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Abstract

We study transfer learning for estimation in latent variable network models. In
our setting, the conditional edge probability matrices given the latent variables
are represented by P for the source and Q for the target. We wish to estimate
Q given two kinds of data: (1) edge data from a subgraph induced by an o(1)
fraction of the nodes of Q, and (2) edge data from all of P . If the source P has
no relation to the target Q, the estimation error must be Ω(1). However, we show
that if the latent variables are shared, then vanishing error is possible. We give an
efficient algorithm that utilizes the ordering of a suitably defined graph distance.
Our algorithm achieves o(1) error and does not assume a parametric form on the
source or target networks. Next, for the specific case of Stochastic Block Models
we prove a minimax lower bound and show that a simple algorithm achieves this
rate. Finally, we empirically demonstrate our algorithm’s use on real-world and
simulated network estimation problems.

1 Introduction

Within machine learning and statistics, the paradigm of transfer learning describes a setup where data
from a source distribution P is exploited to improve estimation of a target distribution Q for which a
small amount of data is available. Transfer learning is quite well-studied in learning theory, starting
with works such as Ben-David et al. (2006); Cortes et al. (2008); Crammer et al. (2008), and at the
same time has found applications in areas such as computer vision (Tzeng et al., 2017a) and speech
recognition (Huang et al., 2013). A fairly large body of work in transfer learning considers different
types of relations that may exist between P and Q, for example, Mansour et al. (2009); Hanneke and
Kpotufe (2019, 2022), with emphasis on model selection, multitask learning and domain adaptation.
On the other hand, optimal nonparametric rates for transfer learning have very recently been studied,
both for regression and classification problems (Cai and Wei, 2021; Cai and Pu, 2024).

In this paper, we study transfer learning in the context of random network/graph models. In our
setting, we observe Bernoulli samples from the full n× n edge probability matrix for the source P
and only a nQ×nQ submatrix of Q for nQ ≪ n. We would like to estimate the full n×n probability
matrix Q, using the full source data and limited target data, i.e., we are interested in the task of
estimating Q in the partially observed target network, utilizing information from the fully observed
source network. This is a natural extension of the transfer learning problem in classification/regression
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to a network context. However, it is to be noted that network transfer is a genuinely different problem
owing to the presence of edge correlations.

While transfer learning in graphs seems to be a fundamental enough problem to warrant attention by
itself, we are also motivated by potential applications. For example, metabolic networks model the
chemical interactions related to the release and utilization of energy within an organism (Christensen
and Nielsen, 2000). Existing algorithms for metabolic network estimation (Sen et al., 2018; Baranwal
et al., 2020) and biological network estimation more broadly (Fan et al., 2019; Li et al., 2022)
typically assume that some edges are observed for every node in the target network. One exception
is Kshirsagar et al. (2013), who leverage side information for host-pathogen protein interaction
networks. For the case of metabolic networks, determining interactions in vivo1 requires metabolite
balancing and labeling experiments, so only the edges whose endpoints are both incident to the
experimentally chosen metabolites are observed (Christensen and Nielsen, 2000). For a non-model
organism, the experimentally tested metabolites may be a small fraction of all metabolites believed
to affect metabolism. However, data for a larger set of metabolites might be available for a model
organism.

To study transfer learning on networks, one needs to fix a general enough class of networks that is
appropriate for the applications (such as the biological networks mentioned above) and also suitable
to capture the transfer phenomenon. The latent variable models defined below appear to be a natural
candidate for that.

Latent Variable Models. Latent variable network models consist of a large class of models whose
edge probabilities are governed by the latent positions of nodes. This includes latent distance models,
stochastic block models, random dot product graphs and mixed membership block models (Hoff
et al., 2002; Hoff, 2007; Handcock et al., 2007; Holland et al., 1983; Rubin-Delanchy et al., 2022;
Airoldi et al., 2008). They can also be unified under graph limits or graphons (Lovász, 2012; Bickel
and Chen, 2009), which provide a natural representation of vertex exchangeable graphs (Aldous,
1981; Hoover, 1979). In addition to their theoretical breadth and usefulness, latent variable models
are relevant and applicable to real-world settings such as neuroscience Ren et al. (2023), ecology
Trifonova et al. (2015), international relations Cao and Ward (2014), political pscyhology Barberá
et al. (2015), and education research Sweet et al. (2013).

For unseen latent variables x1, . . . ,xn ∈ X ⊂ Rd and unknown function fQ : X × X → [0, 1]
where X is a compact set and d an arbitrary fixed dimension, the edge probabilities are:

Qij = fQ(xi,xj). (1)

Typically, in network estimation, one observes adjacency matrix {Aij} distributed as
{Bernoulli(Qij)}, and either has to learn xi or directly estimate fQ. There has been much work in
the statistics community on estimating xi for specific models (usually up to rotation). For stochastic
block models, see the excellent survey in Abbe (2017).

Estimating fQ can be done with some additional assumptions (Chatterjee, 2015). When fQ has
appropriate smoothness properties, one can estimate it by a histogram approximation (Olhede and
Wolfe, 2014; Chan and Airoldi, 2014). This setting has also been compared to nonparametric
regression with an unknown design (Gao et al., 2015). Methods for network estimation include
Universal Singular Value Thresholding (Chatterjee, 2015; Xu, 2018), combinatorial optimization (Gao
et al., 2015; Klopp et al., 2017), and neighborhood smoothing (Zhang et al., 2017; Mukherjee and
Chakrabarti, 2019).

Transfer Learning on Networks. We wish to estimate the target network Q. However, we only
observe fQ on

(
nQ

2

)
pairs of nodes, for a uniformly random subset of variables S ⊂ {1, 2, . . . , n}.

We assume S is vanishingly small, so nQ := |S| = o(n).

Absent additional information, we cannot hope to achieve o(1) mean-squared error. To see this,
suppose fQ is a stochastic block model with 2 communities of equal size. For a node i ̸∈ S, no edges
incident to i are observed, so its community cannot be learned. Since nQ ≪ n, we will attain Ω(1)
error overall. To attain error o(1), we hope to leverage transfer learning from a source P if available.
In fact, we give an efficient algorithm to achieve o(1) error, formally stated in Section 2.
Theorem 1.1 (Theorem 2.3, Informal). There exists an efficient algorithm such that, if given source
data AP ∈ {0, 1}n×n and target data AQ ∈ {0, 1}nQ×nQ coming from an appropriate pair (fP , fQ)

1In the organism, as opposed to in vitro (in the lab).

2



of latent variable models, outputs Q̂ ∈ Rn×n such that

P
[
1

n2
∥Q− Q̂∥2F ≤ o(1)

]
≥ 1− o(1).

There must be a relationship between P and Q for them to be an appropriate pair for transfer learning.
We formalize this relationship below.

Relationship Between Source and Target. It is natural to consider pairs (fP , fQ) such that for all
x,y ∈ X , the difference (fP (x,y) − fQ(x,y)) is small. For example, Cai and Pu (2024) study
transfer learning for nonparametric regression when fP − fQ is close to a polynomial in x,y. But,
requiring fP − fQ to be pointwise small does not capture a broad class of pairs in the network setting.
For example, if fP = αfQ. Then fP − fQ = (α − 1)fQ can be far from all polynomials if fQ is,
e.g. a Hölder-smooth graphon.2 However, under the network model, this means AP and AQ are
stochastically identical modulo one being α times denser than the other.

We will therefore consider pairs (fP , fQ) that are close in some measure of local graph structure.
With this in mind, we use a graph distance introduced in Mao et al. (2021) for a different inference
problem.
Definition 1.2 (Graph Distance). Let P ∈ [0, 1]n×n be the probability matrix of a graph. For
i, j ∈ [n], i ̸= j, we define the graph distance between them as follows:

dP (i, j) := ∥(ei − ej)
TP 2(I − eie

T
i − eje

T
j )∥22,

where ei, ej ∈ Rn are standard basis vectors.

Intuitively, this first computes the matrix P 2 of common neighbors, and then computes the distance
between two rows of the same (ignoring the diagonal elements). We will require that fP , fQ satisfy a
local similarity condition on the relative rankings of nodes with respect to this graph distance. Since
we only estimate the probability matrix of Q, the condition is on the latent variables x1, . . . ,xn of
interest. The hope is that the proximity in graph distance reflects the proximity in latent positions.
Definition 1.3 (Rankings Assumption at Quantile hn). Let (P,Q) be a pair of graphs evaluated on
n latent positions. We say (P,Q) satisfy the rankings assumption at quantile hn ≤ 1 if there exists
constant C > 0 such that for all i ∈ [n] and all j ̸= i, if j belongs to the bottom hn-quantile of
dP (i, ·), then j belongs to the bottom Chn-quantile of dQ(i, ·).

To further motivate Definition 1.3, recall our motivating example of biological network estimation.
Previous works require some form of similarity between networks to enable transfer Sen et al. (2018);
Fan et al. (2019); Baranwal et al. (2020). For example, Kshirsagar et al. (2013) require a commonality
hypothesis: if pathogens A, B target the same neighborhoods in a protein interaction network, one
can transfer from A to B. Our rankings assumption similarly posits that to transfer knowledge from A
to B, A and B have similar 2-hop neighborhood structures.

Note that Definition 1.3 involves quantiles of graph distances; therefore it is a relative condition,
because it depends on a rank-ordering within both graphs P,Q before comparison. On the other
hand, an absolute condition would require that for nodes i, j ∈ [n], if e.g. dP (i, j) < 100 then
dQ(i, j) < C · 100. Our condition is more flexible and will hold for a larger set of graph pairs (P,Q),
such as pairs where one graph is much more dense than the other.

Finally, to illustrate Definition 1.3, consider stochastic block models fP , fQ with kP ≥ kQ commu-
nities respectively. If nodes i, j are in the same communities then Pei = Pej , so dP (i, j) = 0. We
require that j minimizes dQ(i, ·). This occurs if and only if dQ(i, j) = 0. Hence if i, j belong to the
same community in P , they are in the same community in Q. Note that the converse is not necessary;
we could have Q with 1 community and P with arbitrarily many communities.

With the relationship between the source and target defined by the rankings assumption, our contribu-
tions are as follows.

(1) Algorithm for Latent Variable Models. We provide an efficient Algorithm 1 for latent variable
models with Hölder-smooth fP , fQ. The benefit of this algorithm is that it does not assume a
parametric form of fP and fQ. We prove a guarantee on its error in Theorem 2.3.

2In fact, Cai and Pu (2024) highlight this exact setting as a direction for future work.
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(2) Minimax Rates. We prove a minimax lower bound for Stochastic Block Models (SBMs) in
Theorem 3.2. Moreover, we provide a simple Algorithm 2 that attains the minimax rate for this class
(Proposition 3.4).

(3) Experimental Results on Real-World Data. We test both of our algorithms on real-world
metabolic networks and dynamic email networks, as well as synthetic data (Section 4).

All proofs are deferred to the Appendix.

1.1 Other Related work

Transfer learning has recently drawn a lot of interest both in applied and theoretical communities. The
notion of transferring knowledge from one domain with a lot of data to another with less available data
has seen applications in epidemiology Apostolopoulos and Bessiana (2020), computer vision Long
et al. (2015); Tzeng et al. (2017b); Huh et al. (2016); Donahue et al. (2014); Neyshabur et al. (2020),
natural language processing Daumé (2007), etc. For a comprehensive survey see Zhuang et al. (2019);
Weiss et al. (2016); Kim et al. (2022). Recently, there have also been advances in the theory of
transfer learning Yang et al. (2013); Tripuraneni et al. (2020); Agarwal et al. (2023); Cai and Wei
(2021); Cai and Pu (2024); Cody and Beling (2023).

In the context of networks, transfer learning is particularly useful since labeled data is typically hard
to obtain. Tang et al. (2016) develop an algorithmic framework to transfer knowledge obtained using
available labeled connections from a source network to do link prediction in a target network. Lee
et al. (2017) proposes a deep learning framework for graph-structured data that incorporates transfer
learning. They transfer geometric information from the source domain to enhance performance on
related tasks in a target domain without the need for extensive new data or model training. The
SGDA method Qiao et al. (2023) introduce adaptive shift parameters to mitigate domain shifts and
propose pseudo-labeling of unlabeled nodes to alleviate label scarcity. Zou et al. (2021) proposes
to transfer features from the previous network to the next one in the dynamic community detection
problem. Simchowitz et al. (2023) work on combinatorial distribution shift for matrix completion,
where only some rows and columns are given. A similar setting is used for link prediction in
egocentrically sampled networks in Wu et al. (2018). Zhu et al. (2021) train a graph neural network
for transfer based on an ego-graph-based loss function. Learning from observations of the full
network and additional information from a game played on the network Leng et al. (2020); Rossi et al.
(2022). Wu et al. (2024) study graph transfer learning for node regression in the Gaussian process
setting, where the source and target networks are fully observed.

Levin et al. (2022) proposes an inference method from multiple networks all with the same mean
but different variances. While our work is related, we do not assume E[Pij ] = E[Qij ]. Cao et al.
(2010) do joint link prediction on a collection of networks with the same link function but different
parameters.

Another line of related but different work deals with multiplex networks (Lee et al., 2014, 2015;
Iacovacci and Bianconi, 2016; Cozzo et al., 2018) and dynamic networks Sarkar and Moore (2005);
Kim et al. (2018); Sewell and Chen (2015); Sarkar et al. (2012); Chang et al. (2024); Wang et al. (2023).
One can think of transfer learning in clustering as clustering with side information. Prior works
consider stochastic block models with noisy label information (Mossel and Xu, 2016; Mazumdar and
Saha, 2017a) or oracle access to the latent structure (Mazumdar and Saha, 2017b).

Notation. We use lowercase letters a, b, c to denote (real) scalars, boldface x,y, z to denote vectors,
and uppercaseA,B,C to denote matrices. Let a∨b := max{a, b} and a∧b := min{a, b}. For integer
n > 0, let [n] := {1, 2, . . . , n}. For a subset S ⊂ [n] and A ∈ Rn×n, let A[S, S] ∈ R|S|×|S| be the
principal submatrix with row and column indices in S. We denote the ℓ2 vector norm as ∥x∥ = ∥x∥2,
dot product as ⟨x,y⟩, and Frobenius norm as ∥A∥ = ∥A∥F . For functions f, g : N → R we let
f ≲ g denote f = O(g) and f ≳ g denote f = Ω(g). All asymptotics O(·), o(·),Ω(·), ω(·) are with
respect to nQ unless specified otherwise.

2 Estimating Latent Variable Models with Rankings

In this section, we present a computationally efficient transfer learning algorithm for latent variable
models. Algorithm 1 learns the local structure of P based on graph distances (Definition 1.2). For
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Algorithm 1 Q̂-Estimation for Latent Variable Models

1: Input: AP ∈ {0, 1}n×n, AQ ∈ {0, 1}nQ×nQ , S ⊂ [n] s.t. |S| = nQ.
2: Initialize Q̂ ∈ Rn×n to be all zeroes.
3: For all i, all j ̸= i, compute graph distances:

dAP
(i, j) := ∥(ei − ej)T (AP )

2(I − eieTi − ejeTj )∥22.

4: Fix a bandwidth h ∈ (0, 1) based on n, nQ.
5: for i = 1 to n do
6: Let TAP

i (h) ⊂ S be bottom h-quantile of S with respect to dAP
(i, ·).

7: if i ∈ S then
8: Update TAP

i (h)← TAP
i (h) ∪ {i}.

9: end if
10: end for
11: for i = 2 to n do
12: for 1 ≤ j < i do
13: Compute Q̂ij = Q̂ji by averaging:

Q̂ij :=
1∣∣TAP

i (h)
∣∣∣∣TAP

j (h)
∣∣ ∑
r∈T

AP
i (h)

∑
s∈T

AP
j (h)

AQ;rs.

14: end for
15: end for
16: Return Q̂.

each node i of P , it ranks the nodes in S with respect to the graph distance dP (i, ·). For most nodes
i, j ∈ [n], none of the edges incident to i or j are observed in Q. Therefore, we estimate Q̂ij by using
the edge information about nodes r, s ∈ S such that dP (i, r) and dP (j, s) are small.

Formally, we consider a model as in Eq. (1) with a compact latent space X ⊂ Rd and latent variables
sampled i.i.d. from the normalized Lebesgue measure on X . We set X = [0, 1]d without loss of
generality and assume that functions f : X × X → [0, 1] are α-Hölder-smooth.
Definition 2.1. Let f : X ×X → R and α > 0. We say f is α-Hölder-smooth if there exists Cα > 0
such that for all x,x′,y ∈ X ,∑

κ∈Nd:
∑

i κi=⌊α⌋

∣∣∣∣ ∂
∑

i κif

∂κ1
x1 · · · ∂κd

xd

(x,y)− ∂
∑

i κif

∂κ1
x1 · · · ∂κd

xd

(x′,y)

∣∣∣∣ ≤ Cα∥x− x′∥α∧1
2 .

To exclude degenerate cases where a node may not have enough neighbors in latent space, we require
the following assumption.
Assumption 2.2 (Assumption 3.2 of Mao et al. (2021)). Let G be a graph on x1, . . . ,xn. There
exist c2 > c1 > 0 and ∆n = o(1) such that for all xi,xj ,

c1∥xi − xj∥α∧1 −∆n ≤
1

n3
dG(i, j) ≤ c2∥xi − xj∥α∧1.

The second inequality follows directly from Hölder-smoothness, and the first is shown to hold for e.g.
Generalized Random Dot Product Graphs, among others (Mao et al., 2021).

We establish the rate of estimation for Algorithm 1 below.

Theorem 2.3. Let Q̂ be as in Algorithm 1. Let fP be α-Hölder-smooth and fQ be β-Hölder-
smooth for β ≥ α > 0, and let c be an absolute constant. Suppose (P,Q) satisfy Definition 1.3 at

hn = c
√

lognQ

nQ
and P satisfies Assumption 2.2 with ∆n = O(( logn

nQ
)

1
2∨

α∧1
d ). Then there exists an

absolute constant C > 0 such that

P
[
1

n2
∥Q̂−Q∥2F ≲

(
d

2

) β∧1
2
(
log n

nQ

) β∧1
2d

]
≥ 1− n−C

Q .
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To parse Theorem 2.3, consider the effect of various parameter choices. First, observe that our
upper bound scales quite slowly with n. Even if n is superpolynomial in nQ, e.g. n = n

lognQ

Q , then

log n = O((log nQ)
2) = n

o(1)
Q , so the overall effect on the error is dominated by the nQ term.

Second, the bound is worse in large dimensions, and scales exponentially in 1
d . This kind of

scaling also occurs in minimax lower bounds for nonparametric regression (Tsybakov, 2009), and
upper bounds for smooth graphon estimation (Xu, 2018). However, we caution that nonparametric
regression can be quite different from network estimation; it would be very interesting to know the
dependence of dimension on minimax lower bounds for network estimation, but to the best of our
knowledge this is an open problem. Finally notice that a greater smoothness β results in a smaller
error, up to β = 1, exactly as in (Gao et al., 2015; Klopp et al., 2017; Xu, 2018).

3 Minimax Rates for Stochastic Block Models

In this section, we will show matching lower and upper bounds for a very structured class of latent
variable models, namely, Stochastic Block Models (SBMs).
Definition 3.1 (SBM). Let P ∈ [0, 1]n×n. We say P is an (n, k)-SBM if there exist B ∈ [0, 1]k×k

and z : [n]→ [k] such that for all i, j, Pij = Bz(i)z(j). We refer to z−1({j}) as community j ∈ [k].

We first state a minimax lower bound, proved via Fano’s method.
Theorem 3.2 (Minimax Lower Bound for SBMs). Let kP ≥ kQ ≥ 1 with kQ dividing kP . Let F
be the family of pairs (P,Q) where P is an (n, kP )-SBM, Q is an (n, kQ)-SBM, and (P,Q) satisfy
Definition 1.3 at hn = 1/kP . Moreover, suppose S ⊂ [n] is restricted to contain an equal number of
nodes from communities 1, 2, . . . , kP of P . Then the minimax rate of estimation is:

inf
Q̂∈[0,1]n×n

sup
(P,Q)∈F

E
[
1

n2
∥Q̂−Q∥2F

]
≳
k2Q
n2Q

.

Note that Definition 1.3 at hn = 1/kP implies that the true community structure of Q coarsens that
of P . The condition that kQ divides kP is merely a technical one that we assume for simplicity.

We remark that minimax lower bounds for smooth graphon estimation are established by first showing
lower bounds for SBMs, and then constructing a graphon with the same block structure using smooth
mollifiers (Gao et al., 2015). Therefore, we expect that Theorem 3.2 can also be extended to the
graphon setting, using the same techniques. However, sharp lower bounds for other classes such as
Random Dot Product Graphs will likely require different techniques (Xie and Xu, 2020; Yan and
Levin, 2023).

Remark 3.3 (Clustering Regime). In Appendix A.4 we also prove a minimax lower bound of log kQ

nQ

in the regime where the error of recovering the true clustering z dominates. This matches the rate of
Gao et al. (2015), but for estimating all n2 entries of Q, rather than just the n2Q observed entries.

Theorem 3.2 suggests that a very simple algorithm might achieve the minimax rate. Namely, use both
AP , AQ to learn communities, and then use only AQ to learn inter-community edge probabilities. If
(P,Q) are in the nonparametric regime where regression error dominates clustering error (called the
weak consistency or almost exact recovery regime), then the overall error will hopefully match the
minimax rate.

We formalize this approach in Algorithm 2, and prove that it does achieve the minimax error rate
in the weak consistency regime. To this end, we define the signal-to-noise ratio of an SBM with
parameter B ∈ [0, 1]k×k as follows:

s :=
p− q√
p(1− q)

,

where p = miniBii, q = maxi̸=j Bij .
Proposition 3.4 (Error Rate of Algorithm 2). Suppose P,Q ∈ [0, 1]n×n are (n, kP ), (n, kQ)-
SBMs with minimum community sizes n(P )

min, n
(Q)
min respectively. Suppose also that (P,Q) satisfy

6



Algorithm 2 Q̂-Estimation for Stochastic Block Models

1: Input: AP ∈ {0, 1}n×n, AQ ∈ {0, 1}nQ×nQ , S ⊂ [n] s.t. |S| = nQ.
2: Estimate clusterings ẐP ∈ {0, 1}n×kP , ẐQ ∈ {0, 1}nQ×kQ using Chen et al. (2014) on AP , AQ

respectively.
3: Let ŴQ ∈ RkQ×kQ be diagonal with

ŴQ;ii = (1T ẐQei)
−1.

4: Initialize Π̂ ∈ {0, 1}kP×kQ to be all zeroes.
5: for i ∈ S do
6: Let jP ∈ [kP ], jQ ∈ [kQ] be the unique column indices at which row i of ẐP , ẐQ respectively

are nonzero.
7: Let Π̂jP ,jQ = 1.
8: end for
9: Let B̂Q ∈ [0, 1]kQ×kQ be the block-average:

B̂Q = ŴQẐ
T
QAQẐQŴQ.

10: return Q̂ := ẐP Π̂B̂QΠ̂
T ẐT

P .

Definition 1.3 at hn = n
(P )
min/n. Then if the signal-to-noise ratios are such that: sP ≥ C(

√
n

n
(P )
min

∨
log2(n)√

n
(P )
min

) and sQ ≥ C(
√
nQ

n
min(Q)

∨ log2(nQ)√
n
(Q)
min

) for large enough constant C > 0, Algorithm 2 returns Q̂

such that

P
[
1

n2
∥Q̂−Q∥2F ≲

k2Q log(n
(Q)
min)

n2Q

]
≥ 1−O

(
1

nQ

)
.

4 Experiments

In this section, we test Algorithm 1 against several classes of simulated and real-world networks. We

use quantile cutoff of hn =
√

lognQ

nQ
for Algorithm 1 in all experiments.

Baselines. To the best of our knowledge, our exact transfer formulation has not been considered
before in the literature. Therefore, we implement two algorithms as alternatives to Algorithm 1.

(1) Algorithm 2. Given AP ∈ {0, 1}n×n, AQ ∈ {0, 1}nQ×nQ , let kP = ⌈
√
n⌉, kQ =

⌈√
nQ

⌉
.

Compute spectral clusterings ẐP , ẐQ with kP , kQ clusters respectively. Let JS ∈ {0, 1}nQ×n is
such that JS;ij = 1 if and only if i = j and i ∈ S. The projection Π̂ ∈ RkP×kQ solves the least-
squares problem minΠ∈RkP ×kQ ∥JSẐPΠ− ẐQ∥2F . We compute the Π̂ differently from steps 4-7 in
Algorithm 2 to account for cases where Q is not a true coarsening of P . When Q is a true coarsening
of P , this reduces to the procedure in steps 4-7. Given ẐP , Π̂ we return Q̂ as in Algorithm 2.

(2) Oracle. Suppose that an oracle can access data for Q on all n ≫ nQ nodes as follows. Fix
an error probability p ∈ (0, 1). The oracle is given symmetric A′

Q ∈ {0, 1}n×n with independent
entries following a mixture distribution. For all i, j ∈ [n] with i < j let Xij ∼ Bernoulli(p) and
Yij ∼ Bernoulli(Q(xi,xj)). Then:

A′
Q;ij = 1i∈S,j∈SYij + (1− 1i∈S,j∈S)((1−Xij)Yij +Xij(1− Yij)).

Given A′
Q, the oracle returns the estimate from Universal Singular Value Thresholding on A′

Q

Chatterjee (2015). As p → 0, the error will approach O(n
−2β
2β+d ) for a β-smooth network on on

d-dimensional latent variables (Xu, 2018), so the oracle will outperform any transfer algorithm.
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Source Target Alg. 1 Alg. 2 Oracle
(p = 0.1)

Oracle
(p = 0.3)

Oracle
(p = 0.5)

Noisy-
MMSB
(0.7, 0.3, 0.01)

Noisy-
MMSB
(0.9, 0.1, 0.01)

0.7473±
0.0648

1.3761 ±
1.1586

0.9556 ±
0.0633

2.2568 ±
0.3107

4.2212 ±
0.2825

0.1-Smooth
Graphon

0.5-Smooth
Graphon

1.7656 ±
0.7494

4.5033 ±
1.5613

0.5016 ±
0.0562

2.4423 ±
0.4574

5.7774 ±
0.7126

R10

Latent(2.5)
R10

Latent(1.0)
0.5744 ±
0.1086

1.1773 ±
1.0481

0.7715 ±
0.0456

2.1822 ±
0.2741

4.3335 ±
0.3476

Table 1: Comparison of different algorithms on simulated networks. Each cell reports µ̂ ± 2σ̂ of
the mean-squared error over 50 independent trials. Error numbers are all scaled by 1e2 for ease of
reading. Bold: Best algorithm. Emphasis: Second-best algorithm.

Simulations. We first test on several classes of simulated networks. For nQ = 50, n = 200, we run
50 independent trials for each setting. We report results for each setting in Table 1, and visualize
estimates for stylized examples in Figure 1.

At a glance, Figure 1 shows that Algorithms 1 and 2 both work well on Stochastic Block Models (first
row), that only Algorithm 1 works well on graphons (second and third rows), and that the Oracle
performs well in all cases.

Smooth Graphons. The latent space is X = [0, 1]. We consider graphons of the form fγ(x, y) =
xγ+yγ

2 where P,Q have different γ. We denote this the γ-Smooth Graphon.

Mixed-Membership Stochastic Block Model. Set kP = ⌊
√
n⌋, kQ =

⌊√
nQ

⌋
. The latent space X

is the probability simplex X = ∆kP
:= {x ∈ [0, 1]kP :

∑
i xi = 1} ⊂ RkP . The latent variables

x1, . . . ,xn are iid-Dirichlet distributed with equal weights 1
kP
, . . . , 1

kP
. Then Pij = xT

i BPxj and
Qij = Π(xi)

TBQΠ(xj), for connectivity matrices BP ∈ [0, 1]kP×kP , BQ ∈ [0, 1]kQ×kQ , and
projection Π : ∆kP

→ ∆kQ
for a fixed subset of [kP ]. For parameters a, b, ϵ ∈ [0, 1] we generate

B ∈ [0, 1]k×k by sampling E ∈ Uniform(−ϵ, ϵ)k×k and set B = clip((a− b)I + b11T + E, 0, 1).
We call this Noisy-MMSB(a, b, ϵ).

Latent Distance Model. The latent space is the unit sphere X = Sd−1 ⊂ Rd. For scale parameter
s > 0, we call fs(x,y) = exp(−s∥x− y∥2) the Rd-Latent(s) model.

Discussion. When the latent dimension is larger than 1 (the Noisy MMSB and Latent Variable
Models), our Algorithm 1 is better than both Algorithm 2 and the Oracle with p = 0.1. Note that

Algorithms 1 and 2 use
n2
Q

n2 ≈ 0.06 unbiased edge observations from Q, while the Oracle with

p = 0.1 observes (1− p)n
2−n2

Q

n2 ≈ 0.9 unbiased edge observations in expectation.

Real-World Data. Next, we test on two classes of real-world networks. We summarize our dataset
characteristics in Table 2. See Appendix C for further details.

Table 2: Dataset Characteristics
Name n Median Degree Type

BiGG Model iWFL1372 251 15.00 Source
BiGG Model iPC815 251 12.00 Source
BiGG Model iJN1463 251 14.00 Target
EMAIL-EU Days 1-80 1005 6.92 Source
EMAIL-EU Days 81-160 1005 7.35 Target
EMAIL-EU Days 561-640 1005 7.66 Target

Transfer Across Species in Metabolic Networks. For a fixed organism, a metabolic network has a
node for each metabolite, and an edge exists if and only if two metabolites co-occur in a metabolic

8



Figure 1: Comparison of algorithms on three source-target pairs (n = 2000, nQ = 500). Each row
corresponds to a different source/target pair (P,Q). For a fixed row, the upper triangular part on
columns 2, 3, 4 corresponds a Q̂ for a different algorithm. The upper triangular part of column 1
shows the true P . The lower triangular part of columns 1, 2, 3, and 4 is identical for a fixed row, and
shows the true Q. In each heatmap, the lower triangle is the target Q. Algorithm 2 performs best
when (P,Q) are SBMs (top), while Algorithm 1 is better for smooth graphons (2nd and 3rd rows).

reaction in that organism. We obtain the unweighted metabolic networks for multiple gram-negative
bacteria from the BiGG genome-scale metabolic model dataset (King et al., 2016; Norsigian et al.,
2020). In the left half of Figure 2, we compare two choices of source organism in estimating the
network for BiGG model iJN1463 (Pseudomonas putida). For a good choice of source, Algorithm 1
is competitive with the Oracle at p = 0.1.

Transfer Across Time in the Email Interaction Networks. We use the EMAIL-EU interaction
network between n = 1005 members of a European research institution across 803 days Leskovec
and Krevl (2014); Paranjape et al. (2017). The source graph AP is the network from day 1 to ≈ 80
([1, 80]). In Figure 2 we simulate transfer with targets [81, 160] (left) and [561, 640] (right). We
visualize results for arbitrary target periods; similar results hold for other targets. Unlike metabolic
networks, Algorithm 2 has comparable performance to both our Algorithm 1 and the oracle algorithm
with p ∈ {0.01, 0.05}. Compared to the metabolic networks, this indicates that the email interaction
networks are relatively well-approximated by SBMs, although Algorithm 1 is still the best.

Additional Experiments and Baseline. In Appendix B.1, we present additional ablation experiments
that test the dependence of Algorithms 1 and 2 on all relevant parameters. We compare their
performance to the Oracle baseline with p = 0.0 (the non-transfer setting), and an additional baseline
adapted from Levin et al. (2022). We find that our Algorithms outperform this new baseline but are
worse than the Oracle with p = 0.0, as expected. Further, in Appendix B.2, we test our Algorithms
and original baselines on a link prediction task in the setting of Figure 2. We find that the relative
accuracy of the methods for link prediction is qualitatively similar to that of Figure 2, and the Oracle
performs even better with sparsity tuning.
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Figure 2: Results of network estimation on real-world data. Shaded regions denote [1, 99] percentile
outcomes from 50 trials.
Left half: Estimating metabolic network of iJN1463 (Pseudomonas putida) with source iWFL1372
(Escherichia coli W) leftmost, and source iPC815 (Yersinia pestis) second-left.
Right half: Using source data from days 1 − 80 of EMAIL-EU to estimate target days 81 − 160
(third-left) and target days 561− 640 (rightmost). Note that we use smaller values of p for the Oracle
in EMAIL-EU.

5 Conclusion

In this paper, we study transfer learning for network estimation in latent variable models. We show
that there exists an efficient Algorithm 1 that achieves vanishing error even when n ≥ nω(1)

Q , and a
simpler Algorithm 2 for SBMs that achieves the minimax rate.

There are several interesting directions for future work.

First, we believe that Algorithm 1 works for moderately sparse networks with population edge density
Ω( 1√

n
). This is because the concentration of empirical graph distance (Algorithm 1 line 3) requires

expected edge density Ω̃(n−1/2) Mao et al. (2021). It would be interesting to see if a similar approach
can work for edge density Ω( logn

n ). For example, in the aforementioned paper it is shown that a
variation of the graph distance of Definition 1.2 concentrates at expected edge density Ω̃(n−2/3).
While is this still far from the Ω( logn

n ) regime, it suggests that variations on the graph distance might
ensure our Algorithm 1 works for sparser graphs.

Second, the case of multiple sources is also interesting. We have focused on the case of one source
distribution, as in Cai and Wei (2021); Cai and Pu (2024), but expect that our algorithms can be
extended to multiple sources as long as they satisfy Definition 1.3.
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A Proofs

A.1 Preliminaries

Recall Hoeffding’s inequality.

Lemma A.1 (Hoeffding (1994)). Let X1, . . . , Xn be independent random variables such that
ai ≤ Xi ≤ bi almost surely for all i ∈ [n]. Then

P
[ ∣∣∣∣∣

n∑
i=1

(Xi − E[Xi])

∣∣∣∣∣ ≥ t
]
≤ 2 exp

(
−2t2

n∑
i=1

(bi − ai)2

)
.

We also need Bernstein’s inequality.

Lemma A.2 (Bernstein’s Inequality). Let X1, . . . , Xn be independent mean-zero random variables
with |Xi| ≤ 1 for all i and n ≥ 5. Then

P
[ ∣∣∣∣∣ 1n

n∑
i=1

Xi

∣∣∣∣∣ ≥ t
]
≤ 2 exp

(
−nt2

2(1 + t
3 )

)
≤ 2 exp

(
− nt2

4

)
.

A.2 Proof of Theorem 2.3

Throughout this section, let X = [0, 1]d and µ : X → [0, 1] be the normalized Lebesgue measure.

We require the following Lemmata.

Lemma A.3. Let υ ∈ (0, 1) and µ : X → [0, 1] be the normalized Lebesgue measure. Then for all
x ∈ X ,

µ(Ball(x, 2υ) ∩ X ) ≥ µ(Ball(0, υ) ∩ X ).

Proof. Recall X = [0, 1]d. Fix x ∈ X , υ > 0. Note that µ(Ball(x, υ) ∩ X ) is smallest when x is a
vertex of the hypercube; therefore take x ∈ {0, 1}d without loss of generality. Then, note that for
each z ∈ Ball(x, υ)∩X , we can find (2d− 1) other points z′ ∈ Ball(x, υ) \X by reflecting subsets
of coordinates of z about x. There are 2d − 1 such nonempty subsets of coordinates. This shows
that µ(Ball(x, υ) ∩ X ) ≥ µ(Ball(x, υ))/2d for all x. Since µ(Ball(x, υ)) ≍ υd, the conclusion
follows.

We will repeatedly make use of the concentration of latent positions.

Lemma A.4 (Latent Concentration). Let X = [0, 1]d and µ denote the normalized Lebesgue measure
on X . Suppose x1, . . . ,xn ∼ X are sampled iid and uniformly at random from µ. Fix some T ⊂ X
such that µ(T ) = v. Then

P
[∣∣vn− |{j ∈ [n] : xj ∈ T}|

∣∣ ≥ 10

√
log n

n

]
≤ n−10.

Proof. Let Xi be an indicator variable that equals 1 if xi ∈ T and zero otherwise. Notice the Xi are
iid and bounded within [0, 1]. Moreover,

∑
i E[Xi] = nµ(T ). Therefore by Hoeffding’s inequality,

for any t > 0,

P[|vn− |{j ∈ [n] : xj ∈ T}|| ≥ t] ≤ 2 exp

(
−2t2

n

)
.

Setting t = 10
√

logn
n gives the result.
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Corollary A.5. Let ϵ > 0. For i ∈ [n] let ϵ′i > 0 be ϵ′i := sup{υ > 0 : µ(Ball(xi, υ) ∩ X ) ≤ ϵ.
Let Ti := Ball(xi, ϵ

′
i) ∩ X . Let ui(S) := |{j ∈ S : xj ∈ Ti}| denote the number of members of S

landing in Ti. Then

P
[
∀i ∈ [n] : |ui(S)− nQϵ| ≤ 10

√
log n

nQ

]
≥ 1− n−8.

Proof. Notice that each Ti has Lebesgue measure ϵ by definition. Therefore E[ui(S)] = nQϵ. Since

S has nQ members, setting t = 10
√

logn
nQ

in the statement of Lemma A.4 and taking a union bound

over all i ∈ [n] gives the conclusion.

We will decompose the error of Algorithm 1 into two parts.

Proposition A.6. Let Q̂ ∈ [0, 1]n×n be the estimator from Algorithm 1. Then

1

n2
∥Q− Q̂∥2F ≤

2

n2

∑
i,j∈[n]

(JS(i, j) + JB(i, j)),

where JS , JB are the smoothing and Bernoulli errors respectively:

JS(i, j) :=
1

|Ti|2 |Tj |2

( ∑
r∈Ti,s∈Tj

Qij −Qrs

)2

;

JB(i, j) :=
1

|Ti|2 |Tj |2

( ∑
r∈Ti,s∈Tj

Qrs −AQ;rs

)2

.

Controlling the Bernoulli errors is relatively straightforward.

Proposition A.7. Let h be the bandwidth of Algorithm 1. The Bernoulli error is at most O( logn
m )

with probability ≥ 1− n−8, where m = h2n2Q.

Proof. Fix i, j ∈ [n]. We will bound the maximum Bernoulli error JS(i, j) over i, j, which suffices
to bound the average. Let m = |Ti| |Tj |. We want to bound:∣∣∣∣∣∣ 1

|Ti| |Tj |
∑

r∈Ti,s∈Tj

(Qrs −AQ;rs)

∣∣∣∣∣∣
2

.

Notice each summand is bounded within ± 1
m . Bernstein’s inequality gives:

P
[(

1

|Ti| |Tj |
∑

r∈Ti,s∈Tj

Qrs −AQ;rs

)2

≥ t2
]
≤ 2 exp(−0.5t2m).

Setting t = C
√

logn
m for large enough C = O(1), a union bound tells us that with probability

≥ 1− n−8, the Bernoulli error is bounded by t2.

Corollary A.8. The Bernoulli error is at most O(
√

lognQ

nQ
) with probability ≥ 1− n−4

Q .

The rest of this section is devoted to bounded the smoothing errors JS(i, j).
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A.2.1 Latent Distance to Graph Distance

We claim that if nodes are close in the latent space then they are close in graph distance.

Proposition A.9. Suppose that ∥xi − xr∥ ≤ ϵ and Q is β-smooth. Then dQ(i, r) ≤ C2
βn

3ϵ2(β∧1).

Proof. We the use smoothness of Q. By definition there exists Cβ > 0 such that Qki − Qkr ≤
Cβ∥xi − xr∥β∧1. Therefore,

dQ(i, r) =
∑
ℓ̸=i,r

∣∣(Q2)ℓi − (Q2)ℓr
∣∣2

=
∑
ℓ̸=i,r

( ∑
k∈[n]

Qℓk(Qki −Qkr)

)2

≤
∑
ℓ̸=i,r

∑
k∈[n]

Q2
ℓkC

2
βϵ

2(β∧1)

≤ n3C2
βϵ

2(β∧1).

We can now bound the minimum sizes of the neighborhoods using the concentration of latent positions
and the smoothness of the graphon.

Lemma A.10 (Vershynin (2018)). The volume of a ball of radius r > 0 in Rd is
√
πd

Γ(d/2+1)r
d, where

Γ(·) is the Γ function.

Proposition A.11. Let Cd = (Γ(d2 + 1))1/d. Let C0, C
′ be constants. If υn ≥ C · Cd(

√
logn
nQ

)1/d

for large enough constant C > 0, and gn = C0C
2
βn

2(υn)
2(β∧1), then with probability ≥ 1− n−6

for all i ∈ [n] the neighborhood size is |{r : dQ(i, r) ≤ gn}| ≥ C ′nQ
√

logn
nQ

.

Proof. Fix i ∈ [n] and υn > 0. Let ϵi denote the Lebesgue measure of Ball(xi, υn) ∩ X . By
Lemma A.3 and Lemma A.10, for all i, ϵi ≥ (

√
πυn

2Cd
)d = ( 0.5

√
πυn

Cd
)d. Let ϵ = mini∈[n] ϵi.

By Corollary A.5, with probability ≥ 1− n−8, there are nQϵ− C
√

logn
nQ

members j of S such that

∥xi − xj∥ ≤ υn. A union bound over i gives the result simultaneously for all i with probability
≥ 1− n−6.

From Proposition A.9, it follows that for all i ∈ [n],

∣∣∣{r ∈ S : dQ(i, r) ≤ C2
βn

2(2υ′n)
2(β∧1)}

∣∣∣ ≥ nQϵ− 10

√
log n

nQ
.

Choosing υn ≥ C · Cd(
logn
nQ

)
1
2d for large enough C > 0 gives the conclusion.

A.2.2 Graph Distance Concentration

Next, we show that the empirical graph distance concentrates to the population distance.

Proposition A.12. For any arbitrary symmetric P ∈ [0, 1]n×n, we have, for all i, j simultaneously
with probability at least ≥ 1−O(n−8), that

|dAP
(i, j)− dP (i, j)| ≤ O(n2 log n) +O(n2.5

√
log n).
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Proof. Fix i, j. Let Cij := (A2
P )ij . By Mao et al. (2021) A.1, we have Cij = (P 2)ij + tij for an

error term tij such that P[∀i, j : |tij | ≤ 10
√
n log n] ≥ 1− n−10. Then,

|dAP
(i, j)− dP (i, j)| =

∣∣∣∣∣∣
∑
ℓ̸=i,j

(
(Ciℓ − Cjℓ)

2 − ((P 2)iℓ − (P 2)jℓ)
2
)∣∣∣∣∣∣

=
∑
ℓ̸=i,j

∣∣(tiℓ + tjℓ)
2 + 2(tiℓ + tjℓ)((P

2)iℓ − (P 2)jℓ)
∣∣

≤ O(n2 log n) +O

(√
n log n

∑
ℓ̸=i,j

(
(P 2)iℓ − (P 2)jℓ

))
.

Finally, notice that all entries of P 2 are of size O(n), so the conclusion follows.

Finally, we will show that taking the restriction of the graph distance TP
i to nodes in S ⊂ [n] does

not incur too much error.

Proposition A.13. Suppose n = n
O(1)
Q . Then there exists a constant C such that if h0 ≥ C

√
logn
nQ

+

∆n, then for all i, r simultaneously, r ∈ TAP
i (h0) implies r ∈ TP

i (h2) for some h2 = O(h) with
probability ≥ 1−O(n−5).

Proof. Let us introduce the notation TP,S
i (h) to denote the bottom h-quantile of {dP (i, j) : j ∈

S}. In this notation, TAP
i (h) := TAP ,S

i (h) since we restrict the quantile to nodes in S. From

Proposition A.12 and Assumption 2.2, we know that if n ≥ nQ then for h0 ≤ h1 − 20
√

logn
n −∆n

we have TAP
i (h0) ⊆ TP,S

i (h1) simultaneously for all i ∈ [n] with probability ≥ 1 − O(n−8). It
remains to compare TP,S

i (h1) with TP
i (h2) for some h2.

We claim that if h2 ≥ 30
√

lognQ

nQ
then P[∀i

∣∣TP
i ∩ S

∣∣ ≥ h2nQ− 3
√
nQ log nQ] ≥ 1−O(n−2

Q ). To

see this, fix i ∈ [n] and consider TP
i (h2). For j ∈ S, let Xj be the indicator variable:

Xj =

{
1 if j ∈ TP

i (h2),

0 otherwise.

Notice that
∣∣TP

i (h2) ∩ S
∣∣ = ∑

j∈S Xj . By Hoeffding’s inequality, since E[
∑

j∈S Xj ] = h2nQ and
|Xj − h2| ≤ 1 for all j, we have

P
[ ∣∣∣∣TP

i (h2) ∩ S
∣∣− h2nQ∣∣ ≥ 3

√
nQ log n

]
≤ 2 exp

(
−

6n2Q log n

n2Q

)
≤ 2n−6.

Taking a union bound over all i ∈ [n] shows the claim holds with probability ≥ 1 − O(n−5).

Therefore we set h1 ≤ h2 − 3.1
√

logn
nQ

then j ∈ TP,S
i (h1) implies j ∈ TP

i (h2).

The conclusion follows with C = 24
√

logn
lognQ

= O(1).

The ranking condition (Definition 1.3) then allows us to translate between graph distances in AP and
Q.

Corollary A.14. Suppose that Definition 1.3 holds for (P,Q) at hn = c
√

lognQ

nQ
+∆n, for large

enough constant c > 0. Suppose nQ ≤ n ≤ nO(1)
Q . Then for h > hn and r ∈ TAP

i (h), it follows that
r ∈ TQ

i (h3) for some h3 = O(h). The statement holds simultaneously for all i, r with probability
≥ 1−O(n−5).
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A.2.3 Control of Smoothing Error

We will decompose smoothing error into a sum of two terms called ES,1 and ES,2. The control of
ES,1 is relatively straightforward.
Lemma A.15. The total smoothing error can be bounded with two terms:

2

n2

∑
i,j∈[n]

JS(i, j) ≤ ES,1 + ES,2,

where

ES,1 :=
C

n
max

j∈[n],s∈Tj

∥Q(ej − es)∥22;

ES,2 :=
4

n2

∑
i∈[n]

1

|Ti|
E
[ ∑
r∈Ti

∑
j∈[n]

∑
s∈Tj

(Qrj −Qrs)
2.

]

Proof. Note that

2

n2

∑
i,j∈[n]

JS(i, j) =
2

n2

∑
i,j∈[n]

1

|Ti|2 |Tj |2
E
[( ∑

r∈Ti,s∈Tj

Qij −Qrs

)2]

≤ 2

n

∑
i∈[n]

1

n |Ti|
∑
j∈[n]

2

|Tj |
E
[ ∑
r∈Ti,s∈Tj

(Qij −Qrj)
2 + (Qrj −Qrs)

2

]

=
4

n

∑
i∈[n]

1

n |Ti|
E
[∑

j

1

|Tj |

( ∑
r∈Ti

(Qij −Qrj)
2 +

∑
r∈Ti

∑
s∈Tj

(Qrj −Qrs)
2

)]
.

The second inner summand is precise ES,2. For ES,1, notice that |Ti| = |Tj | = h(nQ − 1) by
definition. Therefore∑

j

1

|Tj |
∑
r∈Ti

(Qij −Qrj)
2 =

1

h(nQ − 1)

∑
r∈Ti

∑
j

(Qij −Qrj)
2 ≤ 2max

r∈Ti

∥(ei − er)TQ∥22.

We can now bound ES,1 in terms of graph distances.
Lemma A.16. The smoothing error term ES,1 can be bounded as follows:

ES,1 ≤
2

n
max

i∈[n],r∈Ti

√
dQ(i, r) +

2c√
n

for some constant c > 0.

Proof. Fix i ∈ [n] and r ∈ Ti. We have

∥Q(ei − er)∥22 ≤ ∥ei − er∥2∥QTQ(ei − er)∥2
≤ 2∥Q2(ei − er)∥2.

Now we will pass to graph distances. Let eab := ((Q2)aa − (Q2)ab)
2 for a, b ∈ [n]. Notice that

∥Q2(ei− er)∥2 =
√
dQ(i, r) + eir + eri. Moreover,

√
eir + eri ≤ 2

√
n since the entries of Q2 are

individually bounded by O(n). The conclusion follows.

Proposition A.17. Suppose ∆n = O(
√

logn
nQ

). Let Cd be the constant of Proposition A.11. Then if

the bandwidth of Algorithm 1 is hn = C
√

logn
nQ

, for a constant C = O(1), then the smoothing error
ES,1 is at most

ES,1 ≤ C2C
β∧1
d

(√
log nQ
nQ

) β∧1
d

for some C2 = O(1), with probability ≥ 1−O(n−6).
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Proof. Fix i ∈ [n] and r ∈ TAP
i (hn). By Corollary A.14, if hn ≥ C

√
logn
nQ

+∆n for a large enough
constant C > 0, then there exists constant C2 > 0 such that the following holds. With probability
≥ 1−O(n−5), for all i ∈ [n] and r ∈ S, r ∈ TQ

i (C2hn),

Let υn = CCd(
√

logn
nQ

)1/d for Cd as in Proposition A.11 and C > 0 large enough constant. Then

by Proposition A.11 the set of s ∈ S such that dQ(i, r) ≤ C0C
2
βn

2(υn)
2(β∧1) has size at least

C2nQ
√

logn
nQ

.The statement holds for all i simultaneously with probability at least 1 − O(n−6).

Therefore for all i ∈ [n] and r ∈ TAP
i (hn), we have

dQ(i, r) ≤ C0C
2
βn

2(υn)
2(β∧1)

for some C0, Cβ = O(1), with probability ≥ 1−O(n−6). By Lemma A.16 we conclude that ES,1

is bounded by 2υβ∧1
n + 2√

n
with the same probability.

A.2.4 Control of the Second Smoothing Error

In this section, we show that the second smoothing error can be controlled in terms of ES,1. We will
need to track the following quantity.
Definition A.18 (Membership Count). For r ∈ S and bandwidth h, distance cutoff ϵ, the P -
neighborhood count of r is ψP (r) :=

∣∣{j ∈ [n] : r ∈ TP
j (h, ϵ)}

∣∣.
In words, ψP (r) counts the number of nodes j ∈ [n] such that r lands in the neighborhood of j in our
algorithm. While we know that

∣∣TP
j (h)

∣∣ ≤ hnQ always, simply applying the pigeonhole principle
gives too weak of a bound on membership counts. The base case is that there may be a “hub” node r
lands in TP

j (h) for all j. We will show that there can be no such hub node.

Supposing that we can control of the empirical count ψAP
, we show that the smoothing error can be

bounded.
Proposition A.19. Let hn be the bandwidth. Then

ES,2 ≤ O
(
ES,1

hnn

)
·max
r∈[n]

(ψAP
(r)).

Proof. Rearranging terms, we have

ES,2 =
1

n2h2n2Q

∑
i,j∈[n],r∈Ti,s∈Tj

(Qrj −Qrs)
2

=
1

n2h2n2Q

∑
r∈S

ψAP
(r)

∑
j,s

(Qrj −Qrs)
2

=
nQ

n2h2n2Q
E

r∈S

[
ψAP

(r)
∑
j,s

(Qrj −Qrs)
2

]

=
nQ

n2h2n2Q
E

r∈[n]

[
ψAP

(r)
∑
j,s

(Qrj −Qrs)
2

]
,

where the last step follows because j, s do not depend on i, r and because S ⊂ [n] is chosen uniformly
at random. Now, we will control the expectation by passing to a row sum, which is handled by ES,1.

E
r∈[n]

[
ψAP

(r)
∑
j,s

(Qrj −Qrs)
2

]
≤ max

r∈[n]

(
ψAP

(r)

n

)
·
∑
j∈[n]

∑
s∈Tj

∥Q(ej − es)∥22.

Recall that n2nQhnES,1 = Ω

( ∑
j∈[n]

∑
s∈Tj

∥Q(ej − es)∥22
)

. Hence we conclude that

ES,2 ≤ O
(
ES,1

hnn

)
·max
r∈[n]

(ψAP
(r)).
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We therefore must show that max
r∈S

ψAP
(r) ≤ O(hn) with high probability.

Proposition A.20 (Population Version). Suppose Assumption 2.2 holds for P with c1 < c2 and

∆n = O(( logn
nQ

)
1
2∨

α∧1
d ). Then if h ≤ C

√
logn
nQ

for large enough constant C > 0, then we have

max
r∈S

ψP (r) ≤ O(hn) with probability at least 1−O(n−8
Q ).

Proof. Fix r ∈ S. Let Cd be as in Proposition A.11.Suppose that ϵ = Cd(C + 10)
√

lognQ

nQ

1/d

and

h = C
√

lognQ

nQ
. Now, we will claim that for large enough constant c > 0, that ψP (r) is at most the

size of Ball(xr, cϵ) ∩ {x1, . . . ,xn}.
Suppose that c > 0 is a large enough constant. Now suppose that xj is such that ∥xj − xr∥ ≥ cϵ.
We can lower bound the graph distance using Assumption 2.2, as:

dP (r, j) := ∥(er − ej)TP 2(I − ereTr − ejeTj )∥22 ≥ c1n3(cϵ)2(α∧1) − n3∆n.

On the other hand, suppose that i ∈ S is such that ∥xi − xj∥ ≤ ϵ. Then dP (i, j) ≤ C2
αn

3ϵ2(α∧1)

by Proposition A.9. Therefore since ϵ = Cd(C + 10)
√

lognQ

nQ

1/d

and ∆n = O(( logn
nQ

)
1
2∨

α∧1
d ), for

large enough c1 > 0 we have

dP (r, j) := ∥(er − ej)TP 2(I − ereTr − ejeTj )∥22 ≥
c1
2
n3(cϵ)2(α∧1).

Then, if we choose c > 0 such that c2(α∧1) >
2C2

α

c1
, then dP (i, j) < dP (r, j).

Next, from our choices of h, ϵ, by Corollary A.5, simultaneously for all i ∈ [n] there are at least hnQ

nodes in S that have distance ≤ ϵ in latent space from xi, with probablity ≥ 1−O(n−6
Q ).

Therefore, if xr ̸∈ Ball(xj , cϵ) ∩ {x1, . . . ,xn} then r ̸∈ TP
j (h). This implies that ψP (r) ≤

|{Ball(xr, 2cϵ) ∩ {x1, . . . ,xn}|. We can bound the size of this ball with Lemma A.4. Notice the
Lebesgue measure of Ball(xr, 2cϵ)∩ [0, 1] is at most ( 4cϵCd

)d. Therefore, since xi are chosen iid from
the Lebesgue measure on X , with probability at least ≥ 1−O(n−10

Q ), we have

1

n
|Ball(xr, 2cϵ) ∩ {x1, . . . ,xn}| ≤ 2cϵ+ 10

√
log n

n
.

The right-hand side is bounded by O(h) if n ≥ nQ. Taking a union bound over all r ∈ S gives the
conclusion.

We conclude with the desired upper bound.

Proposition A.21 (Bound on ψAP
(r)). Suppose Assumption 2.2 holds for P with c1 < c2 and

∆n = O(( logn
nQ

)
1
2∨

α∧1
d ). Then if h ≤ C0

√
lognQ

nQ
for small enough constant C0, then we have

max
r∈S

ψAP
(r) ≤ O(hn) with probability at least 1−O(n−8

Q ).

Proof. By Proposition A.12, with probability at least 1 − O(n−8
Q ), we have for all r ∈ S, j ∈ [n]

simultaneously that

dAP
(r, j) ≥ dP (r, j)−O(n2.5

√
log n)

≥ (1−O(
1√
n
))dP (r, j).

Similarly, dAP
(r, j) ≤ (1 +O( 1√

n
))dP (r, j). We conclude that ψAP

(r) ≤ 2ψP (r) = O(hn) with

probability ≥ 1−O(n−8
Q ).
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A.2.5 Overall Error

We can bound Cd := Γ(d2 + 1)1/d with the elementary inequality.

Lemma A.22. Let Cd := Γ(d2 + 1)1/d. Then Cd ≤
√
d/2.

Proof of Theorem 2.3. By Proposition A.21 and Prop A.19, we have that ES,1 ≤ O(ES,1) with
probability at least 1−O(n−8

Q ). Therefore by Proposition A.17,

P
[
ES,1 + ES,2 ≤ O

(
Cβ∧1

d

(
log n

nQ

) β∧1
2d

)]
≥ 1−O(n−6

Q ).

By Lemma A.22, Cd ≤
√
d/2. Finally, by Corollary A.8, the Bernoulli error is bounded by

O(
√

lognQ

nQ
) with probability ≥ 1−O(n−4

Q ). Applying a union bound over the two kinds of error
and Lemma A.15 gives the result.

A.3 Proof of Theorem 3.2

Recall the Gilbert-Varshamov code (Guruswami et al., 2019).
Theorem A.23 (Gilbert-Varshamov). Let q ≥ 2 be a prime power. For 0 < ϵ < q−1

q there exists an
ϵ-balanced code C ⊂ Fn

q with rate Ω(ϵ2n).

We will use the following version of Fano’s inequality.
Theorem A.24 (Generalized Fano Method, Yu (1997)). Let P be a family of probability measures,
(D, d) a pseudo-metric space, and θ : P → D a map that extracts the parameters of interest. For a
distinguished P ∈ P , let X ∼ P be the data and θ̂ := θ̂(X) be an estimator for θ(P ).

Let r ≥ 2 and Pr ⊂ P be a finite hypothesis class of size r. Let αr, βr > 0 be such that for all i ̸= j,
and all Pi, Pj ∈ Pr,

d(θ(Pi), θ(Pj)) ≥ αr;

KL(Pi, Pj) ≤ βr.

Then

max
j∈[r]

EPj
[d(θ̂(X), θ(Pj))] ≥

αr

2

(
1− βr + log 2

log r

)
.

Definition A.25 (Relative Hamming Distance). For x,y ∈ {0, 1}m, we define their relative Ham-
ming distance as follows:

dH(x,y) :=
1

m
|{i ∈ [m] : xi ̸= yi}| .

We will need the following construction of coupled codes.
Proposition A.26. Let mP ,mQ ≥ 2 and mQ divide mP . There exists a code C ⊂ {0, 1}mP and
a projection map Π : {0, 1}mP → {0, 1}mQ such that if C ′ = {Π(w) : w ∈ C} then C ′ is a code
with relative Hamming distance Ω(1). Moreover, |C| = |C ′| ≥ 20.1mQ

Throughout the proof, we will identify the community assignment function z : [n]→ [k] of an SBM
(Definition 3.1) with the matrix Z ∈ {0, 1}n×k where Zij = 1 if and only if z(i) = j.

Proof. Begin with a Gilbert-Varshamov code B ⊂ {0, 1}mQ as in Theorem A.23. We can “lift” B
to a code on {0, 1}mP simply by concatenation. If w ∈ B, then the corresponding w′ ∈ C is just
w′ = (w,w, . . . , w) ∈ {0, 1}mP . Let Π : {0, 1}mP → {0, 1}mQ simply select the first mQ bits of a
word. It is clear that B = {Π(w) : w ∈ C}, so we are done.

Now we are ready to prove Theorem 3.2.
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Proof of Theorem 3.2. Let mP =
(
n
2

)
, mQ =

(
nQ

2

)
, and m = mP . Let C ⊂ {0, 1}mP be the code

and Π : {0, 1}mP → {0, 1}mQ the projection map of Prop A.26. For each w ∈ C, we construct a
pair of SBMs Pw, Qw ∈ Rn×n as follows.

Each Pw, Qw is a stochastic block model with kP , kQ classes respectively. All the Pw share the same
community structure, namely the lexicographic assignment where nodes 1, 2, . . . , n

kP
are assigned to

community 1, and so on. Similarly all the Qw share the same lexicographic community structure
with nodes 1, 2, . . . , n

kQ
assigned to community 1, and so on. Therefore, there are fixed ZP ∈

{0, 1}n×kP , ZQ ∈ {0, 1}n×kQ , such that for all w ∈ C, there exist Aw ∈ RkP×kP , Bw ∈ RkQ×kQ

with

Pw = ZPAwZ
T
P ,

Qw = ZQBwZ
T
Q.

The Aw, Bw are defined as follows. Let i, j ∈ [kP ] and i′, j′ ∈ [kQ] be such that i < j and i′ < j′.
Since mP =

(
kP

2

)
and mQ =

(
kQ

2

)
, we can identify (i, j) and (i′, j′) with indices of [mP ], [mQ]

respectively. Then for fixed δP , δQ > 0, the edge connectivity probabilities are

Aw(i, j) = Aw(j, i) :=

{
1/2 if wij = 0,

1/2 + δP if wij = 1;

Bw(i
′, j′) = Bw(j

′, i′) :=

{
1/2 if Π(w)i′j′ = 0,

1/2 + δQ if Π(w)i′j′ = 1.

We can set the diagonals of Aw, Bw to be 1/2 as well.

Next, letPr be a family of r = |C| probability measures. For fixedw ∈ C, the corresponding measure
is the distribution over data (AP , AQ) ∈ {0, 1}n×n × {0, 1}nQ×nQ sampled from (Pw, Qw[S, S]).
Note that we restrict S to be a fixed subset of [n].

Next, let θ((Pw, Qw)) := Qw, and let d(θ((Pw, Qw)), θ((Pw′ , Qw′))) := 1
n∥Qw−Qw′∥F . We will

show that for all w,w′ ∈ C with w ̸= w′,

KL((Pw, Qw), (Pw′ , Qw′)) ≤ KL(Pw, Pw′) +KL(Qw, Qw′)

≤ O(n2δ2P + n2Qδ
2
Q)

=: β,

d((Pw, Qw), (Pw′ , Qw′)) :=
1

n
∥Qw −Qw′∥F

≥ Ω(δQ)

=: α.

For the β claim, by Proposition 4.2 of Gao et al. (2015), if δP , δQ ∈ (0, 1/4), we have

KL((Pw, Qw), (Pw′ , Qw′)) ≤ KL(Pw, Pw′) +KL(Qw, Qw′)

≲
∑

i,j∈[n]

(Pw(i, j)− Pw′(i, j))2 + (Qw(i, j)−Qw′(i, j))2.

Next, notice that Aw(i, j) ̸= Aw′(i, j) if and only if wij ̸= w′
ij . Then for distinct w,w′ ∈ C, we

have dH(w,w′) = Ω(mP ), so∑
i,j∈[n]

(Pw(i, j)− Pw′(i, j))2 ≲ δ2P
n2

k2P
dH(w,w′)

(
kP
2

)
≲ δ2Pn

2.

The bound for Qw is similar, so this verifies the β claim.

Similarly, for the α claim, notice that

1

n
∥Qw −Qw′∥F ≳

1

kQ

√
δ2QdH(Π(w),Π(w′)) ≥ δQ

kQ

√
dH(Π(w),Π(w′)).
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By Prop A.26, dH(Π(w),Π(w′)) = Ω(mQ) = Ω(k2Q). Therefore α ≤ Ω(δQ).

Next, by Prop A.27, the pair (Pw, Qw) satisfies Definition 1.3 for all w ∈ C. Moreover, log |C| ≥
0.1mQ by Prop A.26.

Combining these results, by Theorem A.24 the overall lower bound is

inf
Q̂

sup
w

1

n
∥Q̂−Qw∥F ≳ α

(
1− β + log 2

0.1
(
kQ

2

) )
≥ δQ

(
1− 30n2δ2P

k2Q
−

30n2Qδ
2
Q

k2Q
− o(1)

)
.

If we choose δP = 0.01(
kQ

n ) and δQ = 0.01
kQ

nQ
, then

inf
Q̂

sup
w

1

n2
∥Q̂−Qw∥2F ≳ δ2Q

≳
k2Q
n2Q

.

Note that kQ ≤ nQ ≤ n, so δP , δQ ∈ (0, 1/4) as desired.

Proposition A.27. If hn = min{ 1
kP
, 1
kQ
} then for all w ∈ C, the pair (Pw, Qw) satisfies Defn 1.3

at hn.

Proof. Consider h = hn and some node i ∈ [n]. Suppose that j ̸= i is in the same Pw-community
as i, and that ℓ ̸= i is in a different community. Then notice that dPw

(i, ℓ) ≥ dPw
(i, j). Therefore

j ∈ TPw
i (h). Moreover, since h ≤ 1

kP
and since the nodes of S ⊂ [n] are equidistributed among

the communities 1, 2, . . . , kP , it follows that all members of TPw
i (h) must belong to the same

Pw-community as i.

Therefore, since the communities of Qw are a coarsening of the communities of Pw, j ∈ TQw

i ( 1
kQ

).
Since h ≤ 1

kQ
, we are done.

A.4 SBM Clustering Error

In this section, we prove a minimax lower bound in the clustering regime for stochastic block models.
Theorem A.28. Let Π denote the parameter space of pairs of SBMs (P,Q) on n nodes with kP , kQ
communities respectively, such that the cluster structure of Q is a coarsening the cluster structure of
P . Then

inf
Q̂

sup
(P,Q)∈Π

E[
1

n2
∥Q̂−Qi∥2F ] ≳

log kQ
nQ

.

Proof. Let Hm ∈ [0, 1]m×m be the Hadamard matrix of order m modified to replace all entries
−1 with 0. If m is not a power of two, let Hm be defined as follows. Let ℓ = ⌊log2m⌋ and let
Hm′ ∈ Rm/2×m/2 contain H2ℓ−1 on its top left block and zeroes elsewhere. Let

Hm =

[
00T Hm′

HT
m′ 00T

]
.

Notice that at most 7
8 fraction of the entries of Hm are zero-padded, for any m. Now, let BP =

1
211

T + δPHkP
and BQ = 1

211
T + δQHkQ

for some δP , δQ ∈ (0, 1/4) to be chosen later.

We will define two families of matrices indexed by a finite set T . For i ∈ T , there are some
Zi ∈ {0, 1}n×kP and Yi ∈ {0, 1}n×kQ to be specified later. Then

Pi = ZiBPZ
T
i ,

Qi = YiBQY
T
i .
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Now, we define Yi as follows. Let Zn,kQ
denote the set of balanced clusterings z : [n] → [kQ]

such that for all i, j ∈ [kQ],
∣∣z−1({i})

∣∣ = ∣∣z−1({j})
∣∣. Let Z ⊂ Zn,kQ

select the z such that for

all j ≤ kQ/2, z−1(j) = {
⌊
n(j−1)

kQ

⌋
, . . . ,

⌊
nj
kQ

⌋
}. Define a distance on Z as follows. For y, y′ ∈ Z

let Y, Y ′ ∈ {0, 1}n×kQ be the corresponding cluster matrices and let d(y, y′) := 1
n∥Y BQY

T −
Y ′BQ(Y

′)T ∥F . By Theorem 2.2 of Gao et al. (2015), there exists a packing T0 ⊂ Z with respect to
d such that for all y, y′ ∈ T0, we have |{j : y′(j) ̸= y(j)}| ≥ n/6. Moreover, log |T0| ≥ 1

12n log kQ.
Set T = T0. For any yi ∈ T0, let Yi ∈ {0, 1}n×kQ be the corresponding cluster matrix and then
Qi = YiBQY

T
i .

Now, to defineZi, take a ∈ [kQ] and partition y−1
i ({a}) ⊂ [n] into kP /kQ equally sized communities

in a uniformly random way. Number these 1, . . . , kP

kQ
. In this way, we split community 1 of yi into

communities 1, . . . , kP

kQ
of zi, and so on. Define Zi to be the matrix corresponding to zi. Notice that

Zi, Yi are both balanced clusterings and that the clustering Yi coarsens that of Zi. Therefore (Pi, Qi)
are a pair of heterogeneous symmetric SBMs satisfying Definition 1.3 at h = 1/kQ.

Next, we apply Fano’s Inequality (Theorem A.24). Recall log |T | ≥ 1
12n log kQ. Now, for i, j ∈ T

distinct, Prop 4.2 of Gao et al. (2015) gives

DKL((Pi, Qi), (Pj , Qj)) ≤ DKL(Pi, Pj) +DKL(Qi, Qj) ≤ O(n2δ2P + n2Qδ
2
Q) =: γ1.

Finally, we can bound:

1

n2
∥Qi −Qi′∥2F ≥

1

n2

∑
n/2<j≤n

n

kQ
∥(eyi(j) − ey′

i(j)
)BQ∥2

≥ c0δ2Q =: γ22 ,

where c0 > 1 is some constant. This follows because there are a constant fraction of j > n/2 such
that yi(j) ̸= y′i(j), and any two rows of the Hadamard matrix differ on half their entries.

Now, set δ2Q =
nQ log kQ

10n2
Q

and δ2P =
log kQ

10n2 . Since n ≥ nQ, we conclude that

inf
Q̂

sup
i∈T

E
[
1

n2
∥Q̂−Qi∥2F

]
≳ γ22

(
1− γ1 + log 2

(1/12)n log kQ

)
≳

log kQ
nQ

.

A.5 Proof of Proposition 3.4

We first argue that Algorithm 2 perfectly recovers ZP , ZQ with high probability.

Theorem A.29 (Implicit in Chen et al. (2014)). Let M = ZBZT be an (n, nmin, s)-HSBM. Then
there exists absolute constant C > 0 such that the Algorithm of Chen et al. (2014) can recover Z, up
to permutation, with zero error with probability ≥ 1−O(n−8) if

s ≥ C
( √

n

nmin
∨ log2(n)
√
nmin

)
.

Proof. The algorithm of Chen et al. (2014) returns a matrix Y ∈ {0, 1}n×n such that Yij = 1 if and
only if i, j are in the same community, with probability ≥ 1 − O(n−8). Therefore, to construct a
clustering from Y , simply assign the cluster of node 1 to all j ∈ [n] such that Y1j = 1, and so on.
This returns the true Z ∈ {0, 1}n×k up to permutation with probability ≥ 1−O(n−8). Note that k
is correctly chosen because Y is equal to a block-diagonal matrix of ones up to permutation, with k
blocks.

Theorem A.29 implies the following.
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Proposition A.30. Let ẐP , ẐQ be as in Algorithm 2. Let sP , sQ be the signal to noise ratios of
P,Q respectively. If sP , sQ satisfy the conditions of Theorem A.29 with respect to (n, n

(P )
min and

(nQ, n
(Q)
min) respectively, then then with probability ≥ 1−O(n−8

Q ), there are permutation matrices

UP ∈ {0, 1}kP×kP , UQ ∈ {0, 1}kQ×kQ such that ẐP = ZPUP and ẐQ = ZQUQ.

Next, we want to recover the clustering of Q on all n nodes, not just the nQ nodes that we observe in
AQ. This is given by the following.

Proposition A.31. 1. If hn = 1/kP and kQ ≤ kP then there exists a unique Π ∈ {0, 1}kP×kQ such
that ZPΠ contains the Q-clustering of all nodes in [n]. Let Z̃Q := ZPΠ.

2. Let Π̂ be as in Algorithm 2 and UP , UQ be as in Proposition A.30. Then with probability 1−O( 1
nQ

),

ZPUP Π̂ = Z̃QUQ.

Proof. Part (1) follows immediately from the SBM structure of P,Q and definition of Definition 1.3.

For Part (2), first notice that by Proposition A.30, with probability at least 1−O( 1
nQ

), Algorithm 2

returns the true clusterings ẐP = ZP ∈ {0, 1}n×kP and ẐQ = ZQ ∈ {0, 1}nQ×kQ , up to permuta-
tion.

Now, Algorithm 2 simply takes unions of the clusters of ZP to learn Π̂. Therefore, let V : Rn → RnQ

project onto coordinates in S. Then V ẐP Π̂ = ẐQ. Moreover, by Proposition A.30, ẐP = ZPUP

and ẐQ = ZQUQ. Hence V ZPUP Π̂ = V Z̃QUQ. To remove dependence on V , we need to argue
that each Q-cluster has a reprensentatve in S.

Let E be the event that at least one Q-cluster has no representative in S. For a fixed j ∈ [kQ], cluster

j has no representative in S with probability ≤
(
1− n

(Q)
min

nQ

)nQ

. A union bound implies that

P[E] ≤ kQ
(
1− n

(Q)
min

nQ

)nQ

≤ kQ exp(−n(Q)
min) ≤ O(n−1

Q ).

The last inequality holds because the condition of Theorem A.29 implies that n(Q)
min ≥ Ω(

√
nQ) and

kQ ≤ nQ

n
(Q)
min

.

Finally, we proceed by conditioning on ¬E. Since ẐP = ZPUP , we know that for all i ∈ S, the
unique jP ∈ [kP ] such that row i, column jP of ZP is nonzero contains its true P -community up to
UP . Similarly since ẐQ = ZQUQ, the the unique jQ ∈ [kQ] such that row i, column jQ of ZP is
nonzero contains its true Q-community up to UQ. Therefore the nodes in community jP in P are in
community jQ in Q. So, up to permutations UP and UQ, we have ΠjP ,jQ = 1. Since we condition
on ¬E, each cluster of Q has at least one representative in S, so each columns of Π is nonzero. We
conclude that ZPUP Π̂ = Z̃QUQ with probability at least 1−O(n−1

Q ).

We are ready to give the overall error of Proposition 2.

Proposition A.32. Suppose that ẐP = ZP , Π̂ = Π in Algorithm 2. Then with probability ≥
1−O( 1

nQ
), Algorithm 2 returns a Q̂ ∈ [0, 1]n×n such that

1

n2
∥Q̂−Q∥2F ≲

k2Q log(n
(Q)
min)

n2Q
.

Proof. By Proposition A.31, with probability ≥ 1−O( 1
nQ

), we have ẐP = ZPUP , ẐQ = ZQUQ,

and Z̃QUQ = ZPUP Π̂. We proceed by conditioning on these events.
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Next, let WQ ∈ RkQ×kQ be the population version of ŴQ with WQ;ii = (1TZQei)
−1. Then since

ẐQ = ZQUQ we have ŴQ = UT
QWQUQ. Hence

Q̂ = (ZPUP Π̂)(U
T
QWQU

T
Q)(ZQUQ)

TAQ(ZQUQ)(U
T
QWQUQ)(ZPUP Π̂)T

= Z̃Q(WQZ
T
QAQZQWQ)Z̃

T
Q.

Next, let zQ : [n]→ [kQ] be the ground truth clustering map given by Z̃Q ∈ {0, 1}n×kQ . Let BQ be
defined analogously to B̂Q in Algorithm 2, but using WQ, ZQ,E[AQ] in place of ŴQ, ẐQ, AQ. Let
mi :=W−1

Q;ii be the the number of nodes in S belong to community i, and let nibe the the number of
nodes in [n] belonging to community i of Q. Then the error of Algorithm 2 is then

1

n2
∥Z̃Q(B̂Q −BQ)Z̃

T
Q∥2F =

1

n2

( ∑
i,j∈[kQ]

ninj

( ∑
r∈z−1

Q ({i})∩S

s∈z−1
Q ({j})∩S

BQ;ij −AQ;rs

mimj

)2)

=
1

n2

∑
i,j∈[kQ]

ninj
m2

im
2
j

( ∑
r∈z−1

Q ({i})∩S

s∈z−1
Q ({j})∩S

BQ;ij −AQ;rs

)2

.

Next, fix i, j ∈ [kQ] and let

Xij =
∑

r∈z−1
Q ({i})∩S

s∈z−1
Q ({j})∩S

BQ;ij −AQ;rs.

If we condition on the clusterings of P,Q being correct then E[BQ;ij − AQ;rs] = 0. Therefore by
Hoeffding’s inequality,

P(Xij ≥ t2) ≤ 2 exp

(
− 2t2

mimj

)
.

Setting t2 = 10 log(mimj)mimj implies that with probability at least 1− k2Q min
i
(mi)

−20, that the

overall error is

1

n2
∥Q̂−Q∥2F ≤

1

n2

∑
i,j∈[kQ]

10 log(mimj)ninj
mimj

.

Finally, note that there exists a constant c0 > 0 such that for all i ∈ [kQ], mi ≥ c0
√
nQ and

ni ≥ c0
√
n, by assumption. Note that each mi is a random quantity depending on the choice of

S ⊂ [n] such that E[mi] =
nQ

n ni. Hoeffding’s inequality and a union bound over all i ∈ [kQ] imply
that that with probability at least ≥ 1−O(n−8

Q ) that mi ≥ E[mi]− 10
√

log nQ ≥ Ω(E[mi]). We
conclude that

1

n2
∥Q̂−Q∥2F ≤ O

(
1

n2Q

∑
i,j∈[kQ]

10 log(mimj)

)

≤ O
(
k2Q log(n

(Q)
min)

nQ

)
.

B Additional Experiments

B.1 Ablation Experiments

In this section, we discuss additional experiments that quantify the dependence of our algorithms
on all relevant parameters. Our experiments also include a new baseline adapted from the estimator
of Levin et al. (2022).
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Description of New Baseline. Levin et al. (2022) assumes that full edge data from both P and Q are
observed, and P = Q. Since this is not true for us, we instead compute the following modified MLE
based on their estimator from Section 3.3 of Levin et al. (2022).

Q̃ij =

{
wP

wP+wQ
AP ;ij +

wQ

wP+wQ
AQ;ij if i, j ∈ S,

AP ;ij otherwise.

Here wP , wQ are computed as in their paper, based on estimated sub-gamma parameters of the noise
for AP , AQ. Akin to their adjacency spectral embedding, which assumes known rank of Q, we use
Universal Singular Value Thresholding to obtain Q̂ from Q̃ Chatterjee (2015).

Oracle with p = 0.0. In addition to testing the new baseline from Levin et al. (2022), we also test
the Oracle baseline with p = 0.0. As noted in Section 4, this corresponds to the non-transfer setting
where all edges from the target graph Q are observed. Note that in this case, the value of nQ does not
matter because edges incident to nodes outside of S never get flipped. The Oracle error for β-smooth
graphons on d-dimensional latent variables will therefore be O(n− 2β

2β+d ) Xu (2018), which is less
than the error bound of Theorem 2.3. Indeed, we will find that the Oracle our transfer algorithms in
the regimes where its theoretical upper bound is better than our theoretical upper bounds.

Next, we describe the experimental results.

Figure 3 tests Algorithm 1 for general latent variable models. The error (Theorem 2.3) depends on
the smoothness β of the target graph, the number of observed target nodes nQ, and the dimension of
the latent variables d.

Figure 4 tests Algorithm 2 for Stochastic Block Models. The error (Proposition 3.4) depends on the
number of communities kQ in the target graph, and the number of observed target nodes nQ. Note
that Proposition 3.4 also depends logarithmically on the minimum community size of Q, but this is
less significant.

Figure 3: Testing parameters of Algorithm 1 (Transfer for Latent Variable Models). For most
parameter settings, our method is better than the baseline and worse than the Oracle.
Left: Testing Hölder-smoothness of fQ with n = 200, nQ = 25, d = 1. All methods improve as
β → 1. Here fP (x, y) = xα+yα

2 , fQ(x, y) =
xβ+yβ

2 with α = 0.01 and β varying.
Middle: Testing number of observed target nodes nQ with n = 200, d = 1. Here fP (x, y) =
xα+yα

2 , fQ(x, y) =
xβ+yβ

2 with α = 0.01, β = 0.1. Note that the oracle does not depend on nQ
because it observes the full adjacency matrix AQ ∈ {0, 1}n×n.
Right: Testing dimension d of latent positions x1, . . . ,xn ∈ [0, 1]d (i.i.d. Lebesgue) with n =
200, nQ = 25. Here fP (x,y) = exp(−6∥x− y∥2) and fQ(x,y) = exp(− |x1 − y1|).
Points are the median MSE across 50 trials, with with [5, 95] percentile outcomes shaded.
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Figure 4: Testing parameters of Algorithm 2 (Transfer for SBMs). For most parameter settings, our
method is better than the baseline and worse than the Oracle.
Left: n = 200, kP = 12, kQ = 6. Note that the oracle does not depend on nQ because it observes
the full adjacency matrix AQ ∈ {0, 1}n×n.
Right: n = 200, nQ = 25, kP = 2kQ.
For both experiments, the intra-community edge probabilities are 0.2, 0.9 for P,Q respectively, while
the inter-community edge probabilities are 0.1, 0.8 respectively. Points are the median MSE across
50 trials, with with [5, 95] percentile outcomes shaded.

Note that while we can plot theoretical guarantees for the mean squared error 1
n2 ||Q̂−Q||2F of both

our algorithms’ Q̂ and the oracle’s Q̂, Levin et al. (2022) only give theoretical guarantees on the
spectral norm ||Q̂−Q||2 for their estimator Q̂. Analyzing the stronger metric of mean-squared error
would require different techniques than their paper.

B.2 Link Prediction Experiments

In this section, we present additional link prediction experiments on the EMAIL-EU and BIGG
MODELS datasets. Unlike Section 4, we tune the sparsity estimate ρ̂ ∈ (0, 1) used in the Universal
Singular Value Thresholding step of the Oracle baseline. In particular, we set ρ̂ ∈ (0, 1) to be
the mean of the entries of the ground truth target matrix Q ∈ [0, 1]n×n. Note that this value is
inaccessible to other algorithms since it requires knowing all the edges of Q.

Figures 7 and 8 show the performance of our Algorithms on the EMAIL-EU dataset, and Figures 5
and 6 for the BIGG MODELS dataset. As in the mean-squared error setting (Figure 2), we find that
Algorithm 1 outperforms Algorithm 2, and that the Oracle baseline outperforms both for small p.
Moreover, we find that the choice of source & target affects the performance of both of our algorithms.
Hence Figure 7 shows better performance than Figure 8 for the same source but different targets, and
Figure 5 shows better performance than Figure 6 for the same target but different sources.

C Experimental Details

In this section, we give further details on the experiments of Section 4.

Compute Environment. We run all experiments on a personal Linux machine with 378GB of
CPU/RAM. The total compute time across all results in the paper was less than 2 hours.

Functions for Figure 1. For the top row, the source is an (n, 4)-SBM with 0.8 on the diagonal and
0.2 on the off-diagonal of B ∈ R4×4. The target is an (n, 2)-SBM with 0.9 on the diagonal and 0.1
on the off-diagonal of B ∈ R2×2.
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Metabolic Network Link Prediction (Source = iWFL1372)
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Figure 5: Link prediction results with the metabolic network of BiGG model iWFL1372 (Escherichia
coli W) as the source and iJN1463 (Pseudomonas putida) the target. Shaded regions denote [5, 95]
percentile outcomes from 50 independent trials.
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Figure 6: Link prediction results with the metabolic network of BiGG model iPC815 (Yersinia pestis)
as the source and iJN1463 (Pseudomonas putida) the target. Shaded regions denote [5, 95] percentile
outcomes from 50 independent trials.
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Email-EU Link Prediction (Target = Days 81-160)
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Figure 7: Link prediction results with Days 1-80 of EMAIL-EU as the source, and Days 81-160 as
target. Shaded regions denote [5, 95] percentile outcomes from 50 independent trials.

For the second and third rows, the source function is Q(x, y) = 1+sin(π(1+3(x+y−1)))
2 (modified

from Zhang et al. (2017)). The sources are P (x, y) = 1−Q(x, y) and P (x, y) = Q(ϕ(x), y), where
ϕ(x) = 0.5 + |x− 0.5| if x < 0.5, and 0.5− |x− 0.5| otherwise.

Metabolic Networks. We access metabolic models from King et al. (2016) at http://bigg.ucsd.
edu. To construct a reasonable set of shared metabolites across the networks, we take the intersection
of the node sets for the following BiGG models: iCHOv1, IJN1463, iMM1415, iPC815, iRC1080,
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Figure 8: Link prediction results with Days 1-80 of EMAIL-EU as the source, and Days 561-640 as
target. Shaded regions denote [5, 95] percentile outcomes from 50 independent trials.

iSDY1059, iSFxv1172, iYL1228, iYS1720, and Recon3D. We obtain a set of n = 251 metabolites
that are present in all of the listed models.

The resulting networks are undirected, unweighted graphs on 251 nodes. We construct the matrix
AP ∈ {0, 1}n×n for species P by setting AP ;uv = 1 if and only if u and v co-occur in a metabolic
reaction in the BiGG model for P .

EMAIL-EU. We use the “email-EU-core-temporal” dataset at https://snap.stanford.edu/
data/email-Eu-core-temporal.html, as introduced in Paranjape et al. (2017). Note that we do
not perform any node preprocessing, so we use all n = 1005 nodes present in the data, as opposed to
Leskovec and Krevl (2014); Paranjape et al. (2017) who use only 986 nodes.

Data consist of triples (u, v, t) where u, v are anonymized individuals and t > 0 is a timestamp. We
split the data into 10 bins based on equally spaced timestamp percentiles. For simplicity we refer to
these time periods as consisting of 80 days each in Section 4, but technically there are 803 days total.
The network at time period ℓ consists of an unweighted undirected graph with adjacency matrix entry
Auv = 1 if and only if (u, v, t) or (v, t, u) occurred in the data for an appropriate timestamp t.

Hyperparameters. We do not tune any hyperparameters. For Algorithm 1 we use the quantile cutoff

of hn =
√

lognQ

nQ
in all experiments.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and precede the (optional) supplemental material. The checklist does NOT
count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We discuss our main contributions in the abstract and introduction, and then
develop them in the main body of the paper. Specifically, we point out Algorithm 1 and
Algorithm 2, the upper bounds from Theorem 2.3 and Proposition 3.4, and the lower bound
Theorem 3.2. Finally, Section 4 shows experimental results.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
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Answer: [Yes]
Justification: We discuss the limitation of lacking a minimax lower bound for network
estimation in d-dimensions after Theorem 2.3, the need for a different graph distance for
graphs with sparsityO( logn

n ) in the Conclusion, and adapting to multiple source distributions
in the Conclusion.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We give self-contained theoretical statements with definitions and assumptions
in the main body, and full proofs for all claims in Appendix A.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
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Answer: [Yes]
Justification: We give experimental details in Section 4, and give further details on our exact
data preparation methods in Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We submit our code as a supplementary zip file in accordance with the NeurIPS
code and data submission guidelines.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
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• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We describe our choices of source and target network, the network sizes and
degrees, and the single hyperparameter (quantile cutoff) for Algorithm 1 in Section 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: For each experiment we run 50 independent trials. We report ±2 standard
deviations for the mean-squared error in Table 1, and [1, 99] percentile errors in Figure 2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
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Justification: As described in Appendix C, we run all experiments on a personal Linux
machine with 378GB of CPU/RAM. The total compute time across all results in the paper
was less than 2 hours.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We conform with the NeurIPS Code of Ethics with regards to potential harms
caused by the research process, societal impact, and impact mitigation measures. Moreover,
we have anonymized our code and manuscript.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper presents work whose goal is to advance the field of Machine
Learning through foundational research. There are many possible societal consequences of
our work, none which we feel must be specifically highlighted here.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not release data or models that have a high risk for misuse. We use only
publicly available data from the academic literature.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We credit the authors of the BiGG metabolic models dataset (King et al., 2016;
Norsigian et al., 2020) and the EMAIL-EU dataset (Leskovec and Krevl, 2014; Paranjape
et al., 2017). Both datasets are publicly released for academic research.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not release new assets. See Appendix C for the exact details regarding
our use of existing datasets and assets.
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Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We do not perform any crowdsourcing or research on human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We do not perform any research on living subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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