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Abstract

Mixture of experts (MoE) has recently emerged as an effective framework to advance the
efficiency and scalability of machine learning models by softly dividing complex tasks among
multiple specialized sub-models termed experts. Central to the success of MoE is an adaptive
softmax gating mechanism which takes responsibility for determining the relevance of each
expert to a given input and then dynamically assigning experts their respective weights. Despite
its widespread use in practice, a comprehensive study on the effects of the softmax gating on
the MoE has been lacking in the literature. To bridge this gap in this paper, we perform a
convergence analysis of parameter estimation and expert estimation under the MoE equipped
with the standard softmax gating or its variants, including a dense-to-sparse gating and a
hierarchical softmax gating, respectively. Furthermore, our theories also provide useful insights
into the design of sample-efficient expert structures. In particular, we demonstrate that it requires
polynomially many data points to estimate experts satisfying our proposed strong identifiability
condition, namely a commonly used two-layer feed-forward network. In stark contrast, estimating
linear experts, which violate the strong identifiability condition, necessitates exponentially many
data points as a result of intrinsic parameter interactions expressed in the language of partial
differential equations. All the theoretical results are substantiated with a rigorous guarantee.

1 Introduction

Introduced by Jacob et al. [18], mixture of experts (MoE) has been known as a powerful statistical
machine learning framework that generalizes the concept of conventional mixture models [25] based
on the principle of divide and conquer. More specifically, it incorporates the power of multiple
sub-models referred to as experts through an adaptive gating mechanism. Here, each expert can
be a classifier [4, 31|, a regression function [10] or a feed-forward network (FFN) that specializes
in some specific tasks [42, 9]. Meanwhile, a gating function is formulated as an FFN followed by a
softmax normalization, which we refer to as the softmax gating function throughout the paper. Its
responsibility is to dynamically assign a corresponding weight for each individual expert in a way
that experts which are more relevant to the input will have larger weights than others. Therefore,
the weight set of the MoE model varies with the input value rather than remains constant as that of
the traditional mixture model (see Figure 1a). This feature accounts for the flexibility and adaptivity
of the MoE, leading to a series of MoE applications in classification [46], multi-task learning [14, 12],
speech recognition [39, 47|, and bioinformatics [40], etc.

In order to enhance the computational efficiency of the MoE, Shazeer et al. [42] has recently
developed a sparse variant of the softmax gating function known as the Top- K sparse softmax gating
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Figure 1: Illustration of mixture of experts.

function. In particular, the gating network is trained to route each input to only the K most relevant
expert networks rather than all of them (see Figure 1b). This mechanism can be viewed as a form of
conditional computation [1, 6], and it allows the sparse MoE to reduce the computational overhead
significantly while maintaining or even improving the model performance. A typical application of
the sparse MoE is in the Transformer model [45], which has been the state-of-the-art architecture for
many natural language processing tasks. More concretely, the FFN in a transformer layer is often
replaced with a sparse mixture of smaller FFNs whose total number of parameters matches that
of the original FFN layer, which might contain up to billions of parameters [20, 9]. Since only a
few FFNs are activated per input, it is obvious that the computational cost decreases substantially.
Moreover, the usage of multiple FFNs might help learn domain-specific or task-specific tasks better
than using a single FFN. For example, when the dataset consists of diverse data modalities such as
texts, images, time series, etc., then each FFN can be trained to specialize in processing a specific
data modality to make the most out of the dataset [13, 49], thereby enhancing the model performance.
As a result, the sparse MoE has been widely utilized in several large-scale models, namely large
language models [26, 20, 11, 43|, computer vision [41, 24, 3], domain generalization |23, 32|, and
reinforcement learning [2, 7|.

Despite its widespread use, there are two main disadvantages of the sparse gating function proposed
in [42]. First, fixing the number of activated experts per input not only hinders the expert exploration
but also makes the gating function discontinuous, probably causing some challenges in terms of
optimization. Second, since the gating network lacks the experience of expert selection in early
training, it may also exhibit undesirable instability. For those reasons, Nie et al. [37| propose
a dense-to-sparse gating function which involves a temperature parameter in the dense softmax
gating to control the weight distribution. In particular, when the temperature parameter tends to
infinity, the mixture weights are uniformly distributed, meaning that all the experts are activated
and assigned identical weights. On the other hand, when the temperature parameter approaches zero,
the weight distribution converges to a one-hot vector, indicating that only one expert is activated
per input. This strategy helps smooth the expert selection process as well as dynamically adjust the



sparsity level of the MoE model. Therefore, the dense-to-sparse gating has been leveraged in several
works on MoE, namely [5, 30, §].

In addition to the standard MoE and its sparse versions that we have discussed so far, we would
also like to bring attention to a hierarchical MoE (HMoE) model introduced by Jordan et al. [22] as
a tree-structured architecture for supervised learning. The HMoE encompasses multiple layers of
gating networks to organize the experts in a multi-level hierarchy as illustrated in Figure 2. Such
hierarchical design has been demonstrated to facilitate the expert specialization and enhance the
model generalization, particularly in the scenarios involving diverse data distributions [33, 17| or
complex decision-making tasks [19, 29].
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Figure 2: Illustration of two-level hierarchical mixture of experts.

Related works. Given the success of applying the MoE and HMoE models in practice, it is natural
to ask about the theoretical attempts to understand those models. First, Zeevi et al. [50] established
the error of approximating a target function in the Sobolev class using a mixture of generalized linear
experts under the LP norm. After that, Jiang et al. [21] proceeded to studied the approximation
power of the HMoE models where exponential family regression models with generalized linear
mean functions were aggregated. They demonstrated that such models were able to approximate
one-parameter exponential family densities with arbitrary smooth mean functions in a transformed
Sobolev space when the number of experts increased. Next, Mendes et al. [28] investigated the
convergence rate of the maximum likelihood estimator (MLE) under the MoE model where each
expert was formulated as a polynomial regression model. From the theoretical results, they provided
some implications for the optimal number of experts and the complexity of the expert models. The
convergence analysis of the MLE was then continued in [16] and [35] but under the Gaussian MoE
models. Those works pointed out that the parameter estimation rates were negatively affected by
some intrinsic interaction among the gating and expert parameters expressed in the language of
partial differential equations (PDEs). Unlike previous works where the MoE was associated with a
probability distribution, Nguyen et al. [34] considered a regression framework where the regression



function took the form of a deterministic softmax gating MoE, and studied the problem of expert
estimation using the least square method. In particular, they derived a so-called strong identifiability
condition to characterize the types of experts that admitted faster convergence rates than others,
namely those formulated as two-layer FFNs with GELU or sigmoid activation function. In this work,
we will first revisit those results and then extend them to the settings where the regression function
admits the form of a dense-to-sparse gating MoE and a hierarchical MoE, respectively, which have
remained elusive in the literature. For the sake of presentation, let us introduce the formal problem
statement for the setting of the softmax gating MoE below and then defer those for their variants to
Section 3 and Section 4.

Problem setting. We assume that an i.i.d. sample of size n: (X31,Y7),(X2,Y2),...,(X,,Y,) in
X x Y C R% x R is generated according to the model

Y;:f(;*(XZ’)—l-Ei, 1=1,2,...,n. (1)
Above, we assume that Xy, Xo,..., X, are i.i.d. samples from some probability distribution u. Mean-
while, €1,¢€9,...,¢, are independent noise random variables such that their conditional probability

distributions given the input are Gaussian, that is, ;| X; ~ N (0,v), for all 1 <14 < n. We note in
passing that the Gaussian assumption is simply for the ease of proof arguments. Next, the regression
function fg, () is assumed to take the form of the softmax gating mixture of k. experts, namely

ks
fa.(w) = Softmax((w;) "= + 67) - £(x,n)), (2)

i=1
where ( ;‘,w;‘,n;‘)fgl are true yet unknown parameters belonging to the parameter space © C
R x R? x R? and G, := Zf;l exp(Bf)cS(wi*mZ) denotes the associated mixing measure, that is, a

weighted sum of Dirac delta measures. The corresponding regression functions to the settings of
the dense-to-sparse gating MoE and the HMoE are given in equations (12) and (20), respectively.
Additionally, the terms E(z, 7)), for 1 <14 < k,, are referred to as experts.

It is worth noting that expert specialization is an essential problem in the literature of MoE models
[9, 38]. Therefore, our main objective is to learn how fast we can estimate the parametric ground-
truth experts £(x,n;), which can be obtained by determining the convergence rate of parameter
estimation. Since the number of experts k, is unknown in practice, we over-specify the model in
equation (2) by a mixture of k experts, where k > k, is a given threshold. Then, we can estimate
the unknown parameters (37, w}, n; )f;l via estimating the mixing measure G, using the least square
method as follows:
n

2
G, = i Y; — X, 3
greggf(%r;;( fa( )) (3)

where G(0) := {G = Zf;l exp(Bi)d(w,m) + 1 < K <k, (Bi,wi,ni) € O} stands for the set of all

mixing measures with no more than k atoms.

Contributions. In this paper, we analyze the convergence behavior of parameter estimation and
expert estimation under the (hierarchical) MoE with the softmax gating and the dense-to-sparse



Table 1: Summary of estimation rates for strongly identifiable experts and linear experts.

Strongly Identifiable Experts | Linear Experts Theorems
Softmax gating MoE Op([log(n)/n]*/*) Op(1/log(n)) | Thm.1, Thm.2
Dense-to-sparse gating MoE with linear router Op(1/log*(n)) Op(1/logh(n)) Thm.3
Dense-to-sparse gating MoE with general router Op([log(n)/n]*/*) Op(1/logh(n)) Thm.4
Hierarchical MoE Op([log(n)/n]/*) Op(1/log(n)) | Thm.5, Thm.6

gating. Our ultimate goal is to find the optimal expert structure for each MoE model to provide a
useful guide on the model design for its practical applications. Our contributions are three-fold and
can be summarized as follows (see also Table 1):

1. Softmaz gating MoE: We re-state the strong identifiability condition in [34] for characterizing the
structure of experts admitting faster convergence rates than others. The main intuition behind that
condition is to eliminate interactions among parameters through some PDEs. Then, we demonstrate
that the rates for estimating strongly identifiable experts, including those formulated as FFNs with
GELU or sigmoid activation, are parametric on the sample size. On the other hand, linear experts,
which fail to satisfy the strong identifiability condition, are shown to have slower estimation rates
than any polynomial rates.

2. Dense-to-sparse gating MoE: Recall that we involve the temperature parameter in the dense-to-
sparse gating function to control the sparsity of the MoE model. However, our theory reveals that
the temperature has an undesirable interaction with the gating parameters expressed via a PDE,
leading to a substantial deceleration in the expert convergence regardless of the expert structure. In
response to this issue, we generalize the linear router inside the dense-to-sparse gating function to a
general router and then establish a condition to survey which combinations of the router and the
expert structure will accelerate the expert convergence.

3. Hierarchical MoFE: For the softmax gating hierarchical MoE, we discover that experts satisfying
the aforementioned strong identifiability condition still enjoy a faster estimation rate than others. At
the same time, we show that the rates for estimating linear experts are slower than any polynomial
rates due to the interaction between gating parameters and expert parameters.

Organization. The paper proceeds as follows. In Section 2, we recall the convergence analysis
of the softmax gating MoE equipped with strongly identifiable experts and linear experts. Next,
we study the effects of involving the temperature parameter in the softmax gating function on the
convergence of expert estimation in Section 3. Subsequently, we generalize the results to the setting
of the HMoE model in Section 4 before providing an in-depth discussion on the theoretical results in
Section 5. Full proofs and additional results can be found in the Appendices.

Notations. For any n € N, we denote [n| as the set = {1,2,...,n}. Additionally, for any

set S, we refer to |S| as its cardinality. Next, for any vectors v := (vy,vs,...,v4) € R? and
o= (a1, q,...,aq) € N4 welet v = o152, cugd v == v+, +og and al == aglag! . agl,



while ||v|| stands for its 2-norm value. Lastly, for any two positive sequences (an)n>1 and (by)n>1,
we write a, = O(by,) or a, < by if a, < Cb, for all n € N, where C' > 0 is some universal constant.

~

The notation a,, = Op(by,) indicates that a, /b, is stochastically bounded.

2 Softmax Gating MoE

In this section, we first establish the convergence rate of estimation for the regression function under
some mild assumptions. This lays the foundation for deriving a condition to capture the optimal
expert structure in terms of sample efficiency in Section 2.1. Next, we determine the convergence
behavior of estimation for linear experts, which fail to satisfy that condition, in Section 2.2.

Assumptions. To begin with, let us introduce the essential yet mild assumptions for our subsequent
convergence analysis.

(A.1) The parameter space © is a compact subset of R x R? x RY, and its dimension is fixed unless
stated otherwise. Meanwhile, the input space X is a bounded subset of R.

(A.2) The ground-truth expert parameters ny,73,...,7n; are distinct. Furthermore, the expert
functions £(z,n) is bounded and Lipschitz continuous with respect to 7 for almost every z.

(A.3) The last pair of gating parameters are zero, that is, 3; =0 and wy = 0g4.
. east one of the ground-truth gating parameters wi,ws, ..., w; is different from zero.
A.4) At least f the g d-truth gating t ¥ ws i is different fi

Above, the first assumption (A.1) is to ensure the convergence of least square estimators, whereas
the second (A.2) is necessary for the distinction among experts. Next, the third assumption (A.3)
helps prevent the invariance to translation of the softmax gating function, which negatively affects
the identifiability of the softmax gating MoE model. The last assumption (A.4) is to guarantee that
the gating value is input-dependent as in practice.

Given the above assumptions, we are ready to study the convergence behavior of regression estimation
in the following proposition.

Proposition 1. For a least square estimator é’n in equation (3), the convergence rate of regression
function f@n is given by

/5. — fa.lz2 = Op(llog(n)/n]?). (4)

The proof of Proposition 1 can be found in Appendix C.1. The bound in equation (4) indicates that the
least square estimator f@n converges to its true regression function fg, under the L?(x) norm at the

rate of order Op([log(n)/ n]%), which is parametric on the sample size n. As a consequence, in order
to capture the convergence behavior of parameter estimation and expert estimation, it is sufficient to
build a loss function among parameters £(Gn, G+) such that || fa — fe.|lp2(u) 2 £(Gn, Gx), which

implies that E(@n, G+) = Op([log(n)/ n]%) Given these results, we attempt to construct a condition
to characterize strongly identifiable expert functions that require fewer data points to estimate than
others.



2.1 Strongly identifiable experts

Before presenting the condition for the strongly identifiable expert structure, let us highlight the
challenges of establishing the essential L?-lower bound || fa, — fallr2q 2 £(G,Gx) to determine
the convergence rates of parameter estimation and expert estimation.

Challenges. In our proof, a key step to derive the aforementioned L?-lower bound is to decompose
the discrepancy between the estimation of the regression function and its true counterpart, that
is, f& (2) = fa.(x), using Taylor expansions to the function  — F(z;w,n) := exp(w' 2)E(x,n)
staying implicit in the representation of regression function. Furthermore, it is necessary to guarantee
that the function F' and its partial derivatives resulting from the Taylor expansions are linearly
independent so that when the regression discrepancy goes to zero as n — oo, the coefficients of those
terms, which encompass the parameter discrepancies, also converge to zero. Therefore, we need to
establish a non-trivial algebraic independence condition on the expert function £(x,n) called strong
identifiability in Definition 1 to ensure such a linear independent property. This requires us to adopt
new techniques as previous works on the softmax gating MoE [35, 31] employ only linear experts.

Definition 1 (Strong Identifiability). An expert function x +— E(x,n) is said to be strongly identifiable
if it is twice differentiable with respect to its parameter n for almost every x, and the set of functions
m x

lolg
{r

o (B) G € By €N pENLO< v+ ol < 2

is linearly independent for almost every x for any k > 1 and distinct parameters ni,ma ..., Nk.

Example. We can justify that several experts employed in practice, namely FFNs with activation
functions like GELU [15], sigmoid, tanh, and non-linear transformed input, satisfy the strong
identifiability condition. For instance, let us consider a two-layer FFN with normalized input, i.e.

E(x, (a,b,c)) = ca(aHi—H + b),

where ¢ is one among the activation functions GELU, sigmoid and tanh, and z,a € R%, b, ¢, € R. On
the other hand, the strong identifiability will be violated if the activation function o is of polynomial
form, e.g., o(z) = 2P for all z € R for some positive integer p € N.

Intuitively, the linear independence of functions in Definition 3.1 helps eliminate potential interactions
among parameters expressed in the language of partial differential equations (see e.g., equation (10)
and equation (16) where gating parameters 1 interact with expert parameters a). Such interactions
are demonstrated to result in significantly slow expert estimation rates (see Theorem 4.4 and Theorem
4.6).

Now, it is necessary to construct a loss function among parameters to capture the convergence rate
of parameter estimation. In previous works, Nguyen et al. [36] utilized the generalized Wasserstein
divergence between mixing measures to determine parameter estimation rates under the setting
of classical mixture models. Then, this divergence was adopted again in [16] to establish the
convergence rates of parameter estimation in Gaussian mixture of experts. However, there is an



inherent drawback of the generalized Wasserstein. In particular, this divergence implies estimation
rates for all individual parameters while these rates should vary with the number of fitted parameters.
In response to this issue, we propose using a loss function built based on the concept of Voronoi cells
[27] to accurately characterize parameter estimation rates.

Figure 3: Illustration of Voronoi cells generated by k. = 6 atoms of the ground-truth G, (red
triangles) and k = 10 fitted atoms of the estimator Gy, (blue rounds). By definition, each Voronoi
cell is generated by one ground-truth atom, and its cardinality equals the number of corresponding
fitted atoms. For instance, the red triangle in cell 4 is fitted by three blue rounds, implying that the
cardinality of Voronoi cell 4 is three.

Voronoi loss function. For a mixing measure G with 1 < k&’ < k atoms, we partition its atoms
into the set of Voronoi cells {A; = A;(G) : j € [k.]} generated by the atoms of the ground-truth
mixing measure G, defined as

Aj o= {i € [K]: [10; — 5[l < 16; — 07, V£ # j}, (5)

with 0; := (w;,m;) and 05 := (w}, n;) for all j € [k.] (see Figure 3). Then, the Voronoi loss of interest
is given by

ks
£1(G,G) =D | Y en(B) —exp(3)]| + 30 D exp(8i) [l Awill + 1 An;| ]
Jj=1 ic€A; j:|.A]"=1iE.Aj
3D e8| Awyl? + An 7). (6)
j:|Aj‘>1iE.Aj

where we denote Aw;; := w; —wj and An;; :=n; —nj. It is worth noting that the cardinality of a
Voronoi cell A; is exactly the number of parameters approaching the ground-truth atom g7 for all
J € [ks]. By convention, if a Voronoi cell A; is an empty set, then we set the respective summation to
zero. Regarding the Voronoi loss function, we notice that £1(G,Gy) = 0 holds if and only if G = G,.
This property indicates that when the Voronoi loss £1(G, G,) becomes small enough, the parameter
discrepancies Aw;; and An;; are also small accordingly. Therefore, it is a suitable loss function for
the sake of capturing parameter estimation rates. Furthermore, the Voronoi loss £1(G, G,) induces
more accurate convergence rates of individual parameter estimation than the generalized Wasserstein
divergence. In particular, suppose that there exist a sequence of mixing measures (G,,) such that
L1(Gn,Gy) converges to zero at a rate v, = o(1) as n — oo, we deduce that the convergence rates
for estimating exactly-specified parameters 0;, whose Voronoi cells A; have only one element, are
also v,. Meanwhile, over-specified parameters 9;, whose Voronoi cells have more than one element,



1
admit the estimation rates of order +; . On the other hand, if we used the generalized Wasserstein

divergence, then the parameter estimation rates would be the same irrespective of the Voronoi cell
cardinality. However, as the Voronoi loss £1(G, G,) is not symmetric, it is not a proper metric.

Given the above loss function, we provide the convergence rate of parameter estimation in Theorem 1.

Theorem 1. Suppose that the expert function x — E(x,n) satisfies the strong identifiability condition
presented in Definition 1, then the lower bound || fa — fa.llr2(n) 2 £1(G, Gx) holds for all G € Gi(©),
indicating that

NI

L1(Gn, Gy) = Op([log(n)/n]2). (7)

The proof of Theorem 1 can be found in Appendix A. A few remarks regarding the result of this
theorem are in order.

(i) Parameter estimation rates: Putting the bound (7) and the definition of the Voronoi loss £ in
equation (6) together, it follows that the rates for estimating exactly-specified parameters w;-“, n;-“ are of
*
! J
order Op([log(n)/n]|1). This highlights the benefit of the Voronoi loss function over the generalized
Wasserstein divergence as the former can distinguish the estimation rates of exactly-specified and over-

specified parameters while the latter induces identical convergence rates for all parameter estimations.

the order Op([log(n)/ n]%), while over-specified parameters w7, n; admit slower estimation rates of the

(ii) Expert estimation rates: By definition, since £(x,n) is a strongly identifiable expert function, it
is twice differentiable over a bounded domain, implying that it is also a Lipschitz function. Assume

that the least square estimator G is represented as Gn = 2?21 exp(gi)d@?@n), then the following
inequality holds for all i € A; (G,) and j € [k.):

sup |€(z, ;") — E(,n7)| S 10" — njll- (8)

From this result, we deduce that the convergence rates of estimating experts &(z, 7];‘) are identical
to the rates for estimating parameters 77, which are of the order (’)p([log(n)/n]%) when |A;] =1
and become slower at the order Op([log(n)/ n]%) when |A;| > 1. These rates imply that to achieve
an approximation of the experts £(x, 77;‘) with a given error € > 0, we need polynomially many data
points of order O(e~2) or O(e~*). To see the effects of the strong identifiability condition on the

parameter and expert estimation problem more clearly, we will demonstrate in the next section that
it requires a substantially larger sample size to estimate non-strongly identifiable experts.

2.2 Linear experts

Moving to this section, we complement our convergence analysis of parameter and expert estima-
tions under the softmax gating Mok by taking into account a class of linear experts of the form
E(z,(a,b)) = a'z + b for (a,b) € R? x R, which violate the strong identifiability condition in
Definition 1.

Parameter interaction. Let us recall that a key step in establishing the L?-lower bound in
Theorem 1 is to decompose the regression discrepancy fg (2) — fg. (2) into a combination of linearly

9



independent terms by applying Taylor expansions to the function = +— F(x;w,n) = exp(w'z)&(x,n).
since the strong identifiability condition is not satisifed under the scenario of linear experts
E(x,(a,b)) = a'x + b, there exist undesirable linear dependence among the function F and its
derivative with respect to parameters a, b, n expressed via the following partial differential equation

(PDE):

82F * * 7k aF *
8w8b( zv z?bz)_ aa(x wzvazvbz) (9)

We refer to the above PDE as an interaction between the gating parameters w and the expert
parameters a,b. This interaction has been encountered in the setting of softmax gating Gaussian
mixture of linear experts [35]. More specifically, Nguyen et al. [35] showed that although parameter
estimation rates were still of polynomial orders given the aforementioned parameter interaction,
these rates were significantly slow, as they hinged upon the solvability of some intrinsic system
of polynomial equations. Subsequently, we will demonstrate in Theorem 2 that the parameter
estimation rates become significantly slower than polynomial orders under the deterministic softmax
gating MoE due to the parameter interaction in equation (9). For that purpose, let us define a
Voronoi loss function tailored to the setting of linear experts as follows:

Lo (G,Gy) Z‘Zexpﬁl —exp(f

j=1 i€A; J=l1i€A;

[HA%H’" + [ Aa " + || Abig "

(10)

for any r > 1, where we denote Aa;; := a; — a; and Ab;; == b; — b;f.

Theorem 2. Assume that the experts take the linear form a'xz + b, then the following minimax
lower bound of estimating G« holds true for any r > 1:

- inf sup Efc [ﬁz,r(ény G)] Z n_1/27 (11)
Gn€Gr(0) GEGL(O)\Gr, —1(O)

where Ey, indicates the expectation taken with respect to the product measure with f7 and the
infimum is over all estimators taking values in Gi(O).

The proof of Theorem 2 is in Appendix B.1. The bound in equation (11) reveals that the convergence
rates of estimating ground-truth parameters w], ;’f, and b;f are slower than polynomial rates
Op(n~12") for any r > 1. Therefore, these rates can become as slow as Op(1/log(n)) for some
positive constant A\. Regarding the expert estimation, it is worth noting that

sup |((@]) "= +0}") — ((a5) "2 +05)| < sup [} — aj| - |z + b} - bj].
x x

Recall from Assumption (A.1) that the input space X is bounded. Thus, the above inequality implies
that the rates for estimating experts (a ) x+ b* are also slower than any polynomial rates and could
be of the order @p(1/log*(n)). In that case, 1t requires exponentially many data points of order
(’)(exp(e_l/ ) to obtain an expert approximation with a predetermined error e. Compared to the
results in Theorem 1, we see that using strongly identifiable experts is more sample efficient as we
need only a polynomial number of data points to estimate them.

10



3 Dense-to-sparse Gating MoE

In this section, we investigate the convergence analysis of parameter estimation and expert estimation
under the dense-to-sparse gating MoE. We begin our analysis with a linear router inside the dense-
to-sparse gating in Section 3.1, and then extend to the setting of a class of general routers, which
are optimal for the parameter and expert convergence, in Section 3.2.

3.1 Linear Router

Firstly, we will exhibit the problem setup for analyzing the convergence of dense-to-sparse gating
MoE with a linear router.

Problem setting. We assume that an i.i.d. sample (X1,Y7),(X2,Y2),...,(Xn,Yn) in & x Y C
R? x R is also generated according to a regression framework as in equation (1) but with another
MoE-based regression function as Y; = gg, (X;) + €; for all i € [k,], where the regression function
9a. (+) is defined as

9. (x ZSthmax( wi)' x+5*> E(z,n)). (12)

T*

Here, we keep the definitions and assumptions of the input X; and the noise variable £; unchanged
for all i € [k,]. Recall that the temperature 7 is involved to control the sparsity level of the MoE
model, making the expert selection process smooth and stable. In particular, when the temperature
parameter goes to infinity, the weight distribution becomes roughly uniform, implying that all the
experts are activated. In contrast, when the temperature parameter tends to zero, the mixture
weights behave as a one-hot vector, meaning that only one expert is activated. Additionally, by
abuse of notation, we still denote G, := Zf*lexp(ﬁ*)é(w ) S a mixing measure associated
with unknown parameters (3 T, n; ) i1 €EOCRX R? x R, x RY although this formulation is
different from that in the settlng of softmax gating MoE due to the appearance of the temperature
parameter 7. Then, the least square estimator of the ground-truth mixing measure G, is now given

by:

2
Gy = i Yi —9a(Xi)) 13
nggt:(lg;; (i - 9a(X))) (13)

where G;(0) := {G = Zz 18XP(Bi)d(wy ) = 1 < K <k, (Bi,wi, 7,mi) € O} denotes the set of all
mixing measures with no more than k atoms. Analogously to Section 2, we provide in the following
proposition the convergence rate of estimating the ground-truth regression function gg, (x).

Proposition 2. For a least square estimator Gn in equation (13), the convergence rate of regression
function gz s given by

N

)- (14)

Since this proposition can be proved in a similar fashion to Proposition 1, its proof is omitted.
The above result reveals that the regression function estimation gz converges to its ground-truth

l9g, — 96.ll12¢.) = Op([log(n)/n]
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version gg, at the parametric rate on the sample size, that is, Op([log(n)/ n]%) Next, we proceed
to determine the convergence rates of parameter and expert estimations based on this result. It
comes to our attention that although the temperature helps stabilize and smooth the expert selection
process, it induces an intrinsic interaction with gating parameters which might harm the parameter
and expert convergence.

Interaction between the temperature and gating parameters. Given the bound in equa-
tion (14), we continue to leverage the same strategy to determine parameter and expert estimation
rates as in Section 2, that is, to derive the L? lower bound l9a, — 9a. ez 2 L(Gr,G,) for
some loss function £ that will be defined later. However, an obstacle arises when decomposing
the discrepancy [|gz — ga. [|12() into a combination of linearly independent terms, which is a key
step in the strategy. In particular, we observe that there is an interaction between the temperature
parameter 7 and the gating parameter w via the following PDE:

OF 1, 10F

S (el ) = = )T G (et T ), (15)

where we define F(x;w, T,n) := exp (“’TTQE)S(‘I, n) by abuse of notation. Unlike the interaction in

equation (9) which occurs when the expert function takes a linear form, the above interaction holds
true irrespective of the expert structure. As a result, we will illustrate in Theorem 3 that the
parameter interaction (15) negatively affects the convergence of parameter and expert estimations
under the dense-to-sparse gating MoE by involving the following Voronoi loss function:

£3,(G,G.) Z(Zex( ) —exp ()] + Zzexp( D) lAws |7+ AT + | Ang "),

j=1 €A, j=11i€A;
(16)

for any r > 1, where we denote A1 :=7 — 7",
Theorem 3. The following minimaz lower bound of estimating G4 holds true for any r > 1:

_inf sup Eyi (L3, (Gn, G)] 2 n 2,
Gn€Gr(©) GEGL(O)\Gr, —1(O)

Here, the notation Eg, indicates the expectation taken with respect to the product measure with
mizture density g¢.

The proof of this theorem is deferred to Appendix B.2. Similarly to Theorem 2, the result of

Theorem 3 indicates that the rates for estimating parameters wj, 7, and 77;‘ are slower than

polynomial rates of order Op(n='/2") for any r > 1. Furthermore, it follows from the inequality (8)
that the expert estimation shares the same convergence behavior. Thus, both the parameter and
expert estimation rates could be as slow as Op(1/log*(n)) for some constant A > 0. It should be
noted that this slow estimation rate applies for any expert function employed in the dense-to-sparse
gating MoE model with the linear router (12). This situation necessitates a new router formulation
to avoid the parameter interaction (15), thereby improving the parameter and expert estimation
rates. We will address this issue in the next section.

12



3.2 General Router

In this section, we aim to explore a class of new router structures such that the interaction between
the temperature and gating parameters via the PDE (15), which induces slow expert estimation
rates, no longer exists. For that purpose, we first generalize the ground-truth regression function

ga. (z) in equation (12) by replacing a linear router (w}f)—rx with a general router 7(z,w7) as follows:

gc.(x ZSOftHlax( HB*) ~E(xymy)). (17)

Here, we will keep all the assumptions imposed on the setting of linear router unchanged throughout
this section unless stating otherwise. Next, we introduce a so-called algebraic independence condition
on the router function z — 7(x,w) and the expert function £(z,n) in Definition 2 to prevent any
interaction among the temperature, gating and expert parameters expressed in the language of PDEs
such as those in equation (15) from happening.

Definition 2 (Algebraic Independence). We say that a router function x — 7w(x,w) and an
expert function x — E(x,m) are algebraically independent if they are twice differentiable w.r.t their
parameters w and n, and the set of functions in x

or or or
{E(x,nj),w(az,wj)g(x,nj),m(m,wj)g(:c,nj)7m( )a (v )(957%)5(%77]')’
0*m om o€ o€
W(%%)g(l‘,nj),ﬂ(ﬂﬁawj)m(wij)g(ﬂ@ 77]) an (u )(90 773) (fanj)W(fUﬂ'?j),

on o€ 0%E
— ) — )y, = i) g < < <, v < }
EWO) (x,w])an(u,) (1), (@) 9y (x,nj):j e[k, 1 <u,v<d1<u, v <q
18 linearly independent for almost every x for any k > 1, distinct gating parameters wi,ws, ..., Wk
and distinct expert parameters ni,mo, ..., M-

Example. It can be validated that the router function 7(z,w) = o1 (w’

x) and the expert function
E(x,n) = co (a”i—” + b) are algebraically independent, where 01,09 are two different activation

functions among the functions GELU, sigmoid and tanh, and w € R?, z,a € R?, b, ¢, € R. However,
if the activation functions o1 and o9 take polynomial forms z € R + 2P, for some p € N, then
the previous pair of router function and expert function violates the algebraic independence condition.

Given the algebraic independence condition on the router function and the expert function, we are

now ready to analyze the convergence of parameter and expert estimations under the dense-to-sparse
gating MoE in Theorem 4, which involves the following Voronoi loss function:

Z(Zex (5) —exp (22) [+ 32 37 exp (22) 1l + 161 + 121

Jj=1 icA; j: AJ| 1i€A;

Y exp (22) (12w + A7 12 + 12 7).

j=11icA;
(18)
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Theorem 4. Suppose that the router function x — m(x,w) and the expert function x — E(x,n) are
algebraically independent, then the lower bound ||gG — ga. || 12(u) 2 L4(G, Gx) holds for all G € Gi(O),
indicating that

D=

L4(Gr, G.) = Op([log(n) /n]?). (19)

The proof of Theorem 4 is in Appendix B.3.

(1) Parameter estimation rates: From the bound (19) and the formulation of the Voronoi loss L4, we de-

duce that exactly-specified parameters w}, 7%, 7} enjoy estimation rates of the order Op([log(n)/ n]%),

70
whereas those for their over-specified counterparts are of the order Op([log(n)/ n]i) Compared to
the linear router scenario in Theorem 3, we see that the convergence rates of parameter estimation are

significantly improved when the router function and the expert function are algebraically independent.

(ii) Ezpert estimation rates: By employing the inequality (8), we notice that the convergence rates
of expert estimation also benefit from the enhancement of parameter estimation rates. In particular,
ground-truth experts &(z,n;) admit estimation rates of the order Op([log(n)/n|z ) when they are

exactly-specified, and of the order Op([log(n)/n|1 ) when they are over-specified. As a consequence,
only polynomially many data points of order O(¢~2) or O(e~*) are required to obtain the expert
approximation with the error €, which are substantially improved in comparison with exponentially
many data points required in the linear router scenario. This result indicates that the algebraic
independence between the router function and the expert function helps increase the model sample
efficiency.

4 Hierarchical Softmax Gating MoE

In this section, we extend our previous convergence analysis of parameter estimation and expert
estimation to the setting of hierarchical MoE (HMoE) model. For simplicity, we will consider only
the two-level structure of the HMoE with a note that higher-level HMoE models can be analyzed in
a similar fashion.

Problem setting. Here, we continue to assume that (X1, Y1), (X2,Y2),...,(X,,Y,) in & x Y C
RY x R is drawn from a regression framework Y; = hg, (X;) +¢; for all i € [k,], with the HMoE-based
regression function hg, (+) given by

k3
ha, (x Z Softmax(( il)Tx + Bi,) Z Softmax((k7,;, )+ Vi) - €@ ,)- (20)
i1=1 io=1

Note that all the definitions and assumptions of the input X; and the noise variable e; from previous
sections will still be applied in this setting. Meanwhile, the ground-truth mixing measure G inherits
the hierarchical structure of the HMoE and is formulated as G := Zf: 1exp(B7) le L exp(vy Vi )5(w;<1 Ry
where ( WiV 12|“ ;2|7j1’n;k1i2)ile[kik]7i2€[k§] denotes true yet unknown parameters in the compact
space © C R x R? x R x R? x RY. Throughout this work, we refer to kT as the number of expert
groups, while k3 represents the number of experts in each group. As the convergence analysis would
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become needlessly complicated if the number of expert groups k] was unknown, we assume that its
value is known for ease of presentation. Nevertheless, the number of experts in each group k3 still
remains unknown. Under these assumptions, we over-specify the ground-truth model (20) by taking
into account a least square estimator within a class of HMoE models with k] expert groups, each of
which has at most k2 > k3 experts, as follows:

~ " 2
Gy = argmin » (Yz - hG(Xi)) ) (21)
GGy (©) =1
with
k3 Ky
gk{k’z(g) = {G = Z eXp(ﬁil) Z exp(yi2|i1)5(‘“i17”i2\i17ni2\i1) s ké < ko,
i1=1 ia=1

(Bh y Wiy Vigliys Rigliys 77i1i2) € (—)}

standing for the set of all feasible mixing measures. Given the above estimator, we will demonstrate
that the corresponding regression function estimation hg (x) converges to the ground-truth regression
function hg, (z) at the parametric rate on the sample size in Proposition 3 whose proof is left in
Appendix C.2.

Proposition 3. For a least square estimator G, in equation (21), the convergence rate of regression
function hg s gien by

N

1he, = ha.llpzm) = Op([log(n)/n]2). (22)

Toward the goal of analyzing the convergence behavior of parameter and expert estimations in the
HMOoE, we also need to decompose the difference of regression functions hy (7) — he, () into a
combination of linearly independent terms. However, due to the hierarchical structure of the HMoE,
this decomposition will be achieved by applying Taylor expansions to the function z — F(:z; W, K, M) 1=
exp(w'x)exp(k' z)E(x,n) rather than the function = — F(z;w,n) := exp(w'z)&(z,n) as in the
MoE setting. Recall that, the function F' and its partial derivatives from the Taylor expansions
are forced to be linearly independent so that when the previous regression difference approaches
zero as n — 00, the coefficients of those terms, which contain parameter discrepancies, also go to
zero, ensuring the convergence of parameter estimation. Notably, we will show in Section 4.1 that
if the expert function £(x,n) meets the strong identifiability condition in Definition 1, then the
aforementioned linear independence condition is secured and, therefore, ground-truth parameters and
experts admit estimation rates of polynomial orders. On the other hand, if the expert function takes
a linear form &(z, (a,b)) = a'z + b, then it is not strongly identifiable, leading to slow parameter
and expert estimation rates exhibited in Section 4.2.

4.1 Strongly identifiable experts

Before presenting the result statement, it is necessary to construct a Voronoi loss function tailored
to the HMoE setting.

Voronoi loss function. Due to the two-level hierarchical structure of the HMoE, we need to
employ distinct sets of Voronoi cells to capture the convergence of parameter estimations in each
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level. In particular, given an arbitrary mixing measure G' € Gz, (©), we partition its atoms into
the Voronoi cells {Aj;, (G) : j1 € [k{]} and {A},;,(G) : j1 € [k7], j2 € [k3]} generated by the atoms
of the ground-truth mixing measure G, (see Figure 4), where

Aj = A (G) = (i € [k s flwin = wjy [ < lwi = wp, I, V0 # 1, (23)

Aoty = Aoy (G) i= {ia € [ka] : 103,15, — 05,15, | < 10555, — 0,5, 11, Ve # Ja}, (24)

with 0,5, 1= (Kiy)jy > Mjuin) and 0% . o= (k7,707 5,). Then, the Voronoi loss function of interest is
defined as

kY
Z\ exp(B,) —exp(B5)| + D D exp(By) lwi, — |

1=l di1€A; 1=lit€Ay,

ki
+y D exp(ﬁn)[ > Y e dWigji) (Kigfiy = Kygsy |+ Iisia = 75,5)

n=lii€A; J2: Ay 1y 151 12€ A5, 15

P e — K I+ i — 7l?)
j23|Aj2|j1‘>1i2€Aj2|j1

+ Z Z exp(Bi; ) Z ‘ exp(Viy|i; ) — exp(y;;ljl) . (25)

n=lir€A; J2=1 d2€A |5,

Equipped with the Voronoi loss L5, we will illustrate that strongly identifiable experts in the HMoE
model admit estimation rates of polynomial orders in Theorem 5 whose proof is left in Appendix B.4.

Theorem 5. Suppose that the expert function x — E(x,n) satisfies the strong identifiability condition
presented in Definition 1, then the lower bound ||hg — ha,||2(u) 2 L£5(G,Gx) holds for all G €
Gk:ky (©), indicating that

L5(Gy, G.) = Op([log(n)/n]?). (26)

We provide below some implications on the parameter and expert estimation rates from the above
results.

(i) Parameter estimation rates: It follows from the formulation of the Voronoi loss £5 and the

bound (26) that all the first-level parameters wj share the same estimation rate of the order

Op([log(n)/ n]%) Regarding the second-level parameters 7 . and 7j ; , the rates for estimating

them are of the order Op([log(n)/ n]l) if they are exactly-specified, that is, |.A

inlj1| = 1. However,
if they are over specified, that is, |Aj,;,| > 1, their estimation rates become slower of the order
Op(flog(n) /n] 7).

(1) Ezpert estimation rates: Recall that a strongly identifiable expert function is twice differentiable
over a bounded domain, so it is also a Lipschitz function, which implies that

sup |E(2, 7iy4,) = €@, m5,5,)| S 1055, = Ml (27)
x
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Wiy b, |71 w;l ;2|j1
i ) ! il
) * A u
AO® o A oo A O
A As A
*x 2 1 * * g 2
1 H % /3 * u .* 1* *
B \%/n 2 [ | m 3
* * * B N\3 )
{Ajy)1 252 € 3]} {Aj,p2 1 J2 € [3]} {Ajaiy 1 J2 € B}

Figure 4: Illustration of Voronoi cells given in equations (23) and (24). Above, Voronoi cells
Ai, Az, ..., Ag: in the first level are generated by ground-truth parameters wi,ws, ... ,w,jf (red
triangles), respectively. As the number of expert groups £} is known, each Voronoi cell A;, contains
one fitted parameter w;, (blue round). In the second level, each rectangle represent a set of ki = 3
Voronoi cells {Aj,;, : jo € [k3]} generated by ground-truth parameters 0 = (/i;‘.z‘jl,n;fl ;) (red
squares), for j1 € [k7], each of which contains a total of ko = 5 fitted parameters 6;,(;, := (K, s Migjs)
(blue stars).

Together with the above parameter estimation rates, this inequality indicatles that exactly-specified
expert &(z,17 ;,) admit the estimation rates of the order Op([log(n)/n]2), while those for their

over-specified counterparts are slower of the order Op([log(n) /n]i) As a consequence, we need
polynomially many data points of the order O(e~2) and O(e~*) to approximate these experts with
a given error €. It can be seen that the expert convergence behavior under the two-level HMokE is
similar to that under the MoE considered in Section 2.

4.2 Linear experts

In this section, we draw our attention to the convergence analysis for the hierarchical mixture of
linear experts taking the form £(z, (a,b)) = a'x + b for (a,b) € R% x R, which fail to meet the
strong identifiability condition in Definition 1.

Parameter interaction. In order to obtain an L?-lower bound as in Theorem 5, a crucial step is
to apply Taylor expansions to the function z — F(z;w, k,a,b) = exp(w'z)exp(k " z)(az +b) to
decompose the regression discrepancy hg (x) — hg, (z) into a combination of linearly independent
terms. Nevertheless, we discover that this step is hindered by interactions among parameters w, k, a, b
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from both levels of the HMoE model via the following PDEs:

62 Z * * * * 82 Z * * * aF * * >k

Ow 81)( Wi Bjalgr» Cjija> jljz) = aﬁab(x wh’ Rjaljir Cgrga j1j2) - da (m w]l’ Rjaljir Yo j1j2)'

(28)

As a result of the above parameter interactions, we will exhibit in Theorem 6 that the convergence
rates of parameter and expert estimations in the HMoE are negatively affected to be slower than
polynomial orders. It is worth noting that since the number of expert groups kj is known, the
first-level parameters wj* are exactly-specified and, thus, should have estimation rates of polynomial
orders as in Theorem 5. Nevertheless, due to their interactions with second-level parameters x*

J2lg1

and aj ;,,b7 ;, in equation (28), the rates for estimating them will also be decelerated. To capture

such convergence behavior, we will employ the following Voronoi loss function for our analysis:

L6.(G.G) Z\ S o) -] + 30 X exvlllon il

J1=1 i1€Ay, J1=1li1€A;,

ki k3
+ Z Z exp(fi,) Z Z exp(ViQ‘il)(HHiQ‘il - K;ﬂjlur + Hai1i2 - a;jg”r + ‘b’ilm bj;ljglr)

J1=lit€Ay, J2=lis€A;, 5
+ Z Z exp(fi,) Z‘ exp(Viyliy) — exp(V, )|, (29)
n=lil€A;, J2=1 i2€A;,5

for any r > 1. Now, we are ready to present the main result of this section.

Theorem 6. Assume that the experts take the linear form a'xz + b, then the following minimax
lower bound of estimating G« holds true for any r > 1:

~inf sup Eng[Lor(Gn, G)] 2 n_1/2a (30)
Gn€Gksky (©) GE€Gpxi, (e)\gk’l‘(ké—l) (©)

where Ky, indicates the expectation taken with respect to the product measure with hg and the
infimum is over all estimators taking values in G:x,(©).

The proof of Theorem 6 is in Appendix B.5. Putting the above result and the formulation of the

Voronoi loss Lg  together, it follows that the estimation rates for the parameters wﬁ, ;2|31’ 1o b;“l jz?
which are involved in the interactions (28), are slower than polynomial orders Op(n~/?") for any

7 > 1. Thus, these parameter estimation rates can become as slow as Op(1/log*(n)) for some
constant A > 0. Furthermore, expert estimation rates are also affected by slow estimation rates of

the expert parameters ajl 2 b}"l j, via the following inequality:

sup |((afy5,) '@ + 0]y,) = «%m)w+@m)<$mH“m—@mHHﬂHﬂ%m AL
x

In particular, since the input space X is assumed to be bounded, then the estimation rates for the

experts (a}f1 jQ)T$ + b}, ;, are slower than any polynomial order and, therefore, could be as slow as

Op(1/log*(n)). Consequently, we would need exponentially many data points of order O(exp(e~/*))
to approximate them with a predetermined error e, which is significantly larger than a polynomial
number of data points needed for strongly identifiable experts. Hence, the claim that using strongly
identifiable experts is more sample efficient than employing linear experts still holds under the HMoE
setting.
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5 Discussion

In this paper, we aim to investigate the impacts of the softmax gating and its variants, namely the
dense-to-sparse gating and the hierarchical softmax gating, on the convergence behavior of parameter
estimation and expert estimation in the mixture of experts (MoE). We show that the convergence
rates of expert estimation are of polynomial orders when the expert function meets the strong
identifiability condition. However, when using the dense-to-sparse gating with a linear router, the
expert estimation rates become slower than any polynomial rates regardless of the expert structure.
In response to this issue, we establish the algebraic independence condition to characterize the pairs
of a router function and an expert function that lead to improved parameter and expert estimation
rates of polynomial orders. On the other hand, our findings reveal that the convergence rates of
estimating linear experts are always slower than polynomial rates irrespective of the gating choice.
In conclusion, our convergence analysis provide two following important practical implications for
the design of expert and gating structures:

(i) Ezpert design: Using strongly identifiable experts, namely experts formulated as two-layer
feed-forward networks, is more sample-efficient than employing linear experts.

(i1) Gating design: When incorporating the temperature parameter into the MoE to smoothly adjust
the model sparsity, it is necessary to replace a linear router with a general router that is algebraically
independent of the expert function. For example, when experts are two-layer feed-forward networks,
the router should take the form of a multi-layer perceptron following by a non-linear activation
function.

At the same time, there are two inherent limitations in the analysis. Firstly, we assume that the
data are generated from an MoE-based regression framework, which could not be satisfied in the
real-world scenario where the regression function s(-) takes an arbitrary form. In that case, the
least square estimator @n converges to the set of mixing measures G € G;(©) which minimizes
the distance || fg — s||z2(,)- Note that the current techniques of analyzing the convergence of least
square estimation are tailored to the scenario when the function space is convex [44]. Since the
space Gi(©) is non-convex, it is necessary to develop further techniques to handle this real-world
setting. Secondly, for the sake of theory, we consider only a single MoE layer, while practitioners
often employ multiple MoE layers in practice [9, 20]. As these two potential directions stay beyond
the scope of our work, we leave them for future development.

Supplement to
“Convergence Rates for Softmax Gating Mixture of Experts”

A Proof of Theorem 1

Proof overview. In this proof, we focus on establishing the following inequality:

pnt e = fo. i/ £4(G, G2) (31)

For this sake, we first derive the local part of the inequality (31), which is given by
L2(“)/£1(G, G*) > 0. (32)

I i _
=20 Gegk(@)}?l(a,a*)ga Ifa = fo.
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We will prove the local part by contradiction. In particular, assume that it does not hold, then there ex-
ists a mixing measure sequence (Gy,) such that £1(Gn, Gx) — 0 and || fa,, — fa. | 24y / £1(Gn, Gx) — 0
as n — 0o. Then, we divide the proof into three main stages.

Step 1 - Decompose the difference between regression functions. Firstly, we aim to decompose the
regression discrepancy fa, (x) — fa. (z) using Taylor expansions.

Step 2 - Non-vanishing coefficients. Secondly, we show that not all the coefficients in the decomposition
of [fa,(z) — fa.(x)]/L1(Gr,Gy) in Step 1 converge to zero.

Step 3 - Applications of the Fatou’s lemma. Finally, we show a contradiction to the result in Step
2. Indeed, by means of the Fatou’s lemma, since the term ||fa, — fa.lr2(u)/L1(Gn, Gx) — 0 as
n — oo, we deduce |fq, — fa.|/L1(Grn, Gy) — 0. Furthermore, as the expert function satisfies the
strong identifiability condition in Definition 1, that is, the expert function and its derivatives are
linearly independent, then all the coefficients in the representation of [fq, (z) — fa. (x)]/L1(Gr, Gx)
go to zero, contradicting to the result of Step 2. Hence, we obtain the local part (32).

As a consequence, we can find a positive constant ¢’ such that

i B
Gegk(@):lcnl(G,G*)gs’HfG fe.

L2(,u)/[’1(G7 G*) > 0.

Therefore, it suffices to prove the inequality

Gegk(e);lcnl(g,g*)>€,\|fc fa 2y /L1(G,Gy) (33)

which we refer to as the global part of the inequality (31). Putting the local part (32) and the global
part (33) together, we achieve our desired inequality in equation (31).
In the sequel, we will streamline the detailed proofs of the local part and the global part, respectively.

Proof of the local part (32). Suppose that the local part (32) does not hold, then we can find a
sequence of mixing measures G,, = Zf;l exp(B7')d(wr qny in Gx(0) satistying L1, := L1(Gp, Gx) — 0
and

| fa. — fellz2@uy/Lin — 0, (34)

as n — oo. For ease of presentation, we denote A7 := A;(Gy) as a Voronoi cell of G, generated by
the j-th atom of G, for all j € [k.]. As we use asymptotic arguments throughout this proof, these
Voronoi cells can be assumed to be independent of the sample size n, that is, A; = A’;. Then, we
can rewrite the Voronoi loss L4, as

ke
Lini= | 3 exo(8) —exp(B)] + Y0 Y exn(8?) [l Awh]? + A 2]

J=1 1i€A; JilAj[>1icA;

YD exn(8) A+ llangl], (35)

JilAj|=11€A;
no.__ ,m o,k Moo M ok
where we denote Awf; := w;' —wr and Anj = n' — ;.

Recall that L1, — 0 as n — oo, then we have that (w}', nj") — (w7, n}) and ZiEA]- exp(B}') — exp(B7)
for any ¢ € A; and j € [k,]. Subsequently, we divide the proof of local part into three main steps. In
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the first step, we attempt to decompose the difference fg, () — fa, (x) into a combination of linearly
independent terms using Taylor expansions. Then, we demonstrate that not all the coefficients in
the representation of [fq, (x) — fa. (z)]/ L1, converge to zero as n — oo in the second step. In the
final step, we employ the Fatou’s lemma to show a contradiction that all the previous coefficients
necessarily go to zero and, thus, complete the proof of the local part.

Step 1 - Decompose the difference between regression functions. To begin with, we use
Taylor expansions to decompose the quantity Qy () == [>_;2; exp((w;)T$+ﬁ;)]'[fGn (x)—fa.(x)] into
a combination of linearly independent terms. For this sake, we denote F(x;w,n) := exp(w' )& (x,n)
and H(x;w) = exp(w'z)fq, (x). Then, Q,(x) can be decomposed as

Ky
Qu(@) =32 D7 exp(B7) [Flaswf',n?) = Flaswy, )]

7j=1 iEAj

_ i Z exp(S}) {H(%W?) - H(m’wﬂ*)}

Jj=11i€A;
ki
3 (3 exw(r) — en(8) [Flasw,np) - iz}
=1 €A,
= Ap(2) — Bp(z) + Cu(). (36)

Next, we will decompose the terms A, (x) and B, (x), respectively.

Step 1A - Decompose A, (z). We can represent A, (z) as

An(@)i= >3 exp(B0) | Flasenft) = Flasw) )|

Ji|Aj|=1i€A;
+ 3> (B [Flaswln?) - Flasw), )]
JilAj|>1 i€ A;

= Ap1(x) + Apa(x).

Regarding the term A, ;(x), by applying the first-order Taylor expansion to the function F'(x;w]", nl")
around the point (w;f, 7];‘), we have

Aui@) = 3 S exp(8) 3 (Al (A

j:|Aj|=1 iE.Aj la|=1

oF

'W(xswf7ﬂj) + Ri (),

where Rj(z) is a Taylor remainder such that Ri(z)/L1, — 0 as n — oco. Note that the first
derivatives of F' w.r.t its parameters wand 7 are given by

OF .

%(l‘,w;,ﬁ;) = xexp((w])Tx)S(x,n;) =€ F(JU;W;W;)’
%(x§wj7nj> = eXP((Wj)TfU) ) 877(95777]‘) = F1($;wj,77j)-
Then, A, 1(z) can be rewritten as
Api(@) = Y Enij(z) + Ri(), (37)

JiAj1=1
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in which By, 1j(x) = 3 2ic 4, exp(67) [(AW%})Tw - F(aswi, ) + (An?j)TFl(x;w;,nj)]-
Analogously, by means of the second-order Taylor expansion, we can decompose A, 2(z) as

2
Z Z exp(ﬁ Z E 1 Anz]) (‘T? w] 9 77]) + RQ (‘T)7

Qw1 a2
FIA 1A g

where Ry(z) is a Taylor remainder such that Ro(z)/L1, — 0 as n — oco. By taking the second
derivatives of F' w.r.t its parameters, we have

O°F * % x % OF x % x %
W(x7wjv"7j) = :m,T F($’w]7n])7 W(ﬂca%?%) = [Fl(ff,w]’n])]—r,

O*F % " %*E * %
W(x;%,%) = eXP((wj)Tm) OnonT = Fy(;w5,15)

Then, we can represent A, 2(z) as

An,2(x) = Z [En,l,j (l‘) + En,Q,j(x)] + RQ(:E)? (38)
Ji|Aj1>1
where
En2j(z Z exp(67) { [xT <Md ©) (Aw%)(Aw?j)T> } F(z;w}, a},b7)
i€A;

+ o7 () A0 T Fiziwn)] + (A0 (Ma © Fa(asw nj) ) (An)| }

with My being an d x d matrix whose diagonal entries are % while other entries are 1.

Step 1B - Decompose B, (z). Next, we apply the same strategy of decomposing A, (z) for
partitioning the term B, (z). In particular, we first have

Bu(w)= > " exp(8!)|[H(wef) - Hiw;w))]

JiA;|=14€A,;

+ Y Y e8| Hiawy) - Hzw))]

Ji|Aj|>1i€A;
= Boa(a) + Bua().

Regarding the term B, 1(z), by employing the first-order Taylor expansion to the function H(x;w]")
around the point w , we have

Bua(z)= Y Y exp(BP)(Aw]) 'z H(x;w)) + Rs(x), (39)
§ilA | =1i€A;

where R3(z) is a Taylor remainder such that Rs(x)/L1, — 0 as n — oo. Similarly, by means of the
second-order Taylor expansion, we get

Bua(w) = 3 S exp(87)[(Awih) e+ (Awy)T (Mg © 2" ) (Awy)| - H(wsw)) + Ra(x), (40)

JilAj|I>1i€A;
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where R4(x) is a Taylor remainder such that R4(x)/L1, — 0 as n — oo.

Putting the above results together, we see that [A,(x) — Ri(x) — Ra(x)]/Lin, [Bn(z) — R3(z) —
Ry(x)]/ L1y and Cy(z)/ L1y, can be written as a combination of elements from the following set

{F@iwf.n), @ F(@iw; ng), e P ) s uv € [d), j e k],
U {1 (5w, m)I ™, o Ry @, n)] @) s uo € ld), € [k,
U {[Fa(ws, )l s w,v € [d], € R},
U {H(wsw)), 2 H(ww)), e H (@) u e [d], € [k},

Step 2 - Non-vanishing coefficients. Moving to this step, we utilize the proof by contradiction
method to show that not all coefficients in the representations of [A, — Ri(z) — Ra(x)]/Lin,
[By, — Rs(x) — Ry(x)]/L1y, and Cy(z)/ L1, converge to zero as n — oo. Indeed, assume by contrary
that all of them go to zero and consider the coefficients of the term

o F(z;wy,n;) for j € [ki], we have

Z exp(B') — exp(B;)| — 0;

,C
In J=1 i€A;

o ZL‘(U)F(.%;W;,H;) for u € [d] and j : |A;j| = 1, we have

[,1 Z Z exp /Bz ”sz]Hl — 0.

JilAj|=11i€A;

Since the ¢1-norm is equivalent to the £o-norm, we deduce

Z Z exp(B;") | Awfs]| — 0;

Ji|Aj|=11i€A;

. [Fl(a:;w;,n;-‘)](“) for u € [d] and j : |A4;| = 1, we have

Eln D D exp(B)l|An] - 0;

3l Aj|=1i€A;

. [x(“)}QF(a:;w;,n;‘) for w € [d] and j : |A;| > 1, we have

rontlD DD BE= D] ENEA L

JilAjI>1ieA;

. [Fg(:c;w;,n;)](““) for u € [d] and j : |A;| > 1, we have

o S el o

JilAjI>1i€A;
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Combine all the above limits, we arrive at 1 = Ly,,/L1, — 0 as n — oo, which is a contradiction. Thus,
it follows that at least one among the coefficients in the representations of [Ay, (z)—R1(z)—Ra(z)]/Lin,
[Bn(z) — R3(z) — Ra(x)]/ L1y, and Cy(z)/ L1y, does not converge to zero.

Step 3 - Application of the Fatou’s lemma. Now, we attempt to exhibit a contradiction to
the conclusion of Step 2. Let m,, be the maximum of the absolute values of the coefficients in the
representations of [A,(x) — R1(z) — Ra(z)]/Lin, [Bn(x) — R3(x) — R4(2)]/ L1y, and Cyp(x)/Liy. As

at least one among those coefficients does not go zero, we have 1/m,, /4 .

Recall from the hypothesis in equation (34) that we have || fg, — fa.llr2(n)/L1n — 0 as n — oo.
This result also implies that || fc, — fc.|l51(u)/L1n — 0. Then, by applying the Fatou’s lemma, we
get

0= lim HfG”_fG* L1(p) Z/ _> |fGn( ) fG*(m)|d,LL(.’E) > 0.

n—0o0 mpLin mpLin

As a result, we have [fg, (z) — fG*( )]/[mnL1n] — 0 for almost every . Since the parameter © is
compact, the term Zf 1 exp((w ) z + f37) is bounded. Thus, it follows that Qn(x)/[msL1,] — 0 as
n — 00, or equivalently,

1

mpLin

. [(An’l(x) — Ri(x) + Ap2(x) — Ra(x)) — (Bp1(x) — R3(z)+Bp2(x) — Ra(z)) + Cp(x)| — 0.
(41)

For ease of presentation, we denote

1 (A 1 B
o > exp(BP)(Aw]) = 1, — > exp(B7)(Aw) (Aw) T — 25,
n&~1n iE.Aj n~1ln iG.Aj
! o 15 1 n n n\T
mnLlin Z exp(Bi") (Am;) = 14, oLy Z exp(87) (An;) (Ang) - — pa,j,
’LE.Aj ZEAj
1 ny\T ) 1 ny " .
e ;; exp(87") (Awi;) (Ans) - — ¢, T <Z§ exp(5;") exp(ﬁj)) — &,
J

Fy = Fp(x;w;-‘,n;), Hj = H(z;w;5).

Above, at least one among the limits gbl B qbéu]u , gog ]), <pgu]“) and &, for j € [k,], is non-zero as a

result of the conclusion in Step 2. From the formulation of

e A, 1(x) in equation (37), we have

Api(z) — Ri(x
W) S ol B+ el (12)
Mnkin )
JilA =1
e A, o(x) in equation (38), we have
et 5 ol raT (Maong)a] B lel TGl By
mn£2n . J J J J J j
JilA;

+ [Md ® 9024} ® F2j}- (43)
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e B, 1(x) in equation (39), we have

Bral) “R(2) S (o] ) (a4)
n~2n oA 1=1
e B, o(x) in equation (40), we have
Bna(z) — Ry(z) T T
R, S [ eon)] B o
Ji|Aj|>1
e C,(x) in equation (36), we have
mn£2n —);fj[F]—H]] (46)

Note that from equation (41), it follows that the sum of the limits in equations (42), (43), (44), (45)
and (46) is equal to zero, that is,

> [¢1T,j"’ - Fj+ ‘PlT,jFIj} + ) { [¢1T,j=’” +al (Md ® ¢2,j>w} Fj Lol +at ¢l By

JilA]=1 Jil A 1>1
+ [Md O] <P2,j} O] F2j} - Z [¢1T,j1’ - Hj] — Z {¢1T,j33 +al <Md ©) ¢2,j)9«°} - Hj
JilAz]1=1 Jil A [>1
k.
+> &[F— Hj) =0. (47)
j=1

Subsequently, we aim to demonstrate that the values of d)&uj), (;Sguju), cpgu]), goéujy) and &; are all zero for

all j € [ki]. Indeed, let Pp, P, ..., P, be the partition of the set {exp((w;)Tx) :j € [ks]}, for some
¢ € [k,], such that

(i) wj =wj for any j,j' € P; and i € [(];

(i) w} # wj when j and j' do not belong to the same set P; for any i € [/].

Then, the set {exp((w;-‘l)Tx), . ,exp((w;e)Ta:)}, where j; € P;, is linearly independent. This result
together with equation (47) implies that for any i € [¢], we have

Z [({j + <Z>1T,jx) &+ @Ijglj} + Z { |:¢Ij.7j + ' (Md ® (152,]').75} &

JEP;:|Aj|=1 JEP;:|Aj|>1

+lplj+ ¢ Ey+ [Md ® 902,3} © 52g} - > @+ &) fo. ()]
jEPill.Aj‘:l

- Z {fy + ¢1T,]13 +a' (Md ©) ¢27j>l‘] - fa.(x) =0,

jEPiZ‘.Aj|>1
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where we denote &; := E(z,nj), &1j 1= 877 £ (x, n;) and &y = %(w,n}f). Furthermore, since the
expert function z — E£(x,n) satisfies the strong identifiability condition in Definition 1, then the set

olelg 4
{av- Ty @) 1 € Ihelv €N, pENL0< || +p < 2}
is linearly independent for almost every x. Thus, it follows that §; = 0, ¢1; = ¢1; = 04 and

P25 = P2, = Cj = Ogxq for any j € P; and i € [¢]. This contradicts the fact that not all the values of

g?, d>2u]u), o1 o <pgu]u) and &;, for j € [k,], are zero. Therefore, we obtain the local part (32), that is,

lim inf ||fG fa 2/ L1(G, Gy) > 0.

e—=0GeGr(0):L1(G,Gx)

Consequently, we can find a positive constant &’ such that

inf - L1(G,Gs) >0
Gegk(e>:1£nl<c,c*)ssf‘|fc’ fellrzu/L£1(G, Gy)

Proof of the global part (33): Given the above result, it is sufficient to prove that

inf - L£1(G,G.) >0
Gegk(@):lﬁnl(G,G*)x'HfG fG*HLQ(M)/ 1( )

Suppose that the global part does not hold, then there exists a sequence of mixing measures
G!, € Gr(0) satistying £1(G),Gy) > &’ and

lim I far, — fa 2
n—oo  L1(Gr, Gy)

=0,

indicating that ||fa: — fa, ”LQ(M) — 0 as n — oo. Since the parameter space © is compact, we can
substitute the sequence (G,) with one of its subsequences that converges to G’ € G(0). In addition,
as we have £1(G),G,) > €', it follows that £1(G’, G,) > ¢’. Now, by applying the Fatou’s lemma,
we get

2
0= Jim lfy, — fo I3 = [ imint |y (o) ~ fo. @) duta).

The above result implies that fg(x) = fq,(x) for almost every x. From Proposition 4 in Ap-
pendix C.3, we obtain G’ = G,. As a consequence, we have £1(G’,G,) = 0, which contradicts
the fact that £1(G’,G«) > ¢’ > 0. Hence, we achieve the global part and complete the proof of
Theorem 1.

B Proofs of other Theorems

B.1 Proof of Theorem 2

Proof overview. In this proof, we first demonstrate that the limit

li inf ) A
£ 50 GGy (©):Ls Lo, (G,G) HfG falrzuy/Lor (G, Gy) = (48)

26



holds for any r > 1. Given the above result, we proceed to derive the minimax lower bound in
Theorem 2:

_inf sup Ef, (Lo (Gn, G)] 2 n~1/2, (49)
Gn€Gr(©) GEGL(O)\Gk, _1(O)

Proof of equation (48): It suffices to construct a mixing measure sequence (G,) satisfying
Lo (Gp,Gy) — 0 and

1/ = faullze(u/ Lo (G, Gi) = 0, (50)

asn — 0o. Now, let us take into account the sequence (G,,) defined as G, := ijl'l exp(B{")d(wr ar b7

where we set

exp(f]) = exp(By) = %exp(ﬁf) + W% and exp(8') = exp(ﬁg._l)) for any 3 <1i <k, +1;
Wi = wy = wi and wi' = w(;_yy for any 3 <4 < k. +1;

al! = ajy =aj and a} =a} ;| for any 3 <7 < ky + 1;
b?:b{—k%,bg:bf—%andb?:b;‘_l for any 3 <i < ky + 1.

Then, the Voronoi loss Lo (G, Gy) can be rewritten as

1 . 1 1 _
Loy (Gr, Gy) = o exp(B1) + ] O(n™"). (51)
The above formulation implies that L£o,(G,,Gx) — 0 as n — oo. Thus, it suffices to derive
equation (50). To this end, we decompose the quantity Qn(z) := [Z;‘f*:l exp((w;)Tx + 6] [fa.(z) -

fa.(x)] as

ks

Qu(z) =) > exp(B]) [exp((W?)Tw)((a?)Tx +07) — exp((w)) T 2)((a)) "x + b))

j=licA;

K
=03 exn(8) | expl(wi) @) — exp((w)) @) fa, (@)

j=1ic€A;

Ky
30 (X exn(8) - exn(8)) | expl(w)) Ta) (@) Tw + 57) — exp((w) @) fe, (@)

J=1 €A,
= Ap(x) — Bp(z) + Cp(x).

By plugging the values of exp(87), w, al and b into the terms A, (z), B,(z) and Cy(z), we have
An() = iexpwm exp((w]) ) (O — B7) = 5 [exp(5]) + —ier | exp((w) (B — B7) + (5 — B)] = 0,
Ba(x) = ieXp(ﬁ?)[eXp((w?)Tw) ~ exp((@]) ) fa () =0,

Culx) = (iexpw?) —exp(81)) [ exp((8]) @) (a}) T + b7) — exp(B]) 2) fo, ()| = O(n=(+D)
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Since L9,(Grn,Gx) = O(n™"), we can justify that Cy,(z)/L2,(Grn,Gs) — 0, thereby leading to
Qn(z)/L2+(Gp,Gy) — 0 as n — oo for almost every x. Note that the term Z?*zl exp((w;)Tx + B7)
is bounded, then we also have that [fq, (z) — fa.(z)]/L2, — 0 for almost every z. As a conse-
quence, we obtain || f, — fa.|lz2(u) /L2, — 0 as n — oo. Hence, the proof of claim (48) is completed.

Proof of equation (49): Since the noise variables ; given the input X; follows Gaussian distributions,
we have Y;|X; ~ N(fa,(x;),v) for all i € [n]. Next, it follows from equation (48) that for a small
enough constant € > 0 and a fixed constant ¢ > 0 that will be determined later, there exists a mixing
measure G, € Gi(0) satisfying Lo, (G, Gx) = 2¢ and || far — fa, |12 < ¢-e. According to Le
Cam’s lemma [48], since the Voronoi loss Ly, satisfies the weak triangle inequality, we have

_inf sup Ef,[L2:r(Gr, G)]
Gn€Gr(0) GEGL(O)\Gr, —1(O)

2 000 G o (B KL (S, (2,0, N (. (), 1))
2 - exp(—nlfa;, = fa.ll72()

> ¢ - exp(—cne?), (52)

2

xX)— x 2
where the second inequality is due to the fact that KL(N (fe (x),v), N (fa. (x),v)) = M

By setting € = n~1/2, we get ¢ - exp(—cne?) = n~ /2 exp(—c). Hence, we obtain the desired minimax

lower bound in equation (49) and complete the proof.

B.2 Proof of Theorem 3

In this proof, we will focus on showing that the limit

lgc — 9.l L2
li inf =0 53
50 Gegk(G):g;T(G,G*)Ss L3 -(G,Gy) ’ (53)

holds for any r > 1. Then, by employing the arguments for proving equation (49) in Appendix B.1,
we achieve the minimax lower bound in Theorem 3, that is,

inf sup B [Ls,(Gn, G)] 2072
Gn€Gr(©) GEGL(©)\Gr, —1(O)

Proof of equation (53): It is sufficient to build a mixing measure sequence (Gy,) that satisfies
L3,(Gpn,Gy) — 0 and

l9a — 96. l2(u)/ L3+ (Gn, Gs) = 0, (54)

as n — oo. For this sake, let us consider the sequence defined as G,, := Zf;l exp <%)5(w?77n7n?),

where we define for any j € [k,] that
ny =, for any i € Ay;
wi' = wj + sn,j, for any i € Aj;

T = 7% + ty;
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Br=rn. f—i —log(].A;]) |, which implies that ZieAj exp (f—lz) = exp (ﬂ ) for any i € A;,

where s, j 1= (s(l)- (d)) € R% and t,, € R will be determined later such that s( ) —0andt, =0

n,]"“’ ’fL

as n — oo for any u € [d] and J € [k«]. Then, we can represent the Voronoi loss £3 +(Gn,Gy) as

£34(Gn, G-) ZiAl exp (22 (17 + 3.

Due to the aforementioned properties of sequences (s, ;) and (t,), it follows that L3 ,(G,,Gx) — 0
as n — oo. Thus, we can complete the proof by deriving equation (54).

ke <(wZ‘)Tﬂ:+ﬁ£‘>} ,

To achieve this goal, we take into account the quantity @Q,(z) := [Z j=1€Xp ”
i

[an () — ga. (:U)], which can be decomposed as

T wt 'I'$
z;erxp( D) [exp (“22) o) —exp (20 e
—EZW@NM%WMMwM%PMM]
j:ueAj
* wi TJZ‘ w* Tx
" 22 [ ew(5) -ew ()] oo (25 )eton05) = o0 (2 0]
J 1EA;

= Ap(x) — Bp(x) + Cy(z).
By plugging in the values of 1, wi*, 7" and ', the term A, (x) becomes

%)T

=3 5 e () [ (“4072) - s (15 et

i=1iCA;

n\T
By applying the first-order Taylor expansions to the function exp ((%TZL x) around the point (w ),

we have

(w)) '
7—*

)E(@, ) + Ria),

=3 5 3o ()2 - M

j=licA;u=1

where Ry(x) is a Taylor remainder such that R(x)/Ls3,(Gn,Gx) — 0 as n — oo. Then, by setting

Y S _ tn(@)™  (wn)®
n — TL’ ng T - nT*

we get Ay (z)/L3,(Grn,Gy) — 0 as n — oo.

’

Analogously, we also have By (z)/L3,(G,,Gx) — 0 as n — oo. Furthermore, since it can be
checked that Cp(z) = 0, we deduce Qn(z)/L3,(Gn,Gx) — 0 as n — oo. Note that the term

*\ T *
wr) x+ 57
[ > f* 1 exp <( J ) ” ﬁj ﬂ is bounded, then it follows that
T

96, () — 9. (2)|/L3+(Gn, Gx) — 0

29



as n — oo for almost every z. The above result directly leads to equation (54). Hence, the proof is
completed.

B.3 Proof of Theorem 4

In this proof, we aim to establish the following inequality:

inf _ L4(G,Gy) > 0. 95
ont 1196 = 96 L2/ £4(G, Gu) (55)

By employing the proof framework of Theorem 1 in Appendix A, we will first derive the local part
of equation (55), which is given by

li inf - L4(G, Gy 0. 56
E%Gegk(@):l&(c,a*)ge”% 96. |2y /La(G, G) > (56)

As a consequence, there exists some ¢ > 0 such that

inf - L4(G,Gy) >0
Gegk(@):lﬁri(G,G*)Se’ HgG gG*HLQ(H)/ 4( ’ )>

=

Thus, it is sufficient to prove the global part of equation (55), that is,

inf — L4(G,Gy) >0
Gegk(@):lﬁri(G,G*)>e’ ||.9G gG*HLQ(H)/ 4( )

Notably, since the global part can be argued in a similar fashion to that in Appendix A, it is omitted
here. In other words, we will provide only the proof of local part here.

Proof of the local part (56): Assume by contrary that the above inequality does not hold true,
then there exists a sequence of mixing measures G,, = Zf;l exp(ﬁf)é(w?’ﬂw?) in Gi(O©) such that
£4n = £4(Gn, G*) — 0 and

96, — 9c. L2y /Lan — 0, (57)

as n — 0o. Let us denote by A;L := A;(Gp) a Voronoi cell of Gy, generated by the j-th components
of G.. Since our arguments are asymptotic, we may assume that those Voronoi cells do not depend
on the sample size, i.e. A; = .A;L. Thus, the Voronoi loss L4, can be represented as

£4n::i‘Zexp<fg)—exp( )‘—&- Z Zexp( )[]Aw H—i—]AT"!—i-HAnUH

Jj=1 i€A; Ji|Aj|=11€A;

Y e (20 [hawg i+ ar? + oy ], (58)

JilAG|>1i€EA;
where we denote Aw( := w;i' —wi, A" := 7" — 7%, and An;’ =" —n}.
Since L4y, — 0, we get that (wl*, 7", nl") — (w T ,77J) and ZZGA exp (f:) — exp (BZL) as n — 0o
for any i € A; and j € [ki]. Now, we divide the proof of local part into three steps as follows:
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Step 1 - Decompose the difference between regression functions. To begin with, we
use Taylor expansions to decompose the quantity Q,(x) := [Zf* | €Xp (%ﬂ lga, (z) —
ga. (z)] into a combination of linearly independent terms. For this sake, we denote F'(z;w,T,n) :=

exp <M)5(3377]) and H(x;w,T) = exp (M>ggn( ). Then, @Q,(x) can be decomposed as

) —i > exp (%) [F(x;w[‘,r”,n?)—F(a;,w],T 777;)}

=

_leg exp (20 [H (@t ) — @3 7)

(5 o0 () - () s - )

;:]Aln(a:)e K Bu(2) + Co(x). (59)

Next, we will decompose the terms A, (x) and B, (x), respectively.
Step 1A- Decompose A, (z). We can represent A, (z) as

- 5 S e (B) sttt - o)

Ji|Aj|=14i€A;

3 > (It - e,

JilAj|>149€A;
= Ap1(x) + Apa(x).

By applying the first-order Taylor expansion, we have

> Y e () 3 @upm@arye e O ()

T Owo1 QT2 9na3
JilAj|=14€A; lal=1 K

+Ry (x),

where Rj(x) is a Taylor remainder such that Ri(x)/L4, — 0 as n — oo. Note that the first
derivatives of F' w.r.t its parameters are given by

oF e x s 1 O m(z,wy) N 1 On .

aiw(wijvfr 777]):F aw(a:w)exp(%)g(x,nj):F-aw(m,w])F(xw T?”])
oF ) rlewd)y. L weel)

o7 (.Z‘ (.d y T 777]) (7_*)2 eXp( * )g(x777g) - _WF(wijvT 777j)

8F * (x7w]) 85 * . . * * *
an(wijvT7nj)_exp(7>87n(xanj)'_Fl(wijvT777])

Then, A, 1(z) can be rewritten as



where

Ange) = Y e (20) [ (S (a0 (27 - <AT">-”((Z;“§)) Pla; e, 7, m)+
i€ A,

o
(Anz) " Fi(;wy, 75, m5)|-
Next, by means of the second-order Taylor expansion, we can decompose A, 2(z) as

larltoztlas| p

2
1
Z Z exp< ) Z a(Aw?j)al(ATn)”(AU?j)aS : m(fﬂ wi, 7, m5) + Ra(x),

JiAf > 1i€A; jof=1

where Ra(x) is a Taylor remainder such that Ro(z)/L4n, — 0 as n — oco. By taking the second
derivatives of F' w.r.t its parameters, we have

0*F . 1 0°r . 1 or o
6w8wT($’w]’T 777]') = [TW(%%)‘FW%(%%) O T<f’3 W )]F(UC W T ,"7])

82F * % *) _ [ (x’wj) 2(.%',(,0]

) * k%
W(w;wj,T ,?7] (T*)3 + (T*)4 :|F(-’L',CU]7T’]77_ )7

aQF * k% % 7[-(:1;7(,0",‘) * *

W(ﬂf;%’ﬂ' 7773‘) = exp (TJ>5($777]‘) = F2(x7w]77' 777]')’
O*F 1 on m(z,ws) Or

T S N ) an o g *

G BT = | = o, ) — g gy )| Pl ),
O*F " 1 On " 1T

80.]87’] (SC,WJ,’T ’nj):;%('xﬂwj)[Fl(l‘7wjvT 77’])] )
aQF * k% W(.T,w;() *
aTan(wijvT 777]‘)__WF1(‘T7°‘)]77— 777_7)

Then, we can represent A, o(z) as
An,?(x) = Z [An,l,j ($) + An,?,j(x)} + R2('r)7 (61>
3l A [>1

where

Apoj(z) = Z exp (f:) { [(Aw VT Mo (;(%a;:ﬁ(:z:,w;) + (7_1)22:)(35,&;;) 86 T (2w )) (Aws;)
i€A;

m(z,w}) 2 (z,w wy) " 1 or o T(@,wr) or x
+( et e )(arm)? (Awij)T<W%(x,wj)+W%( w))(Ar)| - Fawr, )

7 (2, wj)

(7-*)2

[T T @, ) F e, 7 ) () — ()T

Fy (50, 7,0 (AT")]
+ (Anf) T My © Fy(a;wi, 7 ,n;-‘)(AnZ-)},

with My being an d x d matrix whose diagonal entries are % while other entries are 1.
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Step 1B - Decompose B,(z). Next, we apply the same strategy of decomposing A, (z) for
partitioning the term B, (z). In particular, we first have

B, (x) = Z Z exp (%) [H(m;w?,T”) — H(x;w;,T*)}

JiJA;|=1i€A;

n
+ Z Z exp (%) [H(x;w?,r”) — H(JU;LU;,T*)}
JilAj>1 i€ A;

= Byp1(x) + Bpa(x).

Regarding the term B, 1(x), by employing the first-order Taylor expansion, we have

Bui)= 3 Y exp (%) 3 (Awp)™ (AT aiH(x;w;f,T*)—l—Rg(x)

J:|Aj|=1i€A; la|=1 Ow1 oz

B AT O . N 7(x,w?) L
= 3 Y e () (@) 55w - (A= H e ) + Rela)
il A =1 i€A;
= > Ba1(@) + Ry(w), o
J:lAz]=1

where R3(x) is a Taylor remainder such that R3(x)/L4, — 0 as n — oo, and

ny r(Aw) T 9 LW
Bp1,i(z) = Z exp <%) {( (;_}*]) 8—2(3:,00;) — (AT”)WEZ;J) . H(m;w;,T*).
iGAj

Similarly, by means of the second-order Taylor expansion, we get

ny 2 H
Bua) = Y Y e (20) S auymiarn e 0t ) 4 Rue)
pgtiEd; 0 jal=1 T
= Z [Bn,l,j(x)‘i‘Bn,Q,j(m)]+R4(x)7 (63>

Ji|Aj1>1
where Ry4(x) is a Taylor remainder such that R4(x)/L4y — 0 as n — oo, and

n 2 T T
Bpoj(z) := Z exp (%) {(Aw%)TMd ® (T{*(‘)wa&ﬁ(x’w;) + (7_1)2 gw(x,w*) . ;}T(x,w;»(AwZ)
Z'G.Aj
m(z,w}) 7T2(l‘,w;-() " " 1 orn o T(z,wi) or X n _
+( ) + e )(AT )2—(Awij)T<(T*)2%(x,wj)+ CE %(:C,wj))(AT )} - H(z; W}

Putting the above results together, we see that [A,(z) — Ri(x) — Ro(x)]/Lan, [Bn(x) — R3(x) —
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Ry(x)]/Lan and Cy(z)/ L4y can be written as a combination of elements from the following set

™ N or L om .

0*n . .
S W 5 € kv e [d]}

o @) (E) s € kv € [d])

()
U {(FQJ-)W) AR [d]}

{Fjoml, ) By, 72,0 By, s (@, By (e, 5)

or
Ow(w)

U {(Flj)(u)aW(xaw;)(Flj)(u)a

(97r 871' 87‘( aﬂ-
U {Hgm(x,wg)Hgm (z,wj)Hj, ERO) (fC,WJ)HJ,ﬂ(:c,w])aw(u) (z,w}) Hj, o (0,06) 5,10
m(ﬂf7wj)ﬂj S [,IC*LU,?U c {d]}’

where we denote
Fy = F(z;wj, 7°,m;),

m(x,wi)\ OE i}
: )8717('%777])7

Flj = exp (

7—*

(o) %6

7—*

Step 2 - Non-vanishing coefficients. Moving to this step, we utilize the proof by contradiction
method to show that not all coefficients in the representations of [A, — Ri(z) — Ra(x)]/Lan,
[By, — R3(x) — Ra(x)]/ L4y, and Cy(z)/ L4y converge to zero as n — oo. Indeed, assume by contrary
that all of them go to zero and consider the coefficients of the term

o F(z;wi, 7, m7) for j € [k, we get that

. %(x,wﬁF(w;w}‘,T*,n}‘) for u € [d] and j € [ky] : |Aj| = 1, we get that

1 Bi' n
ol 3 Z exp (Tn) 1AW — 0.
Ji|Aj|=14€A;
Due to the equivalency between the ¢1-norm and the f5-norm, we deduce that

Lin 3 Zexp(%)HAw;}HHO.

]|A7 ‘:1 ieAj

o m(z,wi)F (z;wi, 7, n7) for u € [d] and j : [A;| = 1, we get that

) ] ) ]’
£1n > Y e (Z)jar o
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[Fy (25 w), 7 ,77])](“) for uw € [d] and j : |A;| =1, we get that

[, Z Zexp( >|An2JHHO

iA=L iEA;
On a:w F(z;wi, 7*,n%) for u € [d] and j : |A;| > 1, we get that
J J

O (®) fuy(w) e
£4 Z Zexp( )|Aw 12 = 0.

" A [>1iEA;

o 7%(z,w})F(x;w}, 7, 07) for u € [d] and j : |A;] > 1, we get that

7] 7‘77
£4 3 Zexp( )HAT"HQ—M)

™ [Aj|>1i€A;

o [Fy(z;wyi, T ,77])](“”) for w € [d] and j : |A;] > 1, we get that

oD BED DI C ) [ VRN

il A [>T ieA;

Combine all the above limits, we arrive at 1 = Ly4,/L4, — 0 as n — oo, which is a contradic-
tion. Therefore, not all the coefficients in the representations of [A,(z) — Ri(z) — Ra(x)]/Lan,
[By(z) — R3(z) — Ry(x)]/Lapn, and Cy(z)/Lan go to zero as n — oo.

Step 3 - Application of the Fatou’s lemma. Now, we attempt to exhibit a contradiction to
the conclusion of Step 2. Let m,, be the maximum of the absolute values of the coefficients in the
representations of [A,(x) — Ri(x) — Ra(x)]/Lan, [Bn(x) — R3(x) — Ra(x)]/Layn, and Cy(z)/Lap. As
at least one among those coefficients does not go zero, we have 1/m,, /4 oco.

Recall from the hypothesis in equation (57) that ||ga, — g6, [|2(4)/Lan — 0 as n — oo. This result
also implies that |lgg, — gc.|l£1(u)/Lan — 0. Then, by applying the Fatou’s lemma, we get

n—00 mn£4n

As a result, we have [ga, (z) — ga. (¢)]/[mnLan] — 0 for almost every =. Since the parameter © is
w(z, w*)

compact, the term Z] 1 €X ( i+ ﬁ*) is bounded. Thus, it follows that Q(z)/[m,L4n] — 0,

or equivalently,

1

mpLin

(Api(z) — Ri(z) + Ap2(x) — Ra(x)) — (Bn,1(x) — R3(x)+Bp2(x) — Ra(z)) + Cp(x)| — 0.
(64)
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For ease of presentation, we denote

-~ 154 D exp (%)(Awg) -0 1£4 3 exp (%)(Awg)(mg) s 6o,
n~an i€A; neAn i€A;
- 1£ ) exp (%)(AT”) = X1 1£ ) exp (%) (AT")? = X2,
n~dn iG.Aj n~dn iE.Aj
e ()@ e e (B @n)aa)T - ey
n~4n i€ A, n~4n i€ A,
e S (E) e o e e (B e
1€EA; 1€A;
1 BEN (Ar)( Apn 1 By By A
o ZGZA] exp (T—n> (AnZ)(AT™) = G54, O 2 exp <7_7) — exp (T—i» —&;.

Above, at least one among the limits (;5&?, (égij), X1,55 X255 80%?, (pgf]y) and &, for j € [k, is
non-zero as a result of the conclusion in Step 2. Additionally, let us denote F),; := F, p(x;w;-‘, T, 773“)
for p € {1,2} and H; = H(z;wj,7"). From the formulation of

e A, 1(x) in equation (60), we get

Ap(z) — Ra(z) (¢ )" Om - 7(@,w)) T o
ik~ 2 (e~ ) B eliFl ()
J:lAj1=1
e A, 2(x) in equation (61), we get
An2(z) — Ro(z) (¢rj)" Om - (@, Wf)
My Lo - , Z ™  Ow (,w7) = X1 (7%)2
JilA;[>1

1 827T * 1 87T * 87T *
M1 (g @)+ o gy ) g () © s

o+ e~ (e s T Goteen)]

1 on * 77(1:7("}*‘()

e B, 1(x) in equation (62), we get

Buile) ~ Bsfe) [Ijaw(m PG

My Loy
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e B, 2(x) in equation (63), we get

+Ma© (T @)+ e gy (006) - T (@) © b

(o st = atei)+ S o) e 9

e (U, (x) in equation (59), we get

— [% Z@F Hj] (69)

Note that from equation (64), it follows that the sum of the limits in equations (65), (66), (67), (68)
and (69) is equal to zero.

Subsequently, we aim to demonstrate that the values of gbl B qbgu]u X155 X255 gog j), cpguju) and ¢; are

all zero for j € [k,]. Indeed, let Py, P, ..., P; be the partition of the set {exp (W(xf )> 1j € [k:*]},
for some ¢ < k,, such that

(i) wj =w} for any j,j’ € P; and i € [(];
(i) w} # wj when j and j* do not belong to the same set P for any i € [{].

r(zw},)

Then, the set {exp( — ), .., €Xp (%) }, where P; € P;, is linearly independent. Since
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the limits in equations (65), (66), (67), (68) and (69) sum up to zero, we get for any i € [¢] that

Z Kfj"‘wgz](%w;)—)(l,j (f_w)) &j +<P135L7}

* *)2
JEPA;|=1 T ()
. ((251,]')—'— 871’ % A (:E,wj)
]GPZ':|.A]'|>1

1 93n N 1 orm o "
+Md®(7W($7%)+W%($v%’)’W(wij))@¢27j

(T S o - gt + T o)

]. 87'(' * F(xﬂ*‘ﬁ()
+ [QOIJ-EU + (;51jﬁ($,wj)) © (G2,j — ?)23 : C?,Tj&j] + (Md ® 4,02,]') ® €2j}

+ Y o+ ¢1f o (@) — X1 ”Ef;‘)“;j)]gexx)
Figl=1

n Z [5] ¢>1,i) W(x)w;)_xl,j'w
Ji|Aj[>1

1 0%r 1 Om o
M - * - - o R * .
t M ( * Owlw T (,05) + (7%)2 Ow (@, 7) OwT (@, w])) © 2

(o + ”Z((‘ﬁ;;if))m,j - (ot ) + T 2 ) g ) =,

where we denote &; := E(z,n}), &1; = 877 € (z, n;) and &y = anaf] (z,m7). Recall that the pair of the
expert function £ and the router 7 satisfies the algebraic independence condition in Definition 2,
then the following set is linearly independent for almost every x:

om . om o O N 0*n
{5ja7f(37 W )5J7W(x W )5yvm(%w]’)m(%wﬂ5‘

7 8w(“)8w(”)(
o * * ™ * .
o o )(x,wj)gj,glj,w(x,wj)é’lj, )(x,wj)é’lj,ggj 1] € [k*], 1 < u,v < d}
Thus, it follows that {; = 0, ¢1; = ¢1,; = 04 and ¢2; = 2; = (; = Ogxq for any j € F; and

_or_

Ow (v
i € [¢]. This contradicts the fact that not all the values of qb(“) qbéu]u s X1, X2, gog ]) ) gogu]“) and &,
for j € [k4], are zero. Therefore, we obtain the local part (56), that is,

0 g0 6 qny<e 196~ 962 [ £4(G Gr) >

x,w;)é’j,

(:U,w])

Hence, the proof is completed.

B.4 Proof of Theorem 5

Our main goal is to demonstrate that

inf HhG — hg, HL2(“)/£5<G, G*) > 0. (70)

GEGyx 1y (©)
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By streamlining the same arguments as in Appendix A, it is sufficient to establish the local part of
equation (70) provided below as the global part of equation (70) can be achieved similarly:

li inf hg —h Ls(G,Gy) > 0. 71
egrtl)Gegk*{,kg(él)qtﬁs(GyG*)SeH “ G*HLQ(N)/ ol ) =

Assume by contrary that the above claim does not hold, then we can retrieve a sequence of mixing
measures (G) in Gpr 1, (©) such that Ly, := L5(Gp, Gs) — 0 and

HhGn - hG*HLZ 1 /‘C5n - 07 (72)
(1)

as n — oo. Since the Voronoi loss A7 := Aj, (Gy) has only one element, we may assume WLOG
that A;, = {j1} for any ji € [k]].

k* ki
Lon =" [exp(83) = exp(8))] + > exp(B) |, — i,

Ji=1 J1=1
kY
+ Z eXp( Jnl) [ Z eXp(VJT'LQ\h)(HK?Qljl - H;z\h H + Hn;lljé - n;leH)
J1=1 jQ:‘.Aj2‘j1|:1
2 2
F S el )R — K I 1 — )
j2:|AJ’2Ij1|>”2€AJQIj1
k3 k3
+ 2 exp(B) Y| Do exp(y,) —exp(,)|. (73)
Jji=1 J2=1 iz€Aj,)5

Since L5y, — 0 as n — 0o, we deduce that w} — w7 and exp(ﬁ}l) — exp(ﬁ;‘) as n — oo.

Step 1 - Decompose the difference between regression functions: In this step, we utilize
the Taylor expansion to decompose the following term:

K
Qn(z) = | Y exp((W)) 2+ 83) | [ha, (z) — ha, ().

j1=1

Let us denote

k3
T
Bx) = > Softmax((kih;,) @+ v )E (@, ml,),
J2=1 7:2€~Aj2|j1
k3
* * T * *
i (z) := Z Softmax((/{jQ‘jl) T+ ng\jl)g(x’njljz)’
Jo=1
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then the term @, (x) can be decomposed into three terms as

K
= 3 exp(B)) [exp((@i) T (@) — exp((w),) ), (2)]

Jji1=1

ki
=3 exn(B]) [exp((@)y) T2) — exp((w,) )| ha, (@)

Jji1=1

kl
+ Y (exp(B},) — exp(6},)) exp((w),) ") [, (2) = he, ()]

Jji1=1

i = Ap(z) — Bp(z) + Cp(z). (74)

Step 1A - Decompose A, (x): We proceed to decompose this term as follows:

exp(B7,)
Ap(z) = W - [Anji1(2) = Angji2(@) + Ap gy s(2)],
=t g exp((ky ) T+ v )

where we define

Z S exp(vly,) | exl(n;) Tw) exp((h) Ta)E (.0

J2=Llig€A;, 5

— exp((;,) ") exp((w)) T 2)E (.7,

e =YY e, )[exp((stys,) o) = exp((s5,;,) ") exp((@p) T (),

jo=1lige A
k3

Angia@) =3 (2 exp(vhy,) — exp(vy;,)) exp((k,,) @)

J2=1 i2€A;

J2li1

2ld1
x [exp((w),) T)E(x, 1}, 5,) — exp((w)) T2)h], (2)].

Step 1A.1 - Decompose A, j, 1(z): Moreover, we continue to divide the term A, j, 1(z) into two

parts based on the cardinality of the Voronoi cells Aj,;,:

M@= 3 S ey, [ex((ly;,) T esp((h) TR)E )

J2:l Ay 15, (=L i2€A ;5
_ * T T *
exp((wly5,) @) exp((wh) T2)E (2,7, )
Y Y ey, | exp((ky;) ) exp((wh) Ta)E (e,

j2:|Ajz\j1 I>1 iQE‘AJéUl

— exp((5,y;,) @) exp((w],) @)E (., ,)]
= An7j171,1($) + An,jl,l,Z(x)-
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By employing the first-order Taylor expansion to the term A, j, 11(x), we get

eXp ? n a n\o n\o
Anjiaa@) = ) > > Zlﬁ (Ak, o150 ) (Awj) )2 (Ang;) 2

J2:l Ay, 1= 1i2€A; 5, lal=1

. dlesle
x p1te eXP((”jﬂJﬁ)T )eXp(( )T ones s (@ n]l]2) + By,11(2),
P1 * T * a|a3|5 *
= Z Z Snjaliiprias * T eXP((5j2|j1) ) eXp((wj ) ) G onos (35777]‘1]'2) + Rn11(2),

J2:l Az, 15, [=1 1+ as|=1

where Ry, 1 1(x) is a Taylor remainder such that R, 11(z)/Ls, — 0 as n — oo, and

exp(y.”|. )
Sn7j2\j1,ﬂ1,a3 = Z Z = (A’igjﬂjl)al(Awﬁ)ag(AU?j)agv

I
i2€Ay, |5, A1Ta2=p1 o
for any js € [k;] and (p1,043) # (Odvod)'
Similarly, we apply the second-order Taylor expansion to the term A, ;1 2(x) and get that

2
olasle
T *
An,j,lg(l‘) = Z Z Sn,j2|j1,p1,a3 ' eXp(( ]2|j1) ﬂj‘) eXp((le) ) ana3 (ZL‘ 77]1]2) +Rn,1,2( )
J2: Ay 5, 1>1 |p1 ]+ as|=1
where R, 1 2(x) is a Taylor remainder such that R, 12(z)/Ls, — 0 as n — oco.

Step 1A.2 - Decompose A, j, 2(z): Next, we also separate the quantity A, j »(x) into two
following terms:

Auga@ = 3 S ey [exp((y;,) Te) — exp((5),y,) )] exp((h) Ta)h (2)

J2:[Ajy 1y =1 12€ A5, 15

Y Y ey, | exp((ky;) ) — exp((hy;,) Tw) | exp((h) To)R, ()

J2: "Anm [>1 iQeAjQ\J’l
= Anji21(2) + Anjy 22(2).

By means of the first-order Taylor expansion, we have

eXp ¢ n * n n
Ay i oi(z) = Z Z Z 2|31 (AR 1) exp((/ijz‘jl)T:U) exp((wjl)Tx)hj1 () + Rp21(x),

J2:lAjy 1y [=192€ A5 [p2]=1

= Z Z T jaljn o - T exp((n;Qljl)Tx) exp((w;Ll)Ta:)h?1 () + Rp21(x),

J2:|Ajy14 [=1 [p2|=1

where Ry, 2 1(x) is a Taylor remainder such that R, 21(z)/Ls, — 0 as n — oo and

n
explrv. .
T = E 71)( ZQUI) (ARD . )P?
n,j2|j1,02 * o] i2jalj1/
i2€A;, |5,
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for any jo € [k3] and p2 # 04.

Analogously, by means of the second-order Taylor expansion, we have

Anjioal@) = ) Z T jaljipe - 0" exp((K},);,) @) exp((W],) T @) hf, (2) + Ru22(2),

J2: |‘A_72|j1‘>1 |[72| 1

where Ry, 22(x) is a Taylor remainder such that R, 22(z)/Ls, — 0 as n — oo.

Combining the above decompositions of A, j, 1(z) and A, j, 2(x), we deduce that

k* *
exp(B7,)
Z Z = [Rn11(2) + Rna2(x) — Ro2i(z) — Ru2a(z)
J1=1jo2= IZ/ 1eXp(( ‘]1) .'1?—|—Z/,IJ1)
2
+ Z Sn,jz‘jl,phag, 'mpl eXp((Kj2|j1)T$) exp((wj ) ) 877a3 ( 7nj1j2)
|p1]+|a]|=0
2
= > Tjaljupe - 27 exp((15,5,) @) exp((w],) "), () |, (75)
|p2|=0

where we define Sy, ;15 p1.05 = Tnjoljiee = ZizeAj exp(ygm) exp (Vs Vi ) for any j1 € [k]],

Jj2 € [k3] and (p1, a3, p2) = (04, Og, 04)-

Step 1B - Decompose B, (x): Subsequently, by invoking the Taylor expansion of first order, we
get

2191

ki
= exp(B]) Y (Aw})P® - 2 exp((w],)  @)ha, () + Ros(z), (76)

=1 lp3|=1

where Ry, 3(x) is a Taylor remainder such that Ry, 3(z)/Ls, — 0 as n — oo.

From the decompositions in equations (75), (76) and (74), we can view A, (x), By (z) and Cp(x) as
a combination of elements from the following set:

% lag] *
frren )T ()T B )

k3

*
ji=1 XP((RY ) e+ 75 )

{ 272 exp((,, ) @) exp((w) T2) b (x)
U

(J1 € [kﬂ7]2 € []C;],O < |p1’ + |043| < 2}

k3

- :jle[ki‘],jﬁ[@],oé!p2!§2}
jy=1 XP((RY 5 ) T+ 05 )

{27 exp(() ke, (@) i € (11,0 < lpal < 1} U {exp((@},) To)h, () 2 i € (7).

Step 2 - Non-vanishing coefficients: In this step, we aim to demonstrate that not all the
coefficients in the representations of A, (z)/Lsn, Bn(x)/Ls, and Cy(x)/Lsy, converge to zero as n
tends to infinity. Assume by contrary that all of them go to zero, then by considering the coefficients
of the following terms
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° exp((w;l)—rx)h;l (z) in Cp(x)/Lsy, we get

k*
1 ! n .
o : Z ‘ eXP(ﬂjl) - eXP(ﬁjl) — 0;

Ji=1

° 13 exp((w;-‘l)Tx)hGn (z) in Bp(x)/Lsy for p3 = eqy = (0,...,0, 1 ,0,...,0) € R% we have
u-th

1 M
7£ * eXp( ]1)||w]1 - le H —> O,
n —1
1=
J T, ) T exp(@p) ), (@)
k*
2 *
ngzl eXp((“jé\jl )

p2 = €du, we get

> in Ap(v)/Ls, for j1 € [k7], j2 € [k3] : |Ajp;] = 1 and
r Vjé\jl

k.*
1 1
D DL CANED DIND DI A e I
n

n=1 Jo€lk3):[Ajy 15, =1 926 A 515

Due to the equivalency between the ¢1-norm and the fo-norm, we deduce that

k*
1 1
D DL CIND DR DR G AR gt
n

n=1 J2€[k3 Ay 15y =1 i2€A 515

T yTyalesle .o
. exp((n]zljég) I)exp((w]l) Tx) 973 (95777]1]2) in An(x)/[ﬁn for jl c [kﬂ, j2 c [/{;] . |-Aj2|j1| = 1 and
PR TR LT
a3 = eq, € R, we get
1 M
o Z exp(6},) Z Z exp(Viy i ) 15, — M|l = 05
"=l J2€[k3]:|Ajy 5, [=1i2€ A, 5,
P2 * T n YT )R
. T exp(£nJ2|Jl) I)exp((wjl) x) 31(1) in An(.%')/£5n for jl c [k‘ﬂ, j2 c [k‘;] : ’Aj2|j1’ > 1 and

k.
2 * T *
2= Oy 5 ) Tt )

1
p2 = 2eq,, we get

k*
1 1
D IL VR DD DI (AN LA Bt
n

j1:1 jQG[kE]Z‘AjQ\j1|>1i2€-’4j2\j1

exp(( ) T) exp(],) T2) EA30E (a? )

° j2|j1i§ ™3 n An(az)/£5n for Jj1 € [kﬂ, Jjo € [k;] : ’Aj2|j1’ > 1 and
2y exp((wy, ) Tadvy )
]2*1 le]l ]2'.71

ag = 2eq, € RY, we get

k*
1 1
oy en) Y Y ewhy) I w0
n

j1:1 ng[k;}:|Aj2|j1‘>1’L’2€A]‘2|j1
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n Ap(x)/Lsn, we get

eXP((H;ﬂjl )T z) eXp((w;1 )Tx)g(x’n;1j2) i
) )

L
S exp((kt, | ) Taw?
]2:1

*
K, s
Jali1 Jali1

k¥ k3
1 1 2 i}
oo o) Y| X ey —esp(v,)| = 0
n

j1=1 j2:1 iQEA]‘QUI

By taking the summation of the above limits, then it follows from the formulation of the loss L5, in
equation (73) that 1 = L5, /L5y, which is a contradiction. Hence, we obtain at least one among the
coefficients in the representations of A, (x)/Ls,, Bn(x)/Ls, and Cp(x)/Ls, does not go to zero as
n — oo.

Step 3 - Application of the Fatou’s lemma: In this step, we point out that all the coefficients
in the representations of A, (z)/Lsn, Bn(x)/Ls, and Cy(z)/Ls, converge to zero as n — oco. In
particular, let us denote by m,, the maximum of the absolute values of those coefficients. From the
result achieved in Step 2, we deduce that 1/m,, 4 oco. Recall from the hypothesis in equation (72)
that ||ha, — ha.llz2(u)/Lsn — 0 as n — oo, which indicates that ||hg, — ha, [|£1(u)/Lsn — 0. Then,
according to the Fatou’s lemma, we get that

lim inf ‘hGn ([E) - hG* (.’I))’

n—oo mn£5n

he —h
0= lim MG =Gl 2/ du(z) > 0.

n—oo mn£5n

As a result, it follows that mnlﬁsm -[ha, () — ha, ()] = 0 as n — oo for p-almost surely x. From the

formulation of @, (z) in equation (74), since the quantity Zﬁzl exp(—||w;, — z[| + B;,) is bounded,
1
mnLsn

we get - Qn(x) = 0 for p-almost surely x.

Let us denote

eXp(ﬂ%)Sn7j2|j17p1,a3 eXp('B?l)Tn,szhpz

i L ¢J2|31,P1,as7 mnLsn Pizljr.p2>
exp(8} ) (Aw], )P N exp(fB7,) — exp(65,) Sy
mn£5n 71,P3> mnESn J1

for all j; € [k]], j2 € [k3], 0 < |p1| + |as| < 2, 0 < |p2] < 2, |p3] =1 with a note that at least one
among them is different from zero. From the decomposition of @Q,(z) in equation (74), we have

lim @n(2) = lim An() — lim Bu(z)

n—oo mmnlsn n—oo mn£5n n—oo mmnplsn n—oo mn£5n
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where

* 2 2
] . Plaslg .
nle mnﬁsm Z Z Z Bialjr pr,as T exp((/ijQ‘jl)T z) exp((wj )T ) e s (Z:15,55)

J1=152=1 L|p1|+|as|=0
2

* * * 1
= D Panliven - 7 exp((i5,;,) @) exp((w],) )b, (2) | 55 " ;
p2]=0 ngzl exp((/ijélj )T x—}—y,Ul)
Jim mn£5n Z > N - 2 exp((w),) T )he, (),
J1=1ps|=1
Culr) _ <
. n\T .
J = leaa exp((w},) ") [, (2) — ha. (x)] .
J1=

Since the expert function x — £(x,n) meets the strong identifiability condition in Definition 1, the
following set of functions in z is linearly independent:

lag]
{ exp((15,,) ") exp((w,) T2) Gt (2,5, )
k2

s XP((555 ) T+ vy )

{xm expl(7,;,) ) expl(w),) o)k, (@)
U

J1 € [k1], 72 € [K3],0 < |p1]| + |az| < 2}

k3

: e (Kl € (k51,0 < [ < 2}
sim XP((55; ) "o+ 17 )

U {am exp((@;,) " 2)he. (@) 1 € (k11,0 < Ipg] <1} U { exp((w},) @), (@) i € [k}

As a result, we get that ¢, o105 = Pialjipe = Nips = X for all all j1 € [k]], jo € [k3],
0 <|p1|+|as| < 2,0 < |p2| <2, |p3| =0, which contradicts to the fact that at least one of them is
non-zero. Thus, we achieve the local part (71), that is,

li inf hg —h Ls5(G,G) >0
egI(I)Gegkf,kg(él)qtﬁs(G,G*)SeH “ G*HLQ(#)/ ol )

Hence, the proof is completed.

B.5 Proof of Theorem 6

Firstly, we will demonstrate that the limit

lhe — he. 2w
li inf =0 77
50 Gequz(@)l?cw(c,c*)ge Ler(G,Gy) (77)

holds true for any r > 1. Then, by employing the same arguments for proving the equation (49) in
Appendix B.1, we arrive at our desired result

~inf sup Eng[Lor(Gn, G)] 2 n V2
Gn€Gyri, () GEGt gy (ONGrx (k3 -1)(©)
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Proof for equation (77): We need to construct a sequence of mixing measures (Gy,) C Grr,(0)
satisfying Le »(Gp, G«) — 0 and

HhGn — ha, HL2(;L)/£6,7“(GTL7 G*) —0

as n — 0o. For that purpose, let us take into account the mixing measure sequence defined as

ks +1
Gn = Z exp(67;) Z exp( 12\11 (@3 R iy 20 i Py i)
i1=1 ig=1

where

exp(f7) = exp(f}, ), for any 1 < iy < AT

n
wil

= wj, for any 1 <y < kT

exp(yﬁil) = exp(l/;‘h.l) = %exp(uful) + Qn% and exp(yi’;“l) = exp(ui’;_wl), for any 1 <i4; <k} and
3<ig <k +1;

n J— n — * — n - * - * .
Kl = o, = Bl and 512‘“ = K1)y for any 1 <13 < kj and 3 <ig < k3 + 1;

ajyy = Gy = ajy and ag, = ag gy, forany 1 <y <k and 3 <idp < ky +1;
by =0bi1+ L bilg =071 — L and b3 iy = b7 (iy—1), for any 1 <y < kjand 3 <idp < k3 + 1.

Then, the Voronoi loss Lg »(Gp, G«) can be rewritten as
1 i i 1 1
Lor(Gn Ga) = —7 > exp(Br)+ Y exp(ﬁ;l)(exP(y;m) + F) S =0mT). (78)
Jji=1 Jj1=1
From the above equation, it is clear that L¢,(Gp, G«) — 0 as n — oco. Thus, it suffices to show that

HhGn — ha, HL2(,LL)/‘C6,T‘(G717 G*) —0

Let us consider the quantity @, (z) := [ fl 1 exp((w} )T+ 2 )| [ha, (z) — hg, ()], which can be
decomposed as follows:

kY
= >~ exp(B}) [exp((wh) @) (2) - exp((w},) To)B, (o)
n=1
ki
=3 exn(B]) [exp((@)y) @) — exp((w,) T2)| ha, (@)
Jji=1

kl
+ > (exp(8},) — exp(8},)) exp((w],) ") [}, (2) = ha, ()]

Jj1=1
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where we denote

2
= Z Z Softmax((/ﬁ;:-;‘jl)TSU-Fng)(( 3122) x+075,),

jo=1ligseA

J2li1
k2
h, ( ZSoftmaX(( 32\11) $+V2\]1)(( 3132) z+ 05, 5),
Jo=1

for all j; € [k{]. Recall that we have exp(5!) = exp(8;],) and w} = w;, for all i1 € [k{]. Then, the
second and third terms in the decomposition of @, (x) become zero. Thus, we can represent Q) (x)
as

Zexp )exp((w,) @) [1], (z) — I, (2)] . (79)

Jj1=1

Note that we can continue to decompose the term h} (z) — b} (z) as

k3
DI AN RN RUACE AT

J2=1

= Z Z exp(yglji) [exp((’ig\jl)—r$)(( 1231) T+ b?ﬂl) exp((n;ﬂjl)—rx)((a;h)—rz + b;l]é)

Jj2=1 iQGAj2|j1

k3
=3 > ey | expl(ay,) Tw) — exp((,,) )] (@)

Jja=1ig GA]'Q 51

k3
£ (0 el - el esp((nly) D)) e+ ) — ()]
J2=1 Z'26“43'2\71

1= Apji (#) = Bpjy () + B jiy (7)

From the definitions of /{ a. and b7,

s lin> Qi i iy» We can rewrite Ay j, (x) as follows:

Mw

7]1 5 V1|]1 exp((lil‘]l) )(b‘?lzg - ;11)
i2=1
1 * T * *
= ieXP(VW )eXp(("ﬁUl) 2)[(0f,1 — bj,1) + (0f,2 — bj;1)]
= 0.
Next, since £, = &7, , we can see that By, j, (x) = 0. Lastly, it can be justified that E,, ; (z) =

O(n~*1), leading to E, j, (z)/Ler(Gpn,Gy) — 0. Combined these results, we deduce that
k3

[ 3 exp((rl,;,) @ + v 2“1)] R (@) = B, (2)]/ Lo (G, G) = 0

J2=1
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as n — 00. Since the term fozl exp((/ﬂ;z‘jl)T:U + V;;'jl) is bounded, it follows that [h} (z) —

b (2)]/Le,r(Gn,Gx) — 0 for almost every z. Putting this limit and equation (79) together,
we get that Q,(x)/Le,(Gn,G+x) — 0 as n — oo for almost every z. Again, since the term

?11:1 exp((w}‘l)—rx + B3,) is bounded, we deduce that [hq,(7) — ha. (2)]/Ler(Gn, Gx) — 0 as
n — oo for almost every x. This result implies that

HhGn en HLQ(M)/‘C&T(GW G*) — 0,

as n — oo. Hence, the proof of claim (77) is completed.

C Auxiliary Results

C.1 Proof of Proposition 1

For the proof of the theorem, we first introduce some necessary concepts and notations. Firstly,
we denote by Fi(0O) the set of regression functions w.r.t all mixing measures in Gi(0), that is,
Fr(0) := {fa(z) : G € G,(O©)}. Additionally, for each § > 0, the L? ball centered around the
regression function fe, () and intersected with the set Fj(0©) is defined as

Fi(0,0) :={f € Fr(©) : |f = fa.llrzu <0}
In order to measure the size of the above set, [44] suggest using the following quantity:

)

To(0.F@.0) = [ L FO.0). 1 - i) e v (50)
2 /91

where Hp(t, Fi.(0,t), |||l 12(,)) stands for the bracketing entropy [44] of F (0, u) under the L?-norm,
and ¢V § := max{t,d}. By using the similar proof argument of Theorem 7.4 and Theorem 9.2 in
[44] with notations being adapted to this work, we obtain the following lemma:

Lemma 1. Take ¥(8) > Jp(8, Fr(©,0)) that satisfies W(8)/5? is a non-increasing function of d.
Then, for some universal constant c and for some sequence (8,) such that \/né2 > c¥(5,), we achieve
that

nd?
P(Hfan = fe 2 > 5) < cexp (— ) ,

2
for all 6 > 6,,.

Proof overview. In this proof, we first demonstrate that the following bound holds for any
0<e<1/2:

Hp(e, Fie(©), |I-lz2 () < log(1/e), (81)
Then, it follows that
s /2 5
TIB(6, Fr(©,0)) = / Hpg " (t, F(0,0), || - [12(4)) dEV S S / log(1/t)dt v é.  (82)
§2 /213 52/213
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Let W(6) = 6-[log(1/8)]/2, then ¥(§)/6? is a non-increasing function of §. Furthermore, equation (82)
indicates that W(8) > Jg (6, Fx(©,6)). In addition, let 6, = \/log(n)/n, then we get that \/nd> >
eV (0y,,) for some universal constant c. Finally, by applying Lemma 1, we achieve the desired conclusion
of Proposition 1, that is,

[NIES

Ifa, — fa.llLz@ = Op([log(n)/n]2).

Proof of the bound (81). Let {( < e and {m,...,7n} be the (-cover under the L*-norm of the set
Fi(©) where N := N(¢, Fr(0), || - [|s) is the n-covering number of the metric space (F(0), || - [|co)-
Next, since the expert function £(+,7n) is bounded, the regression function fg(-) is also bounded,
that is, fa(xz) < M for all z, where M > 0 is the bounded constant of the expert function. Then,
we construct the brackets of the form [L;(z), U;(x)] for all i € [N] as follows:

Li(x) := max{m;(x) — (,0},
Ui(z) := max{m;(x) + {, M }.

From the above construction, we can validate that F,(0) C UY | [Li(z), U;(x)] and U;(x) — Li(z) <
min{2(, M }. Therefore, it follows that

1/2 1/2
Ui — Lill 2 = (/(Ui —Li)Zdu(a:)) < (/4§2du(a;)) — 2,
By definition of the bracketing entropy, we deduce that
Hp(2¢, Fie(©), | - |£2()) < log N =1log N(C, Fi(©), || - llsc)- (83)

Therefore, we need to provide an upper bound for the covering number N. In particular, we denote
A:={(Bw) ERxR?: (B,w,n) €O} and Q:={n € R?: (B,w,n) € O}. Since O is a compact set,
A and  are also compact. Therefore, we can find (-covers A, and Q¢ for A and €2, respectively.
We can check that

[Acl <O IR, Q] < O(¢).

For each mixing measure G' = Zle exp(3:)0(w; m) € Gr(©), we consider other two mixing measures:

k k
G:= Zexp(ﬁi)é(ﬁu,m), G = Zexp(ﬁi)d(gwm).
i=1 i=1

Here, 7; € Q¢ such that 7j; is the closest to n; in that set, while (8;,w;) € A¢ is the closest to (3;, w;)

49



in that set. From the above formulations, we get that

k
— fallo = su exp((w) o + i) &z, M) — E(x,m;
HfG fGHOO xep ; Z 1exp((w] Tm—i—ﬁ]) [ ( 7771> ( 777z)]

k
exp((w Z) z+ fi) =
< sup &, mi) — E(x, 7))
; T€EX Zg pexp((w;) Tz + B;)
k
< Z sup [E(x,m) — E(x,7;)]
i—1 TEX
k
< su i — 1
< z;weg [
S¢

Here, the first inequality is according to the triangle inequality, the second inequality occurs as the
softmax weight is bounded by one, and the fourth inequality follows from the fact that the expert
function &£(z,-) is a Lipschitz function. Next, we have

) ~
P exp(w)Tz+p)  exp(@) z+B,) )5 .
V= Jall= =2 ,Zl<zflexp<<wm+ﬁj> S ep(@)Tzr5)) L™
S | m)  ew(@atB) | oo
Zf@ S epl(@) e+ ) S exp(@y)Ta By L)
. | exp((wi)'a+5)  exp((@) x+5,)
= 116/\’ Z] 1 exp((wy) Tz + B;) Z] yexp((@;) Tz + ;)

< Zsup (||o.:Z — @i - [Jx]| + 18 _Bz|)

1:v€
k

< B
Ngig (¢C-B+0)

S ¢

Above, the second inequality occurs as the expert £(x,7;) is bounded. The third inequality happens
since the softmax is a Lipschitz function. According to the triangle inequality, we have

Ife — fallo < lfa — falloo + 1 f5 — falle S ¢

By definition of the covering number, we deduce that
NG Fr(©), - lloo) < 18¢] % || < O(n™FIF) x O(n~9*) < O(n~ HHHOF), (84)

Combine equations (83) and (84), we achieve that

Hp(2¢, Fu(©), | - [l L2()) < log(1/¢).
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Let ¢ = ¢/2, then we obtain that
Hp(e, Fu(0), [l 2() < log(1/e).

Hence, the proof is completed.

C.2 Proof of Proposition 3

In this proof, we will adapt notions from the empirical process theory in Appendix C.1 to the
HMoE setting and employ some arguments in that appendix. In particular, we denote Fj: ks (©)
as the set of HMoE-based regression functions w.r.t all mixing measures in Gi:1,(0), that is,
Firks (©) := {hg(x) : G € Grrk,(©)}. Next, an L? ball centered around the regression function
hg, (v) and intersected with the set Fyx,(©) is given by

]—"km(@,é) = {h € fkaQ(@) : ”h — hG*HL2(u) < 5} .

Lastly, we denote by Hp(t, Fi;k,(0,1), [ - [ 12(.)) the bracketing entropy [44] of Fyry, (O, u) under
the L?-norm. By arguing in a similar fashion to Appendix C.1, we can show that in order to reach
the desired conclusion, it suffices to demonstrate that

Hp(e, Firka (0), |-l 22(n)) < og(1/), (85)

for any 0 < ¢ < 1/2. Let ¢ < ¢ and {m,...,7n} be the (-cover under the L*°-norm of the
set Frrky (©) where N := N((, Firr,(©),] - loo) is the (-covering number of the metric space
(Frika (), || - [[oo). By employing the same arguments in Appendix C.1, we obtain that

Hp(2C, Friky (©), | - I22(ny) < log N =log N(C, Friky (0), 1] - [loo)- (86)

Thus, it is necessary to bound the covering number N. For that purpose, let us denote A :=
{(B,w) ERxRY: (B,w,v,k,n) €O} and Q := {(v,k,n) ER xR xRI: (B, w,v,k,1) € O}. Recall
that the parameter space © is compact, then the sets A and €2 are also compact. Therefore, there
exist (-covers for A and €, which will be denoted as A¢ and ¢, respectively. Furthermore, it can
be justified that

|Ac| < O(CUIRY Q| < (¢ ATt DRk,

For a mixing measure G = > /', exp(Bi;) D ;74 exp(ui2|i1)5(wil,HQHF%Q) € Gk, (©), we take into
account two additional mixing measures defined as

ki ko
G = Z exp(ﬂzl) Z eXp(DZ2|/Ll)5(w21 7Ri2|i17ﬁi1i2)7

i1=1 i9=1
k1 ko
G = Z exp (i) § :exp(yi2|i1)6(@i1:Ri2|i17ﬁi1i2)'
i1=1 i9=1

o1



Above, (7712|i1,/7iig|11777i1i2) € ¢ such that (ﬂi2‘i1,ﬁi2‘il,ﬁili2) is the closest to (Vi2|i1,lii2|i1,7’]i1i2) in
that set, while (8;,,@;,) € A¢ is the closest to (3;,,w;, ) in that set. Additionally, we also denote

ko
hiy (x) == Z SOftmaX((Hiz\il)Tx t Vigliy VE(T, Miyiy)s
i9=1
~ k2
hil (I‘) = Z SOftmaX((’iiz\h)Tm + Vz’glh)‘g(xa ﬁiliQ)’
i9=1
_ k2
hil (:U) = Z SOftmaX((Riz\h)Tx + 17i2|i1)g($7 ﬁillé)v

io=1

for all iy € [k{]. Now, we start providing an upper bound for the term ||hg — hzlle as

ki ki
Ih = hglloe = 3 Softmax((wi) T+ Bi,) < i, = hislloe < D iy = By oo
i1=1 i1=1
ki
< > (i = i lloo + iy = Py o). (87)
i11=1

The first term in the above right hand side can be bounded as

ko
Hh’ll — hi; HOO < Z Slelg ‘SOftmaX((ﬁiz\h)Tx + l/i2|i1) ’ [8(1’,777;11‘2) - g(x7ﬁi1i2)]
ia=17T
< Z sup ‘5(967771‘1@‘2) - 5($7ﬁi17ﬁ2)

S Z Sug (||7h‘1i2 - 771'1i2|| : ||$||)

<Y sup (¢ B) S (88)

where the second last inequality occurs as the input space is bounded, that is, ||z|| < B for all « for
some constant B > 0.
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Next, the second term in the right hand side of equation (87) is bounded as

ko
Hhil - hilHOO < Z sup

ig=17€X

<3 sw
in=1 reX

’Softmax((/fi2|,-1)Tm + Vigliy) — Softmax((/?;,-2|i1)T:U ZN

’Softmax((/ﬁl-zm)Ta: + Vi2|i1) — Softmax((/%l-ﬂh)Ta: + Di2|i1)

D (It = Al + v, — P ])

(¢€-B+¢Q) 3¢

’ ‘g(x, ﬁi1i2)’

(89)

From equations (87), (88) and (89), we deduce that |[hg — hzllec S (. Furthermore, we also have

that

ki

lha — halloo < Z sup [Softmax((wy,) 2 + B;,) — Softmax((@;,) '« + B;,)
=1 TEX

ki
<

~

=1

Z sup |Softmax((w;, ) = + B, ) — Softmax((@;,) "z + Bs,)
=1 reX

k
§Zsu

(s, = @3l - 2l + 185, — B 1)

p
zeX

k
<S> sup ((-B+¢) S

=1

zeX

Then, by the triangle inequality, we have

lha = hglleo < [lha = helloo + [Ihg = hglleo < €

By definition of the covering number, we deduce that

|hiy ()]

N(C Fiira(0), 11 o) < 1A¢] % 9] < O(n™HHIF) x O(n~(HHHDR) < O(n=CHH2H0k) - (90)

From equations (86) and (90), we achieve that

Hp(2¢, Frriy (©), 1 -l 22¢)) < log(1/€).

By setting ¢ = ¢/2, we obtain that

Hp(&, Firyky (0); [ -l12()) < log(1/€).

Hence, the proof is completed.
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C.3 Identifiability of the Softmax Gating MoE

Proposition 4. Suppose that the equation fa(x) = fa,(z) holds for almost every x, then we obtain
G=G.

Proof of Proposition j. To start with, let us expand the equation fo(z) = fg,(z) as

zk: Softmax((wi)—rx + 51) ~E(x,m;) Z Softmax( T+ BZ> E(x,n;). (91)

=1

Since the expert function x — E£(z,7n) is strongly identifiable, the set of functions in x given by
{E€(z,m}) i € [K']}, where 0}, 15, ...,m, are distinct parameters for k" € N, is linearly independent.
Thus, if & is different from k., then we can find i € [k] such that n; # nj for any j € [k.], implying that
Softmax((w;) "z + B;) = 0, which is a contradiction as the softmax value cannot be zero. Therefore, it
must hold that k£ = k, and {Softmax((wi)TfL’+5i) RS [k‘}} = {Softmax((wf)—rx +ﬁj) ti € [k‘*}},

for almost every x. Without loss of generality, we assume that
Softmax((wi)Tx + 52') = Softmax((w;")Ta: + 5;‘), (92)

for almost every x for any i € [k.]. Due to the invariance to translations of the softmax function,
equation (92) implies that w; = w} +wu; and f; = 5 + ug for some u; € R? and ug € R. Recall from
the assumption (A.3), since wy = wj = 04 and fy, = B} = 0, we get u; = 04 and vy = 0, leading to
w; = w} and B; = B for all i € [k,]. Given these results, we can rewrite equation (91) as

ks
S exp(Bi) exp((wi) )€ (@ m) Zexp Jexp((w) T 2)E(z,77). (93)
i=1

for almost every x. Subsequently, let Py, Ps, ..., P, be a partition of the index set [k.], where m < k,

such that
(i) exp(B;) = exp(fy) for any i,7’ € P; and j € [k.];
(ii) exp(B;) # exp(Bir) if @ and ¢’ are not in the same set P;.

Based on the above partition, we rewrite equation (93) as
m
S exp(Bi) exp ((wi) @) €@ m) = — 33 exp(B) exp (@) Ta) e n).
Jj=1lieP; Jj=lieP;

for almost every z. Since w; = w and §; = 3} for al i € [k,], we have {n; : i € P;} = {n} : i € P;},
for almost every z for any j € [m]. Therefore, it follows that

= Z Z exXp 61 (wini) Z Z exXp Bl 5(w ) =
Jj=lieP;

Jj=1liep;

Hence, we reach the conclusion of this proposition. O
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