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ABSTRACT
Globally, universities have heavily invested in makerspaces. This investment requires an
understanding of how students use tools and how tools to aid in engineering education, as well as
how the spaces can be improved. Network analysis of human systems can often yield valuable
information about how the networks work and function. Applying network techniques to
makerspaces can yield helpful information that is otherwise not visible.

This thesis’s primary focus is the application of a variety of bio-inspired network
techniques to improve the understanding of the makerspace. Several parallels can be drawn
between makerspace networks and other mutualistic networks, such as plant-and-pollinator
networks where the system’s success depends on the interaction between the two species. The
ecological metrics would establish measurable values that the health and conditions of a network
can be evaluated using. These three metrics are nestedness, modularity, and connectance, which
can provide structural information about the network and act as diagnostics tools that can change
depending on different system conditions. The makerspace at the universities went through
several regulatory changes due to COVID-19, providing a unique opportunity to utilize the
metrics to analyze the health of the space under higher regulatory restrictions and return to
normal operations. The makerspace is converted into a bipartite network to allow for ecological
analysis techniques where the spaces are modeled with students interacting with tools. Null
models evaluate the significance of the nestedness and modularity results.

Findings indicate that makerspaces tend to be structurally nested, but when compared to
normal operating conditions, they can be seen to exhibit modularity during the higher restriction
environment. The makerspace network and subsequent analysis provide insight into the use of

ecological metrics in human systems and provide potential ideas for results to be used in various
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networks. The following network analysis also yields valuable information identifying essential
hub tools and student interactions within the space, showcasing the capabilities the ecological

study of human networks can have on human systems.
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1. INTRODUCTION

1.1. Motivation
Makerspaces have recently become integrated into a wide variety of engineering
programs at universities worldwide [1]. This has drawn increasing attention as to how
best to create an area where students gain hands-on experience [2, 3]. Several studies in
the past few years have focused on barriers to entry and how tools vary in different
makerspaces [4-6], identifying impediments to student use that are often linked to a
student's self-confidence and fear of failure as their training and mentoring [7]. In
addition, research has identified the need for rapid prototyping tools in makerspaces and
a community infrastructure where students are comfortable with the space[8]. Still, work
has yet to delve deeper into the intricacies of student-tool interactions. While the focus
has been heavily on what makes a space successful, a metric for evaluating the current
marker space health has yet to be developed. More information on the barriers to entry
and studies of makerspaces can be found in the literature review section 2.1. The goal of
this research is to utilize inspiration from nature and mutualistic networks where species
work closely with one another to thrive to evaluate better ow student-tool interactions
in the makerspace can lead to a healthy space where students learn a variety of tools.
Comparing a makerspace network to nature closely mimics mutualistic networks
where both species benefit from interacting with one another [9]. The primary example
of mutualistic networks closely matching the makerspace is the plant-pollinator network

[9], where in a makerspace, the students would act as the pollinators and the tools of the



plants. By linking the comparison, various ecological network metrics can be used to
understand the makerspace network more closely and provide quantifiable information
that can be used to compare makerspaces.

Thus, the goal of the thesis is to make use of the metrics found in ecology to
provide measurable metrics for evaluating a makerspace and, by using these metrics,
identify critical actors for both students and tools obtaining a deeper understanding of
the space.

1.2. Research Questions and Objectives

The following research questions serve to highlight the goal of the thesis as well as the
tasks necessary to be completed to address the research questions posed

1.2.1. Research Questions

The overall objective of the thesis is summarized below

Overall objective: Understand the impact of tools generically, the potential presence of
gateway and/or specialized tools, and the potential presence of barriers on how students
use a university makerspace

The overall objective can be further broken down into four separate research
questions. The numbers in paratheses at the end of the research question indicate the task
they correlate to in further sections.

1) Can university makerspaces be modeled as interaction networks? (1)

a. [s the network bipartite or unipartite, and how can it be set up?

b. What data is needed to create the network model, and is it available?



2) How can mutualistic ecological networks be used as inspiration for a healthy
makerspace? (2)
3) Can a network model and its analysis identify the health characteristics of a
specific makerspace? (2,3)
a. Issues students have with accessing tools
b. Tools that students are initially drawn to
c. Tools that are less often used
d. Specific Students demographic groups encountering barriers to the
space
4) Can understanding a makerspaces network guide the creation of opportunities
for improving the students’ experience (4)
1.3. Contributions
Analysis of the makerspace network utilizing ecological techniques will expand
understanding of systems analysis, engineering education, and ecology, as integrating
the environmental methods into a human system will require knowledge from each field.
The advancements for each area are summarized below.
1.3.1. Ecological analysis
Applying ecological metrics to human networks will aid in further validating the
techniques used in nature and open the avenue for future research to be used in a wide
array of human systems. The makerspace network also provides a unique opportunity for
applying ecological metrics. It will allow for the study of a dynamic system that can

change drastically from year to year. Understanding the analysis of ecological metrics



can then be used to understand better ecological networks that can be tracked through
the years.
1.3.2. Systems Analysis
To apply the ecological metrics, a network that can be analyzed must first be generated.
Different approaches to generating the network will be explored with usage data not
readily available for each of the individual tools at good accuracy. Successful validation
and network creation will allow a wide variety of systems to be explored utilizing
survey-gathering techniques.
1.3.3. Engineering education analysis
Engineering education will significantly be improved with an understanding of network
analysis. By identifying essential tools and barriers of entry, curriculums and workshops
can be modified and created that aid in expanding the learning experience of students in
a makerspace. These enhanced experiences will aid in making tool usage more
accessible and allow students to acquire meaningful learning they will use in their future
careers.
1.4. Methodology
The following task highlights the order in which each of the research questions will be
answered
1) Generate bi-partite network models of university makerspaces highlighting tool
interactions.
a. Utilizing Entry/exit surveys vs. end-of-semester surveys and how to

translate information into a network format (ex., mutualistic network)
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2) Conduct nestedness and modularity analysis of the bipartite makerspace network
model

a. Understand how connectance/modularity/nestedness are all related and
can be used to evaluate the health of a makerspace

b. What parallels are there between ecological networks and makerspace
networks

c. Evaluation of general tool categories matrix and specific tool category
matrix

d. COVID-19 effects on network models (general roadblocks to space)

3) Breakdown nestedness/ modularity results of makerspace using insight with
demographic information (class, year, major)

a. More detail into student groups and do they show different network
patterns.
b. COVID-19 effects (specific student group effect)

4) Workshop/outreach with tools and demographic breakdown to see if network
patterns (hub/specialized tools) can be changed to move the students toward the
space.

1.5. Assumptions and Limitations
The assumptions and limitations listed below will aid in modeling the network
1. Survey data is used to investigate students' tool usage in the space. Because

students are asked to remember which tools they used during a semester, there is



the possibility of human error in remembering the tools used. The differences
associated with this error are assumed to be negligible.
2. Tool usage is simplified to a used or not used binary form, thus students using a
single tool several times does not affect the weight of an interaction.
1.6. Thesis Layout
The thesis layout follows the methods outlined in Section 1.4. Chapter 2 provides a
literature review with background for the research and the metrics used for the
makerspaces. Chapter 3 presents the surveys used to capture data and differences
between the two schools’ makerspaces. The second part of the thesis then focuses on the
ecological network results with Chapter 4 introducing the ecological techniques in more
detail and providing results with each of the metrics. Chapter 5 dives deeper into the
analysis for a hub tool analysis and a demographic analysis of the space. The thesis then

concludes with a summary and future work section in Chapter 6



2. LITERATURE REVIEW*

The literature review expands upon the different aspects that are here integrated for the
bio-inspired network analysis of engineering makerspaces, including an understanding
of the barriers affecting makerspaces and how ecological network analysis is used in
nature. The review identifies the selection of ecosystem metrics that can potentially
provide greater insight into the makerspace network.
2.1. Prior research on Makerspaces and Potential for Study
The benefits of makerspaces for educating modern engineers require careful analysis as
the prevalence of these hands-on spaces increases. Research on makerspaces has focused
on student impact, with three elements suggested as essential for success by Martin [8]:
1) rapid prototyping, digital tools, and low-cost microcontroller; 2) events and
interactions within the community; and 3) a failure-positive mindset that encourages
collaboration. Research on the barriers to makerspaces is limited, focusing primarily on
inclusive environments and training/mentoring [7]. Other barriers that impede student
interaction include student lack of self-confidence, fear of failure, and a lack of visibly
alike peers [10-12]. A deeper understanding of makerspaces, which provide a uniquely
creative and accessible hands-on experience to students, is vital to enhance engineering
curriculums further [2, 13].

Results of a survey on student makerspace participation suggest that students

who were self-motivated and participated in the space outside of the required class times

*Reprinted with permission from “Analyzing Makerspaces using a Modularity Analysis
to Determine Key Tool and Student Interaction” by Samuel Blair, Henry David Banks,
Julie S. Linsey, Astrid Layton, 2021, ASEE Virtual Annual Conference, Copyright
[2021] by ASEE
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showed higher confidence in their work for design tasks [2, 14-16]. The work highlights
the importance of involving students in the space early, allowing for growth and
experimentation with different tools. Interactions with friends, classes, projects, and
other staff and instructors have also been shown to aid student involvement within the
space [2]. Reoccurring tools such as the 3D printer and computer stations were also often
identified as "gateway" tools that could aid in the early introduction of the students into
the space [17]. Knowing the importance of tools and their interactions can help create a
pathway for students to enter the space and become more comfortable with tools in the
future [17, 18]. Thus, identification and verification of these “gateway” tools in various
makerspaces can further aid in enhancing these spaces.

2.2. Network Analysis and Ecological Metrics

Many of the world’s complex networks can be simplified to directed graphs where
variables and interactions are mapped between actors. Simplifying complex systems
down to a graph network of interactions enables analyses that can improve our
understanding of their functioning. Ecologists, for example, use graph and information
theory-based approach to study complex biological ecosystems. Plant-pollinator
networks become bipartite models, and interspecies predatory networks become
unipartite food web models [19]. Network graphs and their matrix depictions are used in
ecological and social network analyses to map and study complex networks and their
interactions [20, 21]. Social science utilizes bipartite matrices where rows are actors and
columns are events to understand how actors are related to each other through shared

events [20]. A bipartite model can be used any time two unique groups can be identified



within a chosen system boundary where interactions are only between the two groups
and not within. NASA, for example, uses graphs to study innovation in their space
challenge app, finding that mapping the innovation space of participants and ideas as a
bipartite network can aid in understanding the transfer of information [22]. Other
examples of bipartite networks include neuron-to-synapse interactions in neural
networks, airports-flights transportation networks, and plant-pollinators models of
ecosystems [19, 23, 24].

Ecological network analysis (ENA) provides insight to ecologists about
ecosystem structure and functioning that couldn’t obtain otherwise [25]. For example,
this approach can identify critical actors who deserve extra conservation efforts [26],
patterns in redundant feeding that support both growth and resilience [27], and the
importance of the “brown food web” in maintaining cyclic interactions that maximize
value extraction [28, 29]. The graph-based approaches investigated are nestedness and
modularity [30]. Ecologists primarily use these analyses to study plant-pollinator and
other bipartite networks, where two groups of actors interact across — not within —
groups [20, 21, 31, 32]. Prior work investigated Eco-Industrial Parks as unipartite
networks, finding that they can improve their sustainability and resilience with more
ecologically-similar nested structures [33, 34]. Nestedness has also been used to predict
the stability of bipartite networks to perturbations, looking at the failure rate of global
trading companies based on their role in more extensive industrial networks [35, 36].

That work found that when companies deviated from the highly nested structure of their



global training network, a few years later, they had disappeared/were replaced by one
that more closely followed the more extensive network’s nested structure [35].

The makerspace analysis draws inspiration from nature’s mutualistic networks
(modeled as bipartite networks, for example, plant-pollinator and soil networks) - their
resistance to disturbances has been found to relate to the levels of modularity and
nestedness in their architectures [37, 38]. Enhanced resilience is highly desirable in
human networks and identifying ecological network structures associated with resilience
can offer valuable bio-inspired design guidance. The ENA metrics that describe these
network characteristics [39] offer a route for applying this biological system inspiration.
Power grids, industrial manufacturing networks, water distribution, and supply chains
have all been shown to improve their performance when they mimic topological and
functional characteristics of biological food webs [40-45]. Food webs, for example, have
been found to have a unique balance of redundancy and efficiency in their networks [46,
47], a characteristic that is translatable to human-engineered systems and systems of
systems in such a way that their resilience is improved [48, 49]. Ecological network
analysis thus offers a strong avenue for analyzing the makerspace network to obtain
valuable insight into the stability as well as resistance to change of the network,
particularly when the network is modeled in a bipartite form.

2.3 Nestedness and Modularity: dual metrics to analyze the makerspace
Nestedness quantifies the structural hierarchy amongst actors in a network [30, 50, 51].
Multiple methods exist to calculate nestedness, but Nestedness based on Overlap and

Decreasing Fill (NODF) is used. For example, NODF has supported the understanding
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of the impact of invasive species in soil networks and resilience to external and
unexpected disturbances in plant-pollinator networks [37]. Furthermore, nested
ecological networks have been found to avoid mass extinction events because their
structure promotes interactions between specialists and generalists, creating a more
stable environment [52]. Nestedness alone can thus provide a strong indication of the
stability of the network, with higher nestedness assuring that actors with few interactions
are connected to actors with several interactions, preventing the former from failing [50].
Ecologists have used modularity to identify critical species in plant-pollinator
networks [19]. The analysis of over 29 different plant-pollinator networks identified
modular structures with the plants often linking the modules together [19]. Modularity
also aids in understanding how a network is partitioned. Modularity identifies groupings
of actors based on their interactions, hub actors that highly connect the network, and
specialized actors that may be at risk of losing connection [53, 54]. For example, a
modularity analysis of global flights identified airport hubs [24]. The complex global
aerial transportation network was broken up into modules that easily identified the
airports that connected these modules and dangerously disconnected airports [24].
Connectance quantifies how connected a network is to its total number of
possible interactions [30]. Connectance is used in ecology to measure ecosystem
complexity, with a higher connectance indicating a more diverse network [55]. While
connectance alone cannot describe network stability, it provides critical information for
understanding a network’s nestedness and modularity as it controls its bounds [30, 55,

56]. Thus, a better understanding of a network’s structure and functioning is achieved by
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pairing the metrics together. Therefore, connectance must be included whenever
modularity and nestedness are analyzed, as will be the results following.

Nestedness, modularity, and connectance of bipartite networks as a group
describe a network beyond just a density of connections, highlighting where connections
are found and where they are sporadic [51]. The insight they can provide for bipartite
human networks is investigated here using university engineering makerspaces. These
spaces aim to provide engineering students with a unique and hands-on educational
experience where students use a wide variety of tools that serve as stepping stones
through the space. The spaces, however, are still relatively new, with only a minimal
amount of research into hidden roadblocks that can limit use by certain demographics
and indirect effects that can have a huge influence on usage patterns. These
characteristics are almost impossible to see with the naked eye but may be visible using
network models. These spaces also provide a unique case study in contrast with
traditional unipartite networks that hopefully broaden readers’ scope of when system
perspectives and biological inspiration may be of value.

2.3. Chapter 2 Conclusions

The literature review offers a look into the different aspects of the makerspace
that need to be explored in more detail. Barriers to entry in the space can have a massive
impact on how the students interact with the space. A student’s feelings about the space
are also critical to evaluate, as their sense of belonging and expertise plays a role into

their use of the space.
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The literature review also highlights the different ecological techniques that will
be used to analyze the makerspace to obtain deeper insight. Modularity, nestedness, and
connectance have been used previously in human network as well as ecological
networks to identify key players in the space. In the next section, the metrics will be

introduced in more detail as well as initial analysis of the space utilizing the techniques.
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3. CONDUCTING ECOLOGICAL ANALYSIS OF THE NETWORK *
The first item addressed is Zow to convert makerspace usage data into a network model
to be analyzed. The process first gathers data, outlines the universities that will be
studied and their differences, and creates bipartite network models from the survey data.
3.1. Data Gathering Methods
Students tool usage data was collected across four semesters at two large university
engineering makerspaces [57]. School A is primarily a staff-run space where a variety of
tools can be used by the students with proper training, while some tools are restricted to
staff only, and students will need to submit a fabrication request to use. The goal of the
space in School A is to support the engineering classroom curriculum, with some club
use allowed. School B is primarily a student-run space where students are welcome to
use tools with proper training. The space is open to all engineering students and students
are allowed to use the space to work on personal projects.

The first two semesters (Fall 2020 and Spring 2021) were under increased
COVID-19 restrictions limiting student use of the space. These restrictions were
removed by the third semester and fourth semester (Fall 2022, Spring 2022), allowing
for a look at “normal” operating conditions for the space. For School A, the space was
restricted to only class use in the Fall 2020 semester, with some clubs allowed to return
to the space in Spring 2021. On the other hand, School B restricted the number of people

who could be in the space at a time in both their Fall 2020 and Spring 2021 rather than

*Reprinted with permission from “Modularity Analysis of Makerspaces to Determine
Potential Hubs and Critical Tools in the Makerspace” by Samuel Blair, Garret Hairston,
Henry Banks, Julie S. Linsey, Astrid Layton, 2022, ASEE Virtual Annual Conference,
Copyright [2022] by ASEE
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restricting to class use only. These COVID-19 restrictions for both schools were lifted
by Spring 2022.

The primary method for gathering results will be through self-reported student
surveys. The surveys consist of end-of-semester surveys focusing primarily on the
student's usage of the space throughout the semester and entry/exit surveys where
students can indicate what tools they used. The use of entry/exit surveys will be
evaluated with time to see if' it is necessary or if the end-of-semester survey is sufficient.
In addition, the order in that students learned the tools and the classes students used the
tools for will also be found in self-reported surveys. Students were compensated $20 for
their completed end-of-semester survey and $1 per entry/exit survey combination
completed. The survey was designed to take about 15 minutes to complete and consisted
of approximately 50 questions about tool usage, prior makerspace involvement, and
student demographics. The Fall 2020 survey asks students to indicate which tools they
used, while the Spring 2021, Spring 2022, and Fall 2022 surveys also inquire into the
frequency with which they used them. Minor edits to the questions and tools listed were
made between semesters. The full survey is included in the Appendix B of the report.

For distributing the survey, the method of distribution varied slightly between
semesters. The first Fall 2020 semester students who signed up for the space in both
universities for that semester. In the Spring 2021 semester onwards, the survey was sent
to students that signed up for the space as well as courses that utilized the space at both

universities. For School B in the Fall 2022 semester, surveys were additionally
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advertised in the space itself, leading to the higher number of responses for that
semester.

After the first semester of data gathering, it was found that the entry/exit survey
to the space was insufficient at capturing the regular use information of students in the
space. Number of student’s filling out the entry/exit survey was below ten students,
compared to the over 50 students that filled out the end of semester survey for the first
Fall 2020 semester. Due to the low number of responses for entry/exit survey, no
analysis could be completed with the data, and the process of capturing entry/exit
surveys was discontinued with the end of semester surveys providing the bulk of the data
for the analysis.

For the tool usage questions of the end of semester survey, students were first
asked to select the general tool categories they used. Based on the tool categories
selected, they were then asked subsequent questions about the specific tools they used in
each general tool group. Some general tools, such as the laser cutter or paint booth, are
standalone tools and do not have corresponding specific tools. In these cases, the general
tool was used in the hub tool analysis. Table 1 details the differences between the two
universities of each tool category and their restrictions. The tool nomenclature will be
kept consistent in later parts of the analysis in chapter 5. Tool names are normalized
between the two schools surveyed for consistency in comparisons. Table 2 shows the 14
general tool categories used for analysis and compares the tools at each school within
that category. School A has more training before each tool can be used and does not

teach laser cutting, while School B has fewer restrictions for tool usage and does teach
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the laser cutter. The difference in restrictions between the two schools is important to
note when delving deeper into the analysis.

Slight modifications were made to the survey between the two semesters, such as
increasing the variety of tools students could pick to reflect the selection within the
makerspaces better. The main difference is that three categories (crafts, paint booth, and
CAD station) were not included for School A in the Fall 2020 survey but showed up in
the Spring 2021 survey. Therefore, these tools are separate from the modularity analysis
for School A for the Fall 2020 semester.

Table 1: The tool list included in the surveys. Relevant differences between the two
schools (A and B) are highlighted in terms of the barriers to their use (training

required, course-directed use, and no supervision required). Tools not part of the
Fall 2020 dataset are marked by asterisks (*). Table from published paper [58]

Requires Used by a Stud.ent Use
ToOOL CATEGORIES Training Class Wlth(.)u.t
Supervision
A B A B A B
Tool 1 | 3D Printing X X X X X
Tool 2 | Metal Tools X X X X X
Tool 3 | Laser Cutter X X X
Tool 4 | Wood Tools X X X
Tool 5 | Handheld Tools X X X X
Tool 6 | Electronic Tools X X X X
Tool 7 | Social Activities X X
Tool 8 | Got/Gave Help X X
Tool 9 | Soft Materials X X X
Tool
11 Paint Booth* X X
Tool
12 Cad Station* X X X X X

Table 2: Tool category breakdown with specific tools available in the space. Tools
with one “*” were not included in the Fall 2020 Survey for School A. Tools with two
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“*> were not in the survey for School A at all. Table modified from published paper

[58]
Tool Category Specific Tools Included
(1) 3D Printing Ultimaker 3D P.rinter, Formlabs Form 2 Printer,
Stratasys 3D Printer, 3D Scanner Arm
Angle Grinder, Band Saw, CNC Metal Mill, Manual
(2) Metal Tools Mill, Manual Lathe, Drill Press, Belt Sander, Polishing
Wheel, Table Vice
(3) Laser Cutter Laser cutter
Band Saw, Belt Sander, Circular Saw, Miter, Jigsaw,
(4) Wood Tools Drill Press, CNC Wood Router, Router, Planer, Table
Saw, Hammers, Measuring Tape, Hand Saw, Dremel
(5) Handheld Tools Plie;rs, Vige Grips, Clamps, Screw Drivers, Hand Drills,
Chisels, Tin Snips
. Circuit Board Plotter, Multimeter, Power, Supply,
(6) Electronic Tools Soldering Station, Oscilloscope, Logic Analyzzry
(7) Social Activities Studied, Hung out, Met with a Group
Got Help From Makerspace Volunteer, Got Help From
(8) Got/Gave Help Someone Who Wasn’t a makerspace volunteer, and
Gave Help
. Embroidery Machine, Sewing Machine, Vinyl/Paper
(9) Soft Materials™ Cutter, X—lzcto Knife, Scisso%s, Glue Gun, V\i[ire gutters
(10) Other
(11) Paint Booth* Paint Booth
(12) CAD Station* Cad Station, Workbench, Whiteboards
(13) Volunteer on Duty**
(14) Prototyping**

3.2. Network Creation

The data 1s represented as a bipartite network: a network with two different groups of
actors whose interactions can only go between the two groups (no interactions within a
group are modeled) [59]. The survey data was used to create the bipartite network
matrix: when student j interacts with the tool i a value of one is assigned in the a;; entry
of the adjacency matrix. A zero is entered if there is no interaction [59, 60]. Specifically,

the student self-reported tool usage was utilized to create the network. If a student
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indicated using a tool in the survey, a value of one was provided. If no tool were used, a
value of 0 would be used. A hypothetical small-scale scenario is shown in Figure 1,

where ten students interact with ten different tools.

T1/T2|T3|T4|T5|T6|T7 |T8|T9|T10
sijz2|0(0|1|0(0|0|0|0]| 1
s211|0(0|1|0(0|0|0|0]| O
s3|0|1(1|0|0(0|0|0|0]| O
S410|1(1|0|0|0|1|0|0]| O
s5|{o0|0f(0|0|1(0|0|1|1]| O
selo|0(0|0|0|1|1|0|0]| O
s710(0|0|0|0|0|0|1|1]|O0
sg|o|o(o|jo0|1(0|0|0|1]| 0
s9|0|(0|0|0|0|1|1|0|0]| O

3 siojo|o|0|0|0|0|0]|0|0) 1

Figure 1: Hypothetical representation of the makerspace outlining the matrix
quantification of interactions: a) A small-scale hypothetical makerspace with
interactions b) the resultant makerspace. Image modified from published work [S8]

The adjacency matrix in Figure 1 provides a big-picture view of the many
complex interactions in a makerspace. Representing the space in matrix form allows for
network analysis techniques to be applied, providing valuable information about the
student and tool interactions making up the space. The adjacency matrix has students as
the rows and tools as the columns.

A major limitation of the bipartite network representation is that the model is

binary, which causes the frequency of interaction information to be lost [61]. As a result,
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the results only describe the frequency a student has used at least once. This limitation
can result in both inflated or under-represented tool usage results — for example, some
tools may be used by a student once and get a value of one, while a student may use a
tool hundreds of times and still only receive a one. However, despite the limitation, the
analysis will aid in understanding how students interact with the space.
3.3. Chapter Summary
The surveys were able to gather relevant demographic information from the students and
students self-reported tool usage is converted to a bipartite network model. The end of
semester survey was utilized over the entry/exit survey due to the larger number of
responses as well as thorough documentation of tool usage.

With the network models created, a variety of different ecological analysis
techniques can now be applied. Chapter 3 uses these network models to conduct
modularity, nestedness, and connectance analysis to develop a connection between

makerspace student-tool topology and space functioni
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4. CONDUCTING NESTEDNESS AND MODULARITY ANALYSIS OF THE
SPACE*

The three metrics frequently or primarily used in ecology (modularity, nestedness, and
connectance) are explored to develop a quantitative understanding of the makerspace’s
health and functioning from their network models. Results from each analysis are
presented and discussed in Section 4.7.
4.1. Modularity Analysis
Once the network of interest is created and an interaction matrix constructed, its
modularity can be analyzed. A modularity analysis identifies modules present in the
network by reorganizing the structure and links until its maximum modularity value is
reached [62]. This optimization can be done using several methods [63]. The
Newman/Leading Eigenvector method ([63], Eq. 1) is used here for its added benefit that
modules are reproducible given the same inputs, allowing for a consistent modularity
value to be obtained as well as providing the maximized modularity for the network

[64]. The MATLAB package BiMat [64] runs the Newman method to find the modules

(9)2
1 kid;
Qp = ZZ(BU - T])d(gi' h;) (D)
ij

Equation 1 calculates the overall network modularity (Q), where E is the total

number of interactions or links in the network, B;; is the matrix entries representing (1) for

*Reprinted with permission from “Modularity Analysis of Makerspaces to Determine
Potential Hubs and Critical Tools in the Makerspace” by Samuel Blair, Garret Hairston,
Henry Banks, Julie S. Linsey, Astrid Layton, 2022, ASEE Virtual Annual Conference,
Copyright [2022] by ASEE
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a link or (0) for no link, g; and h; are the module indices of the nodes i and j, and & and
d; represent the degree of the node i and j respectively. The J term parses the module
indexes for pairings between actor groups (in this case, students and tools) and assigns a
value of one if they are in the same module and a value of zero if they are in different
modules. The process is carried out by splitting the network into two modules using the
algorithm and calculating the Q. Then, the network is further split up into more modules
until the splitting no longer increases the overall network’s modularity [62]. Modularity
can be any value between zero and one, with a value of one indicating a perfectly modular

network.

Module 1

Module 2
Students

O O W B 00 ~ U

Module 3

7 63 2 9 8 510 4 1
Tools

Module 4

Figure 2: Left - Bipartite representation of the network with students (S1-S10)
interacting with tools (T1-T10) and color organized by module. Right - BiMat
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software output highlighting the network from Figure 1 with interactions (colored
in squares) organized.

Figure 2-Right shows the B matrix for the hypothetical makerspace network of
Figure 2-Left with ten tools (T1-10), tracking ten students’ (S1-10) use of the space. The
matrix denotes all the network interactions in the space with a one, and zeros indicate no
interaction. As seen in Figure 2-Left, the students fall into modules based on common
tool usage. For example, students 1 and 2 both use tools 1 and 2, which are not used by
any other students in the network. Together with student 10, who, along with student 1,
uses tool 10, this group of students and tools form a module (teal color). These patterns
can be identified relatively easily visually in a small network that is highly modular. As
a network grows, the number of interactions increases, becoming exponentially harder, if
not impossible. MATLAB’s BiMat package was used here to find modules and calculate
the overall modularity following Eq. 1. BiMat produces a visual depiction of a network’s
interactions, rearranging them to show modules best (as shown in Figure 2-Right) [64].
The modularity value for the hypothetical network of Figures 1 and 2 is 0.69. The main
drivers of this modularity can be seen in Figure 2-Right, where the colored boxes
indicate within-module interactions, and the black box indicates outside-of-module
interactions. The one out-of-module interaction, student four using tool 7, reduces the
network’s modularity from a perfect value of one. A null model analysis (described in
the following section) is needed to understand whether the value of 0.69 indicates that
the network is statistically significantly modular based on a network of the same size

and connectance (in this case, connectance is 0.22) [30, 65].
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4.1.1. Participation and Z — Value

The connectivity (z) and participation (p) values of Eq. 2 and 3 quantify how connected
a particular tool is to the rest of the network. For these bipartite makerspace networks,
tools and students act as nodes (N), while links between nodes represent the interaction
of a specific student using a specific tool [54]. Since tools and students are both placed
in modules within the space, all links between nodes can be classified as links within a
module or between two modules. The 4; in Eq. 2 is the number of links of node i to other
students/tools within its module, £si is the average number of links of each node (other
tools/students) in the module, and oyg; is the standard deviation of k. The kis in Eq. 3 is
the number of links of node i (a specific tool) to other nodes in module s, and £; is the

total number of interactions that node i has with other nodes [53].

ki - ksi
7. = 2
i e (2)
Nm k
pe=1-) G2 ()
s=1 !

While one tool may be in a module due to its dominant interactions, tools can
still interact with tools outside of their module. For example, while the mill and lathe
may be used primarily by students who only use mechanical tools, there may still be
students who primarily use craft tools and the mill and lathe, thus creating a connection
with tools outside of the mill/lathe’s module. The z or connectivity value quantifies the
within-module degree of a tool or student. If many students using the same set of tools

are also using the laser cutter, the laser cutter would have a high connectivity value. If,
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within that same group of students, only one of them had used the laser cutter, it would
have a low connectivity value. These metrics are calculated from the modular network
matrix and quantify the patterns and characteristics of connections between students and

tools in the space.

8

Within-module degree, Z
w

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Participation Coefficient, P

Figure 3: Modularity analysis sectioning determined by connectivity (z) and

participation (p) values. The regions R1-7 specify the role that a tool and/or student
has in a network, as described in the main text. Image from published work [58].

Equations 2 and 3 are plotted in Figure 3 illustrating the different regions as defined
by the p and z values. These regions describe seven different roles that students and tools

can have within the space and are used in network analysis as a cartographical
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representation of the roles in a complex network and better understand the functions of
actors in the network [53]. The work here tests an analogy between makerspaces and
mutualistic ecosystems, where the interactions between species groups (here, students
and tools) are mutually beneficial. Ecologists have classified each region as serving a
different role for the network (or, in this case, the students and tools). The cutoff lines
shown in Figure 3 are non-trivial and come from the work of Guimera and Amaral [53].
e RI1 (p=0, Z<2.5): Ultra Peripheral Nodes, niche or rarely used tools
e R2 (p<0.625, Z<2.5): Peripheral Nodes, tools that are not used as often
e R3 (p<0.8, Z<2.5): Non-Hub Connectors, tools that interact heavily within their
module
e R4 (p>0.8, Z<2.5): Non-Hub Kinless Nodes, tools critical to their module
e R5 (p<0.3, Z<2.5): Provincial Hubs, tools that interact with a variety of tools of
different modules
o R6 (p<0.75, Z<2.5): Connector Hubs, tools that interact heavily within their
module and with other modules
e R7 (p>0.75, Z<2.5): Kinless Hubs, tools that interact heavily with everything in
the space and cannot be assigned a module
The seven roles in the space guide conclusions depend on where the tools/students
fall when plotted. A tool in the R6 region is considered a Connector Hub, meaning it is
critical to the space and interacts with a wide variety of students in its own and other
modules. A tool in the R1 region is considered an Ultra-Peripheral Node and is less

important to the network’s functioning, likely being a niche or rarely used tool. The
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analysis can aid in the identification of hub tools in the space, and will be a major
discussion point of Section 5.1.

4.2. Nestedness

Nestedness can be calculated for either a bipartite or unipartite network from the
interaction matrix. Nested networks, when rearranged from most connected actor to least
connected actors top to bottom rows and left to right columns, will wind up with the
most general actor in the upper left of the matrix and the least general actor in the
bottom-left and top-right, as seen in the sample perfect nested matrix in Figure 4c [50].
Nestedness can be calculated in a few different ways, with some techniques normalizing
the resultant metric on a scale of zero to one and others, like the one used here, from
zero to one hundred [36, 50, 66]. NODF (Nestedness based on Overlap and Decreasing
Fill) is based on “overlap and decreasing fill” to evaluate a network’s architecture and is
considered a more appropriate metric for interaction networks [50, 66]. NODF calculates
nestedness values for each row and column individually before combining those values
into an overall nestedness result. These column and row nestedness values can also aid

in understanding a network’s architecture in more detail.
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Figure 4: A hypothetical makerspace of 5 students and S tools with a nested
structure. a) Diagram of the sample makerspace. b) Bipartite graph of the
makerspace. ¢) BiMat nested network output visualizing the network matrix, where
the curve indicates the nested interactions boundary.

NODF first organizes the bipartite network in order of the total number of
interactions, with the rows organized from most to the least interactions from top to
bottom and the columns organized from most to least interactions from left to right. For
example, the organized matrix for the hypothetical student-tool network in Figure 4a can
be seen in Figure 4c. Once organized, NODF is calculated to find the overall nestedness,
ranging from 0 to 100 (or O to 1 if normalized), with the higher value indicating a more
nested network [30, 66]. In nature, like plant-pollinator and soil networks, mutualistic
networks tend to have NODF values ranging from 0.35 to 0.7 (on a scale of 0-1) [66,
67].

Equations 2 and 3 are used to calculate NODF, and Figure 5 walks through this
process of calculating NODF for a very small 3x3 network. The two main aspects of the

NODF analysis are the “decreasing fill” and “overlap.” NODF pairs and compares each

row with every other row and each column with every other column (as seen in Figure
28



5). The “decreasing fill condition” is checked first for each pair to ensure that the
number of interactions in the first is more than in the second by at least one (from left to
right for columns and top to bottom for rows). If this condition is not met, NODF
defaults to zero. When met (for example, in the C1-C2 comparison at the top of Figure 5,
where C1 has more interactions than C2), the number of interactions that match from the
second to the first is checked. For a column comparison, C1-C3 in Figure 5-top clarifies
that only one of the two C3 interactions is also found in C1, giving this subset a Npaired
value of 50 (i.e., 50% of interactions match between the two columns). In the case of
C1-C2, both C2 interactions are found in C1, so the value is 100. Once all comparisons
have been made, the Npairea Values are averaged, producing Neoumn and Nyows. The final
NODF value is the average of Ncowmn and Nyows. NODF can be calculated manually for
smaller networks but becomes increasingly difficult for larger networks. Matrix ordering

and NODF calculations can be done within the BiMat MATLAB package [64].
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Figure 5: Process for calculating NODF of a hypothetical 4x4 network (top-left,
actors R1-4 interacting with actors C1-4). The top-right process shows the column
nestedness calculations and the bottom-left process shows the row nestedness
calculations. The culmination of which is shown in the bottom right with the overall

NODF value.

n..
+ otherwise 4)
mln(ki, kj)

In Equation 4, £; is the sum of row/column 7, 4; is the sum of row/column j, n;; is

the total number of entries that match between the two, and c is the number of entries

that have a value of 1 in £;. Finally, equation 5 is the NODF value normalized for the

matrix size to better compare different-sized matrices, producing a final NODF value

from O to 1 rather.
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m(m—1) + nn—1)
2 2

NODF =

The NODF calculation process also identifies generalist and specialist actors in
the network [30]. Generalist actors will always be closer to the top-left of the matrix,
while specialist actors will be closer to the bottom and the right. A nested makerspace
network would indicate that students are using a generalist tool first and expanding their
use of the space to interact with more complicated and specialized tools. Figure 4 shows
a perfectly nested network, with specialist students (for example, S4 and S5) interacting
with generalist tools (in this case, T1 and T2). The nested analysis can identify
generalists and specialists and how they interact in the network; the underlying causes as
to why a network is nested or not may be obvious and would require supplementary
investigations.

4.3. Connectance

While both nestedness and modularity analysis can provide valuable insight into a
network, it is imperative to see both in combination to understand the network fully.
This is because Nestedness and modularity are related, with the primary connection
being the network connectance (C, Eq. 4 and a value from zero to one) [30]. Generally,
the higher a network’s connectance, the higher its nestedness will be, while the lower the
connectance, the higher the modularity [30]. However, there are bounds on these trends

explored later in the results, which also depend on network size (Nrows and Neotumns).
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L
C= (6)

Nrowcholumns

The numerator of Eq. 6 is the total number of network connections, or L (sum of
all entries in the matrix [B]). The denominator is the total number of possible
connections or rows multiplied by the number of columns. A connectance of one
indicates that all possible interactions are occurring, meaning that everything is
connected to everything. A connectance of zero indicates that no interactions exist in the
network. While research has highlighted the importance of analyzing nestedness and
modularity together, most work has focused on either specific connectance ranges or the
overall importance of nestedness and modularity [30, 51]. The work in this paper
expands on the previous relationship. It creates a view of the full range of the
relationship between the two metrics with the sample network creation to enhance
further the understanding of the relationship between nestedness and modularity.

4.4. Null Models

Determining if a network’s nestedness and modularity results are statistically
significant requires the generation of null models to check against the nestedness and
modularity of a random network of the same size and connectance [9, 30]. A type-one
null model [9] will explore significance, with 1000 sample networks generated at each
connectance value listed. Potential errors associated with empty rows in the random
network generation were accounted for by forcing all rows to have a value of 1. This null
model modification was previously used in host-phage interaction networks to match the
network’s dynamics better and maintain the null model network sizes [65]. A p-value of

0.05 (z>1.96 or z < -1.96) will be used for the network to see whether the resulting
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modularity and nestedness values are significantly different from those that would be
randomly generated, as determined by the null models.

The procedure for evaluating networks undergoing disturbances compares a
network’s modularity/nestedness against a null model that uses the network’s
connectance from normal operations. For example, data from Spring 2022 provides
connectance values for the makerspaces here during a normal semester, against which
Fall 2020 and Spring 2021 (when COVID-19 restrictions were in place) are compared.
This approach enables a network’s modularity and nestedness during disruptions to be
understood compared to how the network should operate during its highest connectance

semester.
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4.5. Relationship between the metrics
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Figure 6: The same curve is shown for a variety of network sizes, describing the
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impact of network size on the relationship between modularity (x-axis), nestedness
(y-axis), and connectance (color scale on the right).

One thousand networks at nine different network sizes, from 10x10 to 100x100,

with varying connectance values, were generated to highlight the relationship between

nestedness, connectance, and modularity in Figure 6. The results highlight a strong

negative correlation between nestedness and modularity for all but the most connected

networks (in most cases, a connectance of 0.85 or greater) [9, 30, 65]. In addition, the

highlighted connected networks experience a drop in nestedness due to the ideal
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“triangular shape” seen in Figure 4 not being achievable [66]. These results suggest that
the connectance of a network bounds modularity and nestedness for a specific network
size. Increasing or decreasing the modularity or nestedness of a network requires
changing connectivity. These findings are consistent with previous work highlighting
connectance as a major limiting factor in achieving specific network properties related to
degree distribution, like nestedness [56]. However, this is the first visual depiction of the
clear relationship between these three metrics. The primarily negative relationship
between modularity and nestedness also varies with a network’s size, with larger
networks (Figure 6-Bottom Right) more constrained to specific modularity based on
nestedness and connectance. These results are critical to guide modularity and
nestedness as a network design goal. They clarify that the desired modularity and
nestedness are not achievable without a specific connectance.
4.6. Developing a tool to conduct analysis

As the analysis will span several semesters and the open potential for future use
with a variety of networks, a network analysis package GUI will be generated that will
allow other universities and students to conduct their own modularity and nestedness
analysis with ease. The GUI will utilize functions found on the BiMat [64] package as its
foundation and create an interface that is easy to interact with. Moving forward, the only
items needed to conduct the analysis will be the network of interest in a bipartite
network format. The software conducts and calculates all relevant nestedness,

connectance, and modularity metrics when provided with the bipartite network. Analysis
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in this thesis was generated utilizing the program. The documentation for the package
can be found in Appendix F detailing all uses.

4.7. General Results from the Ecological Network Analysis

Across the four semesters studied, School A was found to have higher modularity and
lower connectance than School B. A jump in nestedness at School A during the Spring
2022 semester is seen, possibly due to COVID-19 restrictions in the space being lifted
(School A had significantly more student use restrictions in the makerspace than School
B due to COVID-19). The modularity and nestedness differences between the two
makerspace networks can be primarily attributed to differences in connectance
(corresponding to student usage of tools). The makerspaces at the two schools have
inherent differences in how they are run. The space at School A is primarily staff-run
and used to support course curriculums. School B’s space is primarily student-run and
used for course support and personal projects. School B’s space is also set up such that
those tools with the most safety restrictions (for example, close-toed shoes, long pants,
eye protection) are placed such that students that don’t meet these requirements can still
enter the space. Safety requirements for the most restrictive tools are used for the entire
space. In addition to slight differences in COVID-19 restrictions, these operational
differences show up in the network models as differences in connectance, modularity,
and nestedness, with Fall 2022 being an outlier for School B. The overall lower
connectance this semester can be attributed to the slight changes to the survey gathering
methods, with more first time users participating in the survey. The modularity, nested,

and connectance values capture this outlier with the survey supplementing the analysis.
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Table 3: Network size (rows = students x columns = tools), nestedness (NODF),
modularity (Q), and connectance (C) for Schools A and B in Fall (FA) and Spring
(SP) 2020, 2021, and 2022. Null models are listed for both the corresponding
semester AND for SP22 only.

Each

Serﬁ:sctl:a s SP22 Null Semester’s Sll)\/zl(z)é\lellm
Sem. Size C Q Null Model Model NODF Null Model NODF (Z-
Q (Z-value) Q (Z-value) NODF (Z- value)
value)
FA20 54x10 0.25 | 0.34 | 0.36(0.32) 0.26 (6.15)* 0.50 0.27 (6.79)* | 0.36 (2.46)*
<
E SP21 178x12 | 0.18 | 0.38 | 0.40(-1.25) | 0.23(17.3)* 0.33 0.20 (12.7)* | 0.36 (-2.33)*
g SpP22 77x12 0.34 | 0.19 | 0.24(-3.93) | 0.25 (-3.92)* 0.55 0.36 (9.71)* | 0.36 (10.1)*
FA22 80x13 0.23 | 0.31 0.33(-0.9) 0.23(6.26)* 0.4 0.25 (8.99)* | 0.36 (2.30)*
FA20 57x13 0.39 | 0.18 | 0.21 (-2.76)* | 0.21 (-2.49)* 0.64 0.40 (10.9)* | 0.41 (10.1)*
=]
E SP21 94x13 0.34 | 0.20 | 0.23 (-2.86)* | 0.19(0.17) 0.61 0.36 (15.0)* | 0.41 (11.6)*
g SpP22 95x13 0.40 | 0.18 | 0.2 (-1.45) 0.20 (-1.91) 0.59 0.42 (12.8)* | 0.41(10.1)*
FA22 | 199x13 0.3 0.21 | 0.24(-3.89)* | 0.18(3.28)* 0.51 0.32 (17.4)* | 0.41(8.462)*

Table 3 and Table 4 highlight the properties of the networks each semester and

their corresponding null models. The modularity and nestedness visualization of the

networks at each school each semester can be found in Appendix E. Null models

significantly different from the real network at p > 0.05 are starred. Table 3 and Table 4

how a strong correlation for the networks highlighting a nested structure for the

makerspace. A nested makerspace indicates many students who have minimal tool

interactions in the space (these could be the new students or those who are coming in

only to use something specific) interact with tools like the 3D or other generalist tools
[57]. The nested makerspaces also indicate that students with more tool interactions in
the space, thereby using a wider variety of tools, are more likely to use tools that fewer

students use or specialized tools [57]. This trend follows intended use patterns for
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makerspaces. A jump in nestedness is seen in Spring 2022 (Table 2 shows that

nestedness increased from 0.39 to 0.51 for the specific tool model). The specific tool-

based makerspace networks at School B are slightly less nestedness than the general tool

network. This decrease is due to the increase in network size resulting in a decrease in

connectance (for example, as seen in Tables 1 and 2, Fall 2020, the network’s

connectance drops from 0.36 in the general network to 0.15 in the specific network).

Despite the difference in connectance, the network remains nested in structure compared

to its null models.

Table 4: Network size (rows = students x columns = tools), nestedness (NODF),
modularity (Q), and connectance (C) for Schools A and B in Fall (FA) and Spring
(SP) 2020, 2021, and 2022. Null models are listed for both the corresponding
semester AND for SP22 only.

Each
Seizsctl:er’s SP22 Null Semester’s Sll)vzl(z)(ll\i'lﬂl
Sem. Size C Q Model NODF | Null Model
Null Model NODF (Z-
0 (Z-valugy | @ @value) NODF (z- | "L S
value)

FA20 | 33x27 | 0.0 | 047 | 0.53(145 | 0.40286)* | 022 | 0.11 (6.95)* (30;76*
ZIseal | 12276 | 0.06 | 044 | 042(L07) | 0.22G7.7)% | 014 | 0.0623.)* (_Z' ég)*
=) .

S| sp2 | 70x77 | 045 | 022 | 028(-5.15% | 026 (-497)* | 039 | 0.16 (38.8)* (30;5 .
FA22 | 78X76 | 0.10 | 04 | 0345.83)* | 025202* | 022 | 0.1024.0)* (9‘)'9]5 .
FA20 | S54c45 | 0.6 | 024 | 0.30(-5.09* | 0.24(-0.19) | 038 | 0.17 20.8* (]03'2(; .

2 sP21 | ss7s | 004 | 024 | 026(250% | 0.19104)* | 037 | 0.1540.6)* (202'233) i

=] .

21 SP22 | 971 | 022 | 048 | 0.09(-200% | 0.19(-189 | 051 | 0.23@#4.2)* . 404273)*
FA22 | 185X79 | 013 | 0.26 | 0.22(7.61)* | 0.1632.6* | 039 | 0.14(73.7)* (30325 .

Figure 7 visualizes the significance of each school's modularity and nestedness

results each semester. The y-axis is the difference between the null and general or

specific tool network models. Positive difference values indicate significantly more
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nested or modular than generated on average by a random network creation of the same
size and connectance. A negative correlation indicates that the measured value is
significantly lower than the null model. A zero difference, or close to zero values,
indicates that the network’s nestedness or modularity is similar to what could be
randomly generated and is not significant. The nestedness of the spaces at both schools
each semester is substantial. The modularity of spaces at both schools each semester is
not significant. The significance of this difference is largest for the Spring 2022 semester
at both schools when the spaces were back to their normal operations.

The restrictions in place in these makerspaces during the initial COVID-19
pandemic offer a chance to understand the value of modularity and nestedness for
understanding disturbance-induced changes over time. Connectance, the number of
interactions in the network versus total possible interactions (seen in Tables 1 and 2),
clearly highlights the usage changes occurring due to the COVID-19 restrictions.
Without COVID-19 restrictions, one would expect the connectance values of the
networks to remain relatively similar from one semester to the next. Understanding how
the makerspaces were impacted requires comparing the network each semester to what it
would be if that semester were normal or using a null model corresponding to the
connectance of the normal semester. Spring 2022 is representative of a “normal”
semester. Table 3 and Table 4 list both the null model for each semester alongside the
null model for the Spring 2022 (SP22) “normal” semester. A significant difference in the
z-values at p>0.05 of nestedness to the models is starred. The nestedness (NODF) of the

“normal” null models is the same for each semester, as the calculations accounted for
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network size when the value is normalized, causing the connectance to be the major

driving factor for the null models.
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Figure 7: Difference between each semester’s null model’s nestedness (right) and
modularity (left) to the modularity and nestedness of each school, each semester for
both the general and specific network models.
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Figure 8: Difference between the normal (SP22) null models’ nestedness (right) and
modularity (left) to the modularity and nestedness of each school, each semester for
both the general and specific network models.
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Figure 8 highlights the differences in modularity (left) and nestedness (right)
between the “normal” Spring 2022 semester’s null model and each school’s makerspace
networks each semester. School A’s (diamond shape) makerspace during Fall 2020 and
Spring 2021 has a higher modularity than the null models, indicating that student usage
of the space created a significantly modular student-tool interaction network when
COVID-19 restrictions were in place. However, School B’s makerspace during Fall
2020 and Spring 2021, compared to the “normal” Spring 2022 semester’s null model, is
still significantly nested in both the general and specific tool formats and has an overall
lower modularity value. For the Fall 2022 semester for both schools, modularity values
were higher, indicating there was a difference to the previous semesters data. For School
B, the modularity trended higher when compared to the Spring 2022 semester, likely due
to a change in the sample population. It maintains a high nestedness value despite the
difference.

4.8. Impact from Initial Nestedness and Modularity Analysis of Space

Nestedness and modularity can identify the current state of a makerspace and any hidden
challenges or roadblocks. A healthy makerspace provides an environment where
students can explore different ideas, interact with various tools, and have ample
resources to make products [5, 68]. University makerspaces must also train students,
providing a more hands-on approach to learning course-based material [6]. These goals
should result in a nested space, which would indicate that new students are introduced
first to general tools while students that have been around longer using a wider variety

and more specialized tools. A less nested/more modular makerspace structure would
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indicate that students are only using tools associated with their course, creating clusters
or modules of student-tool interactions. An extreme version would be an almost
perfectly modular network, with few, if any, interactions happening outside the modules
indicating that students never explore the space beyond the tools used for class.

The makerspaces of the two schools appear similar in real life (both belong to
large R1 schools with significant resources and are used primarily to facilitate student
learning in engineering courses). However, the nestedness and modularity analyses used
here on student-tool network models provide insight that uncovers significant
differences, especially regarding how they function during and after disruptions. The
modular structure of School A’s makerspace during disruption and the nested structure
of School B’s makerspace staying consistent throughout the ordeal suggest that
differences in makerspace operations are causing large impacts at the network level. The
analysis done here and shown in Figure 6 underscores the importance of connectance in
a network’s modularity and nestedness. The analysis can also point even in normal
conditions when something may be affecting the network, as is the case for School B
Spring 2022 with more students only interacting with a few tools due to more students
interacting with the Vinyl cutter and often being first time students in the makerspace.
More on the tool hub analysis will be found in chapter 5.1 of the thesis. The first time
students, since they only interact with one tool, lower the connectance as well as
increase the modularity of the space.

In the face of perturbations, School B remained static in all its ecological metrics

during COVID-19 restrictions. On the other hand, School A drastically changed the
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network properties, particularly its connectance and modularity. A static analysis of the
space would have likely yielded less valuable information, as the initial null model
analysis indicated a consistent trend. However, a method of analyzing how a network
performs under different conditions can be created by imposing a higher expected
connectance to the network. The potential for the shift of the network based on
connectance is also highlighted in Figure 6 with connectance being the main driver to
the potential nestedness and modularity of a random network. The importance of
connectance thus becomes key when analyzing a perturbation, as it is likely that a
network will experience potential lower connections during the duration that could
drastically affect the work.

The impact of COVID-19 restrictions at each school can be quantitatively
visualized using modularity and nestedness analyses and comparing against the network
under normal operating conditions. The class-based use restriction at School A is
hypothesized to be the primary driver of the lower connectivity and more modular
makerspace use structure. The modules here for School A correspond somewhat with
specific courses across the different engineering majors that use the space. Variations
could be attributed to more multidisciplinary projects, causing the non-module
interactions (the black-colored interactions in the modularity plots of Appendix E).

The makerspace at School B is also intended to supplement engineering courses
in the same way as School A. However, it is known that School B’s makerspace also has
many personal projects occurring at any one time. School B also has arranged its

makerspace such that PPE restrictions vary throughout, with the entrance to the space
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having almost none to encourage curious students to enter. School A’s PPE requirements
are significant for the entire space regardless of where you are or what you are doing.
The other significant difference between the two schools is that School B’s space is
entirely student-run, with all the “workers” in the space being paid or volunteering
students. School A has some paid student workers but is still a primary university staff-
run space. These three major differences have resulted in a modular and less connected
space at School A and a nested and more connected space at School B during and
immediately after the restrictions. Students are encouraged to explore the space, likely
leading to higher interactions documented and an increase in nestedness. The overall
nestedness structure of both spaces during normal operating conditions indicates that
students are also primarily interacting with the “generalist” tools in the space and
specializing further in more advanced tools, with students with fewer interactions
primarily working with the “generalist” tools as well.

The modularity and nestedness analyses also make the impact of COVID-19
restrictions visible in both spaces. The decreasing modularity from Fall 2020 to Spring
2022 can be attributed to decreasing COVID-19 related restrictions in both spaces. Fall
2020 and Spring 2021 semesters at School A saw restrictions within the space down to
only the most basic class requirements and no student workers, resulting in an increase
in modularity and a decrease in nestedness and connectance during the height of
COVID-19 restrictions. Starting Summer of 2021, restrictions have eased, and as of
Spring 2022, the school reported COVID-19 related restrictions had been completely

removed. School B, while they did have some restrictions, did not remove personal
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projects or student workers, resulting in their nested structure being lower during the
height of COVID-19 restrictions but still present.

The use restrictions at both spaces caused fewer interactions and thus lowered
connectance values, but only at School A did that result in a significantly modular
structure after the perturbation. School B, although nestedness decreased, it still had
dropped so low that the space became modular during the COVID-19 perturbation. The
impact of restrictions on the network structure was visible when they were lifted in the
2022 Spring semester. Schools A and B see large increases in how nested their students
and tools are. The connection also increases during that semester at both schools.

These results strongly support modularity and nestedness as diagnostic tools for
network health. This could especially be useful for networks where equity may be of
interest. Energy equity, for example, could be investigated for a power grid network with
modularity and nestedness, showing that a more nested structure has better reach to
historically underserved users or neighborhoods. Translating modularity values to a
water distribution network, for example, could help ensure that the communities have
water during disturbances.

The study in Figure 6 highlights the relationship between nestedness, modularity,
and connectance. Different networks can often be characterized by their connectance
level and fill. Utilizing the sample network plot, a sample operation region can be
identified for what the likely modularity and nestedness results could indicate. If the
network is high connectance, a positive relationship between modularity and nestedness

can be expected as a likelihood of the network showcasing both. This can be useful
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when first identifying the network and obtaining overall nestedness and modularity
values.

While a makerspace may seek to become more nested, other human networks
may want to be more modular. For example, a modular structure in electrical networks
has been found to help mitigate the effects of network perturbations, particularly when
using microgrids [69]. On the other hand, industrial water networks have been found to
benefit from a more nested structure when experiencing disturbances [33]. Modularity
and nestedness can also be used as diagnostics tools to see if changes in a network are
affecting the network structure positively or negatively.

4.9. Chapter 4 Summary

The three different ecological metrics, connectance, modularity, and nestedness are all
applied to the makerspace network models. Null models confirm that the makerspaces
are highly nested, indicating that the overall setup of the makerspaces follow a pattern of
students first interacting with general tools before working with more specialized tools.
Higher connectance values are seen for the makerspaces when the COVID-19
restrictions are lifted. These new values are proposed as a better comparison in the null
models and show School A to have a correlation with modularity, indicating that the
makerspace restrictions had a large effect on usage the spaces that lasted beyond the
semesters when they were primarily in place. Chapter 5 further expands on the analyses
of the makerspace network models, focusing more closely on the tool hubs and
demographic analyses. Modularity is the primary metric used as it specifically focuses

on identification of tool hubs and student demographic grouping
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5. NETWORK ANALYSIS TO IDENTIFY HUB TOOLS AND POTENTIAL
BARRIERS*

While the ecological network analysis coupled with the survey results provide a holistic
view of the structure and functioning of the makerspace, a deeper dive utilizing
modularity and demographic survey results here in Chapter 5 provides knowledge about
the interactions of the makerspace and breaks down the findings around key hub tools.
5.1. Key hub-tool analysis
The general tool analysis with participation and z-values is generated from the general
tool categories outlined in Table 2. The results of the analysis are found in Figure 9.
Various hub tools can be identified within the space for the general tool analysis. Of
significant importance across semesters, 3D printing (Tool 1) is a major tool across three
different semesters. However, Fall 2022 in Figure 13 shows that 3D printing has
significant participation and usage value. While 3D printing remains a hub tool that
students use, the drop in usage is one of the reasons overall usages and connectance were
down in the space during Fall 2022. Similarly, social activities in the space (Tool 7) was
consistently considered a hub tool, despite harsher COVID-19 restrictions in Fall 2020
and Spring 2021 followed by an increase in Spring 2022 once operations returned to
normal. The myriad of hub tools in the space coincides with the setup of the space, with

the focus of School A's makerspace being supported heavily by the class curriculum.

*Reprinted with permission from “Modularity Analysis of Makerspaces to Determine
Potential Hubs and Critical Tools in the Makerspace” by Samuel Blair, Garret Hairston,
Henry Banks, Julie S. Linsey, Astrid Layton, 2022, ASEE Virtual Annual Conference,
Copyright [2022] by ASEE
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The class curriculum would thus bolster a variety of hub tools as students used the space

that are linked to courses.
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Figure 9: Participation and Z-value analysis for School A across the different
semesters. Each point is one of the general tools listed in the survey for School A.
Tool numbering matches the names in Table 2.

Participation and Z-value analysis results are generated from the general tool

categories outlined in Table 2 and Figure 10 for School B. 3D printing (Tool 1) was a

hub tool throughout all the semesters and remained a critical tool within the space.

Unlike School A, the laser cutter (Tool 3) was considered a hub tool for most semesters.
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The difference in this tool is largely attributed to the laser cutter being a tool taught at
School B and students having full access to the tool. At the same time, School A does
not focus on this tool as part of the curriculum, and access to the tool is based on request
only. School B overall had a lower number of hub tools from the Fall 2020 to Spring
2022 semesters, indicating students primarily interacted with a few key hub tools before
interacting with the more specialized tools, as is indicated by the high nestedness values
and low modularity values of the space. Fall 2022 deviated from this trend with higher
modularity values and lower overall connectance, indicating that students coming into

the space often only used a specific tool leading to a more modular design.

49



School B Fall 2020 General Tool

School B Spring 2021 General Tool

9r ar
8 &
7o 7L
B [
5 - Sr w1
R L4
G s s 3 s
N N a7 a5
2 as S @ 2 52 a1
w10 w13
1= 2 13 1r
w11 12 w11
Oerrio 0
-1 - At
g - L i i L i i i 2L L L L 1 1 |
1] a1 0.2 03 04 05 06 07 08 0.9 1 a 0.1 0.2 0.3 04 05 0.6 0.7 0.8 0.8 1
Participation Participation
School B Spring 2022 General Tool
9 g School B Fall 2022 General Tool
8 |
8
T
7L
6o
6 -
57 5 9 a1
S 4r o1 z 4 o a9° ﬁ?‘
[_;E o4 T Ly
N3 Tiga2 L o1
«7 a6
2. i ol 12
w11 w12 LE:]
1 a4 @10 1 13
o- Derio
-1 Ak
‘ 2 . . . . . . . .
-2 . . . ' ! ! o 01 02 03 04 05 06 07 08 08 1
o] 01 0.2 03 04 0..5 06 a7 08 0.8 1 Participation
Participation

Figure 10: Participation and Z-value analysis for School B across the different
semesters. Each point is one of the general tools listed in the survey for School B.
Tool numbering matches the names in Table 2.

Results from the general tool analysis provide an overall overview of how

students interacted with the space. However, due to the broadness of the categories,

several tools can often fall under the hub category due to the large usage numbers by the

students. Therefore, to better display which specific tools students use in the space, the

specific tool category is used to delve deeper. One important item to note in the specific

tool analysis is that students are not required to select a specific tool once a general tool

is first identified. The higher number of selections for specific tools also leads to a lower
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overall connectance, as seen in earlier thesis sections. However, while the usage is
overall lower, the specific tool participation and Z-values still yield valuable information
about the space.

Results for the specific tool analysis of School A can be found in Figure 11.
From the specific tool analysis, individual tools can be spotted and identified as “hub”
tools for each semester. For Fall 2020, meeting with a group was still a hub tool despite
the increased restrictions in the space. While not a hub, the Ultimaker (Tool 1) had the
second highest participation and Z-value. Various 3D printers (Ultimaker, Dremel
Digilab) in Spring 2021 were identified as hub tools and both types of mills (manual mill
and CNC metal mill). Lastly, for Fall 2022 and Spring 2022 “met with a Group” was the
major identified hub tool, indicating students are primarily using the space to work on
either project for class or club, as are the restrictions in the space. Spring 2021 deviated
from not meeting with a group being a hub tool, possibly due to tightening conditions

restricting student group usage of the makerspace at School A.
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Figure 11: Participation and Z-value analysis for School A for the specific tool
categories across the different semesters. Each point is one of the specific tools

listed in the survey for School A.

For detailed tool labels on each plot, please refer
to Appendix C.

Figure 12 shows results for the specific tool analysis of School B. Matching the

results from the general analysis across all semesters, the 3D Printing “Ultimaker” was

found to be a hub tool. The viny/paper cutter was also found to be a hub tool in Fall

2022 only, hypothesized to be due to changes in the capabilities of creating stickers for

students.
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Figure 12: Participation and Z-value analysis for School B for the specific tool
category across the different semesters. For detailed tool labels, refer to Appendix

C.

At both universities, 3D printing is identified as a key tool, consistent with other

research identifying rapid prototyping as a key to space usage [70]. The overall tool

usage percentages gathered from the survey are presented in Figure 13 and Figure 14 to

validate the tool used for these semesters.
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Figure 13: Proportion of students (as a % of the total survey population) at School
A that indicated using a tool at least once for each semester.
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Figure 14: Proportion of students (as a % of the total survey population) at School
B that indicated using one of the general at least once for each semester.
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The modularity analysis quantitatively characterizes interactions within the
makerspace, identifying high-impact tools (hubs) that serve as critical parts of the
makerspace and low-impact tools that may need more support to encourage student use.
A major advantage of this analysis is its ability to condense a vast amount of data and
visualize it instead of relying on more conventional methods that require far more
analysis and graphics to convey the same information. With only a few graphs like those
in Figure 13, a modularity analysis can provide insight into both usage rates and the
significance of tools for the successful functioning of the makerspace. The survey
analysis and the modularity analysis showed that 3D printers are a major hub tool at both
universities and hanging out in the space for School A was a hub tool.

The modularity analysis for the two schools can also provide insight into the
differences between the makerspaces. The tools that were found in the modularity plots
to be hubs may be due to their use for specific courses. , Tools used within a course at
both schools (for example, the 3D printers, mill, and lathe at School A and the laser
cutter at School B) tend to have a higher usage within the space.

Additionally, 3D printing was a major hub for students and a major tool that
students first used at both schools. Another key difference is that School A is staff-run,
and School B is student-run, possibly causing the overall higher interaction rate at the
student-run space of School B. The differences in the layout are further supported by the
network analysis in Section 4.7 of the thesis highlighting the higher modularity of

School A overall as well as the lower connectance semester of School B.
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5.2. Student Demographic Analysis

Table 5 shows a summary of the demographic information. Student percentage use
falling below 10% was chosen as a cut off for the demographic analysis (i.e. use less
than 10% is not utilized to represent the whole group to avoid one student heavily
skewing the results for the full population). Additionally, any student group with fewer
than seven individuals was omitted from the analysis. While the usage percentages are
still shown in the demographic tables, the following modularity analysis showcasing the
interaction network similar to Figure 2 omits student groups for each category due to the
small sample size. The modularity network analysis with the different demographic
groupings will allow us to see how students interact with tools in the space. The three
demographics will be evaluated: gender, race, and major. For a full view of all the

demographic breakdowns, please refer to Appendix D.
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Summary- School A Spring 2021

Metal Electroni Wood Handheld Laser CAD Paint

n 3D Printers Tools Craftland cs Tools Tools Cutter Station  Studied GotHelp Booth Other
General N=178 57.87% 37.64% 0.56% 14.61% 7.87% 24.16% 3.37% 11.24% 17.98%  16.85% 2.25% 17.42%
Male 118 59.32%  38.98% 0.00% 16.10% 7.63%  25.42% 4.24% 12.71% 21.19%  16.10% 1.69% 17.80%
Female 57 54.39%  35.09% 0.00% 8.77% 7.02% 17.54% 1.75% 7.02% 10.53%  19.30% 3.51% 17.54%
Hispanic 39 51.28% 30.77% 0.00% 17.95% 7.69%  25.64% 5.13% 5.13% 20.51% 10.26% 0.00% 28.21%
Non-Hispanic 131 60.31%  39.69% 0.76%  13.74% 7.63% 22.14% 3.05% 11.45% 18.32%  19.08% 3.05% 12.98%
White / Caucasian 120 60.00%  37.50% 0.83% 14.17% 9.17%  25.00% 2.50% 12.50% 17.50%  15.83% 2.50% 18.33%
Black or African American 3 33.33% 66.67% 0.00% 0.00% 0.00%  33.33% 0.00% 0.00% 66.67% 0.00% 0.00% 0.00%
American Indian or
Alaskan Native 4 75.00%  25.00% 0.00% 25.00%  25.00% 0.00%  25.00% 0.00%  25.00% 0.00% 0.00%  25.00%
Native Hawaiian or Other
Pacific Islander 0 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Middle Eastern 4 25.00%  50.00% 0.00% 50.00% 0.00%  25.00% 0.00%  25.00% 0.00%  25.00% 0.00%  25.00%
Asian 37 54.05% 37.84% 0.00% 10.81% 5.41% 18.92% 8.11% 13.51% 16.22%  27.03% 2.70%  16.22%
Aerospace Engineering
Major 8 25.00%  12.50% 0.00% 0.00% 12.50% 25.00% 12.50% 0.00%  25.00% 0.00% 12.50%  37.50%
Biomedical Engineering
Major 9 88.89% 0.00% 0.00% 11.11% 0.00% 11.11% 0.00% 11.11% 0.00% 0.00% 0.00% 0.00%
Chemical Engineering
Major 1 0.00% 0.00% 100.00% 100.00% 0.00% 100.00% 0.00% 100.00% 100.00% 0.00% 0.00% 0.00%
Computer Engineering
Major 4 25.00%  25.00% 0.00%  25.00% 0.00% 0.00% 0.00% 0.00% 50.00% 50.00% 0.00%  25.00%
Electrical Engineering
Major 17 35.29% 0.00% 0.00%  70.59% 5.88% 35.29% 0.00% 11.76%  35.29%  23.53% 0.00% 17.65%
Industrial Engineering
Major 23 60.87%  60.87% 0.00% 0.00% 0.00%  13.04% 0.00% 8.70% 4.35% 17.39% 0.00%  13.04%
Material Science and
Engineering Major 2 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00%
Mechanical Engineering
Major 90 68.89%  50.00% 0.00% 4.44%  10.00%  26.67% 4.44% 13.33% 14.44% 16.67% 2.22% 13.33%
Nuclear Engineering
Major 0 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Other Major 24 41.67%  25.00% 0.00% 29.17% 12.50%  25.00% 4.17% 8.33% 20.83%  20.83% 4.17%  37.50%

Table 5: Subset of the full demographic results for School A, Spring 2021. See
Appendix D for the full results.

From the demographic table, a modularity analysis breakdown of each category

can be obtained. A sample analysis is shown in Figure 15 with the bipartite

representation of the network with student-tool modules colored. The general tool

category was used for this analysis as it provides the most comparable tool breakdown

between the different universities. For a full breakdown of all the different semesters,

along with their bipartite student module representation, please refer to Appendix D.
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Figure 15: School A bipartite makerspace network and module assignments for
various student demographic groupings: A) Gender B) Race C) Major. A
connection between a student demographic group and a tool grouping indicates
that at least 10% of that demographic interacted.

The bipartite representation, along with the modular analysis, provides a method
for identifying how student groups interacted with the space and provides a visual for the
interaction that is less easily seen with just the demographic table. In addition, different
module colorings allow for usage across the groups, as with the example of School A in
Figure 15, highlighting how male students used electronics and CAD stations while
female students did not for the semester.

The most consistent module difference among the tool groups is related to the
major-based demographic breakdown at School A. For Fall 2020, Mechanical engineers
were grouped in a module with metal tools, wood tools, and the laser cutter, with the
electrical engineers in a module with electronics. The pattern continued for Spring 2021

and Fall 2022, with electrical engineers in a module with electronic tools while

mechanical engineers were paired with metal tools in a module. The only semester to
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deviate was Spring 2022, with the only difference between electrical engineers and
mechanical engineers being the laser cutter usage leading to the difference in modules.
The analysis shows engineers often are closely correlated to the tools within their major,
supporting the hypothesis that classes play a major role in the usage of the space, but
does not restrict them to just those tools as students still used a variety of tools (dark
links outside of module).

For School B, the population for each of the majors needed to be increased to
show trends across majors due to the space being primarily used by mechanical
engineers. The Fall 2022 semester, however, provides a view of various majors. In this
semester, different module combinations can be identified. Still, aerospace engineering
and mechanical engineers interacting with the CAD station and PI on duty was a major
factor in the module creation. Outside of those interactions, majors were connected
heavily to all the other tools.

While the bipartite demographic view offers a visual as to how students interact
with tools, the analysis is limited by the sample size and reliance on one tool driving the
analysis. If two groups use all the same tools except one (as with School A Spring 2022),
the two groups will be separated into different modules even if one tool was used more
by one student group. Another limitation of the analysis is the sample size, with sample
sizes for the survey often not reaching more than seven entries, causing the participant
information to be removed. The limitations of this analysis create difficulty when
evaluating trends over time and add difficulty for comparing student groups across the

university but offer a view at each semester to see how students interacted with the space
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and where different tools were used. When combined with traditional survey analysis,
differences in semesters can be explored as to why certain patterns emerged. While
results are promising as different student group modules can be identified, larger, more
diverse sample sizes across multiple semesters would be needed to confirm the analysis
found in this analysis.

5.3. Summary of Chapter 5

The participation and Z-value analysis of makerspaces over time highlighted both key
and underused tools, singling out hanging out with a group for School A and 3D printing
for both schools. The demographic analysis identified student modules, with major
classification playing a major role in School A with students in electrical engineering
being in the same module as tools commonly associated with electrical engineers and
likewise for mechanical engineering students. For other groups, the numbers for a large
variety of student groups were not large enough to be represented fully but the visual can
identify differences in tool usage by the difference in module assignment. The
demographic analysis was able to determine how students interacted with tools in the
space and what combinations they were likely to use, however a larger, more diverse
dataset is needed to more accurately capture the effects of the different groups more

clearly or that did not have a large enough population to be included.
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6. CONCLUSIONS AND FUTURE WORK
6.1. Summary
Work in the thesis focuses primarily on utilizing the different ecological network
techniques to evaluate the makerspaces at two universities. The three metrics,
modularity, nestedness, and connectance, are used in combination first to identify overall
network performance and insight, deeper hub-tool analysis, and student demographic
breakdown. Differences in the normal operation of and COVID-19 restrictions for the
makerspaces at each school provides a unique opportunity to evaluate the makerspaces
across time and in different operating environments.

The process for evaluating the makerspace and utilizing the different ecological
metrics first consisted of gathering the data in a format that would allow for ecological
metrics. The data was gathered utilizing survey-gathering techniques at both universities.
A bipartite interaction network with students on the rows and tools on the columns was
created from the student-self-reported use of tools.

The varying ecological metrics were introduced and explained with a sample
network to show how the metrics would be used to evaluate the space and how the
different metrics played a role when used in combination to provide valuable insight.
The metrics were then used at each school for each semester, and results were discussed,
with the overall makerspace network showcasing a strong correlation for being nested.
However, compared to the higher expected connectance, School A showed modular
tendencies and overall higher modularity values compared to School B, indicating the

restricted use of School A guiding the tool used to primarily class use.
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The ecological analysis was expanded by utilizing modularity as the foundation
to conduct participation, z-value analysis, and demographic module analysis to identify
hub tools and student usage patterns. The hub-tool analysis identified 3D printing as a
major hub tool across both schools for most semesters while also providing a visual to
rapidly identify the varying tool group usages and key tools across semesters. Traditional
survey analysis techniques supported the results. On the other hand, the demographic
analysis grouped students by demographic partitions with a 10% cutoft for indicating if a
group was using the tool or not. The subsequent modularity analysis provided insight
into whether tool usage differed amongst the groups and universities. The analysis
showcased major divisions as a major point of different tool usage at School A, while for
School B different majors did not have ample numbers to make a substantial
comparison.

6.2. Future Work

Future work for this project spans two separate routes to enhance the analysis and
understanding of makerspace and utilize the findings to create a positive impact across
different makerspaces. In addition, the findings in this thesis and the methods presented
should allow for follow-up work.

6.2.1. Enhancing the User Experience

With the identification of hub tools at each university and using different demographics,
workshops can be conducted to enhance the student experience. One of the results of the

analysis highlighted how the space is nested and how students will typically learn one
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tool before expanding to more specialized tools. Introducing students early to the space
and showcasing a “hub” tool makes them more likely to return to the space later.

To conduct the workshop, research works closely with the leadership of different
organizations that can reach students of different demographics and invite them to the
workshop. The workshop would introduce students to different hub tools in the space,
allowing students some hands-on experience as well as going over all the potential
barriers to entry, so students are aware and more confident when entering the space. To
capture whether the students had a better experience, workshop students would be
tracked separately from the general population, and their nestedness and modularity
values and usage across different semesters be tracked to see if their usage of the space
trended higher than students that were not introduced to the hub tools early on. Efforts
for conducting these workshops have been implemented at both universities, with initial
trial runs conducted at each university. Results from the initial workshops in progress
will be used to better understand the effects the workshop had on the student and how
they can be improved for future iterations.

Another way to enhance the student experience would be to include hub tools
early on in a student’s engineering career curriculum. For example, introducing 3D
printing, working in groups in the space, and encouraging the students to use the space
earlier on would allow students to become familiar with the space and explore the
variety of tools offered. Utilizing the tool analysis, key tools at different universities can

be identified, and curriculums can be modified to introduce students better to the space.
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6.2.2. Expanding Research to Other Makerspaces

The research presented in this thesis focused primarily on two universities,
School A and School B. Both universities had vastly different makeups, restrictions, and
focuses for the space and different structures according to the ecological metrics.
Expanding this research to other makerspaces would help refine the thresholds for
understanding different makerspaces and aid those makerspaces in implanting the
findings in this research to improve their makerspaces. By assuring they have key tools
that students can use to be introduced to the space and then expanding to more advanced
tools, makerspaces can track the growth of the space through the different ecological
metrics.

For new spaces starting up, the introduction of new tools and regulations can be
closely monitored from semester to semester to visualize their impact on the space. If the
space is heavily modular after introducing new tools or regulations, educators and
makerspace staff can adjust their approach to the space and improve the user experience.
If the space is instead highly nested with low modularity, the new tool can be seen as
successful at introducing students to a space.

Additionally, as mentioned in the demographic analysis in chapter 5.2, capturing
a larger sample size of varying demographics would aid in the comparisons both
between schools as well as between semesters to more definitively visualize how
students interact with the space and which groups face challenges. Identifying these
potential barriers can aid educators in tailoring curriculums and workshops towards

aiding these student groups in the space.
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6.3. Conclusions

This thesis’s primary focus was to apply ecological network analysis techniques
to engineering makerspaces to acquire a deeper understanding of the space and provide
measurable metrics to evaluate the health of the space. The primary conclusions of the
report highlight the overall nested structure of the makerspace network, with a higher
modularity value present in the face of disruptions for School A. The analysis also
identified several key tools at both universities, with 3D printers being a major tool in a
majority of the semesters at both schools and student social activities being of high
importance at School A. Demographic analysis of the space showed the varying
population at each university, with major demographic highlighting the more modular
structure of School A.

As to the goals of the report to advance different aspects of systems analysis and
ecological analysis, a method for evaluating a changing system is presented where a
higher standard of connectance is used to generate the null models. The proposed
approach allows for the higher modular structure to be identified and for the status of a
network to be evaluated. The relationship between nestedness, modularity, and
connectance was also explored deeply, providing insight into the network’s structure and
how a network is expected to behave under certain connectance conditions. This analysis
can be expanded into various ecological applications where data is available for a

changing population.
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For the advancement of human systems, the ecological network analysis
provided valuable insight that otherwise would not have been easily accessible or
visualized. The conversion of a complex human network into a bipartite graph allows for
measurable metrics to be used to evaluate the complex structure of the space. The
analysis also allows for key actors to be identified, having far-reaching potential in
various human networks were key locations or actors are to be identified.

With the findings, recommendations can be given to engineering makerspaces to
create a more inclusive environment that will allow students to delve into various tools
and enhance their education. Future work will allow for these recommendations to be

applied as well as be tracked at a variety of different universities and locations.
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APPENDIX A: NETWORK MATRIXES
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Table 21: School B Fall 2022 Specific Tool interaction matrix
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APPENDIX B: TOOL USE SURVEY

Due to size constraints, contained as a separate attachment

92



APPENDIX C: HUB TOOL ANALYSIS SUPPLEMENTARY PLOTS AND TABLES

Table 22: School A P&Z Values

Fall 2020 Spring 2021 Spring 2022 Fall 2022
Tool Participation | Z-value | Participation | Z-value | Participation | Z-value | Participation | Z-value

T1 | 3D Printers 0.60336 42888 | 0.63437 7.5361 0.74386 43647 | 0.42472 4.3323
T2 | Metal Tools 0.13265 1.9353 | 0.70439 5.3882 0.75694 2.5994 | 0.29514 2.7926
T3 | Laser Cutter 0.32 0.46168 | 0.5 0.26508 | 0.57143 0.42931 | 0 0.13538
T4 | Wood Tools 0 0.19961 | 0.43878 3.1241 0.609 1.2824 | 0.59259 1.3723
T5 | Hand Tools 0.44291 1.7184 | 0.61547 3.6965 0.76562 3.0463 | 0.6498 2.4505
T6 | Electronics 0.27778 3.1241 | 0.5858 3.6148 0.61806 2.3705 | 0.54913 3.0681
T7 | Social Activities 0.47333 3.671 0.32812 3.8704 0.75154 3.3825 | 0.50554 3.7821
T8 | Got/Gave Help 0.64198 0.73508 | 0.50889 2.827 0.73183 2.6425 | 0.405 1.997
T9 | Soft Material Tools | 0 -0.3408 | 0 -0.47733 | 0.375 0.16696 | 0.66667 0.36113
T10 | Other 0.31405 29915 | 0.37877 4.8 0.52041 2.846 0.51852 2.5722
T11 | 3D Printers 0 0.73508 | 0.29752 1.2824 | 0.5 -0.45773
T12 | Metal Tools 0.345 2.1313 0.7483 1.6041 | 0.705 2.8891
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Table 23: School B General Tool P&Z Values

Fall 2020 Spring 2021 Spring 2022 Fall 2022
T1 3D Printers 0.73 3.52 0.76 5.00 0.70 4.03 0.80 5.20
T2 Metal Tools 0.72 2.15 0.62 2.29 0.70 2.96 0.66 4.09
T3 Laser Cutters 0.68 2.34 0.76 3.28 0.63 3.15 0.76 4.22
T4 Wood Tools 0.74 2.09 0.71 2.46 0.62 3.58 0.74 3.63
T5 Hand Tools 0.71 3.00 0.68 2.63 0.67 2.85 0.69 435
T6 Electronics 0.64 2.24 0.69 2.14 0.73 2.47 0.58 4.09
Tools
T7 Social 0.64 2.34 0.60 2.63 0.64 2.51 0.75 3.86
Activities
T8 Got / Gave 0.54 1.84 0.60 2.14 0.69 1.80 0.76 4.51
Help
T9 Soft Material 0.61 1.09 0.74 2.67 0.50 2.33 0.73 5.29
Tools
T10 Other 0.00 -0.20 0.38 1.50 0.44 1.15 0.00 -0.11
T11 Paint Booth 0.53 0.54 0.58 0.58 0.33 1.80 0.76 3.18
T12 Work Areas 0.62 0.54 0.73 2.28 0.54 1.62 0.69 2.15
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T13 Volunteer on 0.68 1.08 0.60 1.54 0.63 1.07
Duty
T14 Prototyping 0.14 0.91
Table 24: Specific Tool Analysis Participation and Z-Value
Fall 2020 Spring 2021 Spring 2022 Fall 2022
Tool Tool Participation Z- Tool Participation Z- Tool Participation | Z- Tool Participation | Z-value
Number value value value
T1 Ultimaker 0.62 2.04 Laser Cutter 0.44 0.11 Laser Cutter 0.59 -0.17 Hammers 0.54 0.62
(Combined)
T2 Dremel 0.50 -0.58 Vinyl/Paper Vinyl/Paper Pliers 0.64 1.14
DigiLab Cutter Cutter
T3 SLS 0.00 1.15 Foam Cutter Foam Cutter 0.44 -0.80 Vice Grips 0.51 0.35
Formiga
(Professional
Printer)
T4 Stratasys Sewing Sewing 0.00 -1.39 Clamps 0.40 0.88
Machine Machine
TS Resin Paint Booth 0.50 -0.64 Paint Booth 0.17 -0.14 Screw 0.68 1.40
Drivers
T6 3D Scanner 0.00 -0.58 All Hand 0.80 0.46 All Hand 0.73 232 Hand Drills 0.67 0.66
Tools Tools
T7 Studio Hammers 0.63 0.83 Hammers 0.61 1.27 Angle 0.50 -0.43
System Grinder
Printer
(Metal)
T8 Don't Know Pliers 0.76 -0.45 Pliers 0.62 1.07 Chisels 0.38 -0.69
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T9 Other 0.00 -0.94 Vice Grips 0.45 0.08 Vice Grips 0.61 0.87 Measuring 0.62 0.62
Tape
T10 Manual Mill 0.68 1.36 Clams (C- 0.79 -0.26 Clams (C- 0.63 0.67 Table Vice 0.00 -0.69
CLAMP or CLAMP or
other other
T11 Manual 0.61 0.51 Screw 0.80 0.78 Screw 0.73 2.32 Glue Gun 0.64 -0.79
Lathe Drivers Drivers
T12 Waterjet 0.44 -1.19 Hand Drills 0.81 -0.45 Hand Drills 0.75 0.97 Wire Cutters 0.53 0.65
T13 CNC Metal 0.00 -1.19 Angle 0.38 -0.67 Angle 0.46 0.26 Hand Saw 0.63 -0.96
Mill Grinder Grinder
T14 Drill Press 0.44 0.51 Chisels 0.00 -0.79 Chisels 0.45 -1.15 Dremel 0.50 -1.16
T15 Other 0.00 -0.49 Measuing 0.76 0.08 Measuing 0.68 1.27 Tap & Dye 0.38 -0.43
Tape Tape Set
T16 CNC Wood Table Vice 0.46 0.83 Table Vice 0.48 0.67 Scissors 0.66 -0.03
Router
T17 Drill Press 0.00 0.00 Glue Gun 0.00 -0.55 Glue Gun 0.72 -0.90 Tin Snips 0.00 -1.17
T18 Table Saw 0.00 -0.94 Wire Cutters 0.53 0.16 Wire Cutters 0.71 0.09 X-ACTO 0.38 -0.69
Knife
T19 Chop Saw 0.00 -0.94 Hand Saw 0.63 -0.10 Hand Saw 0.44 0.06 Other (hand 0.38 1.14
tools)
T20 Sander 0.38 0.94 Dremel 0.78 -0.26 Dremel 0.69 -0.24 Dremel 0.28 0.29
DigiLab
T21 Other Tap & Dye 0.37 0.83 Tap & Dye 0.54 0.06 Ultimaker 0.54 1.38
set set
T22 Study 0.58 1.68 Scissors 0.63 -0.10 Scissors 0.74 0.54 SLS
T23 Just Hung 0.00 0.71 Tin Snips 0.00 -1.41 Tin Snips 0.61 -0.57 Stratasys 0.63 -0.79
Out
T24 Met with a 0.60 2.99 X-ACTO 0.50 -0.71 X-ACTO 0.74 -0.35 Resin 0.00 0.66
Group Knife Knife
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T25 Helped by 0.00 -0.20 Dremel 0.36 3.84 Other 0.56 -1.55 3D Scanner
Another Digilab
Student
T26 Helped by a 0.67 0.71 Ultimaker 0.64 2.78 Dremel 0.72 -0.75 Studio
Staff S5 Digilab System
Member Printer
T27 T helped 0.44 -0.20 Ultimaker 3 0.60 3.45 Ultimaker 0.56 -0.17 Scanner 3D
Someone S5
Else
T28 Ultimaker 0.63 1.15 Ultimaker 3 0.38 -0.17 Don't Know
2+ Extended
T29 SLS 0.00 -0.36 Ultimaker 0.00 Other 0.00 -0.96
Professional 2+ Extended
T30 Strasys 3D 0.00 0.69 SLS Band Saw 0.49 2.47
printer Professional
T31 Resin 3D 0.56 0.26 Strasys 3D CNC Metal 0.44 -0.07
printer printer Mill
T32 3D Scanner 0.00 -0.71 Resin 3D 0.44 -0.57 Manual Mill 0.38 1.74
printer
T33 Studio 3D Scanner 0.00 -0.90 CNC Lathe 0.44 -0.96
System
Printer
(Metal)
T34 Scanner 3D Studio 0.00 -0.90 Drill Press 0.00 -0.07
System
Printer
(Metal)
T35 Band Saw 0.58 1.82 Scanner 3D Electric
(Metal) Discharge
Machine
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T36 CNC Metal 0.71 2.90 Band Saw 0.57 1.47 Surface 0.56 -0.69
Mill (Metal) Grinder
T37 Manual Mill 0.48 3.61 CNC Metal 0.78 -1.08 Injection 0.00 -1.16
Mill Molder
T38 CNC Lathe 0.77 0.79 Manual Mill 0.53 1.47 Vacuum
Former
T39 Manual 0.27 4.05 CNC Lathe 0.38 -0.35 Waterjet 0.00 1.38
Lathe
T40 Drill Press 0.57 0.03 Manual 0.46 0.87 Hydraulic 0.00 -0.79
(Metal) Lathe Press
T41 Electric 0.00 -0.64 Drill Press 0.54 0.42 Metal Shear 0.00 -0.07
Discharge (Metal)
Machine
T42 Surface 0.00 -0.64 Electric Welding 0.00 0.66
Grinder Discharge Equipment
Machine
T43 Injection Surface 0.53 -1.15 Other 0.00 -0.43
Molder Grinder (metal)
T44 Vacuum Injection Band Saw 0.00 -0.17
Former Molder
T45 Waterjet 0.67 0.45 Vacuum Belt sander 0.00 -0.43
Former
T46 Hydraulic 0.00 -1.41 Waterjet 0.38 1.27 Circular 0.00 -0.43
Press Saw
T47 Metal Shear 0.48 -0.19 Hydraulic 0.24 -0.95 Miter 0.00 -0.69
Press (Chop) Saw
T48 Welding 0.00 -1.04 Metal Shear 0.17 -0.14 Jigsaw
Equipment
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T49 Band Saw 0.56 -0.19 Welding 0.41 0.26 Drill Press 0.50 -1.17
(Wood) Equipment (wood)
T50 Belt Sander 0.41 0.26 Band Saw 0.56 0.42 Table Saw 0.00 0.35
(Wood)
T51 Circular 0.00 -0.41 Belt Sander 0.67 0.09 Router -
Saw shopbot
T52 Miter (chop) 0.00 -0.19 Circular 0.61 -0.24 Router-hand
Saw Saw
T53 Jigsaw 0.00 -0.64 Miter (chop) 0.50 0.09 sander - 0.00 -0.96
Saw hand
T54 Drill press Jigsaw 0.00 -0.90 Vacuum
(wood) Former
TS5 Table Saw 0.44 -0.41 Drill press 0.50 0.09 Other 0.00 -1.22
(wood) (wood)
T56 Router - Table Saw 0.69 -0.24 Circuit 0.00 -1.17
Shopbot Board
Plotter
T57 Router - Router - Multimeter 0.41 2.70
Hand Shopbot
T58 Sander - 0.00 -0.64 Router - 0.00 -0.90 Power 0.32 2.47
Hand Hand Supply
T59 Vacuum Sander - Soldering 0.45 2.01
Former Hand Station
T60 Circuit 0.00 -1.06 Vacuum Oscilloscope 0.30 1.56
Board Former
Plotter
T61 Multimeter 0.14 2.29 Circuit 0.00 -1.32 Logic 0.38 -0.71
Board Analyzer
Plotter

99




T62 Power 0.13 2.60 Multimeter 0.69 0.97 Other 0.50 -0.79
Supply (Electronics)
T63 Soldering 0.00 1.99 Power 0.32 0.40 CAD 0.59 -0.17
Station Supply Station
T64 Osciloscope 0.00 1.68 Soldering 0.57 0.97 Construction 0.50 -0.71
Station Station
T65 Logic 0.00 -1.06 Osciloscope 0.00 -0.17 Workbench 0.68 0.20
Analyzer
T66 CAD station 0.24 1.04 Logic 0.00 -1.32 Mobile 0.00 -1.22
Analyzer HDTV
T67 Construction 0.00 0.34 CAD station 0.63 0.45 White 0.00 -1.17
Station Boards
T68 Workbench 0.24 1.04 Construction 0.58 0.15 Other 0.00
Station
T69 Mobile 0.00 -0.71 Workbench 0.59 -0.16 Studied 0.65 1.34
HDTV
T70 Whiteboard 0.00 -0.71 Mobile 0.00 -0.90 Hung Out 0.46 0.54
HDTV
T71 Studied 0.52 1.04 Whiteboard 0.50 -1.24 Met with a 0.65 3.47
Group
T72 Hung out 0.32 0.34 Studied 0.70 0.76 Other
T73 Met with 0.64 2.44 Hung out 0.75 -0.17 Got Help 0.52 0.81
Group from
another
student
T74 Got help 0.71 0.08 Met with 0.74 2.30 Got help 0.62 0.54
from Group from a staff
another member
student
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T75 Got help 0.70 244 | Got help 0.65 138 | Helped 0.60 0.54
from staff from someone
member another else
student
T76 T helped 0.58 0.45 | Got help 0.71 138 | other 0.52 0.81
someone from staff
else member
I helped 0.71 0.45
someone
else
Table 25: School B Specific Tool P&Z table with tool number
Fall 2020 Spring 2021 Spring 2022 Fall 2022
# Tool Participatio | Z- Tool Participatio | Z- Tool Participatio | Z- Tool Participatio | Z-
n valu n valu n valu n valu
e e e e
T1 Ultimaker 0.78 3.35 Laser Cutter 0.72 336 | Lasers 0.67 2.49 | Laser Cutter 0.70 2.82
T2 SLS 0.00 -0.39 | Paint Booth 0.69 0.40 | Paint Booth 0.64 0.72 | Paint Booth 0.71 0.36
T3 Formlabs 0.72 0.71 Prototyping 0.70 1.64 | PIon Duty 0.49 -0.25 | PI1On Duty 0.65 -0.25
Instructor on
Duty
T4 | Stratasys 0.00 0.16 | All Hand 0.74 1.29 | All Hand Tools 0.70 1.91 | Hammers 0.18 1.40
Tools
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TS5 FARO Arm 0.44 -0.06 | Hammers 0.61 -0.62 | Hammers 0.60 0.79 | Pliers 0.25 2.36
T6 Don't Know Pliers 0.62 0.55 Pliers 0.63 1.72 | Vice Grips 0.19 1.19
T7 Other (3D 0.00 -1.49 | Vice Grips 0.63 -0.04 | Vice Grips 0.70 0.04 | Clamps 0.28 2.36
Printing)
T8 Band Saw 0.82 0.82 | Clamps (C- 0.67 1.14 | Clamps 0.63 1.35 | Screw Drivers 0.30 2.15
clamp or
other)
T9 CNC Mill 0.44 -0.06 | Screw Drivers | 0.66 1.73 | Screw Drivers 0.62 2.46 | Hand Drills 0.24 2.04
T1 Manual Mill 0.00 -1.63 | Hand Drills 0.69 1.14 | Hand Drills 0.70 1.16 | Angle Grinder 0.17 -0.52
0
T1 CNC Lathe Angle 0.48 -0.83 | Angle Grinder 0.70 -0.09 | Chisels 0.41 -0.94
1 Grinder
T1 Manual Lathe 0.56 0.82 | Chisels 0.61 -0.62 | Chisel 0.64 -0.89 | Measuring Tape 0.33 2.57
2
T1 Drill Press 0.70 0.25 | Measuring 0.65 0.55 | Measuring Tape 0.67 2.09 | Table Vice 0.22 0.76
3 Tape
T1 Injection Molder Table Vice 0.57 -0.92 | Table Vice 0.71 0.20 | Glue Gun 0.31 0.87
4
T1 Vacuum Former Glue Gun 0.65 -0.04 | Glue Gun 0.68 0.04 | Wire Cutters 0.27 0.87
5
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T1 Waterjet 0.74 246 | Wire Cutters 0.67 0.26 | Wire Cutters 0.71 0.50 | Hand Saw 0.33 0.23

6

T1 Other (Metal) 0.50 -0.98 | Hand Saw 0.51 -0.62 | Hand Saw 0.68 -0.33 | Dremel 0.30 0.44

7

T1 Embroidery 0.00 -1.45 | Dremel 0.41 -1.21 | Dremel 0.70 -0.09 | Tap & Dye Set 0.22 -0.09
8 Machine

T1 Hot Wire Foam 0.00 -1.72 | Tap & Dye 0.38 -0.83 | Tap & Dye Set 0.72 -1.27 | Scissors 0.40 1.51

9 Cutter Set

T2 Sewing Machine 0.22 -0.12 | Scissors 0.70 -0.04 | Scissors 0.68 1.35 | Tin Snips 0.56 -1.26
0

T2 | Vinyl/Paper 0.60 0.41 | Tin Snips 0.32 -0.62 | Tin Snips 0.73 -0.85 | X-ACTO Knife 0.45 0.34

1 Cutter

T2 | Other (Craftland) | 0.00 -0.49 | X-ACTO 0.58 -0.04 | X-ACTO Knife 0.70 0.79 | Other (Hand Tools) | 0.28 2.47

2 Knife

T2 Bandsaw 0.56 0.67 | Other (# of 0.44 -2.09 | Ultimaker 0.77 241 Ultimaker 0.75 5.92

3 times used)

T2 Beltsander 0.57 0.94 | Ultimaker 3 0.67 3.81 Resin 0.71 0.07 | Resin 0.70 2.04

4
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T2 Circular Saw SLS 0.46 1.08 | SLS Formiga SLS 0.00 -1.17
5 Professional

Printer

(Formiga)
T2 Chop Saw 0.54 0.94 | Formlabs 0.69 0.24 | Stratasys 0.00 -1.44 | 3D Scanner 0.00 -1.17
6 Form 2 3D

Printer
T2 | CNC Wood 0.44 -0.94 | Stratasys 3D 0.61 -0.28 | FARO Arm 0.44 -1.57 | Don't Know
7 Router printers
T2 Drill Press 0.64 0.94 | 3D scanner - 0.00 -2.39 | Band Saw (Metal) | 0.69 1.68 | Other (3D Printing) | 0.38 -1.26
8 FARO Arm
T2 Planer 0.49 0.41 Other Metal CNC 0.45 -0.68 | Band Saw (metal) 0.59 1.29
9
T3 | Router 0.49 -0.39 | Band saw 0.52 0.23 | Manual Mill 0.63 0.20 | CNC Metal Mills 0.45 -0.10
0 (Metal)
T3 Sander 0.61 1.21 CNC Metal 0.50 -1.25 | Manual Lathe 0.66 -0.39 | Manual Mill 0.57 -0.36
1 Mill
T3 Table Saw 0.69 0.94 | Manual Mill 0.61 -0.62 | Drill Press 0.74 0.79 | Manual Lathe 0.57 -0.71
2 (Metal)
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T3 Other (Wood) 0.67 -0.85 | CNC Lathe Belt Sander 0.75 1.38 | Dirill Press 0.59 0.34
3

T3 Circuit Board 0.44 -0.92 | Manual Lathe | 0.69 -0.62 | Polishing Wheel 0.59 -0.19 | Belt Sander 0.61 0.44
4 Prototyping

T3 Multimeter 0.71 1.26 | Drill Press 0.56 0.23 | Waterjet 0.76 1.79 | Polishing Wheel 0.56 -0.40
5 (Metal)

T3 Power Supplies 0.63 1.26 | Belt Sander 0.61 0.44 | Sheet Metal 0.70 -0.19 | Waterjet 0.66 1.13
6 Break

T3 Soldering Station | 0.71 2.90 | Polishing 0.00 -1.25 | Cold Cut Saw 0.73 -0.52 | Sheet Metal Break 0.49 -0.10
7 Wheel

T3 Other 0.50 -0.98 | Injection Metal Shears 0.71 -0.19 | Cold Cut Saw 0.58 -0.40
8 (Electronics) Molder

T3 CAD Station 0.69 -0.39 | Vacuum Band Saw 0.70 1.20 | Metal Shears 0.48 0.21
9 Former (Wood)

T4 Workbench/Table | 0.65 0.25 Waterjet 0.70 0.23 Belt Sander 0.66 1.04 | Other (metal) 0.44 -1.37
0 s

T4 | Other Other 0.00 -0.81 | Circular Saw 0.70 -0.09 | Band Saw 0.61 0.76
1 (Workstations)
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T4 Got Help 0.38 0.29 | Band saw 0.77 1.93 Miter (Chop) Saw | 0.68 0.56 | Belt Sander 0.61 1.59
2 (Student) (wood)
T4 Got Help 0.70 2.20 | Belt sander 0.70 0.65 Jigsaw 0.64 -0.73 | Circular Saw 0.58 0.21
3 (Prototyping

Instructor)
T4 | Helped 0.49 0.14 | Circular saw 0.69 -0.62 | Dirill Press 0.68 0.40 | Miter Saw 0.61 0.83
4 (Wood)
T4 | Other (Help) 0.38 0.29 | Miter (Chop) | 0.48 0.65 | Wood CNC 0.73 -0.85 | Jigsaw 0.54 1.44
5 saw
T4 Jigsaw 0.48 -0.83 | Hand Router 0.24 -0.57 | Dirill Press 0.50 0.02
6
T4 Drill press 0.65 0.23 | Planer 0.56 0.23 | CNC Wood Router | 0.28 -0.56
7 (wood)
T4 CNC Wood 0.38 -0.83 | Table Saw 0.63 0.72 | Router 0.46 0.36
8 Router
T4 Router 0.28 -0.41 | Jointer 0.46 0.40 Planer 0.52 0.52
9
T5 Planer 0.45 0.23 Wood Lathe 0.61 -1.27 | Table Saw 0.54 1.90
0
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T5 Table saw 0.66 0.23 Embroidery 0.00 -0.89 | Jointer 0.51 0.36
1
TS Other 0.50 -0.55 | Hot Foam Wire 0.00 -1.22 | Wood Lathe 0.32 -0.71
2 Cutters
T5 Embroidery 0.00 -1.25 | Sewing Machine 0.54 -0.09 | Other (Wood) 0.44 -0.32
3 Machine(CN

C Sewing

Machine)
T5 Hot Wire Vinyl/Paper 0.64 0.40 | Embroidery 0.60 0.76
4 Foam Cutter Cutter Machine
T5 Sewing 0.69 -0.28 | Button Maker 0.61 -0.52 | Foam Cutter 0.61 -0.86
5 Machine
TS Vinyl/Paper 0.65 -0.19 | Circuit Board 0.28 0.14 | Sewing Machine 0.70 1.92
6 Cutter Plotter
TS Other 0.50 -1.16 | Multimeter 0.72 1.46 | Vinyl/Paper Cutter 0.61 5.42
7
T5 Circuit Board | 0.00 -1.16 | Power Supply 0.70 0.80 | Button Maker 0.65 0.76
8 Plotter
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T5 Multimeter 0.64 -0.62 | Soldering Station 0.74 0.50 | Other (Craftland) 0.50 -0.02
9

T6 Power Supply | 0.57 -0.41 | Oscilloscope 0.68 -0.68 | Circuit Board 0.64 0.18
0 Plotter

T6 Soldering 0.67 -0.04 | Logic Analyzer 0.50 -1.38 | Multimeter 0.66 1.53
1 station

T6 Oscilloscope 0.48 -0.83 | Function 0.67 -0.85 | Power Supply 0.66 1.36
2 Generator

T6 Logic CAD Station 0.72 0.60 | Soldering Station 0.64 1.19
3 Analyzer

T6 Other Workbench/Table | 0.71 0.07 | Oscilloscope 0.61 1.03
4 S

T6 CAD Station 0.67 0.63 White Boards 0.41 -0.73 | Logic Analyzer 0.00 -0.86
5

T6 Workbench/ 0.58 222 Studied 0.61 0.56 | Function Generator 0.61 0.35
6 tables

T6 White Boards | 0.64 -0.51 | Hung Out 0.65 0.72 | Other (electronics) 0.00 -0.49
7

T6 Other Met with a Group | 0.73 1.46 | CAD Station 0.44 -0.10
8
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T6 Studied 0.66 1.08 | Got help from 0.70 0.04 | Workbenches/Table | 0.69 0.36
9 another student s
T7 Hung out 0.60 1.08 | Got help froma 0.71 0.60 | White Boards 0.64 -0.40
0 PI
T7 Met with a 0.72 1.64 | Helped Someone 0.70 0.23 | Other
1 group Else
T7 Other Hung out 0.75 -0.17 | Studied 0.74 2.12
2
T7 Got help from | 0.66 0.59 | Met with Group 0.74 2.30 | Hung Out 0.74 2.31
3 another

student (not a

Prototyping

Instructor)
T7 Got help from | 0.65 1.64 | Got help from 0.65 1.38 | Met with a Group 0.72 2.82
4 a Prototyping another student

Instructor
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T7 I helped 0.64 0.59 | Got help from 0.71 1.38 | Other 0.50 -1.47
5 someone else staff member

T7 Other I helped someone | 0.71 0.45 | Got help from 0.76 0.76
6 else student

T7 Got help from Prototyping Instructor

7

T7 Helped Someone 0.72 0.36
8 Else

T7 Other 0.76 0.76
9
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Figure 16: School A specific tool breakdown with labels found in Table 24
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APPENDIX D: DEMOGRAPHIC ANALYSIS BREAKDOWN TABLES AND PLOTS

Table 26: School B Fall 2020 demographic data

Got / Soft
Electronics  Social Gave Material Work Paint Volunteer
n 3D Printers Metal Tools  Laser Cutters Wood Tools Hand Tools Tools Activities Help Tools Areas Booth on Duty Other

General N =57 77.19% 49.12% 50.88% 57.89% 63.16% 40.35%  45.61%  33.33%  29.82%  15.79% 14.04% 28.07% 3.51%
Male 43 74.42% 53.49% 51.16% 55.81% 62.79% 39.53% 48.84% 39.53% 30.23% 18.60% 11.63% 32.56% 2.33%
Female 13 84.62% 30.77% 46.15% 61.54% 69.23% 38.46%  38.46%  15.38% 30.77% 7.69%  23.08% 15.38% 7.69%
Hispanic 6 50.00% 33.33% 16.67% 50.00% 33.33% 16.67%  16.67% 0.00% 0.00% 16.67% 0.00% 16.67% 0.00%
Non-Hispanic 50 80.00% 50.00% 54.00% 58.00% 68.00% 42.00% 50.00% 38.00% 34.00% 16.00% 16.00% 30.00% 4.00%
White / Caucasian 33 84.85% 48.48% 54.55% 60.61% 60.61% 39.39% 39.39% 30.30% 33.33% 18.18%  15.15% 36.36% 3.03%
Black or African 5 80.00% 60.00% 40.00% 40.00% 80.00% 20.00%  40.00% 40.00% 0.00% 0.00%  20.00% 0.00% 0.00%
American Indian or 0 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Native Hawaiian or

Other Pacific 1 100.00% 100.00% 100.00% 100.00% 0.00% 0.00% 100.00% 100.00% 100.00% 0.00% 100.00% 100.00% 0.00%
Middle Eastern 1 0.00% 0.00% 0.00% 100.00% 100.00% 100.00% 0.00% 0.00% 100.00% 0.00% 0.00% 100.00% 0.00%
Asian 22 68.18% 45.45% 45.45% 54.55% 63.64% 45.45% 59.09%  45.45% 36.36% 18.18% 13.64% 27.27% 4.55%
Aerospace 4 100.00% 0.00% 75.00% 50.00% 50.00% 50.00% 100.00% 50.00% 25.00%  25.00% 0.00% 25.00% 0.00%
Biomedical 2 50.00% 50.00% 50.00% 100.00% 100.00% 100.00%  50.00% 50.00% 100.00%  50.00% 0.00% 100.00% 0.00%
Chemical 1 100.00% 0.00% 100.00% 100.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Computer 1 100.00% 0.00% 100.00% 100.00% 100.00% 100.00% 100.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00%
Electrical 1 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 0.00% 0.00% 100.00% 0.00%
Industrial 0 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Material Science 1 100.00% 100.00% 100.00% 100.00% 100.00% 0.00% 100.00% 100.00% 100.00% 0.00% 0.00% 0.00% 0.00%
Mechanical 44 75.00% 52.27% 43.18% 52.27% 61.36% 36.36% 36.36% 27.27% 20.45% 15.91% 13.64% 22.73% 4.55%
Nuclear 0 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Other Major 3 66.67% 66.67% 66.67% 66.67% 33.33% 33.33% 66.67% 66.67% 100.00% 0.00%  33.33% 66.67% 0.00%
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Table 27: School A Fall 2020 demographic Data

Soft
3D Metal Laser Wood Hand Electronic Social Got/Gave Material
n Printers Tools Cutter Tools Tools s Activities Help Tools Other
General N =54 61.67% 23.33% 8.33% 8.33% 28.33% 20.00% 50.00% 15.00% 1.67% 8.33%
Male 43 69.77%  27.91% 6.98% 11.63% 32.56% 25.58% 48.84% 13.95% 0.00% 4.65%
Female 7 85.71%  28.57%  28.57% 0.00% 28.57% 0.00% 85.71% 14.29% 0.00% 28.57%
Hispanic 8 75.00%  25.00%  12.50% 0.00% 25.00% 25.00% 62.50% 25.00% 0.00% 12.50%
Non-Hispanic 44 68.18% 27.27% 9.09% 11.36% 34.09% 22.73% 54.55% 13.64% 2.27% 9.09%
White / Caucasian 37 81.08% 21.62% 10.81% 8.11% 24.32% 10.81% 54.05% 10.81% 0.00% 8.11%
Black or African 1 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 100.00% 0.00% 0.00% 0.00%
American Indian or 2 50.00% 50.00% 0.00% 0.00% 50.00% 50.00% 50.00% 50.00% 0.00% 0.00%
Native Hawaiian or
Other Pacific Islander 0 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Middle Eastern 0 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Asian 14 42.86% 42.86% 7.14%  14.29% 50.00% 50.00% 57.14% 14.29% 0.00% 7.14%
Aerospace Engineering 5 100.00% 0.00% 0.00% 0.00% 20.00% 0.00% 20.00% 40.00% 20.00% 40.00%
Biomedical Engineering
Major 0 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Chemical Engineering
Major 0 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Computer Engineering 2 0.00% 0.00% 0.00% 0.00% 50.00% 50.00% 50.00% 50.00% 0.00% 0.00%
Electrical Engineering 16 12.50% 6.25% 6.25% 6.25% 18.75% 62.50% 62.50% 12.50% 0.00% 6.25%
Industrial Engineering
Major 0 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Material Science and
Engineering Major 0 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Mechanical Engineering 29 100.00%  41.38% 13.79% 13.79% 37.93% 3.45% 58.62% 13.79% 0.00% 6.90%
Nuclear Engineering
Major 0 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Other Major 2 50.00% 50.00% 0.00% 0.00% 50.00% 0.00% 50.00% 0.00% 0.00% 0.00%|
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Table 28: School B Spring 2021 demographic data

3D Printer Metal Too Laser Cutt Wood Toc Hand Tool Electronic: Social Acti Got / Gave Soft Mate Work Arez Paint Booi Volunteer Other

General

Male

Female

Hispanic

Non-Hispanic

White / Caucasian

Black or African American
American Indian or Alaskan Native
Native Hawaiian or Other Pacific Islander
Middle Eastern

Asian

Aerospace Engineering Major
Biomedical Engineering Major
Chemical Engineering Major
Computer Engineering Major
Electrical Engineering Major
Industrial Engineering Major
Material Science and Engineering Major
Mechanical Engineering Major
Nuclear Engineering Major

Other Major

N =94
54
32
10
79
46
1

74.47%
79.63%
68.75%
70.00%
74.68%
76.09%
0.00%
100.00%
0.00%
100.00%
72.09%
72.73%
0.00%
0.00%
0.00%
0.00%
0.00%
0.00%
77.27%
0.00%
50.00%

37.23%
44.44%
25.00%
30.00%
37.97%
36.96%
0.00%
0.00%
0.00%
0.00%
39.53%
18.18%
0.00%
0.00%
0.00%
0.00%
0.00%
0.00%
45.45%
0.00%
16.67%

54.26%
51.85%
62.50%
40.00%
56.96%
52.17%
0.00%
0.00%
0.00%
100.00%
58.14%
40.91%
0.00%
0.00%
0.00%
0.00%
0.00%
0.00%
56.06%
0.00%
83.33%
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47.87%
50.00%
46.88%
30.00%
50.63%
52.17%
0.00%
0.00%
0.00%
0.00%
51.16%
36.36%
0.00%
0.00%
0.00%
0.00%
0.00%
0.00%
53.03%
0.00%
33.33%

47.87%
48.15%
50.00%
40.00%
49.37%
54.35%
0.00%
0.00%
0.00%
50.00%
46.51%
22.73%
0.00%
0.00%
0.00%
0.00%
0.00%
0.00%
56.06%
0.00%
50.00%

28.72%
27.78%
34.38%
20.00%
30.38%
34.78%
0.00%
0.00%
0.00%
0.00%
27.91%
13.64%
0.00%
0.00%
0.00%
0.00%
0.00%
0.00%
36.36%
0.00%
0.00%

37.23%
40.74%
37.50%
30.00%
39.24%
43.48%
100.00%
0.00%
0.00%
50.00%
34.88%
22.73%
0.00%
0.00%
0.00%
0.00%
0.00%
0.00%
40.91%
0.00%
50.00%

25.53%
25.93%
25.00%
30.00%
24.05%
30.43%
0.00%
0.00%
0.00%
50.00%
23.26%
13.64%
0.00%
0.00%
0.00%
0.00%
0.00%
0.00%
25.76%
0.00%
66.67%

22.34%
18.52%
34.38%
30.00%
21.52%
21.74%
0.00%
0.00%
0.00%
50.00%
25.58%
9.09%
0.00%
0.00%
0.00%
0.00%
0.00%
0.00%
25.76%
0.00%
33.33%

29.79%
35.19%
28.13%
40.00%
30.38%
28.26%
0.00%
0.00%
0.00%
0.00%
34.88%
27.27%
0.00%
0.00%
0.00%
0.00%
0.00%
0.00%
31.82%
0.00%
16.67%

15.96%
12.96%
18.75%
0.00%
17.72%
13.04%
0.00%
0.00%
0.00%
0.00%
23.26%
9.09%
0.00%
0.00%
0.00%
0.00%
0.00%
0.00%
16.67%
0.00%
33.33%

17.02%
20.37%
12.50%
0.00%
20.25%
26.09%
0.00%
0.00%
0.00%
50.00%
11.63%
9.09%
0.00%
0.00%
0.00%
0.00%
0.00%
0.00%
19.70%
0.00%
16.67%

4.26%
5.56%
3.13%
0.00%
5.06%
4.35%
0.00%
0.00%
0.00%
0.00%
6.98%
4.55%
0.00%
0.00%
0.00%
0.00%
0.00%
0.00%
4.55%
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Table 29: School A Spring 2021 demographic data

Metal Electroni Wood Handheld Laser CAD Paint
n 3D Printers Tools Craftland cs Tools Tools Cutter Station Studied GotHelp Booth Other

General N =178 57.87% 37.64% 0.56% 14.61% 7.87% 24.16% 3.37% 11.24% 17.98% 16.85% 2.25% 17.42%
Male 118 59.32%  38.98% 0.00% 16.10% 7.63%  25.42% 4.24% 12.71% 21.19%  16.10% 1.69% 17.80%
Female 57 54.39%  35.09% 0.00% 8.77% 7.02%  17.54% 1.75% 7.02%  10.53%  19.30% 3.51% 17.54%
Hispanic 39 51.28% 30.77% 0.00% 17.95% 7.69%  25.64% 5.13% 5.13% 20.51% 10.26% 0.00% 28.21%
Non-Hispanic 131 60.31%  39.69% 0.76%  13.74% 7.63%  22.14% 3.05% 11.45% 18.32%  19.08% 3.05% 12.98%
White / Caucasian 120 60.00% 37.50% 0.83% 14.17% 9.17%  25.00% 2.50% 12.50% 17.50% 15.83% 2.50% 18.33%
Black or African American 3 33.33% 66.67% 0.00% 0.00% 0.00%  33.33% 0.00% 0.00% 66.67% 0.00% 0.00% 0.00%
American Indian or 4 75.00%  25.00% 0.00% 25.00% 25.00% 0.00%  25.00% 0.00%  25.00% 0.00% 0.00%  25.00%
Native Hawaiian or Other

Pacific Islander 0 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Middle Eastern 4 25.00%  50.00% 0.00%  50.00% 0.00%  25.00% 0.00%  25.00% 0.00%  25.00% 0.00%  25.00%
Asian 37 54.05% 37.84% 0.00% 10.81% 5.41% 18.92% 8.11% 13.51% 16.22%  27.03% 2.70% 16.22%
Aerospace Engineering 8 25.00% 12.50% 0.00% 0.00% 12.50% 25.00% 12.50% 0.00%  25.00% 0.00% 12.50% 37.50%
Biomedical Engineering 9 88.89% 0.00% 0.00% 11.11% 0.00% 11.11% 0.00% 11.11% 0.00% 0.00% 0.00% 0.00%
Chemical Engineering 0.00% 0.00% 100.00% 100.00% 0.00% 100.00% 0.00% 100.00% 100.00% 0.00% 0.00% 0.00%
Computer Engineering 25.00%  25.00% 0.00%  25.00% 0.00% 0.00% 0.00% 0.00% 50.00% 50.00% 0.00%  25.00%
Electrical Engineering 17 35.29% 0.00% 0.00%  70.59% 5.88% 35.29% 0.00% 11.76%  35.29%  23.53% 0.00% 17.65%
Industrial Engineering 23 60.87% 60.87% 0.00% 0.00% 0.00% 13.04% 0.00% 8.70% 4.35% 17.39% 0.00% 13.04%
Material Science and 2 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00%
Mechanical Engineering 90 68.89%  50.00% 0.00% 4.44%  10.00% 26.67% 4.44% 13.33% 14.44% 16.67% 2.22%  13.33%
Nuclear Engineering Major 0 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Other Major 24 41.67%  25.00% 0.00% 29.17% 12.50% 25.00% 4.17% 8.33% 20.83%  20.83% 4.17%  37.50%
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Table 30: School B Spring 2022 demographic data

3D Metal Electroni Wood Handheld Laser CAD PIOn Paint
n Printers Tools Craftland cs Tools Tools Cutter Station Studied GotHelp Duty Booth Other
General =95 77.89%  58.95% 32.63% 37.89% 61.05% 64.21% 58.95% 29.47% 43.16% 42.11% 14.74% 23.16% 3.16%
Male 53 77.36% 69.81% 26.42% 47.17% 67.92% 69.81% 56.60% 24.53% 49.06% 47.17% 16.98% 24.53% 0.00%
Female 38 76.32% 44.74%  39.47%  23.68% 52.63% 57.89% 63.16% 34.21% 34.21% 34.21% 7.89%  18.42% 5.26%
Hispanic 15 66.67%  26.67% 6.67% 40.00% 46.67% 53.33% 40.00% 13.33% 26.67% 26.67% 6.67% 13.33% 6.67%
Non-Hispanic 76 78.95% 65.79%  35.53% 36.84% 63.16% 67.11% 61.84% 31.58% 46.05% 44.74% 14.47% 23.68% 1.32%
White / Caucasian 55 80.00%  65.45% 29.09% 32.73% 63.64% 70.91% 61.82% 27.27% 40.00% 43.64% 14.55% 20.00% 1.82%
Black or African American 5 100.00% 80.00%  20.00% 60.00% 80.00% 80.00% 60.00% 20.00% 40.00% 40.00% 0.00%  20.00% 0.00%
American Indian or Alaskan 0 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Native Hawaiian or Other Pacific 0 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Middle Eastern 2 100.00% 100.00% 0.00% 0.00% 100.00% 50.00% 0.00% 100.00% 50.00%  50.00% 0.00% 0.00% 0.00%
Asian 28 67.86%  46.43% 39.29% 35.71% 50.00% 57.14% 50.00% 35.71% 46.43% 35.71% 10.71%  25.00% 3.57%
Aerospace Engineering Major 4 100.00% 50.00%  25.00%  25.00% 100.00% 25.00% 75.00% 50.00% 50.00% 50.00% 25.00% 25.00% 0.00%
Biomedical Engineering Major 6 50.00% 16.67% 50.00% 16.67% 50.00% 33.33% 50.00% 50.00% 66.67% 16.67% 16.67% 33.33% 33.33%
Chemical Engineering Major 1 100.00% 0.00% 100.00% 0.00% 100.00% 100.00% 100.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00%
Computer Engineering Major 1 100.00% 100.00% 0.00% 0.00% 100.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Electrical Engineering Major 3 66.67%  66.67% 0.00% 66.67% 66.67% 66.67%  33.33% 0.00% 66.67% 0.00% 0.00% 0.00% 0.00%
Industrial Engineering Major 1 100.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Material Science and Engineering 0 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Mechanical Engineering Major 63 82.54% 68.25% 30.16% 46.03% 61.90% 77.78% 63.49% 26.98% 44.44% 44.44% 15.87% 23.81% 0.00%|
Nuclear Engineering Major 0 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Other Major 16 62.50% 37.50% 43.75% 18.75% 50.00% 37.50% 43.75% 37.50% 31.25% 50.00% 12.50%  25.00% 6.25%
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Table 31: School A Spring 2022 demographic data

Studied/

Hung

Out/Met

3D Metal Electroni Wood Handheld Laser CAD with a Paint
n Printers Tools Craftland cs Tools Tools Cutter Station  Group Got Help Booth Other

General N =77 62.03% 60.76% 5.06% 30.38% 21.52% 69.62% 8.86% 26.58% 45.57% 43.04% 13.92% 17.72%
Male 50 62.00% 64.00% 8.00% 34.00% 24.00% 70.00% 12.00% 22.00% 40.00% 42.00% 16.00% 20.00%
Female 21 66.67%  71.43% 4.76%  19.05% 4.76%  76.19% 4.76%  28.57% 61.90% 38.10% 0.00%  23.81%
Hispanic 18 66.67% 50.00% 11.11% 33.33% 11.11% 66.67% 0.00% 38.89% 83.33% 55.56% 16.67% 16.67%
Non-Hispanic 54 64.81% 66.67% 3.70%  27.78%  22.22%  72.22%  12.96%  22.22% 38.89% 38.89% 14.81% 20.37%
White / Caucasian 47 59.57%  59.57% 6.38% 34.04% 27.66% 74.47% 8.51% 29.79% 53.19% 48.94% 17.02% 21.28%
Black or African American 0 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
American Indian or Alaskan 2 100.00% 100.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Native Hawaiian or Other 0 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Middle Eastern 1 0.00% 100.00% 0.00% 0.00% 0.00% 100.00% 0.00% 100.00% 100.00% 0.00% 0.00% 0.00%
Asian 22 68.18% 72.73% 0.00% 13.64% 4.55%  63.64% 9.09% 22.73% 31.82% 36.36% 13.64% 22.73%
Aerospace Engineering Major 3 100.00%  33.33% 0.00% 0.00% 66.67% 66.67% 0.00% 33.33% 33.33% 33.33% 0.00% 0.00%
Biomedical Engineering Major 4 75.00%  25.00% 25.00% 25.00% 0.00% 50.00% 0.00% 0.00%  75.00% 0.00% 0.00%  25.00%
Chemical Engineering Major 0 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Computer Engineering Major 1 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Electrical Engineering Major 9 33.33%  11.11% 0.00% 44.44%  22.22%  55.56% 0.00% 33.33% 55.56% 66.67% 11.11% 22.22%
Industrial Engineering Major 0 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Material Science and 0 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Mechanical Engineering Major 56 66.07%  80.36% 5.36% 30.36% 23.21% 78.57% 10.71% 30.36% 42.86% 46.43% 17.86%  19.64%
Nuclear Engineering Major 0 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Other Major 4 50.00% 0.00% 0.00% 50.00% 0.00% 50.00%  25.00% 0.00%  75.00%  25.00% 0.00% 0.00%
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Table 32: School B Fall 2022 demographic data

Metal Electronic Wood Handheld Laser CAD PIOn Paint

n 3D Printers  Tools  Craftland s Tools Tools Cutter Station  Studied Got Help Duty Booth Other
General N =199 65.83% 33.17% 40.20% 28.64% 36.18% 37.69% 41.71% 13.07% 35.68%  35.68% 7.54%  15.08% 1.51%
Male 110 74.55% 40.91% 31.82% 32.73% 46.36% 45.45% 46.36% 14.55% 38.18% 38.18% 7.27% 18.18% 2.73%
Female 59 47.46% 23.73% 54.24% 20.34% 22.03% 23.73% 38.98% 13.56% 35.59%  35.59% 6.78% 10.17% 0.00%
Hispanic 11 54.55% 9.09% 9.09% 36.36% 36.36% 27.27%  54.55% 0.00% 9.09% 18.18% 0.00% 27.27% 0.00%
Non-Hispanic 174 65.52%  34.48% 42.53% 27.59% 36.78% 38.51% 42.53% 14.37% 37.93% 38.51% 8.05% 14.37% 1.72%
White / Caucasian 94 64.89% 34.04% 37.23% 28.72% 37.23% 38.30% 45.74% 9.57% 37.23% 34.04% 8.51% 19.15% 2.13%
Black or African
American 11 63.64% 18.18% 36.36% 27.27%  18.18%  45.45% 45.45% 9.09% 18.18%  36.36% 0.00% 0.00% 0.00%
American Indian or
Alaskan Native 1 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 100.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00%
Native Hawaiian or
Other Pacific Islander 1 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 100.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00%
Middle Eastern 3 66.67%  33.33% 0.00% 66.67% 33.33% 66.67% 66.67% 0.00% 0.00% 33.33% 0.00% 0.00% 0.00%
Asian 83 62.65% 34.94% 45.78%  28.92% 38.55% 34.94% 40.96% 18.07% 38.55% 44.58% 7.23%  14.46% 1.20%
Aerospace Engineering
Major 15 86.67% 60.00% 33.33% 26.67% 53.33% 73.33% 53.33% 20.00% 26.67% 33.33% 13.33% 26.67% 0.00%
Biomedical Engineering
Major 9 77.78% 33.33% 44.44% 44.44% 33.33%  22.22%  22.22%  22.22%  22.22% 44.44% 0.00% 0.00% 0.00%
Chemical Engineering
Major 7 28.57% 0.00% 57.14% 14.29% 14.29% 14.29% 42.86% 0.00% 42.86% 42.86% 0.00% 0.00% 0.00%
Computer Engineering
Major 7 85.71% 0.00% 28.57% 57.14% 0.00% 14.29% 0.00% 0.00% 28.57%  28.57% 0.00% 14.29% 0.00%
Electrical Engineering
Major 13 69.23% 30.77%  15.38%  53.85% 23.08% 15.38% 38.46% 15.38% 38.46% 23.08% 7.69%  15.38% 0.00%
Industrial Engineering
Major 6 33.33% 33.33% 33.33% 0.00% 16.67% 0.00% 16.67% 16.67% 16.67% 0.00% 0.00% 0.00% 0.00%
Material Science and
Engineering Major 4 0.00% 25.00% 25.00%  25.00% 0.00% 0.00%  25.00% 0.00% 0.00% 0.00% 0.00% 0.00%  25.00%
Mechanical Engineering
Major 75 77.33% 42.67% 40.00% 36.00% 49.33% 50.67% 52.00% 20.00% 46.67% 36.00% 14.67% 17.33% 1.33%
Nuclear Engineering
Major 2 50.00%  50.00% 0.00% 50.00% 0.00% 50.00% 50.00% 0.00% 50.00%  50.00% 0.00% 0.00% 0.00%
Other Major 61 54.10% 22.95% 49.18% 13.11% 31.15% 31.15% 37.70% 4.92% 29.51% 42.62% 1.64% 16.39% 1.64%
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Table 33: School A 2022 Fall demographic data

3D Metal Wood Handheld Laser CAD PIOn Paint

n Printers  Tools Craftland Electronics  Tools Tools Cutter Station Studied GotHelp Duty Booth Other
General N =80 48.75%  30.00% 7.50% 41.25% 11.25%  43.75% 2.50% 25.00% 47.50%  25.00% 0.00% 2.50% 11.25%
Male 53 47.17%  28.30% 5.66% 41.51% 11.32% 37.74% 3.77%  26.42% 47.17%  22.64% 0.00% 1.89% 16.98%
Female 23 52.17% 39.13% 8.70% 39.13% 13.04%  56.52% 0.00% 21.74% 52.17% 30.43% 0.00% 4.35% 0.00%
Hispanic 21 42.86% 33.33% 9.52% 28.57% 9.52% 42.86% 0.00% 9.52% 47.62%  14.29% 0.00% 9.52% 9.52%
Non-Hispanic 56 50.00%  30.36% 7.14% 48.21% 12.50%  46.43% 3.57% 32.14% 48.21% 28.57% 0.00% 0.00% 12.50%
White / Caucasian 55 49.09%  34.55% 5.45% 34.55% 7.27%  41.82% 1.82% 25.45% 56.36% 30.91% 0.00% 3.64% 10.91%
Black or African
American 3 0.00% 0.00% 33.33% 66.67% 33.33% 66.67% 0.00% 33.33% 66.67% 33.33% 0.00% 0.00% 0.00%
American Indian or
Alaskan Native 1 100.00% 100.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Native Hawaiian or Other
Pacific Islander 1 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Middle Eastern 3 66.67%  66.67% 0.00% 66.67% 66.67% 100.00% 0.00% 33.33% 33.33% 0.00% 0.00% 0.00% 0.00%
Asian 14 57.14%  21.43% 7.14% 57.14% 0.00% 50.00% 7.14% 35.71% 21.43% 21.43% 0.00% 0.00% 14.29%
Aerospace Engineering
Major 0 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Biomedical Engineering
Major 0 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Chemical Engineering
Major 0 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Computer Engineering
Major 3 66.67% 0.00% 33.33% 0.00% 0.00% 0.00% 0.00% 0.00% 33.33% 33.33% 0.00% 0.00%  33.33%
Electrical Engineering
Major 29 10.34% 0.00% 6.90% 79.31% 6.90% 41.38% 0.00% 27.59% 68.97% 37.93% 0.00% 0.00% 13.79%
Industrial Engineering
Major 1 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Material Science and
Engineering Major 1 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00%
Mechanical Engineering
Major 39 76.92%  58.97% 5.13% 23.08% 17.95% 56.41% 5.13% 25.64% 33.33% 15.38% 0.00% 2.56% 10.26%
Nuclear Engineering
Major 0 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Other Major 7 42.86% 0.00% 14.29% 14.29% 0.00% 14.29% 0.00% 28.57% 42.86% 28.57% 0.00% 14.29% 0.00%
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Figure 25: Demographic analysis School B Fall 2022
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APPENDIX E: MODULARITY AND NESTEDNESS PLOTS

School A 2020 Fall School A 2021 SpringSchool A 2022 SpringSchool B 2022 Fall

Figure 26: School A modularity and nestedness plots for general tool network
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Figure 27: School A modularity and nestedness plots for specific tool network
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Figure 28: School B modularity and nestedness plot for general tool network
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Figure 29: School B modularity and nestedness plot for specific tool network
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APPENDIX F: NETWORK ANALYZER SOFTWARE DOCUMENTATION

Included as a supplementary file due to size.
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