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Abstract

Figure 1. Gigantic Jets captured from ground-based cameras. (left) From Boggs 
et al. 2019 (middle) from passenger on an airliner (right) from Yang et al. 2020. 

Gigantic jets (GJs) are a type of transient luminous event (TLE) which also includes sprites, elves, halos, 
and blue jets [Pasko 2010, doi: 10.1029/2009JA014860]. However, GJs are unique in that they directly 
couple electric charge reservoirs in the troposphere (i.e. thunderclouds) with the lower ionosphere, 
allowing significant amounts of charge (100s of C) to flow between these regions. We do not understand 
how this affects the ionosphere and global electric circuit.  Past observations are very limited, resulting 
from ground-based cameras getting lucky enough to capture an event while looking over a distant 
thunderstorm [Liu et al. 2015, doi: 10.1038/ncomms6995]. Additionally, GJ-producing storms are 
normally accompanied by substantial areas of stratiform clouds obscuring the view, and they tend to 
occur more often over the ocean.  To solve this problem of limited detection capability, we have 
developed a pipeline that utilizes machine learning and sensor fusion of multiple sensing modalities 
(optical, VLF, ELF).  Our pipeline can detect GJs over nearly a hemisphere and operate 24/7, potentially 
revolutionizing how GJs are detected and paving the way for other TLE and unique lightning event 
detection.  

Our pipeline begins by performing detection with data from the Geostationary Lightning Mapper (GLM), 
which is a staring optical imager in geostationary orbit that detects the 777.4 nm (OI) triplet from 
lightning leaders [Goodman et al. 2013, doi: 10.1016/j.atmosres.2013.01.006]. Gigantic jets have unique 
signatures in the GLM data from past studies [Boggs et al. 2019, doi: 10.1029/2019GL082278]. We have 
developed a supervised, ensemble machine learning classifier that detects potential gigantic jets in the 
GLM data.  Considering we have an imbalanced dataset, we use data imbalance techniques such as 
Synthetic Minority Oversampling Technique (SMOTE) when training the classifier.  Next, we combine 
data from multiple sensing modalities to vet the candidate GJs from the classifier in multiple stages.  The 
first stage filters the candidate GJs to the stereo GLM region [Mach and Virts, 2021, doi: 10.1175/JTECH-
D-21-0078.1], and calculates the stereo altitudes for all the events. GJs have stereo altitude sources 
consistently between 15-25 km altitude from the leader escaping the cloud top [Boggs et al. 2022, doi: 
10.1126/sciadv.abl8731].  Next, we match the events spatiotemporally to GLD360 data to remove cloud-
to-ground events.  Subsequently, we use a statistical GOES ABI model (developed at GTRI) to filter out 
events that have differing parent storms from our truth database.  Finally, we use a multi-parameter 
extremely low frequency (ELF) vetting model (developed by Duke) to filter out the remaining non-GJ 
events.  After a few complete detection and vetting cycles, we have found tens of new events with a high 
degree of confidence. With further development of our pipeline and deployment to the entire GLM 
field-of-view (not limited to stereo region), we anticipate hundreds of new detections per year, 
significantly more than ground-based cameras, allowing for comprehensive studies relating gigantic jets 
to the other atmospheric phenomena.  

Figure 2. Detection pipeline for this project, consisting of GOES GLM data, 
GLD360 data, ABI data, and ELF data. 

Figure 3. Detection system field-of-view, with regions for initial training and 
the GLM stereo region. 

Figure 4. a) lightcurve (GLM energy vs. time) for a non-GJ flash. b) spatial (lat,lon) 
distribution for the sources in a). Panels c) and d) show similar plots for a 
confirmed GJ.  The sources in b) and d) are sized according to energy. 

ML Model

b)

• ML classifier has found ~20,0000 candidate GJs (low precision) so 
far (whole GLM GOV)

• Filtered down to several thousand detections in the initial training 
region 

• Stereo vetting filters down to several hundred candidate GJs

• Duke, ABI, and GLD360 are final vetting tools. To date, have 
confidently identified approximately 25 GJs purely from our 
detection pipeline. 

• Future work:

• retrain ML model (create features to filter out CGs)

• include newly found GJs in training data

• increase throughput with the pipeline (more automation)

• expand detections to entire GLM FOV (outside the stereo region)

Features Category
Max Distance Propagation 

Cumulative propagation Propagation
Area Propagation

Max Count Pixel Gridding
Gradient N-S Gridding
Gradient E-W Gridding

Summed Energy Pixel Gridding
Max Continuous Duration Temporal

Integrated Energy Temporal
Lightcurve Smoothness Temporal

Machine Learning Feature Creation

• Use group-level GLM data, parsed from each GLM flash
• Feature categories: 

1. propagation: summarizes lateral extent / lateral coverage of GLM groups 
2. gridding: re-grid group centroid data to 4 km grid, captures energy 

distribution over the grid 
3. temporal: captures temporal evolution and associated temporal 

waveform properties 

Table 1. Truncated feature list for the machine learning model.  
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Figure 5. a) Stereo altitude vs. time for a confirmed GJ. Sized according to optical 
energy. b) spatial distribution (lat, lon, alt) of the sources in a).  Colored according 
to time. The grey plane represents the cloud top. Panels c) and d) show similar plots 
for a non-GJ flash. 
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Figure 8. GLD360 (red circle) overlaid on a timeseries of GLM energy (lightcurve).  GJ is denoted by 
the blue curve.  The GLD360 event is far displaced in time from the GJ (not concurrent).  

Figure 7. ABI data of GJ.  (Left) zoomed region showing the cold cloud top, a 40 km radius buffer 
around the GLM detection, and a GLD 360 positive event (+). (Right) zoomed out region of panel to 
the left.

Figure 6. Duke VLF/ELF data for a) non GJ event (large cloud-to-ground followed by intracloud
activity and b) a GJ (denoted as slow blue pulse).  Green lines denote times and uncertainties 
from GLM detection candidate jets. 
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Figure 10. GLD360 (red circle) overlaid on a timeseries of GLM energy (lightcurve).  The CG 
discharge is denoted by the blue curve.  The GLD360 event is concurrent with the GLM 
lightcurve – most likely the return stroke generates the  GLM optical energy and peak current 
(simultaneous emissions). 

Figure 9. ABI data of CG discharge.  (Left) zoomed region showing the cold cloud top, a 40 
km radius buffer around the GLM detection, and some GLD 360 events. (Right) zoomed out 
region of panel to the left.
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