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Abstract

Egocentric and exocentric perspectives of human ac-
tion differ significantly, yet overcoming this extreme view-
point gap is critical in augmented reality and robotics.
We propose VIEWPOINTROSETTA, an approach that un-
locks large-scale unpaired ego and exo video data to learn
clip-level viewpoint-invariant video representations. Our
framework introduces (1) a diffusion-based Rosetta Stone
Translator (RST), which, leveraging a moderate amount of
synchronized multi-view videos, serves as a translator in
feature space to decipher the alignment between unpaired
ego and exo data, and (2) a dual encoder that aligns un-
paired data representations through contrastive learning
with RST-based synthetic feature augmentation and soft
alignment. To evaluate the learned features in a stan-
dardized setting, we construct a new cross-view bench-
mark using Ego-Exo4D, covering cross-view retrieval, ac-
tion recognition, and skill assessment tasks. Our framework
demonstrates superior cross-view understanding compared
to previous view-invariant learning and ego video represen-
tation learning approaches, and opens the door to bringing
vast amounts of traditional third-person video to bear on
the more nascent first-person setting.

1. Introduction

Human perception of action is profoundly view-invariant.
No matter the angle from which we observe an ac-
tion—whether we’re viewing a person from a third-person
(exocentric) perspective or experiencing it firsthand (ego-
centric)—our understanding of that action remains stable.
This capacity allows us to recognize, interpret, and respond
to complex movements and interactions across diverse per-
spectives. However, existing computer vision models strug-
gle to replicate this ego-exo' view-invariant understanding
of action. The extreme variations in visual appearance of
the two views make it difficult for models to generalize

I'We use “ego” to refer to egocentric (first-person) and “exo” to refer to
exocentric (third-person) perspectives.
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Figure 1. Paired data is ideal for ego-exo view-invariant represen-
tation learning due to its perfect synchronization, but it is costly
to collect. We explore leveraging both paired and unpaired data,
taking advantage of the greater scale of unpaired videos. The key
question is how to discover meaningful links within unpaired data
and how to effectively align ego and exo representations.

across the two viewpoints (see Figure 1, left).

We take a step toward scaling ego-exo view-invariant
representation learning, which can benefit a range of ap-
plications that require cross-view understanding. View-
invariant representations are essential to enable cross-view
retrieval in AR, such as automatically retrieving a relevant
exo video from YouTube that aligns with the user’s current
cooking setup and tools as viewed from their wearable cam-
era, showing a chef performing the same task and providing
real-time guidance. Similarly, robot learning from video
demands being able to interchangeably understand how an
action looks when watching a human subject versus how it
looks from the first-person view when performing dexter-
ous manipulation. In addition, we see practical potential for
transferring knowledge from the exocentric domain to the
egocentric domain—resources for exocentric video are far
more extensive, while egocentric datasets (e.g., Ego4D [16],
Ego-Exo04D [17], EPIC-Kitchens [9, 10]) are relatively new
and not yet at the Internet scale.

Previous approaches to learn ego-exo view invariance
have relied on limited amounts of paired multi-view video



data [3, 17, 35, 36, 48]. However, collecting synchronized
ego-exo video is both costly and logistically challenging, re-
quiring specialized equipment to capture footage from both
perspectives simultaneously. This remains an obstacle to
developing models that bridge the gap between these view-
points effectively. Early attempts to learn view-invariant
features from unpaired data lack adaptability to diverse, un-
structured data due to their reliance on limited forms of
alignment, like temporal cues [47] or partially overlapping
semantics [41].

Our goal is to unlock large-scale unpaired ego and exo
video data for view-invariant video representation learn-
ing. Unpaired data offers greater scalability and diversity
by eliminating the need for synchronized video capture,
while also providing a broader range of semantic informa-
tion, such as varied settings, objects, and interactions, which
should help the model learn more generalized and robust
representations. See Figure 1.

Our key insight is to leverage a moderate amount of
paired, time-synchronized ego-exo video as a “Rosetta
Stone™” to 1) master the ego-exo link and then 2) interpret
complex relationships within unpaired ego and exo data.
Specifically, we introduce a Rosetta Stone Translator (RST)
based on a diffusion model [30] that learns the mapping be-
tween ego and exo viewpoints in feature space. Given an
unpaired ego sample, the translator generates its exo coun-
terpart. RST is trained on time-synchronized video data,
providing a strict temporal and geometric mapping between
the two viewpoints. It learns a precise mapping between the
ego and exo views by capturing how each perspective rep-
resents the same scene—such as detailed hand-object inter-
actions in the ego view and broader spatial context in the
exo view. Having learned this relationship, the RST is then
equipped to generate features for the alternate view that in-
tegrate both detail and context.

The synthesized features from the RST are then used
to establish connections between real-world, unpaired sam-
ples. To transform these established connections into a
view-invariant representation, we train a video-text dual en-
coder on both paired and RST-aligned unpaired data, refor-
mulating the classic contrastive loss to incorporate the syn-
thetic data generated by the RST as an augmentation. Addi-
tionally, we introduce a notion of “soft alignment” to handle
the fact that most unpaired data are not perfectly matched at
the semantic level. This soft alignment allows for minor dis-
crepancies in the paired samples, focusing on capturing es-
sential shared information rather than exact visual matches.

To evaluate the learned view-invariant representations,
we establish an ego-exo cross-view understanding bench-
mark using the Ego-Exo4D [17] dataset. This benchmark
covers a variety of downstream tasks, including cross-view
recognition, cross-view retrieval, and cross-view skill as-

Zht tps://en.wikipedia.org/wiki/Rosetta_Stone
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sessment. Across these tasks, our model consistently out-
performs previous methods for view-invariant learning [17,
36, 41] as well as state-of-the-art video representation learn-
ing models [24, 50]. Our work introduces a novel perspec-
tive by tapping into the vast potential of extensive-scale
unpaired videos, setting new standards for ego-exo view-
invariant learning in future research.

2. Related Work

Bridging Egocentric and Exocentric Views Ego and exo
view videos inherently differ, presenting unique challenges
and perspectives for video understanding. There have been
several attempts to jointly study these two views, introduc-
ing ego-exo datasets [14, 17, 21, 34, 37] for this purpose
and addressing various challenges, such as person localiza-
tion [1, 2, 15, 42, 46], video summarization [19], and 3D
pose estimation [40].

To advance cross-view understanding between these two
disparate views, several studies [3, 17, 35, 36, 41, 47, 48]
have focused on ego-exo view-invariant feature learning,
which aims at pushing relevant ego-exo views closer and
irrelevant farther. However, existing approaches face strin-
gent data constraints: they are either confined to using
strictly paired ego-exo datasets [3, 17, 35, 36, 48] or uti-
lize unpaired datasets limited to hundreds of hours [41, 47],
and aim to improve models for egocentric video tasks.

This is notably inadequate when compared to the
extensive scale of Internet-scale video collections,
like Ego4D [16] with 3,000 hours of videos and
HowTolOOM [28] featuring 136 million video Cclips.
In contrast, our work innovatively unlocks these large-
scale, in-the-wild video datasets, demonstrating new
potential in ego-exo cross-view understanding.

Another line of work explores synthesizing unseen exo
views from ego views (or vice versa) in the pixel space, for
the sake of visualization [8, 17, 25-27]. Though our ap-
proach includes view translation (in the feature space), our
purpose is orthogonal: to form a bridge between the view-
points for feature learning.

Egocentric Video Representation Learning Building
strong representations for egocentric videos is crucial, en-
hancing various downstream tasks. One area of research fo-
cuses on video-text representation learning [4, 24, 31, 50],
leveraging narrations accompanying videos for training, to
improve video-text tasks such as natural language ground-
ing [38]. Another line of work [13, 23, 39] directly ad-
dresses egocentric representation learning, by utilizing aux-
iliary ego signals from exo videos [23], or employing MAE
training on ego videos [39] to improve downstream ego-
centric tasks such as action recognition. Our work concen-
trates on ego-exo cross-view understanding, aiming to link
ego and exo-view videos across tasks such as cross-view
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retrieval. We advocate an orthogonal perspective—ego-
exo view-invariance in the representation learning process,
which we will show to be superior for cross-view under-
standing compared with prior video-text or vision-centric
non view-invariant approaches.

Generative Models for Representation Learning It is
widely believed that strong generative capabilities often sig-
nal the potential for learning robust representations. Pre-
vious research has demonstrated that diffusion models can
capture meaningful representations for image recognition
tasks [7, 22, 43, 49]. We build on this insight and introduce
a new apphcatlon of diffusion representations to facilitate
video representation learning. This process enables the syn-
thetic creation of pseudo-paired exo features from a single
ego video, which is particularly valuable for learning ego-
exo view-invariant features given the scarcity and limited
scale of existing paired ego-exo videos.

3. Methodology

We first define the problem formally (Sec. 3.1), then intro-
duce the Rosetta Stone Translator (Sec. 3.2). Next, build-
ing on that translator, we explain how we align the unpaired
video data (Sec. 3.3) and then train using our newly pseudo-
aligned data with contrastive learning (Sec. 3.4).

3.1. Problem Setup

Prior approaches to learning view-invariant video repre-
sentations have relied on training contrastive models us-
ing paired ego-exo videos, either time-sychronized [17] or
pseudo-synchronized videos [36]. Given a dataset of paired
videos Dpgir, where each pair consists of an ego view and
a synchronized exo view of the same scene, as defined by
Dpair = {(vego,véx‘)j)}N"’". where végz, and v&l are the ego
and exo views, respectively, of the i-th synchronized pair.
The training objective commonly employs a contrastive
loss, such as InfoNCE [29], to bring representations of syn-
chronized pairs closer together in feature space, while push-
ing non-synchronized pairs further apart. For each mini-
batch of N paired samples drawn from Dy, a video en-
coder fg : V — R% is trained to maximize the similarity
between the ego and exo features of the same sample, while
minimizing similarity with other samples within the batch.
The contrastive loss £, for a batch of paired samples is de-
fined as:
Lo(u,v) = —log exp(sim(u,v)/7)

> »en exp(sim(u, ) /T)

where u = fe(vego) v = fe(vem) sim(+, -) denotes a sim-
ilarity metric, such as cosine similarity. B represents all
samples in the batch. 7 is a temperature parameter that con-
trols the concentration of the similarity distribution.

To enable view-invariant learning at a large scale, we ex-
pand the setup to include both synchronized paired videos
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Figure 2. Training of the Rosetta Stone Translator (RST). Lever-
aging synchronized ego and exo videos, we extract features with
a frozen video encoder fy. The RST is trained to predict exo fea-
tures from ego ones, using a denoising network to reverse the dif-
fusion process.

and unpaired in-the-wild videos. The unpaired video data
consists of two separate datasets: an ego-only dataset,

Dego = {v 330}1—1’ and an exo-only dataset, Ty, =
{@é{g }j ®, where in practice Ny, > N, and both IV,
and N, are large. These datasets capture various scenes
and actions from different viewpoints, with videos recorded
independently, making them unpaired in both temporal and
contextual alignment.

Our goal is to train a view-invariant video encoder 73
using both paired data Dp., and unpaired data T, and
Do, such that: synchronized ego-exo pairs are embedded
close together in the feature space, reinforcing viewpoint
invariance for paired samples. Unpaired videos with simi-
lar visual and semantic content across ego and exo datasets
are also encouraged to be close in the feature space. We
assume that both paired and unpaired data are accompanied
by text narration, which can be easily obtained through ASR
or state-of-the-art video captioning models [5, 44]. In our
context, language plays a supplemental role in aligning un-
paired data, as it provides additional semantic knowledge
that enhances the alignment process.

The key challenges here are, first, linking the un-
paired data in a meaningful way, specifically by construct-
ing pseudo-pairs between T, and Dol Dosewdopar =
{(Vego, Veno) | Vego € Dego, Veno € Do} and second, effec-
tively aligning unpaired ego and exo representations in the
feature space. Since the pseudo-pairs are not as precisely
matched as the data in D, aligning these representations
in the feature space requires careful handling of the similar-
ity measure to account for the inherent noise and variability
in the unpaired psendo-paired data.

3.2. Training a Rosetta Stone Translator

Our core insight is to utilize a moderate amount of time-
synchronized, paired ego-exo video as a “Rosetta Stone” to
facilitate the interpretation of complex associations within
unpaired ego and exo data. To achieve this, we train a
RST (Rosetta Stone Translator) 7, designed as a diffusion
maodel [30] that learns to map between ego and exo view-
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Figure 3. Framework Overview. Left: Our VIEWPOINTROSETTA model acts as a bridge to align unpaired ego and exo videos. From an
ego query video, RST generates a corresponding exo feature. This hallucinated exo feature is then concatenated with narration embeddings
to retrieve the closest match from exo candidate videos. Right: we propose soft view-invariant representation learning. Different from
traditional video-text and video-video contrastive learning, our approach involves: (1) assigning weights to pseudo-aligned ego-exo pairs,
with higher weights given to pairs showing greater semantic similarity (indicated by the dashed line); (2) RST-synthesized exo feature and
the anchor ego feature as the positive pair, to enhance feature alignment across views (highlighted by the blue line).

points in the feature space. To train the RST, each video v
in the paired dataset Dpg;, is first mapped into a latent space
with a video encoder f,; pretrained with video-language
contrastive learning [50]—to extract meaningful represen-
tations from both ego and exo views, resulting in latent fea-
tures that capture the video’s semantic content as well as
the inherent discrepancy between viewpoints. Specifically,
for each video pair (Uégz., vé(?,) we obtain the encoded latent
features as: 25 = fo(ule)), 25 = Fo(vll)).

To perform the translation from zego t0 zexo, We adopt
the formulation of a denoising diffusion probabilistic model
(DDPM) [20]. In the forward diffusion process, we incre-
mentally add Gaussian noise to the exo feature zey, over a
fixed number of timesteps. Let g(z¢|z¢_1) denote the for-
ward process, where ¢ indexes the diffusion timesteps. The
forward process is defined as:

N(Zt; '\/Q:_tzt—].) (1 - Qt)l),

where o controls the variance at each timestep ¢. Start-
ing from zey,, this process generates a series of noisy latent
variables {zt(i} M., where T is the total number of diffusion
steps. The reverse process is parameterized by a transformer
model ep that aims to recover zey, by iteratively denoising
z; given the ego feature z,, as a condition. The reverse
process for each timestep ¢ is defined as:

= N(zt—l; )u'ﬂ(zt: t): J?I):

where pg(z¢,t) is the predicted mean that depends on both
z¢ and ¢, and o is the variance term for timestep .

Q(Zt|zt—1) =

Pe(zt—1|zt)

The training objective for the diffusion-based translator
is to minimize the difference between the predicted exo
feature and the true exo feature. In practice, the model is
trained to minimize the mean squared error (MSE) between
the predicted noise and the actual noise added in the forward
process. For each pair (zego, Zexo)» the objective is:

Lrst = Ey zepo,e~N(0.1).8 [||f — eg(ze,t, zego)”z}

where € is the Gaussian noise added in the forward process.

Through this training process, the RST learns to map
ego features zq, into a denoised representation that approx-
imates zeyo. We explain how we apply RST to construct
pseudo paired ego-exo data and augment contrastive learn-
ing in Sections 3.3 and 3.4 respectively.

3.3. Aligning Unpaired Ego-Exo Video Data

Figure 3 depicts how we create an alignment mechanism *
that links each query ego video to a relevant exo video from
a pool of candidate exo videos. The high-level idea is to use
the pretrained RST as a bridge, mining pseudo-pairs with
similar semantics and visual context.

Specifically, for each query ego video vego € Dego, We
first extract its visual feature, using the pretrained video en-
coder fy, mapping it into a latent space zego = f¢(Vego)-
Then the extracted ego feature zq, is passed through the
Rosetta Stone Translator 7, to generate a corresponding exo
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3«Align” in Sec. 3.3 refers to matching unpaired exo and ego videos,
while in Sec. 3.4, it refers to aligning their features.



representation Zexo = 7 (zego) — hallucinating what would
the ego feature look like from the exo perspective.

To encourage a holistic understanding of the input ego
video, we further adopt an encoder-based language model
BERT [1 1] to extract semantic information from its text nar-
ration. The narration sentence neg, is processed by a BERT
model fgerr, Which generates a text embedding eqgo. TO
form the final query ego feature hego, the exo-like feature
Zexo from the RST and the text embedding ey, are concate-
nated: hego = concat(Zexo, Eego)-

For each candidate exo video v££3 € Dexo, We similarly
encode the raw video with f and narration ne({?, with fggrT,
0) = concat (-2, )

To determine the best match for the query ego video, we
compute the cosine similarity between the query ego feature
hego and each candidate exo feature hgg The candidate exo
videos are ranked based on the similarity scores, and the
one with the highest score is selected to be linked.

to get the final representation = concat(

3.4. Contrastive Learning with Dual-Encoders

As illustrated in Figure 3, we adopt a dual-encoder frame-
work for learning view-invariant representations across the
ego and exo perspectives. This framework consists of
two components: a video encoder fg, which processes a
video clip v and maps it to a latent feature representation
fo(v) € R?, where d is the dimension of the shared feature
space, and a text encoder gy, which processes the narra-
tion n associated with the video and maps it to the same
feature space. This setup ensures that both video and text
representations are embedded within a shared latent space,
facilitating cross-modal comparisons.

To address the challenge of learning robust view-
invariant representations, we leverage a combination of
paired data, pseudo-aligned unpaired data, and synthetic
data generated by the RST, to bridge the gap between the
ego and exo perspectives. Our approach introduces two
concepts of alignment — hard alignment and soft alignment
in the feature space, enabling flexible and scalable learning
across both paired and unpaired data.

The key insight is to handle uncertainty in the alignment
of unpaired data. For pseudo-paired data, corresponding
views may not always share perfectly matched semantic
meanings. To address this challenge, we apply soft align-
ment, which introduces a weighting factor based on the tex-
tual similarity between the ego and exo narrations. This
weighting modulates the contrastive loss, with pairs exhibit-
ing higher textual similarity receiving greater weights.

We now describe the formulation of the contrastive loss
with soft alignment. For a pseudo-paired sample consisting
of an ego video vego and an exo video veyo, along with their
corresponding narrations 7icge and 7.0, the soft contrastive
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loss is computed as:

Ly.y = sim( fgerr (nego ), fBERT(7exo) ) X
o exp(sim( fo(vego), fo(Vexo))/T)
{ o (erﬁ exp(sim(fo(vego), fo())/7) ):| .

The term sim( fgert(7ego); fBERT(Mexo)) modulates the
weight of the contrastive loss based on the textual similarity
between ego and exo narration pairs. For naturally paired
(synchronized) ego-exo video pairs, this textual similarity
term is set to be 1, reflecting perfect alignment.

Additionally, we apply a contrastive loss between each
video features and the corresponding text features. By
aligning video feature with their respective text descrip-
tions, the model implicitly encourages ego and exo video
features to move closer to each other. This happens because
the text features serve as a shared anchor — text features
with the same semantics are more likely to be assigned to
the same subspace. The objective is formulated as:

Lyt = —log ( exp(Sim(fe ('“ego): Gy {:nego))/'r)
4 = — .
>z exp(sim(fo(vego), v (1)) /T)

To enhance contrastive learning further and provide a
reference for the video encoder about what the ego feature
would look like in the exo view, we introduce synthetic fea-
tures generated by the RST feature translator. This aug-
mentation helps bridge the gap between the two perspec-
tives and improves ego-exo alignment. The corresponding

exp(sim(fe ('Uego)u T fﬁ ('Uego) ) )/T)

contrastive loss is:
Y v eXP(sim(fo (vego), 7 (fo(x) J)/T)) '

Lys=— ng (

The final training objective for paired sample is com-
puted by combining the video-video alignment loss and the
video-text alignment loss. For pseudo-paired samples, the
final training objective is the sum of the video-video, video-
text, and video-synthetic data losses. A; and Ay are hyper-
parameters that control the relative importance of each term.

Lopaired = M Lyy + (1 — A1) Ly

»Cpseudc»paired = A1 Ev—v + (1 - )"-1 )Ev—l + )\Z‘CV—S-

Our VIEWPOINTROSETTA approach combines soft align-
ment for pseudo-paired data with synthetic data generation
through the RST, enhancing the flexibility and scalability of
contrastive learning across multiple views.

4. Experiments
4.1. A Benchmark for Cross-View Understanding

To evaluate the effectiveness of view-invariant representa-
tions, we introduce a new cross-view understanding bench-
mark based on the Ego-Exo4D dataset [17], the largest and



Cross-view Retrieval (HR@5) Cross-view Recognition Cross-view
Category Method .
€go — €X0 X0 — ego avg. top-l1acc.  top-5 acc. Skill Assess. (acc.)
) TimeSformer [6] 6.68 6.95 6.82 5.18 14.14 51.58
Egocentric Video | po vy p [124] 29.33 13.47 21.40 20.33 46.32 54.37
Representation . )
Learning LaViLa [50] 3491 12.02 23.47 26.43 55.01 54.10
LaViLa* [50] 43.63 21.93 32.78 25.51 54.53 54.37
Random Align * 23.33 20.08 21.71 12.19 31.23 52.75
View-invariant ActorObserverNet t [36] 29.50 24.85 27.18 15.70 38.45 54.10
Representation VI Encoder f [17] 29.53 24.40 26.97 14.85 35.39 53.83
Learning Egolnstructor * [45] 46.04 31.68 38.86 24.15 51.40 54.73
SUM-L * [41] 47.14 32.77 39.96 24.83 52.08 55.10
VIEWPOINTROSETTA (Ours) 58.14 47.21 52.68 34.47 64.85 55.82

Table 1. Downstream evaluation on three cross-view understanding tasks. * means having access to all the same paired and unpaired
data as ours. { means only training with paired data. VIEWPOINTROSETTA markedly outperforms all baseline models, demonstrating
consistent performance gains across three tasks, highlighting the effectiveness of our approach.

most comprehensive public ego-exo dataset to date. This
dataset offers large-scale perfectly synchronized ego and
exo video pairs across a diverse range of domains, making
it an ideal testbed for assessing cross-view understanding.
This benchmark aims to address two main questions: (1)
How view-invariant are the pretrained representations? and
(2) How effectively do view-invariant representations facil-
itate knowledge transfer from exo to ego views?

To address the first question, we define a cross-view ac-
tion retrieval task. Given a query video from either the
exo or ego perspective, the objective is to retrieve videos
from the opposite view that depict the same action. This
task is evaluated using HR @k (Hit Rate@k), which mea-
sures the frequency with which the correct match appears
within the top k retrieved results. The dataset for this task
consists of 2,936 ego and 5,872 exo videos, spanning 188
action classes, allowing evaluations for both exo—ego and
ego—exo retrieval performance. We sample the data from
the cooking videos from Ego-Ex04D’s keystep recognition
benchmark. Average video length is 11 seconds.

To explore the second question, we examine how well
view-invariant representations support knowledge transfer
in two scenarios: action recognition from exo to ego, and
skill assessment from exo to ego. This focus on exo-to-ego
transfer reflects the typical availability of richer resources
and task-specific annotations in the exo domain compared
to the ego domain. For cross-view action recognition, we
frame the task as a 188-way keystep recognition problem.
During training, the pretrained representation model is fine-
tuned on exo-only data, using 18,518 videos in the training
set. At test time, the model is evaluated on ego-only data in
a zero-shot setting with a test set of 2,936 videos. This setup
assesses the model’s ability to generalize its learned repre-
sentations from exo to ego without additional ego-specific
training. In cross-view skill assessment, we treat the task
as a binary classification problem, where the goal is to clas-

sify the skill level displayed in a video as “good” or “bad”.
During training, the model is fine-tuned on 20,848 exo-only
videos and tested in a zero-shot setting on 1,109 ego videos.

Action labels for cross-view retrieval and action recog-
nition tasks are sourced from Ego-Exo04D’s keystep anno-
tations, while skill labels for cross-view skill assessment
are obtained from the proficiency estimation annotations
in Ego-Exo4D. This benchmark provides a comprehensive
evaluation of the robustness and transferability of view-
invariant representations across retrieval, recognition, and
skill assessment tasks in cross-view settings. Our unpaired
training data comes from YouTube how-to videos [18, 28]
and unscripted egocentric video [16], detailed below.

Note that the original Ego-Exo4D benchmarks are
specifically designed around downstream tasks from ego
views and do not address cross-view scenarios, which are
equally significant in practical applications. Our bench-
mark supplements the original by emphasizing cross-view
understanding, sourcing action and skill labels from Ego-
Ex04D’s comprehensive annotations. We hope this addition
serves as a valuable reference for future research in cross-
view video understanding.

4.2. Experiment Setup

Baselines We consider two families of models, incorpo-
rating a total of seven baselines. For view-invariant learn-
ing, we evaluate the following methods: Random Align,
which randomly aligns unpaired ego-exo videos; ActorOb-
serverNet [36], which aligns paired data using a triplet loss;
the VI encoder from the keystep recognition benchmark
of Ego-Exo4D [17], which aligns paired data with an In-
foNCE [29] loss; and SUM-L [41] and Egolnstructor [45],
which align unpaired ego-exo videos based on language se-
mantics. For general video representation learning base-
lines, we consider TimeSformer, which uses spatial atten-
tion modules initialized with weights from CLIP [32], and
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video-language pretraining models such as EgoVLP [24]
and LaViLa [50]. ActorObserverNet [36] and the VI en-
coder [17] are trained exclusively on paired data only, due
to their design restrict.

Implementation Details In our dual encoder architecture,
the video encoder is a TimeSformer [6] with spatial atten-
tion modules initialized from a ViT [12] model that was
contrastively pre-trained on large-scale paired image-text
data as in CLIP [32]. We sample 4 frames per clip dur-
ing fine-tuning on downstream tasks. For EgoVLP [24],
we use 16 frames per clip due to the fixed sampling rate in
the public checkpoint. The text encoder follows a 12-layer
Transformer architecture as in [50]. For the Rosetta Stone
Translator, we use the DiT [30] model architecture. For the
BERT model, we adopt Sentence Transformers [33]. Pre-
training is conducted over 5 epochs, while fine-tuning on
downstream tasks is performed over 200 epochs. Extra de-
tails can be found in the supplementary.

Pretraining Datasets For paired data, we use the Ego-
Exo04D dataset [17], which contains approximately 850k
time-synchronized, multi-view ego-exo video pairs. For un-
paired ego data, we utilize Ego4D [16], the largest egocen-
tric video dataset available. Each clip’s interval is deter-
mined by the pairing strategy outlined in [24], resulting in
a pool of 562k ego video clips paired with human narra-
tions. The average clip length is 1 second. For unpaired
exo data, we use the HTM-AA dataset [18], a temporally
aligned version of HowTo100M [28]. Our training set con-
tains approximately 1.25M exo video-narration pairs.

4.3. Main Results

Overall Performance Looking at Table |, our VIEW-
POINTROSETTA outperforms all other models across all
three benchmark tasks. The cross-view retrieval task serves
as a direct measure of the view-invariance of the pretrained
representations.  Specifically, comparing with ActorOb-
serverNet [36] and VI Encoder [17], which rely exclusively
on paired data, ViewpointRosetta’s use of both paired and
unpaired data significantly enhances its view-invariance.
SUM-L [41], which aligns unpaired videos based on lan-
guage semantics, performs better than other view-invariant
baselines but still falls short of ViewpointRosetta. Impor-
tantly, this shows that our use of the Rosetta Stone Trans-
lator for feature alignment is more effective than language-
based alignment alone in capturing nuanced view-invariant
representations. Also, results in cross-view recognition and
skill assessment tasks reveal that ViewpointRosetta enables
more effective knowledge transfer from exo to ego than ex-
isting approaches. Our margins to the next best baseline are
generally large. The smallest margins are for skill assess-
ment, which we attribute to the inherent difficulty of the
task; most methods perform only a bit better than random
chance. Overall, the results show that ViewpointRosetta not
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Figure 4. Compared to the VI Encoder [17], our ViewpointRosetta
unlocks unpaired data to capture rich semantic information, en-
abling retrieval of samples that are not only visually similar to the
input view but also semantically related.

only learns robust view-invariant representations but also
supports practical cross-view applications by facilitating ef-
fective knowledge transfer from exo to ego.

Scaling behavior Figure 5 illustrates how different meth-
ods of aligning unpaired data (Random Align vs. SUM-
L [41] vs. ours) perform on cross-view retrieval as the vol-
ume of unpaired data gradually increases from O to 1.25M.



Scaling Curve for Cross-View Retrieval
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Figure 5. ViewpointRosetta is better at “unlocking” and delivers
better view-invariant features when the data volume increases.

Note that VI-Encoder [17] uses no unpaired data due to
its design limit, and hence is a single point on the left side.
ViewpointRosetta is significantly more effective in leverag-
ing unpaired data for view-invariant representation learning
compared to other methods. By capitalizing on unpaired
data to reinforce conceptual understanding (rather than ex-
act matches), our approach scales not just in data volume
but in depth of comprehension. Our model’s RST provides
a direct, feature-level mapping between views that captures
detailed visual correspondences, allowing it to unlock the
potential of unpaired data more effectively. This explicit
cross-view translation enables ViewpointRosetta to create
synthetic feature pairs, build a more structured represen-
tation space, and handle viewpoint-specific details, all of
which are essential for effective scaling.

Retrieval Qualitative Examples In Figure 4, we present a
qualitative example of cross-view retrieval. We observe that
the VI Encoder [17], which is trained only on paired data,
tends to retrieve exo videos that are visually similar to the
input but often lack semantic alignment with the action de-
picted. In contrast, by leveraging unpaired data, our model
goes beyond surface-level visual similarities and retrieves
results with meaningful action-based alignment.

Behavior of RST Figure 6 illustrates the top-1 alignment
choices using language guidance compared to our RST ap-
proach. Language-based alignment tends to favor close-
up shots, while the RST aligns based on both semantic
and visual similarities, producing matches that more closely
resemble the original action as seen from the exo view.
This often includes wide-angle shots that capture broader
environmental cues and scene layout, resulting in align-
ments that preserve both the context and spatial relation-
ships present in the egocentric view.

Ablation Study The ablation study in Figure 7 provides
insights into the individual and combined contributions of
Viewpoint Rosetta Stone (RST) component and Contrastive
learning with Soft Alignment (SL) in our framework, mea-
sured in terms of HR@5 scores for cross-view ego-exo re-
trieval. It reveals that the RST Feature Translator is fun-
damental to achieving strong view-invariance in our View-
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Figure 6. ViewpointRosetta’s RST tends to align videos which
are more visually similar, contains more environment info, and
features larger view point change.

Ablation Study of Components in ViewpointRosetta
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Figure 7. Ablation of components of our ViewpointRosetta.

pointRosetta, while Soft Alignment further enhances per-
formance by handling imperfect matches in unpaired data.
The best results come from combining both. The significant
drop in performance when removing RST demonstrates that
our RST is crucial for achieving the best results, as tradi-
tional language-based alignment alone is insufficient.

5. Conclusion

We propose a novel approach for learning ego-exo view-
invariant video representations by leveraging both paired
and unpaired data. Central to our method is a diffusion-
based Rosetta Stone Translator (RST), trained on synchro-
nized ego-exo videos, which deciphers complex relation-
ships within unpaired data and generates pseudo ego-exo
pairs to enable multi-view contrastive learning. Addition-
ally, we introduce a new cross-view understanding bench-
mark derived from the Ego-Exo4D dataset, setting the stage
for future advancements in ego-exo cross-view understand-
ing. Our work has significant implications for applications
such as robot learning and human skill acquisition in aug-
mented reality (AR), where an egocentric actor must inter-
pret—or even replicate—the actions of a demonstrator ob-
served from an exocentric perspective.
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