λ−1qq¦)

+ σ′′(a)(
1

8
(u¦Λ−1q)2µq¦ + 2q¦Λ−1qµq¦)])∥max

+ o(1/N), (10)

where S = 4∇2L̃(2Λ−1), L̃(2Λ−1) =
limN→∞ L(2Λ−1), σ′(·) and σ′′(·) are the first-

and second-order derivatives of σ(·), respectively, and

the expectation is taken over (µτ,0, µτ,1) ∼ Pb
Ω(Λ),

xτ,query ∼ Pb
x(µτ,0, µτ,1,Λ).

The detailed proof of Theorem 3.3 can be found in Appendix

D. In the following, we provide a brief proof sketch to

highlight the key ideas.

Proof sketch for Theorem 3.3. As a first step, we prove in

Lemma D.2 that the expected loss function L(W ) in Equa-

tion (7) is strictly convex with respect to (w.r.t.) W and is

strongly convex in any compact set of Rd×d. Moreover, we

prove L(W ) has one unique global minimizer W ∗. Since

the loss function L(W ) we consider is highly non-linear, we

cannot directly find the closed-form expression of W ∗, as

is often done in the prior literature. This poses a significant

challenge to our analysis.

We address this technical challenge via the following

method. First, in Lemma D.3, by analyzing the Taylor

expansion of L(W ), we prove that as N → ∞, our loss

function L(W ) converges to L̃(W ) pointwisely (defined

in Equation (25)), and the global minimizer W ∗ converges

to 2Λ−1. Thus, we denote W ∗ = 2(Λ−1 +G), and prove

∥G∥max is bounded and scales as ∥G∥max = O(N−1/2).
Next, in Lemma D.4, by further analyzing the Taylor expan-

sion of the equation ∇L(W ∗) = 0 at the point 2Λ−1, we

establish a tighter bound ∥G∥max = O(N−1). In Lemma

D.5, we prove that our loss function is l-smooth and provide

an upper bound for l. Thus, in a compact set RW , our loss

function is α-strongly convex and l-smooth. Finally, lever-

aging the standard results from the convex optimization, we

prove Theorem 3.3.

According to Theorem 3.3, we have W t = W ∗ + Ht

where ∥Ht∥max f exp(−t/(2κ))∥W 0 −W ∗∥F . If we set

T g 2κ log(N ·∥W 0−W ∗∥F ), we have ∥HT ∥max f 1/N .

Denoting Ŵ = WT , we have Ŵ = 2(Λ−1+G+HT /2) =

2(Λ−1+ Ĝ), where Ĝ = G+HT /2, ∥Ĝ∥max f ∥G∥max+
∥HT ∥max = O(1/N). Thus, we have the following corol-

lary.

Corollary 3.4. If we optimize the expected loss L(W ) in

Equation (7) via gradient descent with training prompt

length N , initial parameters W 0, and learning rate η = 1/l,
then, under Assumption 3.2, after T g 2κ log(N∥W 0 −
W ∗∥F ) steps, the updated model Ŵ satisfies

Ŵ = 2(Λ−1 + Ĝ), (11)

where ∥Ĝ∥max = O(1/N), κ = l/α, and α, l are constants

defined in (9).

Theorem 3.3 and Corollary 3.4 show that training a single-

layer transformer with properly distributed data (Assump-

tion 3.2) for binary classification via gradient descent can

linearly converge to its global minimum W ∗ = 2(Λ−1+G).
Furthermore, when the prompt length N grows, this global

minimum W ∗ will converge to 2Λ−1 at a rate of O(1/N).

3.2. In-context inference

Next, we analyze the performance of the trained transformer

in Equation (11) for in-context binary classification tasks.

We make the following assumption.

Assumption 3.5. For an in-context test prompt Ptest =
(x1, y1, . . . , xM , yM , xquery), we assume

(1) {xi, yi}Mi=1
i.i.d.∼ Pb(µ0, µ1,Λ), xquery ∈ R

d.

(2) µ¦
0 Λ

−1µ0 = µ¦
1 Λ

−1µ1.

With this assumption, for yquery ∼ Pb
y|xquery

(µ0, µ1,Λ), ac-

cording to the Bayes’ theorem, we have

P (yquery = 1|xquery)

=
f(xquery|yquery = 1)P (yquery = 1)∑

z∈{±1} f(xquery|yquery = z)P (yquery = z)

=σ((µ1 − µ0)
¦Λ−1xquery).

If we test the trained transformer with parameters Ŵ in

Equation (11) and Ptest, by a simple calculation, we have

ŷout = σ

((
2

M

M∑

i=1

yix
¦
i

)
(Λ−1 + Ĝ)xquery

)
. (12)

Intuitively, when the training prompt length N → ∞, we

have Ĝ → 0, and when the test prompt length M → ∞, we

have 2
M

∑M
i=1 yix

¦
i → (µ1 − µ0)

¦. Thus, when N,M →
∞, P (ŷquery = 1) = ŷout → σ((µ1 − µ0)

¦Λ−1xquery) =

4



On the Training Convergence of Transformers for In-Context Classification of Gaussian Mixtures

P (yquery = 1|xquery), and the prediction of the trained trans-

former ŷquery perfectly matches with the distribution of the

ground truth label yquery.

By analyzing the Taylor expansion of ŷout at point σ((µ1 −
µ0)

¦Λ−1xquery), we formally present the aforementioned

intuition in the following theorem, which establishes an

upper bound of the total variation distance between yquery
and ŷquery.

Theorem 3.6. Consider a test prompt Ptest satisfying As-

sumption 3.5, and let yquery ∼ Pb
y|xquery

(µ0, µ1,Λ). Let

ŷquery be the prediction of the trained transformer with pa-

rameters Ŵ in Equation (11). Then, for the inference error

defined in Equation (3), we have

E[∆(yquery, ŷquery)]

f σ′(µ¦Λ−1q)

[
∥Ĝ∥max

∑

i,j∈[d]

|µiqj |

+
1√
M


1

2
|u¦Λ−1q|+ 2

√
2√
π

∑

i,j∈[d]

|Λ−1/2
ij qj |



]

+ o

(
1

N
+

1√
M

)
,

where µ = µ1 − µ0, u = 2(µ1 + µ0), q = xquery, and the

expectation is taken over {xi, yi}Mi=1
i.i.d.∼ Pb(µ0, µ1,Λ).

The proof of Theorem 3.6 can be found in Appendix E.

Since ∥Ĝ∥max = O(1/N), Theorem 3.6 suggests that if

we ignore the constants regarding µ0, µ1,Λ, xquery, the ex-

pected total variation distance between yquery and ŷquery
is at most O(1/N + 1/

√
M). On the other hand, for

data pair (x, y) ∼ Pb(µ0, µ1,Λ), the distribution of y,

P (y = 1|x) = σ((µ1 − µ0)
¦Λ−1x), can be characterized

by a logistic regression model σ(w¦x + b) with param-

eters w = Λ−1(µ1 − µ0) and b = 0. Therefore, when

N,M → ∞, the prediction of the trained transformer is

equivalent to the optimal logistic regressor for binary classi-

fication problems with distribution Pb(µ0, µ1,Λ).

Note that different from Assumption 3.2 which states that

µτ,0, µτ,1, xτ,query are sampled according to some specific

distributions during training, Assumption 3.5 does not im-

pose strong distributional constraints on µ0, µ1 and xquery,

which shows the strong generalization ability of the trained

transformer. Moreover, even if M → ∞, the distribution

variation between yquery and ŷquery does not disappear unless

N → ∞. Thus, the ICL ability of trained transformers for

binary classification is limited by the finite length of train-

ing prompts. Similar behaviors have also been observed in

Zhang et al. (2023a) for in-context linear regression.

Remark 3.7. Theorem 3.6 requires Assumption 3.5 to hold.

For example, we need the covariance matrix Λ in train-

ing and testing to be the same. A similar consistency

requirement of Λ in training and testing had also been

observed for in-context linear regression in Zhang et al.

(2023a). Here, we discuss the consequences when As-

sumption 3.5 does not hold. For example, suppose the

labels of our data in test prompts are not balanced where

P (y = 1) = p1,P (y = −1) = p0. Besides, µ0, µ1 do not

have the same Λ−1 weighted norm, and the covariance ma-

trix of test data satisfies Γ ̸= Λ. Then, as N,M → ∞, we

have

2

M

M∑

i=1

yix
¦
i → 2(p1µ1 − p0µ0)

¦,

and

P (ŷquery = 1) → σ(2(p1µ1 − p0µ0)
¦Λ−1xquery).

On the other hand, the distribution of the ground truth

label is P (yquery = 1) = σ((µ1 − µ0)
¦Γ−1xquery +

(µ¦
0 Λ

−1µ0 − µ¦
1 Λ

−1µ1)/2 + log(p1/p0)). Define z ≜

(µ1 − µ0)
¦Γ−1xquery + (µ¦

1 Λ
−1µ1 − µ¦

0 Λ
−1µ0)/2 +

log(p1/p0) and ẑ ≜ 2(p1µ1 − p0µ0)
¦Λ−1xquery. Then,

we can see that unless ẑ = z or |σ(ẑ)− σ(z)| is suffi-

ciently small, the transformer cannot correctly perform the

in-context binary classification.

Remark 3.8. Another important insight of our analysis is

that the pre-trained single-layer transformer can be viewed

as approximately implementing linear discriminant analysis

(LDA). For example, suppose we are given {xi, yi}Mi=1 and

xquery, and we need to predict the label yquery for xquery.

LDA assumes that {xi, yi}Mi=1 and {xquery, yquery} are i.i.d.

samples, with P (yi = 1) = P (yi = −1), and the con-

ditional probability density functions f(xi|yi = 1) and

f(xi|yi = −1) are Gaussian with means µ1, µ−1 and same

covariance Σ. Under these assumptions, it can be derived

that the optimal decision criterion for xquery is to predict

yquery = 1 if (µ1 − µ−1)
¦Σ−1xquery +

1
2 (µ

¦
−1Σ

−1µ−1 −
µ¦
1 Σ

−1µ1) > 0 and yquery = −1, otherwise. LDA can

estimate µ̂1 as the average of xi with yi = 1, estimate

µ̂−1 as the average of xi with yi = −1, and estimate the

covariance Σ̂ from the within-class variances. For the single-

layer transformer, it can compute the in-context estimate

µ̂1−µ̂−1 = 1
M

∑M
i=1 yixi, however, it is hard for the single-

layer transformer to estimate Σ̂ in context. Thus, in our pa-

per, we make the following assumptions (Assumptions 3.2

and 3.5). We assume the pre-train data and test data have the

same covariance matrix Λ so that the transformer can learn

an approximation of Λ during pre-training. Moreover, we as-

sume the two class means µ0, µ1 have the same Λ-weighted

norm so that µ¦
0 Σ

−1µ0 − µ¦
1 Σ

−1µ1 = 0. Under these as-

sumptions, the quadratic term cancels out, and the estimated

decision criterion simplifies to ( 1
M

∑M
i=1 yixi)

¦Λ−1xquery,

which is very close to Equation (12) in our paper. When

we use Ŵ to approximate 2Λ−1, the estimated decision

5
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criterion becomes exactly Equation (12). Therefore, when

Ŵ = 2Λ−1 and the in-context examples are balanced across

classes, the transformer’s decision criterion is the same as

that of the LDA with exact knowledge of Λ. Our exper-

iments also corroborate this theoretical findings. For ex-

ample, in Figure 3, since the pre-trained transformer has

already learned a relatively good approximation of Λ−1,

while LDA must estimate Λ−1 in context, the trained trans-

former significantly outperforms LDA when the number

of in-context examples is small. As the context length in-

creases, LDA’s performance approaches that of the trained

transformer.

4. In-context multi-class classification

We now extend the study of the learning dynamics of a

single-layer transformer to in-context multi-class classifi-

cation, generalizing the results of the previous section. We

will present the detailed formulation and then focus on the

main differences to binary classification.

We first introduce the prompt and the transformer struc-

ture that will be used for in-context multi-class classi-

fication. The prompt for in-context multi-class classi-

fication involving c g 2 classes can be expressed as

P = (x1, y1, . . . , xN , yN , xquery), where xi ∈ R
d, yi ∈

{e1, e2, . . . , ec}, and ei is the i-th standard unit vector of

R
c. Its embedding matrix can be formulated as

E = E(P ) =

(
x1 x2 · · · xN xquery

y1 y2 · · · yN 0c

)
. (13)

Similar to the binary case, we set some of the parameters in

our model as 0 and 1 to simplify the optimization problem

and consider the parameters of our model (WV ,WKQ) in

the following sparse form:

WV =

(
0d×d 0d×c

0c×d Ic

)
, WKQ =

(
W 0d×c

0c×d 0c×c

)
,

(14)

where W ∈ R
d×d. We set the normalization factor ρ equal

to the length of the prompt N . We read out the bottom-right

c-dimensional column vector from the output matrix with a

softmax function as the output, denoted as ŷout. With param-

eters W and a prompt P = (x1, y1, . . . , xN , yN , xquery),
the output can be expressed as

ŷout =softmax
(
[F (E(P );W )](d+1):(d+c),(N+1)

)

=softmax

((
1

N

N∑

i=1

yix
¦
i

)
Wxquery

)
.

We denote the prediction of the model for xquery as ŷquery,
which is a random variable depending on ŷout. Randomly

sample a random variable u that is uniformly distributed on

[0, 1]. If u ∈
[∑i−1

j=1(ŷout)j ,
∑i

j=1(ŷout)j
)
, where (ŷout)j

is the j-th element of ŷout, we let ŷquery = ei. Thus,

P (ŷquery = ei) = (ŷout)i.

4.1. Training procedure

We focus on the multi-class classification of Gaussian mix-

tures and use the following definition.

Definition 4.1. We say a data pair (x, y) ∼ Pm(µ,Λ) if

P (y = ei) = 1/c and f(x|y = ei) = N(µi,Λ) for i ∈
[c], where µ = (µ1, . . . , µc) ∈ R

d×c and Λ ∈ R
d×d is a

positive definite matrix.

We consider the case of B training tasks indexed by τ ∈ [B].
Each training task τ is associated with a prompt Pτ =
(xτ,1, yτ,1, . . . , xτ,N , yτ,N , xτ,query) and a corresponding la-

bel yτ,query. We make the following assumption in this sec-

tion.

Assumption 4.2. For each learning task τ ∈ [B], we as-

sume:

(1) {xτ,i, yτ,i}Ni=1 and {xτ,query, yτ,query} i.i.d.∼ Pm(µτ =
(µτ,1, . . . , µτ,c),Λ).

(2) µτ,1 is sampled from N(0, Id), µτ,k = Uτ,k,Λµτ,1, k =
2, 3, . . . , c, where Uτ,k,Λ = Λ1/2Uτ,kΛ

−1/2, and Uτ,k

are uniformly distributed over the closed set of real

unitary matrices such that Uτ,kU
¦
τ,k = Id.

We denote the distribution of µτ as Pm
Ω (Λ). Note

that Uτ,k,Λ = Λ1/2Uτ,kΛ
−1/2 can be viewed as lin-

ear transformation that preserves the inner product

of vectors in the Λ−1 weighted norm, and we have

µ¦
τ,iΛ

−1µτ,i = µ¦
τ,jΛ

−1µτ,j , for i, j ∈ [c]. Let ŷτ,out =

softmax
(
[F (E(Pτ );W )](d+1):(d+c),(N+1)

)
be the output

of the transformer for task τ . We define the empirical risk

over B independent tasks as

L̂(W ) =
1

B

B∑

τ=1

c∑

k=1

−(yτ,query)k log((ŷτ,out)k). (15)

Taking the limit of infinite training tasks B → ∞, the

expected training loss can be defined as

L(W ) = lim
B→∞

L̂(W )

=− E

[
c∑

k=1

(yτ,query)k log((ŷτ,out)k)

]
, (16)

where the expectation is taken over µτ ∼ Pm
Ω (Λ),

{xτ,i, yτ,i}Ni=1, {xτ,query, yτ,query} i.i.d.∼ Pm(µτ ,Λ).

Applying gradient descent over the expected training loss in

Equation (16), we have the following theorem.

Theorem 4.3. (Informal) Under Assumption 4.2, the follow-

ing statements hold.
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(1) Optimizing training loss L(W ) in Equation (16)

with training prompt length N via gradient descent

W t+1 = W t − η∇L(W t), for any t g 1, we have

∥W t −W ∗∥2F f exp(−t/κ)∥W 0 −W ∗∥2F , (17)

where W 0 is the initial parameter and W ∗ is the global

minimizer of L(W ), κ = l/α. Here, α, l are constants

such that

α f λmin(∇2L(W )) f λmax(∇2L(W )) f l, (18)

where α > 0, l < ∞, W ∈ RW , RW = {W ∈
R

d×d | ∥W −W ∗∥F f ∥W 0 −W ∗∥F }.

(2) Defining G = W ∗/c− Λ−1, we have W ∗ = c(Λ−1 +
G) and ∥G∥max = O(c/N).

(3) After T g 2κ log(N · ∥W 0 −W ∗∥F ) steps, denoting

the updated model Ŵ satisfies

Ŵ = c(Λ−1 + Ĝ), (19)

where ∥Ĝ∥max = O(c/N).

The formal statement and complete proof of Theorem 4.3

can be found in Appendix F. Technically, the proof of Theo-

rem 4.3 builds on that of Theorem 3.3, but the more compli-

cated cross terms in the Taylor expansions of the softmax

functions, which are due to the nature of multi-class classi-

fication, bring new challenges to the analysis. To address

these issues, we derive new bounds on the expected errors

of the cross terms in Lemma F.1, F.2, which may be of

independent interest to other similar problems.

Theorem 4.3 shows that training a single-layer transformer

with properly distributed data (Assumption 4.2) for in-

context multi-class classification via gradient descent can

linearly converge to its global minimum W ∗ = c(Λ−1+G).
When the prompt length N grows, this global minimum W ∗

will converge to cΛ−1 at a rate of O(c/N). Compared to the

binary case, the new results establish the scaling behavior

w.r.t. the number of classes c.

4.2. In-context inference

Assumption 4.4. For an in-context test prompt Ptest =
(x1, y1, . . . , xM , yM , xquery), we assume

(1) {xi, yi}Mi=1
i.i.d.∼ Pm(µ,Λ), µ = (µ1, . . . , µc) ∈

R
d×c, xquery ∈ R

d.

(2) µ¦
i Λ

−1µi = µ¦
j Λ

−1µj , for i, j ∈ [c].

With this assumption, for yquery ∼ Pm
y|xquery

(µ,Λ), according

to the Bayes’ theorem, we have

P (yquery = ek|xquery)

=
f(xquery|yquery = ek)P (yquery = ek)∑c
j=1 f(xquery|yquery = ej)P (yquery = ej)

=softmax(µ¦Λ−1xquery)k.

If we test the trained transformer with parameters Ŵ in

Equation (19) and prompt Ptest, by a simple calculation, we

have

ŷout = softmax

((
c

M

M∑

i=1

yix
¦
i

)
(Λ−1 + Ĝ)xquery

)
.

(20)

Note that, when the training prompt length N → ∞, we

have Ĝ → 0, and when the test prompt length M → ∞,

we have c
M

∑M
i=1 yix

¦
i → µ¦. Thus, when N,M → ∞,

P (ŷquery = ek) = (ŷout)k → softmax(µ¦Λ−1xquery)k =
P (yquery = ek|xquery), i.e., the prediction of the trained

transformer ŷquery matches the ground truth label yquery.

By analyzing the Taylor expansion of ŷout at point

softmax(µ¦Λ−1xquery), we crystallize the aforementioned

intuition in the following theorem, which establishes an up-

per bound of the total variation distance between yquery and

ŷquery.

Theorem 4.5. (Informal) Let Ptest satisfy Assumption 4.4

and yquery ∼ Pm
y|xquery

(µ,Λ). Denote ŷquery as the predic-

tion of the trained transformer with parameter Ŵ in Equa-

tion (19). Then, for the inference error defined in Equa-

tion (3), we have

E[∆(yquery, ŷquery)] = O(c2N−1 + c3/2M−1/2),

where the expectation is taken over {xi, yi}Mi=1
i.i.d.∼

Pm(µ,Λ).

The formal statement and proof of Theorem 4.5 can be

found in Appendix G. We can see that the convergence

rate of the inference error in multi-class classification w.r.t.

N and M is similar to that in the binary classification,

except for the constant coefficient c. This suggests that

classification tasks with more classes may have higher er-

rors than those with fewer classes. On the other hand,

for data pair (x, y) ∼ Pm(µ,Λ), the distribution of y,

P (y = ek|x) = softmax(µ¦Λ−1x)k, can be characterized

by a softmax regression model softmax(Wx+ b) with pa-

rameters W = µ¦Λ−1 and b = 0. When N,M → ∞,

the prediction of the trained transformer is equivalent to

the optimal softmax regressor for multi-class classification

problems with distribution Pm(µ,Λ). Note that different

from Assumption 4.2 which states that µτ , xτ,query are sam-

pled according to some specific distributions during train-

ing, Assumption 4.4 does not impose strong distributional

constraints on µ or xquery, which shows the strong general-

ization ability of the trained transformer. We also discuss

the consequences when Assumption 4.4 does not hold in

Remark G.2, which highlights the necessity of Assumption

4.4. Moreover, even if M → ∞, the distribution varia-

tion between yquery and ŷquery does not disappear unless

7



On the Training Convergence of Transformers for In-Context Classification of Gaussian Mixtures

(a) c = 10 (b) N = 80

Figure 1. ’1-layer’: single-layer transformer defined in Section 4, ’3-layer’: 3-layer transformers with softmax attention. N : training

prompt length. c: number of Gaussian mixtures.

N → ∞. Thus, the ICL ability of the trained transformers

for multi-class classification is limited by the finite length of

training prompts. Similar behavior has also been observed

in Zhang et al. (2023a) for in-context linear regression and

in Section 3.2 for in-context binary classification.

5. Experiments

In this section, we report the experiment results on multi-

layer, nonlinear transformers to investigate their similarities

and differences to the single-layer, linear transformer we

theoretically analyzed in the pervious sections. Detailed

experimental settings and additional results can be found in

Appendix H.

We train single-layer and multi-layer transformers for in-

context classification of Gaussian mixtures with different

numbers of Gaussian mixtures c, different lengths of train-

ing prompts N , and test them with different test prompt

lengths M . The results are reported in Figure 1. We can

see that for both single-layer and multi-layer transformers,

the inference errors decrease as N and M increase, and

they increase as c increases, which not only verifies our

theoretical claims but also shows that, the simplified model

we have studied indeed exhibits behavioral similarities to

the more complex multi-layer, nonlinear transformers, and

some of our observations for this simplified model also hold

for more complex transformers.

5.1. Varying covariances and norms

Note that in Assumption 3.2, 4.2, 3.5, 4.4, we assume that

the covariance Λ during pre-training and during inference

are the same, and the means of all Gaussian components

{µτ,i, i ∈ [c]} have the same Λ−1 weighted norm. In Re-

mark 3.7, G.2, we also discuss the situation when Assump-

tions 3.5, 4.4 do not hold and show the necessities of them.

In this subsection, we consider training transformers with

data of varying covariances Λ and with Gaussian component

means of unequal Λ−1 weighted norms, and examine how

these factors affect the ICL abilities of transformers. Results

are shown in Figure 2.

From Figure 2 (a), we can see that both models perform

better when their µτ,i have the same Λ−1 weighted norm

(‘same norm’), however, in the ‘different norms’ setting,

the performance of ‘1-layer’ deteriorates more significantly,

while transformers with a more complex structure (’3-layer’)

show better robustness under this distribution shift. Similar

situations also happen in Figure 2 (b), where ‘3-layer’ also

shows better tolerance to the covariance shifts than ‘1-layer’.

Experimental results in Figure 2 show the necessities of As-

sumptions 3.2, 4.2, 3.5, 4.4 for the single-layer transformers

considered in this paper, and also demonstrate the better ro-

bustness of multi-layer, nonlinear transformers. Developing

a better understanding of the robustness of more complex

transformers is an intriguing direction for future research.

5.2. Comparison of transformers with other ML

algorithms

Additionally, we conduct experiments comparing the ICL

performances of the transformers with other machine learn-

ing algorithms for the classification of three Gaussian mix-

tures. From Figure 3, we can see that all three transformer

models significantly outperform the classical methods (soft-

max regression, linear discriminant analysis), demonstrating

the strong ICL capacities of transformers.

8
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(a) Norm (b) Covariance

Figure 2. We generate Λi = diag(λi1, . . . , λid), i ∈ {0, 1, 2, 3}, where λij = |λ̂ij | and λ̂ij
i.i.d.
∼ N(3, 1). All models are trained with

prompt length N = 100, tested with prompts satisfying Assumption 4.4 with Λ0. c = 3. (a) ‘same norm’: pre-training data are sampled

according to Assumption 4.2 with Λ0. ‘different norms’: For each τ , with probability P (k = j) = 1/10, µτ,i ∼ N(k, Id), j = 0, 1, . . . , 9.

(b) ‘same covariance’: pre-training data are sampled according to Assumption 4.2 for the fixed Λ0. ‘different covariances’: Sample

additional Λ1,Λ2,Λ3. Then, generate pre-training data according to Assumption 4.2 with Λ0,Λ1,Λ2,Λ3.

Figure 3. ‘1-layer, sparse’: single-layer transformer defined in Sec-

tion 4, ‘1-layer, full’: single-layer transformer with full parameters

(59), ‘3-layer’: a 3-layer transformer with softmax attention, ‘soft-

max’: softmax regression, ‘LDA’: linear discriminant analysis. All

three transformers are trained with prompt length N = 100.

6. Conclusion

We studied the learning dynamics of transformers for in-

context classification of Gaussian mixtures, and showed that

with properly distributed data, a single-layer transformer

trained via gradient descent converges to its global mini-

mum. Moreover, we established the upper bounds of the

inference errors of the trained transformers and discussed

how the training and test prompt lengths influence the per-

formance of the model. Experimental results also corrob-

orated the theoretical claims. There are some directions

worth further exploring. One potential avenue is to inves-

tigate whether the assumptions regarding the training and

test prompts can be relaxed. Additionally, we have only ex-

amined single-layer transformers with linear attention and

sparse parameters. The learning dynamics of multi-layer

transformers with nonlinear attention (e.g., softmax) for in-

context classification problems remain an interesting area

for future investigation.
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Appendix

The Appendix is organized as follows. In Section A, we provide a literature review of the related works that studied the ICL

abilities of transformers. In Section B, we introduce the additional notations for the proofs in the Appendix. In Section

C, we introduce some useful Lemmas we adopt from previous literature. In Sections D, E, F, G, we present the proofs of

Theorem 3.3, 3.6, 4.3, 4.5 respectively. In Section H, we provide additional results and details of our experiments.

A. Related work

It has been observed that transformer-based models have impressive ICL abilities in natural language processing (Brown

et al., 2020; Nye et al., 2021; Wei et al., 2022; Dasgupta et al., 2022; Zhang et al., 2022). Garg et al. (2022) first initiated the

study of the ICL abilities of transformers in a mathematical framework and they empirically showed that transformers can

in-context learn linear regression, two-layer ReLU networks, and decision trees. Subsequently, numerous works have been

developed to explain the ICL capacities of transformers in solving in-context mathematical problems. These works mainly

use two approaches: constructing specific transformers capable of performing certain in-context learning tasks, and studying

the training dynamics of transformers for such tasks.

Constructions of transformers. Akyürek et al. (2022); Von Oswald et al. (2023) showed by construction that multi-layer

transformers can be viewed as multiple steps of gradient descent for linear regression. Akyürek et al. (2022) also showed

that constructed transformers can implement closed-form ridge regression. Guo et al. (2023) showed that constructed

transformers can perform in-context learning with representations. Bai et al. (2024) proved that constructed transformers

can perform various statistical machine learning algorithms through in-context gradient descent and showed that constructed

transformers can perform in-context model selection. Lin et al. (2023) demonstrated that constructed transformers can

approximate several in-context reinforcement learning algorithms. Fu et al. (2023); Giannou et al. (2024) further proved

that constructed transformers can perform higher-order optimization algorithms like Newton’s method. Pathak et al. (2023)

showed that transformers can learn mixtures of linear regressions. Giannou et al. (2023) proved that looped transformers that

can emulate various in-context learning algorithms. Cheng et al. (2023) showed that transformers can perform functional

gradient descent for learning non-linear functions in context. Zhang et al. (2024) showed that a linear attention layer

followed by a linear layer can learn and encode a mean signal vector for in-context linear regression.

Training dynamics of transformers. Mahankali et al. (2023); Ahn et al. (2024) proved that the global minimizer of the

in-context learning loss of linear transformer can be equivalently viewed as one-step preconditioned gradient descent for

linear regression. Zhang et al. (2023a) proved the convergence of gradient flow on a single-layer linear transformer and

discussed how training and test prompt length will influence the prediction error of transformers for linear regression. Huang

et al. (2023) proved the convergence of gradient descent on a single-layer transformer with softmax attention with certain

orthogonality assumptions on the data features. Li et al. (2023c) showed that trained transformers can learn topic structure.

Wu et al. (2023) analyzed the task complexity bound for pretraining single-layer linear transformers on in-context linear

regression tasks. Tarzanagh et al. (2023) built the connections between single-layer transformers and support vector machines

(SVMs). Nichani et al. (2024) showed that transformers trained via gradient descent can learn causal structure. Chen et al.

(2024) proved the convergence of gradient flow on a multi-head softmax attention model for in-context multi-task linear

regression. Kim & Suzuki (2024); Yang et al. (2024) proved that trained transformers can learn nonlinear features in context.

Bu et al. (2024) studied the training convergence of transformer for tasks encoded with multiple cross-concept semantics. Li

et al. (2024b) proved that a one-layer transformer can be trained to learn one-nearest neighbor for binary classification in

context. Li et al. (2024a) studied the training dynamics of a single layer transformer for in-context classification problems.

However, they only studied the binary classification tasks with finite patterns. They generated their data as x = µj + κvk,

where {µj}M1

j=1 are in-domain-relevant patterns and {νk}M2

k=1 are in-domain-irrelevant patterns, M1 g M2 and these patterns

are all pairwise orthogonal. Thus, the possible distribution of their data is finite and highly limited. In contrast, our work

explores the ICL capabilities of transformers for both binary and multi-class classification of Gaussian mixtures. Specifically,

our data is drawn according to Pb(µ0, µ1,Λ) or Pm(µ,Λ), and the range and possible distributions of our data are infinite.

Recently, (Frei & Vardi, 2024) also studied the the ICL of a linear transformer model for classifying Gaussian mixtures

and showed that trained transformers can exhibit benign overfitting in-context. However, their analysis relies on additional

assumptions, such as a sufficiently large signal-to-noise ratio. In contrast, our work does not rely on such assumptions.

Additionally, compared to (Frei & Vardi, 2024), we consider a more general multi-class setting. We believe these distinctions

highlight the independent contributions of our work.

Some works also studied the ICL from other perspectives. To name a few, Xie et al. (2021) explained the ICL as implicit
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Bayesian inference; Wang et al. (2023) explained the LLMs as latent variable models; Zhang et al. (2023b) explained the

ICL abilities of transformers as implicitly implementing a Bayesian model averaging algorithm; and Li et al. (2023b) studied

the generalization and stability of the ICL abilities of transformers. Hahn & Goyal (2023) showed that ICL can arise through

recombination of compositional structure found in linguistic data. Lin & Lee (2024) studied the dual operating modes

for in-context classification of Gaussian mixtures. However, the analyses of both Hahn & Goyal (2023) and Lin & Lee

(2024) are based on the idealized optimal next-token predictor for ICL tasks and did not discuss the training dynamics of

transformer models.

Apart from studies focusing on the training convergence properties of transformers in in-context learning (ICL), many other

works have investigated the convergence behavior of transformers when learning different tasks. For example, (Jelassi et al.,

2022) and (Li et al., 2023a) theoretically analyzed how Vision Transformers learn and converge. (Wang et al., 2024) showed

that transformers can provably learn sparse token selection, whereas fully-connected networks cannot. (Zhang et al., 2025)

demonstrated that transformers can learn optimal variable selection in group-sparse classification. (Gao et al., 2024) studied

the global convergence of large-scale transformers under gradient flow dynamics.

B. Additional notations

We denote X ∼ Bin(n, p) if a random variable X follows the binomial distribution with parameters n ∈ N and p ∈
[0, 1], which means P (X = k) = n!

k!(n−k)!p
k(1 − p)n−k. We denote X ∼ Multin(n, p) if random variables X =

(X1, X2, . . . , Xk) follow the Multinomial distribution with parameters n ∈ N and p1 = p2 = · · · = pk = 1/k, which

means P (X = (x1, x2, . . . , xk)) = n!∏
k
i=1

xk!
k−n. We denote ζi(x) = softmax(x)i = exp(xi)/(

∑k
j=1 exp(xj)) for

simplicity. We define δii = 1, δij = 0, i ̸= j. For x ∈ N, we define t1(x) = +(x− 1)/d,+1, t2(x) = ((x− 1) mod d)+ 1.

C. Useful lemmas

Lemma C.1 ((Karimi et al., 2016)). If f : Rd → R is µ-strongly convex, then

f(x)−min
x

f(x) g µ

2
∥x∗ − x∥22

where x∗ = argminx f(x).

Lemma C.2 ((Bubeck, 2015)). Suppose f : Rd → R is α-strongly convex and β-smooth for some 0 < α f β. Then, the

gradient descent iterating wt+1 = wt − η∇f(wt) with learning rate η = 1/β and initialization w0 ∈ R
d satisfies that for

any t g 1,

∥wt − w∗∥22 f exp(−t/κ)∥w0 − w∗∥22

where κ = β/α is the condition number of f , and w∗ = argminw∈Rd f(w) is the minimizer of f .

D. Training procedure for in-context binary classification

In this section, we present the proof of Theorem 3.3.

D.1. Proof sketch

First, we prove in Lemma D.2 that the expected loss function L(W ) in (7) is strictly convex w.r.t. W and is strongly

convex in a compact set of Rd×d. Moreover, we prove L(W ) has one unique global minimizer W ∗. Then, in Lemma D.3,

by analyzing the Taylor expansion of L(W ), we prove that as N → ∞, our loss function L(W ) point wisely converges

to L̃(W ) (defined in (25)), and the global minimizer W ∗ converge to 2Λ−1. We denote W ∗ = 2(Λ−1 + G), and prove

∥G∥max = O(N−1/2). Next, in Lemma D.4, by further analyzing the Taylor expansion of the equation ∇L(W ∗) = 0 at the

point 2Λ−1, we establish a tighter bound ∥G∥max = O(N−1). In Lemma D.5, we prove that our loss function is l-smooth

and provide an upper bound for l. Thus, in a compact set RW , our loss function is α-strongly convex and l-smooth. Finally,

leveraging the standard results from convex optimization, we prove Theorem 3.3 in subsection D.4.

In this section, we use the following notations.
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D.2. Notations

Recall the expected loss function (7) is

L(W ) = −1

2
E [(1 + yτ,query) log(ŷτ,out) + (1− yτ,query) log(1− ŷτ,out)] , (21)

where

ŷτ,out = σ

((
2

N

N∑

i=1

yτ,ix
¦
τ,i

)
W

2
xτ,query

)

is the output of the transformer, and the label of the data follows the distribution

P (yτ,query = 1|xτ,query) = σ((µτ,1 − µτ,0)
¦Λ−1xτ,query)).

In this section, we introduce the following notations to analyze (7). We denote µ = µτ,1 − µτ,0, µ1 = µτ,1, µ0 = µτ,0 and

q = xτ,query. Then with probability P (yτ,query = 1) = 1/2 we have q = µ1+v, and with probability P (yτ,query = 0) = 1/2

we have q = µ0 + v, where v ∼ N(0,Λ). We define p = 2
N

∑N
i=1 yτ,ixτ,i. Since with probability P (yτ,i = 1) = 1/2 we

have xτ,i = µ1 + vi, and with probability P (yτ,i = 0) = 1/2 we have xτ,i = µ0 + vi, where vi ∼ N(0,Λ), we known

p = 2N1µ1/N−2N0µ0/N+g, where g = 2
N

∑N
i=1 vi, g ∼ N(0, 4Λ/N), N1 ∼ Bin(N, 1/2). Defining h = N1/N−1/2,

u = 2(µ1 + µ0), we have N0/N = 1/2− h and

p = µ+ hu+ g. (22)

Then, the expected loss function (7) can be expressed as

L(W ) = E[−σ(µ¦Λ−1q) log(σ(p¦Wq/2))− (1− σ(µ¦Λ−1q)) log(1− σ(p¦Wq/2))]. (23)

The gradient of the loss function (7) can be expressed as

∇L(W ) =
1

2
E[(σ(p¦Wq/2)− σ(µ¦Λ−1q))pq¦]. (24)

Moreover, we define a function L̃(W ) as

L̃(W ) = E[−σ(µ¦Λ−1q) log(σ(µ¦Wq/2))− (1− σ(µ¦Λ−1q)) log(1− σ(µ¦Wq/2))]. (25)

In Lemma D.3, we show that as N → ∞, L(W ) will point wisely converge to L̃(W ).

D.3. Lemmas

Lemma D.1. Suppose N1 ∼ Bin(N, 1/2). Defining h = N1/N − 1/2, we have

E[h] = 0

E[h2] =
1

4N

E[h3] = 0

E[hn] = O(N−2), for n g 4

E[|h|] f 1

2N1/2

E[|h3|] = O(N−3/2).

Proof. Since N1 ∼ Bin(N, 1/2), the moment-generating function of N1 is

MN1
(t) =

(
1

2
+

1

2
exp(t)

)N

.
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We can compute the moment-generating function of h as follows:

Mh(t) = exp

(
− t

2

)
MN1

(
t

N

)
=

(
exp −t

2N + exp t
2N

2

)N

=

(
cosh

(
t

2N

))N

=

(
1 +

t2

8N2
+

∞∑

i=2

t2i

(2i)!(2N)2i

)N

.

Thus, we know the coefficients of t, t2, t3 are 0, 1/(8N), 0 respectively, and the coefficients of tn, n g 4 are O(1/N2). We

have

E[h] = 0

E[h2] =
1

4N

E[h3] = 0

E[hn] = O(1/N2), for n g 4.

Moreover, according to the Jensen’s inequality, we have

E[|h|] f
(
E[h2]

)1/2
=

1

2N1/2

E[|h3|] f
(
E[h4]

)3/4
= O(N−3/2).

Lemma D.2. For the loss function L(W ) (7), we have ∇2L(W ) { 0. For any compact set RW of Rd×d, when W ∈ RW ,

we have ∇2L(W ) { γId for some γ > 0. Additionally, L(W ) has one unique global minimizer on R
d×d.

For L̃(W ) defined in (25), we also have ∇2L̃(W ) { 0. For any compact set RW of Rd×d, when W ∈ RW , we have

∇2L̂(W ) { γId for some γ > 0. Additionally, L̃(W ) has one unique global minimizer on R
d×d.

Proof. We vectorize W as Vec(W ) ∈ R
d2

, where Vec(W )i = Wt1(i),t2(i), t1(x) = +(x − 1)/d, + 1, t2(x) = ((x −
1) mod d) + 1. Then, we have

(∇L(W ))i = Ep,q

[
1

2
(σ(p¦Wq/2)− σ(µ¦Λ−1q))pt1(i)qt2(i)

]
. (26)

The Hessian matrix of the loss function (7) is

(∇2L(W ))ij = Ep,q

[
1

4
σ(p¦Wq/2)(1− σ(p¦Wq/2))pt1(i)qt2(i)pt1(j)qt2(j)

]
.

Considering z ∈ R
d2

such that z ̸= 0, we have

z¦∇2L(W )z =Eq,p

[
1

4
σ(p¦Wq/2)(1− σ(p¦Wq/2))

∑

ab

zazbpt1(a)qt2(a)pt1(b)qt2(b)

]

=

∫
1

4
σ(p¦Wq/2)(1− σ(p¦Wq/2))


 ∑

a∈[d2]

zapt1(a)qt2(a)




2

fpq(p, q)dpdq,

where fpq(p, q) are the probability density function (PDF) function of p, q. Since for any p, q, σ(p¦Wq/2)(1 −
σ(p¦Wq/2)) > 0, we have z¦∇2L(W )z g 0. Thus, ∇2L(W ) ° 0 and L(W ) is convex.
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Moreover, for any z ̸= 0, we denote zij = z((i−1)d+j), i, j ∈ [d]. Suppose a, b ∈ argmaxi,j |zij |, we consider a set

of constants {c1pi, c2pi}, {c1qi, c2qi}, i, j ∈ [d], where c1pa = d, c2pa = d + 1, c1qb = d, c2qb = d + 1, and c1pi =
1/16, c2pi = 1/8, i ̸= a, c1qj = 1/16, c2qj = 1/8, j ̸= b. Then, for any cpi ∈ [c1pi, c2pi], cqj ∈ [c1qj , c2qj ]. We have

∣∣∣∣∣∣
∑

i,j∈[d]

zijcpicqj

∣∣∣∣∣∣
g
[
d2 − 2(d+ 1)(d− 1)/8− (d− 1)2/64

]
max
ij

|zij | g d2 max
ij

|zij |/2.

Then, we define region Ω(a, b) ≜ {p =
∑

i cpiei, q =
∑

j cqjej ,cpi ∈ [c1pi, c2pi], cqj ∈ [c1qj , c2qj ]}. We have

min
Ω(a,b)


 ∑

c∈[d2]

zcpt1(c)qt2(c)




2

g d4 max
ij

|zij |2/4 g ∥z∥22/4.

Defining

C(Ω) = min
a∈[d],b∈[d]

∫

Ω(a,b)

fpq(p, q)dpdq,

S(Ω,W ) = min
a∈[d],b∈[d]

min
Ω(a,b)

{
1

4
σ(p¦Wq/2)(1− σ(p¦Wq/2))

}
,

we have S(Ω,W ) > 0. Since with probability P (yτ,query = 1) = 1/2, q = µ1 + v, with probability P (yτ,query = 0) = 1/2,

q = µ0 + v, where v ∼ N(0,Λ) and p = µ+ hu+ g, where g ∼ N(0, 4Λ/N), v ∼ N(0,Λ), µ0 ∼ N(0, Id), the covariance

matrices of p, q are positive definite and we have fpq(p, q) > 0 for all p, q ∈ R
d. Moreover, Ω(a, b) are non-zero measures

on R
d×d. Thus, we have C(Ω) > 0. Then, for any z ̸= 0, we have

z¦∇2L(W )z g
∫

Ω(a,b)

1

4
σ(p¦Wq/2)(1− σ(p¦Wq/2))

(∑

l

zlpt1(l)qt2(l)

)2

fpq(p, q)dpdq

gC(Ω)S(Ω,W )∥z∥22/4
>0.

Thus, we have ∇2L(W ) { 0. L(W ) is strictly convex.

Moreover, for any compact set RW of Rd×d, for any W ∈ RW , we have

S(Ω) = min
W∈RW

min
a∈[d],b∈[d]

min
Ω(a,b)

{
1

4
σ(p¦Wq/2)(1− σ(p¦Wq/2))

}
> 0.

Then, for any W ∈ RW , for any z ̸= 0, we have

z¦∇2L(W )z g
∫

Ω(a,b)

1

4
σ(p¦Wq/2)(1− σ(p¦Wq/2))

(∑

l

zlpt1(l)qt2(l)

)2

fpq(p, q)dpdq

g1

4
C(Ω)S(Ω)∥z∥22.

Thus, when W ∈ RW , where RW is a compact set, we have ∇2L(W ) { C(Ω)S(Ω)Id/4 and the loss function L(W ) is

γ−strongly convex, where γ = C(Ω)S(Ω)/4.

Because our loss function is strictly convex in R
d×d, it has at most one global minimizer in R

d×d. Next, we prove all

level sets of our loss function are compact, i.e. Vα = {W ∈ R
d×d |L(W ) f α} is compact for all α. We prove it by

contradiction. Suppose Vα is not compact for some α. Since our loss function is continuous and convex, Vα is an unbounded

convex set. Since the dimension of Vα is d2, consider a point Wα ∈ Vα, there must exists a W k ̸= 0d×d such that

{Wα + tW k | t = [0,∞)} ∈ Vα. For this W k ̸= 0d×d, there must exist a set of constants 0 < c3pi < c4pi, 0 < c3qj < c4qj
such that for any cpi ∈ [c3pi, c4pi], cqj ∈ [c3qj , c4qj ], we have

|
∑

ij

cpicqjW
k
ij | ≠ 0.
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Thus, we have

lim
t→∞

|
∑

ij

cpicqj(W
α
ij + tW k

ij)| = ∞.

We define Ω0 = {p =
∑

i cpiei, q =
∑

j cqjej , cpi ∈ [c3pi, c4pi], cqj ∈ [c3qj , c4qj ], ∥µ∥22 f ∑
i c

2
4pi + c24qj}. Then,

defining

C(Ω0) =

∫

Ω0

fpq(p, q)dpdq,

S(Ω0) = min
Ω0

{
min{σ(µ¦Λ−1q), (1− σ(µ¦Λ−1q))}

}
,

we have S(Ω0) > 0. Since Ω0 are non-zero measures for p, q, we have C(Ω0) > 0. Then, we have

lim
t→∞

L(Wα + tW k)

= lim
t→∞

E[−σ(µ¦Λ−1q) log(σ(p¦(Wα + tW k)q/2))− (1− σ(µ¦Λ−1q)) log(1− σ(p¦(Wα + tW k)q/2))]

g lim
t→∞

∫

Ω0

[−σ(µ¦Λ−1q) log(σ(
∑

ij

cpicqj(W
α
ij + tW k

ij)/2))]fpq(p, q)dpdq

+ lim
t→∞

∫

Ω0

[−(1− σ(µ¦Λ−1q)) log(1− σ(
∑

ij

cpicqj(W
α
ij + tW k

ij)/2))]fpq(p, q)dpdq

gC(Ω0)S(Ω0) ·min
Ω0



 lim

t→∞
[− log(σ(

∑

ij

cpicqj(W
α
ij + tW k

ij)/2))]





+C(Ω0)S(Ω0) ·min
Ω0



 lim

t→∞
[− log(1− σ(

∑

ij

cpicqj(W
α
ij + tW k

ij)/2))]





=∞.

This contradicts the assumption L(Wα + tW k) f α. Thus, all level sets of the loss function L(W ) are compact, which

means there exists a global minimizer for L(W ). Together with the fact that L(W ) is strictly convex, L(W ) has one unique

global minimizer on R
d×d.

Similarly, we can prove the same conclusions for L̃(W ).

Lemma D.3. Denoting the global minimizer of the loss function (7) as W ∗, we have W ∗ = 2(Λ−1 + G), where

∥G∥max = O(N−1/2).

Proof. Let a = µ¦Λ−1q, s = µ¦Wq/2, r = (hu+ g)¦Wq/2. Performing the Taylor expansion on (7), we have

L(W ) =E [−σ(a) log(σ(s+ r))− (1− σ(a)) log(1− σ(s+ r))]

=E [−σ(a) log(σ(s))− (1− σ(a)) log(1− σ(s))]

− E [(σ(a)(1− σ(s))− (1− σ(a))σ(s))) r]

+ E
[
σ(ξ(s, r))(1− σ(ξ(s, r)))r2/2

]

=L̃(W )− E [(σ(a)(1− σ(s))− (1− σ(a))σ(s))) r]

+ E
[
σ(ξ(s, r))(1− σ(ξ(s, r)))r2/2

]
,

where ξ(s, r) are real numbers between s and s+ r. According to Lemma D.1, we have E [r] = E
[
(hu+ g)¦Wq/2

]
= 0.

Thus, we have

E [(σ(a)(1− σ(s))− (1− σ(a))σ(s))) r] = Eµ,u,q [(σ(a)(1− σ(s))− (1− σ(a))σ(s)))Eg,h [r]] = 0.
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Moreover, we have

E
[
σ(ξ(s, r))(1− σ(ξ(s, r))r2/2

]

fE
[
r2
]

=E[h2u¦Wqu¦Wq + g¦Wqg¦Wq]

(a)
=E[u¦Wqu¦Wq/(4N) + 4(ΛWq)¦Wq/N ]

fCl∥W∥2max/N,

where (a) is due to Lemma D.1, g¦Wqg¦Wq =
∑

i,j,k,l∈[d] giWijqjgkWklql =
∑

i,j,k,l∈[d] gigkWklqlWijqj =

(gg¦Wq)¦Wq and E[gg¦] = 4Λ/N . Cl is a constant independent of N and W . Thus, we have

∣∣∣L̃(W )− L(W )
∣∣∣ f Cl∥W∥2max/N.

This shows that L(W ) point wisely converges to L̃(W ).

According to Lemma D.2, L̃(W ) has one unique global minimizer. Consider the equation:

∇L̃(W ) = E[σ(µ¦Wq/2)− σ(µ¦Λ−1q)] = 0.

We can easily find that ∇L̃(2Λ−1) = 0 and W = 2Λ−1 is the global minimizer of L̃(W ).

Considering a compact set RW = {W | ∥W − 2Λ−1∥F f ρW }, we have ∥W∥max f CW for W ∈ RW . Here ρW , CW

are some positive finite constants. Then, we have

∣∣∣L̃(W )− L(W )
∣∣∣ f C ′

l/N, W ∈ RW ,

where C ′
l = ClC

2
W is a constant independent of N and W . This shows that, for W ∈ RW , our loss function L(W )

uniformly converge to L̃(W ).

Denote W ∗ as the global minimizer of the loss function L(W ) with prompt length N . Then, we show that, when N is

sufficiently large, W ∗ ∈ RW . We first denote ∂RW = {W | ∥W − 2Λ−1∥F = ρW } and ∆ = minW∈∂RW
L̃(W ) −

L̃(2Λ−1) > 0. Then, for N g 4C ′
l/∆, and for any W ∈ RW , we have

∣∣∣L̃(W )− L(W )
∣∣∣ f ∆/4,

This means

min
W∈∂RW

L(W )− min
W∈RW

L(W )

g min
W∈∂RW

L(W )− L(2Λ−1)

g min
W∈∂RW

L̃(W )− L̃(2Λ−1)−∆/2

g∆/2 > 0.

Since L(W ) is strictly convex, we have W ∗ = argminW L(W ) ∈ RW .

Then, we have

|L̃(W ∗)− L(W ∗)| f C ′
l/N

|L̃(2Λ−1)− L(2Λ−1)| f C ′
l/N

L̃(W ∗) f L(W ∗) + C ′
l/N f L(2Λ−1) + C ′

l/N f L̃(2Λ−1) + 2C ′
l/N.
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According to Lemma D.2, for W ∈ RW , we have ∇2L̃(W ) { γId, where γ is a positive constant independent of N . Thus,

L̃(W ) is γ-strongly convex in RW . According to Lemma C.1, we have

∥W ∗ − 2Λ−1∥2F f 2

γ
(L̃(W ∗)− L̃(2Λ−1)) f 4C ′

l

γN
.

Thus, when N → ∞, we have W ∗ → 2Λ−1. Denoting W ∗ = 2(Λ−1 +G), we have ∥G∥max = O(1/
√
N).

Lemma D.4. The global minimizer of the loss function (7) is W ∗ = 2(Λ−1 +G), where

∥G∥max f 1

N
∥S−1(E[σ′(a)(4qq¦ + uu¦Λ−1qq¦/4)

+ σ′′(a)((u¦Λ−1q)2µq¦/8 + 2q¦Λ−1qµq¦)])∥max + o(1/N),

a = µ¦Λ−1q, S = 4∇2L̃(2Λ−1).

Proof. According to Lemma D.2, the loss function L(W ) has a unique global minimizer W ∗. We have

∇L(W ∗) = E
[
(σ(p¦W ∗q/2)− σ(µ¦Λ−1q))pq¦

]
= 0. (27)

Let W ∗ = 2(Λ−1 +G), a = µ¦Λ−1q, b = (µ+ hu+ g)¦Gq + (hu+ g)¦Λ−1q. We have

p¦W ∗q/2

=(µ+ hu+ g)¦(Λ−1 +G)q

=(µ+ hu+ g)¦Gq + (hu+ g)¦Λ−1q + µ¦Λ−1q = a+ b.

The Taylor expansion of σ(a+ b) at point a with an Lagrange form of remainder is

σ(a+ b)pq¦ = σ(a)pq¦ + σ′(a)bpq¦ +
σ′′(a)

2
b2pq¦ +

σ′′′(ξ(a, b))

3!
b3pq¦,

where ξ(a, b) are real numbers between a and a+ b. Thus, our equation (27) become

Eµ,u,g,h,q

[
σ′(a)bpq¦ +

σ′′(a)

2
b2pq¦ +

σ′′′(ξ(a, b))

3!
b3pq¦

]
= 0. (28)

Note that E[σ′(a)bpq¦] = Eµ,u,q

[
σ′(a)Eg,h

[
bpq¦

]]
. For Eg,h[bpq

¦], according to Lemma D.1 and g ∼ N(0, 4Λ/N), we

have

Eg,h[bpq
¦]

=E[µ¦Gqµq¦ + g¦Λ−1qgq¦ + g¦Gqgq¦ + h2u¦Gquq¦ + h2u¦Λ−1quq¦]

=µµ¦Gqq¦ + 4qq¦/N + 4ΛGqq¦/N + uu¦Gqq¦/(4N) + uu¦Λ−1qq¦/(4N). (29)

Then, we have

∥Eµ,u,q[σ
′(a)(4ΛGqq¦/N + uu¦Gqq¦/(4N))]∥max f c1∥G∥max/N,

where c1 = maxij |E [
∑

kl 4σ
′(a) (Λikqlqj) +

∑
kl σ

′(a) (uiukqlqj/4)]| is a constant independent of N . According to

Lemma D.3, ∥G∥max = O(1/
√
N) = o(1), we have

∥Eµ,u,q[σ
′(a)(4ΛGqq¦/N + uu¦Gqq¦/(4N))]∥max = o(1/N), (30)
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Similarly for E[σ′′(a)b2pq¦/2], we have

Eg,h[b
2pq¦]

=E[µ¦Gqµ¦Gqµq¦ + h2u¦Gqu¦Gqµq¦ + g¦Gqg¦Gqµq¦ + 2h2u¦Gqµ¦Gquq¦ + 2g¦Gqµ¦Gqgq¦]︸ ︷︷ ︸
(i)

+ E[2h2u¦Gqu¦Λ−1qµq¦ + 2g¦Gqg¦Λ−1qµq¦ + 2h2µ¦Gqu¦Λ−1quq¦ + 2µ¦Gqg¦Λ−1qgq¦]︸ ︷︷ ︸
(ii)

+ E[h2u¦Λ−1qu¦Λ−1qµq¦ + g¦Λ−1qg¦Λ−1qµq¦]︸ ︷︷ ︸
(iii)

.

For each term in (i), it contains two G. Thus, their max norms are at most smaller than O(∥G∥2max). For each term in

(ii), it contains one G and h2 or contains one G and two g. According to E[h2] = 1/(4N) in Lemma D.1, the max norm

of terms with one G and h2 are smaller than O(∥G∥max/N). Defining ḡ = N1/2Λ−1/2g/2, we have ḡ ∼ N(0, Id) and

g = 2N−1/2Λ1/2ḡ. Thus, converting two g to ḡ, we have a coefficient of N−1. Therefore, the max norms of terms with one

G and two g are also smaller than O(∥G∥max/N). Therefore, for terms (i), (ii), we have

∥E[σ′′(a)(i)/2]∥max f O(∥G∥2max) = o(∥G∥max), (31)

∥E[σ′′(a)(ii)/2]∥max f O(∥G∥max/N) = o(1/N). (32)

For term (iii), according to Lemma D.1 and g ∼ N(0, 4Λ/N), we have

∥E[σ′′(a)(iii)/2]∥max

=∥E
[
σ′′(a)(h2u¦Λ−1qu¦Λ−1qµq¦ + g¦Λ−1qg¦Λ−1qµq¦)/2

]
∥max (33)

=
1

N
∥E
[
σ′′(a)((u¦Λ−1q)2µq¦/8 + 2q¦Λ−1qµq¦)

]
∥max. (34)

For E[σ′′′(ξ(a, b))b3pq¦/3!], we have

∥E[σ′′′(ξ(a, b))b3pq¦/3!]∥max

fmax
z∈R

|σ′′′(z)|/3! ·max
ij

E
[∣∣b3piqj

∣∣]

fO(1) ·max
ij

E

[ ∑

φ1,φ2,φ3∈{µ,hu,g}

∣∣φ¦
1 Gqφ¦

2 Gqφ¦
3 Gqpiqj

∣∣

︸ ︷︷ ︸
(∗)

+
∑

φ1,φ2∈{µ,hu,g},φ3∈{hu,g}

∣∣φ¦
1 Gqφ¦

2 Gqφ¦
3 Λ

−1qpiqj
∣∣

︸ ︷︷ ︸
(∗)

+
∑

φ1∈{µ,hu,g},φ2,φ3∈{hu,g}

∣∣φ¦
1 Gqφ¦

2 Λ
−1qφ¦

3 Λ
−1qpiqj

∣∣

︸ ︷︷ ︸
(∗∗)

+
∑

φ1,φ2,φ3∈{hu,g}

∣∣φ¦
1 Λ

−1qφ¦
2 Λ

−1qφ¦
3 Λ

−1qpiqj
∣∣

︸ ︷︷ ︸
(∗∗∗)

]
.

For terms in (∗) containing two or three G, these terms’ expected absolute values are at most smaller than O(∥G∥2max).
For terms in (∗∗) containing one G, these terms must contain n1 number of h and n2 number of elements of g, where

n1 + n2 = 2, 3, 4, n1, n2 ∈ N. According to Lemma D.1, we know that for n1 = 1, 2, 3, 4, E|hn1 | f O(N−n1/2).
Defining ḡ = N1/2Λ−1/2g/2, we have ḡ ∼ N(0, Id) and g = 2N−1/2Λ1/2ḡ. Converting g to ḡ, we have a coefficient of

N−n2/2. Thus, for terms in (∗∗), these terms’ expected absolute values are at most smaller than O(∥G∥maxN
−(n1+n2)/2) f
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O(∥G∥maxN
−1). For terms in (∗ ∗ ∗) without G, these terms must contain n1 number of h and n2 number of elements

of g, we have n1 + n2 = 3, 4, n1, n2 ∈ N. Similarly, these term’s expected absolute values are at most smaller than

O(N−(n1+n2)/2) f O(N−3/2). Therefore, we have

∥E[σ′′′(ξ(a, b))b3pq¦/3!]∥max

fmax
ij

E
[∣∣b3piqj

∣∣] ·max
z

|σ′′′(z)|/3!

=O(∥G∥2max) +O(∥G∥max/N) +O(1/N−3/2)

=o(∥G∥max) + o(1/N). (35)

Moreover, we have

{
Eµ,u,q[σ

′(a)µµ¦Gqq¦]

}

ij

=
∑

kl

sijklGkl, (36)

where sijkl = Eσ′(a)µiµkqlqj . We vectorize G as Vec(G)i = Gt1(i),t2(i). Define S ∈ R
d2×d2

, where Sij =
st1(i),t2(i),t1(j),t2(j) = Eσ′(a)µt1(i)qt2(i)µt1(j)qt2(j). Then (36) can be expressed as

{
Eµ,v[σ

′(a)µµ¦Gqq¦]

}
= SG. (37)

Note that S = 4∇2L̃(2Λ−1). According to Lemma D.2, S is positive definite. Thus, combining (28), (29), (30), (31), (32),

(34), (35), (37), we have

∥G∥max

f 1

N
∥S−1

(
E[σ′(a)(4qq¦ + uu¦Λ−1qq¦/4) + σ′′(a)((u¦Λ−1q)2µq¦/8 + 2q¦Λ−1qµq¦)]

)
∥max

+ o(1/N).

Lemma D.5. The loss function (7) is l-smooth, where l f 1
4

∑
i∈[d2] E[(pt1(i)qt2(i))

2].

Proof. The Hessian matrix of the loss function is

(∇2L(W ))ij =
1

4
E[σ(p¦Wq/2)(1− σ(p¦Wq/2))pt1(i)qt2(i)pt1(j)qt2(j)].

Considering z ∈ R
d2

such that z ̸= 0, we have

z¦∇2L(W )z =E

[
1

4
σ(p¦Wq/2)(1− σ(p¦Wq/2))

∑

ab

zazbpt1(a)qt2(a)pt1(b)qt2(b)

]

=E


1
4
σ(p¦Wq/2)(1− σ(p¦Wq/2))


 ∑

a∈[d2]

zapt1(a)qt2(a)




2



fE


1
4


 ∑

a∈[d2]

zapt1(a)qt2(a)




2



(a)

f 1

4
∥z∥22

∑

i∈[d2]

E[(pt1(i)qt2(i))
2]

where (a) is due to the Cauchy–Schwarz inequality. Thus, ∇2L(W ) ¯ lId and L(W ) is l-smooth, where l is a constant

smaller than 1
4

∑
i∈[d2] E[(pt1(i)qt2(i))

2].
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D.4. Proof of Theorem 3.3

Proof. According to Lemma D.4, the global minimizer of L(W ) is W ∗ = 2(Λ−1 +G), where

∥G∥max f 1

N
∥S−1(E[σ′(a)(4qq¦ +

1

4
uu¦Λ−1qq¦)

+ σ′′(a)(
1

8
(u¦Λ−1q)2µq¦ + 2q¦Λ−1qµq¦)])∥max + o(1/N). (38)

Define RW = {W ∈ R
d×d | ∥W −W ∗∥F f ∥W 0 −W ∗∥F }. RW is a compact set. Then, according to Lemma D.2, for

W ∈ RW , we have ∇2L(W ) ° αId. Here α > 0 is a positive constant number. Thus, L(W ) is α-strongly convex in RW .

Moreover, according to Lemma D.5, L(W ) is l-smooth. Then according to Lemma C.2, applying gradient descent with

η = 1/l, for any t g 1, we have

∥W t −W ∗∥2F f exp(−t/κ) · ∥W 0 −W ∗∥2F ,

where κ = l/α.

E. In-context inference of binary classification

E.1. Notations

In this section, we use the following notations. We denote µ = µ1 − µ0, u = 2(µ1 + µ0), q = xquery. Define

p = 2
M

∑M
i=1 yixi. Since with probability P (yi = 1) = 1/2, xi = µ1 + vi, with probability P (yi = 0) = 1/2, xi =

µ0 + vi, where vi ∼ N(0,Λ), we have p = 2M1µ1/M − 2M0µ0/M + g, where g = 2
M

∑M
i=1 vi, g ∼ N(0, 4Λ/M),

M1 ∼ Bin(M, 1/2). Defining h = M1/N − 1/2, u = 2(µ1 + µ0), we have M0/N = 1/2− h and

p = µ+ hu+ g. (39)

E.2. Proof of Theorem 3.6

Proof. The output of the trained transformer is

ŷout = σ

((
2

M

M∑

i=1

yix
¦
i

)
(Λ−1 + Ĝ)xquery

)
= σ(p¦(Λ−1 + Ĝ)q). (40)

The probability of yquery = 1 given xquery is

P (yquery = 1|xquery) = σ((µ1 − µ0)
¦Λ−1xquery) = σ(µ¦Λ−1q).

Defining a = µ¦Λ−1q, b = (µ+ hu+ g)¦Ĝq + (hu+ g)¦Λ−1q, we have

p¦(Λ−1 + Ĝ)q

=(µ+ hu+ g)¦(Λ−1 + Ĝ)q

=(µ+ hu+ g)¦Ĝq + (hu+ g)¦Λ−1q + µ¦Λ−1q = a+ b,

and

E

[
σ(p¦(Λ−1 + Ĝ)q)

]
= E [σ(a+ b)] = E[σ(a) + σ′(a)b+ σ′′(ξ(a, b))b2/2],

where ξ are real numbers between a and a+ b. Thus, we have

E[|σ(a+ b)− σ(a)|]
fE[

∣∣σ′(a)b+ σ′′(ξ(a, b))b2/2
∣∣]

fσ′(a)E[|b|] + E[b2]
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We first consider the term σ′(a)E[|b|]. Defining ḡ = Λ−1/2M1/2g/2, we have

σ′(a)E[|b|]

fσ′(a)
[
|µ¦Ĝq|+ E[|hu¦Ĝq|] + E[|g¦Ĝq|] + E[|hu¦Λ−1q|] + E[|g¦Λ−1q|]

]

(a)

fσ′(a)

[
|µ¦Ĝq|+ 1

2M1/2
|u¦Ĝq|+ 2

M1/2
E[|ḡ¦Λ1/2Ĝq|] + 1

2M1/2
|u¦Λ−1q|+ 2

M1/2
E[|ḡ¦Λ−1/2q|]

]

(b)

fσ′(a)


∥Ĝ∥max

∑

i,j∈[d]

|µiqj |+
1

M1/2


1

2
|u¦Λ−1q|+ 2

√
2√
π

∑

i,j∈[d]

|Λ−1/2
ij qj |




+ o

(
1

N
+

1√
M

)
,

where (a) is due to E[|h|] f 1/(2M1/2) in Lemma D.1. (b) is because that ḡi ∼ N(0, 1) and E[|ḡi|] =
√
2/
√
π, for i ∈ [d].

For E[b2], we have

E[b2] f E

[
[(µ+ hu+ g)¦Ĝq]2

]
+ E

[
[(hu+ g)¦Λ−1q]2

]
+ 2E

[
(µ+ hu+ g)¦Ĝq(hu+ g)¦Λ−1q

]
.

Notice that terms in E

[
[(µ+ hu+ g)¦Ĝq]2

]
contain two Ĝ. Thus, they are at most smaller than O(∥Ĝ∥2max) = O(1/N2).

Terms in E

[
[(hu + g)¦Λ−1q]2

]
/2 contain two h, or two g, or one h and one g. According to Lemma D.1, we have

E[|h|] = O(1/
√
M), E[h2] = 1/(4M). Moreover, g = 2M−1/2Λ1/2ḡ. Converting one g to ḡ, we have a coefficient of

M−1/2. Thus, terms in E
[
[(hu + g)¦Λ−1q]2

]
/2 contain two h, or two g, or one h and one g are O(1/M). Terms in

E
[
(µ+hu+g)¦Ĝq(hu+g)¦Λ−1q

]
contain at least one Ĝ and one h or one Ĝ and one g. Thus, they are at most smaller than

O(∥Ĝ∥max/
√
M) = O(1/(N

√
M)). Therefore, we have E[b2|]/2 = O(1/N2+1/M+1/(N

√
M)) = o(1/N+1/

√
M).

Finally, we have

E[∆(yquery, ŷquery)] = E[|ŷout − P (yquery = 1|xquery) |] = E[|σ(a+ b)− σ(a)|] f σ′(a)E[|b|] + E[b2]

fσ′(a)


∥Ĝ∥max

∑

i,j∈[d]

|µiqj |+
1

M1/2


1

2
|u¦Λ−1q|+ 2

√
2√
π

∑

i,j∈[d]

|Λ−1/2
ij qj |




+ o

(
1

N
+

1√
M

)
.

F. Training procedure for in-context multi-class classification

In this section, we present the proof of Theorem 4.3.

F.1. Proof sketch

First, we prove in Lemma F.3 that the expected loss function L(W ) (16) is strictly convex w.r.t. W and is strongly convex

in a compact set of Rd×d. Moreover, we prove L(W ) has one unique global minimizer W ∗. Then, in Lemma F.4, by

analyzing the Taylor expansion of L(W ), we prove that as N → ∞, our loss function L(W ) point wisely converges to

L̃(W ) (defined in (44)), and the global minimizer W ∗ converge to 2Λ−1. Thus, we denote W ∗ = 2(Λ−1 +G), and prove

∥G∥max = O(N−1/4). Next, in Lemma F.5, by further analyzing the Taylor expansion of the equation ∇L(W ∗) = 0 at the

point 2Λ−1, we establish a tighter bound ∥G∥max = O(cN−1). In Lemma F.6, we prove that our loss function is l-smooth

and provide an upper bound for l. Thus, in a compact set RW , our loss function is α-strongly convex and l-smooth. Finally,

leveraging the standard results from the convex optimization, we prove Theorem 4.3 in subsection F.3.

In this section, we use the following notations.
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F.2. Notations

Recall the expected loss function (16) is

L(W ) = −E

[
c∑

k=1

(yτ,query)k log((ŷτ,out)k)

]
, (41)

where

(ŷτ,out)k = softmax

(
1

c

(
c

N

N∑

i=1

yτ,ix
¦
τ,i

)
Wxτ,query

)

k

is the output of the transformer, and the label of the data follows the distribution

P (yτ,query = ek|xτ,query) = softmax(µ¦
τ Λ

−1xτ,query))k.

In this section, we introduce the following notations to analyze (16). We denote µk = µτ,k, µ = (µ1, µ2, . . . , µk) ∈
R

d×c and q = xτ,query. Then with probability P (yτ,query = ek) = 1/c, q = µk + v, where v ∼ N(0,Λ). We define

pk = c
N

∑N
i=1(yτ,i)kxτ,i ∈ R

d and P = (p1, p2, . . . , pc) ∈ R
d×c. We have P¦ = c

N

∑N
i=1 yix

¦
τ,i ∈ R

c×d. Since with

probability P (yτ,i = ek) = 1/c we have xτ,i = µk + vi, where vi ∼ N(0,Λ), we known pk = c
N

∑N
i=1(yτ,i)kxτ,i =

cNkµk/N + gk, where gk = c
N

∑
i∈{i|yτ,i=ek}

vi, gk ∼ N(0, c2NkΛ/N
2) and (N1, N2, . . . , Nc) ∼ Multin(n, 1/c).

Defining hk = Nk/N − 1/c, we have Nk/N = 1/c + hk and pk = µk + chkµk + gk. Defining ḡk = Λ−1/2gk, we

have ḡk ∼ N(0, c2NkId/N
2). Defining µh = (h1µ1, h2µ2, . . . , hkµk) ∈ R

d×c and g = (g1, g2, . . . , gk) ∈ R
d×c, we have

P = µ+ cµh + g.

Then, the expected loss function (16) can be expressed as

L(W ) = E

[
c∑

k=1

−softmax(µ¦Λ−1q)k log(softmax(P¦Wq/c)k)

]
. (42)

The gradient of the loss function (16) can be expressed as

∇L(W ) = E

[
c∑

k=1

[
(softmax(P¦Wq/c)k − softmax(µ¦Λ−1q)k)pkq

¦/c
]
]
. (43)

Moreover, we define a function L̃(W ) as

L̃(W ) = E[

c∑

k=1

−softmax(µ¦Λ−1q)k log(softmax(µ¦Wq/c)k)]. (44)

In Lemma F.4, we show that as N → ∞, L(W ) will point wisely converge to L̃(W ).

Lemma F.1. Suppose (N1, N2, . . . , Nc) ∼ Multin(N, 1/c). Defining hk = Nk/N − 1/c, we have

E[hk] = 0

E[h2
k] =

1

N

(
1

c
− 1

c2

)

E[hihj ] = − 1

Nc2
, i ̸= j

E[
c∏

k=1

hnk

k ] = O
(
N−2

)
,
∑

k

nk g 3

E[|hj |] f N−1/2c−1/2(1− 1/c)1/2

E[|hihj |] = O(N−1)

E[|hihjhk|] = O
(
N−3/2

)

E[|hihjhkhl|] = O
(
N−2

)
,

where i, j, k, l ∈ [c].
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Proof. Since (N1, N2, . . . , Nc) ∼ Multin(N, 1/c), the moment-generating function of (N1, N2, . . . , Nc) is

MN (t) =

(
1

c

c∑

i=1

exp(ti)

)N

We can compute the moment-generating function of h = (h1, h2, . . . , hc) as follows:

Mh(t) = exp

(
−

c∑

i=1

ti/c

)
MN (t/N) =


1

c

c∑

i=1

exp


 1

N


ti −

c∑

j=1

tj/c








N

=


1 + 1

Nc




c∑

i=1

ti − c

c∑

j=1

tj/c


+

1

2N2c




c∑

i=1


ti −

c∑

j=1

tj/c




2



+

∞∑

k=3

1

k!Nkc




c∑

i=1


ti −

c∑

j=1

tj/c




k






N

=


1 +

c∑

i=1

1

2N
(1/c− 1/c2)t2i −

∑

i ̸=j∈[c]

1

2Nc2
titj +

∞∑

k=3

1

k!Nkc




c∑

i=1


ti −

c∑

j=1

tj/c




k






Observing the coefficients of h, we have

E[hk] = 0

E[h2
k] =

1

N

(
1

c
− 1

c2

)

E[hihj ] = − 1

Nc2
, i ̸= j

E[

c∏

k=1

hnk

k ] = O
(
N−2

)
,
∑

k

nk g 3,

where i, j, k ∈ [c].

Iteratively applying the Hölder’s inequality, we have

E[|hj |] f
(
E[h2

j ]
)1/2

= N−1/2c−1/2(1− 1/c)1/2

E[|hihj |] f
(
E[h2

ih
2
j ]
)1/2

= O(N−1)

E[|hi|3] f E[|hi|4]3/4 = (N−3/2)

E[|hihjhk|] f E[|hi|3]1/3E[|hj |3]1/3E[|hk|3]1/3 = O
(
N−3/2

)

E[|hihjhkhl|] f E[|hi|4]1/4E[|hj |4]1/4E[|hk|4]1/4E[|hl|4]1/4 = O
(
N−2

)

where i, j, k, l ∈ [c].

Lemma F.2. Suppose gk ∼ N(0, c2NkΛ/N
2) and (N1, N2, . . . , Nc) ∼ Multin(N, 1/c), define ḡk = Λ−1/2gk and

Nk/N = 1/c+ hk, we have

E[(ḡk)i] = 0

E[(ḡk)i(ḡl)j ] = δklδijc/N

E[(ḡk1
)ii(ḡk2

)i2(ḡk3
)i3 ] = 0

E[(ḡk)
4
i ] = E[3c2/N2(1 + chk)

2] = O(N−2)

E[hm(ḡk)i(ḡl)j ] = E[c2δklδijhmhk/N ] = O(N−2)

E[hmhl(ḡk)i] = 0
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where i, j, i1, i2, i3 ∈ [d], k, l,m, k1, k2, k3 ∈ [c].

For any n1k, n2ki satisfying
∑

k∈[c] n1k +
∑

k∈[c],i∈[d] n2ki = 1, 2, 3, we have

E[
∏

k∈[c],i∈[d]

hn1k

k (ḡk)
n2ki

i ] = O(N−1)

Moreover, we have

E[|(ḡk)i|] f E[(ḡk)
2
i ]

1/2 = N−1/2c1/2

E[|(ḡk)i|3] f E[(ḡk)
4
i ]

3/4 = O(N−3/2)

where i ∈ [d], k ∈ [c].

For any n1k, n2ki satisfying
∑

k∈[c] n1k +
∑

k∈[c],i∈[d] n2ki = n, n = 1, 2, 3, 4, we have

E[
∏

k∈[c],i∈[d]

|hn1k

k (ḡk)
n2ki

i |] = O(N−n/2)

Proof. Since gk ∼ N(0, c2NkΛ/N
2) and ḡk ∼ N(0, c2NkId/N

2) = N(0, (c/N + c2hk/N)Id), we have

E[(ḡk)i] = 0

E[(ḡk)i(ḡl)j ] = δklδijc/N

E[(ḡk1
)ii(ḡk2

)i2(ḡk3
)i3 ] = 0

E[(ḡk)
4
i ] = E[3c2/N2(1 + chk)

2] = O(N−2)

E[hm(ḡk)i(ḡl)j ] = E[c2δklδijhmhk/N ] = O(N−2)

E[hmhl(ḡk)i] = 0

where i, j, i1, i2, i3 ∈ [d], k, l,m, k1, k2, k3 ∈ [c]. Thus, with the results from Lemma F.1, for any n1k, n2ki satisfying∑
k∈[c] n1k +

∑
k∈[c],i∈[d] n2ki = 1, 2, 3, we have

E[
∏

k∈[c],i∈[d]

hn1k

k (ḡk)
n2ki

i ] = O(N−1)

Moreover, according to the Jensen’s inequality, we have

E[|(ḡk)i|] f E[(ḡk)
2
i ]

1/2 = N−1/2c1/2

E[|(ḡk)i|3] f E[(ḡk)
4
i ]

3/4 = O(N−3/2)

where i ∈ [d], k ∈ [c]. Thus, with the results from Lemma F.1, for any n1k, n2ki satisfying
∑

k∈[c] n1k+
∑

k∈[c],i∈[d] n2ki =
n, n = 1, 2, 3, 4, we have

E[
∏

k∈[c],i∈[d]

|hn1k

k (ḡk)
n2ki

i |] f
∏

k∈[c],i∈[d]

E[|hn
k |]n1k/nE[|(ḡk)ni |]n2ki/n = O(N−n/2).

Lemma F.3. For the loss function L(W ) (16), we have ∇2L(W ) { 0. For any compact set RW , when W ∈ RW , we have

∇2L(W ) { γId for some γ > 0. Additionally, L(W ) has one unique global minimizer on R
d×d.

For L̃(W ) defined in (44), we also have ∇2L̃(W ) { 0. For any compact set RW , when W ∈ RW , we have ∇2L̂(W ) { γId
for some γ > 0. Additionally, L̃(W ) has one unique global minimizer on R

d×d.
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Proof. We vectorize W as Vec(W ) ∈ R
d2

, where Vec(W )i = Wt1(i),t2(i), t1(x) = +(x − 1)/d, + 1, t2(x) = ((x −
1) mod d) + 1. Then, we have

(∇L(W ))i = E

[
c∑

k=1

[
(softmax(P¦Wq/c)k − softmax(µ¦Λ−1q)k)(pk)t1(i)qt2(i)/c

]
]

(45)

Note that

softmax(P¦Wq/c)k = σ(ak)

∇softmax(P¦Wq/c)k = σ(ak)(1− σ(ak))∇ak,

where ak = − log(
∑

l=1,...,c,l ̸=k exp ((pl − pk)Wq/c)). For ∇ak, we have

∇ak =

∑
l=1,...,c,l ̸=k exp

(
(pl − pk)

¦Wq/c
)
(pk − pl)q

¦/c∑
l=1,...,c,l ̸=k exp ((pl − pk)¦Wq/c)

=

∑
l=1,...,c,l ̸=k exp

(
p¦l Wq/c

)
(pk − pl)q

¦/c
∑

l=1,...,c,l ̸=k exp
(
p¦l Wq/c

) .

Then we have

∇softmax(P¦Wq/c)k =softmax(P¦Wq/c)k

∑
l=1,...,c,l ̸=k exp

(
p¦l Wq

)
(pk − pl)q

¦/c∑
n=1,...,c exp (p

¦
nWq/c)

=
∑

l=1,...,c,l ̸=k

softmax(P¦Wq/c)ksoftmax(P¦Wq/c)l(pk − pl)q
¦/c

and

(∇softmax(P¦Wq/c)k)j =
∑

l=1,...,c,l ̸=k

softmax(P¦Wq/c)ksoftmax(P¦Wq/c)l(pk − pl)t1(j)qt2(j)/c.

We can express the Hessian matrix of the loss function with the following form:

(∇2L(W ))ij =E




c∑

k=1

∑

l=1,...,c,l ̸=k

softmax(P¦Wq/c)ksoftmax(P¦Wq/c)l(pk)t1(i)qt2(i)(pk − pl)t1(j)qt2(j)/c
2




=E

[
c∑

k=2

k−1∑

l=1

softmax(P¦Wq/c)ksoftmax(P¦Wq/c)l(pk − pl)t1(i)qt2(i)(pk − pl)t1(j)qt2(j)/c
2

]
.

Considering z ∈ R
d2

such that z ̸= 0, we have

z¦∇2L(W )z =E

[
1

c2

c∑

k=2

k−1∑

l=1

softmax(P¦Wq/c)ksoftmax(P¦Wq/c)l
∑

ab

zazb(pk − pl)t1(a)qt2(a)(pk − pl)t1(b)qt2(b)

]

=E


 1

c2

c∑

k=2

k−1∑

l=1

softmax(P¦Wq/c)ksoftmax(P¦Wq/c)l


 ∑

a∈[d2]

za(pk − pl)t1(a)qt2(a)




2



Since for any P, q, k, l, softmax(P¦Wq/c)ksoftmax(P¦Wq/c)l > 0, we have z¦∇2L(W )z g 0. Thus, ∇2L(W ) ° 0
and L(W ) is convex.
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Defining p̃ = p1 − p2, we have

z¦∇2L(W )z

gE


 1

c2
softmax(P¦Wq/c)1softmax(P¦Wq/c)2


 ∑

a∈[d2]

za(p1 − p2)t1(a)qt2(a)




2



=

∫
1

c2
softmax(P¦Wq/c)1softmax(P¦Wq/c)2


 ∑

a∈[d2]

zap̃t1(a)qt2(a)




2

fPq(P, q)dPdq

where fPq(P, q) are the PDF function of P, q. For any z ̸= 0, we denote zij = z((i−1)d+j), suppose a, b ∈ argmaxi,j |zij |,
we consider a set of constants {c1pi, c2pi}, {c1qi, c2qi}, i, j ∈ [d], where c1pa = d, c2pa = d + 1, c1qb = d, c2qb = d + 1,

and c1pi = 1/16, c2pi = 1/8, i ̸= a, c1qj = 1/16, c2qj = 1/8, j ̸= b. Then, for any cpi ∈ [c1pi, c2pi], cqj ∈ [c1qj , c2qj ], we

have
∣∣∣∣∣∣
∑

i,j∈[d]

zijcpicqj

∣∣∣∣∣∣
g
[
d2 − 2(d+ 1)(d− 1)/8− (d− 1)2/64

]
max
ij

|zij | g d2 max
ij

|zij |/2.

Then, we define region Ω(a, b) = {p̃ =
∑

i cpiei, q =
∑

j cqjej ,cpi ∈ [c1pi, c2pi], cqj ∈ [c1qj , c2qj ], ∥P∥2F f c2(
∑

i c
2
2pi +

c22qj)}. We have

min
Ω(a,b)


∑

l∈[d2]

zlp̃t1(l)qt2(l)




2

g d4 max
ij

|zij |2/4 g ∥z∥22/4.

Defining

C(Ω) = min
a∈[d],b∈[d]

∫

Ω(a,b)

fPq(P, q)dPdq,

S(Ω,W ) = min
a∈[d],b∈[d]

min
Ω(a,b)

{
1

c2
softmax(P¦Wq/c)1softmax(P¦Wq/c)2

}
,

we have S(Ω,W ) > 0. Since we have fPq(P, q) > 0 for all P, q and Ω(a, b) are non-zero measures for P, q. Thus, we have

C(Ω) > 0. Then, for any z ̸= 0, we have

z¦∇2L(W )z

g
∫

Ω(a,b)

1

c2
softmax(P¦Wq/c)1softmax(P¦Wq/c)2


∑

l∈[d2]

zlp̃t1(l)qt2(l)




2

fPq(P, q)dPdq

gC(Ω)S(Ω,W )∥z∥22/4 > 0

Thus, we have ∇2L(W ) { 0. L(W ) is strictly convex.

Moreover, for any compact set RW of Rd×d, for any W ∈ RW , we have

S(Ω) = min
W∈RW

min
a∈[d],b∈[d]

min
Ω(a,b)

{
1

c2
softmax(P¦Wq/c)1softmax(P¦Wq/c)2

}
> 0.

Then, for any W ∈ RW , for any z ̸= 0, we have

z¦∇2L(W )z

g
∫

Ω(a,b)

1

c2
softmax(P¦Wq/c)1softmax(P¦Wq/c)2


∑

l∈[d2]

zlp̃t1(l)qt2(l)




2

fPq(P, q)dPdq

gC(Ω)S(Ω)∥z∥22/4.
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Thus, when W ∈ RW , RW is a compact set, we have ∇2L(W ) { C(Ω)S(Ω)Id/4, our loss function is γ−strongly convex,

where γ = C(Ω)S(Ω)/4.

Because our loss function is strictly convex in R
d×d, it has at most one global minimizer in R

d×d. Next, we prove all

level sets of our loss function are compact, i.e. Vα = {W ∈ R
d×d |L(W ) f α} is compact for all α. We prove it

by contradiction. Suppose Vα is not compact for some α. Since our loss function is continuous and convex, Vα is an

unbounded convex set. Since the dimension of Vα is d2, consider a point Wα ∈ Vα, there must exists a W k ̸= 0d×d that

{Wα + tW k | t = [0,∞)} ∈ Vα. For this W k ̸= 0d×d, there must exist a set of constants 0 < c3pi < c4pi, 0 < c3qj < c4qj
such that for any cpi ∈ [c3pi, c4pi], cqj ∈ [c3qj , c4qj ], we have

|
∑

ij

cpicqjW
k
ij | ≠ 0.

Thus, we have

lim
t→∞

|
∑

ij

cpicqj(W
α
ij + tW k

ij)| = ∞.

We define Ω0 = {p̃ =
∑

i cpiei, q =
∑

j cqjej , cpi ∈ [c3pi, c4pi], cqj ∈ [c3qj , c4qj ], ∥P∥2F f c2(
∑

i c
2
4pi + c24qj), ∥µ∥2F f

c2(
∑

i c
2
4pi + c24qj)}. Then, defining

C(Ω0) =

∫

Ω0

fPq(P, q)dPdq,

S(Ω0) = min
Ω0

{
min{softmax(µ¦Wq/c)1, softmax(µ¦Wq/c)2}

}

we have S(Ω0) > 0. Since Ω0 are non-zero measures for P, q, we have C(Ω0) > 0. Then, we have

lim
t→∞

L(Wα + tW k)

= lim
t→∞

E[
c∑

l=1

−softmax(µ¦Λ−1q)l log(softmax(P¦(Wα + tW k)q/c)l)]

g lim
t→∞

∫

Ω0

[−softmax(µ¦Λ−1q)1 log(softmax(P¦(Wα + tW k)q/c)1)]fPq(P, q)dPdq

+ lim
t→∞

∫

Ω0

[−softmax(µ¦Λ−1q)2 log(softmax(P¦(Wα + tW k)q/c)2)]fPq(P, q)dPdq

g lim
t→∞

∫

Ω0

[−softmax(µ¦Λ−1q)1 log(σ(p̃
¦(Wα + tW k)q/c))]fPq(P, q)dPdq

+ lim
t→∞

∫

Ω0

[−softmax(µ¦Λ−1q)2 log(σ(−p̃¦(Wα + tW k)q/c))]fPq(P, q)dPdq

gC(Ω0)S(Ω0) ·min
Ω0



 lim

t→∞
[− log(σ(

∑

ij

cpicqj(W
α
ij + tW k

ij)/c))]





+C(Ω0)S(Ω0) ·min
Ω0



 lim

t→∞
[− log(σ(−

∑

ij

cpicqj(W
α
ij + tW k

ij)/c))]





=∞

This contradicts the assumption L(Wα + tW k) f α. Thus, all level sets of the loss function L(W ) are compact, which

means there exists a a global minimizer for L(W ). Together with the fact that L(W ) is strictly convex, L(W ) has one

unique a global minimizer on R
d×d.

Similarly, we can prove the same conclusions for L̃(W ).

Lemma F.4. Denoting the global minimizer of our loss function (16) as W ∗, we have W ∗ = c(Λ−1 + G), where

∥G∥max = O(N−1/4).
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Proof. Let a = µ¦Λ−1q, s = µ¦Wq/c, r = (µh+g)¦Wq/c, ak = µ¦
k Λ

−1q, sk = µ¦
k Wq/c, rk = (chkµk+gk)

¦Wq/c.

Performing the Taylor expansion on (16), we have

L(W ) =E

[
c∑

k=1

−ζk(a) log(ζk(s+ r))

]

=E




c∑

k=1

−ζk(a) log(ζk(s))−
c∑

k,l=1

ζk(a)Rkl(s, r)rl




=L̃(W )− E




c∑

k,l=1

ζk(a)Rkl(s, r)rl




where |Rkl(s, r)| f supy |∂ log(ζk(y))
∂yl

| supy | 1
ζk(y)

∂ζk(y)
∂yl

| = supy |δkl − ζl(y)| f 1. Thus, we have

∣∣∣L̃(W )− L(W )
∣∣∣

fc

c∑

l=1

E [|rl|]

f
c∑

l=1

cE
[
|hlµ

¦
l Wq|

]
+ E

[
|g¦l Wq|

]

fO(1)∥W∥maxE[|hl|] +O(1)∥W∥maxE[|(ḡl)i|]
fCl∥W∥maxN

−1/2

where the last inequality is due to Lemma F.1, F.2. Cl is a constant independent of N and W . This shows that L(W ) point

wisely converge to L̃(W ).

According to Lemma D.2, L̃(W ) has one unique global minimizer. Considering the equation:

∇L̃(W ) = E[
c∑

k=1

−softmax(µ¦Λ−1q)k log(softmax(µ¦Wq/c)k)] = 0

We can easily find that ∇L̃(cΛ−1) = 0 and W = cΛ−1 is the global minimizer of L̃(W ).

Considering a compact set RW = {W | ∥W −2Λ−1∥F f ρW }, we have ∥W∥max f CW for any W ∈ RW . Here ρW , CW

are some positive finite constants. Then, we have

∣∣∣L̃(W )− L(W )
∣∣∣ f C ′

lN
−1/2, W ∈ RW

where C ′
l = ClCW is a constant independent of N and W . This shows that, for any W ∈ RW , L(W ) uniformly converge

to L̃(W ).

Denote W ∗ as the global minimizer of L(W ) with prompt length N . Then, we show that, when N is sufficiently large,

W ∗ ∈ RW . We first denote ∂RW = {W | ∥W − cΛ−1∥F = ρW } , ∆ = minW∈∂RW
L̃(W ) − L̃(cΛ−1) > 0. Then, for

N g (4C ′
l/∆)2, and for any W ∈ RW , we have

∣∣∣L̃(W )− L(W )
∣∣∣ f ∆/4

min
W∈∂RW

L(W )− min
W∈RW

L(W ) g min
W∈∂RW

L(W )− L(cΛ−1) g ∆/2 > 0

Since L(W ) is strictly convex, we have W ∗ = argminW L(W ) ∈ RW .
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Then, we have

|L̃(W ∗)− L(W ∗)| f C ′
l/N

|L̃(cΛ−1)− L(cΛ−1)| f C ′
l/N

L̃(W ∗) f L(W ∗) + C ′
l/N f L(cΛ−1) + C ′

l/N f L̃(cΛ−1) + 2C ′
lN

−1/2

According to Lemma D.2, for W ∈ RW , we have ∇2L̃(W ) { γId, where γ is a positive constant independent of N . Thus,

L̃(W ) is γ-strongly convex in RW . According to Lemma C.1, we have

∥W ∗ − cΛ−1∥2F f 2

γ
(L̃(W ∗)− L̃(cΛ−1)) f 4C ′

l

γN1/2

Thus, when N → ∞, we have W ∗ → cΛ−1. Denoting W ∗ = c(Λ−1 +G), we have ∥G∥max = O(N−1/4).

Lemma F.5. The global minimizer of the loss function (16) is W ∗ = c(Λ−1 +G). We have

∥G∥max f 1

N

∥∥∥∥∥S
−1

E

[
c∑

k,l=1

∂ζk(a)

∂al
(cδkl − 1)µkµ

¦
l Λ

−1qq¦ +
c∑

k=1

∂ζk(a)

∂ak
cqq¦

+

c∑

k,l,n=1

∂2ζk(a)

∂al∂an
(cδln − 1)µ¦

l Λ
−1qµ¦

nΛ
−1qµkq

¦/2 +

c∑

k,l=1

∂2ζk(a)

∂a2l
cq¦Λ−1qµkq

¦/2

]∥∥∥∥∥
max

+ o(1/N),

where a = µ¦Λ−1q, ak = µ¦
k Λ

−1q, S = c2∇2L̃(cΛ−1). Ignoring constants other than c,N , we have ∥G∥max f O(c/N).

Proof. According to Lemma F.3, the loss function L(W ) has a unique global minimizer W ∗. We have

∇L(W ∗) = E

[
c∑

k=1

[
(ζk(P

¦W ∗q/c)− ζk(µ
¦Λ−1q))pkq

¦/c
]
]
= 0. (46)

Let W ∗ = c(Λ−1 +G), a = µ¦Λ−1q, ak = µ¦
k Λ

−1q, b = (µ+ cµh + g)¦Gq + (cµh + g)¦Λ−1q, bk = (µk + chkµk +
gk)

¦Gq + (chkµk + gk)
¦Λ−1q. The Taylor expansion of ζk(a+ b) at point a is

ζk(a+ b) = ζk(a) +
c∑

l=1

∂ζk(a)

∂al
bl +

c∑

l,n=1

∂2ζk(a)

∂al∂an
blbn/2! +

c∑

l,n,m=1

Rklnm(a, b)blbnbm/3!,

where |Rklnm(a, b)| f supx | ∂3ζk(x)
∂xl∂xn∂xm

|. Thus, our equation (46) become

E




c∑

k,l=1

∂ζk(a)

∂al
blpkq

¦ +

c∑

k,l,n=1

∂2ζ(a)

∂al∂an
blbnpkq

¦/2! +

c∑

k,l,n,m=1

Rklnm(a, b)blbnbmpkq
¦/3!


 = 0. (47)
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For the first term
∑c

k,l=1
∂ζk(a)
∂al

blpkq
¦, according to Lemma F.1, we have

E




c∑

k,l=1

∂ζk(a)

∂al
blpkq

¦




=E




c∑

k,l=1

∂ζk(a)

∂al

[
µ¦
l Gqµkq

¦ + c2hlhkµ
¦
l Gqµkq

¦ + c2hlhkµ
¦
l Λ

−1qµkq
¦ + g¦l Λ

−1qgkq
¦ + g¦l Gqgkq

¦
]



=E

[
c∑

k,l=1

∂ζk(a)

∂al

(
µkµ

¦
l Gqq¦ + (cδkl − 1)µkµ

¦
l Gqq¦/N + (cδkl − 1)µkµ

¦
l Λ

−1qq¦/N
)

+
c∑

k=1

∂ζk(a)

∂ak

(
cqq¦/N + cΛGqq¦/N

)
]
. (48)

According to Lemma F.4, O(∥G∥max) = O(N−1/4) = o(1), we have

∥∥∥∥∥E
[

c∑

k,l=1

∂ζk(a)

∂al
(cδkl − 1)µkµ

¦
l Gqq¦/N +

c∑

k=1

∂ζk(a)

∂ak
cΛGqq¦/N

]∥∥∥∥∥
max

fO(∥G∥max/N) = o(1/N) (49)

For the second term
∑c

k,l,n=1
∂2ζk(a)
∂al∂an

blbnpkq
¦/2!, we have

E




c∑

k,l,n=1

∂2ζk(a)

∂al∂an
blbnpkq

¦/2!




=
1

2
E

[
c∑

k,l,n=1

∂2ζk(a)

∂al∂an

( ∑

φ1∈{µl,chlµl,gl},φ2∈{µn,chnµn,gn}

φ¦
1 Gqφ¦

2 Gqpkq
¦

︸ ︷︷ ︸
(i)

+
∑

φ1∈{µl,chlµl,gl},φ2∈{chnµn,gn}

2φ¦
1 Gqφ¦

2 Λ
−1qpkq

¦

︸ ︷︷ ︸
(ii)

+
∑

φ1∈{chlµl,gl},φ2∈{chnµn,gn}

φ¦
1 Λ

−1qφ¦
2 Λ

−1qpkq
¦

︸ ︷︷ ︸
(iii)

)]
.

For terms (i) having two G, their max norms are at most smaller than O(∥G∥2max). For terms (ii) having one G, define

ḡl = Λ−1/2gl, these terms must contain n1j number of hj and n2ji number of (ḡj)i, we have
∑

j∈[c],i∈[d] n1j + n2ji =
nt, nt = 1, 2, 3. According to Lemma F.2, we know that for nt = 1, 2, 3,

E[
∏

j∈[c],i∈[d]

h
n1j

j (ḡj)
n2ji

i ] = O(N−1)

Thus, the max norm of expectations of terms in (ii) are at most smaller than O(∥G∥maxN
−1). Therefore, for terms (i), (ii),

we have

∥E[(i)]∥max f O(∥G∥2max) = o(∥G∥max) (50)

∥E[(ii)]∥max f O(∥G∥max/N) = o(1/N) (51)
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For terms (iii) without G, we have

∥E[(iii)]∥max

=

∥∥∥∥∥E
[

c∑

k,l,n=1

∂2ζk(a)

∂al∂an
c2hlhnµ

¦
l Λ

−1qµ¦
nΛ

−1qµkq
¦/2 +

c∑

k,l=1

∂2ζk(a)

∂a2l
g¦l Λ

−1qg¦l Λ
−1qµkq

¦/2

+

c∑

k,l=1

∂2ζk(a)

∂al∂ak
chlµ

¦
l Λ

−1qg¦k Λ
−1qgkq

¦ +
c∑

k,l,n=1

∂2ζk(a)

∂al∂an
c3hlhnhkµ

¦
l Λ

−1qµ¦
nΛ

−1qµkq
¦/2

]∥∥∥∥∥
max

f 1

2N

∥∥∥∥∥E




c∑

k,l,n=1

∂2ζk(a)

∂al∂an
(cδln − 1)µ¦

l Λ
−1qµ¦

nΛ
−1qµkq

¦ +

c∑

k,l=1

∂2ζk(a)

∂a2l
cq¦Λ−1qµkq

¦



∥∥∥∥∥
max

+O(1/N2) (52)

where the last inequity is due to Lemma F.1, F.2.

For the third term
∑c

k,l,n,m=1 Rklnm(a, b)blbnbmpkq
¦/3!, we have

∥∥∥∥∥E




c∑

k,l,n,m=1

Rklnm(a, b)blbnbmpkq
¦/3!



∥∥∥∥∥
max

fO(1) max
l,m∈[d]

E[
∑

k1,k2,k3,k4∈[c]

|bk1
bk2

bk3
(pk4

)lqm|]

fO(1)E
∑

k1,k2,k3,k4∈[c]

[ ∑

φ1∈{µk1
,chk1

µk1
,gk1

},φ2∈{µk2
,chk2

µk2
,gk2

},φ3∈{µk3
,chk3

µk3
,gk3

}

φ¦
1 Gqφ¦

2 Gqφ¦
3 Gq(pk4

)lqm

︸ ︷︷ ︸
(∗)

+
∑

φ1∈{µk1
,chk1

µk1
,gk1

},φ2∈{µk2
,chk2

µk2
,gk2

},φ3∈{chk3
µk3

,gk3
}

φ¦
1 Gqφ¦

2 Gqφ¦
3 Λ

−1q(pk4
)lqm

︸ ︷︷ ︸
(∗)

+
∑

φ1∈{µk1
,chk1

µk1
,gk1

},φ2∈{chk2
µk2

,gk2
},φ3∈{chk3

µk3
,gk3

}

φ¦
1 Gqφ¦

2 Λ
−1qφ¦

3 Λ
−1q(pk4

)lqm

︸ ︷︷ ︸
(∗∗)

+
∑

φ1∈{chk1
µk1

,gk1
},φ2∈{chk2

µk2
,gk2

},φ3∈{chk3
µk3

,gk3
}

φ¦
1 Λ

−1qφ¦
2 Λ

−1qφ¦
3 Λ

−1q(pk4
)lqm

︸ ︷︷ ︸
(∗∗∗)

]
.

For terms in (∗) having two or three G, these terms’ expected absolute values are at most smaller than O(∥G∥2max). For terms

in (∗∗) having one G, these terms must contain n1j number of hj and n2ji number of (ḡj)i, we have
∑

j∈[c],i∈[d] n1j+n2ji =
nt, nt = 2, 3, 4. According to Lemma F.2, for nt = 2, 3, 4, we have

E[
∏

j∈[c],i∈[d]

|hn1k

k (ḡj)
n2ji

i |] = O(N−nt/2) = O(N−1)

Thus, these term’s expected absolute values are at most smaller than O(∥G∥maxN
−1). For terms in (∗ ∗ ∗) without G,

these terms must contain n1j number of hj and n2ji number of (ḡj)i, we have
∑

j∈[c],i∈[d] n1j + n2ji = nt, nt = 3, 4.

According to Lemma F.2, for nt = 3, 4, we have

E[
∏

j∈[c],i∈[d]

|hn1k

k (ḡj)
n2ji

i |] = O(N−nt/2) = O(N−3/2)

33



On the Training Convergence of Transformers for In-Context Classification of Gaussian Mixtures

Thus, these term’s expected absolute values are at most smaller than O(N−3/2). Therefore, we have

∥∥∥∥∥E




c∑

k,l,n,m=1

Rklnm(a, b)blbnbmpkq
¦/3!



∥∥∥∥∥
max

fO(1) max
l,m∈[d]

E[
∑

k1,k2,k3,k4∈[c]

|bk1
bk2

bk3
(pk4

)lqm|]

fO(∥G∥2max) +O(∥G∥maxN
−1) +O(N−3/2)

fo(∥G∥max) + o(1/N). (53)

Moreover, we have

{
E




c∑

k,l=1

∂ζk(a)

∂al
µkµ

¦
l Gqq¦



}

ij

=

{
E




c∑

k=1

ζk(a)(1− ζk(a))µkµ
¦
k Gqq¦ −

c∑

k,l=1,k ̸=l

ζk(a)ζl(a)µkµ
¦
l Gqq¦



}

ij

=

{
E




c∑

k,l=1,k ̸=l

ζk(a)ζl(a)µk(µk − µl)
¦Gqq¦



}

ij

=

{
E

[
c∑

k=2

k−1∑

l=1

ζk(a)ζl(a)(µk − µl)(µk − µl)
¦Gqq¦

]}

ij

=

d∑

n,m=1

sijnmGnm, (54)

where sijnm = E

[∑c
k=2

∑k−1
l=1 ζk(a)ζl(a)(µk − µl)i(µk − µl)nqmqj

]
. We vectorize G as Vec(G)i = Gt1(i),t2(i). Define

S ∈ R
d2×d2

, where Sij = st1(i),t2(i),t1(j),t2(j) = E

[∑c
k=2

∑k−1
l=1 ζk(a)ζl(a)(µk − µl)t1(i)qt2(i)(µk − µl)t1(j)qt2(j)

]
,

(54) can be expressed as

E




c∑

k,l=1

∂ζk(a)

∂al
µkµ

¦
l Gqq¦


 = SG. (55)

Note that S = c2∇2L̃(cΛ−1). According to Lemma F.3, S is positive definite. Thus, combining (47), (48), (49), (50), (51),

(52), (53), (55), we have

∥G∥max

f 1

N

∥∥∥∥∥S
−1

E

[
c∑

k,l=1

∂ζk(a)

∂al
(cδkl − 1)µkµ

¦
l Λ

−1qq¦ +

c∑

k=1

∂ζk(a)

∂ak
cqq¦

+

c∑

k,l,n=1

∂2ζk(a)

∂al∂an
(cδln − 1)µ¦

l Λ
−1qµ¦

nΛ
−1qµkq

¦/2 +

c∑

k,l=1

∂2ζk(a)

∂a2l
cq¦Λ−1qµkq

¦/2

]∥∥∥∥∥
max

+ o(1/N).

Ignoring constants other than c,N , we have ∥G∥max f O(c/N).

Lemma F.6. The loss function (7) is l-smooth, where l f 1
c2

∑c
k=2

∑k−1
l=1

∑
i∈[d2] E[((pk − pl)t1(i)qt2(i))

2].
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Proof. The Hessian matrix of the loss function is

(∇2L(W ))ij = E

[
c∑

k=2

k−1∑

l=1

softmax(P¦Wq/c)ksoftmax(P¦Wq/c)l(pk − pl)t1(i)qt2(i)(pk − pl)t1(j)qt2(j)/c
2

]
.

Considering z ∈ R
d2

such that z ̸= 0, we have

z¦∇2L(W )z

=E


 1

c2

c∑

k=2

k−1∑

l=1

softmax(P¦Wq/c)ksoftmax(P¦Wq/c)l


 ∑

a∈[d2]

za(pk − pl)t1(a)qt2(a)




2



(a)

f 1

c2
∥z∥22

c∑

k=2

k−1∑

l=1

∑

i∈[d2]

E[((pk − pl)t1(i)qt2(i))
2]

where (a) is due to the Cauchy–Schwarz inequality. Thus, ∇2L(W ) ¯ lId and L(W ) is l-smooth, where l is a constant

smaller than 1
c2

∑c
k=2

∑k−1
l=1

∑
i∈[d2] E[((pk − pl)t1(i)qt2(i))

2].

Theorem F.7 (Formal statement of Theorem 4.3). The following statements hold.

(1) Optimizing training loss L(W ) (16) with training prompt length N via gradient descent W t+1 = W t − η∇L(W t), we

have for any t

∥W t −W ∗∥2F f exp(−t/κ)∥W 0 −W ∗∥2F ,

where W 0 is the initial parameter and W ∗ is the global minimizer of L(W ), κ = l/α. α, l are constants such that

0 < α f λmin(∇2L(W )) f λmax(∇2L(W )) f l, for all W ∈ RW , (56)

where RW = {W ∈ R
d×d | ∥W −W ∗∥F f ∥W 0 −W ∗∥F }.

(2) Denoting W ∗ = c(Λ−1 +G), we have

∥G∥max f 1

N

∥∥∥∥∥S
−1

E

[
c∑

k,l=1

∂ζk(a)

∂al
(cδkl − 1)µkµ

¦
l Λ

−1qq¦ +

c∑

k=1

∂ζk(a)

∂ak
cqq¦

+
1

2

c∑

k,l,n=1

∂2ζk(a)

∂al∂an
(cδln − 1)µ¦

l Λ
−1qµ¦

nΛ
−1qµkq

¦ +
1

2

c∑

k,l=1

∂2ζk(a)

∂a2l
cq¦Λ−1qµkq

¦

]∥∥∥∥∥
max

+ o(1/N)

= O(c/N)

where S = c2∇2L̃(2Λ−1), L̃(2Λ−1) = limN→∞ L(2Λ−1). The expectation is taken over µτ ∼ Pm
Ω (Λ), xτ,query ∼

Pm
x (µτ ,Λ).

(3) After T g 2κ log(N · ∥W 0 −W ∗∥F ) gradient steps, denoting Ŵ as the final model, we have

Ŵ = c(Λ−1 + Ĝ), (57)

where ∥Ĝ∥max = O(c/N).
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F.3. Proof of Theorem 4.3

Proof. According to Lemma F.5, the global minimizer of L(W ) is W ∗ = c(Λ−1 +G), where

∥G∥max

f 1

N

∥∥∥∥∥S
−1

E

[
c∑

k,l=1

∂ζk(a)

∂al
(cδkl − 1)µkµ

¦
l Λ

−1qq¦ +

c∑

k=1

∂ζk(a)

∂ak
cqq¦

+

c∑

k,l,n=1

∂2ζk(a)

∂al∂an
(cδln − 1)µ¦

l Λ
−1qµ¦

nΛ
−1qµkq

¦/2 +

c∑

k,l=1

∂2ζk(a)

∂a2l
cq¦Λ−1qµkq

¦/2

]∥∥∥∥∥
max

+ o(1/N).

Ignoring constants other than c,N , we have ∥G∥max f O(c/N).

Define RW = {W ∈ R
d×d | ∥W −W ∗∥F f ∥W 0 −W ∗∥F }, and RW is a compact set. Then, according to Lemma F.3,

for W ∈ RW , we have ∇2L(W ) ° αId. Here α > 0 is a positive constant number. Thus, L(W ) is α-strongly convex in

RW . Moreover, according to Lemma F.6, L(W ) is l-smooth. Then according to Lemma C.2, applying gradient descent

with η = 1/l, for any t g 1, we have

∥W t −W ∗∥2F f exp(−t/κ) · ∥W 0 −W ∗∥2F ,

where κ = l/α.

After T g 2κ log(N · ∥W 0 −W ∗∥F ) gradient steps, we have Ŵ = WT = c(Λ−1 +G+HT /c) = 2(Λ−1 + Ĝ), where

Ĝ = G+HT /c, ∥HT ∥max f exp(−T/κ)·∥W 0−W ∗∥2F f 1/N . Thus, ∥Ĝ∥max f ∥G∥max+∥HT ∥max = O(c/N).

G. In-context inference of multi-class classification

G.1. Notations

In this section, we use the following notations. We denote µ = (µ1, µ2, . . . , µc), q = xquery. Define pk = c
M

∑M
i=1(yi)kxi,

and define P = (p1, p2, . . . , pc) ∈ R
d×c. We have P¦ = c

M

∑M
i=1 yix

¦
τ,i ∈ R

c×d. Since with probability

P (yτ,i = ek) = 1/c, xτ,i = µk + vi, where vi ∼ N(0,Λ), we have pk = c
M

∑M
i=1(yτ,i)kxτ,i = cMkµk/M + gk,

where gk = c
M

∑
i∈{i|yτ,i=ek}

vi, gk ∼ N(0, c2MkΛ/M
2) and (M1,M2, . . . ,Mc) ∼ Multin(M, 1/c). Defining

hk = Mk/M − 1/c, we have Mk/M = 1/c+ hk and pk = µk + chkµk + gk.

Theorem G.1 (Formal statement of Theorem 4.5). Let ŷquery be the prediction of the trained transformer with parameters

Ŵ in (19) and Ptest satisfying Assumption 4.4, and let yquery ∼ Pm
y|xquery

(µ,Λ). Then, for the inference error defined in (3),

we have

E[∆(yquery, ŷquery)]

fmax
k∈[c]





c∑

l=1

∂ζk(a)

∂al


∥Ĝ∥max

∑

i,j∈[d]

|(µl)iqj |+
1

M1/2


√c(1− 1/c)|µ¦

l Λ
−1q|+

√
c
∑

i,j∈[d]

|Λ−1/2
ij qj |









+ o

(
1

N
+

1√
M

)
,

where a = µ¦Λ−1q, ak = µ¦
k Λ

−1q. The expectation is taken over {xi, yi}Mi=1
i.i.d.∼ Pm(µ,Λ).

G.2. Proof of Theorem 4.5

Proof. The output of the trained transformer is

ŷout = softmax

((
c

M

M∑

i=1

yix
¦
i

)
(Λ−1 + Ĝ)xquery

)
= softmax(P¦(Λ−1 + Ĝ)q) (58)
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The probability of yquery = ek given xquery is

P (yquery = ek|xquery) = softmax(µ¦Λ−1xquery)k = softmax(µ¦Λ−1q)k

Defining a = µ¦Λ−1q, b = (µ+µh+g)¦Ĝq+(µh+g)¦Λ−1q, ak = µ¦
k Λ

−1q, bk = (µk+chkµk+gk)
¦Ĝq+(chkµk+

gk)
¦Λ−1q, we have

E

[
softmax(P¦(Λ−1 + Ĝ)q)k

]
= E [ζk(a+ b)] = E[ζk(a) +

c∑

l=1

∂ζk(a)

∂al
bl +

c∑

l,n=1

Rkln(a, b)blbn/2]

where |Rkln(a, b)| f supx |∂
2ζk(x)

∂xl∂xn
|. Thus, we have

E[|ζk(a+ b)− ζk(a)|] f E

[
c∑

l=1

∣∣∣∣
∂ζk(a)

∂al
bl

∣∣∣∣

]
+ E



∣∣∣∣∣∣

c∑

l,n=1

Rkln(a, b)blbn/2

∣∣∣∣∣∣


 .

We first consider the term E

[∑c
l=1

∣∣∣∂ζk(a)∂al
bl

∣∣∣
]
. Defining ḡl = Λ−1/2gl, we have

E

[
c∑

l=1

∣∣∣∣
∂ζk(a)

∂al
bl

∣∣∣∣

]

f
c∑

l=1

∂ζk(a)

∂al

(
|µ¦

l Ĝq|+ E[|chlµ
¦
l Ĝq|] + E[|g¦l Ĝq|] + E[|chlµ

¦
l Λ

−1q|] + E[|g¦l Λ−1q|]
)

(a)

f
c∑

l=1

∂ζk(a)

∂al

(
|µ¦

l Ĝq|+
√
c(1− 1/c)

M1/2
|µ¦

l Ĝq|+ E[|ḡ¦l Λ1/2Ĝq|] +
√
c(1− 1/c)

M1/2
|µ¦

l Λ
−1q|+ E[|ḡ¦l Λ−1/2q|]

)

(b)

f
c∑

l=1

∂ζk(a)

∂al


∥Ĝ∥max

∑

i,j∈[d]

|(µl)iqj |+
1

M1/2


√c(1− 1/c)|µ¦

l Λ
−1q|+

√
c
∑

i,j∈[d]

|Λ−1/2
ij qj |






+ o

(
1

N
+

1√
M

)
,

where (a) is due to Lemma F.1 that E[|h|] f M−1/2c−1/2(1 − 1/c)1/2. (b) is because that ḡl ∼ N(0, c2MlId/M
2),

E[|(ḡl)i|] f E[(ḡl)
2
i ]

1/2 = (c/M)1/2, for l ∈ [c], i ∈ [d].

For E
[∣∣∣
∑c

l,n=1 Rkln(a, b)blbn/2
∣∣∣
]
, we have

E



∣∣∣∣∣∣

c∑

l,n=1

Rkln(a, b)blbn/2

∣∣∣∣∣∣


 = O(1)E

[
c∑

l,n=1

( ∑

φ1∈{µl,chlµl,gl},φ2∈{µn,chnµn,gn}

∣∣∣φ¦
1 Ĝqφ¦

2 Ĝq
∣∣∣

︸ ︷︷ ︸
(i)

+
∑

φ1∈{µl,chlµl,gl},φ2∈{chnµn,gn}

∣∣∣2φ¦
1 Ĝqφ¦

2 Λ
−1q
∣∣∣

︸ ︷︷ ︸
(ii)

+
∑

φ1∈{chlµl,gl},φ2∈{chnµn,gn}

∣∣φ¦
1 Λ

−1qφ¦
2 Λ

−1q
∣∣

︸ ︷︷ ︸
(iii)

)]
.

For terms (i) having two Ĝ, they are at most smaller than O(∥Ĝ∥2max) = O(1/N2). For terms (ii) having one G, these

terms must contain n1j number of hj and n2ji number of (ḡj)i, we have
∑

j∈[c],i∈[d] n1j +n2ji = nt, nt = 1, 2. According

to Lemma F.2, we know that for nt = 1, 2,

E[
∏

j∈[c],i∈[d]

∣∣hn1j

j (ḡj)
n2ji

i

∣∣] = O(M−1/2).
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Thus, terms in (ii) are at most smaller than O(∥G∥maxM
−1/2) = O(1/(N

√
M)). For terms (iii) without G, these terms

must contain n1j number of hj and n2ji number of (ḡj)i, we have
∑

j∈[c],i∈[d] n1j + n2ji = nt, nt = 2. According to

Lemma F.2, for nt = 2, we have

E[
∏

j∈[c],i∈[d]

|hn1k

k (ḡj)
n2ji

i |] = O(M−nt/2) = O(M−1).

Thus, these term are O(M−1). Therefore, we have E

[∣∣∣
∑c

l,n=1 Rkln(a, b)blbn/2
∣∣∣
]
= O(1/N2 + 1/M + 1/(N

√
M)) =

o(1/N + 1/
√
M).

Finally, we have

E[∆(yquery, ŷquery)] = max
k

{E[|softmax(a+ b)k − softmax(a)k|]}

fmax
k∈[c]





c∑

l=1

∂ζk(a)

∂al


∥Ĝ∥max

∑

i,j∈[d]

|(µl)iqj |+
1

M1/2


√c(1− 1/c)|µ¦

l Λ
−1q|+

√
c
∑

i,j∈[d]

|Λ−1/2
ij qj |









+ o

(
1

N
+

1√
M

)
.

Remark G.2. We note that Theorem 4.5 requires Assumption 4.4 to hold. For example, we need the covariance Λ in training

and testing to be the same. A similar consistency requirement of the covariance Λ in training and testing had also been

observed for in-context linear regression in Zhang et al. (2023a) and for in-context binary classification in the previous

section 3.2.

Here, we discuss the consequences when Assumption 4.4 does not hold. For example, suppose the labels of our data in

test prompts are not balanced P (y = ek) = pk, µ do not have the same Λ−1 weighted norm µ¦
k Λ

−1µk ≜ Ψk, and the

covariance matrix of test data is Γ ̸= Λ, then as N,M → ∞, we have

c

M

M∑

i=1

yix
¦
i → c(p1µ1, p2µ2, . . . , pcµc)

¦,

and

P (ŷquery = 1) → softmax(c(p1µ1, p2µ2, . . . , pcµc)
¦Λ−1xquery).

Denote Ψ = (Ψ1, . . . ,Ψc)
¦, Φ = (log(p1), . . . , log(pc))

¦ and z = µ¦Γ−1xquery − Ψ/2 + Φ. Then distribution of the

ground truth label is

P (yquery = ek) = softmax(z)k.

Define ẑ = c(p1µ1, p2µ2, . . . , pcµc)
¦Λ−1xquery. Then, unless ẑ = z or ∥softmax(ẑ)− softmax(z)∥2 is sufficiently small,

the transformer cannot correctly perform the in-context multi-class classification.

H. Additional Experiments

In this section, we provide additional experimental results and the detailed experimental settings.

H.1. Single-layer transformers

We train single-layer transformers for in-context classification of Gaussian mixtures with different numbers of classes c,
different lengths of training prompts N , and test them with different test prompt lengths M . The results are reported in

Figure 4. We can see from Figure 4 (a,b) that the inference errors decrease as N and M increase, and they increase as c
increases. In Figure 4 (c,d), we first fix the training prompt length (test prompt length) to a large number 2000, and then vary

the test prompt length (training prompt length) from 20 to 2000. The results show that, as M and N become sufficiently

large, the inference error, which is an approximation of E[∆(yquery, ŷquery)] (see Appendix H.2 for detailed definitions),

decreases to near-zero. This indicates that the prediction of the trained transformer approaches the Bayes-optimal classifier.

All these experimental results corroborate our theoretical claims.
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(a) c = 10 (b) N = 80

(c) log-log axes (d) log-log axes

Figure 4. Inference errors of single-layer transformers. (a): Models trained on different training prompt lengths N on classification tasks

involving c = 10 classes. (b): Models trained on different classification tasks involving c classes with a fixed training prompt length

N = 80. (c): Relationship between the inference error and the test prompt length M in log-log axes. Training prompt length N = 2000

and number of classes c = 6. (d): Relationship between the inference error and the training prompt length N in log-log axes. Test prompt

length M = 2000 and number of classes c = 6.
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H.2. Experiment Details

For all tasks, we set d = 20 and we randomly generate a covariance matrix Λ = diag(λ1, . . . , λd), where λi = |λ̂i| and

λ̂i
i.i.d.∼ N(3, 1). For each training dataset with different training prompt lengths N , and different class numbers c, we

randomly generate B training samples. Training prompts Pτ , τ ∈ [B] and their corresponding labels yτ,query are generated

according to Assumption 4.2. Moreover, we also generate testing datasets. For example, for each testing dataset, we first

randomly generate 20 pairs of (µj , xj,query, yj,prob), j ∈ [20], where (µj)
i.i.d.∼ Pm

Ω (Λ), xj,query ∼ Pm
x (µj ,Λ). yj,prob =

softmax(µ¦
j Λ

−1xj,query) are the corresponding probability distributions of the ground truth label yj,query. For each j, we

generate 100 testing prompts Pjk = (xjk,1, yjk,1, . . . , xjk,M , yjk,M , xj,query), where (xjk,i, yjk,i)
i.i.d.∼ Pm(µj ,Λ), j ∈

[20], k ∈ [100], i ∈ [M ]. We denote a model’s output for testing prompts Pjk as ŷjk. We calculate its inference error with

1
20×100

∑
j∈[20],k∈[100] maxl∈[c]

∣∣∣̂(yjk)l − (yj,prob)l

∣∣∣, which serves an approximation of the expected total variation distance

we defined in (3).

For the ’3-layer’ model, we used the x-transformers library and defined it as an encoder-only transformer with 64 embedding

sizes, 3 layers, 2 heads and without positional encoding.

For experiments in Figure 1, we set the size of the training dataset to B = 100, 000 and set the batch size to 50. We

train the ’1-layer’ using Adam with learning rate 0.0005 for 10 epochs, and train the ’3-layer’ using Adam with learning

rate 0.0001 for 5 epochs. Each experiment is repeated 3 times with different random seeds. For experiments in Figure

2, we also set the size of the training dataset to B = 100, 000 and set the batch size to 50. We train the ’1-layer’ using

Adam with learning rate 0.001 for 5 epochs, and train the ’3-layer’ using Adam with learning rate 0.0001 for 5 epochs. In

’same norm’ and ’same covariance’ settings, pre-training data are sampled according to Assumption 4.2 with a fixed Λ that

Λ = diag(λ1, . . . , λd), where λi = |λ̂i| and λ̂i
i.i.d.∼ N(3, 1). In ’different norms’ setting, for each τ ∈ [B], with probability

P (k = j) = 1/10, µτ,i ∼ N(k, Id), j = 0, 1, ..., 9, then each Gaussian component is sampled according to N(µτ,i,Λ). In

(different covariances) setting, we randomly generate v1, v2, v3 ∈ R
d that half of their elements are 0.1 and the other half

elements are 100. Then, we define Λi = diag(vi), i = 1, 2, 3 and generate pre-training data according to Assumption 4.2

with Λ,Λ1,Λ2,Λ3. Each experiment is repeated 3 times with different random seeds. For experiments in Figure 3, the

structure of the transformer with full parameters ’1-layer, full’ is defined as

F (E;WV ,WKQ) = E +WV E · E
¦WKQE

ρ
, (59)

where WV ,WKQ ∈ R
(d+c)×(d+c) are the parameters for optimization. For all three transformer models, we set the size

of the training dataset to B = 400, 000 and set the batch size to 50. We train the ’1-layer, sparse’ and ’1-layer, full’ using

Adam with learning rate 0.001 for 5 epochs, and train the 3-layer transformer model with softmax attention using Adam

with learning rate 0.0001 for 5 epochs. Each experiment is repeated 3 times with different random seeds. For experiments in

Figure 4, we train the single-layer transformers with the sparse-form parameters and structures defined in Section 4. We

set the size of the training dataset to B = 10, 000 and set the batch size to 50. We train the transformers using SGD with

learning rate {0.1, 0.5, 1} for 10 epochs, and get the best model on each training dataset. Then, we test these trained models

on different testing datasets. Each experiment is repeated 10 times with different random seeds.
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