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Abstract

Although transformers have demonstrated impres-
sive capabilities for in-context learning (ICL) in
practice, theoretical understanding of the under-
lying mechanism that allows transformers to per-
form ICL is still in its infancy. This work aims to
theoretically study the training dynamics of trans-
formers for in-context classification tasks. We
demonstrate that, for in-context classification of
Gaussian mixtures under certain assumptions, a
single-layer transformer trained via gradient de-
scent converges to a globally optimal model at
a linear rate. We further quantify the impact of
the training and testing prompt lengths on the ICL
inference error of the trained transformer. We
show that when the lengths of training and test-
ing prompts are sufficiently large, the prediction
of the trained transformer approaches the ground
truth distribution of the labels. Experimental re-
sults corroborate the theoretical findings.

1. Introduction

Large language models (LLMs) based on the transformer
architecture (Vaswani et al., 2017) have demonstrated re-
markable in-context learning (ICL) abilities (Brown et al.,
2020). When given a prompt consisting of examples of a
learning task, these models can learn to solve this task for
new test examples without any parameter updating. This be-
havior has been empirically demonstrated in state-of-the-art
models on real-world tasks (OpenAl, 2023; Touvron et al.,
2023).

This impressive capacity of transformer-based models has
inspired many recent works aiming to understand the ICL
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abilities of transformers. A more comprehensive literature
review can be found in Appendix A. Garg et al. (2022) was
the first to study the ICL abilities of transformers for various
function classes. They empirically showed that transformers
can learn linear regression models in context. Later on, a
line of research was developed to theoretically explain how
transformers perform in-context linear regression. For ex-
ample, Akyiirek et al. (2022); Von Oswald et al. (2023); Bai
et al. (2024); Fu et al. (2023); Giannou et al. (2024) showed
by construction that, some specially-designed transformers
can perform linear regression in context. Moreover, some re-
cent works such as Zhang et al. (2023a); Huang et al. (2023);
Chen et al. (2024) studied the training dynamics of a single-
layer transformer for in-context linear regression. They
proved the convergence of certain single-layer transformers
during training and showed that the trained transformers are
able to perform linear regression in context.

Building on the earlier works that largely focus on linear
regression problems, several recent papers have started to
investigate the ICL capabilities of transformers for classi-
fication problems. For instance, Bai et al. (2024) showed
that, by construction, multi-layer transformers can be ap-
proximately viewed as multiple steps of gradient descents
for logistic regression. Giannou et al. (2024) further show-
cased that the constructed transformers can approximately
perform Newton’s method for logistic regression. Lin &
Lee (2024) studied the dual operating modes for in-context
classification of Gaussian mixtures. However, their analy-
ses were based on the idealized Bayes-optimal next-token
predictor for ICL tasks and did not consider the training
dynamics of transformer models. Some recent works have
started to study the training dynamics of transformers for cer-
tain classification problems. For example, Li et al. (2024b)
proved that a single-layer transformer can be trained to
learn one-nearest neighbor in context. Li et al. (2024a)
studied the training dynamics of a single-layer transformer
for some binary classification tasks with finite, pairwise
orthogonal patterns. Frei & Vardi (2024) analyzed a linear
transformer model for in-context classification of Gaussian
mixtures, assuming additional conditions such as a suffi-
ciently large signal-to-noise ratio. However, all these works
(Li et al., 2024a;b; Frei & Vardi, 2024) only considered
the binary classification problems. The training dynamics
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of transformers for more general in-context classification
problems beyond the specific settings and assumptions in Li
et al. (2024a;b); Frei & Vardi (2024) remain largely under-
explored.

In this work, we study the training dynamics of a single-
layer transformer for both binary and multi-class classi-
fication of Gaussian mixtures during ICL, a fundamental
problem in machine learning. Our main contributions can
be summarized as follows:

* We prove that with appropriately distributed training data
(Assumptions 3.2, 4.2), a single-layer transformer trained
via gradient descent will converge to its global minimizer
at a linear rate (Theorems 3.3, 4.3) for both in-context
binary or multi-class classification problems. To the best
of our knowledge, we are the first to prove the training
convergence of transformers for in-context multi-class
classification. Moreover, our analysis reveals that the
trained single-layer transformer can be viewed as approxi-
mately implementing linear discriminant analysis (LDA).

* Due to the non-linearity of our loss function, we cannot
directly find the closed-form expression of the global
minimizer. Instead, we prove an important property that
the global minimizer consists of a constant plus an error
term that is induced by the finite training prompt length
(N). We further show that the max norm of this error term
is bounded, and converges to zero at a rate of O(1/N).

* With properly distributed testing prompts (Assumptions
3.5, 4.4), we establish an upper bound of the inference
error (defined in Equation (3)) of the trained transformer
and quantify the impact of the training and testing prompt
lengths on this error. We further prove that when the
lengths of training prompts (/V) and testing prompts (M)
approach infinity, this error converges to zero at a rate
of O(1/N +1/v/M) , and the prediction of the trained
transformer has an identical distribution to that of the
ground-truth label (Theorems 3.6, 4.5).

2. Preliminaries

Notations. We denote [n] = {1,2,...,n}. For a matrix
A € R™*™ we denote its Frobenius norm as || A|| p, and its
max norm as || Al|lmax = MaxX;e ] jem] |Aij|- Weuse Aqp
(or Agp) to represent the element of matrix A at the a-th
row and b-th column, and use A to represent a vector
of dimension ¢ — a + 1 whose i-th element is A(q1;_1) -
We denote the I norm of a vector as || - ||2. We denote the
all-zero vector of size n as 0,, and the all-zero matrix of
size m x n as Opxpn. We use o(x) := 1/(1 4 exp(—z))
to denote the sigmoid function. We define softmax(-) :
R* — (0,1)%, and its i-th element as softmax(-);, where

softmax(z); = exp(wi)/(2§:1 exp(x;)).

2.1. Single-layer transformer

Given an input embedding matrix F € R% > a single
head self-attention module Fs 4 with width d. will output
Esa(B; WY, WE WQ)
WEE)TWYE
=E+WVE" fu (()> ;M
where WV WK W® ¢ Ré*d are the value, key, and
query weight matrices, respectively, p > 0 is a normaliza-
tion factor, and f,y, is an activation function for attention.
There are different choices of fy,; for example Vaswani
et al. (2017) adopts softmax.

In this work, similar to Zhang et al. (2023a); Wu et al.
(2023), we set fuym(r) = =z and define WE®@ =
(WEYTWQ ¢ Rdexde We use F to denote this simpli-
fied model. Then, the output of F' with an input embedding
matrix ' € R% >4 can be expressed as

ETWECE

F(E;WY WEQ =F+WVE.-
P

@)

In the following theoretical study and the subsequent experi-
ments (Section 5.2), we show that this simplified transformer
model has sufficient capability to approach the optimal clas-
sifier for the in-context classification of Gaussian mixtures.

2.2. In-context learning framework

We adopt a framework for in-context learning similar to
that used in Bai et al. (2024). Under this framework, the
model receives a prompt P = (D, Zquery) cOmprising a set

of demonstrations D = {(x,¥:) }ic[n "I Panda query
Zquery ~ Py, where P is the joint distribution of (x,y) and
‘P, is the marginal distribution of x. Here, x; € R is an
in-context example, and y; is the corresponding label for
x;. For instance, in regression tasks, y; € R is a scalar.
In this paper, we focus on classification tasks. Thus, the
range of y; can be any set containing c different elements,
such as {1, ..., ¢}, for classification problems involving ¢
classes. The objective is to generate an output Yquery that

approximates the target Yquery ~ Py|rquer -

Since Yquery s a discrete random variable, we use the total
variation distance to measure the difference between ﬂquery
and Yquery:

A (yquery , @\query)

= sup UP) (yquery = Z) -P (@\query = Z) |7 3)

2€ R(Yquery)

where R(yquery) is the range of Yquery- When
A(Yquery Uquery) = 0, Yquery has the same distribution as
Yquery> Which means the output of the model perfectly ap-
proximates Yquery-
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Unlike standard supervised learning, each prompt P, can
be sampled from a different distribution P, in ICL. We say
that a model has the ICL capability if it can approximate
Yr,query fOT a broad range of P;’s with fixed parameters.

3. In-context binary classification

In this section, we study the learning dynamics of a single-
layer transformer for in-context binary classification. It is a
special case of the general multi-class classification. As a
result, the analysis is more concise. The general in-context
multi-class classification problem is studied in Section 4.

We first introduce the prompt and the transformer struc-
ture we will use for in-context binary classification. The
prompt for in-context binary classification is denoted as
P = (T1,Y1,---, TN, YN, Tquery), Where z; € R and y; €
{—1,1}. We can convert this prompt P into its correspond-
ing embedding matrix F(P) in the following form:

E:E(P):(

Tr1 T2 TN  Tquery 4
v Y2 - yn 0 ) @

Similar to Huang et al. (2023); Wu et al. (2023); Ahn et al.
(2024), we set some of the parameters in our model to 0
or 1 to simplify the optimization problem, and consider
the parameters of our model (WY W @) in the following
sparse form:

v _ (Oixa 0Oa kg _ (W 04

where W € R?*4, We set the normalization factor p equal
to the length of the prompt N. Let F'(E(P); W) be the
output matrix of the transformer. We then read out the
bottom-right entry of the output matrix through a sigmoid
function, and denote this output as 7. The output Zy: of
the transformer with prompt P and parameters W can be
expressed as

Jout = 0 ([F(E(P);W)](at1),(N+1))

1 N
=0 ((N Zlyzm;r> quuery) .

We denote the prediction of our model for Zquery as Yquery-
which is a random variable depending on ¥o.:. Consider
generating a random variable u uniformly on [0,1]. If

U < Your, W OUPUL Yquery = 15 if u > Your, We out-
put Yquery = —1. Then, we have P (Yquery = 1) = Tout,
P(yquery = _1) =1 — Yout-

3.1. Training procedure

We study the binary classification of two Gaussian mixtures
and use the following definition.

Definition 3.1. We say a data pair (x,y) ~ P®(uo, p11, A)
if y follows a Bernoulli distribution with P (y = —1) =
P(y=1) =1/2and f(zly = —1) = N(uo, A), f(z|y =
1) = N(p1,A), where g, 11 € R and A € R¥4 is a
positive definite matrix.

We consider the case of B training tasks indexed by 7 € [B].
Each training task 7 is associated with a prompt P, =
(x‘r,h Yr1y- -5 L7, N, Yr,N» -TT,query) and a corresponding la-
bel ¥ query- We make the following assumption in this sec-
tion.

Assumption 3.2. For each learning task 7 € [B], we as-
sume

(M) {zriyri}il,  and
Pb(,ur,(h Hr 15 A).

(2) pro is randomly sampled from N(0,1I4), pr1 =
Uy Apiro Where Uy o = AY2U,A=/2 and U, is uni-
formly distributed over the closed set of real unitary
matrices such that U UTT = 1.

i.i.d.
~

{xT,querya y‘r,query}

We denote the distribution of (pi, g, 11-,1) as P4 (A). Note
that U, o = AY/2U, A='/2 can be viewed as a linear trans-
formation that preserves the inner product of vectors in A~*-
weighted norm, and we have MIOA71M770 —uIlAfluT,l =
0.

Let Yrout = o([F(E(Pr); W)](a41),(n+1)) be the output
of our transformer for task 7. We define the empirical risk
over B independent tasks as

L(W) :2i

—(

Taking the limit of infinite training tasks B — oo, the
expected training loss can be defined as

_(1 + y'r,query) IOg(g/J\‘r,out)

M ®

1
- yT,query) IOg(]- - i/\'r,out)~ (6)

— 5

L~ 1 -
L(W)= lim L(W)= _iE[(l + Yr query) 108(Yr out)

B—oo

+ (1 - y‘r,query) 10g(1 - Z/J\'r,out)L @)

where the expectation is taken over (ji, 0, itr.1) ~ PG(A),
id.
{xr,i; y‘r,i}i]\Lla {x‘r,querya yT,query} ' }\’ Pb (,UT,O; ,LLT,la A)

Applying gradient descent over the expected training loss
(7), we have the following theorem.

Theorem 3.3. Under Assumption 3.2, the following state-
ments hold.

(1) Optimizing the training loss L(W) in Equation (7)
with training prompt length N via gradient descent
Witl = Wt —nVL(W?), we have that for any t > 1,

IW* = W[5 < exp(—t/r)[W® = W7, (8)
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where WY is the initial parameter and W * is the global
minimizer of L(W'), and k = l/o. Here o, are con-
stants satisfying

(&7 S AInln(vzl/(vv)) S AmaX(V2L(W)) S lv (9)

where o > 0,1 < oo, W € Rw,Ry = {W €
RAW — W*[|p < [WO = W*|p}.

(2) Define G = %W*_A_ly q = Tr,query, b = Hr,1— 7,0,
u=2(lr1 + fro), and a = ' A~ Yq for simplicity.
Then we have

|Gl max
1 1
SN\\S_l(E[U’(a)(4qu + zuuTA‘quT)
1
+ U"(a)(g(uTA’ltJ)r"un +2¢" A qug "))l Imax
+o(1/N), (10)
where S = 4AV2ZL(2A™Y), L(2A°Y) =

limy oo L(2A™Y), o/(1) and o"(-) are the first-
and second-order derivatives of o(+), respectively, and
the expectation is taken over (r0, pir1) ~ PH(A),
L query ™~ Pi (/~L7‘,Oa Hr1, A)

The detailed proof of Theorem 3.3 can be found in Appendix
D. In the following, we provide a brief proof sketch to
highlight the key ideas.

Proof sketch for Theorem 3.3. As a first step, we prove in
Lemma D.2 that the expected loss function L(W) in Equa-
tion (7) is strictly convex with respect to (w.r.t.) W and is
strongly convex in any compact set of R?*%, Moreover, we
prove L(W) has one unique global minimizer W*. Since
the loss function L(W') we consider is highly non-linear, we
cannot directly find the closed-form expression of W*, as
is often done in the prior literature. This poses a significant
challenge to our analysis.

We address this technical challenge via the following
method. First, in Lemma D.3, by analyzing the Taylor
expansion of L(W'), we prove that as N — oo, our loss
function L(W) converges to L(W) pointwisely (defined
in Equation (25)), and the global minimizer W* converges
to 2A . Thus, we denote W* = 2(A~! + &), and prove
|G|l max is bounded and scales as ||G/||max = O(N~1/2).
Next, in Lemma D.4, by further analyzing the Taylor expan-
sion of the equation VL(W*) = 0 at the point 2A~1, we
establish a tighter bound ||G||max = O(N~1). In Lemma
D.5, we prove that our loss function is [-smooth and provide
an upper bound for [. Thus, in a compact set Ryy, our loss
function is a-strongly convex and /-smooth. Finally, lever-
aging the standard results from the convex optimization, we
prove Theorem 3.3.

According to Theorem 3.3, we have W! = W* + H?
where || H||max < exp(—t/(2k))|[|W° — W*|| r. If we set

T > 2klog(N-|[W°—W*||), we have || HT || pax < 1/N.
Denoting W = W71, wehave W = 2(A~1+G+HT/2) =
2(A"1+G), where G = G+ HT /2, |Gl max < ||G|lmax +

|HY ||max = O(1/N). Thus, we have the following corol-
lary.

Corollary 3.4. If we optimize the expected loss L(W) in
Equation (7) via gradient descent with training prompt
length N, initial parameters WY, and learning rate ) = 1/I,
then, under Assumption 3.2, after T > 2rlog(N||W° —
%

F) steps, the updated model W satisfies

W=2A"1+0Q), (11)
where ||G|lmax = O(1/N), k = 1 /o, and a, 1 are constants
defined in (9).

Theorem 3.3 and Corollary 3.4 show that training a single-
layer transformer with properly distributed data (Assump-
tion 3.2) for binary classification via gradient descent can
linearly converge to its global minimum W* = 2(A~1+@).
Furthermore, when the prompt length IV grows, this global
minimum W* will converge to 2A~" at a rate of O(1/N).

3.2. In-context inference

Next, we analyze the performance of the trained transformer
in Equation (11) for in-context binary classification tasks.
We make the following assumption.

Assumption 3.5. For an in-context test prompt Pt =

(1,915 s T, YM s Tquery)> WE assume

ii.d.
(l) {%7% %1 ~ Pb(ﬂ(),ﬂl,A), Tquery S Rd-
(2) po Ao = pf Ay

With this assumption, for yquery ~ 775‘1, (o, p1, A), ac-
query
cording to the Bayes’ theorem, we have

]P)(yquery = 1|l‘query)
= f(xquerylyquery = 1)]P) (yquery = 1)
Zze{il} f(xquery|query = Z)]P (yquery = Z)

=0 ((u1 — 110) " A" Zquery)-

If we test the trained transformer with parameters W in
Equation (11) and P, by a simple calculation, we have

M
~ 2 _ =
Yout = O ((M ;yw:) (A ! + G)xQuery> . (12)

Intuitively, when the training prompt length N' — oo, we
have G — 0, and when the test prompt length M — oo, we
have %AZ?il vz, = (m = o). Thus, when N, M —
0, ]P(yquery = 1) = Yout — U((,ul - NO)TA_lxquery) =
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P (Yquery = 1|Zquery), and the prediction of the trained trans-
former Yquery perfectly matches with the distribution of the
ground truth label yquery-

By analyzing the Taylor expansion of oyt at point o( (1 —
o) " A" 2 query ), we formally present the aforementioned
intuition in the following theorem, which establishes an
upper bound of the total variation distance between yquery
and @\query-

Theorem 3.6. Consider a test prompt Piest satisfying As-
sumption 3.5, and let Yquery ~ le;lwquery (o, p1,N). Let
Yquery be the prediction of the trained transformer with pa-
rameters W in Equation (11). Then, for the inference error
defined in Equation (3), we have

E[A(yqueryv ﬂquefy)]

UI(NTA71Q) ”@Hmax Z |M¢Qj|

i,j€ld]

Z A 71/2‘

i,j€ld

|TA—1|+

po, w = 2(t1 + o), ¢ = Tquery, and the

o id.
expectation is taken over {x;, y; } M, "X P (o, 11, A).

where |t = [ —

The proof of Theorem 3.6 can be found in Appendix E.
Since ||G|lmax = O(1/N), Theorem 3.6 suggests that if
we ignore the constants regarding (i, 11, A, Zquery, the ex-
pected total variation distance between Yquery and Yquery
is at most O(1/N + 1/+/M). On the other hand, for
data pair (z,y) ~ P®(uo, 1, A), the distribution of y,
P(y = 1|z) = o((u1 — po) " A~'z), can be characterized
by a logistic regression model o(w 'z + b) with param-
eters w = A~ 1(u; — po) and b = 0. Therefore, when
N, M — oo, the prediction of the trained transformer is
equivalent to the optimal logistic regressor for binary classi-
fication problems with distribution P? (g, i1, A).

Note that different from Assumption 3.2 which states that
Hr,05 P, 1> Tr query are sampled according to some specific
distributions during training, Assumption 3.5 does not im-
pose strong distributional constraints on fig, 41 and Zquery,
which shows the strong generalization ability of the trained
transformer. Moreover, even if M — oo, the distribution
variation between Yquery and Yquery does not disappear unless
N — oo. Thus, the ICL ability of trained transformers for
binary classification is limited by the finite length of train-
ing prompts. Similar behaviors have also been observed in
Zhang et al. (2023a) for in-context linear regression.

Remark 3.7. Theorem 3.6 requires Assumption 3.5 to hold.
For example, we need the covariance matrix A in train-
ing and testing to be the same. A similar consistency

requirement of A in training and testing had also been
observed for in-context linear regression in Zhang et al.
(2023a). Here, we discuss the consequences when As-
sumption 3.5 does not hold. For example, suppose the
labels of our data in test prompts are not balanced where
P(y=1) =p1,P(y =—1) = po. Besides, pg, 1 do not
have the same A~} weighted norm, and the covariance ma-
trix of test data satisfies I' # A. Then, as N, M — oo, we
have

Vi Zyﬂj — 2(p1p11 — popto) '

=1

and

P (Jaquery = 1) = o(2(p11 — potto) " A~ Tquery)-

On the other hand, the distribution of the ground truth
label is P (Yquery =1) = o((u1 — po) T 2query +
(19 A~ 1o — pf A™"p1)/2 + log(p1/po)). Define =z 2
(11 — o) T ' wquery + (u{ A i1 — o o A o) /2 +
log(p1/po) and 2 £ 2(p1p1 — popto) ' A~ query. Then,
we can see that unless Z = z or |o(2) — o(z)] is suffi-
ciently small, the transformer cannot correctly perform the
in-context binary classification.

Remark 3.8. Another important insight of our analysis is
that the pre-trained single-layer transformer can be viewed
as approximately implementing linear discriminant analysis
(LDA). For example, suppose we are given {x;,y; }*£, and
Zquery> and we need to predict the label yquery fOr Zguery-
LDA assumes that {x;, y; }£, and {Zquery; Yquery } are i.i.d.
samples, with P (y; =1) = P(y; = —1), and the con-
ditional probability density functions f(z;|y; = 1) and
f(zily; = —1) are Gaussian with means p1, 1 and same
covariance Y. Under these assumptions, it can be derived
that the optimal decision criterion for Tquer, is to predict
Yauery = L if (1 — Mfl)Tzilxquery + %(/11—1271/171 -
pi X7 1) > 0 and yguery = —1, otherwise. LDA can
estimate ji; as the average of x; with y; = 1, estimate
[1—1 as the average of x; with y; = —1, and estimate the
covariance . from the within-class variances. For the single-
layer transformer, it can compute the in-context estimate
f—fp_1 = % Zﬁl Y;x;, however, it is hard for the single-
layer transformer to estimate 3 in context. Thus, in our pa-
per, we make the following assumptions (Assumptions 3.2
and 3.5). We assume the pre-train data and test data have the
same covariance matrix A so that the transformer can learn
an approximation of A during pre-training. Moreover, we as-
sume the two class means o, 1 have the same A-weighted
norm so that zig X~ g — p 71y = 0. Under these as-
sumptions, the quadratic term cancels out, and the estimated
decision criterion simplifies to (ﬁ Zf\il yixi)TAflxquery,
which is very close to Equation (12) in our paper. When
we use W to approximate 2A !, the estimated decision
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criterion becomes exactly Equation (12). Therefore, when
W = 2A~1 and the in-context examples are balanced across
classes, the transformer’s decision criterion is the same as
that of the LDA with exact knowledge of A. Our exper-
iments also corroborate this theoretical findings. For ex-
ample, in Figure 3, since the pre-trained transformer has
already learned a relatively good approximation of A~!,
while LDA must estimate A~ in context, the trained trans-
former significantly outperforms LDA when the number
of in-context examples is small. As the context length in-
creases, LDA’s performance approaches that of the trained
transformer.

4. In-context multi-class classification

We now extend the study of the learning dynamics of a
single-layer transformer to in-context multi-class classifi-
cation, generalizing the results of the previous section. We
will present the detailed formulation and then focus on the
main differences to binary classification.

We first introduce the prompt and the transformer struc-
ture that will be used for in-context multi-class classi-
fication. The prompt for in-context multi-class classi-
fication involving ¢ > 2 classes can be expressed as
P = (xlaylv B 7xN7yN7xquery)v where T € Rdv Yi €
{e1,es,...,e.}, and e; is the i-th standard unit vector of
Re. Its embedding matrix can be formulated as

F— E(P) - (:m g TN xquery) R

yi Y2 - yn O

Similar to the binary case, we set some of the parameters in
our model as 0 and 1 to simplify the optimization problem
and consider the parameters of our model (W", WX@) in
the following sparse form:

v _ (Oaxd Odxe kg _ (W Oaxe

W= <Oc><d I, ) ’ W B (chd chc) ’

(14)
where W € R?*?, We set the normalization factor p equal
to the length of the prompt N. We read out the bottom-right
c-dimensional column vector from the output matrix with a
softmax function as the output, denoted as yo,. With param-
eters W and a prompt P = (Z1,Y1,..., TN, YN, Lquery)
the output can be expressed as

Your =softmax ([F(E(P); W)](at1):(d+e),(N+1))
X
=softmax ((N Zl yﬁnj) quuery> .

We denote the prediction of the model for Zquery as Yquery-
which is a random variable depending on ¥,,:. Randomly
sample a random variable u that is uniformly distributed on

i—1/~ i~ ~
[07 1] Ifu € [Zj:l(yout)jW Zj:l(yout)j)’ Whel‘e (yout)j
is the j-th element of Yoy, We let Yquery = €. Thus,

]P)(:/y\query = ei) = (:'/J\out)r

4.1. Training procedure

We focus on the multi-class classification of Gaussian mix-
tures and use the following definition.

Definition 4.1. We say a data pair (z,y) ~ P™(u, A) if
P(y=e;) = 1/cand f(zly = €) = N(u;, A) for i €
[c], where 1 = (u1,..., 1) € R and A € R4 s a
positive definite matrix.

We consider the case of B training tasks indexed by 7 € [B].
Each training task 7 is associated with a prompt P, =
(x‘r,h Yr1y-+ -y T N, Y1,N, x‘r,query) and a Corresponding la-
bel y; query- We make the following assumption in this sec-
tion.

Assumption 4.2. For each learning task 7 € [B], we as-
sume:

(D {IT,ivyT,i}i]\L1 and {'T'r,queryayr,query} l}‘(’j Pm(,u’T =
(,u‘r,la e vNT,C)a A)'

(2) 7,1 issampled from N(0, Ig), pir ks = Ur o aftr1, k =
2,3,...,¢c, where U, x o = AV2U, 1, A71/2, and U,
are uniformly distributed over the closed set of real

unitary matrices such that U, kUTT, e = 1a.

We denote the distribution of p, as PZ'(A). Note
that U, pn = AY2U,,A7/2 can be viewed as lin-
ear transformation that preserves the inner product
of vectors in the A1 weighted norm, and we have
M:rr,iA_lﬂ‘r,i = /-‘;r,jA_l,uT,j, for iaj € [C} Let @\T,out =
softmax ([F(E(P-,—), W)](d+1):(d+c))(N+1)) be the output
of the transformer for task 7. We define the empirical risk
over B independent tasks as

N 1 E
Lw) =52
T=1k

1k=1

Cc

7(y‘r,query)k IOg((@\T,out)k)- (15)

Taking the limit of infinite training tasks B — oo, the
expected training loss can be defined as

LW) = lim L(W)

B—o0
(&
=-E Z(yf,query)klog((@\-r,out)k) ) (16)
k=1
where the expectation is taken over u, ~ Pg(A),
iid.
{xT,i) yT,i}g\Lla {'rf,queryv yT,query} Y Pm(uT, A)

Applying gradient descent over the expected training loss in
Equation (16), we have the following theorem.

Theorem 4.3. (Informal) Under Assumption 4.2, the follow-
ing statements hold.
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(1) Optimizing training loss L(W) in Equation (16)
with training prompt length N via gradient descent
WL = Wt — nVL(W?), for any t > 1, we have

W = W[5 < exp(=t/K) [W? = W*|F, (A7)

where W0 is the initial parameter and W* is the global
minimizer of L(W), k = l/a. Here, «,l are constants
such that

@ < Amin(VZLW)) < Apax(VZL(W)) <1, (18)

where o« > 0,1 < oo, W € Rw,Ry = {W €
RAW — WH|p < [[W° — W*||p}.

(2) Defining G = W*/c— A=Y, we have W* = (At +
G) and ||G||max = O(c/N).

(3) After T > 2k log(N - ||[W° — W*|| ) steps, denoting
the updated model W satisfies

W=cA ' +@), (19)
where ||G|max = O(¢/N).

The formal statement and complete proof of Theorem 4.3
can be found in Appendix F. Technically, the proof of Theo-
rem 4.3 builds on that of Theorem 3.3, but the more compli-
cated cross terms in the Taylor expansions of the softmax
functions, which are due to the nature of multi-class classi-
fication, bring new challenges to the analysis. To address
these issues, we derive new bounds on the expected errors
of the cross terms in Lemma F.1, F.2, which may be of
independent interest to other similar problems.

Theorem 4.3 shows that training a single-layer transformer
with properly distributed data (Assumption 4.2) for in-
context multi-class classification via gradient descent can
linearly converge to its global minimum W* = ¢(A~! +G).
When the prompt length N grows, this global minimum W*
will converge to cA~! at arate of O(c/N). Compared to the
binary case, the new results establish the scaling behavior
w.r.t. the number of classes c.

4.2. In-context inference

Assumption 4.4. For an in-context test prompt Pt =
(T1,Y1,- -, TM, YM s Tquery), WE assume
i

i.d.
D) {zi, g}ty "~ P, ), po= (pas e
R, 2406y € RE
() pd A s = p] A= g, for i, j € [c].

7#’0) €

With this assumption, for yquery ~ P

sy (v, A), according
to the Bayes’ theorem, we have

P (yquery = ek’|1'query)
_ f(xquerylyquery = ek)]P (yQUEry = ek)
Z;:l f(mquerylyquery = ej)P (yque,y = ej)

:SOftmaX(,uTA_lxquery)k .

If we test the trained transformer with parameters W in
Equation (19) and prompt Piest, by a simple calculation, we
have

M
. c o~
Youtr = softmax ((M E yzsz> (A '+ G)xQUerY> :

i=1
(20)

Note that, when the training prompt length N' — oo, we
have G — 0, and when the test prompt length M — oo,
we have - Z£1 yiz; — p'. Thus, when N, M — oo,
P(ﬂquery = ek) = (:’/J\out)k — SOftmaX(MTA_lanUery)k =
P (Yquery = €k |Zquery), 1.€., the prediction of the trained
transformer query matches the ground truth label yquery-

By analyzing the Taylor expansion of ¥, at point
softmax(,uTA_lxquery), we crystallize the aforementioned
intuition in the following theorem, which establishes an up-
per bound of the total variation distance between 9/query and
Yquery-

Theorem 4.5. (Informal) Let Pies: satisfy Assumption 4.4
and Yquery ~ lexque,y('u’ A). Denote Yquery as the predic-

tion of the trained transformer with parameter W in Equa-
tion (19). Then, for the inference error defined in Equa-
tion (3), we have

E[A(yquefw ?/\query)} = O(CQN_l + 63/2M_1/2)’

o iid.
where the expectation is taken over {x;,y}M, "~

P (1, A).

The formal statement and proof of Theorem 4.5 can be
found in Appendix G. We can see that the convergence
rate of the inference error in multi-class classification w.r.t.
N and M is similar to that in the binary classification,
except for the constant coefficient c. This suggests that
classification tasks with more classes may have higher er-
rors than those with fewer classes. On the other hand,
for data pair (z,y) ~ P™(u,A), the distribution of y,
P (y = ex|x) = softmax(u” A~1x)y, can be characterized
by a softmax regression model softmax(Wx + b) with pa-
rameters W = /LTA71 and b = 0. When N, M — oo,
the prediction of the trained transformer is equivalent to
the optimal softmax regressor for multi-class classification
problems with distribution P (u, A). Note that different
from Assumption 4.2 which states that ji;, 2+ query are sam-
pled according to some specific distributions during train-
ing, Assumption 4.4 does not impose strong distributional
constraints on fi O Tquery, Which shows the strong general-
ization ability of the trained transformer. We also discuss
the consequences when Assumption 4.4 does not hold in
Remark G.2, which highlights the necessity of Assumption
4.4. Moreover, even if M — oo, the distribution varia-
tion between Yquery and Yquery does not disappear unless
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Figure 1.’ 1-layer’: single-layer transformer defined in Section 4, ’3-layer’: 3-layer transformers with softmax attention. NV: training

prompt length. ¢: number of Gaussian mixtures.

N — oo. Thus, the ICL ability of the trained transformers
for multi-class classification is limited by the finite length of
training prompts. Similar behavior has also been observed
in Zhang et al. (2023a) for in-context linear regression and
in Section 3.2 for in-context binary classification.

5. Experiments

In this section, we report the experiment results on multi-
layer, nonlinear transformers to investigate their similarities
and differences to the single-layer, linear transformer we
theoretically analyzed in the pervious sections. Detailed
experimental settings and additional results can be found in
Appendix H.

We train single-layer and multi-layer transformers for in-
context classification of Gaussian mixtures with different
numbers of Gaussian mixtures c, different lengths of train-
ing prompts N, and test them with different test prompt
lengths M. The results are reported in Figure 1. We can
see that for both single-layer and multi-layer transformers,
the inference errors decrease as N and M increase, and
they increase as c increases, which not only verifies our
theoretical claims but also shows that, the simplified model
we have studied indeed exhibits behavioral similarities to
the more complex multi-layer, nonlinear transformers, and
some of our observations for this simplified model also hold
for more complex transformers.

5.1. Varying covariances and norms

Note that in Assumption 3.2, 4.2, 3.5, 4.4, we assume that
the covariance A during pre-training and during inference
are the same, and the means of all Gaussian components

{r.i,7 € [c]} have the same A~! weighted norm. In Re-
mark 3.7, G.2, we also discuss the situation when Assump-
tions 3.5, 4.4 do not hold and show the necessities of them.
In this subsection, we consider training transformers with
data of varying covariances A and with Gaussian component
means of unequal A~! weighted norms, and examine how
these factors affect the ICL abilities of transformers. Results
are shown in Figure 2.

From Figure 2 (a), we can see that both models perform
better when their i, ; have the same A~! weighted norm
(‘same norm’), however, in the ‘different norms’ setting,
the performance of ‘1-layer’ deteriorates more significantly,
while transformers with a more complex structure (’3-layer’)
show better robustness under this distribution shift. Similar
situations also happen in Figure 2 (b), where ‘3-layer’ also
shows better tolerance to the covariance shifts than ‘1-layer’.

Experimental results in Figure 2 show the necessities of As-
sumptions 3.2, 4.2, 3.5, 4.4 for the single-layer transformers
considered in this paper, and also demonstrate the better ro-
bustness of multi-layer, nonlinear transformers. Developing
a better understanding of the robustness of more complex
transformers is an intriguing direction for future research.

5.2. Comparison of transformers with other ML
algorithms

Additionally, we conduct experiments comparing the ICL
performances of the transformers with other machine learn-
ing algorithms for the classification of three Gaussian mix-
tures. From Figure 3, we can see that all three transformer
models significantly outperform the classical methods (soft-
max regression, linear discriminant analysis), demonstrating
the strong ICL capacities of transformers.
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Figure 3. ‘1-layer, sparse’: single-layer transformer defined in Sec-

tion 4, ‘1-layer, full’: single-layer transformer with full parameters

(59), ‘3-layer’: a 3-layer transformer with softmax attention, ‘soft-

max’: softmax regression, ‘LDA’: linear discriminant analysis. All

three transformers are trained with prompt length N = 100.

6. Conclusion

We studied the learning dynamics of transformers for in-
context classification of Gaussian mixtures, and showed that
with properly distributed data, a single-layer transformer
trained via gradient descent converges to its global mini-
mum. Moreover, we established the upper bounds of the
inference errors of the trained transformers and discussed
how the training and test prompt lengths influence the per-
formance of the model. Experimental results also corrob-
orated the theoretical claims. There are some directions
worth further exploring. One potential avenue is to inves-
tigate whether the assumptions regarding the training and
test prompts can be relaxed. Additionally, we have only ex-

amined single-layer transformers with linear attention and
sparse parameters. The learning dynamics of multi-layer
transformers with nonlinear attention (e.g., softmax) for in-
context classification problems remain an interesting area
for future investigation.
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Appendix

The Appendix is organized as follows. In Section A, we provide a literature review of the related works that studied the ICL
abilities of transformers. In Section B, we introduce the additional notations for the proofs in the Appendix. In Section
C, we introduce some useful Lemmas we adopt from previous literature. In Sections D, E, F, G, we present the proofs of
Theorem 3.3, 3.6, 4.3, 4.5 respectively. In Section H, we provide additional results and details of our experiments.

A. Related work

It has been observed that transformer-based models have impressive ICL abilities in natural language processing (Brown
et al., 2020; Nye et al., 2021; Wei et al., 2022; Dasgupta et al., 2022; Zhang et al., 2022). Garg et al. (2022) first initiated the
study of the ICL abilities of transformers in a mathematical framework and they empirically showed that transformers can
in-context learn linear regression, two-layer ReLLU networks, and decision trees. Subsequently, numerous works have been
developed to explain the ICL capacities of transformers in solving in-context mathematical problems. These works mainly
use two approaches: constructing specific transformers capable of performing certain in-context learning tasks, and studying
the training dynamics of transformers for such tasks.

Constructions of transformers. Akyiirek et al. (2022); Von Oswald et al. (2023) showed by construction that multi-layer
transformers can be viewed as multiple steps of gradient descent for linear regression. Akyiirek et al. (2022) also showed
that constructed transformers can implement closed-form ridge regression. Guo et al. (2023) showed that constructed
transformers can perform in-context learning with representations. Bai et al. (2024) proved that constructed transformers
can perform various statistical machine learning algorithms through in-context gradient descent and showed that constructed
transformers can perform in-context model selection. Lin et al. (2023) demonstrated that constructed transformers can
approximate several in-context reinforcement learning algorithms. Fu et al. (2023); Giannou et al. (2024) further proved
that constructed transformers can perform higher-order optimization algorithms like Newton’s method. Pathak et al. (2023)
showed that transformers can learn mixtures of linear regressions. Giannou et al. (2023) proved that looped transformers that
can emulate various in-context learning algorithms. Cheng et al. (2023) showed that transformers can perform functional
gradient descent for learning non-linear functions in context. Zhang et al. (2024) showed that a linear attention layer
followed by a linear layer can learn and encode a mean signal vector for in-context linear regression.

Training dynamics of transformers. Mahankali et al. (2023); Ahn et al. (2024) proved that the global minimizer of the
in-context learning loss of linear transformer can be equivalently viewed as one-step preconditioned gradient descent for
linear regression. Zhang et al. (2023a) proved the convergence of gradient flow on a single-layer linear transformer and
discussed how training and test prompt length will influence the prediction error of transformers for linear regression. Huang
et al. (2023) proved the convergence of gradient descent on a single-layer transformer with softmax attention with certain
orthogonality assumptions on the data features. Li et al. (2023c) showed that trained transformers can learn topic structure.
Wau et al. (2023) analyzed the task complexity bound for pretraining single-layer linear transformers on in-context linear
regression tasks. Tarzanagh et al. (2023) built the connections between single-layer transformers and support vector machines
(SVMs). Nichani et al. (2024) showed that transformers trained via gradient descent can learn causal structure. Chen et al.
(2024) proved the convergence of gradient flow on a multi-head softmax attention model for in-context multi-task linear
regression. Kim & Suzuki (2024); Yang et al. (2024) proved that trained transformers can learn nonlinear features in context.
Bu et al. (2024) studied the training convergence of transformer for tasks encoded with multiple cross-concept semantics. Li
et al. (2024b) proved that a one-layer transformer can be trained to learn one-nearest neighbor for binary classification in
context. Li et al. (2024a) studied the training dynamics of a single layer transformer for in-context classification problems.
However, they only studied the binary classification tasks with finite patterns. They generated their data as x = p1; + Kvg,
where {y; } ?/I:ll are in-domain-relevant patterns and {Vk}ijl are in-domain-irrelevant patterns, My > Mo and these patterns
are all pairwise orthogonal. Thus, the possible distribution of their data is finite and highly limited. In contrast, our work
explores the ICL capabilities of transformers for both binary and multi-class classification of Gaussian mixtures. Specifically,
our data is drawn according to P®(jq, 11, A) or P™(u, A), and the range and possible distributions of our data are infinite.
Recently, (Frei & Vardi, 2024) also studied the the ICL of a linear transformer model for classifying Gaussian mixtures
and showed that trained transformers can exhibit benign overfitting in-context. However, their analysis relies on additional
assumptions, such as a sufficiently large signal-to-noise ratio. In contrast, our work does not rely on such assumptions.
Additionally, compared to (Frei & Vardi, 2024), we consider a more general multi-class setting. We believe these distinctions
highlight the independent contributions of our work.

Some works also studied the ICL from other perspectives. To name a few, Xie et al. (2021) explained the ICL as implicit

12
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Bayesian inference; Wang et al. (2023) explained the LLMs as latent variable models; Zhang et al. (2023b) explained the
ICL abilities of transformers as implicitly implementing a Bayesian model averaging algorithm; and Li et al. (2023b) studied
the generalization and stability of the ICL abilities of transformers. Hahn & Goyal (2023) showed that ICL can arise through
recombination of compositional structure found in linguistic data. Lin & Lee (2024) studied the dual operating modes
for in-context classification of Gaussian mixtures. However, the analyses of both Hahn & Goyal (2023) and Lin & Lee
(2024) are based on the idealized optimal next-token predictor for ICL tasks and did not discuss the training dynamics of
transformer models.

Apart from studies focusing on the training convergence properties of transformers in in-context learning (ICL), many other
works have investigated the convergence behavior of transformers when learning different tasks. For example, (Jelassi et al.,
2022) and (Li et al., 2023a) theoretically analyzed how Vision Transformers learn and converge. (Wang et al., 2024) showed
that transformers can provably learn sparse token selection, whereas fully-connected networks cannot. (Zhang et al., 2025)
demonstrated that transformers can learn optimal variable selection in group-sparse classification. (Gao et al., 2024) studied
the global convergence of large-scale transformers under gradient flow dynamics.

B. Additional notations

We denote X ~ Bin(n, p) if a random variable X follows the binomial distribution with parameters n € N and p €

[0,1], which means P (X = k) = ﬁik)!pk(l — p)" k. We denote X ~ Multin(n, p) if random variables X =

(X1,Xs, ..., X)) follow the Multinomial distribution with parameters n € N and p; = py = -+ = p; = 1/k, which
n!

means P (X = (z1,x9,...,2)) = b —k~". We denote ¢i(z) = softmax(z); = exp(wi)/(2§:1exp(xj)) for
i=1Tk*
simplicity. We define d;; = 1, ;; = 0,4 # j. Forz € N, we define ¢1(z) = [(x — 1)/d] 4+ 1,t2(z) = ((x — 1) mod d) + 1.

C. Useful lemmas

Lemma C.1 ((Karimi et al., 2016)). If f : R? — R is p-strongly convex, then
: 1% * 2
F(a) —min f(2) > 2" — 23

where * = argmin,, f(x).

Lemma C.2 ((Bubeck, 2015)). Suppose f : RY — R is a-strongly convex and 3-smooth for some 0 < o < 3. Then, the
gradient descent iterating w't! = w! — nV f(w') with learning rate n = 1/ and initialization w° € RY satisfies that for
anyt > 1,

lw® — w3 < exp(—t/r)[[w® — w3

where k = [/« is the condition number of f, and w* = argmin,, cga f(w) is the minimizer of f.

D. Training procedure for in-context binary classification

In this section, we present the proof of Theorem 3.3.

D.1. Proof sketch

First, we prove in Lemma D.2 that the expected loss function L(W) in (7) is strictly convex w.r.t. W and is strongly
convex in a compact set of R%*?. Moreover, we prove L(W/) has one unique global minimizer W*. Then, in Lemma D.3,
by analyzing the Taylor expansion of L(W'), we prove that as N — oo, our loss function L(W') point wisely converges
to L(W) (defined in (25)), and the global minimizer W* converge to 2A~1. We denote W* = 2(A~! + G), and prove
|Gllmax = O(N~1/2). Next, in Lemma D.4, by further analyzing the Taylor expansion of the equation VL(TW*) = 0 at the
point 2A 1, we establish a tighter bound ||G||max = O(N ~1). In Lemma D.5, we prove that our loss function is /-smooth
and provide an upper bound for /. Thus, in a compact set Ry, our loss function is a-strongly convex and [-smooth. Finally,
leveraging the standard results from convex optimization, we prove Theorem 3.3 in subsection D.4.

In this section, we use the following notations.

13
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D.2. Notations

Recall the expected loss function (7) is

1 . ~
L(W) = _iE [(1+ yv’,query) IOg(y'r,out) + (1 - yv’,query) log(1 — y'r,out)] )

N

~ 2 w

Yrout = 0 ((N Zl y‘r,ix:rr,i) er,quer)’>
i=

is the output of the transformer, and the label of the data follows the distribution

where

P (yr.query = 1|Z7 query) = o ((pir,1 — MT,O)TA_lxﬂquery))-

2

In this section, we introduce the following notations to analyze (7). We denote jt = fir 1 — [i7,0, 41 = fr,1, o = [7,0 and
¢ = T+ query- Then with probability P (y query = 1) = 1/2 we have ¢ = p1 +v, and with probability P (y; query = 0) = 1/2
we have ¢ = o + v, where v ~ N(0, A). We define p = % Zf;l Yr,iTr;. Since with probability P (y,; = 1) = 1/2 we
have z,; = p1 + v;, and with probability P (y, ; = 0) = 1/2 we have x,; = p0 + v;, where v; ~ N(0, A), we known
p =2N1p1/N —2Nopo/N + g, where g = % vazl v;, g ~ N(0,4A/N), N1 ~ Bin(N, 1/2). Defining h = N1 /N —1/2,

u = 2(u1 + po), we have Ng/N =1/2 — h and
p=p+hu+g.

Then, the expected loss function (7) can be expressed as

L(W) =E[-o(u" A" q)log(a(p" Wq/2)) — (1 — o(n" A q)) log(1 — a(p" Wq/2))].

The gradient of the loss function (7) can be expressed as

VL(W) = JEl(o(p Wa/2) — o(uT A g)pa "]

Moreover, we define a function L(W) as

In Lemma D.3, we show that as N — oo, L(W) will point wisely converge to L(W).

D.3. Lemmas

Lemma D.1. Suppose Ny ~ Bin(N,1/2). Defining h = N1 /N — 1/2, we have

E[h] =0

E[h?] = ﬁ

E[h%] =0

E[h"] = O(N™?), forn > 4
E[Jhl) < 57

E[ln*]) = O(N~%2).

Proof. Since N1 ~ Bin(V, 1/2), the moment-generating function of Ny is

My, (t) = (; + ;eXp(w)N .

14

L(W) =E[-o(u" A q)log(o (" Wq/2)) — (1 — o(u" A" ) log(1 — o(u" Wq/2))].

(22)

(23)

(24)

(25)
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We can compute the moment-generating function of h as follows:

_ N N
_ ot Y\ expﬁ +expﬁ B t
My, (t) _exp( 2)MN1 (N> = ( 5 = | cosh N

oo

N
t2 t2i
= (1 tave Tt ; (21')!(21\7)21') '

Thus, we know the coefficients of ¢, t2, t3 are 0, 1/(8N), 0 respectively, and the coefficients of ¢, n > 4 are O(1/N?). We
have

E[h] =0
B[R] = o
E[R%] =0

E[r"] = O(1/N?), forn > 4.
Moreover, according to the Jensen’s inequality, we have

21
T 9N1/2
S _ o(NT32,

E[|h] < (E[17])
E[|n*]) < (B[r)
O

Lemma D.2. For the loss function L(W) (7), we have V2L(W) = 0. For any compact set Ry, of R4*?, when W € Ry,
we have V2L(W) = v1, for some v > 0. Additionally, L(W) has one unique global minimizer on R4*.

For L(W) defined in (25), we also have V2L(W) = 0. For any compact set Ry of R%*%, when W € Ry, we have

sz(W) = 14 for some ~y > 0. Additionally, L(W) has one unique global minimizer on R%*%,

Proof. We vectorize W as Vec(W) € RY, where Vec(W); = Wi i) (i)» t1(x) = (2 — 1)/d] + 1,t2(x) = ((z —
1) mod d) + 1. Then, we have

(VL)) = B [ 507 Wa/2) = oA, 0 - 26)

The Hessian matrix of the loss function (7) is

(VLY )y = Epa |

U(PTWQ/2)(1 - J(pTWq/2))pt1(i)qtg(i)ptl(j)qtg(j):| .
Considering z € R?” such that = # 0, we have

1
ZTVQL(W)Z =Eqp l4g(pTWq/2)(1 - o'(pTWq/Q)) Z Zasztl(a)Qtz(a)ptl(b)th(b)]

ab
2

1
:/ZO(pTWq/Q)(l—o'(pTWq/Q)) Z ZaPty(a)4tz(a) qu(p, q)dpdq,
a€ld?]

where f,,(p,q) are the probability density function (PDF) function of p,g. Since for any p,q, o(p' Wq/2)(1 —
o(p"™Wq/2)) > 0, we have 2z V2L(W)z > 0. Thus, V2L(W) = 0 and L(W) is convex.

15
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Moreover, for any z # 0, we denote 2;; = 2((i—1)d+j), % J € [d]. Suppose a,b € argmax; ; |z;;|, we consider a set
of constants {cipi, Capi }, {C1qis C2qi }, 4,7 € [d], where cipe = d,cops = d+ 1, c1qp = d,cogp = d + 1, and ¢qp; =
1/16, copi = 1/8,1 # a, c1q; = 1/16, caq; = 1/8,j # b. Then, for any ¢p; € [C1pi, Copil, Cqj € [C1q5, C2q;]. We have

3" ijepice| > [d2 —2(d+1)(d—1)/8 — (d — 1)2/64] max|z;j| > d® max |z /2.
? 7
irjeld) ! ’
Then, we define region Q(a,b) = {p =3, cpiei, ¢ = 2 Caj€isCpi € [C1pis Copil, Cqj € [Crqj, C2q5]}. We have
2

duin | D zepuote | 2 d'maxa /42 23/
’ ce[d?]

Defining
= it / a)dpdg,
() acld.beld] Jo(ap) foq(p,q)dpdq

1
S(QW) = i i _ TW 2)(1 — TW 9
W) ae[lg}l}fe[dm%%){zl”(p q/2)(1 —a(p Wq/ ))},

we have S(€2, W) > 0. Since with probability P (y; query = 1) = 1/2, ¢ = p1 + v, with probability P (y- query = 0) = 1/2,
q = po + v, where v ~ N(0, A) and p = pu + hu + g, where g ~ N(0,4A/N),v ~ N(0, A), o ~ N(0, I), the covariance
matrices of p, ¢ are positive definite and we have fy,,(p,q) > O forall p,q € R?. Moreover, Q(a, b) are non-zero measures
on R4X4_ Thus, we have C(§2) > 0. Then, for any z # 0, we have

2" V2L(W)z > /
Q(a,b)

>C(Q)S(Q,W)|2]3/4
>0.

2
io(pTWq/ 2)(1—o(p' Wq/2)) (Z letl(l)Qtz(l)> fra(p,q)dpdg
1

Thus, we have VZL(W) = 0. L(W) is strictly convex.

Moreover, for any compact set Ryy of R4xe_ for any W € Ry, we have

1
S(Q) = mi i in {—a(p Wq/2)(1 —a(p' Wq/2 0.
(@)= min i, Q%%){ﬁla(p 421 - ol Wef ))} g

Then, for any W € Ry, for any z # 0, we have

2
|
2 VAL(W)z >/Q( ) 170 Wa/2) (1= o(p"Wa/2)) (Z Zzpt1<z>qt2(z>> Foq(p,q)dpdg
a, 1

>1CE@S@415

Thus, when W € Ryy, where Ry is a compact set, we have V2L(W) = C(2)S(Q)I,/4 and the loss function L(W) is
~—strongly convex, where v = C'(Q2)S(Q2) /4.

Because our loss function is strictly convex in R?*9, it has at most one global minimizer in R?*?. Next, we prove all
level sets of our loss function are compact, i.e. Vo, = {W € R¥?| L(W) < a} is compact for all . We prove it by
contradiction. Suppose V, is not compact for some . Since our loss function is continuous and convex, V,, is an unbounded
convex set. Since the dimension of V,, is d?, consider a point W € V,, there must exists a Wk % 0gxq such that
{We+tWPk |t =1[0,00)} € V,. For this W¥ 2 044, there must exist a set of constants 0 < czp; < Capi, 0 < €3¢ < Caqj
such that for any ¢p; € [3pi, Capil, Cqj € [C3q;, Caqs], We have

\ Z C:DiCCIjWil;'| # 0.
ij
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Thus, we have

t—o00

lim | Z cpicqj (Wi + th’;)| =00

We define Q = {p = >, cpiei, ¢ = Zj Cqj€js Cpi € [Capis Capi], Cqj € [C3gj, Cagjl, el < > CZlei + C?Iqj}' Then,
defining

C(Q) = A fra(p, q)dpdy,

S(€0) = min {min{o (" A™"q), (1 — o(u" A7)} },
we have S(£2p) > 0. Since €y are non-zero measures for p, ¢, we have C(€g) > 0. Then, we have
lim L(W® + tW")
t—o00
= lim E[—o(u" A7 q) log(o(p" (W +tW¥)q/2)) — (1 — o(n" A q)) log(1 — o (p' (W + tW¥)q/2))]

. a k
Z }g{; - [~o(n" A7 q) log(o E CpiCoj (WG + W) /2))] fog (0, @) dpdg
+ tliHm (- U(/‘TAilq)) log(1 — o( E :Cpicqj(Wi(; + tWﬁ)/@)]qu(n q)dpdq
> Ja,

ij

>C(920)S5(Qp) - min hm —log(o Zcmcqj +th)/2 )]

Qo

+O(00)S(00) - min { lim [ log(L = o(3 epreqs (W + t175)/2)]
ij

=00.
This contradicts the assumption L(W® + tW*) < a. Thus, all level sets of the loss function L(W) are compact, which

means there exists a global minimizer for L(W). Together with the fact that L(TV) is strictly convex, L(7) has one unique
global minimizer on R%*¢,

Similarly, we can prove the same conclusions for Z(W) O

Lemma D.3. Denoting the global minimizer of the loss function (7) as W*, we have W* = 2(A~! + G), where
HG”max = O(Nil/z)-

Proof. Leta=pu'A~'q, s = u'Wq/2,r = (hu + g) " Wq/2. Performing the Taylor expansion on (7), we have

L(W) =E [-o(a)log(a(s + 7)) = (1 = o(a))log(1 — (s +7))]
[ o(a)log(a(s)) — (1 — o(a))log(l — o(s))]
E[(e(a)(1 = a(s)) = (1 = a(a))o(s))) 7]

+E [o(&(s,7)(1 = a(&(s,7)r? /2]
(W) Ef(o(a)(1 —0o(s)) = (1 —o(a))o(s)))r]
[U f(s, r 1 - 0(5(577")))7“2/2] s

where £(s,7) are real numbers between s and s + r. According to Lemma D.1, we have E [r] = E [(hu + g) " Wq/2] = 0.
Thus, we have

E[(e(a)(1 = 0a(s)) = (1 = o(a))o(s))) ] = Epuq [(0(a)(1 = a(s)) — (1 = a(a))o(s))) Egn [r]] = 0.
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Moreover, we have
E [0(5(35 7“))(1 - 0(6(57 T))T2/2]
<E [r’]
=E[h*u" Wqu Wq+ g " Wqg W]
YR TWquT Wq/(4N) + A(AWq)TWq/N]
<CUIW [ fax/N,

where (a) is due to Lemma D.1, g' Wqg'Wq = Zi,j,k,le[d} 9iWi;;9:Wrq = Zi,j,k,le[d] GigWiaqWijq; =
(99" Wq)"Wqand E[gg"] = 4A/N. C; is a constant independent of N and W. Thus, we have

L(W) = L(W)| < Ci|W|[fas/N.

This shows that L(TV) point wisely converges to E(W)

According to Lemma D.2, Z( W) has one unique global minimizer. Consider the equation:
VL(W) = Elo(u"Wq/2) — o(upT A" q)] = 0.

We can easily find that VL(2A~') = 0 and W = 2A~" is the global minimizer of L(W).

Considering a compact set Ry = {W | [|[W — 2A7 || < pw }, we have ||W||max < Cw for W € Ryy. Here pw, Cy
are some positive finite constants. Then, we have

L(W)— L(W)| < C]/N, W € Ry,

where C] = C,C%; is a constant independent of N and W. This shows that, for W € Ry, our loss function L(W)
uniformly converge to L(W).

Denote W* as the global minimizer of the loss function L(WW) with prompt length N. Then, we show that, when N is
sufficiently large, W* € Rys. We first denote Ry = {W |||[W — 2A7||r = pw} and A = minwegr,, L(W) —
L(2A71Y) > 0. Then, for N > 4C]/A, and for any W € Ryy, we have

L(W)—-L(W)| <A/4,
This means

min L(W)— min L(W)

WeORw WeRw

> min L(W)—L(2A™Y)
WeoRw

> min L — LAY —
7Wr€n§}r%wL(W) L(2A™) —A)2
>A/2>0

Since L(W) is strictly convex, we have W* = argminy, L(W) € Ry .
Then, we have
[LW*) = L(W*)| < C/N
IL(2A™Y) — L(2A7Y)| < C)/N

L(W*) < L(W*) + Cj/N < L(2A~Y) + C]/N < L(2A~Y) + 2C]/N.
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According to Lemma D.2, for W € Ry, we have VZE(W) > ~v14, where vy is a positive constant independent of /NV. Thus,
L(W) is ~-strongly convex in Ry . According to Lemma C.1, we have

1w —2A Y2 < 2@ - Lea ) < 24
Ty TN
Thus, when N — oo, we have W* — 2A~'. Denoting W* = 2(A~! 4+ G), we have ||G||max = O(1/V/'N). O

Lemma D.4. The global minimizer of the loss function (7) is W* = 2(A~1 + G), where

1
|Gl max §N|\5_1(E[0’(a)(4qu +uu' A g /4)
+ 0" (a)(u" A7 q)?ug " /8 + 2¢T A qpug "))l max + o(1/N),

a=pTA g S =4V2L(2A1).

Proof. According to Lemma D.2, the loss function L(W) has a unique global minimizer W*. We have
VLW*) =E [(o(p"W*q/2) —o(u A q))pg" | = 0. 27)
Let W*=2A"'+G),a=p"Aq, b= (np+hu+g)"Gqg+ (hu + g) T A~1q. We have

p'W*q/2
=(u+hu+g) (A" +G)q
=(u+hu+9) Gg+ (hu+g) A q+pu"Alg=a+0.

The Taylor expansion of o(a + b) at point a with an Lagrange form of remainder is

1 a " a, b
o(a+b)pg" =o(a)pg’ +o'(a)bpg" + UT()bzqu + wbgmi
where £(a, b) are real numbers between a and a + b. Thus, our equation (27) become
(a o' a, b
Epughg |0 (@)bpg" + 72( Ji2pqT + 7@3(, Vs | = 0. (28)

Note that E[o"(a)bpq "] = E,u.q [0/ (a)Eg,p [bpg"]]. For Eg ,[bpg "], according to Lemma D.1 and g ~ N(0,4A/N), we
have

Eqg.nlbpg ']
=E[u"Gquq" +9 A 'q9q" + 9" Gagq" + h*u" Gquq" + h*uT A qug"]
=up' Gqq" +49q" /N +4AGqq" /N +uu' Gqq" /(AN) +uu' A 1qq" /(4N). (29)

Then, we have
By uqlo’ (@) (4AGqq " /N + wu' Gaq" /(AN))]|lmax < €1]|Glmax/N,

where ¢; = max;; [E[Y°,, 40" (a) (Ai@rq;) + >y 0’ (a) (ujurqiq;/4)]| is a constant independent of N. According to
Lemma D.3, ||G||lmax = O(1/v/N) = o(1), we have

HE/A’u,q[U/(a)(ZLAquT/N + UUTquT/(4N))] [max = o(1/N), (30)
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Similarly for E[o”(a)b®pq " /2], we have

]Eg,h[bzpq—r]
=E[u Gau' Gaug" + h*u" Gau' Gaug" + 9" Gag " Gaug" + 2h*u" Gau" Gaug” + 29" Gau" Gagq"
)
+E2h*u Gqu' A qug" + 29" Gag " A qug " + 20T GquT A qug T + 20" Gag T A qgq "]
(i)
+ERu" A qu A qug T + 9T A qg A qug ]
(44d)

For each term in (i), it contains two G. Thus, their max norms are at most smaller than O(||G||2,.). For each term in

max/*

(i1), it contains one G and h? or contains one G and two g. According to E[h?] = 1/(4N) in Lemma D.1, the max norm
of terms with one G and h? are smaller than O(||G||max/N). Defining g = N'/2A=1/2¢/2, we have g ~ N(0, I;) and
g = 2N~1/2A1/2G. Thus, converting two g to g, we have a coefficient of N—'. Therefore, the max norms of terms with one
G and two g are also smaller than O(||G||max/N). Therefore, for terms (7), (ii), we have

IE[o” (a)(i)/2][max < O(||G||I2nax) = 0o([|Gllmax), (31)
IE[o"(a)(i1)/2][lmax < O(|Glmax/N) = o(1/N). (32)

For term (444), according to Lemma D.1 and g ~ N(0,4A/N), we have

|E[c" (a)(iii)/2]||max
=|E [0 (a)(h*u A 'qu " A qug" + 9" A qg T A qug ") /2] |max (33)

1
=5 B[ (@) (A" 9)nq" /8 + 24" A7 qug )] mas- (34)

For E[o"(£(a,b))b®pq " /3], we have

IE[o" (¢(a,5))b*pg " /31 [lmax
<max|o”(2)|/3! - maxE [[6°pig; ]
z )

<0(1) - m_axE[ > |p{ Gaos Gads Gapig;|
ij
$1,92,63€{p,hu,g}

()
+ > |61 Gagg Gaps A apiq;|
¢1,92€{p,hu,g},ps€{hu,g}
()
+ > |61 Gadg A" qdd A~ qpiq; |
¢1 e{#7hu»g}7¢27¢3€{huag}

(%)

+ > el A ges A gdg A apigs | |-
¢1,02,¢3€{hu,g}

(k%)

For terms in (*) containing two or three G, these terms’ expected absolute values are at most smaller than O(||G/||?,.)-
For terms in (x*) containing one G, these terms must contain n; number of h and n, number of elements of g, where
ny +ng = 2,3,4,n1,n9 € N. According to Lemma D.1, we know that for n; = 1,2,3,4, E|p™| < O(N—™/2).
Defining g = N'/2A=1/2¢/2, we have § ~ N(0, I4) and g = 2N ~/2A1/2g. Converting g to g, we have a coefficient of
N~"2/2_ Thus, for terms in (**), these terms’ expected absolute values are at most smaller than O (|| G| max N ~ "1 172)/2) <
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O(||G||max N ~1). For terms in (* * x) without G, these terms must contain n; number of h and n, number of elements
of g, we have ny + ny = 3,4,n1,n2 € N. Similarly, these term’s expected absolute values are at most smaller than

O(N~(m+n2)/2)y < O(N—3/2). Therefore, we have

B[ (¢(a,0))6%pg " /31 |max
<maxE Hb?’piqj H -max |0 (2)]/3!
ij P

=O([|Gl3sax) + OU|Gllmax/N) + O(1/N~3/2)

max

=0([|Gllmax) + o(1/N).
Moreover, we have

{Eu,u,q[a’(a)uuTquT]}

= g 5k Gri,
J Kl

,

(35)

(36)

where s;j11 = Eo'(a)uipnqq;. We vectorize G as Vec(G); = Gy, (iy,t,()- Define S € Rd2x‘i2, where S;; =

541 () 2 (6) 41 () b2 () = EJ’(a),utl(i)qt2(i)pt1(j)qt2(j). Then (36) can be expressed as

{EH,U[UI(Q)MMTGQQT]} = 5G.

(37

Note that S = 4V2E(2A‘1). According to Lemma D.2, S is positive definite. Thus, combining (28), (29), (30), (31), (32),

(34), (35), (37), we have

1G]l max

1. ~ _ _
<5 s " (Elo’(a)(4qq " +uu" A qq" /4) + 0" (a)(u A q) g /8 +2¢" A qug 1)]) [lmax

+ o(1/N).

Lemma D.5. The loss function (7) is l-smooth, where | < i Zie[cﬂ] E[(ptl(i)qtz(i))Q].

Proof. The Hessian matrix of the loss function is

1
(VPL(W))y; = ZE[J(pTWQﬂ)(l — a(p W aq/2))Dt, (1) ()Pt ()Tt () )-

Considering z € R? such that z # 0, we have

1
2TVPL(W)z =K KU(pTWQ/Q)(l —o(p'Wq/2)) Z 2a2bPt, (a) Ut (a) Pt (b) At (b)
L ab

2

1
=E | 100" Wq/2)(1 =o' Wa/2)) | D 2Pt (@)ea(a)

a€ld?]
r 2
1
<E 1 Z ZaPt1 (a)Gt2(a)
a€[d?]
(a) 1
SZHZ”g Z E[(ptl(i)QtQ(i))Q]

1€[d?]

where (a) is due to the Cauchy—Schwarz inequality. Thus, VZL(W) < 11 and L(W) is [-smooth, where [ is a constant

smaller than § 3=, 1421 E[(pr, (1)1, (1))?]-

21

O



On the Training Convergence of Transformers for In-Context Classification of Gaussian Mixtures

D.4. Proof of Theorem 3.3
Proof. According to Lemma D.4, the global minimizer of L(W) is W* = 2(A~! + G), where

1, 1 oo
G lmasx <7157 (B[o”(a)(4qq " + Juu" A~ qq")

o (a)(

2 (WA )2 g " +2¢ " A qug ™)) fmax + o(1/N). (38)

Define Ry = {W € R4 | |W — W*||p < ||W° — W*||p}. Rw is a compact set. Then, according to Lemma D.2, for
W € Ry, we have V2L(W) = aly. Here a > 0 is a positive constant number. Thus, L(W) is a-strongly convex in Ry .
Moreover, according to Lemma D.5, L(W) is l-smooth. Then according to Lemma C.2, applying gradient descent with
n = 1/l, forany ¢ > 1, we have

[W* =W < exp(=t/r) - [W° = W[,

where k = [/a. O

E. In-context inference of binary classification

E.1. Notations

In this section, we use the following notations. We denote pt = p1 — o, v = 2(p1 + f0), ¢ = Tquery- Define
P = i ZM1 y;x;. Since with probability P (y; = 1) = 1/2, ; = p1 + v;, with probability P(y; =0) =1/2, z; =

o + vi, where v; ~ N(0,A), we have p = 2My 1 /M — 2Mopo/M + g, where g = 57 Zl 1 Vi, g ~ N(0,4A/M),
M; ~ Bin(M,1/2). Defining h = M1 /N — 1/2, u = 2(u1 + o), we have My/N = 1/2 — h and

p=p+hutg. (39)
E.2. Proof of Theorem 3.6
Proof. The output of the trained transformer is
2 U . A
@\out =0 ((M Zyﬂj> (Ail + G)zquery> = U(pT(Ail + G)q) (40)
i=1

The probability of yquery = 1 given xquery is
P (Yauery = |Zquery) = 0((111 — p10) " A~ query) = (" A7 q).
Defining a = T A~Yq, b= (u+ hu + g)TGq+ (hu + g)TA~1q, we have
p (AT +G)g
=(u+hu+g) (A7 +G)q
=(p+ hu+ g)T@q +(hu+g) A lq+pu" Al g=a+b,

and
E[o(pT (A +G)a)| = Elo(a+b)] = Elo(a) + o' (a)b + 0" (€(a,1)b*/2],
where £ are real numbers between a and a + b. Thus, we have

Eflo(a+b) —o(a)]]
<E[|o’'(a)b + 0" (&(a, b))b? /2]
<o’ (a)E[[b] + E[p?]
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We first consider the term o’ (a)E[|b|]. Defining g = A~'/2M"/2g/2, we have

o' (a)E[|b]]
<o'(a) ||u" Gql + E[lhu” Gql] + E[lg" Gql] + E[Jhu" A~ q]] + ]E[IgTA*IqI]}
(@) [ TA T 2 ~TAL/2A T 2 _TA—1/2
<o'(a) ||p Gq|+2M1/2|u GQI+M1/QEH9 AY2Gql] + 2M1/2|u Al + Bl AT 2]
Qo e A AP Ly L
<o'(a) |[|Gllmax ;{d] lig;| + M1/2 7‘ |+ ;{d | qjl +o0 ~ + 7))
L i, %,J

where (a) is due to E[|h|] < 1/(2M*/2) in Lemma D.1. (b) is because that g; ~ N(0, 1) and E[|g;|] = v/2/+/7, for i € [d].
For E[b?], we have

E[b?] < E[[(M + hu + g)T@q]ﬂ +E {[(hu + g)TA_lq]Q} + 2E[(u + hu+ g) " Gq(hu + g)TA_lq} :

Notice that terms in E [[(u + hu + g)T@q] } contain two G. Thus, they are at most smaller than O(HGHde) O(1/N?).
Terms in E [[(hu + g)TA’lq]ﬂ /2 contain two h, or two g, or one h and one g. According to Lemma D.1, we have
E[|n]] = O(1/V/M), E[h?] = 1/(4M). Moreover, g = 2M ~/2A1/2g. Converting one g to g, we have a coefficient of
M~'/2. Thus, terms in E{[(hu + g)TAflq]z] /2 contain two h, or two g, or one h and one g are O(1/M). Terms in
E [(u—l—hu—i—g)—'—@q(hu—l—g)TA*lq} contain at least one G and one h or one G and one g. Thus, they are at most smaller than
O([|Gllmax/VM) = O(1/(NV/M)). Therefore, we have E[b2|]/2 = O(1/N241/M+1/(NvVM)) = o(1/N +1/vM).

Finally, we have
]E[A(yquery’ gquery)] = E[|Your — P (Yauery = 1|Zquery) ] = E[lo(a+0b) —o(a)] < UI(Q)EHbH + E[b2]

_ 22 1/2 1
<0'(a) |1Gllmax Y lpigs| + *I A gl + == >0 1A Pgl || +o Wi
> max i M1/2 ij J N

i,j€[d] VT i,j€[d]

F. Training procedure for in-context multi-class classification

In this section, we present the proof of Theorem 4.3.

F.1. Proof sketch

First, we prove in Lemma F.3 that the expected loss function L(W) (16) is strictly convex w.r.t. W and is strongly convex
in a compact set of R9*¢. Moreover, we prove L(T/) has one unique global minimizer W*. Then, in Lemma F.4, by
analyzing the Taylor expansion of L(W), we prove that as N — oo, our loss function L(W) point wisely converges to
L(W) (defined in (44)), and the global minimizer W* converge to 2A 1. Thus, we denote W* = 2(A~! + @), and prove
|Gllmax = O(N~1/4). Next, in Lemma E.5, by further analyzing the Taylor expansion of the equation VL(W*) = 0 at the
point 2A 1, we establish a tighter bound ||G/||max = O(cN~1). In Lemma F.6, we prove that our loss function is /-smooth
and provide an upper bound for /. Thus, in a compact set Ry, our loss function is a-strongly convex and [-smooth. Finally,
leveraging the standard results from the convex optimization, we prove Theorem 4.3 in subsection F.3.

In this section, we use the following notations.
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F.2. Notations

Recall the expected loss function (16) is

L(W) =-E lZ(yT,query)k 10g((§‘r,out)k)] ) (41)

k=1
where

N
~ 1 (¢
(y‘r,out)k = softmax (C (N Z yr,ﬂL) Wx'r,query)
k

i=1
is the output of the transformer, and the label of the data follows the distribution
P (yrquery = €11rauery) = softmax(i] A~ 27 query) i

In this section, we introduce the following notations to analyze (16). We denote pr = fir g, 1t = (p1, ft2, ..., 1) €
R%*¢ and ¢ = Zr query- Then with probability P (y- query = €x) = 1/¢, ¢ = pur + v, where v ~ N(0,A). We define
pe = £ S (Yri)iar; € R4 and P = (p1,pa,...,pe) € R¥¥C. Wehave PT = £ 527 ol € R°%% Since with
probability P (y,; = ex) = 1/c we have 2, ; = i + v;, where v; ~ N(0,A), we known p, = £ Zfil(ym)kxm =
cNip/N + gr, where ge = % 3 icqijy, jmep} Vis Ik ™~ N(0,c?NxA/N?) and (N1, Na,...,N.) ~ Multin(n,1/c).
Defining hj, = N, /N — 1/c, we have N},/N = 1/c + hy, and p, = pp + chypr + gr. Defining g = A~/2gs, we
have gi, ~ N(0, 2Ny I;/N?). Defining pip, = (hipir, hopio, ..., hppr) € R9¢and g = (91,92, ..., gr) € R?*¢, we have
P=p+cup+g.

Then, the expected loss function (16) can be expressed as

L(W)=E Z —softmax(u' A" q)x log(softmax(PTWq/c)k)l . (42)
k=1
The gradient of the loss function (16) can be expressed as
VL(W)=E Z [(softmax(P T Wgq/c)y, — softmax(uTAlq)k)pqu/c]] . 43)
k=1

Moreover, we define a function L(W) as

L(W) = E[Z —softmax(u " A~1q), log(softmax(u ' Wq/c)r)]. (44)
k=1

In Lemma F.4, we show that as N — oo, L(W) will point wisely converge to L(W).

Lemma F.1. Suppose (N1, N, ..., N.) ~ Multin(N, 1/¢). Defining hy = Ny /N — 1/c, we have

E[hi] = 0

i~ (1 4)

Bl = i

E[f[ hFl=0(N7?),> ny >3
P E

E[|h;|) < N2 2 (1 = 1/0)'/?
E[|hih;|] = O(N ™)

E[|hshihi]] = O (N*3/2)
E[|hihjhehil] = O (N7?),

where i, j, k,l € [c].
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Proof. Since (N1, N, ..., N.) ~ Multin(N, 1/c), the moment-generating function of (N1, Na, ..., N,) is

1 < Y
= (c Z exp(ti)>

We can compute the moment-generating function of h = (hy, ha, ..., h.) as follows:
N
1
Mh@)_exp( Zt/c) M (t/N) = Zex (N tht/c
2
1 (& C 1 (&3
i=1 j=1 i=1 j=1
e\ 1N
oo 1 (& c
+Z kINke 21 ti = Zt]/c
= i= j=1
k
c 1 ) ) 1 o0 1 (& (&
= ].-I—Zﬁ(l/C*l/C )tiilz Wﬁﬁj‘l’Zm : tifztj/c
i=1 ’L;éje[c] k=3 =1 j=1
Observing the coefficients of h, we have
Elhx] =
1 /1 1
Ehi]=— (- —
(7] N (c 02)
1
]E[hzh]] = _W’Z 75]
[Tr1=0(N72),> ni >3,
k
where ¢, j, k € [c].
Iteratively applying the Holder’s inequality, we have
Elln,|] < (B[p2])"* = N1 12 (1 1)) /2
Ellnihs < (E[R2R2)"* = O(N)
E[|hi|*] < E[[h|*]/* = (N73/%)
Ellhihhl] < Elli B (0 ] E] e P12 = O (N-3/2)
E[[hshhihil] < B[]V 4Bl by |*] 4B e ] B[ ] /4 = O (N72)
where i, j, k, 1 € [c]. O

Lemma F.2. Suppose g, ~ N(0,c2NyA/N?) and (N1, Ns,...,N,) ~ Multin(N,1/c), define g, = A~'/%g, and
Ni/N = 1/c+ hy, we have

E[(gx):] =0

E[(gr)i(a1);] = ridije/N

B[(Grki )i (Tna )iz (s )is] = 0

E[(gr)i] = E[3¢’/N?(1 + chy)?] = O(N~?)
E[hm(gk)i(gl) ] [625161(5”}1 hk‘/N] (N_Q)
E[hmhl(gk z] =0
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where i, j,11,12,13 € [d], k,l,m, k1, ka, ks € [c].

For any ny, nak; satisfying Zke[e] nig + Zke[c],ie[d] nok = 1,2, 3, we have

E[ I[ n(@)i)=0(N"")

ke[cl,i€ld)

Moreover, we have

=
—
Qi
ES
N2
=
IA
=
—
Qi
ES
N
SO0
=
~
[\v]
Il
|
—
~
[\v]
9
—
~
[ V]

where i € [d], k € [c].

For any ny, noy; satisfying Zke[c] nik + Zke[c]vie[d] nok; =n, n = 1,2,3,4, we have

= o/

Bl T a0

kelc],i€(d]

Proof. Since g ~ N(0,c>NyA/N?) and g ~ N(0,c®NyIz/N?) = N(0, (¢/N + c*hy/N)1,), we have

E[(gk):] =0

E[(9x)i(91);] = 6rdije/N

E[(Gk1 )i (ks )iz (Gks )is] = 0

E[(gx);] = E[3¢*/N?(1 + chy)?] = O(N )

E[m (G1)i(1)5] = E[¢*110ijhm s /N] = O(N~2)
[

where i, j, 41,149,153 € [d], k,l,m, k1, ke, ks € [¢]. Thus, with the results from Lemma F.1, for any n, nok; satisfying
Zke[c] nig + Zke[c],ie[d] nor; = 1,2, 3, we have

E| H R ()] = O(N Y
kele],ield]
Moreover, according to the Jensen’s inequality, we have
E[|(gk)s]] < E[(gk)2]"/? = N~1/2¢1/2
E[|(gr)i®] < E[(gr)3]>/* = O(N~3/2)

where i € [d], k € [c]. Thus, with the results from Lemma F.1, for any n1, noy; satisfying Zke[c} nig+ Eke[c]’ie[d] Noki =
n,n = 1,2, 3,4, we have

E[ H |h2 (g )2k ] < H EHhZHnlk/nEH(gk)?”n%i/n _ O(N_n/Q).
ke[cl i€ld] kelc],ield)

O

Lemma F.3. For the loss function L(W) (16), we have V2L(W) = 0. For any compact set Ryy, when W € Ryy, we have
V2L(W) = 14 for some v > 0. Additionally, L(W) has one unique global minimizer on R?*<,

For L(W) defined in (44), we also have V2L(W) = 0. For any compact set Ry;, when W € Ry, we have V2L(W) = vI,

for some v > 0. Additionally, L(W) has one unique global minimizer on R%*1,
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Proof. We vectorize W as Vec(W) € RY, where Vec(W); = Wi, (i) ta0)s t1(2) = [(z — 1)/d] + 1,ta(x) = ((x —
1) mod d) + 1. Then, we have

(VL(W)); =E [(softmaX(PTVVq/c);.c - softmax(uTA_lq)k)(pk)tl(i)th(i)/c] 45)
k=1

Note that

softmax(P ' Wq/c), = o(ay)
Vsoftmax(P ' Wq/c), = o(ar)(1 — o(ax))Vag,

where aj, = —log(3",1 .4 exp (P — pk)Wa/c)). For Vag, we have

E:kﬂwan¢keXp((pl_'pk)TLVQ/C)(pk“pho/c
Zl:l,...,c,l;ﬁk exp ((pr — pr) " Wa/c)
Zl:l,...,o,l;ék exp (pzTWq/C) (px —p1)q " /c
D iecazk €D () Wa/c)

Vak =

Then we have
Zl:l,...,c,l#k} exp (plTWQ) (ox —p1)q" /e
don=1.. cxXp (P, Wa/c)

= Z softmax (P Wq/c)psoftmax(P ' Wq/c)i(pr —pi)q" /c
I=1,...,c,1£k

Vsoftmax(P ' Wq/c), =softmax(PTWgq/c)y

and

(Vsoftmax(PTWq/c)x); = Z softmax (P " Wq/c)psoftmax(P T Wq/c)(py — D)t () Qts () / €
I=1,...,c,l#k

We can express the Hessian matrix of the loss function with the following form:

(VELW))i; =E | > > softmax(P"Wg/c)rsoftmax(PTWq/e)i(pk)t, i) Gt (i) Pk — P1)s () Qe () /€
k=11=1,....c,l#k

c k-1
=E Z Z softmax(PTWq/c)ksoftmax(PTWq/c)l(pk — D)ty (5) Q2 (i) (PR — pl)tl(j)qtz(j)/CQ] .
k=2 i=1

Considering z € R4” such that » # 0, we have

c k—1
1
ZTVQL(W)Z =E Z Z softmaX(PTWq/c)ksoftmax(PTWq/c)l Z zazo(Pr — pl)t](a)QtQ(U/) (pr — pl)tl(b)th(b)]

2
k=2 I=1 ab
2
1 c k-1
=E = Z Z softmax(P " Wgq/c)psoftmax(P ' Wq/c), Z Za(Pk — PU)t1 () Qt2(a)
k=2 1=1 a€[d?]

Since for any P, q, k, [, softmax(P T Wq/c)gsoftmax(PTWq/c); > 0, we have 2T V2L(W)z > 0. Thus, V2L(W) = 0
and L(W) is convex.
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Defining p = p1 — p2, we have

2T V2L(W)z
2
>E C—Zsoftmax(PTWq/c)lsoftmax(PTWq/c)g Z 2a(P1 = P2)t1 () Qb2 (a)
a€[d?
2] 2
:/C%softmaX(PTWq/c)lsoftmax(PTWq/c)g Z ZaPty(a)Ut2(a) | fPq(P;q)dPdq
ac|d?]

where fp, (P, q) are the PDF function of P, . For any z # 0, we denote z;; = 2((;—1)a+). SUppose a, b € arg max; ; |z,
we consider a set of constants {c1p;, Copi }, {€14i, C24i }+ 9, J € [d], where c1pq = d,cope = d + 1, c1gp = d, cogp = d + 1,
and Clpi = 1/16, Copi = 1/8,i 75 a, Cigj = 1/16, C2qj = 1/8,j 75 b. Then, for any cp; € [clpia Cgpi],cq]‘ S [Clqj, Cqu], we
have

E ZijCpicqj| = [d* — 2(d + 1)(d — 1)/8 — (d — 1)%/64] max |z;;| > d” max |2 /2.
i ij
i,j€(d]

Then, we define region Q(a,b) = {p = >_, cpi€i, ¢ = Zj Cqj€jsCpi € [Capi, Capils cqj € [C1gj, c2q5)s 1PN F < (X, c%pi +
C3,;)}- We have

2

auin | D2 apu@anq | 2 dmax /42 2]5/4
’ 1€[d?]

Defining

C(Q) = mi P,q)dPd
() ae[g]lgle[d]/g(ayb) frq(P, q)dPdg,

1
S(QW) = ae[rdI]l,il?e a él(g’rg) {02softmax(PTWq/c)1softmaX(PTWq/c)2} ,

we have S(Q2, W) > 0. Since we have fp,(P,q) > 0 for all P, g and Q(a, b) are non-zero measures for P, g. Thus, we have
C(92) > 0. Then, for any z # 0, we have

2T V2L(W)z
2

1 -
2/ c—QsoftmaX(PTWq/c)lsoftmaX(PTWq/c)g Z 2P, (1)) | fre(Pyq)dPdq
Q(a,b) le[d?]

>C(Q)S(Q,W)]|z[|5/4 > 0
Thus, we have V2L(W) = 0. L(W) is strictly convex.
Moreover, for any compact set Ry of R%*?, for any W € Ry, we have
1
S(Q) = WIQ%W ae[g]l,il?e[d] Qr?aig) {02softmax(PTWq/c)1softmaX(PTWq/c)g} > 0.
Then, for any W € Ry, for any z # 0, we have

2TV2L(W)z
2

1 .
2/ C—Qsoftmax(PTWq/c)lsoftmax(PTWq/C)z Z 21Dt (1), 1) | fPe(P,q)dPdg
Q(a,b) 1€[d?]

>C(Q)S(Q)]2]13/4.
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Thus, when W € Ry, Ry is a compact set, we have V2L(W) = C(2)S(Q)14/4, our loss function is y—strongly convex,
where v = C(Q)S(Q) /4.

Because our loss function is strictly convex in R¢*9, it has at most one global minimizer in R?*?. Next, we prove all
level sets of our loss function are compact, i.e. V,, = {W € R¥>?|L(W) < a} is compact for all a. We prove it
by contradiction. Suppose V,, is not compact for some «. Since our loss function is continuous and convex, V, is an
unbounded convex set. Since the dimension of V,, is d2, consider a point W< € V,,, there must exists a Wk # 04xq that
{We +tWk |t =[0,00)} € V,,. For this W* # 044, there must exist a set of constants 0 < C3pi < Capi, 0 < 3¢5 < Cagqj
such that for any ¢p; € [c3pi, Capil, Cqj € [C3q;, Caqs], We have

\ E Cpicqum # 0.
ij
Thus, we have

. k

tlggo | Z cpiqj (Wi +tW5)| = oo
—

We define Qo = {p = >, cpi€i, ¢ = 2 ; Cqj€js Cpi € [Capiy Capils Cqj € [€3qj5 Cagils | PlIT < (30, edpi + cdgy)y lullz <

(X2, ¢ipi + €145)}- Then, defining

C(Q0) = fpq(P, q)dPdg,

Qo

S(Qp) = r%in {min{softmax (" Wq/c),softmax (' Wq/c)s}}
0

we have S(2p) > 0. Since €2 are non-zero measures for P, ¢, we have C'(£2y) > 0. Then, we have

lim L(W* + tW")
t—o0
c
= t]im E[Z —softmax(u " A71q); log(softmax(P T (W* 4+ tW*)q/c))]
=1

> lim [—softmax(u" A~ q); log(softmax(P T (W + tW¥)q/c)1)] fre(P,q)dPdq

t—o0 Qo

+ lim [—softmax(u" A~1q)s log(softmax(P T (W + tW¥)q/c)2)| fre(P;q)dPdq

t—o0 Q
> lim [ [—softmax(u" A7 q)1 log(o(pT (W +tW*)q/))] fre(P, q)dPdg
> Ja,
+ 1tlim [—softmax(u" A" g)a log(a(—p ' (W + tW*)q/c))] fpe(P, q)dPdg
= Jo,

>C(20)S() - Hflzion hm —log(o Z CpiCqj W{} + tW;;)/c))]

+C(20)S() - min ¢ lim [~ log(o Zcmcqj Wo+tWh) /o))

Qo
=0

This contradicts the assumption L(W< + tW*) < a. Thus, all level sets of the loss function L(1¥) are compact, which
means there exists a a global minimizer for L(W). Together with the fact that L(WV) is strictly convex, L(T¥) has one
unique a global minimizer on R4*9,

Similarly, we can prove the same conclusions for Z(W) O

Lemma F.4. Denoting the global minimizer of our loss function (16) as W*, we have W* = c¢(A~! + G), where
Gl max = O<N_1/4)'
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Proof. Leta = p A7 1q, s = u"Wq/e,r = (un+9) "' Wa/e,ar, = ul A=1q, s = ul Wa/e,ri, = (chipr+gr) ' Wa/c.
Performing the Taylor expansion on (16), we have

Z Cr(a) log(Cr(s + 1))

=E Z—(k( log(Cr (s Z Ci(a) Ry (s, m)r
k=1

k=1

ZCk JRii(s,m)r

kl=1
where | Ry (s, )| < sup, \mogégif(y)) | sup, |Ck%y) a%;ly)| = sup, |0k — Gi(y)| < 1. Thus, we have
|Zw) — £(w)|

< E(ln]
=1

<) B [|hup] Wal] +E [lg W]

OM)[IW [[maxE[[u]] + O(L)[W || maxE[|(70): ]
SOZ ||WHmaxN_1/2

where the last inequality is due to Lemma F.1, E2. C] is a constant independent of N and W. This shows that L(W) point
wisely converge to L(W).
According to Lemma D.2, E(W) has one unique global minimizer. Considering the equation:

C

VL(W) = E[Z —softmax(u ' A1 q) log(softmax(u' Wq/c)i)] = 0
k=1

We can easily find that VL(cA~') = 0 and W = cA~" is the global minimizer of L(W).

Considering a compact set Ry = Y r < pw}, we have [|W || max < Cw forany W € Ryy. Here pw, Cyy
are some positive finite constants. Then, we have

L(W)—L(W)| <C/N~Y2 W € Ry
where C] = C;Cyy is a constant independent of N and W. This shows that, for any W € Ry, L(W) uniformly converge
to L(W).

Denote W* as the global minimizer of L(W') with prompt length N. Then, we show that, when N is sufficiently large,
W* € Ry . We first denote ORw = {W | |W — cA™ || = pw}, A = minwepr,, L(W) — L(cA™') > 0. Then, for
N > (4Cl’/A)2, and for any W € Ry, we have

L(W) — L(W)| < A/4

min L(W)— min L(W)> min L(W)—L(cA™')>A/2>0
WeEORw WeRw WeEORw

Since L(W) is strictly convex, we have W* = argminy, L(W) € Ry .
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Then, we have

[L(W*) = L(W*)| < C/N
[L(cA™) = L(cA™")| < Cj/N

LW*) < L(W*) + Cj/N < L(cA™") + C} /N < L(cA~") + 2C{N~1/?

According to Lemma D.2, for W € Ryy, we have V2E(W) > ~vI4, where -y is a positive constant independent of N. Thus,
L(W) is ~y-strongly convex in Ry, . According to Lemma C.1, we have

) 2 - 4C
W™ — eA™HF < ,Y(L(W )~ L(eA™)) < NI
Thus, when N — oo, we have W* — cA~!. Denoting W* = ¢(A~! + G), we have ||G/|max = O(N~/4). O

Lemma F.5. The global minimizer of the loss function (16) is W* = c¢(A~1 + G). We have

1
G max gi
[ Gllme <7

_ “ 9¢k(a) 0Ck(a
1 n
STE| D da; (e0rr — Dpwp] A" qq" + E

Oayp
k=1 k

¢ o? —
3 T T A A g /2 Z ) T A g™ 2
k,n=1 6a16an o da

+o(1/N),

max

wherea = 1" A"tq, ap = pf A71q, S = 2V2L(cA~Y). Ignoring constants other than ¢, N, we have ||G|lmax < O(c/N).

Proof. According to Lemma F.3, the loss function L(W) has a unique global minimizer W*. We have

C

VLW*) =E | > [(G(PTW*q/e) = Ge(u" A 9))prq " /e] | = 0. (46)
k=1

Let W* = c(A™' +G),a=p" A g ap = pf A g, b= (u+ cun + 9) " Ga + (cun + g) TA"q, by = (g, + chypug +
gr) "Gq + (chppr + gr) T A~1q. The Taylor expansion of (j(a + b) at point a is

0 0 ‘
Crla+b) = Z Ck Z aafka biba/2+ Y Rignm(a,0)bibuby /31,

l,nm=1

where | Riinm(a,b)| < sup, |a 93¢y ()

W|' Thus, our equation (46) become

a (& C
E Z Cga T+ Z blbnpqu/zw > Ritnm(a,b)bibnbmprq /31| =0.  (47)

k,l=1 k,l,n=1 k,l,n,m=1
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For the first term >, ,_, 8%;1(;1) biprq ", according to Lemma F.1, we have

- 9Ck(a) T
E|Y S VPR

k=1

L 9Ck(a _ _
=E Z k) [Mz—ququT + Ehihipy Gaurg” + Ehihep) A qurg” + g A qgrg " + g;—ququ]

| k=1 Oay
~ 9
=E Z 7%;?) (] Gag" + (O — Vpopt) Gag" /N + (e — 1)pwp) A qq " /N)
k=1
. Ok (a) T T
N +cA N) |. 4
+z=:1 Dar (caq" /N + cAGqq" /N) (48)

According to Lemma F.4, O(|G||max) = O(N~1/%) = o(1), we have

~ 9¢k(a) T 9¢k(a) T
E —— (e — 1 G N cAG N
;::1 Doy (O Yy Gag'/ +Z Dar aq"/ -
<O(HG||max/N) = 0(1/N) (49)
For the second term ZZM 1 gaf’égl) bibnprq' /2!, we have
E gc’é( )blb q" /2
kime1 YM
L 92
>, P ile) > { Gaoy Gaprg"
8al0an
k,lin=1 p1E€{p,chipr,gi},p2€{pn chn fin gn }
(1)
+ > 26] Gqoy A "qprg”

dr1€{p,chipr,gi},d2€{chntin,gn}
(id)
+ > <Z>1TA_1q¢2TA_1qqu>] :
pr€{chipr, g1}, p26€{chntin,gn}

(i)

For terms (i) having two G, their max norms are at most smaller than O(||G||2,,,.). For terms (i) having one G, define
G = A—'/2g,, these terms must contain n1; number of h; and ny;; number of (g;);, we have Zje[c],ie[d] ni; + Noji =
ng,ny = 1,2, 3. According to Lemma F.2, we know that for ny =1,2,3,

B T] w5 = o
j€lc],i€ld]

Thus, the max norm of expectations of terms in (ii) are at most smaller than O(||G||max N ~!). Therefore, for terms (i), (ii),
we have

IE[(D)]lmax < O(IG [ Fasx) = 0(lIGllmax) (50)
[E[(@0)][lmax < O(|Gllmax/N) = o(1/N) (51
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For terms (4i7) without G, we have

IE[(44)] || masx
C 82
=|E| X S 2 A g A g™ /2 + Z g) AT g9 A g /2
da;0ay, 9a;
kbm=1 k=1
~ 26ia) PG
h A A 3h hnh TA—l TA_l T 2
! kzlz:l daOay, chusl A7 a5 A k?zl da;0ay, € Mlinlikky qHn apkq /
1 c 9%Ci(a) T (@) .
SON n A A A 1 T
_2N Z aalaan (06l ) q:un Q,U L] + Z a l2 cq quEq
kln=1 k=1 o
+O(1/N2) -

where the last inequity is due to Lemma F.1, F.2.

For the third term Y7 ;1 Ryinm(a,b)b; bubmprq ' /3!, we have

E Z Rklnm(aa b)blbnbmpqu/gl

k,l,n,m=1

max

<O(1) max E[ D" |br,brybry (Pry )i
l,meld] k1,k2,ks,ka€[c]

<OME > [ > &1 Gady Gadg Ga(pr.)igm

ki1,k2,ks,ka€lc] L o1 €{puny schry tiky 19ky 102 E{ iy »Chkn kg :Tho }$3E{bikg sCPg ks T3 }

*)
+ > ¢1 Gagy Gads A~ q(pk,)idm

D1€{ 1Ky Pk Pky Iy }sP2E€E{ kg sCREy Bkg \Tko }1P3E{ChEg kg ,gky }
(%)
+ > &1 Gadg A qd3 A q(pr,)igm

G1€{ 1Ky sk Bky Iy }P2€E{Chig kg Gky B3 E{ChEg kg Ikg }

(%)

+ > o A gy A qds A q(pry)idm |-
d1E€{chiy bk Ghq }1P2E{ChRy ko 9ks },P3E{ChEy kg Ghg }

(k%)

For terms in (x) having two or three G, these terms’ expected absolute values are at most smaller than O(||G/|?,,..)- For terms
in (*x) having one G, thf?se terms must contain n; ; number of i ; and ny;; number of (g;);, we have Z]G[c iefa "1t n2j =
ne, Ny = 2,3, 4. According to Lemma F.2, for n; = 2, 3, 4, we have

El J]  Inp=(@)i ) = o(N—™/?) = O(N 1)
j€lcli€ld]

Thus, these term’s expected absolute values are at most smaller than O(||G||max N ~1). For terms in (x * %) without G,
these terms must contain n;; number of h; and n;; number of (g])l, we have de (el.ic[d) M + noji = ng,ng = 3,4
According to Lemma F.2, for n, = 3,4, we have

BT I

j€lcl i€ld]

=0 "% = 0N
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Thus, these term’s expected absolute values are at most smaller than O(N ~3/2). Therefore, we have

E Z Rrinm (a7 b)blbnbmpqu/?’!

k,l,nm=1

max

<O() max Bl 37 [biy by (v, i
l,meld] k1,k2,ks,ka€[c]

<O(|IGI2,0z) + O(|GllmaxN ") + O(N~3/2)
<o(||G|lmax) + o(1/N). (53)

Moreover, we have

- Ik (a) T T
E G
kgl day MG g

)

={E > Gla)(1 = Grla) i Gag " — Z Gr(@)Gi(a)u Gag' }

k=1 kl=1,k#l

a) (e — ) Gag" }
i

k—
E ZCk )Gi(a) (e — ) (s — pu) " Gag "

)

(54)

Il
=
W
&
3
3
3
3

where s;jnm = E {22:2 Z;:ll Cr(a)G(a) (e — )i (e — ul)nqmqj} We vectorize G as Vec(G); = G, (3,4, (i)~ Define

2., g2 k—1
S € Rd”xd , where Sij = S41(0), b2 (i) 11 () b2 () = E [Zk:Q Zl:l Ck(a)C[(a)(Mk - /J/l)tl(i)qtz(i)(ukr - ,U/l)h(j)qh(j) s
(54) can be expressed as

)
E|Y g“;l)u wi Gaq' | = SG. (55)

k=1

Note that S = C2v2E(CA71). According to Lemma F.3, S is positive definite. Thus, combining (47), (48), (49), (50), (51),
(52), (53), (55), we have

G lmax
S% ST'E L;:l 8%2(7) (bt — Vpep! A aq ™ + Z aékak )cqu
+ i zisggl) (0 — D A quy A qpig T /2 + Z lﬁ chA‘lququ/Z]
kln=1 n Jg=1 max
+0(1/N)
Ignoring constants other than ¢, N, we have ||G||max < O(¢/N). O

Lemma F.6. The loss function (7) is l-smooth, where | < 5 37, Z Zle a2 El((pr — Pt (1) Gt ()]

34



On the Training Convergence of Transformers for In-Context Classification of Gaussian Mixtures

Proof. The Hessian matrix of the loss function is

c k-1

(VAL(W))ij =E | Y ) softmax(PTWq/c)psoftmax(PTWa/e)i(px — p)e, i) dea (o) (Pk = PO ()8t (5) /€
k=2 i=1

Considering z € R? such that = # 0, we have
2T V2L(W)z
c

k—
= ZZ softmax(P " Wq/c)gsoftmax(P T Wq/c); Z za(p
=2 1=1 a€ld?]

k= DUty (a)Qts(a)

c k—1

< 2||Z||QZZ > El((pr — Pt () @t2())]

k=2 1=1 i€[d2]

where (a) is due to the Cauchy—Schwarz inequality. Thus, VZL(W) < 11, and L(W) is [-smooth, where [ is a constant
c k—
smaller than Ciz D k=2 231:11 Zie[dZ] E[((px — pl)tl(i)Qtz(i))2]- O

Theorem F.7 (Formal statement of Theorem 4.3). The following statements hold.

(1) Optimizing training loss L(W

) (16) with training prompt length N via gradient descent W't = W
have for any t

—nVL(W?), we

W = W[5 < exp(=t/r)[W* — W%,

where W0 is the initial parameter and W* is the global minimizer of L(W), k = l/a. a1 are constants such that

0 < a < Amin(VELW)) < Anax(VEL(W)) < 1, forall W € Ry, (56)

where Ry, = {W € R4 | ||W — W*||r < [WO — W*|z}.
(2) Denoting W* = c¢(A~! + G), we have

1
[Gllmax <

SR

- aCk() 8<k T
Z Tal(askl Dk A qq +Z 8%

: 0 _
Sarda, (m = u A Y A g+ 5 Z g’ﬁ JegTA 1ququ]
" kl 1

max

where S = 2V2L(2A™1), L(2A~*
P;”(MTaA)

(3) After T > 2k log(N - [|[W° —

) = im0 L(2A™Y). The expectation is taken over p, ~ PE(N), Zr query

W*|| ) gradient steps, denoting W as the final model, we have
W=cA ' +G), (57)
where ||G||lmax = O(c/N).
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F.3. Proof of Theorem 4.3
Proof. According to Lemma F.5, the global minimizer of L(W) is W* = ¢(A~! 4+ G), where

G llmax

_ 0 (a) 9Ck(a)
1 T
S El E Da; (cbrr — Vpwpy) A aq " + E 8ak

c 2
+ Y OGH) (g 1) A gl A g /2 + Z Cxla) qTAlququ/21

8 2
kln=1 k=1 a

max

Ignoring constants other than ¢, N, we have ||G||max < O(¢/N).

Define Ry = {W € R4 | |W — W*||p < |[WY — W*||r}, and Ry is a compact set. Then, according to Lemma F.3,
for W € Ry, we have V2L(W) = al,. Here a > 0 is a positive constant number. Thus, L(W) is a-strongly convex in
Ry . Moreover, according to Lemma F.6, L(W) is [-smooth. Then according to Lemma C.2, applying gradient descent
with n = 1/, for any ¢ > 1, we have

W = W*|[5 < exp(~t/r) - [W® = W[,
where k = [/a.

After T > 2k log(N - |[W° — W*|| ) gradient steps, we have W = W7 = ¢(A=1 + G + HT /¢) = 2(A~! + G), where
G=G+H"/c.|H |lmax < exp(=T/r)[[W°=W*||} < 1/N. Thus, [|Gllmax < |G llmax+[H [lmax = O(c/N). O

G. In-context inference of multi-class classification
G.1. Notations

In this section, we use the following notations. We denote 1 = (p1, ,ug, . ,,uc), q = Tquery- Define pp = 17 Zf\il(yl)kxl
and define P = (p1,p2,...,p.) € R, We have P' = i ZZ Lyizl, € Re*4. Since with probability

P(y-i =ex) = 1/c, 2y = px + v;, where v; ~ N(0,A), we have p, = 7 Zi:l(yﬂi)kxﬂi = cMpur/M + g,
where g = 37 Xicqijy. imen) Vis 91 ~ N(0,c?MyA/M?) and (M, Mg, ..y M.) ~ Multin(M,1/c). Defining
hy = My /M — 1/c, we have My, /M = 1/c+ hy, and px, = pg + chppr + gk

Theorem G.1 (Formal statement of Theorem 4.5). Let Yquery be the prediction of the trained transformer with parameters
W in (19) and Pres; satisfying Assumption 4.4, and let yquery ~ P W Tauery (1, A). Then, for the inference error defined in (3),
we have

E [A (yquery ) :'/J\query)]

L OC(a _
<o d S Bl S i + ey (VAT A A Ve Y A
=1

i,j€[d] i,j €[d]
o5+ om)
o NT T 7
N VM
where a = 1T A" Vq, a, = I J A~1q. The expectation is taken over {x;,y; } M, Lk P (u, A).
G.2. Proof of Theorem 4.5
Proof. The output of the trained transformer is
e M
Tout = softmax ((M > i) ) (A! + G)xque,y> = softmax(P " (A™! 4 G)q) (58)
i=1
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The probability of yquery = € given Tquery s

P (Yquery = €k|Tquery) = softmax(/,LTA_lasquery);C = softmax(uTA_lq)k

Defining a =y A~q, b= (pu+pn+9) T Ga+ (n+9) TA g, ar = pf Aq, by, = (e +chipun + i) T Ga+ (chy g +

gr) "A"1q, we have

~ 0
E [softmax(PT(A—l + G)q)k} =E[¢e(a+b)] = )+ Z C’“ b + Z Riin(a, b)biby, /2]
l,n=1
where | Ry (a,b)| < sup, \gif%fi) |. Thus, we have

Ik (a)

ElJGi(a +b) = Gu(a)]] <E |3 |

+E || Y Run(a,b)bibn /2

l,n=1

>

=1

u|

We first consider the term E [Elczl ‘ d¢ra)y, H Defining §; = A~'/2g;, we have

da;

>

=1

E
8al !

- (i (a) T
Slz_;aal( 1 G| + Ellchip] Gal] + Ellg) Gal] + Ellchu] A~ q]] + E[|g) A~ qH)

(@) A O (a) ~ c(l1—-1/c) c(1-1/c)
< z;Tal |M1TG(J| + W'M GQ\ ‘HEHQTAl/QG ]+ W' l JAT Q| +E[|9TA 1/2(1”

ag 1 _
_Z M B 3 Ny + 5 | Vel — 1elnd ANl Ve S 1855,

i,j€[d] i,j€[d]
n 1 1
°\N T I

where (a) is due to Lemma E.1 that E[|h]] < M~'/2¢1/2(1 — 1/¢)'/2. (b) is because that g; ~ N(0,c2M;I;/M?),
El[(a)l] < El(g0)7]'/? = (¢/M)"/? for L € [c],i € [d].

For E HZlanl Ryin(a,b)

] , we have

E Z Rkln(a‘ab)blb’n/z = O(l)E

ZC: ( > ’qﬁ@q@r@q‘

I,n=1 Ln=1 \ ¢p1€{p,chipr,g1},¢2€{pn chnpin,gn}
(1)
+ > ‘2¢qu¢;A’lq’ + > |¢1TA1q¢;A1q|>] :
b1 e{ﬂlvchlulvgl}7¢26{Chnﬂnvgn} b1 E{Chlﬂl7gl}~,¢2€{0hnﬂn;gn}

(i1) (i44)

For terms (i) having two G, they are at most smaller than O(||G||2,,..) = O(1/N?). For terms (ii) having one G, these
terms must contain nq; number of /; and n25; number of (gj )i, we have ) 4 "1 +ngj; = ng,ny = 1, 2. According
to Lemma F.2, we know that for n, = 1, 2,

BT (w7 @i i = oa72),

JElclyi€ld]

j€lel i€
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Thus, terms in (ii) are at most smaller than O(||G||max M ~1/2) = O(1/(N+/M)). For terms (iii) without G, these terms
must contain n,; number of h; and ny;; number of (g;);, we have Zje[c] icld) "1 + ngj; = ng,ny = 2. According to
Lemma F.2, for n; = 2, we have

BT o)

j€lcli€ld]

J=0M™/?) =0M™).

Thus, these term are O(M ~1). Therefore, we have E HZlcn:1 Ryin(a, b)blbn/2H =O(1/N? +1/M +1/(NVM)) =
o(1/N +1/vVM).
Finally, we have

E[A(Yquerys Yquery)] = m}gx{EHsoftmax(a + b); — softmax(a)x|]}

"L 0Ck(a ~ 1 _ _
<o d SO B Gl S i)+ i (VT Tl A Ve Y IS )
=1

i,7€d] i,j€ld]
o5+ )
o\ — —_— | .
N VM
O

Remark G.2. We note that Theorem 4.5 requires Assumption 4.4 to hold. For example, we need the covariance A in training
and testing to be the same. A similar consistency requirement of the covariance A in training and testing had also been
observed for in-context linear regression in Zhang et al. (2023a) and for in-context binary classification in the previous
section 3.2.

Here, we discuss the consequences when Assumption 4.4 does not hold. For example, suppose the labels of our data in
test prompts are not balanced P (y = e;) = py, i do not have the same A~! weighted norm uZA‘l,uk £ V,, and the
covariance matrix of test data is I" # A, then as N, M — oo, we have
e M
17 D viEd = cpappapia, - pepte) |
i=1

)

and
P (Yquery = 1) — softmax(c(pi 1, papes, - - . ,pcuc)TAflxquery).
Denote ¥ = (Uy,...,¥,)", ® = (log(p1),...,log(p.)) " and z = p T 2query — ¥/2 + ®. Then distribution of the
ground truth label is
P (Yquery = €1) = softmax(z)g.

Define 2 = c(p1fi1, P2p2; - - - s Pette) ' A" Zquery- Then, unless 2 = z or [|softmax(2) — softmax(2)| 2 is sufficiently small,
the transformer cannot correctly perform the in-context multi-class classification.

H. Additional Experiments

In this section, we provide additional experimental results and the detailed experimental settings.

H.1. Single-layer transformers

We train single-layer transformers for in-context classification of Gaussian mixtures with different numbers of classes c,
different lengths of training prompts /V, and test them with different test prompt lengths M. The results are reported in
Figure 4. We can see from Figure 4 (a,b) that the inference errors decrease as N and M increase, and they increase as ¢
increases. In Figure 4 (c,d), we first fix the training prompt length (test prompt length) to a large number 2000, and then vary
the test prompt length (training prompt length) from 20 to 2000. The results show that, as M and N become sufficiently
large, the inference error, which is an approximation of E[A(Yquery; Yquery)] (see Appendix H.2 for detailed definitions),
decreases to near-zero. This indicates that the prediction of the trained transformer approaches the Bayes-optimal classifier.
All these experimental results corroborate our theoretical claims.
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Figure 4. Inference errors of single-layer transformers. (a): Models trained on different training prompt lengths /N on classification tasks
involving ¢ = 10 classes. (b): Models trained on different classification tasks involving c classes with a fixed training prompt length
N = 80. (c): Relationship between the inference error and the test prompt length M in log-log axes. Training prompt length N = 2000
and number of classes ¢ = 6. (d): Relationship between the inference error and the training prompt length /N in log-log axes. Test prompt
length M = 2000 and number of classes ¢ = 6.
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H.2. Experiment Details

For all tasks, we set d = 20 and we randomly generate a covariance matrix A = diag();, ..., Ag), where A; = |\;| and

i i~ N(3,1). For each training dataset with different training prompt lengths N, and different class numbers ¢, we

randomly generate B training samples. Training prompts P, 7 € [B] and their corresponding labels ¥, query are generated

according to Assumption 4.2. Moreover, we also generate testing datasets. For example, for each testing dataset, we first
. : ii.d.

randomly generate 20 pairs of (1;, Z; querys Yjprob)s J € [20], where (1) "~ PG (A), zj.query ~ Py (15, N). Yjprob =

softmax(u;A_lxj,query) are the corresponding probability distributions of the ground truth label y; query. For each j, we

. iid. .
generate 100 testing prompts Pjr, = (Zjk1,Yjk 15 - - - » Ljk, M, Yjk,Ms LTjquery)> Where (Tiki, Yjni) ~ P™(u;,A),j €
[20], k € [100], i € [M]. We denote a model’s output for testing prompts P;j, as y;;. We calculate its inference error with

|~

D) je20],ke[100] MAXie(e] |(Yjk )t — (Yj,prob )i ‘, which serves an approximation of the expected total variation distance
we defined in (3).

For the *3-layer’ model, we used the x-transformers library and defined it as an encoder-only transformer with 64 embedding
sizes, 3 layers, 2 heads and without positional encoding.

For experiments in Figure 1, we set the size of the training dataset to B = 100,000 and set the batch size to 50. We
train the ’1-layer’ using Adam with learning rate 0.0005 for 10 epochs, and train the *3-layer’ using Adam with learning
rate 0.0001 for 5 epochs. Each experiment is repeated 3 times with different random seeds. For experiments in Figure
2, we also set the size of the training dataset to B = 100, 000 and set the batch size to 50. We train the ’1-layer’ using
Adam with learning rate 0.001 for 5 epochs, and train the ’3-layer’ using Adam with learning rate 0.0001 for 5 epochs. In
’same norm’ and ’same covariance’ settings, pre-training data are sampled according to Assumption 4.2 with a fixed A that
A = diag(\q, ..., \g), where \; = \5\1| and \; b N(3,1). In ’different norms’ setting, for each = € [B], with probability
P(k=j)=1/10,p,; ~ N(k,13),7 = 0,1, ..., 9, then each Gaussian component is sampled according to N(x;, A). In
(different covariances) setting, we randomly generate vy, v2, v3 € RY that half of their elements are 0.1 and the other half
elements are 100. Then, we define A; = diag(v;),7 = 1,2, 3 and generate pre-training data according to Assumption 4.2
with A, A1, Ao, As. Each experiment is repeated 3 times with different random seeds. For experiments in Figure 3, the
structure of the transformer with full parameters ’ 1-layer, full’ is defined as
Tk
FEWY, WE =E+WVE- EW’ﬁ, (59)

where WV, WHEQ g R(d+e)x(d+c) gre the parameters for optimization. For all three transformer models, we set the size
of the training dataset to B = 400, 000 and set the batch size to 50. We train the ’1-layer, sparse’ and ’1-layer, full’ using
Adam with learning rate 0.001 for 5 epochs, and train the 3-layer transformer model with softmax attention using Adam
with learning rate 0.0001 for 5 epochs. Each experiment is repeated 3 times with different random seeds. For experiments in
Figure 4, we train the single-layer transformers with the sparse-form parameters and structures defined in Section 4. We
set the size of the training dataset to B = 10, 000 and set the batch size to 50. We train the transformers using SGD with
learning rate {0.1,0.5, 1} for 10 epochs, and get the best model on each training dataset. Then, we test these trained models
on different testing datasets. Each experiment is repeated 10 times with different random seeds.
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