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Abstract

Diffusion models have become the most popular approach to deep generative
modeling of images, largely due to their empirical performance and reliability.
From a theoretical standpoint, a number of recent works [ s ,

] have studied the iteration complexity of sampling, assuming access
to an accurate diffusion model. In this work, we focus on understanding the
sample complexity of training such a model; how many samples are needed to
learn an accurate diffusion model using a sufficiently expressive neural network?
Prior work [ ] showed bounds polynomial in the dimension, desired Total
Variation error, and Wasserstein error. We show an exponential improvement in the
dependence on Wasserstein error and depth, along with improved dependencies on
other relevant parameters.

1 Introduction

Score-based diffusion models are currently the most successful methods for image generation, serving

as the backbone for popular text-to-image models such as stable diffusion [ ], Midjourney,
and DALL-E [ ] as well as achieving state-of-the-art performance on other audio and image
generation tasks [ , R s , ].

The goal of score-based diffusion is to produce a generative model for a possibly complicated
distribution gg. This involves two components: fraining a neural network using true samples from gg
to learn estimates of its (smoothed) score functions, and sampling using the trained estimates. To this
end, consider the following stochastic differential equation, often referred to as the forward SDE:

do; = —x¢ dt +V2dBy, o ~ qo (1)

where B, represents Brownian motion. Here, xg is a sample from the original distribution g over
R, while the distribution of x; can be computed to be

zp ~ e teg + N(0,0714)

for 07 = 1 — e~ 2. Note that this distribution approaches N'(0, I;), the stationary distribution of (1),
exponentially fast.

Let ¢; be the distribution of z, and let s;(y) := V log ¢;(y) be the associated score function. We
refer to g, as the o-smoothed version of qy. Then, starting from a sample 1 ~ gr, there is a reverse
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SDE associated with the above forward SDE in (1) [ 1:
der_¢ = (.’ET,t + 2874 (:ET,t)) dt + \/EdBt 2)

That is to say, if we begin at a sample x7 ~ g, following the reverse SDE in (2) back to time 0 will
give us a sample from the original distribution ¢o. This suggests a natural strategy to sample from
qo: start at a large enough time 7" and follow the reverse SDE back to time 0. Since z1 approaches
N (0, I;) exponentially fast in T, our samples at time 0 will be distributed close to gg. In particular,
if T is large enough—logarithmic in “22—then samples produced by this process will be -close in

TV to being drawn from qo. Here m3 is the second moment of go, given by m3 = E,q, [[|2]|?]-

In practice, this continuous reverse SDE (2) is approximated by a time-discretized process. That is,
the score sp_; is approximated at some fixed times 0 =ty < t; < --- <t < T, and the reverse
process is run using this discretization, holding the score term constant at each time ¢;. This algorithm
is referred to as “DDPM”, as defined in [ ].

Chen et al. [ ] proved that as long as we have access to sufficiently accurate estimates for
each score s; at each discretized time, this reverse process produces accurate samples. Specifically,
for any d-dimensional distribution ¢ supported on the Euclidean Ball of radius R, the reverse process
can sample from a distribution e-close in TV to a distribution (v - R)-close in 2-Wasserstein to ¢
in poly(d, 1/e,1/7) steps, as long as the score estimates 5; used at each step are O(g?) accurate in
squared L2. That is, as long as

LE (I5:(2) = se(@)l”] < O(e). ©)

In this work, we focus on understanding the sample complexity of learning such score estimates.
Specifically, we ask:

How many samples are required for a sufficiently expressive neural network to learn
accurate score estimates that generate high-quality samples using the DDPM algorithm?

We consider a training process that employs the empirical minimizer of the score matching objective
over a class of neural networks as the score estimate. More formally, we consider the following
setting:

Setting 1.1. Let F (D, P, ©) be the class of functions represented by a fully connected neural network
with ReLU activations and depth D, with P parameters, each bounded by ©. Let {t.} be some time
discretization of [0, T). Given m i.i.d. samples x; ~ qq, for each t € {t;}, we take m Gaussian
samples z; ~ N (0,021,). We take 5, to be the minimizer of the score-matching objective:

m 2

~ 1
5 = argmm—z

fer m i=1

f (e*txi + zz) _ ;?

“

2
We then use {5, } as the score estimates in the DDPM algorithm.

This is the same setting as is used in practice, except that in practice (4) is optimized with SGD rather
than globally. As in [ ], we aim to output samples from a distribution that is e-close in TV
to a distribution that is v R or yms-close in Wasserstein to gg. We thus seek to bound the number of
samples m to get such a good output distribution, in terms of the parameters of Setting 1.1 and €, .

Block et al. [ ] first studied the sample complexity of learning score estimates using the
empirical minimizer of the score-matching objective (4). They showed sample complexity bounds
that depend on the Rademacher complexity of F. Applied to our setting and using known bounds on
Rademacher complexity of neural networks, in Setting 1.1 their result implies a sample complexity

bound of O ( il (e2p)P \/5) See Appendix E for a detailed discussion.

~3e?

Following the analysis of DDPM by [ ], more recent work on the iteration complexity of
sampling [ , ] has given an exponential improvement on the Wasserstein accuracy
v, as well as replacing the uniform bound R by mo — the square root of the second moment. In

1
€

O hides polylogarithmic factors in d, = and %



particular, [ ] show that 5(6% log® %) iterations suffice to sample from a distribution that is

v - my close to qg in 2-Wasserstein, as long as the score estimates are O (62 / af) accurate, i.e.,

~ (2
E [I5i0) - s(@)lP <0 (5 ). ©

z t

Inspired by these works, we ask: is it possible to achieve a similar exponential improvement in the
sample complexity of learning score estimates using a neural network?

1.1 Our Results

We give a new sample complexity bound of O(?—jPD log © log® %) for learning scores to sufficient
accuracy for sampling via DDPM. Learning is done by optimizing the same score matching objective
that is used in practice. Compared to [ ], our bound has exponentially better dependence on
0,7, and D, and a better polynomial dependence on d and P, at the cost of a worse polynomial
dependence in €.

As discussed above, for the sampling process, it suffices for the score estimate s; at time ¢ to have
error O (82 / Uf). This means that scores at larger times need higher accuracy, but they are also
intuitively easier to estimate because the corresponding distribution is smoother. Our observation
is that the two effects cancel out: we show that the sample complexity to achieve this accuracy for
a fixed t is independent of o,. However, this only holds once we weaken the accuracy guarantee
slightly (from L? error to “L? error over a 1 — § fraction of the mass”). We show that this weaker
guarantee is nevertheless sufficient to enable accurate sampling. Our approach lets us run the SDE to
a very small final o; = ~, which yields a final v dependence of O(log3 %) via a union bound over the
times ¢ that we need score estimates s; for. In contrast, the approach in [ ] gets the stronger
L?-accuracy, but requires a poly( U%) dependence in sample complexity for each score s;; this leads
to their poly(%) sample complexity overall.

To state our results formally, we make the following assumptions on the data distribution and the
training process:

A1 The second moment m3 of qq is between 1/ poly(d) and poly(d).
A2 For the score s; used at each step, there exists some function f € F(D, P, ©) (as defined in
Setting 1.1) such that the L? error, Ey g, [|| f(z) — s¢(2)]|?], is sufficiently small.
That is: the data is somewhat normalized, and the smoothed scores can be represented well in the
function class. Our main theorem is as follows:

Theorem 1.2. In Setting 1.1, suppose assumptions Al and A2 hold. For any vy > 0, consider the
score functions trained from

~ (d*PD 1
m>0< 3 -log@-log3)
€ ot

i.i.d. samples of qo. With 99% probability, DDPM using these score functions can sample from a
distribution e-close in TV to a distribution ymay-close to q in 2-Wasserstein.

We remark that assumption A1l is made for a simpler presentation of our theorem; the (logarithmic)
dependence on the second moment is analyzed explicitly in Theorem C.2. The quantitative bound for
A2—exactly how small the L? error needs to be—is given in detail in Theorem C.3.

Barrier for L? accuracy. As mentioned before, previous works have been using L? accurate
score estimation either as the assumption for sampling or the goal for training. Ideally, one would
like to simply show that the ERM of the score matching objective will have bounded L? error of
€2 /o2 with a number of samples that scales polylogarithmically in % Unfortunately, this is false. In

fact, it is information-theoretically impossible to achieve this in general without poly(%) samples.
Since sampling to ymy Wasserstein error needs to consider a final o, = +, this leads to a poly(%)
dependence. See Figure 1, or the discussion in Section 4, for a hard instance.
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Figure 1: Given o (%) samples from either p1 = (1 — n)N(0,1) + nN (=R, 1), 0orp2 = (1 — n)N(0,1) +

nN'(R, 1) we will only see samples from the main Gaussian with high probability, and cannot distinguish
between them. However, if we pick the wrong score function, the L? error incurred is large - about 7R2. On the
right, we take n = 0.001, R = 10000, § = 0.01. We plot the probability that the ERM has error larger than 0 in
the L? sense, and our Dg sense.

In the example in Figure 1, score matching + DDPM still works to sample from the distribution with
sample complexity scaling with poly(log %), the problem lies in the theoretical justification for it.

Given that it is impossible to learn the score in L? to sufficient accuracy with fewer than poly(%)
samples, such a justification needs a different measure of estimation error. We will introduce such a
measure, showing (1) that it will be small for all relevant times ¢ after a number of samples that scales

polylogarithmically in % and (2) that this measure suffices for fast sampling via the reverse SDE.

The problem with measuring error in L? comes from outliers: rare, large errors can increase the L?
error while not being observed on the training set. We proved that we can relax the L? accuracy
requirement for diffusion model to the (1 — §)-quantile error: For distribution p, and functions f, g,
we say that

Di(f,9) <e <= Pop[llf(z) —g(a)|l2 > €] < 6. (6)
We adapt [ ] to show that learning the score in our new outlier-robust sense also suffices for
sampling, if we have accurate score estimates at each relevant discretization time.
Lemma 1.3. Let q be a distribution over R? with second moment m3 between 1/poly(d) and poly(d).
For any v > 0, there exist N = O(ﬁ log? %) discretization times 0 =ty < t; < --- <ty <T
such that if the following holds for every k € {0,..., N — 1}:

§/N (= €
Dqé_,, ‘ (ST—thT—tk) <
k OT—ty,

then DDPM can sample from a distribution that is within O(8 + £+/log (d/7)) in TV distance to Qv
in N steps.

With this relaxed requirement, our main technical lemma shows that for each fixed time, a good
(1 — 9)-quantile accuracy can be achieved with a small number of samples, independent of o.

Lemma 1.4 (Main Lemma). In Setting 1.1, suppose assumptions A1 and A2 hold. By taking m i.i.d.
samples from qq to train score function s;, when

~ ((d+1log5-)-PD €]
train . 1
m= O < 82(5“-(”6 o8 <6tmin> ’

with probability 1 — 6,,4in, the score estimate $; satisfies
Oscore (&
Dq‘t (St,St) SE/O’t.

Combining Lemma 1.4 with Lemma 1.3 gives us Theorem 1.2. The proof is detailed in Appendix C.

2 Related Work

Score-based diffusion models were first introduced in [ ] as a way to tractably sample
from complex distributions using deep learning. Since then, many empirically validated techniques



have been developed to improve the sample quality and performance of diffusion models [ ,

s s ]. More recently, diffusion models have found several exciting
apphcat1ons including medical imaging and compressed sensing [ , ], and text-to-
image models like DALL-E 2 [ ] and Stable Diffusion [ ].

Recently, a number of works have begun to develop a theoretical understanding of diffusion. Different
aspects have been studied — the sample complexity of training with the score-matching objective
[ ], the number of steps needed to sample given accurate scores [

R ], and the relationship to more tradmonal methods such as
maximum likelihood [ s ].

On the training side, [ ] showed that for distributions bounded by R, the score-matching
objective learns the score of ¢, in L? using a number of samples that scales polynomially in % On the

other hand, for sampling using the reverse SDE in (2), [ s ] showed that the number
of steps to sample from g, scales polylogarithmically in % given L? approximations to the scores.

Our main contribution is to show that while learning the score in L? requires a number of samples
that scales polynomially in %, the score-matching objective does learn the score in a weaker sense
with sample complexity depending only polylogarithmically in l . Moreover, this weaker guarantee

is sufficient to maintain the polylogarithmic dependence on = 7 on the number of steps to sample with
v - mo 2-Wasserstein error.

Our work, as well as [ ], assumes the score can be accurately represented by a small function
class such as neural networks. Another line of work examines what is possible for more general
distributions [ s ]. For example, [ ] shows that for general subgaussian

distributions, the scores can be learned to L? error €/0; with (d/e)?(®) samples. Our approach
avoids this exponential dependence, but assumes that neural networks can represent the score.

3 Proof Overview

In this section, we outline the proofs for two key lemmas: Lemma 1.4 in Section 3.1 and Lemma 1.3
in Section 3.2. The complete proofs for these lemmas are provided in Appendix A and Appendix B
respectively.

3.1 Training

We show that the score-matching objective (4) concentrates well enough that the ERM is close to
the true minimizer. Prior work on sampling [ ] shows that estimating the o-smoothed score

2 . . .
to L2 error of 25 suffices for sampling; our goal is to get something close to this with a sample
complexity independent of .

Background: Minimizing the true expectation gives the true score. In this section, we show
that if we could compute the true expectation of the score matching objective, instead of just the
empirical expectation, then the true score would be its minimizer. For a fixed ¢, let 0 = o, and p
be the distribution of e~ for x ~ qq. We can think of a joint distribution of (y, x, z) where y ~ p
and z ~ N(0,0%1,) are independent, and x = y + 2 is drawn according to ¢;. With this change of
variables, the score matching objective used in (4) is

Because x = y + z for Gaussian z, Tweedie’s formula states that the true score s* = s; is given by

s(m)]E{ ’1

z|x o2

Define A = s*(x) — so E[A | z] = 0. Therefore for any x,

02,
2

N




* 2
= [|s(z) — s"(z) + Al
= ||s(z) — 5" (2)]|* + 2(s(2) — 5" (2), A) + | A[>. ®)
The third term does not depend on s, and so does not affect the minimizer of this loss function. Also,

for every x, the second term is zero on average over (z | x), so we have

argmin E [I(s,z, 2)] = argmin E [||s(z) — s*(2)|*]

s T,z s T,z
This shows that the score matching objective is indeed minimized by the true score. Moreover, an
e-approximate optimizer of /(s) will be close in L?, as needed by prior samplers.

Understanding the ERM. The algorithm chooses the score function s minimizing the empirical
loss,

E[i(s,z,2)] =

T,z

m

Zl S, Xy 2;)
=1
EJ|

S\H

s(x) = 8" (@)||* + 2(s(z) = s"(x), A) + | A[).

qﬁ>

Again, the E[||A||?] term is independent of s, so it has no effect on the minimizer and we can drop it
from the loss function. We thus define

U'(s,x,2) = ||s(x) — s*(ac)||2 +2(s(x) — s*(x), A) 9)

that satisfies I/(s*, z, z) = 0 and E[l'(s, z, z)] = E[||s(z) — s*(2)||*]. Our goal is now to to show
that

E[l'(s,2,2)] >0 (10)

T,z

for all candidate score functions s that are “far” from s*. This would ensure that the empirical
minimizer of the score matching objective is not “far” from s*. To do this, we show that (10) is true
with high probability for each individual s, then take a union bound over a net.

Boundedness of A. Now, z ~ N(0,0%1,) is technically unbounded, but is exponentially close

to being bounded: ||z|| < o+/d with overwhelming probability. So for the purpose of this proof
overview, imagine that z were drawn from a distribution of bounded norm, i.e., ||z|| < Bo always;
the full proof (given in Appendix A) needs some exponentially small error terms to handle the tiny
mass the Gaussian places outside this ball. Then, since A = % —E, ;[ 5], we get ||A[| < 2B/o.

Warmup: poly(R/cr) As a warmup, consider the setting of prior work [ 1Mz <R
always, so ||s*(z)|| < Z; and (2) we only optimize over candidate score functions s with value
clipped to within O(£), so [|s(z) — s*(z)|| < Z&. With both these restrictions, then, \l (s, z, z)| <
f—j + %. We can then apply a Chernoff bound to show concentration of I’: for poly (e, £, B, log )
samples, with 1 — 5, probability we have

& o Otrain

ﬁz[l’(s,x,z)] > IE [l (s,m,2)] — =

which is greater than zero if E[||s(z) — s*(z)||*] > i—i Thus the ERM would reject each score
function that is far in L2. However, as we show in Section 4, restrictions (1) and (2) are both
necessary: the score matching ERM needs a polynomial dependence on both the distribution norm
and the candidate score function values to learn in L?.

The main technical contribution of our paper is to avoid this polynomial dependence on 1/0. To do
so, we settle for rejecting score functions s that are far in our stronger distance measure Df;m, i.e.,
for which

Pl||s(x) — s*(z)]| > /0] > dscore- (11)



Approach. We want to show (10), which is a concentration over x and z. Now, x is somewhat hard
to control, because it depends on the unknown distribution, but z ~ N (0, 021,) is very well behaved.
This motivates breaking up the expectation over z, z into an expectation over x and z | . Following
this approach, we could try to show that

B [1'(s,2,2)] >

s &=

[E[(s2.2)]

However, this is not possible to show; the problem is that this could be unbounded, since s(z) is an
arbitrary neural network that could have extreme outliers. So, we instead show this is true with high
probability if we clip the internal value, making it

Av = Emin(E 1 (s,2,2)], ")) = Blmin(ls(2) — 5" @), "o

z|x

)
Note that A, is a function of the empirical samples x. If s is a score that we want to reject under (11),

. .. 2 . ey
then we know that A, is an empirical average of values that are at least % with probability dgcore. It

log 51— . -
5”‘5‘““" ), we will with 1 — dy;, probability over the samples 2 have

therefore holds that, for m > O(

A, > g2 Jscore

~

= (12)

Concentration about the intermediate notion. Finally, we show that for every set of samples z;
satisfying (12), we will have

B[l (s, 2, 2)] > % > 0.

This then implies

)

I o Aw 268607’6
B 2B ] 2 20

as needed. For each sample z, we split our analysis of EZI@' [I(s, z, z)] into two cases:

Case 1: ||s(z) — s*(z)] > O(g). In this case, by Cauchy-Schwarz and the assumption that
Al <2B/o,

10B?
02

U(s,z,2) 2 ||s(z) = s*(2)]” - 0(?) ls(2) — 5™ (2)[| =

so these = will contribute the maximum possible value to A, regardless of z (in its bounded range).

Case 2: ||s(z) — s*(z)|| < O(£). In this case, ['(s,z,z)| < B*/o? and

2
Var(t/(s,.2)) = 4E[(s(2) — * (). A)7] S O sta) — (@)

so for these z, as a distribution over z, I’ is bounded with bounded variance.

In either case, the contribution to A, is bounded with bounded variance; this lets us apply Bernstein’s
B?log % B?log %

inequality to show, if m > O( ) & O(—z5—=), for every x we will have

02 A

(V' (s,z,2)] > g >0

w =

with 1 — g3, probability.

2 1
B lOg Strain

Conclusion. Suppose m > O( ). Then with 1 — i probability we will have (12); and

€2 6score
conditioned on this, with 1 — dyun probability we will have E,, .[I'(s, z, z)] > 0. Hence this m
suffices to distinguish any candidate score s that is far from s*. For finite hypothesis classes we can
take the union bound, incurring a log || loss (this is given as Theorem A.2). Lemma 1.4 follows
from applying this to a net over neural networks, which has size log H ~ PD log ©.



3.2 Sampling

Now we overview the proof of Lemma 1.3, i.e., why having an € /op_4, accuracy in the Dg sense is
sufficient for accurate sampling.

To practically implement the reverse SDE in (2), we discretize this process into N steps and choose a
sequence of times 0 = tg < t; < --- <ty < 7T. Ateach discretization time t;, we use our score
estimates S, and proceed with an approximate reverse SDE using our score estimates, given by the
following. For ¢ € [tk, tx+1],

dJJT_t = (-TT—t + 2§T—tk (a:T_tk)) dt + ﬁdBt, T ~ N(O, Id). (13)
This is almost the reverse SDE that would give exactly correct samples, with two sources of error: it

starts at A/ (0, I;) rather than g7, and it uses 57—, rather than the sp_;. The first error is negligible,
since qr is e~ T -close to (0, I;). But how much error does the switch from s to 3 introduce?

Let @ be the law of the reverse SDE using s, and let @ be the law of (13). Then Girsanov’s theorem
states that the distance between Q and Q is defined by the L? error of the score approximations:

T—tg
/ lsr—e(2r—2) — Sr—sy (27—0)|?
T—tp41

R N—-1
KL@lIQ) =3 E

k=0

N—-1

~ Z E  [lsr—t,(z) = Sr—s, (@) 1] (teg1 — i) (14)

k=0 9Ttk
The first line is an equality. The second line comes from approximating x7_; by x7_+,, which
for small time steps is quite accurate. So in previous work, good L? approximations to the score
mean (14) is small, and hence KL(Q || Q) is small. In our setting, where we cannot guarantee a good
L? approximation, Girsanov actually implies that we cannot guarantee that KL(Q || @) is small.

However, since we finally hope to show closeness in TV, we can circumvent the above as follows.
We define an event E to be the event that the score is bounded well at all time steps 74, , i.e.,

Bim A (Broaor) = sr )l £ ).

o7 _—
ke{l,..,N} Ttk

If we have a DS{,jV accuracy for each score, we have 1 — P [E] < §. Therefore, if we look at the TV

error between @ and Q, instead of bounding KL(Q || Q). The TV between Q and () can be then
bounded by

™VQ,Q) < (1-P[E)+TV(Q| E).(Q | E)).

The second term TV((Q | E), (Q | E)) is bounded because after conditioning on E, the score error

is always bounded, so now we can use (14) to bound the KL divergence between @) and @, then use
Pinsker’s inequality to translate KL into TV distance.

4 Hardness of Learning in >

In this section, we give concrete examples where it is difficult to learn the score in L?, even though
learning to sufficient accuracy for sampling is possible. Previous works, such as [ ], require
the L? error of the score estimate s; to be bounded by £/0;. We demonstrate that achieving this
guarantee is prohibitively expensive: sampling from a o;-smoothed distribution requires at least
poly(1/o;) samples. Thus, sampling from a distribution ~y-close in 2-Wasserstein to ¢o requires
polynomially many samples in %

To show this, we demonstrate two lower bound instances. Both of these instances provide a pair of
distributions that are hard to distinguish in L?, and emphasize different aspects of this hardness:

1. The first instance shows that even with a polynomially bounded set of distributions, it
is information theoretically impossible to learn a score with small L? error with high
probability, with fewer than poly(1/+) samples.
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Figure 2: For m samples from N (0, 1), consider the score § of the mixture nA(0, 1) + (1 — n)N' (R, 1) above
with 7 is chosen so that 5(104/logm) = 0. For this S, the score-matching objective is close to 0, while the

squared L? error is (R—2>

m

2. In the second instance, we show that even with a simple true distribution, such as a single
Gaussian, distinguishing the score matching loss of the true score function from one with
high L? error can be challenging with fewer than poly(1/+) samples if the hypothesis class
is large, such as with neural networks.

Information theoretically indistinguishable distributions: For our first example, consider the
two distributions (1 —7)N(0,02) +nN (£R, 0?), where R is polynomially large. Even though these
distributions are polynomially bounded, it is impossible to distinguish these in L? given significantly

fewer than % samples. However, the L2 error in score incurred from picking the score of the

wrong distribution is large. In Figure 1, the rightmost plot shows a simulation of this example, and
demonstrates that the L? error remains large even after many samples are taken. Formally, we have:

Lemma 4.1. Let R be sufficiently larger than o. Let py be the distribution (1 — n)N(0,0?) +
nN (=R, c?) with corresponding score function sy, and let py be (1 — n)N(0,0%) + nN(R,o?)
with score sa, such that n = 5;‘;2. Then, given m < % samples from either distribution, it is
impossible to distinguish between py and ps with probability larger than 1/2 4 0,,,(1). But,

2

2
2 € 2
x@pl [lls1(z) = s2(2)[*] 2 ) and a;lEm [ls1(z) = s2(2)%] 2 Pk

Simple true distribution: Now, consider the true distribution being N (0, 02), and, for large S, let
5 be the score of the mixture distribution nA (0, 02) + (1 — )N (S, 0?), as in Figure 2. This score
will have practically the same score matching objective as the true score for the given samples with
high probability, as shown in Figure 2, since all m samples will occur in the region where the two
scores are nearly identical. However, the squared L? error incurred from picking the wrong score
function § is large We formally show this result in the following lemma:

Lemma 4.2. Let S be sufficiently large. Consider the distribution p = nN'(0,02) + (1 —n)N(S, o?)

2
7%“0\/7103 m-S

form = SemW’ and let S be its score function. Given m samples from the standard
Gaussian p* = N (0, 02) with score function s*, with probability at least 1 — m,
-~ 1 SQ
B s(z) — s 2] « L 0(VIogm) e B O(15(2) — s* 2l > .
[I5(2) - 5°(2)] < e w B[R -5 @] 2

Together, these examples show that even with reasonably bounded or well-behaved distributions, it is
difficult to learn the score in L? with fewer than poly(R/~) samples, motivating our (1 — §)-quantile
error measure.

5 Conclusion and Future Work

In this work, we have addressed the sample complexity of training the scores in diffusion models.
We showed that a neural networks, when trained using the standard score matching objective, can
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better dependence on the neural network depth D and Wasserstein error « than given by prior work.
To achieve this, we introduced a more robust measure, the 1 — § quantile error, which allows for
efficient training with poly(log %) samples using score matching. By using this measure, we showed
that standard training (by score matching) and sampling (by the reverse SDE) algorithms achieve our
new bound.

be used for DDPM sampling after 5( 2D log © log® %) training samples. This is an exponentially

One caveat is that our results, as well as those of the prior work [ ] focus on understanding the
statistical performance of the score matching objective: we show that the empirical minimizer of the
score matching objective over the class of ReLU networks approximates the score accurately. We do
not analyze the performance of Stochastic Gradient Descent (SGD), commonly used to approximate
this empirical minimizer in practice. Understanding why SGD over the class of neural networks
performs well is perhaps the biggest problem in theoretical machine learning, and we do not address
it here.
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A Sample Complexity to Achieve (1 — §)-Quantile Accuracy

The goal of this section is to prove our main lemma, the sample complexity bound to learn score at a
single time. More specifically, we will give a quantitative version of Lemma 1.4.

Lemma A.1 (Main Lemma, Quantitative Version). Let qg be a distribution with second moment
m3. Let ¢g(-) be the fully connected neural network with ReLU activations parameterized by 0,
with P total parameters and depth D. Let © > 1. Suppose there exists some weight vector 0* with
[10*]| 00 < © such that

5score : (strain : 52
IINeq [llo- (x) = s¢(x)|1?] < T Co?

for a sufficiently large constant C. By taking m i.i.d. samples from qq to train score s;, when

_ [ (d+1log =) - PD .
m>0<( g5/mm) log <Inax(m27]‘) ®>>7

€ 2 6score 6[!‘(1 in

the empirical minimizer ¢z of the score matching objective used to estimate s, (over ¢g with
10llcc < ©) satisfies

Dgf""’ (¢,5t) < €/oy.
with probability 1 — §yin-

In order to prove the lemma, we first consider the case when learning the score over a finite function
class H.

A.1 Score Estimation for Finite Function Class

The main result (Lemma A.2) of this section shows that if there is a function in the function class H
that approximates the score well in our Dg sense (see (6)), then the score-matching objective can
learn this function using a number of samples that is independent of the domain size or the maximum
value of the score.

Notation. Fix a time ¢. For the purposes of this section, let ¢ := ¢; be the distribution at time ¢, let
o := o be the smoothing level for time ¢, and let s := s; be the score function for time ¢. For m
samples y; ~ qo and z; ~ N(0,02), let x; = e~ ty; + 2; ~ ¢.

We use E[f(z, y, 2)] to denote the empirical expectation - S f(@, vis 2).

m

12



We now state the score matching algorithm.

Algorithm 1 Empirical score estimation for s

Input: Distribution qo, y1, - - ., Ym ~ qo, set of hypothesis score function H = {3;}, smoothing
level 0.

1. Take m independent samples z; ~ N(0,021;), and let x; = e~ ty; + 2;.
2. Foreach s € H, let

1 m
)= 2|

=1

2

3. Let § = argmingcy 1(8)

N

. Return §

Lemma A.2 (Score Estimation for Finite Function Class). For any distribution qy and time t > 0,
consider the oy-smoothed version q, with associated score s;. For any finite set H of candidate score
Sfunctions. If there exists some s* € H such that

* score " 6 rain ° 52
E [ls"(@) — su(a)|f] < 2o Omn E (1s)
t t

for a sufficiently large constant C, then using m > 9} (526 (d + log F I~ )log ‘H‘ ) samples, the
empirical minimizer $ of the score matching objective used to estimate S, satlsﬁes
Oscore (&
Dy (8, 8) < ¢efoy
with probability 1 — ;4.
Proof. Per the notation discussion above, we set s = s; and o = oy.

Denote

I(s,2,2) =

We will show that for all § such that Dg“m (8,s) > e/o, with probability 1 — dyain,
E[i(3,z,2) —I(s*,2,2)] >0,
so that the empirical minimizer § is guaranteed to have

Dg“"”(é7 s)<e/o.

We have
0, w,2) —I(s", 2, 2) = ||5(z) — ;722 — |57 () — g
T L2 .
) ( O I ) 5" (@) = s(@) | — 25" (@) ~ s(z), 5(x) — =)

Note that by Markov’s inequality, with probability 1 — Jyin/3,

B [Is°(@) - s(@)|2] < S

By Lemma A.3, with probability 1 — dyain/3,

2
=5 —z Oscore - €

E <8* (x) — S(J,‘), S(l’) - > 10002

o2

13



Also, by Corollary A.5, with probability 1 — duin/3, for all § € H that satisfy D<= (5, s) > /o
simultaneously,

1602 °

2 2
(5 g
> score

Plugging in everything into equation (16), we have, with probability 1 — dy.in, for all § € H with
D2xx(3, s) > /o simultaneously,

~ - % 5score€2 5score52 5score€2

E[l(3,z,2) —U(s" z,2)] > 1602 3002 5002 0

as required. O

Lemma A.3. For any distribution qy and time t > 0, consider the o-smoothed version q; with
associated score si. Suppose s* is such that

* 5score : 5train . 52
B st @) = s(a)P) < 2=

or a sufficiently large constant C. en, using m > O + log — samples (T, Yi, 25
ently | C. Then, usi O (i (d+log 7= !

g2 Oscore

where y; ~ qo, z; ~ N(0,0%1,) and x; = e~ 'y; + z; ~ q, we have with probability 1 — &;4in,
_Z>:| < 6score€2

-~

B |(6"(0) - s(o). ) -

~ 100002

o2
Proof. Note that s(z) = E,|, [Z%] so that

« —Z
B [(s°(0) ~ s(ohuste) - 23] =0
Also, for any 6, with probability 1 — §, by Lemmas F.4 and F.5,
—z d+log &
[s(x) — = I* < 0726~
g g

d+log + .
for some constant C'. Let F be the event that ||s(z) — 22 ||? < C——p=lun_ Since ||s(x) — 22|
is subexponential with parameter o2 and has mean O (U%) by the above, by Lemma F.7, we have

d+log 24—

—< n 2 dgcore Otrain
E | Is(a) - 5IP1E] § 0 5EE
Then, since P[E] > 1 — loo(digzmimdé s = % oand E[|s*(2) —s(@)|?E] <
€7 Oscore Otrain

E [||s*(z) — s(z)||*] / P[E], we have

B |(s"(0) - s(e).s(0) - 2)IE]
_ E[("(2) - s(a).s(x) — 57)|E] PIE]
P[E]
VE[Is*(@) - s@)[? E] & [Js(z) - 5[/ E] PLE]
) P[]

< zﬁus*m - @12 Ista) - Z31P1E| PiE

i [ € 20score Otrain S Jd+1o d ) £20coreOrain
o2 c & 525scorf:5train 100(d + log $)

€2 dscore Otrain

A

14



2
€ 5score 5lrain
VCo?

Moreover,

B |(6"(0) - s(o).sa) = Z2PIE| < B [I5°(0) = s(a) Pls(e) - 25 17IE]

s )

SE lIS*(’I) = s(@)]I*(

2 ___a
§score . 5train - € d + 1Og €2 8score Otrain

<
~ Co? o2

So, by Chebyshev’s inequality, with probability 1 — dypin /2,

= * —z 525scor66 ain 1 550(“6 g2 (d + IOg 26 d Strai ) 6score : 52
E |(s*(z) — s(x),s(z) — >|E] < Ta; o o Phoeduan ) < N

2
€~ Oscore Ourain

(d+log x5 o)

train

o2

for our choice of m. Since E holds except with probability 00 <& Oirain, We have
with probability 1 — g,y in total,

~

for sufficiently large constant C. O
Lemma A.4. Consider any set F of functions f : R¢ — R? such that for all f € F,
PLL'NP [Hf(x)” > 6/0'] > 6score-

Then, with m > O (#(d + log 1) log %) samples drawn in Algorithm 1, we have with

score 51min

probability 1 — dygin,
m T
1 —2; —2z 1 2 5score ! 52
Z . _ ) ) — ; > —
m = ? < o? " [02 :4) fl@:) + 2 |7 (z)ll” = 1602

holds for all f € F.

Proof. Define

T
—z —2 1 9
o) i=-2 (28| Zk] ) s+ 515l
We want to show that h s has
-~ 1 i 5SCOYC€2
Elhys(z,2)] = — ; hy(wi,z) > <2 (17)
for all f € F with probability 1 — Syin.
d+log —™1
Let B=0O (W) For f € F, let
B if ||f(x)] = 10B

95(@,2) = {hf(x,z) otherwise

be a clipped version of hy(z,z). We will show that for our chosen number of samples m, the
following hold with probability 1 — i, simultaneously:

—2z;
o2

1. For all ¢,

< B.
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2. For all 4,

E[5#|zi]|| < B

5SCOIC 2
3. Elgy(x, 2)] > 4= forall f € F

To show that these together imply (17), note that whenever g¢(z;, z;) # hy(zi, 2;), || f(zi)| > 10B.
So, since || < Band || E[ZF|zi]]| < B,

—2z;
o2

—2;

T
o) =2 (3 -2 o] ) @0 + 515 2 ~ABI GOl + UG 2 B 2 gr(as. ).

So under conditions 1, 2, 3, for all f € F,

6SCOI‘C€2
1602
So it just remains to show that conditions 1, 2, 3 hold with probability 1 — §iain simultaneously.

E[hf(xv Z)] 2 H::[gf(xv Z)] 2

1. For all i, || =5
bound.

< B. Holds with probability 1 — §yin/3 by Lemma F.5 and the union

2. For alli, ||E [Z# | 2;]|| < B. Holds with probability 1 — din/3 by Lemma F.6 and the
union bound.

2
3. Elgs(x,2)] > St forall f € F.

Let E be the event that 1. and 2. hold. Let a; = min(||f(x;)|,10B8). We proceed in
multiple steps.

* Conditioned on E, |g¢(z;,2;)| S B2

If ||f(z;)]| > 10B, |g¢(wi,2;)] = B? by definition. On the other hand, when
| f(z:)|l < 10B, since we condition on E,

(e m[Z]) e+ Diseore

*E [gf(xza Zi)|Ea ai] Z a? - O(étrainBQ)‘
First, note that by definition of g¢(z, z), for a; = 105,

E[gf (2, 2i)|a; = 10B] = B

lgg (@i, zi)| = |hy (i, 20)| = < B?

Now, for a; < 10B,
E gy (@i, zi)|ai] = Elhy (2, 2i)]a:]

E E [hs(zs,2
@il |1f (@) ||=as [—zm[ s )]]

Now, note that

E [hy(z,2)] = 51£ ()P

z|x

So, fora < 10B
1
E (g (@i, 2i)]a;] = 56%2

Now let g;“p(ri, z;) be a clipped version of g (w;, z;), clipped to =C B? for sufficiently
large constant C. We have, by above,
.
Elgs (i, zi)lai, E] = Elg}" (x4, 2| ai, E]
But,
li li
Elg} " (xi, zi)|ai, E] > Elg5 " (21, zi)|ai] — O(Guain B?)
Z a2 - O(5train82)

7
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e Var(g¢ (@i, 2i)|ai, E) < a? B2
For a; = 10B, we have, by definition of g;(x, z),

Var(gs(xi, zi)lai, E) S B*< afB2
On the other hand, for a; < 108,

Var(gs (2, z)|ai, E) < E [gy (2, 2)?|a;, E]

- 2
_x <_2 (Z-5|5]) s+ inf(xi)?)
< alB?
by Cauchy-Schwarz.
* With probability 1 — 8yain/3, for all f € F, E[gf(zs, 2)] 2 © ( )
Using the above, by Bernstein’s inequality, with probability 1 — dyin/6,
E l9f(xi,2zi)|a;, E] 2 — Za — O(6ainB?) — *B Z a; log 5lram N %B2 log Otrain

Now, note that since Py, [||f(2)]| > /0] > dscore» We have with probability 1 —
log ~1—
Oirain /6, for n > O <°g°n

Oscore

n
1 2§
2 score
z § al > Q —=
n “ g
B?.0% log —5|1

So, forn > O ( i ), we have, with probability 1 — yain/3,

€2 05ecore

2
€ 5score
2

Bloyos2)1E) 2 @ (25 ) - OGun?)

g

B2.52

. B?.0%log P — .
Rescaling so that dyin < O (¢) forn > O | ————2e2uin | we have, with

— £2-dscore

probability 1 — Jain/3,

R 2
B lgs (1, 20)|E] 2 O (5 5)

g

Combining with 1. and 2. gives the claim for a single f € F. Union bounding over the
size of F gives the claim.

O
Corollary A.5. Let Hpyq be a set of score functions such that for all 5 € Hpaq,

6SL()VF
Dy (3,8) > ¢€/o.

Then, for m > 0] ( (d + log 5 m)l Iy ‘gf’/‘_‘:’l) samples drawn by Algorithm 1, we have with
probability 1 — 6y,

iHQ > 65‘(‘0}’(:62
~ 1602

B |I5ta) - 1 - (o) -

forall 5 € Hpay.
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Proof. We have, for f(x) := 3(z) — s(z),
I5@) = =17 = lls(2) = =1 = l£(2) + (s(a) = )2 = [ls(a) = — |
= £ @)I? +2(s(2) - )" f(2)
= [f @I = 2= ~E[]a))f (@)

since s(z) = E [5#|z] by Lemma F.1. Then, by definition, for s € Hp,q, for the associated f,
P[|| f(x)]| > €/0] > dscore- SO, by Lemma A .4, the claim follows. O

A.2 Score Training for Neural Networks

Now we are ready to apply the finite function class to neural networks by a net argument. In particular,
we first prove a version that uses a Frobenious norm to bound the weight vector.

Lemma A.6. Let qq be a distribution with second moment m3. Let ¢g(-) be the fully connected
neural network with ReLU activations parameterized by 6, with P total parameters and depth D. Let
© > 1. Suppose there exists some weight vector 6* with ||0*||p < © such that

5score : (strain : 52
s [llo- (x) — s0(2)|1?] < T 02

for a sufficiently large constant C. By taking m i.i.d. samples from qq to train score s, when

_ [((d+log =) -PD .
m>0 (( g5 ) log (max(mg,l) @)) 7

€ 2 dvcore 5tmin

the empirical minimizer ¢z of the score matching objective used to estimate sy (over ¢g with
19llF < ©) satisfies

Dg;""” (¢g,5t) < €/oy.
with probability 1 — ;4.

Proof. Per the notation discussion above, we set s = s; and ¢ = o;. Note that ¢ < 1 since
2 —2t
of =1—e"""

For any function f denote
2

(f,,2) = Hf(x) -

)
0-2

we will show that for every § with [|0]|p < © such that D<= (¢, 5) > ¢/, with probability
1- 5train,

E [Z(¢§7 €L, Z) - l(¢9* y Ly Z)] >0
so that the empirical minimizer ¢ is guaranteed to have

Dgscore (¢§7 S) S 5/0-.

First, note that since the RelLU activation is contractive, the total Lipschitzness of ¢y is at most the
product of the spectral norm of the weight matrices at each layer. For any 6, consider 6 such that

~ T
— <

Let M, ..., Mp be the weight matrices at each layer of the neural net ¢y, and let 1\71, R ]\A/[/D be
the corresponding matrices of ¢y.

We now show that ngﬁg(x) — ¢p(x) H is small, using a hybrid argument. Define y; to be the output of

a neural network with weight matrices My, ..., M;, M1, ..., Mp oninput x, so yo = ¢5(x) and
yp = ¢g(x). Then we have

18



lys — yisall < lell - | TLIMGN ) - [ Mia = 3| [ TT |5
G>it1

j<i

<tater -],

and so
D—1 .
[65@) = 6o (@), = lvo =0l < 3 s = vl < 2 DO [F=8]| < o] 7/
=0

Note that the dimensionality of # is P. So, we can construct a m—net N over the set {6 :

1\ P ~
[19llF < ©} of size O (%) , so that for any 6 with ||0||p < ©, there exists § € N with

l6g(x) — do(@)]l2 < (7/0) - [l]]
Let H = {¢5: 6 € N}. Then, we have that for every 6 with ||0]| » < ©, there exists i € H such that

E [|In(z) — do(2)[*] < (7/0)? Z:IIJL‘zII2 (18)

Now, choose any 6 with ||0]| » < © and Di<r (¢, s) > e/, and let h € H satisfy the above for 6.
We will set
0/5255001,6

(19)
(Y2 (m . max(m%, 1) + (d + log 5:;,1 ))

T =

€2 d5core

P
D— P DO*P~1(m-m2+ d+log w2
for small enough constant C’. So, |H| = O ("D(iil) <0 ( (m-ma+( i) ,

since o < 1.

So, our final choice of m satisfies m > O ( - (d + log 5 am) log J;?:‘L)
We have
l(¢§7 Zz, Z) - l(¢9* » Ly Z)
22 22
= llgg(z) = =512 = llgo- (2) - =5 |
~ ~ —z ~ —z
= || ¢5(x) — h(@)|* + 2(¢5(x) — h(z), h(z) - —2) @) — ;HQ
z

= lls(2) - ;%II2 = lléo- (2) = s(@)|* = 2(0- (v) — 5(), 5(x) — —3)

Now, by Corollary A.5, for our choice of m, with probability 1 — dy,n/4 for every h € H with
Dg”““”“/ *(h,s) > ¢/(20) simultaneously,

=~ —z 6score € 2
B I - 517 - o) - 512 2

(20)

~ 12802
By Markov’s inequality, with probability 1 — dyain/4,

~ 0, score 2
E [[lg0- (2) — s(@)] 2] < Zo= -

By Lemma A.3, with probability 1 — dyain/4,

E [t () — stoota) - )] < foue?

a? 100002
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Plugging into (20) we have that with probability 1 — 35yain/4, for every 7 satisfying D2"/%(h, s) >

e/(20),

i Oscore” Oscore + €2 - = =~ -z
_ _ . > _ Y N B
]E I:l((beyl',Z) l(¢9 7«/1:72:)} - 1280.2 2500.2 10000_2 +2<¢0(£B) h($)7h($) 702 >
e 4 2{050) — W), Fw) ~ 2) on
= 600 - 02 o\r ), &) = 3

Now, we will show that DS*“’”/ *(h,s) > £/(20), as well as bound the last term above, for every 0
satisfying Dgsm(d)g, s5) > ¢/o and h € H the rounding of ¢.

By the fact that g has second moment m32, we have that with probability 1 — § over z,

Mo 1
< —= —
||| < \/g+a<\/g+1/210g5)

Now since D3~ (¢, s) > /o, and [h(x) — ¢gz(x)|| < (7/0) - ||lz||, we have, with probability at
least dscore /2,

Ih(2) = s(2)]l = |95(2) = s(@)| = Ih(z) - ¢5(2)|

> cfo — (r/o)- (%H(“ﬂmw

> ¢/(20)

for our choice of 7 as in (19). So, we have shown that ng/Q(E, s) >¢e/(20).

Finally, we bound the last term in (21) above. We have by (18) and a union bound, with probability
1- 5Lrain/ 8,

B (1) - a5(aP] (/) (522 4% (4108 ) )

] train

o2
< (7'/0)2 . (mmz + <d+10g m )) since o < 1
5train 5Lrain
012 452 1
S T T by (19)
020 %ﬁ:ﬂz,)ﬁ_(dﬁ_loggﬁn)

Similarly, with probability 1 — Jyain/8,
~ [ ~ — . m?2 1
E @) — —= 2| <oP (B2 4 62 (d+1log—— ) ) + = (d+log —
o2 0 o2

train 5train 5train

So, putting the above together, with probability 1 — dyain /4,

g ~ | ~ _ 012 452 1
E [IF(o) - @)l?] B |Ito) - 5P| 5 e (14 )

12 .4 52
< C"e 5score
~ ol

since o < 1

So, with probability 1 — y,in /4, for some small enough constant C”,

B |(05(0) ~ hlo). o) - 25)] > —\/IE (o) = 656)1P] - B |l - 2517

2
Oscore€

> __seorem
— 2000 - o2
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So finally, combining with (21), we have with probability 1 — iy

= score * g2
E [l(¢g,2,2) — (¢e-, x,2)] > 1000 o2 = 0

So, we have shown that with probability 1— i, for every 0 with ||§ |F < ©and Dgwe (¢g,5) > €0,
E [l(¢§a Z, Z) - l((,bg*,m, Z)] >0
so that the empirical minimizer ¢ is guaranteed to have

Dg<core(¢§, s) < E/U.

O
Then we have our main lemma as a direct corollary:
Proof of Lemma A.1. For every 8 with [|6]|oo < ©, we have
0]l < VP||8]| < VPO.
Then, by applying Lemma A.6 directly, we prove the lemma. O

B Sampling with our score estimation guarantee

In this section, we show that diffusion models can converge to the true distribution without necessarily
adhering to an L2 bound on the score estimation error. A high probability accuracy of the score is
sufficient.

In order to simulate the reverse process of (1) in an actual algorithm, the time was discretized into N
steps. The k-th step ends at time ¢y, satisfying 0 < tp < t; < --- <ty =T — . The algorithm
stops at ¢y and outputs the final state x7_¢ .

To analyze the reverse process run under different levels of idealness, we consider these four specific
path measures over the path space C([0, T — ~]; R?):

* Let () be the measure for the process that
der_t = (xr—¢ + 2s7_¢(xr—¢)) dt + V2dB;, a1 ~qr.

* Let Qqis be the measure for the process that for ¢ € [tg, tgt1],

der_y = (xp—t + 27—, (T7—y,,)) dt + V2dB,, xr ~ qr.
* Let Q) be the measure for the process that for ¢ € [t, tx 1],

dor_y = (vr—¢ + 287—4, (v7-4,)) dt + V2dBy, o7 ~ qr.
e Let @ be the measure for the process that for ¢ € [ty, txt1],

dzp_y = (Tp_¢ + 2874, (x7_4,)) dt +V2dB,,  zp ~ N(0,1,).

To summarize, () represents the perfect reverse process of (1), Qg is the discretized version of @, Q
runs Qg;s with an estimated score, and @ starts @ at N(0, I;) — effectively the actual implementable
reverse process.

Recent works have shown that under the assumption that the estimated score function is close to the

real score function in L2, then the output of @ will approximate the true distribution closely. Our next
theorem shows that this assumption is in fact not required, and it shows that our score assumption
can be easily integrated in a black-box way to achieve similar results.
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Lemma B.1 (Score Estimation guarantee). Consider an arbitrary sequence of discretization times
0=ty <ty < -+ <ty =T+, and let 0y := V1 — e 2t Assume that for each k €
{0,..., N — 1}, the following holds:

3
D5/N §T try ST —t < .
qT—t), ( ko k) — Tty

Then, we have

N—1
~ 1
Pq [Z IS7-t, (27-1,) = 57t (@11, |5 (trgr — ti) < € (T + log 7)] >1-4.

k=0
Proof. Since random variable xp_;, follows distribution ¢r_;, under @, foreach k € {0,..., N —
1}, we have
P, |15 < < >1-2
Q |I5r—t (@r—1,) = 57—t (274, )| < Vl—e2r |- N

Using a union bound over all N different o values, it follows that with probability at least 1 — § over
@, the inequality
&2

S7—t, (@r—t,) = 571, (@72, )II3 < P

is satisfied for every k € {0,..., N — 1}. Under this condition, we have

ZHST b (@ro0) = s (@ro) 5 (s — th)

k=0
3 N-1 2
< m(tk+l —tk)
k=0
N—-1 thy1
< / 1 — e_Q(T i) dt
k=0
.

1—e (T tr) dt

1
2 (T—G—log).
Y

N—1

—~ 1

Pq [} 8o (£7—10) — 57—y (w11) 2t — ti) < (T tlog 7)] >1-4.
k=0

IA
S—
’ﬂ

Hence, we find that

O

Lemma B.2 (Score estimation error to TV). Let q be an arbitrary distribution. If the score estimation
satisfies that

N—1
Pq lZ 37—t (@7—t,) — STt (@1t || (tis1 — ti) < 52] >1-4, (22)
k=0

then the output distribution pr_.,, of @ satisfies
TV(gy, pr—ty) S0+ &+ TV(Q, Quis) + TV(qr, N (0, I)).
Proof. We will start by bounding the TV distance between Qg;s and Q. We will proceed by defining

Q and arguing that both TV(Quis, Q) and TV(Q Q) are small. By the triangle inequality, this will
imply that () and () are close in TV distance.

22



Defining Q. For k € {0,..., N — 1}, consider event

k
B = <Z|§Tti (@r—t,) = s, (@71, |5 (tigs — i) < 52) :

=0

which represents that the accumulated score estimation error along the path is at most £2 for a
discretized diffusion process.

Given E}, we define a version of Qg;s that is forced to have a bounded score estimation error. Let
Q over C ((0,T],R%) be the law of a modified reverse process initialized at z7 ~ gr, and for each
te [tk,tk+1),

der_y = — (xp_y + 2574, (zr_y, ) dt + V2dB,, (23)

where

~ L ST —t4 (I'Tftk) Ek hOIdS7
STt (T7-1,) = { S7_t, (x7—t,) FEj) doesn’t hold.

This SDE guarantees that once the accumulated score error exceeds &2, (E fails to hold), we
switch from the true score to the estimated score. Therefore, we have that the following inequality

always holds:
N-—

H

57—, (xr—t,) — ST—t), (@7—1,) I3 (tRg1 — ) < €7 (24)
k=0

Qais and @ are close. By (22), we have
PQdis [EO ARERRA EN—l] = PQdis [EN—l] > IEDQ [EN—l] - TV(Q7 Qdis) >1- d— TV(Q7 Qdis)a

Note that when a path (27 _¢):e[0,¢, satisfies Eg A -+ - A E_y, its probability under @ is at least its
probability under Qg;s. Therefore, we have

TV(Quis, @) < 3+ TV(Q, Quis)-

@ and () are close. Inspired by [ ], we utilize Girsanov’s theorem (see Theorem E.8) to
help bound this distance. Define

by == \/i(gT—tk (‘TT—tk) - /S\T—tk (xT—tk))’

where k is index such that 7 € [ty, tx41). We apply the Girsanov’s theorem to (Q, (b,.)). By Eq. (24),
we have

N—
/ 002 dr < 3 IVEG -1y (01-10) = Tty (110 Eltisr — be) < 26° < o6,
0 k=0

This satisfies Novikov’s condition and tells us that for

t 1 t
E(L), = exp (/ deBr—f/ ||br||§dr>,
0 2 0

under measure Q' := & (L) Q. there exists a Brownian motion (Et)te[o,t ] such that

t
Bt = Bt —/ brd’/‘,
0
and thus for t € [ty, tgi1),

dBy = dBy + V2(Fr—, (v7-1,) — S7—4, (x11,)) dt.
Plug this into (23) and we have that for ¢ € [tg,tx+1)

deg_t = — (Tr_t + 2874 (¥7_1,)) At +V2dBy, 27 ~ qr.
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This eguation depicis the distribution of z, and this exactly matches the definition of Q. Therefore,
Q=Q =£&(L),,Q,and we have

G

Eé(L),, ]
Q

tN

Then by using (24), we have

tn

E[In&(L),,] SE
Q Q

N-1
Z 1571, (27-1,) = St (@r—1,) |5 (trsr — tk)] Se
k=0

Therefore, we can apply Pinsker’s inequality and get

™V@Q.Q) <[k (QQ) 5=

Putting things together. Using the data processing inequality, we have
Combining these results, we have

TV(Q,Q) < TV(Q, Quis) + TV(Qais, Q) + TV(Q, Q) + TV(Q, Q)
Sd+e+TV(Q, Qais) + TV(gr, N(0,14)).

Since g is the distribution for z7_;, under @ and pr_., is the distribution for z7_;, under @), we
have

TV(gy, pr—ix) < TV(Q,Q) S 6 + ¢ + TV(Q, Quis) + TV(qr, N'(0, 1))
O

Lemma B.3. Consider an arbitrary sequence of discretization times 0 =ty < t; < --- <ty =
T — ~. Assume that for each k € {0,... N — 1}, the following holds:

~ 1
DY/N (ST—ty, 87—1,) < R

qT -1y, 0Tty /T + log%
Then, the output distribution qr_.,, satisfies

TV(@r—tx,ar—ty) S0+ + TV(Q, Quis) + TV(qr, N (0, 1a)).

Proof. Follows by Lemma B.1 and Lemma B.2. O

The next two lemmas from existing works show that the discretization error, TV(Q, Quis), is relatively
small. Furthermore, as T increases, g7 converges exponentially towards N (0, I).

Lemma B.4 (Discretization Error, Corollary 1 and eq. (17) in [ D. ForanyT > 1, v <1
and N > log(1/7), there exists a sequence of N discretization times such that

d 1
TV(Q, Qais) S \/; <T+ log 7) .

Lemma B.5 (TV between true Gaussian and g for large 7', Proposition 4 in [ 1. Let q be a
distribution with a finite second moment of m3. Then, for T > 1 we have

TV(qr, N(0, 1)) < (Vd +my)e .

Combining Lemma B.4 and Lemma B.5 with Lemma B.3, we have the following result:
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Corollary B.6. Let q be a distribution with finite second moment m3. For any T > 1, v < 1 and
N > log(1/7), there exists a sequence of discretization times 0 = to < t; < --- <ty =T —~
such that if the following holds for each k € {0,...,N — 1}:

DI/N (5 3

qT—t), (ST—tkaST—tk) S o )
—lk

then there exists a sequence of N discretization times such that

1 d 1
TV(gy, pr—tn) S 5+51/T+10g; + ‘/ﬁ <T+log7> + (\/&+m2)e*T.

This implies our main theorem of this section as a corollary.

Theorem B.7. Let q be a distribution with finite second moment m3. For any y > 0, there exist
N = 5(# log? dﬁyﬂ) discretization times 0 =ty < t; < --- < ty < T such that if the
Sollowing holds for every k € {0,..., N — 1},

~ g
DN (Gp 4, s74,) <
QT—t,k( k? k) — UTftk

then DDPM can produce a sample from a distribution that is within O(8 + e+/log ((d + m2) /7)) in
TV distance of q, in N steps.

Proof. By setting T' = log(%) and N = %# in Corollary B.6, we have

- d
TV(Q’YapT—tN) =0 (5 +e log +,ym2> .

O

Furthermore, we present our theorem under the case when my lies between 1/ poly(d) and poly(d)
to provide a clearer illustration.

Lemma 1.3. Let q be a distribution over R? with second moment m2 between 1/poly(d) and poly(d).
For any v > 0, there exist N = O(ﬁ log? %) discretization times 0 =t < t; < --- <ty <T
such that if the following holds for every k € {0,...,N — 1}:

g
DN STy, 5T—1),) <
qT—tk( k) k) — UT—tk

then DDPM can sample from a distribution that is within O(8 + £+/log (d/7)) in TV distance to Qv
in N steps.

C Sample Complexity of Training Diffusion Model

In this section, we present our main theorem that combines our score estimation result in the new (6)
sense with prior sampling results (from [ ]) to show that the score can be learned using a
number of samples scaling polylogarithmically in %, where ~y is the desired sampling accuracy.

Lemma C.1. Let qq be a distribution with second moment m3. Let ¢g(-) be the fully connected
neural network with ReLU activations parameterized by 0, with P total parameters and depth D.
Let © > 1. For discretization times 0 = tg < t; < --- < ty, let sp_y, be the true score function of
qr—t,- If for each ty, there exists some weight vector 6* with ||0*| cc < © such that

2
5score : 5train - €

E [”ﬁbe* (w) — ST—ty, ($)||§} < W

TAT — 1y,

(25)

~ ( N(d+log 5-—)-PD log (max(m2,1)~@

Then, if we take m > O )) samples, then with probability

€% Oscore Otrain

1 — O4rain, each score $p_y, learned by score matching satisfies

Dg;[iet/kN(gT—tk 187—1),) S €[0Ty
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Proof. Note that for each tx, gr_+, is a op_;, -smoothed distribution. Therefore, we can use
Lemma A.1 by taking Oyain /N into Oy and taking dgeore /N into dgcore. We have that for each ¢,
with probability 1 — Jyain /N the following holds:

]P)JCNQTft,k H|‘§T—tk (‘T) - ST—tk ('T)H S E/GT—tk] Z 1 - 5sc0re/N-

By a union bound over all the steps, we conclude the proposed statement. O

Now we present our main theorem.

Theorem C.2 (Main Theorem, Full Version). Let q be a distribution of R? with second moment m3.
Let ¢y(-) be the fully connected neural network with ReLU activations parameterized by 0, with P

total parameters and depth D. Let © > 1. For any vy > 0, there exist N = 0(52152 log? m2+71/m2)
discretization times 0 = tg < --- < tny < T such that if for each ty, there exists some weight vector

0* with ||6*||co < © such that

§-ed 1

< .
CNZU%—tk log d+m2’—:’-1/m2

E (o0 (@) - sr_e, @3]

TGT —ty,

for sufficiently large constant C, then consider the score functions trained from
~ (N(d+1log)-PD 1)- 1
m>0< (d+ Zi&) log <max(m62, ) G)> ~logm2+,y /mg)

i.i.d. samples of q, with 1 — § probability, DDPM can sample from a distribution e-close in TV to a
distribution ymgy-close in 2-Wasserstein to q in N steps.

Proof. Note that for an arbitrary ¢ > 0, the 2-Wasserstein distance between ¢ and ¢, is bounded by
O(tmsy + V/td). Therefore, by choosing ¢ty = T — min(vy, y?m3/d), Theorem B.7 shows that by
choosing N = O( 55 log? ——4+m2 )), we only need

g2 442 min(vy,y2m2/d
/
>
e/N (=
Dqéftk(STftkaSTftk) < =
OT—t, /108 b

min(v,7?m2/d)

then DDPM can produce a sample from a distribution within 5(5’ ) in TV distance to a distribution
yme-close in 2-Wasserstein to ¢ in IV steps. Note that

d+ mo < d+mao+1/mo

og —; ~
min (v, v2m3/d) %
Therefore, we only need to take 5( E,zi 52 log2 m2 +v1/ m2 ) steps. Therefore, to achieve this, we set

d 1 . .
Siin = 0, Sore = &', and & = &/ [log T2 < ot/ flog iz, in Lemma C.1. This

gives us the result that with

-0 <N(d+1zi};) -PD log (max(m;,l) : 9> Jog ™2 +fyl/m2)

samples, we can satisfy the score requirement given the assumption in the statement. O

For cleaner statement, we present this theorem under the case when my lies between 1/ poly(d) and
poly(d) and achieving training success probability of 99%. This gives the quantitative version of
Theorem 1.2.

Theorem C.3 (Main Theorem, Quantitative Version). Let q be a distribution of R? with second
moment m3. Let ¢g(-) be the fully connected neural network with ReLU activations parameterized
by 0, with P total parameters and depth D. Let © > 1. For any ~y > 0, there exist N = O(dlog2 %)

discretization times 0 = tg < --- <ty < T such that if for each ty, there exists some weight vector
0* with ||6*||co < © such that

§-ed
< a
CN20'%7tk log g

E [lé0(@) ~ sz @]

TNGT -y,
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for a sufficiently large constant C, then consider the score functions trained from

~ (d?>PD 1
mZO( 3 -log@-log3)
€ Y

i.i.d. samples of q. With 99% probability, DDPM using these score functions can sample from a
distribution e-close in TV to a distribution ymo-close in 2-Wasserstein to q in N steps.

D Hardness of Learning in >

In this section, we give proofs of the hardness of the examples we mention in Section 4.

Lemma 4.1. Let R be sufficiently larger than o. Let py be the distribution (1 — n)N(0,02) +
NN (=R, 0?) with corresponding score function sy, and let py be (1 — n)N(0,02) + nN (R, o?)

2 2
with score so, such that n = ER"Q . Then, given m < 55? samples from either distribution, it is

impossible to distinguish between py and ps with probability larger than 1/2 + 0,,,(1). But,

E [llsi(z) = s2(2)?] 2 % and E [|s1(2) — s2(2)|%] 2 %

TPl T~p2

Proof.
TV(p1,p2) 2 n
So, it is impossible to distinguish between p; and p2 with fewer than O (%) samples with probability

The score L? bound follows from calculation. O

Lemma 4.2. Let S be sufficiently large. Consider the distribution p = nN'(0,02) + (1 —n)N(S, %)
SZ
Se~ & +10+/Tog m-S

forn = S ovieem and let 5 be its score function. Given m samples from the standard
Gaussian p* = N(0, 02) with score function s*, with probability at least 1 — m,
E [[8(x) — 5" (@)]*] < L0V by [I52) = s*(@)II”] 2 S
Proof. Let X1,...,X,, ~ p* be the m samples from (0, o2). With probability at least 1 — m,
every X; < 20+/logm. Now, the score function of the mixture p is given by
2
R _% _ :c;QS (1*777) e—%+5m
A(a) = RAES
BEEE
n
For x < 2+/logm,
—O(S+v1logm) 1
oy € —0(Sylogm
3($)——U2<1+ 5 >+0_26 (Svlogm)
So,
™ -~ * 1 — Viogm
E [|[3(z) — s*(2)|*] < Pl O(sviesm)
On the other hand,
S2
]E -~ ok 2 > 2
E [I56@) -5 @I 2 -
O
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E Discussion of [ ]

Here, we present a brief, self-contained discussion of the prior work [ ]. The main result of
that work on score estimation is as follows.
Theorem E.1 (Proposition 9 of [ ], Restated). Let F be a class of Re-valued functions, all

of with are %—Lipschitz, with values supported on the Euclidean ball with radius R, and containing

uniformly good approximations of the true score sy on this ball. Given n samples from qy, if we let 5y
be the empirical minimizer of the score-matching loss, then with probability at least 1 — 6,

d (loglogn + log §) )

Epng, [[3e(2) = se(@)|’] S (LR + B)? (logzn'Ri(f) + -

Here, B is a bound on ||s(0)||, and R, (F) is the Rademacher complexity of F over n samples.

In the setting we consider, for the class of neural networks with weight vector 6 such that ||0||o. < ©
with P parameters and depth D, it was shown in [ ] that

Ru(F) < Rﬁ@x/ﬁ)l) VD

n

Moreover, the true score is ?Rt Lipschitz, so that if we further restrict ourselves to neural networks
have the same Lipschitzness, L < U—Ez. B can be bounded by ‘g—?.

Thus, an application of the theorem to our setting gives a sample complexity bound of
9] (W -(©2P)Pv/Dlog %) for squared L? score error O (Z—;) In order to support o-

smoothed scores, we need to set R > *g, for a sample complexity of O (dz/;ng (©2P)P\/Dlog %)

. . . 2
to learn an approximation to s; with squared L? error O (%)
t

So, we obtain the following corollary.
Corollary E.2. Let q be a distribution over R® supported over the Euclidean ball with radius
R<O (\/&/Jt). Let F be the set of neural networks ¢y(-), with weight vector 6, P parameters

and depth D, with ||0]| < © and values supported on the ball of radius R, and that are O(R/0+)-
Lipschitz. Suppose F contains a network with weights 0* such that ¢g- provides uniformly good
approximation of the true score s; over the ball of radius R. Given n samples from q;, if we let 5; be
the empirical minimizer of the score-matching loss, then with probability 1 — 9,

E [I5:) - or )17 <0 (5)

forn > 9] (di/;@s (@2P)D vV Dlog %)

To learn score approximations in L? for all the N relevant timesteps in order to achieve TV error ¢ and
Wasserstein error v - R, this implies a sample complexity bound of O <d5/2 (©2P)P\/Dlog %) =

7352
O (vzg (©2P)Pv/Dlog %) for our final choice of N.

F Utility Results

Lemma F.1 (From [ ). Let f be an arbitrary distribution on R%, and let fs, be the X-smoothed
version of f. That is, fs(z) = Eywy [(27) 2 det(8) "2 exp (-1 (z = Y)T'S" (2 - Y))]. Let
sx; be the score function of fx. Let (X,Y, Zx) be the joint distribution such that Y ~ f, Zs, ~
N(0,%) are independent, and X =Y + Zx, ~ fx. We have for ¢ € RY,
fz(x + 5) - F {e—sTxflzz—éeTEfle}
fg (x) Zs |z
so that

su(z) = ZIzElw 271 25]
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Lemma F.2 (From [ ], restated). Let x be a mean-zero random vector in R? that is -
subgaussian. That is, for every vector v,

E |:e)\<w,v>:| < e/\Q’UTE’U/Q

1
lzll S vTe(E) + 4/ 2lZ]| log

Lemma F.3. For sy, the score function of an X-smoothed distribution where ¥ = 021, we have that

vl sy (x) is O(1/0?)-subgaussian, when x ~ fx and ||v|| = 1.

Then, with probability 1 — 6,

Proof. We have by Lemma F.1 that
sp(z) = E [E7'Zs]

Zz;lm
So,
E [ M= E | E W12y
z~ fs [(U 52(@)) ] z~fy | Zs|x [U Z]
< Ts—1r7 \k
< % (W21 Zs)"]
kk/2
< —~ since v Zs, ~ N(0,0?)
o
The claim follows. O
Lemma F4. Let ¥ = 021, and let © ~ fsx.. We have that with probability 1 — 6,
d+log %
2 < 5
lss()? s S8
Proof. Follows from Lemmas F.3 and F.2. O

Lemma F.5. For z ~ N(0,021,), with probability 1 — 6,

\/d+1log t
|5 s ¥——

o o

Proof. Note that ||z||? is chi-square, so that we have for any 0 < \ < 02/2,
Izl |2 1
E|AME] <
: { a2/
The claim then follows by the Chernoff bound. O

Lemma F.6. For x ~ fs, with probability 1 — 6,

1
. {qu L Varloes

Zsl|z | o2 o

Proof. Since Zs, ~ N (0,021,) so that || Zx||? is chi-square, we have that for any 0 < \ < 02/2, by

Jensen’s inequality,
NEo HZZH]Q NESI 1
E Zz\*[ o2 < FE i P —
e~ fs [ =7 | = (1 2(\o?))4?

The claim then follows by the Chernoff bound. That is, setting A = o /4, for any t > 0,

AE,p, [122172
||ZE|| ? Ezwfz {6 ZE‘[ i ] } d/2 —to?/4 din2 _ to2
—to _ odln2_ to
Px’\/fz ng |:O'2:| >t < By < 2%% =22 4
1
Fort = O (%), this is less than 6. O
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Lemma F.7 ([KN]). Let X be a non-negative random variable such that for every t > 0, P[X >
t] < exp(—At) for some constant X > 0. Then, for K > 0,

BLXIX > K] S BN+ 5 los (5757 )

Proof. Let p := P[X > K] and denote the distribution of X as P. Consider the sequence of iid
samples {X; };>o sampled from P. Let T" be the first index ¢, where X; > K. Then the distribution
of X is the conditional distribution of X given X > K. For any m > 0,

XT<ZI E—1)m < T < km) sup X;
k>1 (E—1)m<i<km
< Z 1((Ek=1)m < T) sup X
k>1 (k—1)m<i<km

Now, 1 ((k — 1)m < T') and SUP j,_1),n<i<pm X are independent since 1 ((k — 1)m < T') depends
only on {X;}ic[1,(k—1)m]- Thus,

E[X|X > K] =E[X7] <Y E[1((k—1)m < T)|E sup X
k>1 (k—1)m<i<km
1
< (-t (B + 257
1 logm

< - (Ex

S (B 25

Choosing m = zl) so that (1 — p)™ < 1 gives the claim. O

Theorem F.8 (Girsanov’s theorem). Fort € [0,T), let L; = fg bs dBs where B is a Q-Brownian
motion. Assume Novikov’s condition is satisfied.:

E

exp 2 /T||bs||2ds < .
Q 2 0 2
t 1 t
&), = ([ bean -1 [Inaigas)
0 0

t
Bt = Bt_/ bSdS
0

is a Brownian motion under P where P := E(L)Q, the probability distribution with density E (L)
w.r.t. Q.

Then

is a Q-martingale and
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