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Abstract—In this paper, we address a crucial but often over-
looked issue in applying reinforcement learning (RL) to radio
resource management (RRM) in wireless communications: the
mismatch between the discounted reward RL formulation and the
undiscounted goal of wireless network optimization. To the best
of our knowledge, we are the first to systematically investigate
this discrepancy, starting with a discussion of the problem
formulation followed by simulations that quantify the extent of
the gap. To bridge this gap, we introduce the use of average
reward RL, a method that aligns more closely with the long-
term objectives of RRM. We propose a new method called the
Average Reward Off-policy Soft Actor-Critic (ARO-SAC), which
is an adaptation of the well-known Soft Actor-Critic algorithm
in the average reward framework. This new method achieves
significant performance improvement – our simulation results
demonstrate a 15% gain in the system performance over the
traditional discounted reward RL approach, underscoring the
potential of average reward RL in enhancing the efficiency and
effectiveness of wireless network optimization.

Index Terms—Radio resource management, averaged reward
reinforcement learning, deep reinforcement learning

I. INTRODUCTION

In recent years, there has been a growing interest in applying

reinforcement learning (RL) methods to solving radio resource

management (RRM) problems in wireless networks. It largely

stems from several important RL properties that match the

characteristics of wireless networking. First, wireless network

optimization is a closed-loop and sequential operation: set

parameters, observe performance, and fine-tune. Second, many

tasks in wireless networks have long-term performance impact,

and their parameters are adjusted at a very low pace. As

a result, the optimization cannot only target the immediate

performance gain, but must take a long-term view. Third, there

exist well-established feedback protocols in wireless standards,

which provide a built-in mechanism for observing the state and

receiving rewards. Lastly, RL research is a highly active and

theoretically well-grounded area of machine learning, which

lays a good foundation to its success in wireless networking.

Despite the promising initial results and the philosophical

match, the majority of the existing solutions rely on the

standard RL formulation, which maximizes discounted cu-

mulative rewards in the long term. This objective, however,

The work of K. Yang and C. Shen was partially supported by the
U.S. National Science Foundation (NSF) under awards CNS-2002902, CNS-
2003131, ECCS-2029978, ECCS-2030026, ECCS-2143559, and SII-2132700.
The work of J. Yang was supported in part by the U.S. NSF under awards
CNS-1956276, CNS-2003131 and CNS-2030026.

is misaligned with the typical objectives of wireless network

optimization, where we do not treat future utility less im-

portantly than the current one. A typical example is that we

generally try to maximize the long-term average throughput

of the entire network, treating both current and future user

throughput equally in this formulation.

Naturally, one would ask whether we can design RL so-

lutions for wireless network optimization that directly use

undiscounted total reward as the objective. In the RL literature,

this falls into the category of average reward RL [1]. To the

best of the authors’ knowledge, such average reward-based

RL solutions have not been developed in wireless network

optimization. In fact, the field of average reward RL itself is

relatively under-explored. Only until recently have we seen

the advancements to extend Policy Proximal Optimization

(PPO) [2] and Deep Deterministic Policy Gradient (DDPG)

[3] into the average reward framework. Nevertheless, these

developments signal a growing potential for applying average

reward RL in real-world engineering applications.

In this paper, we begin by pinpointing the discrepancy

between the widely used discounted reward RL and the

commonly adopted goals that are specific to RRM problems

in wireless networks. Subsequently, we cast the RRM problem

in an average reward RL framework. We develop a novel

extension of the popular Soft Actor-Critic (SAC) algorithm to

the average reward RL formulation, enhancing its applicability

and effectiveness in addressing the RRM challenge. Our main

contributions are summarized as follows.

1) To the best of our knowledge, we are the first to iden-

tify the discrepancy between the discounted reward RL

formulation and the undiscounted objective of wireless

network optimization. We showcase this discrepancy by

re-formulating a RAN network slicing problem as an

averaged reward RL one, and highlighting the mismatch

of the design objectives of the prior RL approaches. We

achieve this by unequivocally demonstrating the impact

of the discount factor γ and environmental horizon on

RAN slicing RRM in the prior solutions via numerical

experiments.

2) We investigate how the practical algorithms handle the

challenges of average reward rate estimation, and how

the RL update is performed. Based on the estimation

strategy for the off-policy RL algorithms introduced

in ARO-DDPG [3], we extend the popular off-policy

deep RL algorithm SAC to an average reward version



called ARO-SAC (Average Reward Off-policy SAC).

With a tweak to the conventional TD error and Bellman

equation, our new design enables SAC to perform with

the average reward objective.

3) Our experimental result using an industry-grade wireless

network simulator reveals that, with a properly selected

hyperparameter, the proposed ARO-SAC can outperform

the best SAC by a performance gain of 15%. We

further investigate how the learning rates for the average

reward rate and the environment horizon impact the

performance of ARO-SAC.

The rest of the paper is organized as follows. The related

works are surveyed in Section II. In Section III, we formulate

the RRM problem using discounted reward RL and discuss

the objective mismatch. We investigate the impact of discount

factor and horizon in Section IV, which motivates us to

develop the ARO-SAC algorithm in Section V. Section VI

concludes the paper.

II. RELATED WORKS

RL for RRM: Due to its natural fit, RL-based solutions

have been gradually adopted to solve RRM problems. Previous

efforts include the solutions based on the bandit algorithms

[4]–[8]. Subsequently, Q-learning-based algorithms were de-

veloped [9]–[11], followed by the adoption of the actor-

critic architecture [12]–[16]. Regarding decentralized methods,

multi-agent reinforcement learning (MARL) has solidified its

relevance in [17]–[20]. More recent research has explored

training RL policies using offline datasets [21], [22]. Despite

these advancements, all methods predominantly rely on dis-

counted reward RL algorithms, which overlooks a crucial

aspect: the mismatch between the traditional objectives of

wireless systems and the principles underlying discounted

reward RL.

Averaged reward RL: Average reward RL, as a different

formulation from the discounted reward RL setting, was de-

signed to handle the scenarios where the future reward is of

equal importance as the current one [1]. Most of the early

works on average reward RL mainly focus on the tabular

cases [2], [23], limiting their potential usage in complex

environments. The initial development of average reward-

based deep RL focused on Deep Q-Network (DQN) [24],

which has limited performance compared to the actor-critic-

based methods. The recent advancement in actor-critic-based

average reward DRL algorithms [3], [25] has enabled the

implementation of average reward RL for more practical

problems.

III. PROBLEM FORMULATION

In this section, we first establish the RRM problem within

the context of RAN slicing. Then, we formulate the RRM

problem into a discounted reward RL one. We then discuss the

mismatch between the objectives of these two formulations.

A. RAN Slicing

In a RAN slicing system, we assume that the system has N

slices in total, each handling a distinct user/traffic type. For

these slices, our goal is to allocate packed radio resources

properly to maximize the Quality of Service (QoS) of the

whole system. These packed resources, named resource block

groups (RBG), are then allocated to the users by the propor-

tional fairness aware scheduler [26]. The system structure is

illustrated in Fig. 1.

Fig. 1. Illustration of a RAN slicing system

Assume the system has M RBGs in total, and the

QoS function at time t is ft(M(t)), where M(t) =
[m1(t), · · · ,mN (t)], where M(t) is the resource allocation

vector which stands for the resource blocks allocated to

different slices and mi(t) stands for the resource allocated

to slice i. Then, we can formulate the optimization problem

as:

maximize
M(t)

lim
T→∞

1

T

T
∑

t=1

ft(M(t))

subject to

N
∑

i=1

mi(t) fM.

(1)

Clearly, the design goal of this formulation is to achieve the

best possible long-term average QoS.

B. From RRM to Discounted Reward RL

In previous studies utilizing deep reinforcement learning

(DRL) for the RRM problem in RAN slicing, the standard

approach is to formulate the problem using discounted reward

RL [?], [14], [15], [27]. In this section, we first discuss

this discounted reward RL setting and then show where the

mismatch happens.

As a concrete case of RAN slicing, we consider that in the

optimization problem outlined in Eq. (1), two QoS metrics are

pivotal: the total downlink throughput of the system and the

average delay violation rate among users. The delay violation

rate is defined as the proportion of packets exceeding the QoS

latency threshold relative to the total number of packets a user

receives. We then define the Markov Decision Process (MDP)

for this RL problem as follows.



• Observations: Building on the considerations outlined

above regarding system performance metrics such as

throughput and delay violation rate, it is pivotal to

monitor how much of the allocated resources have been

utilized. Accordingly, we gather the following metrics

for each slice in the system to serve as observations

in our MDP: received traffic throughput Trx, traffic load

Ttx, resource utilization rate U , delay violation rate Dvio,

and average one-way delay Davg from every slice in the

system. The observations are formally specified as

{Trx,i, Ttx,i, Ui, Dvio,i, Davg,i}i=1,··· ,N
.

• Actions: As outlined in Section III-A, we need to allo-

cate RBGs across different slices. Instead of distributing

discrete resource units, our approach involves allocating

a proportional share of RBGs to each slice, rendering

our action a continuous variable within the range [0, 1].
Specifically, our action at time t is represented as A(t) =
[a1(t), · · · , aN−1(t)], where each ai(t) ∈ [0, 1] denotes

the proportion of RBGs allocated to slice i. We ensure the

allocation is legitimate (i.e.,
∑

i ai(t) f 1) by integrating

a softmax layer at the output of our policy network,

ensuring a valid probability distribution over the slices.

• Reward: The reward design in a RAN slicing system

should reflect its QoS objectives. Our configuration prior-

itizes two key components: the overall system throughput

and delay violation rates. Accordingly, we construct our

reward function as

R(t) =

N
∑

i=1

ri(t),

where each component of the reward, ri(t), is defined as:

ri(t) = Trx,i(t)− αDvio,i(t).

In our experiment, we set α = 4 to impose a heavier

penalty on the delay violations.

Assuming a discounted reward setting with the discount

factor γ, the objective of this RL problem is:

max
π

E

[

∞
∑

t=0

γtR(t)

]

.

While this objective accumulates rewards over infinite time

steps, the influence of future rewards diminishes significantly

due to the discount factor. For instance, with γ = 0.95,

rewards beyond 50 time steps contribute minimally to the

objective, effectively accounting for only about 0.01 of their

original value. This aspect of discounting does not align well

with our initial goal as defined in Eq. (1), where the wireless

network seeks optimal average performance over an infinite

horizon. This mismatch motivates us to find better solutions

to close the gap between the discounted RL and the original

objective in our wireless network optimization problem.

TABLE I
EXPERIMENT PARAMETERS

Parameter Value

Number of slices 3
Number of UEs per slice 6− 20

Delay violation threshold 100 ms

Area 120× 10 m2

Downlink traffic 2 Mbp/s
Traffic pattern Poisson arrival
UE mobility 1− 2 m/s

C. Detailed Environment Setting

As described in Sec. III-A, we consider an RRM problem

in a RAN slicing system with N slices and M RBGs. In our

experiment, we have utilized netgymenv [28] as our simulator.

We set N = 3 and M = 25. Our traffic model follows the

LTE module in NS-3 [26]. To introduce different traffic flows

for different slices, we assign a different user number to each

of the slices ranging from 6 to 20. The detailed environment

setting is given in Table I.

For the resource type we allocate to each of the slices, we

utilize a setting similar to [?] where the soft slicing strategy is

used. In a soft slicing system, when the resource is allocated

to a slice, the users in this slice have priority in using these

resources. The leftover resources can then be re-used by other

users from different slices if the allocated resource is not fully

used.

As for the RL algorithm, we use Soft Actor-Critic (SAC)

[29] as our primary choice. We choose this algorithm mainly

because we would like to see whether extending an existing

deep RL algorithm to its average reward version is applicable.

IV. THE IMPACT OF DISCOUNT FACTOR AND HORIZON

We are not the first to identify the mismatch between

the discounted reward RL and the real-world average return

scenarios, where in [30], the authors have noticed that there

exists a γ mismatch between the actors and critics. In [31],

[32], the authors report supreme performance with large γ on

long horizon tasks. In this section, we empirically establish

that the same mismatch exists in the RRM problem for RAN

slicing.

We conduct two key experiments to validate the mismatch

between the discounted reward RL objective and the real

wireless system goal. To verify the impact of horizon length,

we incorporate a period reset signal, which resets the simulator

after a predefined time step T . We regard this reset length as

the period length of our environment. In the first experiment,

we fix T and vary the discount factor γ, demonstrating that

a larger γ improves performance by valuing the longer future

more equally. In the second experiment, we fix a large γ and

vary T , confirming that a larger γ can help the agents look

into the longer future.

Fix T , vary γ: Table II illustrates that when T is constant,

increasing γ consistently enhances the RL agent’s perfor-

mance. The result suggests that it is helpful in a system

trying to maximize long-term average rewards to have a larger



discount factor, i.e. making the agent able to take longer steps

into their consideration.

TABLE II
EXPERIMENTAL RESULTS WITH T = 200 AND DIFFERENT γ

γ cumulative reward

0.9 10.53± 1.25

0.93 13.24± 0.52

0.95 14.20± 0.50

0.99 15.67± 0.37

Fix γ, vary T : When γ is fixed at a high value (e.g., 0.99),

extending the horizon also results to an improved average

reward per step, as evidenced by the results in Table III. This

longer horizon also plays a pivotal role as it ensures the RL

agent can learn the transition from a longer future.

TABLE III
EXPERIMENTAL RESULTS WITH γ = 0.99 AND DIFFERENT T

T average reward

200 0.078± 0.002

500 0.079± 0.002

1000 0.082± 0.003

2000 0.085± 0.005

Summarizing these results, a heuristic solution emerges: set

γ = 1 which would ensure that rewards do not decrease

over time. However, in our experiment shown in Figure 2,

naively setting γ to 1 appears beneficial for policy training

initially but leads to significant instability later. This instability

suggests that simply increasing γ is not optimal. Based on this

observation, a new tool is needed to close the gap between

discounted reward RL and the network optimization goal.

Fig. 2. Experimental results with γ = 1. Shadowed areas indicate the
confidence intervals.

V. AVERAGE REWARD SOFT ACTOR-CRITIC

The concept of average reward RL, as the name suggests,

is to maximize the long-term average reward for sequential

decision-making problems [1]. In this section, we discuss the

difference between the average reward RL and the discounted

reward RL, and show how to change a discounted reward

formulation into an average reward formulation. Then, follow-

ing the design flow of ARO-DDPG [3], we extend the SAC

principle to satisfy the average reward objective and conduct

experiments to evaluate the performance of this new algorithm.

A. Re-formulation

The difference between the average reward RL and dis-

counted reward RL primarily lies in their objective functions,

where the average reward RL’s objective is defined as:

max
π

lim
T←∞

1

T

T
∑

t=1

r(t). (2)

In Eq. (2), if we treat the reward function r(t) as the QoS

function in Eq. (1), the goal of the average reward RL exactly

matches the wireless network objective.

To solve this new RL problem, the major workflow remains

the same. From the principle in [1], similar to the discounted

reward setting, we can solve the average reward RL through

the Bellman equation. More specifically, we can still utilize

the TD error-based method to solve the problem. The only

difference is that, instead of having a discount factor γ, we now

maintain an estimation of the true average reward ρ to help

with the solution. The process of getting the average reward

TD error is listed below.

In the average reward setting, we define the differential

return, which measures the difference between the rewards

and the true average reward, as

Gt
.
= Rt+1− r(π) +Rt+2− r(π) +Rt+3− r(π) + · · · , (3)

where π stands for the current policy. Based on this differential

return, we then define the value function and compute the

corresponding Bellman equation as

Vπ(s) = Eπ[Gt|St = s] (4)

= Eπ[Rt+1 − r(π) +Gt+1|St = s]

=
∑

a

π(a|s)
∑

s′

∑

r

p(s′, r|s, a)[r − r(π)

+ Eπ[Gt+1|St+1 = s′]]

=
∑

a

π(a|s)
∑

r,s′

p(s′, r|s, a)[r − r(π) + Vπ(s
′)]. (5)

From this Bellman equation and the definition of the TD

difference, we can now compute the one-step TD as

δt = Rt+1−ρ+ V (St+1)− V (St). (6)

For comparison, we note that the standard discounted reward

TD error equals

δt = Rt+1 + γV (St+1)− V (St). (7)

Comparing these two, we see that the new TD error in Eq. (6)

substitutes the discount factor with the estimated average

reward rate ρ.



B. Average Reward SAC

With the average reward TD error, if we have an accurate

estimate of ρ, we can solve the RL problem by minimizing

this error. However, this is a challenging task and two main

methods have been adopted in average reward DRL. One is to

collect the full trajectory of the policy and directly estimate ρ

by setting

ρ̂ = (1− α)ρ̂+
α

N

N
∑

n=1

r(sn, an).

As described in [25], this type of estimation is more desirable

for on-policy algorithms like PPO. The second choice is to

make the average reward a trainable parameter and then to use

gradient descent to update this parameter [3]. Mathematically

we have

ρ̂t+1 = ρ̂t +∇ρεt,

where

εt = r(st, at)− ρt −Q(st, at).

Since we use SAC as our primary discounted reward RL

algorithm, which is an off-policy one, the latter choice is more

applicable for designing the average reward SAC.

To develop SAC under an average reward setting, we take

one step further from [3] and design εt for SAC as:

εt = r(st, at)− ρt −min(Q1(st, at), Q2(st, at)). (8)

Following this step, we extend the SAC algorithm into an

average reward version and describe the complete procedure in

Algorithm 1, where we mark the different steps incorporating

ρ in the bold font.

C. Experiments

Fig. 3. Experimental result using ARO-SAC, where the experiment is
averaged over 5 independent runs over 5 different combinations of user
numbers.

In this section, we implement the proposed ARO-SAC in

our simulation and compare its performance with the vanilla

SAC with γ = 0.99. To verify the effectiveness of ARO-SAC,

we compared the performance of the algorithm with pure SAC

under horizon T = 200 and discount factor γ = 0.99.

Algorithm 1 Average Reward Off-Policy Soft Actor-Critic

(ARO-SAC)

1: Initialize policy parameters θ, Q-function parameters

φ1, φ2, average reward estimator ρ

2: Initialize target Q-function parameters φtarg,1 =
φ1, φtarg,2 = φ2

3: Initialize environment and observe initial state s

4: Initialize replay buffer D
5: for each time step do

6: Sample action a ∼ πθ(·|s) based on current policy

7: Execute action a in the environment

8: Observe reward r, new state s′, and done signal d

9: Store transition tuple (s, a, r, s′, d) in replay buffer D
10: Sample random minibatch of transitions (s, a, r, s′, d)

from D
11: Compute target Q-value:

12: y = r − ρ+mini=1,2 Qφtarg,i
(s′, ã′)

13: where ã′ ∼ πθ(·|s
′)

14: Update Q-functions by one step of gradient descent

using:

15: ∇φi

1
|B|

∑

(Qφi
(s, a)− y)2 for i = 1, 2

16: Update policy by one step of gradient ascent using:

17: ∇θ
1
|B|

∑

log πθ(a|s)Qφ(s, a)
18: Update average reward estimator ρ:

19: ∇ρ
1
|B|

∑

(εt)
2

20: Update target networks:

21: φtarg,i ← τφi + (1− τ)φtarg,i for i = 1, 2
22: Observe new state s← s′

23: end for

The result in Fig. 3 shows that the performance of our

proposed ARO-SAC, while eliminating the drawback of an un-

stable convergence caused by setting γ = 1, also outperforms

vanilla SAC with γ = 0.99 by 15%. This demonstrates a solid

gain of utilizing average reward RL on this RRM problem

in RAN slicing over the discounted counterpart. However,

we also want to point out that while the average reward

RL does help with the policy’s performance, it introduces

an extra trainable parameter that needs extra hyperparameter

tuning (learning rate selection) steps. The learning rate for the

parameter ρ needs careful selection. In our experiment, we set

this learning rate to 1e− 5, which is slightly smaller than the

learning rate of our actor-network.

VI. CONCLUSION

This paper addressed a critical mismatch between the

conventional discounted reward reinforcement learning (RL)

framework and the long-term objectives inherent to radio

resource management (RRM) in wireless networks. We first

validated this mismatch between discounted reward objec-

tives and the actual goals of wireless systems. Our results

underscored that even slight modifications toward considering

longer-term outcomes, such as extending the horizon and

adjusting the discount factor, could enhance performance

under the discounted reward framework. We then developed



the Average Reward Off-policy Soft Actor-Critic (ARO-SAC),

adapting the Soft Actor-Critic algorithm to the average reward

framework, which significantly aligns with the long-term goals

of RRM. Our experiments demonstrated a 15% improvement

in the overall system performance over the conventional dis-

counted reward RL approach, confirming the effectiveness

and advantages of average reward RL in enhancing wireless

network management. Interesting future works include pro-

viding theoretical guarantees of ARO-SAC and improving the

algorithm design by reducing the hyperparameter fine-tuning.
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