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Abstract

Mixture of experts (MoE) methods are a key component in most large language model
architectures, including the recent series of DeepSeek models. Compared to other MoE implemen-
tations, DeepSeekMoE stands out because of two unique features: the deployment of a shared
expert strategy and of the normalized sigmoid gating mechanism. Despite the prominent role
of DeepSeekMoE in the success of the DeepSeek series of models, there have been only a few
attempts to justify theoretically the value of the shared expert strategy, while its normalized
sigmoid gating has remained unexplored. To bridge this gap, we undertake a comprehensive
theoretical study of these two features of DeepSeekMoE from a statistical perspective. We
perform a convergence analysis of the expert estimation task to highlight the gains in sample
efficiency for both the shared expert strategy and the normalized sigmoid gating, offering useful
insights into the design of expert and gating structures. To verify empirically our theoretical
findings, we carry out several experiments on both synthetic data and real-world datasets for
(vision) language modeling tasks. Finally, we conduct an extensive empirical analysis of the
router behaviors, ranging from router saturation, router change rate, to expert utilization.

1 Introduction

The recent years have witnessed a dramatic increase in the use and success of of deep learning
models, leading to remarkable advances in a variety of fields, namely natural language processing
[30, 18, 20, 38], computer vision [62, 41], multimodal learning [23, 79], and reinforcement learning
[4, 10]. However, this trend has also introduced several challenges in terms of computational efficiency.
One common approach to tackle this challenge is to leverage Mixture-of-Experts (MoE) architecture,
which allows to scale up the model capacity without a proportional increase in computation.

Originally proposed by Jacob et al. [28], MoE has been known as a form of ensemble learning
that combines the power of several individual models through an adaptive gating network. In
particular, these individual models are termed experts and can be formulated as classifiers [8, 52],
regression models [19, 34], or feed-forward networks (FFNs) [64, 12]. Meanwhile, the gating network
is responsible for dynamically assigning input-dependent softmax weights to experts based on their
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specialization in the input domain. Then, to improve the scalability of MoE, Shazeer et al. [64] have
recently introduced a sparse version of MoE which activates only a subset of specialized experts
per input, allowing to increase the number of trainable parameters while keeping the computation
overhead nearly unchanged. As a result, there has been a surge of interest in employing the sparse
MoE architecture in several large-scale applications, particularly language modeling [15, 14, 22, 69, 60].

Despite their widespread use in large language models, the sparse MoE architecture faces the
challenge of knowledge redundancy, that is, multiple experts may end up acquiring overlapping
knowledge, leading to the redundancy of expert parameters. In response to this issue, Dai et al. [12]
have come up with a novel DeepSeekMoE framework that divides the set of experts into two disjoint
subsets. Experts in the first subset are referred to as shared experts and are always activated to
capture common knowledge across different domains. On the other hand, only few experts in the
second subset, called routed experts, are activated, typically via a sparse softmax gating mechanism
to learn specialized knowledge. This shared expert strategy helps enhance expert specialization by
encouraging experts to specialize in distinctive aspects of the data, thereby alleviating the parameter
redundancy problem. The new DeepSeekMoE architecture has been adopted as a vital component
in the series of high-performing DeepSeek language models, most notably DeepSeek-V2 [14] which
uses sparse softmax gating in the DeepSeekMoE framework, and DeepSeek-V3 [15], which employs
a sparse normalized sigmoid gating. Surprisingly, the shared expert strategy has only been briefly
investigated in [12] from the perspective of expert specialization, while there have been no studies
on the benefits of the normalized sigmoid gating.

Contributions. The primary goal of this paper is to provide a comprehensive theoretical study of
these two distinguishing features of DeepSeekMoE. Below we perform a convergence analysis of the
task of parameter estimation in order to examine the sample efficiency of the shared expert strategy,
that is the rate, as a function of the number of data points, at which each expert to specialize in some
aspects of the data. Furthermore, we also compare the sample efficiency of the normalized sigmoid
gating used in the DeepSeek-V3 model to that of the softmax gating used in the DeepSeek-V2 model.
Our contributions are threefold and can be summarized as follows.

(1) Sample efficiency of the shared expert strategy. Our analysis in Section 2 reveals that shared
experts admit significantly faster convergence rates than routed experts and experts in MoE models
without the shared expert strategy, whose rates depend in a complicated manner on the solvability
of certain systems of polynomial equations as well as the number of fitted experts (see Table 1). As a
result, a smaller amount of data are required to approximate shared experts compared to non-shared
experts in DeepSeekMoE and standard MoE models to achieve the same level of statistical accuracy.

(2) Sample efficiency of the normalized sigmoid gating. Similarly, when using the normalized sigmoid
gating instead of the softmax gating, the convergence rates of routed experts no longer hinge on
the solvability of a system of polynomial equations and, therefore, are provably faster than those of
shared experts, which remain unchanged in this setting (see also Table 1). Thus, the amount of data
required to estimate routed experts within a given error decreases substantially, demonstrating the
sample efficiency of the normalized sigmoid gating over the standard softmax gating. Due to space
limitations and the technical nature of this analysis, we present these results in Appendix A.
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Table 1: Summary of expert estimation rates in DeepSeek-V2’s MoE with softmax gating (Section 2)
and DeepSeek-V3’s MoE with normalized sigmoid gating (Appendix A). Below, the function r2 stands for
the solvability of certain systems of polynimial equations specified in Appendix B, while the notation V2,j

denotes a Voronoi cell defined in equation (3). For the normalized sigmoid gating setting, we consider two
complementary parameter settings, namely sparse regime and dense regime (see Appendix A for further
details).

DeepSeek-V2’s MoE ReLU FFN Experts Linear Experts

Shared Experts ÕP (n
−1/4) ÕP (n

−1/4)

Routed Experts ÕP (n
−1/4) ÕP (n

−1/r2(|V2,j |))

DeepSeek-V3’s
MoE

ReLU FFN Experts Linear Experts

Sparse Regime Dense Regime Sparse Regime Dense Regime

Shared Experts ÕP (n
−1/4) ÕP (n

−1/4)

Routed Experts ÕP (n
−1/4) ÕP (n

−1/2) ÕP (n
−1/r2(|V2,j |)) ÕP (n

−1/2)

(3) Empirical validation. To validate our theoretical findings, we conduct extensive numerical
experiments on simulated and real-world data. The experimental results on synthetic data are in
very close agreement with our theoretical findings about the convergence rates of the shared expert
strategy and the normalized sigmoid gating; see Appendix G for detailed results. The experiments
summarized in Section 3 on language modeling and vision-language modeling further demonstrate the
applicability of our theoretical insights in real-world scenarios. Finally, we perform a detailed analysis
of router behavior in Section 3.3, providing further insights into the contribution and dynamics of
each component of the DeepSeekMoE architecture.

Notation. For any n ∈ N, we let [n] = {1, 2, . . . , n}. For any vectors v := (vi)
d
i=1 ∈ Rd and

α := (αi)
d
i=1 ∈ Nd, we denote vα :=

∏d
i=1 v

αi
i , |v| :=

∑d
i=1 vi and α! :=

∏d
i=1 αi!, while ∥v∥

represents the ℓ2-norm of v. The cardinality of a set S is denoted with |S|. Finally, for any two
positive sequences (an)n≥1 and (bn)n≥1, we write an = O(bn) or an ≲ bn if an ≤ Cbn for all n ∈ N,
for some constant C > 0. For a sequence (An)n≥1 of positive random variables, the notation
An = OP (bn) signifies An/bn is stochastically bounded, that is, for any ϵ > 0, there exists an
M > 0 such that P(An/bn > M) < ϵ for all n large enough. We further write An = ÕP (bn) when
An = OP (bn log

c(bn)), for some c > 0. Finally, for two Lebesgue probability densities on Rd, f1 and
f2, V (f1, f2) :=

1
2

∫
|f1(y)− f2(y)|dy denotes their total variation distance.

2 On Shared Expert Strategy

Below we derive convergence rates for the shared expert estimation problem in the DeepSeekMoE
architecture. For ease of presentation, we will focus here on the dense DeepSeekMoE case, and
analyze the less popular sparse DeepSeekMoE settings in Appendix F. After formally introducing
the settings, we formulate a strong identifiability condition on the expert functions ensuring fast
expert convergence rates. We then turn to linear experts, which violate the strong identifiability
condition, and prove that, in fact, they exhibit slow rates of convergence.
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Problem setting. Assume that (X1, Y1), (X2, Y2), . . . , (Xn, Yn) ∈ Rd × R are i.i.d. samples drawn
from a Gaussian DeepSeekMoE model, whose conditional density function fG∗

1,G
∗
2
(y|x) is given by

fG∗
1,G

∗
2
(y|x) :=1

2

k∗1∑
i=1

ω∗
i π(Y |h1(x, κ∗i ), τ∗i ) +

1

2

k∗2∑
i=1

exp((β∗
1i)

⊤x+ β∗0i)∑k∗2
j=1 exp((β

∗
1j)

⊤x+ β∗0j)
π(y|h2(x, η∗i ), ν∗i ). (1)

Above, π(·|µ, ν) denotes the Gaussian density function with mean µ and variance ν, h1(·, κ∗i )
and h2(·, η∗i ) are real-valued functions on Rd referred to as shared and routed experts, respec-
tively. The weight parameters ω∗

1, ω
∗
2, . . . , ω

∗
k∗1

are positive and satisfy
∑k∗1

i=1 ω
∗
i = 1. We conve-

niently represent all the model parameters with the mixing measures G∗
1 :=

∑k∗1
i=1 ω

∗
i δ(κ∗i ,τ∗i ) and

G∗
2 :=

∑k∗2
i=1 exp(β

∗
0i)δ(β∗

1i,η
∗
i ,ν

∗
i )

, a combination of Dirac δ-measures with mass on the unknown true pa-
rameters θ∗1i := (ω∗

i , κ
∗
i , τ

∗
i ) in Θ1 ⊆ R×Rd1×R+ and θ∗2i := (β∗0i, β

∗
1i, η

∗
i , ν

∗
i ) in Θ2 ⊆ R×Rd×Rd2×R+,

respectively. Thus, our goal is to estimate the pair of ground-truth mixing measures (G∗
1, G

∗
2).

Maximum likelihood estimation (MLE). As the numbers k∗1 and k∗2 of shared and routed
experts are unknown, we consider the ground-truth model (1) with up to k1 > k∗1 shared experts and
k2 > k∗2 routed experts. Towards that goal, we let Gk1,k2(Θ) := Gk1(Θ1)×Gk2(Θ) stands for the set of
mixing measure pairs (G1, G2) with at most k1 and k2 atoms, respectively; that is Gk1(Θ1) :=

{
G1 =∑k′1

i=1 ωiδ(κi,τi) : 1 ≤ k′1 ≤ k1

}
and Gk2(Θ2) :=

{
G2 =

∑k′2
i=1 exp(β0i)δ(β1i,η∗i ,ν∗i ) : 1 ≤ k′2 ≤ k2

}
. Our

final estimator is the MLE over Gk1,k2(Θ), i.e.

(Ĝn1 , Ĝ
n
2 ) ∈ argmax

(G1,G2)∈Gk1,k2
(Θ)

1

n

n∑
i=1

log(fG1,G2(Yi|Xi)), (2)

Universal assumptions. For our theoretical analysis, we impose the following three mild assump-
tions on the ground-truth parameters throughout the paper.

(A.1) The parameter space Θ is compact with fixed dimension, while the input space X is bounded.

(A.2) The last pair of gating parameters vanish, that is, β∗1k∗2 = 0d and β∗0k∗2
= 0 (to avoid non-

identifiability due to invariance to translation of the softmax gating function). In addition, at least
one among parameters {β∗1i, i ∈ [k∗2]}, is non-zero (to maintain the dependence of the gating on the
input value).

(A.3) The expert parameters (κ∗i )
k∗1
i=1 and (η∗i )

k∗2
i=1 are distinct. Meanwhile, the expert functions h1(·, κ)

and h2(·, η) are bounded and Lipschitz continuous w.r.t κ and η.

Equipped with these assumptions, we are now ready to give our first consistency result for the
ground-truth conditional density fG∗

1,G
∗
2
.

Proposition 1. The maximum likelihood density estimator f
Ĝn

1 ,Ĝ
n
2
(Y |X) converges to the true

density fG∗
1,G

∗
2
(Y |X) in total variation distance at the rate

EX [V (f
Ĝn

1 ,Ĝ
n
2
(·|X), fG∗

1,G
∗
2
(·|X))] = OP ([log(n)/n]

1
2 ).
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The above result, whose proof can be found in Appendix E.1, shows that the true density function
fG∗

1,G
∗
2
(y|x) can be estimated at a rate that is nearly parametric. Following a strategy used in the

analysis of MoE models [56], if one can exhibit an appropriate loss function over the mixing measures,
say D((G1, G2), (G

∗
2, G

∗
2)), that, up to constant, is a lower bound on EX [V (f

Ĝn
1 ,Ĝ

n
2
(·|X), fG∗

1,G
∗
2
(·|X))],

Proposition 1 will then imply a near parametric rate also for the parameters and expert functions
themselves. However, the derivation of this lower bound is challenging. Specifically, a key step
in establishing the aforementioned lower bound is to decompose the difference f

Ĝn
1 ,Ĝ

n
2
(Y |X) −

fG∗
1,G

∗
2
(Y |X) through a series of Taylor expansions of the functions x 7→ π(Y |h1(x, κ), τ) and x 7→

F (Y |X;β1, η, ν) := exp(β⊤1 x)π(Y |h2(x, η), ν) w.r.t their parameters (κ, τ) and (β1, η, ν), respectively.
When the difference of the densities converges to zero (as ensured by Proposition 1), then one may
expect the coefficients of this Taylor expansions, which correspond to the difference between the true
and estimated parameters, will also vanish. However, this is true only provided that these functions
and their partial derivatives arising from the Taylor expansions remain linearly independent. To
ensure that this property holds, we formulate a new, non-trivial condition, called strong identifiability
for the expert functions h1 and h2.

Definition 1 (Strong Identifiability). We say that the expert functions x 7→ h1(x, κ) and x 7→ h2(x, η)
are strongly identifiable if they are twice differentiable w.r.t their parameters κ and η, and if for any
k1, k2 ≥ 1, κ1, . . . , κk1 and η1, . . . , ηk2 , each of the sets{

∂h1

∂κ(u1)
(x, κi) : i ∈ [k1], u1 ∈ [d1]

}
,

{
∂h1

∂κ(u1)
(x, κi)

∂h1

∂κ(v1)
(x, κi), 1 : i ∈ [k1], u1, v1 ∈ [d1]

}
,{

∂h2

∂η(u2)
(x, ηj),

∂2h2

∂η(u2)∂η(v2)
(x, ηj), x

(u) ∂h2

∂η(v2)
(x, ηj) : j ∈ [k2], u2, v2 ∈ [d2], u ∈ [d]

}

consists of linearly independent functions (in x).

Examples. Two-layer FFNs h1(x, (κ2, κ1, κ0)) := κ2ReLU(κ
⊤
1 x + κ0) and h2(x, (η2, η1)) :=

η2GELU(η⊤1 x) are strongly identifiable. The same claim holds when replacing the ReLU func-
tion with other activation functions such as sigmoid and tanh. On the other hand, linear experts
h1(x, (κ1, κ0)) := κ⊤1 x+ κ0 and h2(x, (η1, η0)) := η⊤1 x+ η0 fail to satisfy the strong identifiability
condition because ∂h1

∂κ0
∂h1
∂κ0

= 1 and ∂h2
∂η1

= x∂h2∂η0
for all x.

2.1 Strongly Identifiable Experts

Our next task is to construct a loss over pairs of mixing measures (G1, G2) and (G∗
1, G

∗
2). To this

end, let us revisit the concepts of Voronoi cells and Voronoi loss function presented in [49].

Voronoi loss. For any pair of mixing measures (G1, G2) with k′1 ≤ k1 and k′2 ≤ k2 atoms, we
distribute their atoms to the Voronoi cells V1,j1 ≡ V1,j1(G) and V2,j2 ≡ V2,j2(G), defined as

V1,j1 := {i1 ∈ [k′1] : ∥ξi1 − ξ∗j1∥ ≤ ∥ξi1 − ξ∗ℓ1∥, ∀ℓ1 ̸= j1},
V2,j2 := {i2 ∈ [k′2] : ∥ζi2 − ζ∗j2∥ ≤ ∥ζi2 − ζ∗ℓ2∥, ∀ℓ2 ̸= j2}, (3)

5



where we denote ξi1 := (κi1 , τi1), ξ∗j1 := (κ∗j1 , τ
∗
j1
) for all j1 ∈ [k∗1], and ζi2 := (β1i2 , ηi2 , νi2),

ζ∗j2 := (β∗1j2 , η
∗
j2
, ν∗j2) for all j2 ∈ [k∗2]. Then, the proposed Voronoi loss over mixing measures is

D1((G1, G2), (G
∗
1, G

∗
2)) :=

k∗1∑
j=1

∣∣∣ ∑
i∈V1,j

ωi − ω∗
j

∣∣∣+ k∗2∑
j=1

∣∣∣ ∑
i∈V2,j

exp(β0i)− exp(β∗
0j)

∣∣∣
+

∑
j∈[k∗1 ],
|V1,j |=1

∑
i∈V1,j

ωi(∥∆κij∥+ |∆τij |) +
∑
j∈[k∗2 ],
|V2,j |=1

∑
i∈V2,j

exp(β0i)(∥∆β1ij∥+ ∥∆ηij∥+ |∆νij |)

+
∑
j∈[k∗1 ],
|V1,j |>1

ωi(∥∆κij∥2 + |∆τij |2) +
∑
j∈[k∗2 ],
|V2,j |>1

∑
i∈V2,j

exp(β0i)(∥∆β1ij∥2 + ∥∆ηij∥2 + |∆νij |2), (4)

where we let ∆κij := κi−κ∗j , ∆τij := τi−τ∗j , ∆β1ij := β1i−β∗1j , ∆ηij := ηi−η∗j , and ∆νij := νi−ν∗j .
It is clear that convergence of the mixing measures in the D1 loss is equivalent to convergence of
their respective parameters. Thus, though not a metric over mixing measures, the D1 loss can be
used to characterize parameter and expert estimation rates.

Theorem 1. Assume that the expert functions h1 and h2 are strongly identifiable. Then, the lower
bound EX [V (fG1,G2(·|X), fG∗

1,G
∗
2
(·|X))] ≳ D1((G1, G2), (G

∗
1, G

∗
2)) holds for all (G1, G2) ∈ Gk1,k2(Θ).

As a consequence,

D1((Ĝ
n
1 , Ĝ

n
2 ), (G

∗
1, G

∗
2)) = OP ([log(n)/n]

1
2 ). (5)

The combination of Theorem 1, whose proof is in Appendix D.1, and of the form of the loss D1

leads to various estimation rates. Below we say that a parameter is exactly-specified or over-specified
depending on whether the associated Voronoi cell has one or more elements, respectively.

(i) Shared experts. For shared experts, we see that the estimation rate for exactly-specified pa-
rameters κ∗j , τ

∗
j , is nearly parameteric, i.e. of order ÕP (n

−1/2). On the other hand, over-specified
parameters κ∗j , τ

∗
j , admit slightly slower estimation rates, of order ÕP (n

−1/4). As for the expert
estimation rates, since the shared expert function h1(·, κ) is Lipschitz continuous, we have that
|h1(x, κ̂ni ) − h1(x, κ

∗
j )| ≲ ∥κ̂ni − κ∗j∥ for almost every x.It then follows that the estimation rates

for exactly-specified and over-specified shared experts h1(x, κ∗j ) are also of order ÕP (n
−1/2) and

ÕP (n
−1/4), respectively. Thus, polynomially many data points O(ϵ−2) and O(ϵ−4) are needed to

estimate these experts within a error ϵ > 0.

(ii) Routed experts. Likewise, exactly-specified and over-specified parameters β∗1j , η
∗
j , ν

∗
j , for j ∈ [k∗2],

have estimation rates of order ÕP (n
−1/2) and ÕP (n

−1/4), respectively. As the routed expert function
h2(·, η) is Lipschitz continuous, we deduce that the rates for estimating routed experts h2(x, η∗j ) also
vary between ÕP (n

−1/2) and ÕP (n
−1/4) depending on the cardinality of the corresponding Voronoi

cell V2,j . In summary, when both shared and routed expert functions are strongly identifiable, they
enjoy the same estimation rates.

2.2 Linear Experts

In this section, we consider linear expert functions of the form h1(X, (κ1, κ0)) := κ⊤1 X + κ0 and
h2(X, (η1, η0)) := η⊤1 X + η0. Then, the pair of ground-truth mixing measures (G∗

1, G
∗
2) become

6



G∗
1 :=

∑k∗1
i=1 ω

∗
i δ(κ∗1i,κ∗0i,τ∗i ) and G∗

2 :=
∑k∗2

i=1 exp(β
∗
0i)δ(β∗

1i,η
∗
1i,η

∗
0i,ν

∗
i )

. As discussed above, linear experts
violate the strong identifiability condition due to the PDEs ∂h1

∂κ0
∂h1
∂κ0

= 1 and ∂h2
∂η1

= x∂h2∂η0
. In turn,

these PDEs lead to linear dependencies among the partial derivatives of the Gaussian p.d.f. π and
of the function F defined below Proposition 1, given by ∂2π

∂κ20
= 2∂π∂τ and ∂F

∂η1
= ∂2F

∂β1∂η0
. These delicate

relationships, which can be intuitively interpreted as interactions between the parameters κ0 and
τ , and among the parameters η1, β1 and η0, affect the parameter and expert estimation rates. To
overcome this issue, we consider instead a new Voronoi loss, given by

D2((G1, G2), (G
∗
1, G

∗
2)) :=

k∗1∑
j=1

∣∣∣ ∑
i∈V1,j

ωi − ω∗
j

∣∣∣+ k∗2∑
j=1

∣∣∣ ∑
i∈V2,j

exp(β0i)− exp(β∗
0j)

∣∣∣
+

∑
j∈[k∗1 ],
|V1,j |=1

∑
i∈V1,j

ωi(∥∆κ1ij∥+ |∆κ0ij |+ |∆τij |) +
∑
j∈[k∗1 ],
|V1,j |>1

∑
i∈V1,j

ωi(∥∆κij∥2 + |∆κ0ij |r1,j + |∆τij |r1,j/2)

+
∑

j∈[k∗2 ]:|V2,j |=1

∑
i∈V2,j

exp(β0i)(∥∆β1ij∥+ ∥∆η1ij∥+ |∆η0ij |+ |∆νij |)

+
∑

j∈[k∗2 ]:|V2,j |>1

∑
i∈V2,j

exp(β0i)(∥∆β1ij∥r2,j + ∥∆η1ij∥r2,j/2 + |∆η0ij |r2,j + |∆νij |r2,j/2), (6)

where we denote ∆κ1ij := κ1i − κ∗1j , ∆κ0ij := κ0i − κ∗0j , ∆η1ij := η1i − η∗1j and ∆η0ij := η0i − η∗0j .
In addition, we define r1,j := r1(|V1,j |) and r2,j := r2(|V2,j |), where the functions r1 and r2 stand
for the solvability of polynomial equation systems specified in Appendix B. In particular, we have
r1(2) = r2(2) = 4, r1(3) = r2(3) = 6, and r1(m), r2(m) ≥ 7 for all m ≥ 4.

Theorem 2. Assume the expert functions h1 and h2 take linear forms. Then, the lower bound
EX [V (fG1,G2(·|X), fG∗

1,G
∗
2
(·|X))] ≳ D2((G1, G2), (G

∗
1, G

∗
2)) holds for any (G1, G2) ∈ Gk1,k2(Θ). As a

consequence, we have

D2(Ĝ
n
1 , Ĝ

n
2 ), (G

∗
1, G

∗
2)) = OP ([log(n)/n]

1
2 ). (7)

By comparing the Voronoi losses D1 and D2, we see that the estimation rates for exactly-specified
shared and routed experts remain of parametric order ÕP (n

−1/2). By contrast, there are changes in
the estimation rates for the over-specified experts.

(i) Shared experts. The estimation rates for over-specified parameters κ∗1j , κ
∗
0j , τ

∗
j are heterogeneous,

of orders ÕP (n
−1/4), ÕP (n

−1/2r1,j ), ÕP (n
−1/r1,j ), respectively. Since the input space is bounded,

we have |(κ̂n1i)⊤x+ κ̂n0i − (κ∗1j)
⊤x− κ∗0j | ≲ ∥κ̂n1i − κ∗1j∥+ |κ̂n0i − κ∗0j |. Then, it follows that the shared

experts (κ∗1j)
⊤x+ κ∗0j admit estimation rates of orders ÕP (n

−1/2r1,j ). However, note that the rates
for estimating their input-dependent terms (κ∗1j)

⊤x are much faster, of order ÕP (n
−1/4).

(ii) Routed experts. The estimation rates for over-specified parameters η∗1j , ν
∗
j are of orders

ÕP (n
−1/r2,j ), while those for β∗1j , η

∗
0j are slower, of orders ÕP (n

−1/2r2,j ). By arguing similarly
to the case of shared experts, the rates for estimating the routed experts (η∗1j)

⊤x+ η∗0j and their
input-dependent terms (η∗1j)

⊤x depend on the parameter r2 (related to the solvability of a certain
system of polynomial equations) and are of orders ÕP (n

−1/2r2,j ) and ÕP (n
−1/r2,j ), respectively.
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Table 2: Performance comparisons of different Sparse Mixture of Experts (SMoE) models on subsets of
the SlimPajama dataset using a small-scale model with 158M parameters and large-scale model with 679M
parameters. (SMoE-SG refers to SMoE Sigmoid Gating). PPL indicates the perplexity score.

Small Models (158M) Large Models (679M)

SMoE DeepSeek-V3 DeepSeek-V2 SMoE-SG SMoE DeepSeek-V3 DeepSeek-V2 SMoE-SG

PPL ↓ 13.63 13.42 13.49 13.61 9.51 9.49 9.52 9.46

LAMBADA 25.27% 25.49% 25.29% 25.43% 37.13% 36.88% 37.11% 37.56%
BLiMP 77.71% 77.20% 77.37% 77.38% 80.47% 81.28% 80.98% 81.08%
CBT 84.18% 84.40% 84.33% 84.23% 89.83% 89.65% 89.93% 89.57%
HellaSwag 29.43% 29.38% 29.38% 29.13% 37.49% 37.32% 37.14% 37.52%
PIQA 57.94% 59.14% 60.17% 58.92% 64.36% 65.72% 64.36% 64.91%
ARC-Challenge 21.20% 21.63% 20.52% 21.37% 23.09% 23.95% 24.21% 23.09%
RACE 30.11% 30.60% 31.02% 31.05% 33.03% 33.12% 33.17% 32.68%
SIQA 35.62% 35.57% 34.90% 34.90% 37.41% 38.59% 36.95% 37.67%
CommonSenseQA 24.65% 25.47% 24.98% 24.90% 26.54% 28.09% 27.35% 28.50%

Average 42.90% 43.21% 43.11% 43.04% 47.71% 48.29% 47.91% 48.06%

Notably, these rates become increasingly slow with the cardinality of the corresponding Voronoi cell
V2,j . In particular, when |V2,j | = 3, they become ÕP (n

−1/12) and ÕP (n
−1/6), respectively.

(iii) Sample efficiency of the shared expert strategy. From the above observations, we see that shared
experts have faster estimation rates than routed experts, i.e.ÕP (n

−1/4) compared to ÕP (n
−1/r2,j ).

Furthermore, the estimation rates for shared experts in DeepSeekMoE are also faster than those
for experts in MoE models without the shared expert strategy [56], which are also of the order
ÕP (n

−1/r2,j ). The punchline is that fewer data points are needed to estimate shared experts.

3 Experiments

In this section, we empirically validate the theoretical findings in the previous section. Using
synthetic data, we demonstrate the convergence behavior of the maximum likelihood estimator
(Ĝn1 , Ĝ

n
2 ) towards the true mixing measure (G∗

1, G
∗
2); we defer this experiment to Appendix G.1. In

real-world scenarios, we evaluate our methodology on language modeling tasks using the SlimPajama
corpus [66] (Section 3.1), and extend our evaluation to vision-language modeling benchmarks using
the LLaVA architecture [43] integrated within the LIBMoE framework [57] (Section 3.2). Our
empirical study compares four model configurations: Vanilla SMoE, DeepSeek-V3 (shared experts
combined with normalized sigmoid gating), DeepSeek-V2 (shared experts with softmax routing),
and SMoE Sigmoid Gating (normalized sigmoid gating without shared experts).

3.1 Language Modeling

Experimental Setup. We conduct the experiments on language modeling using subsets of the
popular SLimPajama [66] dataset using Switch Transformer [20] baseline in two scales: small (158M
parameters trained on 6.5B tokens) and large (679M parameters trained on 26.2B tokens). The
models are configured with 66 total experts, utilizing top-8 expert routing in the baseline and a top-6
plus 2 shared experts routing scheme in the DeepSeek variants. We measure model performance
in terms of perplexity and zero-shot accuracy across nine diverse downstream evaluation tasks
[58, 74, 24, 81, 3, 11, 35, 63, 68]. Full experimental details are provided in Appendix I.1.
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Figure 1: Average performance (%) over training steps in language modeling tasks. Left: Model with 158M
parameters; Right: Model with 679M parameters.

Zero-shot performance on downstream tasks. Table 2 summarizes our primary experimental
results for two model sizes trained on the SlimPajama dataset [66]. The results clearly demon-
strate that both DeepSeek-V3 and DeepSeek-V2 consistently outperform the Vanilla SMoE baseline,
achieving lower perplexity (PPL) scores and higher average accuracy across various downstream
tasks for both model scales. Additionally, we integrated the normalized sigmoid router into the
Vanilla SMoE architecture and observed that the SMoE Sigmoid Gating achieves superior perfor-
mance compared to the Vanilla SMoE and, in some benchmarks, even surpasses the DeepSeek variants.

Convergence Rate. Figure 1 presents the average performance across various downstream tasks
for DeepSeek-V3 and DeepSeek-V2 compared to the Vanilla SMoE. Across both model sizes, the
DeepSeek variants demonstrate substantially faster convergence. Specifically, in both 158M and
679M parameter scales, DeepSeek-V3 and DeepSeek-V2 consistently reach the final performance
of Vanilla SMoE using only 70-80% of the total training steps. Notably, DeepSeek-V3, which
incorporates normalized sigmoid gating, demonstrates marginal improvements over DeepSeek-V2
in both convergence speed and final task performance. These results highlight the efficiency gains
introduced by the shared expert and normalized sigmoid gating mechanisms and provide empirical
support for our theoretical findings.

3.2 Vision-Language Modeling

Experimental Setup. We conduct experiments on the visual instruction tuning tasks [42] us-
ing the popular LLaVA architecture [44]. Building upon the LIBMoE framework [57], we adopt
Phi3.5-mini [1] as the language model and SigLIP [82] as the vision encoder. Unlike LIBMoE, we
sparse-upcycled [32] only the MLP Connector into 8 experts, employing a top-4 expert routing
strategy, while the DeepSeek variants adopt a top-3 expert routing scheme with an additional shared
expert, making our model approximately 4.4B parameters. To compare different SMoE algorithms,
we use a subset of the LLaVA 1.5 dataset [42] (332K samples and 287M tokens) to train the models
in the Visual Instruction Tuning (VIT) stage. Evaluation covers diverse benchmarks containing
various vision-language capabilities, including perception, reasoning, OCR, instruction following,
and more [31, 7, 40, 47, 65, 27, 83, 78, 45]. See Appendix I.2.

Performance. As summarized in Table 3, DeepSeek-V3 achieves the highest average score (51.75%),
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Table 3: Vision-language model performance across benchmarks. (SMoE-SG refers to SMoE Sigmoid Gating)

AI2D MMStar POPE Science
QA TextVQA GQA MME-RW

-Lite
MMMU
Pro-S

OCR
Bench Average

SMoE 64.90% 41.66% 85.67% 81.61% 40.92% 60.19% 31.79% 25.61% 30.90% 51.47%
DeepSeek-V3 65.45% 41.40% 85.44% 81.94% 40.69% 60.01% 32.20% 26.01% 32.60% 51.75%
DeepSeek-V2 64.70% 41.55% 85.80% 82.20% 40.51% 60.15% 31.11% 25.72% 31.00% 51.41%
SMoE-SR 64.64% 41.51% 85.87% 82.17% 40.54% 60.07% 31.68% 25.95% 31.00% 51.49%
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Figure 2: Average performance (%) over training steps on vision-language pretraining tasks. Left: Vanilla
SMoE vs. DeepSeek-V3; Center: Vanilla SMoE vs. DeepSeek-V2; Right: DeepSeek-V2 vs. DeepSeek-V3.

outperforming the Vanilla SMoE (51.47%) and other model variants. Although DeepSeek-V2 shows
slightly lower performance compared to other models, the difference remains marginal. Consistent
with observations from language modeling experiments, additional evaluations conducted with Vanilla
SMoE and the normalized sigmoid router show a similar pattern, confirming that the normalized
sigmoid routing mechanism consistently enhances the performance of the standard SMoE architecture.

Convergence Rate. Figure 2 illustrates the performance progression over training steps, where
both DeepSeek variants exhibit faster and more stable convergence compared to Vanilla SMoE.
Notably, both DeepSeek-V2 and DeepSeek-V3 demonstrate accelerated convergence during the final
stages of training. These results suggest that both shared expert integration and normalized routing
significantly contribute to faster learning in vision-language pretraining.

3.3 Router Analysis

We now explore the router behavior by empirically examining the router saturation and change rate.

Router Saturation. Router Saturation, first introduced in OLMoE [51], quantifies the proportion
of overlapping activated experts between the final checkpoint and an intermediary checkpoint at
time t. It serves as a measure of the router’s convergence over the course of training. A higher router
saturation value indicates stronger alignment in expert selection, signifying that the router’s decisions
become increasingly consistent with its final configuration. The formal definition and formula are
defined in the Appendix H.1. Figure 3 shows that, after 5% of training, up to ~60% of router decisions
have already saturated. This early saturation aligns with prior findings in OLMoE [51] and OpenMoE
[76], supporting the validity of our experimental setup. When comparing model configurations, we ob-
serve that models equipped with normalized sigmoid gating achieve noticeably faster saturation than
those using softmax gating. In particular, the SMoE Sigmoid Gating exhibits consistently steeper
saturation curves compared to Vanilla SMoE, reflecting more rapid convergence in expert selection.
A similar pattern is observed in the comparison between DeepSeek-V3 and DeepSeek-V2 under the
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158 M (left) and 679 M (right) parameter models. We compute router change rate by comparing the routing
to the top-8 experts with SMoE and SMoE Sigmoid Gating, and the top-6 experts with DeepSeek variants.

shared expert configuration. These findings highlight the effectiveness of normalized sigmoid gat-
ing in accelerating router convergence, potentially reducing the training time required for convergence.

Router Change Rate. To evaluate the stability of the routing mechanism in Mixture-of-Experts
(MoE) models during training, we introduce the Router Change Rate metric. This metric quantifies
the proportion of expert activation decisions that change between consecutive checkpoints. A lower
router change rate implies greater consistency in routing decisions over time, reflecting a more stable
training process. The formal definition and computation details are provided in Appendix H.2.
Figure 4 presents the router change rate comparison of different model configurations. We find that
models employing normalized sigmoid gating have significantly lower change rates in both non-shared
and shared expert settings. These findings underscore the efficiency of normalized sigmoid gating in
stabilizing routing decisions throughout training. By reducing the routing fluctuation problem [13],
this mechanism promotes a more consistent expert specialization, indicating that stable routing is
critical in enhancing both optimization efficiency and final model performance.

4 Discussion

In this paper, we have presented an extensive study on the benefits of two fundamental ingredients
of DeepSeekMoE architecture, namely the shared expert strategy and the normalized sigmoid gating
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mechanism. From the theoretical side, we perform a convergence analysis of expert estimation to
investigate differences in sample efficiency. Our analysis reveals that the shared expert strategy
leads to faster estimation rates for shared experts compared to routed experts and experts in the
standard MoE. Furthermore, the estimation rates for routed experts become dramatically faster
when replacing the softmax gating with the normalized sigmoid gating in DeepSeekMoE. Therefore,
the incorporation of these two key factors into DeepSeekMoE significantly reduces the overall sample
complexity for the estimation tasks.

From the empirical side, we validate our theoretical findings through extensive experiments and
analysis on both synthetic and real-world datasets. Our results consistently demonstrate that both
the shared experts strategy and the normalized sigmoid gating mechanism substantially affect the con-
vergence rate and downstream performance in real-world scenarios. Moreover, these two ingredients
also yield substantial gains in router convergence, routing stability, and expert utilization. Overall,
our work provides both a principled understanding and robust empirical evidence for the effectiveness
of these two components, offering valuable guidance for the design of future sparse mixture-of-experts.

Although our analysis confirms that using shared experts improves the sample complexity, it does
not indicate how many shared experts should be employed to achieve the optimal configuration
given a fixed computational budget. A potential approach to this problem is to derive a scaling
law involving these quantities induced from extensive experiments as in [48]. However, since this
direction goes beyond the scope of our work, we leave it for future development.
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In this appendix, we conduct a convergence analysis of expert estimation in DeepSeek-V3’s MoE to
investigate the sample efficiency of the normalized sigmoid gating used in this architecture.

13



Problem setting. Assume that (X1, Y1), (X2, Y2), . . . , (Xn, Yn) ∈ Rd × R are i.i.d. samples drawn
from the Gaussian DeepSeek-V3’s MOE whose conditional density function gG∗(y|x) is given by:

gG∗
1,G

∗
2
(y|x) := 1

2

k∗1∑
i=1

ω∗
i π(y|h1(x, κ∗i ), τ∗i )

+
1

2

k∗2∑
i=1

σ((β∗
1i)

⊤x+ β∗0i)∑k∗2
j=1 σ((β

∗
1j)

⊤x+ β∗0j)
· π(y|h2(x, η∗i ), ν∗i ), (8)

where σ : R → (0,∞) stands for the sigmoid function, that is, σ(z) := 1
1+exp(−z) , for all z ∈ R. By

abuse of notations, we define the pair of ground-truth mixing measures (G∗
1, G

∗
2) under this setting

as G∗
1 :=

∑k∗1
i=1 ω

∗
i δ(κ∗i ,τ∗i ) and G∗

2 :=
∑k∗2

i=1 σ(β
∗
0i)δ(β∗

1i,η
∗
i ,ν

∗
i )

. Here, we still impose all the assumptions
used for Section 2 on this analysis.

Maximum likelihood estimation (MLE). Under the above setting, the MLE defined in equa-
tion (2) is rewritten as

(G̃n1 , G̃
n
2 ) ∈ argmax

(G1,G2)∈Gk1,k2
(Θ)

1

n

n∑
i=1

log(gG1,G2(Yi|Xi)), (9)

where Gk1,k2(Θ) := Gk1(Θ1)× Gk2(Θ) denotes the set of mixing measure pairs (G1, G2) with at most
k1 and k2 atoms, respectively, that is,

Gk1(Θ1) :=
{
G1 =

k′1∑
i=1

ωiδ(κi,τi) : 1 ≤ k′1 ≤ k1

}
,

Gk2(Θ2) :=
{
G2 =

k′2∑
i=1

σ(β0i)δ(β1i,η∗i ,ν∗i ) : 1 ≤ k′2 ≤ k2

}
.

Given the MLE (G̃n1 , G̃
n
2 ) in equation (9), we proceed to establish the convergence rate of density

estimation g
G̃n

1 ,G̃
n
2
. However, there are some changes in the gating convergence behavior compared

to that in DeepSeekMoE due to the structure of the sigmoid function.

The convergence of normalized sigmoid gating. Recall that we fit the ground-truth DeepSeek-
V3’s MoE model (8) with a mixture of k1 > k∗1 shared experts and k2 > k∗2 routed experts. Then,
there must be some gorund-truth routed experts approximated by more than one fitted routed
experts. As a result, the sum of weights of these fitted routed experts is expected to converge to the
weight of the ground-truth routed experts, for example,

2∑
i=1

σ((β̂n1i)
⊤x+ β̂n0i)∑kn2

j=1 σ((β̂
n
1j)

⊤x+ β̂n0j)
→ σ((β∗

11)
⊤x+ β∗01)∑k∗2

j=1 σ((β
∗
1j)

⊤x+ β∗0j)
,
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for almost every x. Since the denominator
∑kn2

j=1 σ((β̂
n
1j)

⊤x+ β̂n0j) should converge to its counterpart∑k∗2
j=1 σ((β

∗
1j)

⊤x+ β∗0j). Then, it must hold that

2∑
i=1

σ((β̂n1i)
⊤x+ β̂n0i) → σ((β∗

11)
⊤x+ β∗01),

as n → ∞, for almost every x. This result occurs only if β∗11 = 0d. Therefore, we will divide our
analysis into two complement regimes for the over-specified parameters β∗1i:

Sparse regime. All over-specified parameters β∗1i equal zero vector;

Dense regime. Not all over-specified parameters β∗1i equal zero vector.

It is worth noting that the sparse regime of parameters rarely occurs in practice. However, for
completeness, we will perform the convergence analysis of expert estimation under both the sparse
and dense regimes in Appendix A.1 and Appendix A.2, respectively.

A.1 Sparse Regime

To begin with, let us derive the density estimation rate for the sparse regime in Proposition 2.

Proposition 2. Under the sparse regime, the density estimation g
G̃n

1 ,G̃
n
2
(Y |X) converges to the true

density gG∗
1,G

∗
2
(Y |X) at the following rate:

EX [V (g
G̃n

1 ,G̃
n
2
(·|X), gG∗

1,G
∗
2
(·|X))] = OP ([log(n)/n]

1
2 ).

Since the sigmoid function is Lipschitz continuous, the proof of this proposition can be done similarly
to that of Proposition 1, which is provided in Appendix E.1. The result of Proposition 2 indicates
that the density estimation g

G̃n
1 ,G̃

n
2

converges to the ground-truth density gG∗
1,G

∗
2

under the Total

Variation distance at the parametric rate of order ÕP (n
−1/2).

Voronoi loss. Next, we construct Voronoi loss tailored to the sparse regime as

D3((G1, G2), (G
∗
1, G

∗
2)) :=

k∗1∑
j=1

∣∣∣ ∑
i∈V1,j

ωi − ω∗
j

∣∣∣+ ∑
j∈[k∗2 ]:|V2,j |>1

∣∣∣ ∑
i∈V2,j

σ(β0i)− σ(β∗0j)
∣∣∣

+
∑
j∈[k∗1 ],
|V1,j |=1

∑
i∈V1,j

ωi(∥∆κij∥+ |∆τij |) +
∑
j∈[k∗2 ],
|V2,j |=1

∑
i∈V2,j

(∥∆β1ij∥+ |∆β0ij |+ ∥∆ηij∥+ |∆νij |)

+
∑
j∈[k∗1 ],
|V1,j |>1

∑
i∈V1,j

ωi(∥∆κij∥2 + |∆τij |2) +
∑
j∈[k∗2 ],
|V2,j |>1

∑
i∈V2,j

(∥∆β1ij∥2 + ∥∆ηij∥2 + |∆νij |2), (10)

where we denote ∆β0ij := β0i − β∗0j . Given the above loss function, we are now able to capture
parameter and expert estimation rates under the sparse regime in the following theorem.
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Theorem 3. Suppose that the expert functions h1 and h2 are strongly identifiable. Then, the lower
bound EX [V (gG1,G2(·|X), gG∗

1,G
∗
2
(·|X))] ≳ D3((G1, G2), (G

∗
1, G

∗
2)) holds for any (G1, G2) ∈ Gk1,k2(Θ).

As a consequence, we have

D3(G̃
n
1 , G̃

n
2 ), (G

∗
1, G

∗
2)) = OP ([log(n)/n]

1
2 ).

The proof of Theorem 3 is provided in Appendix D.3. From the formulations of Voronoi losses D1 and
D3 in equations (4) and (10), respectively, we observe that shared experts and routed experts which
satisfy the strong identifiability condition admit the same estimation rates as those in Theorem 1.
In particular, the rates for estimating both types of experts are of orders ÕP (n

−1/2) and ÕP (n
−1/4)

when they are exactly-specified and over-specified, respectively. In other words, the normalized
sigmoid gating does not have clear advantages over the standard softmax gating under the sparse
regime. However, it should be noted that the sparse regime is less likely to occur in practice than
the dense regime. Thus, we continue the comparison of sample efficiency between the two gatings
under the dense regime in the next section.

A.2 Dense Regime

Next, under the dense regime, note that the ground-truth model is misspecified, that is, the density
estimation g

G̃n
1 ,G̃

n
2

converges to the missepcified density function gG∗
1,Ǧ2

rather than the ground-truth
density gG∗

1,G
∗
2
, where Ǧ2 ∈ Gk2(Θ2) := argminG2∈Gk2

(Θ2)\Gk∗2
(Θ2)KL(gG∗

1,G2∥gG∗
1,G

∗
2
). Following the

result of Proposition 2, we are also able to establish the parametric density estimation rate under
the dense regime in the following corollary.

Corollary 1. Under the dense regime, the density estimation g
G̃n

1 ,G̃
n
2

converges to the density gG∗
1,Ǧ2

at the rate: infǦ2∈Gk2
(Θ2)

EX [V (g
G̃n

1 ,G̃
n
2
(·|X), gG∗

1,Ǧ2
(·|X))] = OP ([log(n)/n]

1
2 ).

Subsequently, we focus on characterizing parameter and expert estimation rates under the dense
regime by establishing the Total Variation lower bound

inf
(G∗

1,Ǧ2)∈Gk1,k2
(Θ)

EX [V (gG1,G2(·|X), gG∗
1,Ǧ2

(·|X))] ≳ D4((G1, G2), (G
∗
1, Ǧ2)),

where D4 is a Voronoi loss that will be defined later in equation (11). Recall that a key step
in deriving this lower bound is to decompose the density difference g

G̃n
1 ,G̃

n
2
(Y |X) − gG∗

1,Ǧ2
(Y |X)

into linearly independent terms using Taylor expansions to the functions x 7→ π(Y |h1(x, κ), τ) and
x 7→ σ(β⊤1 x+ β0)π(Y |h2(x, η), ν) w.r.t their parameters (κ, τ) and (β1, β0, η, ν), respectively. Due
to the gating change, it is necessary to introduce a new condition on the routed expert function h2
to ensure linear independence among terms in the Taylor expansions.

Definition 2 (Weak Identifiability). We say that the expert function x 7→ h2(x, η) is weakly
identifiable if it is differentiable w.r.t its parameter η, and if for any k2 ≥ 1 and η1, η2, . . . , ηk2, the
following set is linearly independent w.r.t x:{

∂h2

∂η(u2)
(x, ηi) : i ∈ [k2], u2 ∈ [d2]

}
.
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Examples. It can be validated that even linear experts of the form h2(x, (η1, η0)) := η⊤1 x+η0 satisfy
the weak identifiability condition. Note that the strong identifiability condition in Definition 1 implies
the weak identifiability condition. Therefore, two-layer FFNs h2(x, (η2, η1, η0)) := η2ReLU(η⊤1 x+ η0)
are also weakly identifiable. On the other hand, input-free experts h2(x, η) = c(η) does not meet the
weak identifiability condition.

Voronoi loss. Now, we build a Voronoi loss to capture parameter estimation rates under the dense
regime, which is given by

D4((G1, G2), (G
∗
1, Ǧ2)) :=

k∗1∑
j=1

∣∣∣ ∑
i∈V1,j

ωi − ω∗
j

∣∣∣+ ∑
j∈[k∗1 ]:|V1,j |=1

∑
i∈V1,j

ωi(∥∆κij∥+ |∆τij |)

+
∑
j∈[k∗1 ],
|V1,j |>1

∑
i∈V1,j

ωi(∥∆κij∥2 + |∆τij |2) +
k∗2∑
j=1

∑
i∈V2,j

(∥β1i − β̌1j∥+ |β0i − β̌0j |

+ ∥ηi − η̌j∥+ |νi − ν̌j |). (11)

Given the above loss, we are now ready to present results for the convergence rates of parameter
estimation and expert estimation in Theorem 4, whose proof can be found in Appendix D.4.

Theorem 4. Suppose that the shared expert function h1 is strongly identifiable, while the routed
expert function h2 is weakly identifiable. Then, the lower bound

inf
(G∗

1,Ǧ2)∈Gk1,k2
(Θ)

EX [V (gG1,G2(·|X), gG∗
1,Ǧ2

(·|X))] ≳ D4((G1, G2), (G
∗
1, Ǧ2))

holds for any (G1, G2) ∈ Gk1,k2(Θ). As a consequence, we have

inf
(G∗

1,Ǧ2)∈Gk1,k2
(Θ)

D4(G̃
n
1 , G̃

n
2 ), (G

∗
1, Ǧ2)) = OP ([log(n)/n]

1
2 ).

It can be seen from the formulation of the Voronoi loss D4 that the estimation rates for shared
experts remain unchanged compared to those in Theorem 3, which are of the orders ÕP (n

−1/2) for
exactly-specified ones and ÕP (n

−1/4) for over-specified ones. However, there are changes in the
estimation rates for routed experts.

(i) Routed experts: In particular, the convergence rates of parameter estimation η̃ni are of parametric
order ÕP (n

−1/2). Since the routed expert function h2(x, η) is Lipschitz continuous w.r.t its parameter
η, then the rates for estimating both exactly-specified and over-specified routed experts are of order
ÕP (n

−1/2). These rates are substantially faster than those when using the standard softmax gating
in Theorem 1 and Theorem 2, which are of orders ÕP (n

−1/4) and ÕP (n
−1/r2(|V2,j |)), respectively.

(ii) Sample efficiency of the normalized sigmoid gating: As a result, when using the normalized
sigmoid gating, then we need only O(ϵ−2) to approximate routed experts with a given error ϵ, even
if they are of linear form. On the other hand, when using the softmax gating, it requires O(ϵ−4)
data points to estimate strongly identifiable experts. Furthermore, if the routed experts are of linear
form, then we need O(ϵ−r2(|V2,j |)) data points to estimate, which is equivalent to O(ϵ−12) when these
routed experts have three fitted experts, that is, |V2,j | = 3. Hence, we claim that the normalized
sigmoid gating helps improve the sample efficiency of DeepSeekMoE.
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B Systems of Polynomial Equations

In this appendix, we will provide a formal definition of the functions r1 and r2 involved in the
Voronoi loss D2 defined in equation (6).

Definition of the function r1. To capture estimation rates for shared expert parameters in
Section 2.2, it is necessary to consider the solvability of a system of polynomial equations previously
studied in [25]. More specifically, for each m ≥ 2, let r1(m) be the smallest natural number r such
that the system:

m∑
i=1

∑
n1,n2∈N:
n1+2n2=ℓ

s23i s
n1
1i s

n2
2i

n1! n2!
= 0, ℓ = 1, 2, . . . , r, (12)

does not admit any non-trivial solutions for the unknown variables {s1i, s2i, s3i}mi=1. Here, we call a
solution non-trivial if all the values of s3i are non-zero, whereas at least one among s1i is different
from zero. In the following proposition, we provide the values of the function r1 at some specific
points m ∈ N.

Proposition 3 (Proposition 2.1, [25]). For m = 2, we get r1(m) = 4, while for m = 3, we have
r1(m) = 6. When m ≥ 4, we have r1(m) ≥ 7.

The proof of Proposition 3 can be found in [25].

Definition of the function r2. To characterize estimation rates for routed expert parameters in
Section 2.2, we need to take into account the solvability of another system of polynomial equations
studied in [56], which is given by

m∑
i=1

∑
α∈Iℓ1,ℓ2

t25i t
α1
1i t

α2
2i t

α3
3i t

α4
4i

α1! α2! α3! α4!
= 0, (13)

for all ℓ1, ℓ2 ≥ 0 satisfying 1 ≤ ℓ1 + ℓ2 ≤ r, where

Iℓ1,ℓ2 := {α = (αi)
4
i=1 ∈ Nd × Nd × N× N : α1 + α2 = ℓ1, α3 + 2α4 = ℓ2 − |α2|}.

Then, we define r2(m) as the smallest natural number r such that the system in equation (13) has
no non-trivial solutions for the unknown variables {t5i, t1i, t2i, t3i, t4i}mi=1. Here, a solution is called
non-trivial if all the values of t5i are different from, while at least one among t4i is non-zero. The
following proposition provides a relation between the two functions r1 and r2 as well as specify the
values of r2(m) at some points m ∈ N.

Proposition 4 (Lemma 1, [56]). The function r2 is upper bounded by the function r1, that is,
r2(m) ≤ r1(m), for all m ∈ N. In addition, we have r2(2) = 4, r2(3) = 6 and r(m) ≥ 7 when m ≥ 4.

The proof of Lemma 4 can be found in [56].
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C Related Works

There have been two primary lines of works on understanding MoE models in the literature.

From a statistical perspective, Zeevi et al. [80] investigated the representation power of a mixture of
generalized linear experts when using this model to approximate target functions belonging to a
Sobolev class. Next, Mendes et al. [50] performed a convergence analysis of MLE under the MoE
with experts being polynomial regression models, offering an important insight for finding the optimal
configuration of the number of experts and their sizes. After that, considering data generated from
a Gaussian MoE with covariate-free gating, Ho et al. [26] established an algebraic independence
condition on the location and scale functions of the Gaussian density to characterize which choices
of this pair will lead to faster convergence rates of parameter estimation. Then, this analysis was
extended to more practical yet challenging settings of dense and sparse softmax gating Gaussian
MoE in [56] and [54], respectively. These works demonstrated that parameter and expert estimation
rates hinged on the solvability of some systems of polynomial equations and became significantly slow
as the number of experts increased. Lastly, Nguyen et al. [55] considered a MoE-based regression
framework where the regression function took the form of MoE with standard softmax gating,
dense-to-sparse gating, and hierarchical softmax gating, respectively. Their convergence analysis
of least squares estimation provided critical implications on the design of expert structures. In
particular, it indicated that feed-forward expert networks equipped with the sigmoid function or
the Gaussian linear error unit (GELU) activation function admitted estimation rates of polynomial
orders, while experts of polynomial forms had much slower estimation rates, of exponential orders.

From a deep learning perspective, Chen et al. [8] took into account a classification problem with
cluster structures using MoE models. In particular, they justified the ability of the gating network to
learn the cluster-center features, enabling the model to separate a big complex problem into simpler
ones, each of which will be handled by the corresponding specialized experts. Furthermore, theories
for applications of MoE in continual learning [39, 37], domain adaptation [53, 9], and language
modeling [59, 17] have also been extensively explored in the literature. Interestingly, self-attention
mechanism in the Transformers architecture [73] has recently been shown to be represented by a
mixture of linear experts with quadratic softmax gating [2, 77], leading to numerous advances in
parameter-efficient fine-tuning methods [71, 36].

However, to the best of our knowledge, no prior work has been done to identify the theoretical
properties of the DeepSeekMoE architecture.

D Proof of Main Results

D.1 Proof of Theorem 1

Proof overview. Recall that our goal is to demonstrate that the following lower bound holds for
any G ∈ Gk1,k2(Θ):

EX [V (fG1,G2(·|X), fG∗
1,G

∗
2
(·|X))] ≳ D1((G1, G2), (G

∗
1, G

∗
2)). (14)
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Our proof will be divided into two main parts. Firstly, we aim to establish the local part of the
bound (14), that is,

lim
ε→0

inf
(G1,G2)∈Gk1,k2

(Θ):D1((G1,G2),(G∗
1,G

∗
2))≤ε

EX [V (fG1,G2(·|X), fG∗
1,G

∗
2
(·|X))]

D1((G1, G2), (G∗
1, G

∗
2))

> 0. (15)

The above result implies that there exists a positive constant ε′ such that

inf
(G1,G2)∈Gk1,k2

(Θ):D1((G1,G2),(G∗
1,G

∗
2))≤ε′

EX [V (fG1,G2(·|X), fG∗
1,G

∗
2
(·|X))]

D1((G1, G2), (G∗
1, G

∗
2))

> 0.

Then, we complete the proof by deriving the following global part of the bound (14):

inf
(G1,G2)∈Gk1,k2

(Θ):D1((G1,G2),(G∗
1,G

∗
2))>ε

′

EX [V (fG1,G2(·|X), fG∗
1,G

∗
2
(·|X))]

D1((G1, G2), (G∗
1, G

∗
2))

> 0. (16)

Proof for the local part (15): Assume by contrary that the claim in equation (15) does not hold.
Then, we can find a sequence of mixing measure pairs (Gn1 , Gn2 ) taking the formGn1 :=

∑kn1
i=1 ω

n
i δ(κni ,τni ),

Gn2 :=
∑kn2

i=1 exp(β
n
0i)δ(βn

1i,η
n
i ,ν

n
i )

for n ∈ N such that D1n := D1((G
n
1 , G

n
2 ), (G

∗
1, G

∗
2)) → 0 and

EX [V (fGn
1 ,G

n
2
(·|X), fG∗

1,G
∗
2
(·|X))]/D1n → 0, (17)

as n→ ∞. As our proof argument is asymptotic, we may assume that the number of shared and
routed experts kn1 , kn2 do not vary with the sample size n. In addition, we also assume that Voronoi
cells are independent of n, that is, V1,j1 = V1,j1(G

n
1 ) and V2,j2 = V2,j2(G

n
2 ), for all j1 ∈ [k∗1] and

j2 ∈ [k∗2]. Then, we can represent the Voronoi loss D1n as

D1n =

k∗1∑
j=1

∣∣∣ ∑
i∈V1,j

ωni − ω∗
j

∣∣∣+ k∗2∑
j=1

∣∣∣ ∑
i∈V2,j

exp(βn0i)− exp(β∗
0j)

∣∣∣
+

∑
j∈[k∗1 ]:|V1,j |=1

∑
i∈V1,j

ωni (∥∆κnij∥+ |∆τnij |) +
∑

j∈[k∗2 ]:|V2,j |=1

∑
i∈V2,j

exp(βn0i)(∥∆βn1ij∥+ ∥∆ηnij∥+ |∆νnij |)

+
∑

j∈[k∗1 ]:|V1,j |>1

∑
i∈V1,j

ωni (∥∆κnij∥2 + |∆τnij |2) +
∑

j∈[k∗2 ]:|V2,j |>1

∑
i∈V2,j

exp(βn0i)(∥∆βn1ij∥2 + ∥∆ηnij∥2 + |∆νnij |2),

(18)

where we denote ∆κnij := κni − κ∗j , ∆τ
n
ij := τni − τ∗j , ∆βn1ij := βn1i− β∗1j , ∆η

n
ij := ηni − η∗j , and ∆νnij :=

νni − ν∗j . Recall that D1n → 0 as n→ ∞, then it follows that
∑

i∈V1,j
ωni → ω∗

j , (κ
n
i , τ

n
i ) → (κ∗j , τ

∗
j )

as n → ∞ for all i ∈ V1,j and j ∈ [k∗1]. Furthermore, we also have
∑

i∈V2,j
exp(βn0i) − exp(β∗0j),

(βn1i, η
n
i , ν

n
i ) → (β∗1j , η

∗
j , ν

∗
j ) as n→ ∞ for all i ∈ V2,j and j ∈ [k∗2].

Subsequently, we partition the rest of this proof into three main stages:

Stage 1 - Density Decomposition: In this stage, we focus on decomposing the density difference
fGn

1 ,G
n
2
(Y |X)− fG∗

1,G
∗
2
(Y |X). For ease of presentation, let us denote

qGn
1
(Y |X) :=

kn1∑
i=1

ωni π(Y |h1(X,κni ), τni ),
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qG∗
1
(Y |X) :=

k∗1∑
i=1

ω∗
i π(Y |h1(X,κ∗i ), τ∗i ),

pGn
2
(Y |X) :=

kn2∑
i=1

exp((βn1i)
⊤X + βn0i)∑kn2

j=1 exp((β
n
1j)

⊤X + βn0j)
· π(Y |h2(X, ηni ), νni ),

pG∗
2
(Y |X) :=

k∗2∑
i=1

exp((β∗
1i)

⊤X + β∗0i)∑k∗2
j=1 exp((β

∗
1j)

⊤X + β∗0j)
· π(Y |h2(X, η∗i ), ν∗i ).

Then, we have

fGn
1 ,G

n
2
(Y |X)− fG∗

1,G
∗
2
(Y |X) =

1

2

[
(qGn

1
(Y |X)− qG∗

1
(Y |X)) + (pGn

2
(Y |X)− pG∗

2
(Y |X))

]
.

Stage 1.1: In this step, we decompose the term qGn
1
(Y |X)− qG∗

1
(Y |X) as

qGn
1
(Y |X)− qG∗

1
(Y |X) =

∑
j∈[k∗1 ]:|V1,j |=1

∑
i∈V1,j

ωni [π(Y |h1(X,κni ), τni )− π(Y |h1(X,κ∗j ), τ∗j )]

+
∑

j∈[k∗1 ]:|V1,j |>1

∑
i∈V1,j

ωni [π(Y |h1(X,κni ), τni )− π(Y |h1(X,κ∗j ), τ∗j )]

+

k∗1∑
j=1

( ∑
i∈V1,j

ωni − ω∗
j

)
π(Y |h1(X,κ∗j ), τ∗j )

:= An,1(Y |X) +An,2(Y |X) +An,0(Y |X).

By applying the first-order and second-order Taylor expansions to the function π(Y |h1(X,κni ), τni ))
around the point (κ∗j , τ

∗
j ), respectively, we have

An,1(Y |X) =
∑

j∈[k∗1 ]:|V1,j |=1

∑
i∈V1,j

ωni
∑
|α|=1

1

α!
(∆κnij)

α1(∆τnij)
α2 · ∂π

∂κα1∂τα2
(Y |h1(X,κ∗j ), τ∗j ) +Rn,1(Y |X),

An,2(Y |X) =
∑

j∈[k∗1 ]:|V1,j |>1

∑
i∈V1,j

ωni

2∑
|α|=1

1

α!
(∆κnij)

α1(∆τnij)
α2 · ∂|α|π

∂κα1∂τα2
(Y |h1(X,κ∗j ), τ∗j ) +Rn,2(Y |X),

where Rn,1(Y |X) and Rn,2(Y |X) are the Taylor remainders such that Rn,1(Y |X)/D1n → 0 as
n→ ∞. By the chain rule, the first-order derivatives of the function π with respect to its parameters
κ and τ are given by

∂π

∂κ(u1)
(Y |h1(X,κ∗j ), τ∗j ) =

∂h1

∂κ(u1)
(X,κ∗j )

∂π

∂h1
(Y |h1(X,κ∗j ), τ∗j ),

∂π

∂τ
(Y |h1(X,κ∗j ), τ∗j ) =

1

2

∂2π

∂h21
(Y |h1(X,κ∗j ), τ∗j ),

for all u1 ∈ [d1]. Analogously, the second-order derivatives of the function π w.r.t its parameters are
calculated as

∂2π

∂κ(u1)∂κ(v1)
(Y |h1(X,κ∗j ), τ∗j ) =

∂2h1

∂κ(u1)∂κ(v1)
(X,κ∗j )

∂π

∂h1
(Y |h1(X,κ∗j ), τ∗j )
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+
∂h1

∂κ(u1)
(X,κ∗j )

∂h1

∂κ(v1)
(X,κ∗j )

∂2π

∂h21
(Y |h1(X,κ∗j ), τ∗j ),

∂2π

∂τ2
(Y |h1(X,κ∗j ), τ∗j ) =

1

4

∂4π

∂h41
(Y |h1(X,κ∗j ), τ∗j ),

∂2π

∂κ(u1)∂τ
(Y |h1(X,κ∗j ), τ∗j ) =

1

2

∂h1

∂κ(u1)
(X,κ∗j )

∂3π

∂h31
(Y |h1(X,κ∗j ), τ∗j ),

for all u1, v1 ∈ [d1]. Combine the above results, we can rewrite An,1(Y |X) as

An,1(Y |X) =
∑

j∈[k∗1 ]:|V1,j |=1

[
A

(j)
n,1,1(X)

∂π

∂h1
(Y |h1(X,κ∗j ), τ∗j ) +A

(j)
n,1,2(X)

∂2π

∂h21
(Y |h1(X,κ∗j ), τ∗j )

]
+Rn,1(Y |X),

where we denote

A
(j)
n,1,1(X) :=

∑
i∈V1,j

ωni

d1∑
u1=1

(∆κnij)
(u1) ∂h1

∂κ(u1)
(X,κ∗j ),

A
(j)
n,1,2(X) :=

∑
i∈V1,j

ωni
1

2
(∆τnij),

for all j ∈ [k∗1] such that |V1,j | = 1. Similarly, the quantity An,2(Y |X) can be represented as

An,2(Y |X) =
∑

j∈[k∗1 ]:|V1,j |>1

[
A

(j)
n,2,1(X)

∂π

∂h1
(Y |h1(X,κ∗j ), τ∗j ) +A

(j)
n,2,2(X)

∂2π

∂h21
(Y |h1(X,κ∗j ), τ∗j )

+A
(j)
n,2,3(X)

∂3π

∂h31
(Y |h1(X,κ∗j ), τ∗j ) +A

(j)
n,2,4(X)

∂4π

∂h41
(Y |h1(X,κ∗j ), τ∗j )

]
+Rn,2(Y |X),

where we denote

A
(j)
n,2,1(X) :=

∑
i∈V1,j

ωni

( d1∑
u1=1

(∆κnij)
(u1) ∂h1

∂κ(u1)
(X,κ∗j ) +

d1∑
u1,v1=1

(∆κnij)
(u1)(∆κnij)

(v1)

1 + 1{u1=v1}

∂2h1

∂κ(u1)∂κ(v1)
(X,κ∗j )

)
,

A
(j)
n,2,2(X) :=

∑
i∈V1,j

ωni

(1
2
(∆τnij) +

d1∑
u1,v1=1

(∆κnij)
(u1)(∆κnij)

(v1)

1 + 1{u1=v1}

∂h1

∂κ(u1)
(X,κ∗j )

∂h1

∂κ(v1)
(X,κ∗j )

)
,

A
(j)
n,2,3(X) :=

∑
i∈V1,j

ωni

d1∑
u1=1

1

2
(∆κnij)

(u1)(∆τnij)
∂h1

∂κ(u1)
(X,κ∗j ),

A
(j)
n,2,4(X) :=

∑
i∈V1,j

ωni
1

8
(∆τnij)

2,

for all j ∈ [k∗1] such that |V1,j | > 1.

Stage 1.2: In this step, we decompose the term Qn(Y |X) :=
[∑k∗2

j=1 exp((β
∗
1j)

⊤X + β∗0j)
]
·

[pGn
2
(Y |X)−pG∗

2
(Y |X)]. By denoting F (Y |X;β1, η, ν) := exp(β⊤1 X)π(Y |h2(X, η), ν) andH(Y |X;β1) :=
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exp(β⊤
1 X)pG2(Y |X), we can represent Qn(Y |X) as

Qn(Y |X) =

k∗2∑
j=1

∑
i∈V2,j

exp(βn0i)[F (Y |X;βn1i, η
n
i , ν

n
i )− F (Y |X;β∗1j , η

∗
j , ν

∗
j )]

−
k∗2∑
j=1

∑
i∈V2,j

exp(βn0i)[H(Y |X;βn1i)−H(Y |X;β∗1j)]

+

k∗2∑
j=1

( ∑
i∈V2,j

exp(βn0i)− exp(β∗
0j)

)
[F (Y |X;β∗1j , η

∗
j , ν

∗
j )−H(Y |X;β∗1j)]

:= Bn(Y |X)− Cn(Y |X) + En(Y |X).

Stage 1.2.1: In this step, we decompose the term Bn(Y |X):

Bn(Y |X) =
∑

j∈[k∗2 ]:|V2,j |=1

∑
i∈V2,j

exp(βn0i)[F (Y |X;βn1i, η
n
i , ν

n
i )− F (Y |X;β∗1j , η

∗
j , ν

∗
j )]

+
∑

j∈[k∗2 ]:|V2,j |>1

∑
i∈V2,j

exp(βn0i)[F (Y |X;βn1i, η
n
i , ν

n
i )− F (Y |X;β∗1j , η

∗
j , ν

∗
j )]

:= Bn,1(Y |X) +Bn,2(Y |X).

By applying the first-order and second-order Taylor expansions to the function F (Y |X;βn1i, η
n
i , ν

n
i )

around the point (β∗1j , η
∗
j , ν

∗
j ), we have

Bn,1(Y |X) =
∑

j∈[k∗2 ]:|V2,j |=1

∑
i∈V2,j

exp(βn0i)
∑
|α|=1

1

α!
(∆βn1ij)

α1(∆ηnij)
α2(∆νnij)

α3

× ∂F

∂βα1
1 ∂ηα2∂να3

(Y |X;β∗1j , η
∗
j , ν

∗
j ) +Rn,3(Y |X),

Bn,2(Y |X) =
∑

j∈[k∗2 ]:|V2,j |>1

∑
i∈V2,j

exp(βn0i)
2∑

|α|=1

1

α!
(∆βn1ij)

α1(∆ηnij)
α2(∆νnij)

α3

× ∂|α|F

∂βα1
1 ∂ηα2∂να3

(Y |X;β∗1j , η
∗
j , ν

∗
j ) +Rn,4(Y |X),

where Rn,3(Y |X) and Rn,4(Y |X) are the Taylor remainders such that Rn,3(Y |X)/D1n → 0 and
Rn,4(Y |X)/D1n → 0 as n → ∞. By means of the chain rule, the first-order derivatives of the
function F w.r.t its parameters β1, η, ν are given by

∂F

∂β
(u)
1

(Y |X;β∗1j , η
∗
j , ν

∗
j ) = X(u) exp((β∗

1j)
⊤X)π(Y |h2(X, η∗j ), ν∗j ),

∂F

∂η(u2)
(Y |X;β∗1j , η

∗
j , ν

∗
j ) =

∂h2

∂η(u2)
(X, η∗j ) exp((β

∗
1j)

⊤X)
∂π

∂h2
(Y |h2(X, η∗j ), ν∗j ),

∂F

∂ν
(Y |X;β∗1j , η

∗
j , ν

∗
j ) =

1

2
exp((β∗

1j)
⊤X)

∂2π

∂h22
(Y |h2(X, η∗j ), ν∗j ),
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for all u2 ∈ [d2]. Similarly, we can derive the second-order derivatives of the function F w.r.t its
parameters as follows:

∂2F

∂β
(u)
1 ∂β

(v)
1

(Y |X;β∗1j , η
∗
j , ν

∗
j ) = X(u)X(v) exp((β∗

1j)
⊤X)π(Y |h2(X, η∗j ), ν∗j ),

∂2F

∂η(u2)∂η(v2)
(Y |X;β∗1j , η

∗
j , ν

∗
j ) =

∂2h2

∂η(u2)∂η(v2)
(X, η∗j ) exp((β

∗
1j)

⊤X)
∂π

∂h2
(Y |h2(X, η∗j ), ν∗j )

+
∂h2

∂η(u2)
(X, η∗j )

∂h2

∂η(v2)
(X, η∗j ) exp((β

∗
1j)

⊤X)
∂2π

∂h22
(Y |h2(X, η∗j ), ν∗j ),

∂2F

∂ν2
(Y |X;β∗1j , η

∗
j , ν

∗
j ) =

1

4
exp((β∗

1j)
⊤X)

∂4π

∂h42
(Y |h2(X, η∗j ), ν∗j ),

and

∂2F

∂β
(u)
1 ∂η(v2)

(Y |X;β∗1j , η
∗
j , ν

∗
j ) = X(u) ∂h2

∂η(v2)
(X, η∗j ) exp((β

∗
1j)

⊤X)
∂π

∂h2
(Y |h2(X, η∗j ), ν∗j ),

∂2F

∂β
(u)
1 ∂ν

(Y |X;β∗1j , η
∗
j , ν

∗
j ) =

1

2
X(u) exp((β∗

1j)
⊤X)

∂2π

∂h22
(Y |h2(X, η∗j ), ν∗j ),

∂2F

∂η(u2)∂ν
(Y |X;β∗1j , η

∗
j , ν

∗
j ) =

1

2

∂h2

∂η(u2)
(X, η∗j ) exp((β

∗
1j)

⊤X)
∂3π

∂h32
(Y |h2(X, η∗j ), ν∗j ),

for all u2, v2 ∈ [d2]. Putting the above results together, we can rewrite Bn,1(Y |X) as

Bn,1(Y |X) =
∑

j∈[k∗2 ]:|V2,j |=1

[
B

(j)
n,1,0(X)π(Y |h2(X, η∗j ), ν∗j ) +B

(j)
n,1,1(X)

∂π

∂h2
(Y |h2(X, η∗j ), ν∗j )

+B
(j)
n,1,2(X)

∂2π

∂h22
(Y |h2(X, η∗j ), ν∗j )

]
+Rn,3(Y |X),

where we denote

B
(j)
n,1,0(X) :=

∑
i∈V2,j

exp(βn0i)

d∑
u=1

(∆βn1ij)
(u)X(u) exp((β∗

1j)
⊤X),

B
(j)
n,1,1(X) :=

∑
i∈V2,j

exp(βn0i)

d2∑
u2=1

(∆ηnij)
(u2) ∂h2

∂η(u2)
(X, η∗j ) exp((β

∗
1j)

⊤X),

B
(j)
n,1,2(X) :=

∑
i∈V2,j

exp(βn0i)
1

2
(∆νnij) exp((β

∗
1j)

⊤X),

for all j ∈ [k∗2] such that |V2,j | = 1. Analogously, we can represent the term Bn,2(Y |X) as

Bn,2(Y |X) =
∑

j∈[k∗2 ]:|V2,j |=1

4∑
ρ=0

B
(j)
n,2,ρ(X)

∂ρπ

∂hρ2
(Y |h2(X, η∗j ), ν∗j ) +Rn,4(Y |X),
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where we define

B
(j)
n,2,0(X) :=

∑
i∈V2,j

exp(βn0i)

[
d∑

u=1

(∆βn1ij)
(u)X(u) +

d∑
u,v=1

(∆βn1ij)
(u)(∆βn1ij)

(v)

1 + 1{u=v}
X(u)X(v)

]
exp((β∗

1j)
⊤X),

B
(j)
n,2,1(X) :=

∑
i∈V2,j

exp(βn0i)

[
d2∑

u2=1

(∆ηnij)
(u2) ∂h2

∂η(u2)
(X, η∗j ) +

d2∑
u2,v2=1

(∆ηnij)
(u2)(∆ηnij)

(v2)

1 + 1{u2=v2}

∂2h2

∂η(u2)∂η(v2)
(X, η∗j )

+

d∑
u=1

d2∑
v2=1

(∆βn1ij)
(u)(∆ηnij)

(v2)X(u) ∂h2

∂η(v2)
(X, η∗j )

]
exp((β∗

1j)
⊤X),

B
(j)
n,2,2(X) :=

∑
i∈V2,j

exp(βn0i)

[
1

2
(∆νnij) +

d2∑
u2,v2=1

(∆ηnij)
(u2)(∆ηnij)

(v2)

1 + 1{u2=v2}

∂h2

∂η(u2)
(X, η∗j )

∂h2

∂η(v2)
(X, η∗j )

+

d∑
u=1

1

2
(∆βn1ij)

(u)(∆νnij)X
(u)

]
exp((β∗

1j)
⊤X),

B
(j)
n,2,3(X) :=

∑
i∈V2,j

exp(βn0i)

d2∑
u2=1

1

2
(∆ηnij)

(u2)(∆νnij)
∂h2

∂η(u2)
(X, η∗j ) exp((β

∗
1j)

⊤X),

B
(j)
n,2,4(X) :=

∑
i∈V2,j

exp(βn0i)
1

8
(∆νnij)

2 exp((β∗
1j)

⊤X),

for all j ∈ [k∗2] such that |V2,j | > 1.

Stage 1.2.2: In this step, we decompose the term Cn(Y |X):

Cn(Y |X) =
∑

j∈[k∗2 ]:|V2,j |=1

∑
i∈V2,j

exp(βn0i)[H(Y |X;βn1i)−H(Y |X;β∗1j)]

+
∑

j∈[k∗2 ]:|V2,j |>1

∑
i∈V2,j

exp(βn0i)[H(Y |X;βn1i)−H(Y |X;β∗1j)]

:= Cn,1(Y |X) + Cn,2(Y |X).

By means of the first-order and second-order Taylor expansions to the function H(Y |X;βn1i) around
the point β∗1j , we get

Cn,1(Y |X) =
∑

j∈[k∗2 ]:|V2,j |=1

∑
i∈V2,j

exp(βn0i)
d∑

u=1

(∆βn1ij)
(u)X(u)H(Y |X;β∗1j) +Rn,5(Y |X),

Cn,2(Y |X) =
∑

j∈[k∗2 ]:|V2,j |>1

∑
i∈V2,j

exp(βn0i)

[
d∑

u=1

(∆βn1ij)
(u)X(u)H(Y |X;β∗1j)

+

d∑
u,v=1

(∆βn1ij)
(u)(∆βn1ij)

(v)

1 + 1{u=v}
X(u)X(v)H(Y |X;β∗1j)

]
+Rn,6(Y |X),
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where Rn,5(Y |X) and Rn,6(Y |X) are the Taylor remainders such that Rn,5(Y |X)/D1n → 0 and
Rn,6(Y |X)/D1n → 0 as n→ ∞.

Putting the above decompositions together, we can view An,0(Y |X)/D1n, [An,1(Y |X)−Rn,1(Y |X)]/D1n,
[An,2(Y |X)−Rn,2(Y |X)]/D1n, [Bn,1(Y |X)−Rn,3(Y |X)]/D1n, [Bn,2(Y |X)−Rn,4(Y |X)]/D1n, [Cn,1(Y |X)−
Rn,5(Y |X)]/D1n, [Cn,2(Y |X)−Rn,6(Y |X)]/D1n, and En(Y |X)/D1n as a combination of elements
of the following sets

S0,j := {π(Y |h1(X,κ∗j ), τ∗j )},

S1,j :=

{
∂h1

∂κ(u1)
(X,κ∗j )

∂π

∂h1
(Y |h1(X,κ∗j ), τ∗j ),

∂2h1

∂κ(u1)∂κ(v1)
(X,κ∗j )

∂π

∂h1
(Y |h1(X,κ∗j ), τ∗j ) : u1, v1 ∈ [d1]

}
,

S2,j :=

{
∂2π

∂h21
(Y |h1(X,κ∗j ), τ∗j ),

∂h1

∂κ(u1)
(X,κ∗j )

∂h1

∂κ(v1)
(X,κ∗j )

∂2π

∂h21
(Y |h1(X,κ∗j ), τ∗j ) : u1, v1 ∈ [d1]

}
,

S3,j :=

{
∂h1

∂κ(u1)
(X,κ∗j )

∂3π

∂h31
(Y |h1(X,κ∗j ), τ∗j ) : u1, v1 ∈ [d1]

}
,

S4,j :=

{
∂4π

∂h41
(Y |h1(X,κ∗j ), τ∗j ) : u1, v1 ∈ [d1]

}
,

for all j ∈ [k∗1], and

T0,j := {F (Y |X;β∗1j , η
∗
j , ν

∗
j ), X

(u2)F (Y |X;β∗1j , η
∗
j , ν

∗
j ), X

(u2)X(v2)F (Y |X;β∗1j , η
∗
j , ν

∗
j ) : u2, v2 ∈ [d2]},

T1,j :=

{
∂h2

∂η(u2)
(X, η∗j )F1(Y |X;β∗1j , η

∗
j , ν

∗
j ),

∂2h2

∂η(u2)∂η(v2)
(X, η∗j )F1(Y |X;β∗1j , η

∗
j , ν

∗
j ),

X(u2) ∂h2

∂η(u2)
(X, η∗j )F1(Y |X;β∗1j , η

∗
j , ν

∗
j ) : u2, v2 ∈ [d2]

}
,

T2,j :=

{
F2(Y |X;β∗1j , η

∗
j , ν

∗
j ),

∂h2

∂η(u2)
(X, η∗j )

∂h2

∂η(v2)
(X, η∗j )F2(Y |X;β∗1j , η

∗
j , ν

∗
j ),

X(u2)F2(Y |X;β∗1j , η
∗
j , ν

∗
j ) : u2, v2 ∈ [d2]

}
,

T3,j :=

{
∂h2

∂η(u2)
(X, η∗j )F3(Y |X;β∗1j , η

∗
j , ν

∗
j ) : u2 ∈ [d2]

}
,

T4,j := {F4(Y |X;β∗1j , η
∗
j , ν

∗
j )},

T5,j := {H(Y |X;β∗1j), X
(u)H(Y |X;β∗1j), X

(u)X(v)H(Y |X;β∗1j) : u, v ∈ [d]},

where we denote

Fρ(Y |X;β∗1j , η
∗
j , ν

∗
j ) := exp((β∗1j)

⊤X)
∂ρπ

∂hρ1
(Y |h2(X, η∗j ), ν∗j ),

for all ρ ∈ [4] and j ∈ [k∗2].
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Stage 2 - Non-vanishing coefficients: In this stage, we show by contradiction that not all the
coefficients in the representations of An,0(Y |X)/D1n, [An,1(Y |X)−Rn,1(Y |X)]/D1n, [An,2(Y |X)−
Rn,2(Y |X)]/D1n, [Bn,1(Y |X) − Rn,3(Y |X)]/D1n, [Bn,2(Y |X) − Rn,4(Y |X)]/D1n, [Cn,1(Y |X) −
Rn,5(Y |X)]/D1n, [Cn,2(Y |X)−Rn,6(Y |X)]/D1n, and En(Y |X)/D1n converge to zero as n→ ∞. In
particular, we assume that all those coefficients go to zero. Then, by looking into the coefficients of
the terms:

• π(Y |h1(X,κ∗j ), τ∗j ) for j ∈ [k∗1], we have 1
D1n

·
∑k∗1

j=1

∣∣∣∑i∈V1,j
ωni − ω∗

j

∣∣∣ → 0;

• ∂h1
∂κ(u1)

(X,κ∗j )
∂π
∂h1

(Y |h1(X,κ∗j ), τ∗j ) for j ∈ [k∗1] : |V1,j | = 1 and u1 ∈ [d1], we have

1

D1n
·

∑
j∈[k∗1 ]:|V1,j |=1

∑
i∈V1,j

ωni ∥∆κnij∥ → 0;

• ∂2π
∂h21

(Y |h1(X,κ∗j ), τ∗j ) for j ∈ [k∗1] : |V1,j | = 1, we have

1

D1n
·

∑
j∈[k∗1 ]:|V1,j |=1

∑
i∈V1,j

ωni |∆τnij | → 0;

•
[

∂h1
∂κ(u1)

(X,κ∗j )
]2 ∂2π
∂h21

(Y |h1(X,κ∗j ), τ∗j ) for j ∈ [k∗1] : |V1,j | > 1 and u1 ∈ [d1], we have

1

D1n
·

∑
j∈[k∗1 ]:|V1,j |>1

∑
i∈V1,j

ωni ∥∆κnij∥2 → 0;

• ∂4π
∂h41

(Y |h1(X,κ∗j ), τ∗j ) for j ∈ [k∗1] : |V1,j | > 1 and u1 ∈ [d1], we have

1

D1n
·

∑
j∈[k∗1 ]:|V1,j |>1

∑
i∈V1,j

ωni |∆τnij |2 → 0;

• F (Y |X;β∗1j , η
∗
j , ν

∗
j ) for j ∈ [k∗2], we have 1

D1n
·
∑k∗2

j=1

∣∣∣∑i∈V2,j
exp(βn0i)− exp(β∗

1j)
∣∣∣ → 0;

• X(u)F (Y |X;β∗1j , η
∗
j , ν

∗
j ) for j ∈ [k∗2] : |V2,j | = 1 and u ∈ [d], we have

1

D1n
·

∑
j∈[k∗2 ]:|V2,j |=1

∑
i∈V2,j

exp(βn0i)∥∆βn1ij∥ → 0;

• ∂h2
∂η(u2)

F1(Y |X;β∗1j , η
∗
j , ν

∗
j ) for j ∈ [k∗2] : |V2,j | = 1 and u2 ∈ [d2], we have

1

D1n
·

∑
j∈[k∗2 ]:|V2,j |=1

∑
i∈V2,j

exp(βn0i)∥∆ηnij∥ → 0;

• F2(Y |X;β∗1j , η
∗
j , ν

∗
j ) for j ∈ [k∗2] : |V2,j | = 1, we have

1

D1n
·

∑
j∈[k∗2 ]:|V2,j |=1

∑
i∈V2,j

exp(βn0i)|∆νnij | → 0;
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• X(u)X(v)F (Y |X;β∗1j , η
∗
j , ν

∗
j ) for j ∈ [k∗2] : |V2,j | > 1 and u, v ∈ [d], we have

1

D1n
·

∑
j∈[k∗2 ]:|V2,j |>1

∑
i∈V2,j

exp(βn0i)∥∆βn1ij∥2 → 0;

•
[
∂2h2
∂η(u2)

(X, η∗j )
]2
F2(Y |X;β∗1j , η

∗
j , ν

∗
j ) for j ∈ [k∗2] : |V2,j | > 1 and u2 ∈ [d2], we have

1

D1n
·

∑
j∈[k∗2 ]:|V2,j |>1

∑
i∈V2,j

exp(βn0i)∥∆ηnij∥ → 0;

• F4(Y |X;β∗1j , η
∗
j , ν

∗
j ) for j ∈ [k∗2] : |V2,j | > 1, we have

1

D1n
·

∑
j∈[k∗2 ]:|V2,j |>1

∑
i∈V2,j

exp(βn0i)|∆νnij |2 → 0;

Taking the sum of the above limits, we deduce 1 = 1
D1n

·D1n → 0 as n→ ∞, which is a contradiction.
Thus, at least one among the coefficients in the representations of An,0(Y |X)/D1n, [An,1(Y |X)−
Rn,1(Y |X)]/D1n, [An,2(Y |X) − Rn,2(Y |X)]/D1n, [Bn,1(Y |X) − Rn,3(Y |X)]/D1n, [Bn,2(Y |X) −
Rn,4(Y |X)]/D1n, [Cn,1(Y |X)−Rn,5(Y |X)]/D1n, [Cn,2(Y |X)−Rn,6(Y |X)]/D1n, and En(Y |X)/D1n

does not converge to zero.

Stage 3 - Fatou’s lemma contradiction: In this stage, we use the Fatou’s lemma to show a
contradiction to the result of Stage 2. For that purpose, let us denote mn as the maximum of
the absolute values of the coefficients in the representations of An,0(Y |X)/D1n, [An,1(Y |X) −
Rn,1(Y |X)]/D1n, [An,2(Y |X) − Rn,2(Y |X)]/D1n, [Bn,1(Y |X) − Rn,3(Y |X)]/D1n, [Bn,2(Y |X) −
Rn,4(Y |X)]/D1n, [Cn,1(Y |X)−Rn,5(Y |X)]/D1n, [Cn,2(Y |X)−Rn,6(Y |X)]/D1n, and En(Y |X)/D1n.
It follows from the result of Stage 2 that 1/mn ̸→ ∞ as n→ ∞. In addition, we also denote

1

mnD1n
·
∑
i∈V1,j

ωni (∆κ
n
ij)

(u1) → s
(u1)
1,j ,

1

mnD1n
·
∑
i∈V1,j

ωni (∆τ
n
ij) → s2,j ,

1

mnD1n
·
∑
i∈V1,j

ωni (∆κ
n
ij)

(u1)(∆κnij)
(v1) → s

(u1v1)
3,j ,

1

mnD1n
·
∑
i∈V1,j

ωni (∆τ
n
ij)

2 → s4,j ,

1

mnD1n
·
∑
i∈V1,j

ωni (∆κ
n
ij)

(u1)(∆τnij) → s
(u1)
5,j ,

1

mnD1n
·
( ∑
i∈V1,j

ωni − ω∗
j

)
→ s0,j ,

for all j ∈ [k∗1] and

1

mnD1n
·
( ∑
i∈V2,j

exp(βn0i)− exp(β∗
0j)

)
→ t0,j ,

1

mnD1n
·
∑
i∈V2,j

exp(βn0i)(∆β
n
1ij)

(u) → t
(u)
1,j ,

1

mnD1n
·
∑
i∈V2,j

exp(βn0i)(∆η
n
ij)

(u2) → t
(u2)
2,j ,

1

mnD1n
·
∑
i∈V2,j

exp(βn0i)(∆ν
n
ij) → t3,j ,
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1

mnD1n
·
∑
i∈V2,j

exp(βn0i)(∆β
n
1ij)

(u)(∆βn1ij)
(v) → t

(uv)
4,j ,

1

mnD1n
·
∑
i∈V2,j

exp(βn0i)(∆η
n
ij)

(u2)(∆ηnij)
(v2) → t

(u2v2)
5,j ,

1

mnD1n
·
∑
i∈V2,j

exp(βn0i)(∆ν
n
ij)

2 → t6,j ,
1

mnD1n
·
∑
i∈V2,j

exp(βn0i)(∆β
n
1ij)

(u)(∆ηnij)
(v2) → t

(uv2)
7,j ,

1

mnD1n
·
∑
i∈V2,j

exp(βn0i)(∆β
n
1ij)

(u)(∆νnij) → t
(u)
8,j ,

1

mnD1n
·
∑
i∈V2,j

exp(βn0i)(∆η
n
ij)

(u2)(∆νnij) → t
(u2)
9,j ,

for all j ∈ [k∗2] as n → ∞. Due to the result of Stage 2, at least one among the above limits is
different from zero. Recall from equation (17) that we have

EX [V (fGn
1 ,G

n
2
(·|X), fG∗

1,G
∗
2
(·|X))]/D1n → 0,

Furthermore, according to the Fatou’s lemma, we get

lim
n→∞

EX [V (fGn
1 ,G

n
2
(·|X), fG∗

1,G
∗
2
(·|X))]

mnD1n
≥

∫
lim inf
n→∞

|fGn
1 ,G

n
2
(Y |X)− fG∗

1,G
∗
2
(Y |X)|

2mnD1n
d(X,Y ).

Then, we deduce [fGn
1 ,G

n
2
(Y |X)− fG∗

1,G
∗
2
(Y |X)]/[mnD1n] → 0 as n → ∞ for almost surely (X,Y ).

Since the input space is bounded and the parameter space is compact, the quantity
∑k∗2

j=1 exp((β
∗
1j)

⊤X+
β∗0j) is bounded. Thus, we also have

[ k∗2∑
j=1

exp((β∗
1j)

⊤X + β∗0j)
]
[fGn

1 ,G
n
2
(Y |X)− fG∗

1,G
∗
2
(Y |X)]/[mnD1n] → 0,

implying that

1

2

[ k∗2∑
j=1

exp((β∗
1j)

⊤X + β∗0j)
]
·
qGn

1
(Y |X)− qG∗

1
(Y |X)

mnD1n
+

1

2

Qn(Y |X)

mnD1n
→ 0.

as n → ∞ for almost surely (X,Y ). From the decomposition of the terms qGn
1
(Y |X) − qG∗

1
(Y |X)

and Qn(Y |X) in Stage 1, we have

1

2

[ k∗2∑
j=1

exp((β∗
1j)

⊤X + β∗0j)
]
· An,2(Y |X) +An,1(Y |X) +An,0(Y |X)

mnD1n

+
1

2

Bn,1(Y |X) +Bn,2(Y |X)− Cn,1(Y |X)− Cn,2(Y |X) + En(Y |X)

mnD1n
→ 0. (19)

Denote Fρ,j(Y |X) := Fρ(Y |X;β∗1j , η
∗
j , ν

∗
j ) and Hj(Y |X) := H(Y |X,β∗

1j), we have

lim
n→∞

An,0(Y |X)

mnD1n
=

k∗1∑
j=1

s0,jπ(Y |h1(X,κ∗j ), τ∗j ),

lim
n→∞

An,1(Y |X)

mnD1n
=

∑
j∈[k∗1 ]:|V1,j |=1

[ d1∑
u1=1

s
(u1)
1,j

∂h1

∂κ(u1)
(X,κ∗j )

∂π

∂h1
(Y |h1(X,κ∗j ), τ∗j )
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+
1

2
s2,j

∂2π

∂h21
(Y |h1(X,κ∗j ), τ∗j )

]
,

lim
n→∞

An,2(Y |X)

mnD1n
=

∑
j∈[k∗1 ]:|V1,j |>1

[( d1∑
u1=1

s
(u1)
1,j

∂h1

∂κ(u1)
(X,κ∗j ) +

d1∑
u1,v1=1

s
(u1v1)
3,j

1 + 1{u1=v1}

∂2h1

∂κ(u1)∂κ(v1)
(X,κ∗j )

)

× ∂π

∂h1
(Y |h1(X,κ∗j ), τ∗j ) +

(1
2
s2,j +

d1∑
u1,v1=1

s
(u1v1)
3,j

1 + 1{u1=v1}

∂h1

∂κ(u1)
(X,κ∗j )

∂h1

∂κ(v1)
(X,κ∗j )

)∂2π
∂h21

(Y |h1(X,κ∗j ), τ∗j )

+
(1
2

d1∑
u1=1

s
(u1)
5,j

∂h1

∂κ(u1)
(X,κ∗j )

)∂3π
∂h31

(Y |h1(X,κ∗j ), τ∗j ) +
1

8
s4,j

∂4π

∂h41
(Y |h1(X,κ∗j ), τ∗j )

]
,

and

lim
n→∞

Bn,1(Y |X)

mnD1n
=

∑
j∈[k∗2 ]:|V2,j |=1

[ d∑
u=1

t
(u)
1,jX

(u)F0,j(Y |X) +

d2∑
u2=1

t
(u2)
2,j

∂h2

∂η(u2)
(X, η∗j )F1,j(Y |X) +

1

2
t3,jF2,j(Y |X)

]
,

lim
n→∞

Bn,2(Y |X)

mnD1n
=

∑
j∈[k∗2 ]:|V2,j |>1

[( d∑
u=1

t
(u)
1,jX

(u) +
d∑

u,v=1

t
(uv)
4,j X

(u)X(v)
)
F0,j(Y |X)

+
( d2∑
u2=1

t
(u2)
2,j

∂h2

∂η(u2)
(X, η∗j ) +

d2∑
u2,v2=1

t
(u2v2)
5,j

∂2h2

∂η(u2)∂η(v2)
(X, η∗j ) +

d∑
u=1

d2∑
v2=1

t
(uv2)
7,j X(u) ∂h2

∂η(v2)
(X, η∗j )

)
F1,j(Y |X)

+
(1
2
t3,j +

d2∑
u2,v2=1

t
(u2v2)
5,j

∂h2

∂η(u2)
(X, η∗j )

∂h2

∂η(v2)
(X, η∗j ) +

d∑
u=1

1

2
t
(u)
8,jX

(u)
)
F2,j(Y |X)

+
( d2∑
u2=1

1

2
t
(u2)
9,j

∂h2

∂η(u2)
(X, η∗j )

)
F3,j(Y |X) +

1

8
t6,jF4,j(Y |X)

]
,

and

lim
n→∞

Cn,1(Y |X)

mnD1n
=

∑
j∈[k∗2 ]:|V2,j |=1

d∑
u=1

t
(u)
1,jX

(u)Hj(Y |X),

lim
n→∞

Cn,2(Y |X)

mnD1n
=

∑
j∈[k∗2 ]:|V2,j |>1

( d∑
u=1

t
(u)
1,jX

(u) +

d∑
u,v=1

t
(uv)
4,j X

(u)X(v)
)
Hj(Y |X),

lim
n→∞

En(Y |X)

mnD1n
=

k∗2∑
j=1

t0,j [F0,j(Y |X)−Hj(Y |X)].

It is worth noting that for almost every X, the set{[ k∗2∑
j=1

exp((β∗
1j)

⊤X + β∗0j)
]∂ρπ
∂hρ1

(Y |h1(X,κ∗j ), τ∗j ) : 0 ≤ ρ ≤ 4, j ∈ [k∗1]

}

∪
{
Fρ(Y |X;β∗1j , η

∗
j , ν

∗
j ), H(Y |X;β∗1j) : 0 ≤ ρ ≤ 4, j ∈ [k∗2]

}
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is linearly independent w.r.t Y . Therefore, it follows that the coefficients of those terms in the limit
in equation (19) become zero.

For j ∈ [k∗1], by looking at the coefficient of the term
[∑k∗2

j=1 exp((β
∗
1j)

⊤X + β∗0j)
]
π(Y |h1(X,κ∗j ), τ∗j ),

we have s0,j = 0.

For j ∈ [k∗1] such that |V1,j | = 1, by considering the coefficients of

•
[∑k∗2

j=1 exp((β
∗
1j)

⊤X + β∗0j)
]
∂π
∂h1

(Y |h1(X,κ∗j ), τ∗j ), we have
∑d1

u1=1 s
(u1)
1,j

∂h1
∂κ(u1)

(X,κ∗j ) = 0 for

almost every X. Since the expert function h1 is strongly identifiable, we get s(u1)1,j = 0 for all
u1 ∈ [d1];

•
[∑k∗2

j=1 exp((β
∗
1j)

⊤X + β∗0j)
]
∂2π
∂h21

(Y |h1(X,κ∗j ), τ∗j ), we have s2,j = 0.

For j ∈ [k∗1] such that |V1,j | > 1, by considering the coefficients of

•
[∑k∗2

j=1 exp((β
∗
1j)

⊤X + β∗0j)
]
∂π
∂h1

(Y |h1(X,κ∗j ), τ∗j ), we have

d1∑
u1=1

s1,j
∂h1

∂κ(u1)
(X,κ∗j ) +

d1∑
u1,v1=1

s
(u1v1)
3,j

1 + 1{u1=v1}

∂2h1

∂κ(u1)∂κ(v1)
(X,κ∗j ) = 0,

for almost every X. Since the expert function h1 satisfies the strong identifiability condition,
we get s(u1)1,j = s

(u1v1)
3,j = 0 for all u1, v1 ∈ [d1];

•
[∑k∗2

j=1 exp((β
∗
1j)

⊤X + β∗0j)
]
∂2π
∂h21

(Y |h1(X,κ∗j ), τ∗j ), we have

1

2
s2,j +

d1∑
u1,v1=1

s
(u1v1)
3,j

1 + 1{u1=v1}

∂h1

∂κ(u1)
(X,κ∗j )

∂h1

∂κ(v1)
(X,κ∗j ) = 0,

for almost every X. Since s(u1v1)3,j = 0 for all u1, v1 ∈ [d1], we deduce s2,j = 0;

•
[∑k∗2

j=1 exp((β
∗
1j)

⊤X + β∗0j)
]
∂3π
∂h31

(Y |h1(X,κ∗j ), τ∗j ), we have 1
2

∑d1
u1=1 s

(u1)
5,j

∂h1
∂κ(u1)

(X,κ∗j ) = 0, for
almost every X. As the expert function h1 meets the strong identifiability condition, we get
s
(u1)
5,j = 0 for all u1 ∈ [d1];

•
[∑k∗2

j=1 exp((β
∗
1j)

⊤X + β∗0j)
]
∂4π
∂h41

(Y |h1(X,κ∗j ), τ∗j ), we have s4,j = 0.

For j ∈ [k∗2] such that |V2,j | = 1, by considering the coefficients of

• F0,j(Y |X), we have t0,j +
∑d

u=1 t
(u)
1,jX

(u) = 0, for almost every X. Then, we deduce t0,j =

t
(u)
1,j = 0 for all u ∈ [d];

• F1,j(Y |X), we have
∑d2

u2=1 t
(u2)
2,j

∂h2
∂η(u2)

(X, η∗j ), for almost every X. As the expert function h2 is

strongly identifiable, we get t(u2)2,j = 0 for all u2 ∈ [d2];
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• F2,j(Y |X), we have t3,j = 0.

For j ∈ [k∗2] such that |V2,j | > 1, by considering the coefficients of

• F0,j(Y |X), we have t0,j +
∑d

u=1 t
(u)
1,jX

(u) +
∑d

u,v=1 t
(uv)
4,j X

(u)X(v) = 0, for almost surely X.

Then, we get t0,j = t
(u)
1,j = t

(uv)
4,j for all u, v ∈ [d].

• F1,j(Y |X), we have

d2∑
u2=1

t
(u2)
2,j

∂h2

∂η(u2)
(X, η∗j ) +

d2∑
u2,v2=1

t
(u2v2)
5,j

∂2h2

∂η(u2)∂η(v2)
(X, η∗j ) +

d∑
u=1

d2∑
v2=1

t
(uv2)
7,j X(u) ∂h2

∂η(v2)
(X, η∗j ) = 0,

for almost every X. As the expert function h2 meets the strong identifiability condition, we
get t(u2)2,j = t

(u2v2)
5,j = t

(uv2)
7,j = 0 for all u2, v2 ∈ [d2] and u ∈ [d];

• F2,j(Y |X), we have

1

2
t3,j +

d2∑
u2,v2=1

t
(u2v2)
5,j

∂h2

∂η(u2)
(X, η∗j )

∂h2

∂η(v2)
(X, η∗j ) +

d∑
u=1

1

2
t
(u)
8,jX

(u) = 0,

for almost every X. Since t(u2v2)5,j = 0 for all u2, v2 ∈ [d2], we deduce 1
2 t3,j+

∑d
u=1

1
2 t

(u)
8,jX

(u) = 0,

for almost every X. Then, we get t3,j = t
(u)
8,j = 0 for all u2, v2 ∈ [d2] and u ∈ [d];

• F3,j(Y |X), we have
∑d2

u2=1
1
2 t

(u2)
9,j

∂h2
∂η(u2)

(X, η∗j ) = 0, for almost every X. As the expert function

h2 is strongly identifiable, we get t(u2)9,j for all u2 ∈ [d2];

• F4,j(Y |X), we have t6,j = 0.

Putting the above results together, we have (i) s0,j = s
(u1)
1,j = s2,j = s

(u1v1)
3,j = s4,j = s

(u1)
5,j = 0 for all

j ∈ [k∗1] and u1, v1 ∈ [d1]; (ii) t0,j = t
(u)
1,j = t

(u2)
2,j = t3,j = t

(uv)
4,j = t

(u2v2)
5,j = t6,j = tuv27,j = t

(u)
8,j = t

(u2)
9,j = 0

for all j ∈ [k∗2], u, v ∈ [d] and u2, v2 ∈ [d2]. This contradicts to the fact that at least one among them
is non-zero. Consequently, we achieve the local part in equation (15), that is,

lim
ε→0

inf
(G1,G2)∈Gk1,k2

(Θ):D1((G1,G2),(G∗
1,G

∗
2))≤ε

EX [V (fG1,G2(·|X), fG∗
1,G

∗
2
(·|X))]

D1((G1, G2), (G∗
1, G

∗
2))

> 0.

The local part indicates that there exists a positive constant ε′ such that

inf
(G1,G2)∈Gk1,k2

(Θ):D1((G1,G2),(G∗
1,G

∗
2))≤ε

EX [V (fG1,G2(·|X), fG∗
1,G

∗
2
(·|X))]

D1((G1, G2), (G∗
1, G

∗
2))

> 0.

Proof for the global part (16): Thus, it is sufficient to establish the global part

inf
(G1,G2)∈Gk1,k2

(Θ):D1((G1,G2),(G∗
1,G

∗
2))>ε

′

EX [V (fG1,G2(·|X), fG∗
1,G

∗
2
(·|X))]

D1((G1, G2), (G∗
1, G

∗
2))

> 0.
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Suppose that the global part does not hold, then there exists a sequence of mixing measure pairs

(G̃n1 , G̃
n
2 ) satisfying D1((G̃

n
1 , G̃

n
2 ), (G

∗
1, G

∗
2)) > ε′ and limn→∞

EX [V (fG̃n
1 ,G̃n

2
(·|X),fG∗

1,G
∗
2
(·|X))]

D1((G̃n
1 ,G̃

n
2 ),(G

∗
1,G

∗
2))

= 0. In
other words, we have

lim
n→∞

EX [V (fG̃n
1 ,G̃

n
2
(·|X), fG∗

1,G
∗
2
(·|X))] = 0.

Recall that the parameter space Θ is compact, then we can replace the sequence (G̃n1 , G̃
n
2 ) by one

of its subsequences which converges to some pair of mixing measures (G̃1, G̃2). Due to the fact
that D1((G̃

n
1 , G̃

n
2 ), (G

∗
1, G

∗
2)) > ε′, we get D1((G̃1, G̃2), (G

∗
1, G

∗
2)) > ε′. Next, by applying the Fatou’s

lemma, we have

0 = lim
n→∞

EX [V (fG̃n
1 ,G̃

n
2
(·|X), fG∗

1,G
∗
2
(·|X))] ≥ 1

2

∫
lim inf
n→∞

∣∣∣fG̃n
1 ,G̃

n
2
(Y |X), fG∗

1,G
∗
2
(Y |X)

∣∣∣d(X,Y )

=
1

2

∫ ∣∣∣fG̃1,G̃2
(Y |X)− fG∗

1,G
∗
2
(Y |X)

∣∣∣d(X,Y ).

The above result implies that fG̃1,G̃2
(Y |X) = fG∗

1,G
∗
2
(Y |X) for almost surely (X,Y ). According to

Proposition 5, we deduce (G̃1, G̃2) ≡ (G∗
1, G

∗
2), indicating that D1((G̃1, G̃2), (G

∗
1, G

∗
2)) = 0. This

contradicts the fact that D1((G̃1, G̃2), (G
∗
1, G

∗
2)) > ε′ > 0. Hence, we obtain the global part (16) and

complete the proof.

D.2 Proof of Theorem 2

By employing arguments used in Appendix D.1, it is sufficient to establish the local part

lim
ε→0

inf
(G1,G2)∈Gk1,k2

(Θ):D2((G1,G2),(G∗
1,G

∗
2))≤ε

EX [V (fG1,G2(·|X), fG∗
1,G

∗
2
(·|X))]

D2((G1, G2), (G∗
1, G

∗
2))

> 0, (20)

and the global part

inf
(G1,G2)∈Gk1,k2

(Θ):D2((G1,G2),(G∗
1,G

∗
2))>ε

′

EX [V (fG1,G2(·|X), fG∗
1,G

∗
2
(·|X))]

D2((G1, G2), (G∗
1, G

∗
2))

> 0. (21)

in this appendix. As the global part (21) can be derived similarly to Appendix D.1, we omit
its proof here. Thus, we will focus on showing only the local part (20). Assume by contrary
that the local part is not true. Then, there exists a sequence of mixing measure pairs (Gn1 , G

n
2 )

taking the form Gn1 :=
∑kn1

i=1 ω
n
i δ(κn1i,κn0i,τni ), Gn2 :=

∑kn2
i=1 exp(β

n
0i)δ(βn

1i,η
n
1i,η

n
0i,ν

n
i )

for n ∈ N such that
D2n := D2((G

n
1 , G

n
2 ), (G

∗
1, G

∗
2)) → 0 and

EX [V (fGn
1 ,G

n
2
(·|X), fG∗

1,G
∗
2
(·|X))]/D2n → 0, (22)

as n→ ∞. Here, we may assume WLOG that the number of shared experts and routed experts kn1 ,
kn2 and Voronoi cells V1,j = V1,j(G

n
1 ), V2,j = V2,j(G

n
2 ) do not change with the sample size n. Then,

the Voronoi loss D2n can be rewritten as

D2n =

k∗1∑
j=1

∣∣∣ ∑
i∈V1,j

ωni − ω∗
j

∣∣∣+ ∑
j∈[k∗2 ]:|V2,j |>1

∣∣∣ ∑
i∈V2,j

exp(βn0i)− exp(β∗
0j)

∣∣∣
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+
∑

j∈[k∗1 ]:|V1,j |=1

∑
i∈V1,j

ωni (∥∆κn1ij∥+ |∆κn0ij |+ |∆τnij |)

+
∑

j∈[k∗1 ]:|V1,j |>1

∑
i∈V1,j

ωni (∥∆κn1ij∥2 + |∆κn0ij |r1,j + |∆τnij |r1,j/2)

+
∑

j∈[k∗2 ]:|V2,j |=1

∑
i∈V2,j

exp(βn0i)(∥∆βn1ij∥+ ∥∆ηn1ij∥+ |∆ηn0ij |+ |∆νnij |)

+
∑

j∈[k∗2 ]:|V2,j |>1

∑
i∈V2,j

exp(βn0i)(∥∆βn1ij∥r2,j + ∥∆ηn1ij∥r2,j/2 + |∆ηn0ij |r2,j + |∆νnij |r2,j/2), (23)

where we denote ∆κn1ij := κn1i−κ∗1j , ∆κn0ij := κn0i−κ∗0j , ∆ηn1ij := ηn1i−η∗1j , and ∆ηn0ij := ηn0i−η∗0j . Since
D2n → 0 as n→ ∞, then the above formulation indicates that as n→ ∞, we have

∑
i∈V1,j

ωni → ω∗
j ,

(κn1i, κ
n
0i, τ

n
i ) → (κ∗1j , κ

∗
0j , τ

∗
j ) as n → ∞ for all i ∈ V1,j and j ∈ [k∗1]. Furthermore, we also have∑

i∈V2,j
exp(βn0i) − exp(β∗0j), (βn1i, η

n
1i, η

n
0i, ν

n
i ) → (β∗1j , η

∗
1j , η

∗
0j , ν

∗
j ) as n → ∞ for all i ∈ V2,j and

j ∈ [k∗2].

Next, we divide the rest of this proof into three main steps:

Stage 1 - Density Decomposition: In this stage, we aim to decompose the density discrepancy
fGn

1 ,G
n
2
(Y |X)− fG∗

1,G
∗
2
(Y |X). For ease of presentation, we denote

qGn
1
(Y |X) :=

kn1∑
i=1

ωni π(Y |(κn1i)⊤X + κn0i, τ
n
i ),

qG∗
1
(Y |X) :=

k∗1∑
i=1

ω∗
i π(Y |(κ∗1j)⊤X + κ∗0j , τ

∗
i ),

pGn
2
(Y |X) :=

kn2∑
i=1

exp((βn1i)
⊤X + βn0i)∑kn2

j=1 exp((β
n
1j)

⊤X + βn0j)
· π(Y |(ηn1i)⊤X + ηn0i, ν

n
i ),

pG∗
2
(Y |X) :=

k∗2∑
i=1

exp((β∗
1i)

⊤X + β∗0i)∑k∗2
j=1 exp((β

∗
1j)

⊤X + β∗0j)
· π(Y |(η∗1j)⊤X + η∗0j , ν

∗
i ).

Given the above notations, we get

fGn
1 ,G

n
2
(Y |X)− fG∗

1,G
∗
2
(Y |X) =

1

2

[
(qGn

1
(Y |X)− qG∗

1
(Y |X)) + (pGn

2
(Y |X)− pG∗

2
(Y |X))

]
.

Stage 1.1: Firstly, we decompose the term qGn
1
(Y |X)− qG∗

1
(Y |X) as

qGn
1
(Y |X)− qG∗

1
(Y |X) =

∑
j∈[k∗1 ]:|V1,j |=1

∑
i∈V1,j

ωni [π(Y |(κn1i)⊤X + κn0i, τ
n
i )− π(Y |(κ∗1j)⊤X + κ∗0j , τ

∗
j )]

+
∑

j∈[k∗1 ]:|V1,j |>1

∑
i∈V1,j

ωni [π(Y |(κn1i)⊤X + κn0i, τ
n
i )− π(Y |(κ∗1j)⊤X + κ∗0j , τ

∗
j )]

+

k∗1∑
j=1

( ∑
i∈V1,j

ωni − ω∗
j

)
π(Y |(κ∗1j)⊤X + κ∗0j , τ

∗
j )
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:= An,1(Y |X) +An,2(Y |X) +An,0(Y |X).

By applying the first-order Taylor expansion to the function π(Y |(κn1i)⊤X + κn0i, τ
n
i ) around the

point (κ∗1j , κ
∗
0j , τ

∗
j ), the term An,1(Y |X) is rewritten as

An,1(Y |X) =
∑

j∈[k∗1 ]:|V1,j |=1

∑
i∈V1,j

∑
|α|=1

ωni
α!

(∆κn1ij)
α1(∆κn0ij)

α2(∆τnij)
α3

× ∂|α1|+α2+α3π

∂κα1
1 ∂κα2

2 ∂τα3
(Y |(κ∗1j)⊤X + κ∗0j , τ

∗
j ) +Rn,1(Y |X)

=
∑

j∈[k∗1 ]:|V1,j |=1

∑
i∈V1,j

∑
|α|=1

ωni
2α3α!

(∆κn1ij)
α1(∆κn0ij)

α2(∆τnij)
α3

×Xα1
∂|α1|+α2+2α3π

∂h
|α1|+α2+2α3

1

(Y |(κ∗1j)⊤X + κ∗0j , τ
∗
j ) +Rn,1(Y |X)

=
∑

j∈[k∗1 ]:|V1,j |=1

1∑
|α1|=0

2(1−|α1|)∑
ℓ=1{|α1|=0}

A
(j)
n,α1,ℓ

·Xα1
∂|α1|+ℓπ

∂h
|α1|+ℓ
1

(Y |(κ∗1j)⊤X + κ∗0j , τ
∗
j ) +Rn,1(Y |X),

where Rn,1(Y |X) is a Taylor remainder such that Rn,1(Y |X)/D2n → 0 as n→ ∞, and

A
(j)
n,α1,ℓ

:=
∑
i∈V1,j

∑
α2+2α3=ℓ

ωni
2α3α!

(∆κn1ij)
α1(∆κn0ij)

α2(∆τnij)
α3 ,

for all j ∈ [k∗1], α1 ∈ Nd and ℓ ∈ N such that (α1, ℓ) ̸= (0d, 0). Meanwhile, by applying the Taylor
expansion of the order r1,j := r1(|V1,j |) to the function π(Y |(κn1i)⊤X + κn0i, τ

n
i ) around the point

(κ∗1j , κ
∗
0j , τ

∗
j ), we rewrite the term An,2(Y |X) as

An,2(Y |X) =
∑

j∈[k∗1 ]:|V1,j |>1

r1,j∑
|α1|=0

2(r1,j−|α1|)∑
ℓ=1{|α1|=0}

A
(j)
n,α1,ℓ

·Xα1
∂|α1|+ℓπ

∂h
|α1|+ℓ
1

(Y |(κ∗1j)⊤X + κ∗0j , τ
∗
j ) +Rn,2(Y |X),

where Rn,2(Y |X) is a Taylor remainder such that Rn,2(Y |X)/D2n → as n→ ∞.

Stage 1.2: Next, we attempt to decompose the term Qn(Y |X) :=
[∑k∗2

j=1 exp((β
∗
1j)

⊤X + β∗0j)
]
·

[pGn
2
(Y |X)− pG∗

2
(Y |X)]. By denoting F (Y |X;β1, η1, η0, ν) := exp(β⊤1 X)π(Y |(η1)⊤X + η0, ν) and

H(Y |X;β1) := exp(β⊤1 X)pG2(Y |X), we can represent Qn(Y |X) as

Qn(Y |X) =

k∗2∑
j=1

∑
i∈V2,j

exp(βn0i)[F (Y |X;βn1i, η
n
1i, η

n
0i, ν

n
i )− F (Y |X;β∗1j , η

∗
1j , η

∗
0j , ν

∗
j )]

−
k∗2∑
j=1

∑
i∈V2,j

exp(βn0i)[H(Y |X;βn1i)−H(Y |X;β∗1j)]

+

k∗2∑
j=1

( ∑
i∈V2,j

exp(βn0i)− exp(β∗
0j)

)
[F (Y |X;β∗1j , η

∗
1j , η

∗
0j , ν

∗
j )−H(Y |X;β∗1j)]
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:= Bn(Y |X)− Cn(Y |X) + En(Y |X).

Stage 1.2.1: In this step, we decompose the term Bn(Y |X):

Bn(Y |X) =
∑

j∈[k∗2 ]:|V2,j |=1

∑
i∈V2,j

exp(βn0i)[F (Y |X;βn1i, η
n
1i, η

n
0i, ν

n
i )− F (Y |X;β∗1j , η

∗
1j , η

∗
0j , ν

∗
j )]

+
∑

j∈[k∗2 ]:|V2,j |>1

∑
i∈V2,j

exp(βn0i)[F (Y |X;βn1i, η
n
1i, η

n
0i, ν

n
i )− F (Y |X;β∗1j , η

∗
1j , η

∗
0j , ν

∗
j )]

:= Bn,1(Y |X) +Bn,2(Y |X).

By applying the first-order Taylor expansion to the function F (Y |X;βn1i, η
n
1i, η

n
0i, ν

n
i ) around the

point (β∗1j , η
∗
1j , η

∗
0j , ν

∗
j ), we have

Bn,1(Y |X) =
∑

j∈[k∗2 ]:|V2,j |=1

∑
i∈V2,j

exp(βn0i)
∑
|α|=1

1

α!
(∆βn1ij)

α1(∆ηn1ij)
α2(∆ηn0ij)

α3(∆νnij)
α4

× ∂|α1|+|α2|+α3+α4F

∂βα1
1 ∂ηα2

1 ∂ηα3
0 ∂να4

(Y |X;β∗1j , η
∗
1j , η

∗
0j , ν

∗
j ) +Rn,3(Y |X)

=
∑

j∈[k∗2 ]:|V2,j |=1

∑
i∈V2,j

∑
|α|=1

exp(βn0i)

2α4α!
(∆βn1ij)

α1(∆ηn1ij)
α2(∆ηn0ij)

α3(∆νnij)
α4

×Xα1+α2 exp((β∗
1j)

⊤X)
∂|α2|+α3+2α4π

∂h
|α2|+α3+2α4

2

(Y |(η∗1j)⊤X + η∗0j , ν
∗
j ) +Rn,3(Y |X)

=
∑

j∈[k∗2 ]:|V2,j |=1

2∑
|ℓ1|+ℓ2=1

B
(j)
n,ℓ1,ℓ2

·Xℓ1 exp((β∗
1j)

⊤X)
∂ℓ2π

∂hℓ22
(Y |(η∗1j)⊤X + η∗0j , ν

∗
j ) +Rn,3(Y |X),

where Rn,3(Y |X) is the Taylor remainder such that Rn,3(Y |X)/D2n → 0, and

B
(j)
n,ℓ1,ℓ2

:=
∑
i∈V2,j

∑
α∈Iℓ1,ℓ2

exp(βn0i)

2α4α!
(∆βn1ij)

α1(∆ηn1ij)
α2(∆ηn0ij)

α3(∆νnij)
α4 ,

for all j ∈ [k∗2], ℓ1 ∈ Nd, and ℓ2 ∈ N such that (ℓ1, ℓ2) ̸= (0d, 0), where we define

Iℓ1,ℓ2 := {α = (αi)
4
i=1 ∈ Nd × Nd × N× N : α1 + α2 = ℓ1, α3 + 2α4 = ℓ2 − |α2|}.

By applying the Taylor expansion of the order r2,j := r2(|V2,j |) to the function F (Y |X;βn1i, η
n
1i, η

n
0i, ν

n
i )

around the point (β∗1j , η
∗
1j , η

∗
0j , ν

∗
j ), we have

Bn,2(Y |X) =
∑

j∈[k∗2 ]:|V2,j |=1

2r2,j∑
|ℓ1|+ℓ2=1

B
(j)
n,ℓ1,ℓ2

·Xℓ1 exp((β∗
1j)

⊤X)
∂ℓ2π

∂hℓ22
(Y |(η∗1j)⊤X + η∗0j , ν

∗
j ) +Rn,4(Y |X),

where Rn,4(Y |X) is the Taylor remainder such that Rn,4(Y |X)/D2n → 0.

Stage 1.2.2: In this step, we decompose the term Cn(Y |X):

Cn(Y |X) =
∑

j∈[k∗2 ]:|V2,j |=1

∑
i∈V2,j

exp(βn0i)[H(Y |X;βn1i)−H(Y |X;β∗1j)]
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+
∑

j∈[k∗2 ]:|V2,j |>1

∑
i∈V2,j

exp(βn0i)[H(Y |X;βn1i)−H(Y |X;β∗1j)]

:= Cn,1(Y |X) + Cn,2(Y |X).

By means of the first-order and second-order Taylor expansions to the function H(Y |X;βn1i) around
the point β∗1j , the term Cn,1(Y |X) can be represented as

Cn,1(Y |X) =
∑

j∈[k∗2 ]:|V2,j |=1

∑
i∈V2,j

exp(βn0i)
∑
|γ|=1

1

γ!
(∆βn1ij)

γ ∂
|γ|H

∂βγ1
(Y |X;β∗1j) +Rn,5(Y |X)

=
∑

j∈[k∗2 ]:|V2,j |=1

∑
i∈V2,j

∑
|γ|=1

exp(βn0i)

γ!
(∆βn1ij)

γ ·Xγ exp((β∗
1j)

⊤X)pGn
2
(Y |X) +Rn,5(Y |X)

=
∑

j∈[k∗2 ]:|V2,j |=1

∑
|γ|=1

C(j)
n,γ ·Xγ exp((β∗

1j)
⊤X)pGn

2
(Y |X) +Rn,5(Y |X),

where Rn,5(Y |X) is the Taylor remainder such that Rn,5(Y |X)/D2n → 0, and

C(j)
n,γ :=

∑
i∈V2,j

exp(βn0i)

γ!
(∆βn1ij)

γ ,

for all j ∈ [k∗2] and γ ∈ Nd \ {0d}. Analogously, by applying the second-order Taylor expansion to
the function H(Y |X;βn1i) around the point β∗1j , we represent the term Cn,2(Y |X) as

Cn,2(Y |X) =
∑

j∈[k∗2 ]:|V2,j |=1

2∑
|γ|=1

C(j)
n,γ ·Xγ exp((β∗

1j)
⊤X)pGn

2
(Y |X) +Rn,6(Y |X),

where Rn,6(Y |X) is the Taylor remainder such that Rn,6(Y |X)/D2n → 0.

Combining the above decompositions of An(Y |X), Bn(Y |X), and Cn(Y |X) together, we obtain

[ k∗2∑
j=1

exp((β∗
1j)

⊤X + β∗0j)
]
· [fGn

1 ,G
n
2
(Y |X)− fG∗

1,G
∗
2
(Y |X)]

=
[ k∗2∑
j=1

exp((β∗
1j)

⊤X + β∗0j)
]1
2

∑
j∈[k∗1 ]

r1,j∑
|α1|=0

2(r1,j−|α1|)∑
ℓ=0

A
(j)
n,α1,ℓ

·Xα1
∂|α1|+ℓπ

∂h
|α1|+ℓ
1

(Y |(κ∗1j)⊤X + κ∗0j , τ
∗
j )

+
1

2

∑
j∈[k∗2 ]

2r2,j∑
|ℓ1|+ℓ2=0

B
(j)
n,ℓ1,ℓ2

·Xℓ1 exp((β∗
1j)

⊤X)
∂ℓ2π

∂hℓ22
(Y |(η∗1j)⊤X + η∗0j , ν

∗
j )

− 1

2

∑
j∈[k∗2 ]

1+1{|V2,j |>1}∑
|γ|=0

C(j)
n,γ ·Xγ exp((β∗

1j)
⊤X)pGn

2
(Y |X)

+
1

2

[ k∗2∑
j=1

exp((β∗
1j)

⊤X + β∗0j)
]
[Rn,1(Y |X) +Rn,2(Y |X)]
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+
1

2
[Rn,3(Y |X) +Rn,4(Y |X)−Rn,5(Y |X)−Rn,6(Y |X)], (24)

with a convention that r1,j = 1 for j ∈ [k∗1] : |V1,j | = 1 and r2,j = 1 for j ∈ [k∗2] : |V2,j |, where we
define

A
(j)
n,0d,0

:=
∑
i∈V1,j

ωni − ω∗
j , j ∈ [k∗1]

B
(j)
n,0d,0

:=
∑
i∈V2,j

exp(βn0i)− exp(β∗
0j), j ∈ [k∗2]

C
(j)
n,0d

:=
∑
i∈V2,j

exp(βn0i)− exp(β∗
0j), j ∈ [k∗2].

Stage 2 - Non-vanishing coefficients: In this stage, we demonstrate that at least one among the
terms A(j)

n,α1,ℓ
/D2n, B

(j)
n,ℓ1,ℓ2

/D2n, and C(j)
n,γ/D2n does not converge to zero as n→ ∞. In particular,

we assume that all these terms go to zero. Then, by looking at the terms A(j)
n,α1,ℓ

,

• For j ∈ [k∗1] and |α1| = ℓ = 0, we have 1
D1n

·
∑k∗1

j=1

∣∣∣∑i∈V1,j
ωni − ω∗

j

∣∣∣ → 0;

• For j ∈ [k∗1] : |V1,j | = 1, α1 ∈ Nd : |α1| = 1 and ℓ = 0, we have

1

D2n
·

∑
j∈[k∗1 ]:|V1,j |=1

∑
i∈V1,j

ωni ∥∆κn1ij∥ → 0;

• For j ∈ [k∗1] : |V1,j | = 1, α1 = 0d and ℓ = 1, we have

1

D2n
·

∑
j∈[k∗1 ]:|V1,j |=1

∑
i∈V1,j

ωni |∆κn0ij | → 0;

• For j ∈ [k∗1] : |V1,j | = 1, α1 ∈ Nd : |α1| = 1 and ℓ = 2 we have

1

D2n
·

∑
j∈[k∗1 ]:|V1,j |=1

∑
i∈V1,j

ωni |∆τnij | → 0;

• For j ∈ [k∗1] : |V1,j | > 1, α1 = 2eu, where eu ∈ Nd is a one-hot vector with the u-th entry being
one while other entries being zero, for u ∈ [d], we have

1

D2n
·

∑
j∈[k∗1 ]:|V1,j |>1

∑
i∈V1,j

ωni ∥∆κn1ij∥2 → 0;

Next, by considering the terms B(j)
n,ℓ1,ℓ2

• For j ∈ [k∗2] and |ℓ1| = ℓ2 = 0, we have 1
D2n

·
∑k∗2

j=1

∣∣∣∑i∈V2,j
exp(βn0i)− exp(β∗

1j)
∣∣∣ → 0;
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• For j ∈ [k∗2] : |V2,j | = 1, ℓ1 = eu for u ∈ [d], and ℓ2 = 0, we have

1

D2n
·

∑
j∈[k∗2 ]:|V2,j |=1

∑
i∈V2,j

exp(βn0i)∥∆βn1ij∥ → 0;

• For j ∈ [k∗2] : |V2,j | = 1, ℓ1 = eu for u ∈ [d], and ℓ2 = 1, we have

1

D2n
·

∑
j∈[k∗2 ]:|V2,j |=1

∑
i∈V2,j

exp(βn0i)∥∆ηn1ij∥ → 0;

• For j ∈ [k∗2] : |V2,j | = 1, ℓ1 = 0d and ℓ2 = 1, we have

1

D2n
·

∑
j∈[k∗2 ]:|V2,j |=1

∑
i∈V2,j

exp(βn0i)|∆ηn0ij | → 0;

• For j ∈ [k∗2] : |V2,j | = 1, ℓ1 = 0d, and ℓ2 = 2 we have

1

D2n
·

∑
j∈[k∗2 ]:|V2,j |=1

∑
i∈V2,j

exp(βn0i)|∆νnij | → 0;

Taking the sum of the above limits, we deduce

1

D2n
·

[ k∗1∑
j=1

∣∣∣ ∑
i∈V1,j

ωni − ω∗
j

∣∣∣+ ∑
j∈[k∗2 ]:|V2,j |>1

∣∣∣ ∑
i∈V2,j

exp(βn0i)− exp(β∗
0j)

∣∣∣
+

∑
j∈[k∗1 ]:|V1,j |=1

∑
i∈V1,j

ωni (∥∆κn1ij∥+ |∆κn0ij |+ |∆τnij |) +
∑

j∈[k∗1 ]:|V1,j |>1

∑
i∈V1,j

ωni ∥∆κn1ij∥2

+
∑

j∈[k∗2 ]:|V2,j |=1

∑
i∈V2,j

exp(βn0i)(∥∆βn1ij∥+ ∥∆ηn1ij∥+ |∆ηn0ij |+ |∆νnij |)

]
→ 0,

as n→ ∞. From the formulation of the Voronoi loss D2n in equation (23), it follows that

1

D2n

[ ∑
j∈[k∗1 ]:|V1,j |>1

∑
i∈V1,j

ωni (|∆κn0ij |r1,j + |∆τnij |r1,j/2)

+
∑

j∈[k∗2 ]:|V2,j |>1

∑
i∈V2,j

exp(βn0i)(∥∆βn1ij∥r2,j + ∥∆ηn1ij∥r2,j/2 + |∆ηn0ij |r2,j + |∆νnij |r2,j/2)

]
̸→ 0, (25)

as n→ ∞. Then, we consider two following cases:

Case I: 1
D2n

∑
j∈[k∗1 ]:|V1,j |>1

∑
i∈V1,j

ωni (|∆κn0ij |r1,j + |∆τnij |r1,j/2) ̸→ 0 as n→ ∞.

In this case, there exists some index j′ ∈ [k∗1] : |V1,j′ | > 1 such that

1

D2n
·
∑
i∈V1,j′

ωni (|∆κn0ij′ |
r1,j′ + |∆τnij′ |

r1,j′/2) ̸→ 0, (26)
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as n→ ∞. WLOG, we may assume that j′ = 1. Recall that the term A
(j)
n,α1,ℓ

/D2n → 0 as n→ ∞
for all 0 ≤ |α1| ≤ r1,j and 0 ≤ ℓ ≤ 2(r1,j − |α1|). Then, by dividing the ratio A(1)

n,0d,ℓ
by the left hand

side of equation (26), we get∑
i∈V1,1

∑
α2+2α3=ℓ

ωn
i

2α3α2!α3!
(∆κ1i1)

α2(∆τi1)
α3∑

i∈V1,1
ωni (|∆κn0i1|r1,1 + |∆τni1|r1,1/2)

→ 0, (27)

as n→ ∞ for all 0 ≤ ℓ ≤ 2r1,1.

Let us denote Mn,1 := max{|∆κn0i1|, |∆τni1| : i ∈ V1,1} and Wn,1 := max{ωni : i ∈ V1,1}. Since the
sequence (ωni /Wn,1)n is bounded below, we can replace it by its subsequence that admits the limit
s21i := limn→∞ ωni /Wn,1 > 0. It should be noted that at least one among the terms s21i, for i ∈ V1,1, is
equal to 1. Next, we denote (∆κn0i1)/Mn,1 → s2i and (∆τni1)/[2M

2
n,1] → s3i for all i ∈ V1,1. Similarly,

at least one of each of the s2i and s3i is equal to 1 or −1. Then, by dividing both the numerators
and the denominators of the left hand side of equation (27) by Wn,1M

ℓ
n,1, we obtain the following

system of polynomial equations:∑
i∈V1,1

∑
α2+2α3=ℓ

s21i s
α2
2i s

α3
3i

α2!α3!
= 0, 1 ≤ ℓ ≤ r1,1.

According to the definition of the term r1,1, the above system does not admit any non-trivial solutions,
which is a contradiction. Thus, Case I cannot occur.

Case II: 1
D2n

∑
j∈[k∗2 ]:|V2,j |>1

∑
i∈V2,j

exp(βn0i)(∥∆βn1ij∥r2,j+∥∆ηn1ij∥r2,j/2+|∆ηn0ij |r2,j+|∆νnij |r2,j/2) ̸→
0 as n→ ∞.

In this case, we can find some index j′ ∈ [k∗2] : |V2,j′ | > 1 such that

1

D2n
·
∑
i∈V2,j′

exp(βn0i)(∥∆βn1ij′∥
r2,j′ + ∥∆ηn1ij′∥

r2,j′/2 + |∆ηn0ij′ |
r2,j′ + |∆νnij′ |

r2,j′/2) ̸→ 0, (28)

as n→ ∞. WLOG, we may assume that j′ = 1. Recall that the term B
(j)
n,ℓ1,ℓ2

/D2n → 0 as n→ ∞
for all j ∈ [k∗2] and (ℓ1, ℓ2) ∈ Nd × N : 0 ≤ |ℓ1|+ ℓ2 ≤ 2r2,j . Then, by dividing the ratio B(1)

n,ℓ1,ℓ2
by

the left hand side of equation (28), we get∑
i∈V2,1

∑
α∈Iℓ1,ℓ2

exp(βn
0i)

2α4α! (∆βn1i1)
α1(∆ηn1i1)

α2(∆ηn0i1)
α3(∆νni1)

α4∑
i∈V2,1

exp(βn0i)(∥∆βn1i1∥r2,1 + ∥∆ηn1i1∥r2,1/2 + |∆ηn0i1|r2,1 + |∆νni1|r2,1/2)
→ 0, (29)

as n→ ∞ for all (ℓ1, ℓ2) ∈ Nd × N : 0 ≤ |ℓ1|+ ℓ2 ≤ 2r2,1.

Let us denote Mn,2 := max{∥∆βn1i1∥, ∥∆ηn1i1∥, |∆ηn0i1|, |∆νni1| : i ∈ V2,1} and Wn,2 := max{exp(βn0i) :
i ∈ V2,1}. Since the sequence (exp(βn0i)/Wn,2)n is bounded below, we can replace it by its subsequence
that admits the limit t25i := limn→∞ exp(βn0i)/Wn,2 > 0. It should be noted that at least one among
the terms t25i, for i ∈ V2,1, is equal to 1. Next, we denote

(∆βn1i1)/Mn,2 → t1i, (∆ηn1i1)/M
2
n,2 → t2i,
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(∆ηn0i1)/Mn,2 → t3i, (∆νni1)/[2M
2
n,2] → t4i,

for all i ∈ V2,1. Similarly, at least one of each of the t1i, t2i, t3i, and t4i, is equal to 1 or −1. Then,
by dividing both the numerators and the denominators of the left hand side of equation (29) by
Wn,2M

|ℓ1|+ℓ2
n,2 , we obtain the following system of polynomial equations:

∑
i∈V2,1

∑
α∈Iℓ1,ℓ2

1

α!
· t25i t

α1
1i t

α2
2i t

α3
3i t

α4
4i = 0, 1 ≤ |ℓ1|+ ℓ2 ≤ r2,1.

According to the definition of the term r2,1, the above system does not admit any non-trivial solutions,
which is a contradiction. Thus, Case II cannot occur.

The fact that both Case I and Case II cannot occur contradicts the result of equation (25). Thus,
not all the terms A(j)

n,α1,ℓ
/D2n, B

(j)
n,ℓ1,ℓ2

/D2n, and C(j)
n,γ/D2n converge to zero as n→ ∞.

Stage 3 - Fatou’s lemma contradiction: We denote by mn the maximum of the absolute
values of the ratios A(j)

n,α1,ℓ
/D2n, B

(j)
n,ℓ1,ℓ2

/D2n, and C(j)
n,γ/D2n. It follows from the result of Stage that

1/mn ̸→ ∞ as n→ ∞. Then, by means of the Fatou’s lemma, we have

lim
n→∞

EX [V (fGn
1 ,G

n
2
(·|X), fG∗

1,G
∗
2
(·|X))]

mnD2n
≥

∫
lim inf
n→∞

|fGn
1 ,G

n
2
(Y |X)− fG∗

1,G
∗
2
(Y |X)|

2mnD2n
d(X,Y ).

Then, we deduce [fGn
1 ,G

n
2
(Y |X)− fG∗

1,G
∗
2
(Y |X)]/[mnD1n] → 0 as n → ∞ for almost surely (X,Y ).

Since the input space is bounded and the parameter space is compact, the quantity
∑k∗2

j=1 exp((β
∗
1j)

⊤X+
β∗0j) is bounded. Thus, we also have

1

mnD2n

[ k∗2∑
j=1

exp((β∗
1j)

⊤X + β∗0j)
]
[fGn

1 ,G
n
2
(Y |X)− fG∗

1,G
∗
2
(Y |X)] → 0,

as n→ ∞ for almost surely (X,Y ). Let us denote

1

mnD2n
A

(j)
n,α1,ℓ

→ a
(j)
α1,ℓ

,

1

mnD2n
B

(j)
n,ℓ1,ℓ2

→ b
(j)
ℓ1,ℓ2

,

1

mnD2n
C(j)
n,γ → c(j)γ ,

as n→ ∞ with a note that at least one among them is non-zero. From equation (24), we deduce

[ k∗2∑
j=1

exp((β∗
1j)

⊤X + β∗0j)
]1
2

∑
j∈[k∗1 ]

r1,j∑
|α1|=0

2(r1,j−|α1|)∑
ℓ=0

a
(j)
α1,ℓ

·Xα1
∂|α1|+ℓπ

∂h
|α1|+ℓ
1

(Y |(κ∗1j)⊤X + κ∗0j , τ
∗
j )

+
1

2

∑
j∈[k∗2 ]

2r2,j∑
|ℓ1|+ℓ2=0

b
(j)
ℓ1,ℓ2

·Xℓ1 exp((β∗
1j)

⊤X)
∂ℓ2π

∂hℓ22
(Y |(η∗1j)⊤X + η∗0j , ν

∗
j )
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− 1

2

∑
j∈[k∗2 ]

1+1{|V2,j |>1}∑
|γ|=0

c(j)γ ·Xγ exp((β∗
1j)

⊤X)pG∗
2
(Y |X)

]
→ 0,

as n→ ∞ for almost surely (X,Y ). Since the set{
Xα1

∂|α1|+ℓπ

∂h
|α1|+ℓ
1

(Y |(κ∗1j)⊤X + κ∗0j , τ
∗
j ) : j ∈ [k∗1], 0 ≤ |α1| ≤ r1,j , 0 ≤ ℓ ≤ 2(r1,j − |α1|)

}

∪

{
Xℓ1 exp((β∗

1j)
⊤X)

∂ℓ2π

∂hℓ22
(Y |(η∗1j)⊤X + η∗0j , ν

∗
j ), X

γ exp((β∗
1j)

⊤X)pG∗
2
(Y |X) :

j ∈ [k∗2], 0 ≤ |ℓ1|+ ℓ2 ≤ 2r2,j , 0 ≤ |γ| ≤ 2

}

is linearly independent w.r.t ..., we obtain a(j)α1,ℓ
for all j ∈ [k∗1], α1 ∈ Nd, ℓ ∈ N, and b(j)ℓ1,ℓ2 = c

(j)
γ = 0

for all j ∈ [k∗2], (ℓ1, ℓ2) ∈ Nd×N, γ ∈ Nd. This result contradicts the fact that not all the terms a(j)α1,ℓ
,

b
(j)
ℓ1,ℓ2

, and c(j)γ equal zero. Hence, we achieve the local part in equation (20) and complete the proof.

D.3 Proof of Theorem 3

By leveraging the proof framework in Appendix D.1, we also focus on demonstrating the local part

lim
ε→0

inf
(G1,G2)∈Gk1,k2

(Θ):D3((G1,G2),(G∗
1,G

∗
2))≤ε

EX [V (gG1,G2(·|X), gG∗
1,G

∗
2
(·|X))]

D3((G1, G2), (G∗
1, G

∗
2))

> 0, (30)

and the global part

inf
(G1,G2)∈Gk1,k2

(Θ):D3((G1,G2),(G∗
1,G

∗
2))>ε

′

EX [V (gG1,G2(·|X), gG∗
1,G

∗
2
(·|X))]

D3((G1, G2), (G∗
1, G

∗
2))

> 0. (31)

in this appendix. Note that since the global part (31) can be argued in a similar fashion to
Appendix D.1, its derivation is omitted here. Therefore, it is sufficient to establish the local part (30).
Suppose that the local part does not hold. Then, there exists a sequence of mixing measure pairs
(Gn1 , G

n
2 ) taking the form Gn1 :=

∑kn1
i=1 ω

n
i δ(κni ,τni ), Gn2 :=

∑kn2
i=1 σ(β

n
0i)δ(βn

1i,η
n
i ,ν

n
i )

for n ∈ N such that
D3n := D3((G

n
1 , G

n
2 ), (G

∗
1, G

∗
2)) → 0 and

EX [V (gGn
1 ,G

n
2
(·|X), gG∗

1,G
∗
2
(·|X))]/D3n → 0, (32)

as n→ ∞. Here, we may assume WLOG that the number of shared experts and routed experts kn1 ,
kn2 and Voronoi cells V1,j = V1,j(G

n
1 ), V2,j = V2,j(G

n
2 ) do not change with the sample size n. Then,

the Voronoi loss D3n can be rewritten as

D3n =

k∗1∑
j=1

∣∣∣ ∑
i∈V1,j

ωni − ω∗
j

∣∣∣+ ∑
j∈[k∗2 ]:|V2,j |>1

∣∣∣ ∑
i∈V2,j

σ(βn0i)− σ(β∗0j)
∣∣∣

+
∑

j∈[k∗1 ]:|V1,j |=1

∑
i∈V1,j

ωni (∥∆κnij∥+ |∆τnij |) +
∑

j∈[k∗2 ]:|V2,j |=1

∑
i∈V2,j

(∥∆βn1ij∥+ |∆βn0ij |+ ∥∆ηnij∥+ |∆νnij |)
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+
∑

j∈[k∗1 ]:|V1,j |>1

∑
i∈V1,j

ωni (∥∆κnij∥2 + |∆τnij |2) +
∑

j∈[k∗2 ]:|V2,j |>1

∑
i∈V2,j

(∥∆βn1ij∥2 + ∥∆ηnij∥2 + |∆νnij |2),

(33)

where we denote ∆βn0ij := βn0i− β∗0j . Since D3n → 0 as n→ ∞, then the above formulation indicates
that as n→ ∞, we have

• For j ∈ [k∗1] and i ∈ V1,j :
∑

i∈V1,j
ωni → ω∗

j , (κ
n
i , τ

n
i ) → (κ∗j , τ

∗
j );

• For j ∈ [k∗2] : |V2,j | = 1 and i ∈ V2,j : (βn1i, β
n
0i, η

n
i , ν

n
i ) → (β∗1j , β

∗
0j , η

∗
j , ν

∗
j );

• For j ∈ [k∗2] : |V2,j | > 1 and i ∈ V2,j :
∑

i∈V2,j
σ(βn0i)− σ(β∗0j), (β

n
1i, η

n
i , ν

n
i ) → (β∗1j , η

∗
j , ν

∗
j ).

Now, we divide the proof into three main stages:

Stage 1 - Density Decomposition: In this stage, we aim to decompose the density discrepancy
gGn

1 ,G
n
2
(Y |X)− gG∗

1,G
∗
2
(Y |X). For ease of presentation, we denote

qGn
1
(Y |X) :=

kn1∑
i=1

ωni π(Y |h1(X,κni ), τni ),

qG∗
1
(Y |X) :=

k∗1∑
i=1

ω∗
i π(Y |h1(X,κ∗i ), τ∗i ),

pGn
2
(Y |X) :=

kn2∑
i=1

σ((βn1i)
⊤X + βn0i)∑kn2

j=1 σ((β
n
1j)

⊤X + βn0j)
· π(Y |h2(X, ηni ), νni ),

pG∗
2
(Y |X) :=

k∗2∑
i=1

σ((β∗
1i)

⊤X + β∗0i)∑k∗2
j=1 σ((β

∗
1j)

⊤X + β∗0j)
· π(Y |h2(X, η∗i ), ν∗i ).

Given the above notations, we get

gGn
1 ,G

n
2
(Y |X)− gG∗

1,G
∗
2
(Y |X) =

1

2

[
(qGn

1
(Y |X)− qG∗

1
(Y |X)) + (pGn

2
(Y |X)− pG∗

2
(Y |X))

]
.

Stage 1.1: Firstly, we decompose the term qGn
1
(Y |X)− qG∗

1
(Y |X) as

qGn
1
(Y |X)− qG∗

1
(Y |X) =

∑
j∈[k∗1 ]:|V1,j |=1

∑
i∈V1,j

ωni [π(Y |h1(X,κni ), τni )− π(Y |h1(X,κ∗j ), τ∗j )]

+
∑

j∈[k∗1 ]:|V1,j |>1

∑
i∈V1,j

ωni [π(Y |h1(X,κni ), τni )− π(Y |h1(X,κ∗j ), τ∗j )]

+

k∗1∑
j=1

( ∑
i∈V1,j

ωni − ω∗
j

)
π(Y |h1(X,κ∗j ), τ∗j )

:= An,1(Y |X) +An,2(Y |X) +An,0(Y |X).
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By using the same arguments as in Stage 1.1 in Appendix D.1, the term An,1(Y |X) is rewritten as

An,1(Y |X) =
∑

j∈[k∗1 ]:|V1,j |=1

2∑
ρ=1

A
(j)
n,1,ρ(X)

∂ρπ

∂hρ1
(Y |h1(X,κ∗j ), τ∗j ) +Rn,1(Y |X),

where Rn,1(Y |X) is a Taylor remainder such that Rn,1(Y |X)/D3n → as n→ ∞, and

A
(j)
n,1,1(X) :=

∑
i∈V1,j

ωni

d1∑
u1=1

(∆κnij)
(u1) ∂h1

∂κ(u1)
(X,κ∗j ),

A
(j)
n,1,2(X) :=

∑
i∈V1,j

ωni
1

2
(∆τnij),

for all j ∈ [k∗1] such that |V1,j | = 1. Meanwhile, we can represent An,2(Y |X) as

An,2(Y |X) =
∑

j∈[k∗1 ]:|V1,j |>1

4∑
ρ=1

A
(j)
n,1,ρ(X)

∂ρπ

∂hρ1
(Y |h1(X,κ∗j ), τ∗j ) +Rn,2(Y |X),

where Rn,2(Y |X) is a Taylor remainder such that Rn,2(Y |X)/D3n → as n→ ∞, and

A
(j)
n,2,1(X) :=

∑
i∈V1,j

ωni

( d1∑
u1=1

(∆κnij)
(u1) ∂h1

∂κ(u1)
(X,κ∗j ) +

d1∑
u1,v1=1

(∆κnij)
(u1)(∆κnij)

(v1)

1 + 1{u1=v1}

∂2h1

∂κ(u1)∂κ(v1)
(X,κ∗j )

)
,

A
(j)
n,2,2(X) :=

∑
i∈V1,j

ωni

(1
2
(∆τnij) +

d1∑
u1,v1=1

(∆κnij)
(u1)(∆κnij)

(v1)

1 + 1{u1=v1}

∂h1

∂κ(u1)
(X,κ∗j )

∂h1

∂κ(v1)
(X,κ∗j )

)
,

A
(j)
n,2,3(X) :=

∑
i∈V1,j

ωni

d1∑
u1=1

1

2
(∆κnij)

(u1)(∆τnij)
∂h1

∂κ(u1)
(X,κ∗j ),

A
(j)
n,2,4(X) :=

∑
i∈V1,j

ωni
1

8
(∆τnij)

2,

for all j ∈ [k∗1] such that |V1,j | > 1.

Stage 1.2: Next, we attempt to decompose the term Qn(Y |X) :=
[∑k∗2

j=1 σ((β
∗
1j)

⊤X + β∗0j)
]
·

[pGn
2
(Y |X)− pG∗

2
(Y |X)] as

Qn(Y |X) =

k∗2∑
j=1

[ ∑
i∈V2,j

σ((βn1i)
⊤X + βn0i)π(Y |h2(X, ηni ), νni )− σ((β∗

1j)
⊤X + β∗0j)π(Y |h2(X, η∗j ), ν∗j )

]

−
k∗2∑
j=1

[ ∑
i∈V2,j

σ((βn1i)
⊤X + βn0i)− σ((β∗

1j)
⊤X + β∗0j)

]
pGn

2
(Y |X)

:= Bn(Y |X)− Cn(Y |X).
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Stage 1.2.1: In this step, we decompose the term Bn(Y |X) with a note that β∗1j = 0d for all
j ∈ [k∗2] : |V2,j | > 1:

Bn(Y |X) =
∑

j∈[k∗2 ]:|V2,j |=1

[ ∑
i∈V2,j

σ((βn1i)
⊤X + βn0i)π(Y |h2(X, ηni ), νni )− σ((β∗

1j)
⊤X + β∗0j)π(Y |h2(X, η∗j ), ν∗j )

]
+

∑
j∈[k∗2 ]:|V2,j |>1

[ ∑
i∈V2,j

σ((βn1i)
⊤X + βn0i)π(Y |h2(X, ηni ), νni )− σ(β∗0j)π(Y |h2(X, η∗j ), ν∗j )

]
=

∑
j∈[k∗2 ]:|V2,j |=1

[ ∑
i∈V2,j

σ((βn1i)
⊤X + βn0i)π(Y |h2(X, ηni ), νni )− σ((β∗

1j)
⊤X + β∗0j)π(Y |h2(X, η∗j ), ν∗j )

]
+

∑
j∈[k∗2 ]:|V2,j |>1

∑
i∈V2,j

[
σ((βn1i)

⊤X + βn0i)π(Y |h2(X, ηni ), νni )− σ(βn0i)π(Y |h2(X, η∗j ), ν∗j )
]

+
∑

j∈[k∗2 ]:|V2,j |>1

[ ∑
i∈V2,j

σ(βn0i)− σ(β∗0j)
]
π(Y |h2(X, η∗j ), ν∗j )

:= Bn,1(Y |X) +Bn,2(Y |X) +Bn,0(Y |X).

Denote ψ(X;β1, β0) := σ(β⊤1 X + β0). By applying the first-order Taylor expansion to the function
ψ(X,βn1i, β

n
0i)π(Y |h2(X, ηni ), νni ) around the point (β∗1j , β

∗
0j , η

n
i , ν

n
i ), we have

Bn,1(Y |X) =
∑

j∈[k∗2 ]:|V2,j |=1

∑
i∈V2,j

∑
|α|=1

1

α!
(∆βn1ij)

α1(∆βn0ij)
α2(∆ηnij)

α3(∆νnij)
α4

× ∂|α1|+α2ψ

∂βα1
1 ∂βα2

0

(X;β∗1j , β
∗
0j)

∂|α3|+α4π

∂ηα3∂να4
(Y |h2(X, η∗j ), ν∗j ) +Rn,3(Y |X)

=
∑

j∈[k∗2 ]:|V2,j |=1

2∑
ρ=0

B
(j)
n,1,ρ(X) · ∂

ρπ

∂hρ2
(Y |h2(X, η∗j ), ν∗j ) +Rn,3(Y |X),

where Rn,3(Y |X) is a Taylor remainder such that Rn,3(Y |X)/D3n → 0 as n→ ∞ and

B
(j)
n,1,0(X) :=

∑
i∈V2,j

[ d∑
u=1

(∆βn1ij)
(u) ∂ψ

∂β
(u)
1

(X;β∗1j , β
∗
0j) + (∆βn0ij)

∂ψ

∂β0
(X;β∗1j , β

∗
0j)

]
,

B
(j)
n,1,1(X) :=

∑
i∈V2,j

d2∑
u2=1

(∆ηnij)
(u2) ∂h2

∂η(u2)
(X, η∗j )ψ(X;β∗1j , β

∗
0j),

B
(j)
n,1,2(X) :=

∑
i∈V2,j

1

2
(∆νnij)ψ(X;β∗1j , β

∗
0j),

for all j ∈ [k∗2] such that |V2,j | = 1. Next, by means of the second-order Taylor expansion to the
function ψ(X;β∗1j , β

n
0i)π(Y |h2(X, η∗j ), ν∗j ) around the point (β∗1j , η

∗
j , ν

∗
j ) with a note that β∗1j = 0d

for all j ∈ [k∗2] : |V2,j | > 1, we decompose the term Bn,2(Y |X) as

Bn,2(Y |X) =
∑

j∈[k∗2 ]:|V2,j |>1

∑
i∈V2,j

2∑
|α|=1

1

α!
(∆βn1ij)

α1(∆ηnij)
α2(∆νnij)

α3
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× ∂|α1|ψ

∂βα1
1

(X; 0d, β
n
0i)
∂|α2|+α3π

∂ηα2∂να3
(Y |h2(X, η∗j ), ν∗j ) +Rn,4(Y |X)

=
∑

j∈[k∗2 ]:|V2,j |>1

4∑
ρ=0

B
(j)
n,2,ρ(X) · ∂

ρπ

∂hρ2
(Y |h2(X, η∗j ), ν∗j ) +Rn,4(Y |X),

where Rn,4(Y |X) is a Taylor remainder such that Rn,4(Y |X)/D3n → 0 as n→ ∞ and

B
(j)
n,2,0(X) :=

∑
i∈V2,j

[ d∑
u=1

(∆βn1ij)
(u) ∂ψ

∂β
(u)
1

(X; 0d, β
n
0i) +

d∑
u,v=1

(∆βn1ij)
(u)(∆βn1ij)

(v)

1 + 1{u=v}

∂2ψ

∂β
(u)
1 ∂β

(v)
1

(X; 0d, β
n
0i)

]
,

B
(j)
n,2,1(X) :=

∑
i∈V2,j

[ d2∑
u2=1

(∆ηnij)
(u2) ∂h2

∂η(u2)
(X.η∗j )ψ(X; 0d, β

n
0i) +

d2∑
u2,v2=1

(∆ηnij)
(u2)(∆ηnij)

(v2)

1 + 1{u2=v2}

∂2h2

∂η(u2)∂η(v2)
(X, η∗j )

× ψ(X; 0d, β
n
0i) +

d∑
u=1

d2∑
u2=1

(∆βn1ij)
(u)(∆ηnij)

(u2) ∂h2

∂η(u2)
(X.η∗j )

∂ψ

∂β
(u)
1

(X; 0d, β
n
0i)

]
,

B
(j)
n,2,2(X) :=

∑
i∈V2,j

[1
2
(∆νnij)ψ(X; 0d, β

n
0i) +

d∑
u=1

(∆βn1ij)
(u) 1

2
(∆νnij)

∂ψ

∂β
(u)
1

(X; 0d, β
n
0i)

+

d2∑
u2,v2=1

(∆ηnij)
(u2)(∆ηnij)

(v2)

1 + 1{u2=v2}

∂2h2

∂η(u2)∂η(v2)
(X, η∗j )ψ(X; 0d, β

n
0i)

]
,

B
(j)
n,2,3(X) :=

∑
i∈V2,j

[ d2∑
u2=1

(∆ηnij)
(u2) 1

2
(∆νnij)

∂h2

∂η(u2)
(X, η∗j )ψ(X; 0d, β

n
0i)

]
,

B
(j)
n,2,4(X) :=

∑
i∈V2,j

1

8
(∆νnij)

2ψ(X; 0d, β
n
0i),

for all j ∈ [k∗2] such that |V2,j | > 1.

Stage 1.2.2: In this step, we decompose the term Cn(Y |X) as

Cn(Y |X) =
∑

j∈[k∗2 ]:|V2,j |=1

[ ∑
i∈V2,j

ψ(X;βn1i, β
n
0i)− ψ(X;β∗1j , β

∗
0j)

]
pGn

2
(Y |X)

+
∑

j∈[k∗2 ]:|V2,j |>1

[ ∑
i∈V2,j

ψ(X;βn1i, β
n
0i)− ψ(X;β∗1j , β

∗
0j)

]
pGn

2
(Y |X)

=
∑

j∈[k∗2 ]:|V2,j |=1

[ ∑
i∈V2,j

ψ(X;βn1i, β
n
0i)− ψ(X;β∗1j , β

∗
0j)

]
pGn

2
(Y |X)

+
∑

j∈[k∗2 ]:|V2,j |>1

∑
i∈V2,j

[
ψ(X;βn1i, β

n
0i)− ψ(X; 0d, β

n
0i)

]
pGn

2
(Y |X)

+
∑

j∈[k∗2 ]:|V2,j |>1

[ ∑
i∈V2,j

ψ(X; 0d, β
n
0i)− ψ(X; 0d, β

∗
0j)

]
pGn

2
(Y |X)

:= Cn,1(Y |X) + Cn,2(Y |X) + Cn,0(Y |X).
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By applying the first-order Taylor expansion to the function ψ(X;βn1i, β
n
0i) around the point (β∗1j , β

∗
0j),

we have

Cn,1(Y |X) =
∑

j∈[k∗2 ]:|V2,j |=1

∑
i∈V2,j

[ d∑
u=1

(∆βn1ij)
(u) ∂ψ

β
(u)
1

(X;β∗1j , β
∗
0j) + (∆βn0ij)

∂ψ

∂β0
(X;β∗1j , β

∗
0j)

]
pGn

2
(Y |X)

+Rn,5(Y |X),

where Rn,5(Y |X) is a Taylor remainder such that Rn,5(Y |X)/D3n → 0 as n→ ∞. Next, by means
of the second-order Taylor expansion to the function ψ(X;βn1i, β

n
0i) around the point β∗1j = 0d for

j ∈ [k∗2] : |V2,j | > 1, we have

Cn,2(Y |X) =
∑

j∈[k∗2 ]:|V2,j |>1

∑
i∈V2,j

[ d∑
u=1

(∆βn1ij)
(u) ∂ψ

∂β
(u)
1

(X; 0d, β
n
0i)

+

d∑
u,v=1

(∆βn1ij)
(u)(∆βn1ij)

(v)

1 + 1{u=v}

∂2ψ

∂β
(u)
1 ∂β

(v)
1

(X; 0d, β
n
0i)

]
pGn

2
(Y |X) +Rn,6(Y |X),

where Rn,6(Y |X) is a Taylor remainder such that Rn,6(Y |X)/D3n → 0 as n→ ∞.

Combining the above decompositions, we can view An,0(Y |X)/D3n, [An,1(Y |X)−Rn,1(Y |X)]/D3n,
[An,2(Y |X)−Rn,2(Y |X)]/D3n, Bn,0(Y |X)/D3n, [Bn,1(Y |X)−Rn,3(Y |X)]/D3n, [Bn,2(Y |X)−Rn,4(Y |X)]/D3n,
Cn,0(Y |X)/D3n, [Cn,1(Y |X)−Rn,5(Y |X)]/D3n and [Cn,2(Y |X)−Rn,6(Y |X)]/D3n as a combination
of elements from the following sets

S0,j := {π(Y |h1(X,κ∗j ), τ∗j )},

S1,j :=

{
∂h1

∂κ(u1)
(X,κ∗j )

∂π

∂h1
(Y |h1(X,κ∗j ), τ∗j ),

∂2h1

∂κ(u1)∂κ(v1)
(X,κ∗j )

∂π

∂h1
(Y |h1(X,κ∗j ), τ∗j ) : u1, v1 ∈ [d1]

}
,

S2,j :=

{
∂2π

∂h21
(Y |h1(X,κ∗j ), τ∗j ),

∂h1

∂κ(u1)
(X,κ∗j )

∂h1

∂κ(v1)
(X,κ∗j )

∂2π

∂h21
(Y |h1(X,κ∗j ), τ∗j ) : u1, v1 ∈ [d1]

}
,

S3,j :=

{
∂h1

∂κ(u1)
(X,κ∗j )

∂3π

∂h31
(Y |h1(X,κ∗j ), τ∗j ) : u1, v1 ∈ [d1]

}
,

S4,j :=

{
∂4π

∂h41
(Y |h1(X,κ∗j ), τ∗j ) : u1, v1 ∈ [d1]

}
,

for all j ∈ [k∗1], and

T0,j :=

{
π(Y |h2(X, η∗j ), ν∗j ),

∂ψ

∂β
(u)
1

(X; 0d, β
n
0i)π(Y |h2(X, η∗j ), ν∗j ),

∂2ψ

∂β
(u)
1 ∂β

(v)
1

(X; 0d, β
n
0i)π(Y |h2(X, η∗j ), ν∗j ) : u, v ∈ [d]

}
,

T1,j :=

{
∂h2

∂η(u2)
(X.η∗j )ψ(X; 0d, β

n
0i)

∂π

∂h2
(Y |h2(X, η∗j ), ν∗j ),
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∂h2

∂η(u2)
(X.η∗j )

∂ψ

∂β
(u)
1

(X; 0d, β
n
0i)

∂π

∂h2
(Y |h2(X, η∗j ), ν∗j ) : u ∈ [d], u2 ∈ [d2]

}
,

T2,j :=

{
ψ(X; 0d, β

n
0i)
∂2π

∂h22
(Y |h2(X, η∗j ), ν∗j ),

∂ψ

∂β
(u)
1

(X; 0d, β
n
0i)
∂2π

∂h22
(Y |h2(X, η∗j ), ν∗j ),

∂2h2

∂η(u2)∂η(v2)
(X, η∗j )ψ(X; 0d, β

n
0i)
∂2π

∂h22
(Y |h2(X, η∗j ), ν∗j ) : u ∈ [d], u2, v2 ∈ [d2]

}
,

T3,j :=

{
∂h2

∂η(u2)
(X, η∗j )ψ(X; 0d, β

n
0i)
∂3π

∂h32
(Y |h2(X, η∗j ), ν∗j ) : u2 ∈ [d2]

}
,

T4,j :=

{
ψ(X; 0d, β

n
0i)
∂4π

∂h42
(Y |h2(X, η∗j ), ν∗j )

}
,

T5,j :=

{
∂ψ

β
(u)
1

(X;β∗1j , β
∗
0j)pGn

2
(Y |X),

∂ψ

∂β0
(X;β∗1j , β

∗
0j)pGn

2
(Y |X),

∂ψ

∂β
(u)
1

(X; 0d, β
n
0i)pGn

2
(Y |X),

∂2ψ

∂β
(u)
1 ∂β

(v)
1

(X; 0d, β
n
0i)pGn

2
(Y |X) : u ∈ [d]

}
,

for all j ∈ [k∗2].

Stage 2 - Non-vanishing coefficients: In this stage, we demonstrate that not all the coefficients in
the representations of An,0(Y |X)/D3n, [An,1(Y |X)−Rn,1(Y |X)]/D3n, [An,2(Y |X)−Rn,2(Y |X)]/D3n,
Bn,0(Y |X)/D3n, [Bn,1(Y |X) − Rn,3(Y |X)]/D3n, [Bn,2(Y |X) − Rn,4(Y |X)]/D3n, Cn,0(Y |X)/D3n,
[Cn,1(Y |X)−Rn,5(Y |X)]/D3n and [Cn,2(Y |X)−Rn,6(Y |X)]/D3n go to zero when n→ ∞. Assume
by contrary that all these coefficients converge to zero. By using the same arguments as in Stage 2
in Appendix D.1, we have

1

D3n

[ k∗1∑
j=1

∣∣∣ ∑
i∈V1,j

ωni − ω∗
j

∣∣∣+ ∑
j∈[k∗1 ]:|V1,j |=1

∑
i∈V1,j

ωni (∥∆κnij∥+ |∆τnij |)

+
∑

j∈[k∗1 ]:|V1,j |>1

∑
i∈V1,j

ωni (∥∆κnij∥2 + |∆τnij |2)
]
→ 0,

as n→ ∞. Additionally, by considering the coefficients of the terms:

• ∂ψ

∂β
(u)
1

(X;β∗1j , β
∗
0j)π(Y |h2(X, η∗j ), ν∗j ) for j ∈ [k∗2] : |V2,j | = 1, we get

1

D3n

∑
j∈[k∗2 ]:|V2,j |=1

∑
i∈V2,j

∥∆βn1ij∥ → 0;

• ∂ψ
∂β0

(X;β∗1j , β
∗
0j)π(Y |h2(X, η∗j ), ν∗j ) for j ∈ [k∗2] : |V2,j | = 1, we get

1

D3n

∑
j∈[k∗2 ]:|V2,j |=1

∑
i∈V2,j

|∆βn0ij | → 0;
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• ∂h2
∂η(u2)

(X, η∗j )ψ(X;β∗1j , β
∗
0j)

∂π
∂h2

(Y |h2(X, η∗j ), ν∗j ) for j ∈ [k∗2] : |V2,j | = 1, we get

1

D3n

∑
j∈[k∗2 ]:|V2,j |=1

∑
i∈V2,j

∥∆ηnij∥ → 0;

• ψ(X;β∗1j , β
∗
0j)

∂π
∂h2

(Y |h2(X, η∗j ), ν∗j ) for j ∈ [k∗2] : |V2,j | = 1, we get

1

D3n

∑
j∈[k∗2 ]:|V2,j |=1

∑
i∈V2,j

|∆νnij | → 0;

• π(Y |h2(X, η∗j ), ν∗j ) for j ∈ [k∗2] : |V2,j | > 1, we get

1

D3n

∑
j∈[k∗2 ]:|V2,j |>1

∣∣∣ ∑
i∈V2,j

σ(βn0i)− σ(β∗0j)
∣∣∣ → 0;

• ∂2ψ

∂β
(u)
1 ∂β

(v)
1

(X; 0d, β
n
0i)π(Y |h2(X, η∗j ), ν∗j ) for j ∈ [k∗2] : |V2,j | > 1, we get

1

D3n

∑
j∈[k∗2 ]:|V2,j |>1

∑
i∈V2,j

∥∆βn1ij∥2 → 0;

• ∂2h2
∂η(u2)∂η(v2)

(X, η∗j )ψ(X; 0d, β
n
0i)

∂2π
∂h22

(Y |h2(X, η∗j ), ν∗j ) for j ∈ [k∗2] : |V2,j | > 1, we get

1

D3n

∑
j∈[k∗2 ]:|V2,j |>1

∑
i∈V2,j

∥∆ηnij∥2 → 0;

• ψ(X; 0d, β
n
0i)

∂4π
∂h42

(Y |h2(X, η∗j ), ν∗j ) for j ∈ [k∗2] : |V2,j | > 1, we get

1

D3n

∑
j∈[k∗2 ]:|V2,j |>1

∑
i∈V2,j

|∆νnij |2 → 0.

Putting the above limits together, we deduce 1 = D3n
D3n

→ 0 as n → ∞, which is a contradiction.
Therefore, at least one among the coefficients in the representations of An,0(Y |X)/D3n, [An,1(Y |X)−
Rn,1(Y |X)]/D3n, [An,2(Y |X) − Rn,2(Y |X)]/D3n, Bn,0(Y |X)/D3n, [Bn,1(Y |X) − Rn,3(Y |X)]/D3n,
[Bn,2(Y |X) − Rn,4(Y |X)]/D3n, Cn,0(Y |X)/D3n, [Cn,1(Y |X) − Rn,5(Y |X)]/D3n and [Cn,2(Y |X) −
Rn,6(Y |X)]/D3n does not go to zero.

Stage 3 - Fatou’s lemma contradiction: In this stage, we use the Fatou’s lemma to show
a contradiction to the result of Stage 2. For that purpose, let us denote mn as the maximum
of the absolute values of the coefficients in the representations of An,0(Y |X)/D3n, [An,1(Y |X) −
Rn,1(Y |X)]/D3n, [An,2(Y |X) − Rn,2(Y |X)]/D3n, Bn,0(Y |X)/D3n, [Bn,1(Y |X) − Rn,3(Y |X)]/D3n,
[Bn,2(Y |X) − Rn,4(Y |X)]/D3n, Cn,0(Y |X)/D3n, [Cn,1(Y |X) − Rn,5(Y |X)]/D3n and [Cn,2(Y |X) −
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Rn,6(Y |X)]/D3n. It follows from the result of Stage 2 that 1/mn ̸→ ∞ as n→ ∞. In addition, we
also denote

1

mnD3n
·
∑
i∈V1,j

ωni (∆κ
n
ij)

(u1) → s
(u1)
1,j ,

1

mnD3n
·
∑
i∈V1,j

ωni (∆τ
n
ij) → s2,j ,

1

mnD3n
·
∑
i∈V1,j

ωni (∆κ
n
ij)

(u1)(∆κnij)
(v1) → s

(u1v1)
3,j ,

1

mnD3n
·
∑
i∈V1,j

ωni (∆τ
n
ij)

2 → s4,j ,

1

mnD3n
·
∑
i∈V1,j

ωni (∆κ
n
ij)

(u1)(∆τnij) → s
(u1)
5,j ,

1

mnD3n
·
( ∑
i∈V1,j

ωni − ω∗
j

)
→ s0,j ,

for all j ∈ [k∗1] and

1

mnD3n
·
∑
i∈V2,j

(∆βn0ij) → t0,j , j ∈ [k∗2] : |V2,j | = 1,
1

mnD3n
·
∑
i∈V2,j

(∆βn1ij)
(u) → t

(u)
1,j ,

1

mnD3n
·
∑
i∈V2,j

(∆ηnij)
(u2) → t

(u2)
2,j ,

1

mnD3n
·
∑
i∈V2,j

(∆νnij) → t3,j ,

for all j ∈ [k∗2] : |V2,j | = 1, and

1

mnD3n
·
( ∑
i∈V2,j

σ(βn0i)− σ(β∗0j)
)
→ t0,j ,

1

mnD3n
· (∆βn1ij)(u) → t

(u)
1,j,i,

1

mnD3n
· (∆ηnij)(u2) → t

(u2)
2,j,i ,

1

mnD3n
· (∆νnij) → t3,j,i,

1

mnD3n
· (∆βn1ij)(u)(∆βn1ij)(v) → t

(uv)
4,j,i ,

1

mnD3n
· = (∆ηnij)

(u2)(∆ηnij)
(v2) → t

(u2v2)
5,j,i ,

1

mnD3n
· (∆νnij)2 → t6,j,i,

1

mnD3n
· (∆βn1ij)(u)(∆ηnij)(v2) → t

(uv2)
7,j,i ,

1

mnD3n
· (∆βn1ij)(u)(∆νnij) → t

(u)
8,j,i,

1

mnD3n
· (∆ηnij)(u2)(∆νnij) → t

(u2)
9,j,i ,

for all j ∈ [k∗2] : |V2,j | > 1 as n → ∞. Due to the result of Stage 2, at least one among the above
limits is non-zero. Recall from equation (32) that we get

EX [V (gGn
1 ,G

n
2
(·|X), gG∗

1,G
∗
2
(·|X))]/D3n → 0,

Moreover, by means of the Fatou’s lemma, we have

lim
n→∞

EX [V (gGn
1 ,G

n
2
(·|X), gG∗

1,G
∗
2
(·|X))]

mnD3n
≥

∫
lim inf
n→∞

|gGn
1 ,G

n
2
(Y |X)− gG∗

1,G
∗
2
(Y |X)|

2mnD3n
d(X,Y ).

Then, we deduce [gGn
1 ,G

n
2
(Y |X)− gG∗

1,G
∗
2
(Y |X)]/[mnD3n] → 0 as n → ∞ for almost surely (X,Y ).

Since the input space is bounded and the parameter space is compact, the quantity
∑k∗2

j=1 σ((β
∗
1j)

⊤X+
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β∗0j) is bounded. Thus, we also have

[ k∗2∑
j=1

σ((β∗
1j)

⊤X + β∗0j)
]
[gGn

1 ,G
n
2
(Y |X)− gG∗

1,G
∗
2
(Y |X)]/[mnD3n] → 0,

implying that

1

2

[ k∗2∑
j=1

σ((β∗
1j)

⊤X + β∗0j)
]
·
qGn

1
(Y |X)− qG∗

1
(Y |X)

mnD3n
+

1

2

Qn(Y |X)

mnD3n
→ 0.

as n → ∞ for almost surely (X,Y ). From the decomposition of the terms qGn
1
(Y |X) − qG∗

1
(Y |X)

and Qn(Y |X) in Stage 1, we have

1

2

[ k∗2∑
j=1

σ((β∗
1j)

⊤X + β∗0j)
]
· An,2(Y |X) +An,1(Y |X) +An,0(Y |X)

mnD3n

+
1

2

Bn,1(Y |X) +Bn,2(Y |X) +Bn,3(Y |X)− Cn,1(Y |X)− Cn,2(Y |X)− Cn,3(Y |X)

mnD3n
→ 0. (34)

We have

lim
n→∞

An,0(Y |X)

mnD3n
=

k∗1∑
j=1

s0,jπ(Y |h1(X,κ∗j ), τ∗j ),

lim
n→∞

An,1(Y |X)

mnD3n
=

∑
j∈[k∗1 ]:|V1,j |=1

[ d1∑
u1=1

s
(u1)
1,j

∂h1

∂κ(u1)
(X,κ∗j )

∂π

∂h1
(Y |h1(X,κ∗j ), τ∗j )

+
1

2
s2,j

∂2π

∂h21
(Y |h1(X,κ∗j ), τ∗j )

]
,

lim
n→∞

An,2(Y |X)

mnD3n
=

∑
j∈[k∗1 ]:|V1,j |>1

[( d1∑
u1=1

s
(u1)
1,j

∂h1

∂κ(u1)
(X,κ∗j ) +

d1∑
u1,v1=1

s
(u1v1)
3,j

1 + 1{u1=v1}

∂2h1

∂κ(u1)∂κ(v1)
(X,κ∗j )

)

× ∂π

∂h1
(Y |h1(X,κ∗j ), τ∗j ) +

(1
2
s2,j +

d1∑
u1,v1=1

s
(u1v1)
3,j

1 + 1{u1=v1}

∂h1

∂κ(u1)
(X,κ∗j )

∂h1

∂κ(v1)
(X,κ∗j )

)∂2π
∂h21

(Y |h1(X,κ∗j ), τ∗j )

+
(1
2

d1∑
u1=1

s
(u1)
5,j

∂h1

∂κ(u1)
(X,κ∗j )

)∂3π
∂h31

(Y |h1(X,κ∗j ), τ∗j ) +
1

8
s4,j

∂4π

∂h41
(Y |h1(X,κ∗j ), τ∗j )

]
,

and

lim
n→∞

Bn,0(Y |X)

mnD3n
=

∑
j∈[k∗2 ]:|V2,j |>1

t0,jπ(Y |h2(X, η∗j ), ν∗j ),

lim
n→∞

Bn,1(Y |X)

mnD3n
=

∑
j∈[k∗2 ]:|V2,j |=1

[( d∑
u=1

t
(u)
1,j

∂ψ

∂β
(u)
1

(X;β∗1j , β
∗
0j) + t0,j

∂ψ

∂β0
(X;β∗1j , β

∗
0j)

)
π(Y |h2(X, η∗j ), ν∗j )
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+

d2∑
u2=1

t
(u2)
2,j

∂h2

∂η(u2)
(X, η∗j )ψ(X;β∗1j , β

∗
0j)

∂π

∂h2
(Y |h2(X, η∗j ), ν∗j ) +

1

2
t3,jψ(X;β∗1j , β

∗
0j)
∂2π

∂h22
(Y |h2(X, η∗j ), ν∗j )

]
,

lim
n→∞

Bn,2(Y |X)

mnD3n
=

∑
j∈[k∗2 ]:|V2,j |>1

∑
i∈V2,j

[( d∑
u,v=1

t
(uv)
4,j,i

1 + 1{u=v}

∂2ψ

∂β
(u)
1 ∂β

(v)
1

(X; 0d, β̄0i)

+
d∑

u=1

t
(u)
1,j,i

∂ψ

∂β
(u)
1

(X; 0d, β̄0i)
)
π(Y |h2(X, η∗j ), ν∗j ) +

( d∑
u=1

d2∑
u2=1

t
(uu2)
7,j,i

∂h2

∂η(u2)
(X.η∗j )

∂ψ

∂β
(u)
1

(X; 0d, β̄0i)

+

d2∑
u2=1

t
(u2)
2,j,i

∂h2

∂η(u2)
(X.η∗j )ψ(X; 0d, β̄0i) +

d2∑
u2,v2=1

t
(u2v2)
5,j,i

∂2h2

∂η(u2)∂ηv2)
(X, η∗j )ψ(X; 0d, β̄0i)

) ∂π
∂h2

(Y |h2(X, η∗j ), ν∗j )

+
( d∑
u=1

1

2
t
(u)
8,j,i

∂ψ

∂β
(u)
1

(X; 0d, β̄0i) +
1

2
t3,j,iψ(X; 0d, β̄0i) +

d2∑
u2,v2=1

t
(u2v2)
5,j,i

1 + 1{u2=v2}

∂h2

∂η(u2)
(X, η∗j )

∂h2

∂η(v2)
(X, η∗j )

× ψ(X; 0d, β̄0i)
)∂2π
∂h22

(Y |h2(X, η∗j ), ν∗j ) +
d2∑

u2=1

1

2
t
(u2)
9,j,i

∂h2

∂η(u2)
(X, η∗j )ψ(X; 0d, β̄0i)

∂3π

∂h32
(Y |h2(X, η∗j ), ν∗j )

+
1

8
t6,j,iψ(X; 0d, β̄0i)

∂4π

∂h42
(Y |h2(X, η∗j ), ν∗j )

]
,

and

lim
n→∞

Cn,0(Y |X)

mnD3n
=

∑
j∈[k∗2 ]:|V2,j |>1

t0,jpG∗
2
(Y |X),

lim
n→∞

Cn,1(Y |X)

mnD3n
=

∑
j∈[k∗2 ]:|V2,j |=1

[ d∑
u=1

t
(u)
1,j

∂ψ

β
(u)
1

(X;β∗1j , β
∗
0j) + t0,j

∂ψ

∂β0
(X;β∗1j , β

∗
0j)

]
pG∗

2
(Y |X),

lim
n→∞

Cn,2(Y |X)

mnD3n
=

∑
j∈[k∗2 ]:|V2,j |>1

∑
i∈V2,j

[ d∑
u=1

t
(u)
1,j,i

∂ψ

β
(u)
1

(X; 0d, β̄0i)

+
d∑

u,v=1

t
(uv)
4,j,i

1 + 1{u=v}

∂2ψ

∂β
(u)
1 ∂β

(v)
1

(X; 0d, β̄0i)
]
pG∗

2
(Y |X).

Note that for almost every X, the set{[ k∗2∑
j=1

σ((β∗
1j)

⊤X + β∗0j)
]∂ρπ
∂hρ1

(Y |h1(X,κ∗j ), τ∗j ) : 0 ≤ ρ ≤ 4, j ∈ [k∗1]

}

∪

{
∂ψ

∂β
(u)
1

(X;β∗1j , β
∗
0j)π(Y |h2(X, η∗j ), ν∗j ),

∂ψ

∂β0
(X;β∗1j , β

∗
0j)π(Y |h2(X, η∗j ), ν∗j ),

∂ψ

∂β
(u)
1

(X;β∗1j , β
∗
0j)pG∗

2
(Y |X),

∂ψ

∂β0
(X;β∗1j , β

∗
0j)pG∗

2
(Y |X), ψ(X;β∗1j , β

∗
0j)

∂π

∂h2
(Y |h2(X, η∗j ), ν∗j ),

ψ(X;β∗1j , β
∗
0j)
∂2π

∂h22
(Y |h2(X, η∗j ), ν∗j ) : u ∈ [d], j ∈ [k∗2] : |V2,j | = 1

}
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∪

{
∂ψ

∂β
(u)
1

(X; 0d, β̄0i)π(Y |h2(X, η∗j ), ν∗j ),
∂2ψ

∂β
(u)
1 ∂β

(v)
1

(X; 0d, β̄0i)π(Y |h2(X, η∗j ), ν∗j ), π(Y |h2(X, η∗j ), ν∗j )

∂ψ

∂β
(u)
1

(X; 0d, β̄0i)
∂π

∂h2
(Y |h2(X, η∗j ), ν∗j ), ψ(X; 0d, β̄0i)

∂π

∂h2
(Y |h2(X, η∗j ), ν∗j ),

∂ψ

∂β
(u)
1

(X; 0d, β̄0i)
∂2π

∂h22
(Y |h2(X, η∗j ), ν∗j ), ψ(X; 0d, β̄0i)

∂2π

∂h22
(Y |h2(X, η∗j ), ν∗j ),

ψ(X; 0d, β̄0i)
∂3π

∂h32
(Y |h2(X, η∗j ), ν∗j ), ψ(X; 0d, β̄0i)

∂4π

∂h42
(Y |h2(X, η∗j ), ν∗j ),

∂ψ

∂β
(u)
1

(X; 0d, β̄0i)pG∗
2
(Y |X),

∂2ψ

∂β
(u)
1 ∂β

(v)
1

(X; 0d, β̄0i)pG∗
2
(Y |X) : u, v ∈ [d], j ∈ [k∗2] : |V2,j | > 1, i ∈ V2,j

}

is linearly independent w.r.t Y , implying that the coefficients of those terms in the limit in equa-
tion (34) are equal to zero.

For j ∈ [k∗1], by looking at the coefficient of the term
[∑k∗2

j=1 σ((β
∗
1j)

⊤X + β∗0j)
]
π(Y |h1(X,κ∗j ), τ∗j ),

we have s0,j = 0.

For j ∈ [k∗1] such that |V1,j | = 1, by considering the coefficients of

•
[∑k∗2

j=1 σ((β
∗
1j)

⊤X + β∗0j)
]
∂π
∂h1

(Y |h1(X,κ∗j ), τ∗j ), we have
∑d1

u1=1 s
(u1)
1,j

∂h1
∂κ(u1)

(X,κ∗j ) = 0 for al-

most every X. Since the expert function h1 is strongly identifiable, we get s(u1)1,j = 0 for all
u1 ∈ [d1];

•
[∑k∗2

j=1 σ((β
∗
1j)

⊤X + β∗0j)
]
∂2π
∂h21

(Y |h1(X,κ∗j ), τ∗j ), we have s2,j = 0.

For j ∈ [k∗1] such that |V1,j | > 1, by taking into account the coefficients of

•
[∑k∗2

j=1 σ((β
∗
1j)

⊤X + β∗0j)
]
∂π
∂h1

(Y |h1(X,κ∗j ), τ∗j ), we have

d1∑
u1=1

s1,j
∂h1

∂κ(u1)
(X,κ∗j ) +

d1∑
u1,v1=1

s
(u1v1)
3,j

1 + 1{u1=v1}

∂2h1

∂κ(u1)∂κ(v1)
(X,κ∗j ) = 0,

for almost every X. Since the expert function h1 satisfies the strong identifiability condition,
we get s(u1)1,j = s

(u1v1)
3,j = 0 for all u1, v1 ∈ [d1];

•
[∑k∗2

j=1 σ((β
∗
1j)

⊤X + β∗0j)
]
∂2π
∂h21

(Y |h1(X,κ∗j ), τ∗j ), we have

1

2
s2,j +

d1∑
u1,v1=1

s
(u1v1)
3,j

1 + 1{u1=v1}

∂h1

∂κ(u1)
(X,κ∗j )

∂h1

∂κ(v1)
(X,κ∗j ) = 0,

for almost every X. Since s(u1v1)3,j = 0 for all u1, v1 ∈ [d1], we deduce s2,j = 0;
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•
[∑k∗2

j=1 σ((β
∗
1j)

⊤X + β∗0j)
]
∂3π
∂h31

(Y |h1(X,κ∗j ), τ∗j ), we have 1
2

∑d1
u1=1 s

(u1)
5,j

∂h1
∂κ(u1)

(X,κ∗j ) = 0, for
almost every X. As the expert function h1 meets the strong identifiability condition, we get
s
(u1)
5,j = 0 for all u1 ∈ [d1];

•
[∑k∗2

j=1 σ((β
∗
1j)

⊤X + β∗0j)
]
∂4π
∂h41

(Y |h1(X,κ∗j ), τ∗j ), we have s4,j = 0.

For j ∈ [k∗2] such that |V2,j | = 1, by considering the coefficients of

• ∂ψ

∂β
(u)
1

(X;β∗1j , β
∗
0j)π(Y |h2(X, η∗j ), ν∗j ), we have t(u)1,j = 0 for all u ∈ [d];

• ∂ψ
∂β0

(X;β∗1j , β
∗
0j)π(Y |h2(X, η∗j ), ν∗j ), we have t0,j = 0;

• ψ(X;β∗1j , β
∗
0j)

∂π
∂h2

(Y |h2(X, η∗j ), ν∗j ), we have
∑d2

u2=1 t
(u2)
2,j

∂h2
∂η(u2)

(X, η∗j ) = 0. Since the expert

function h2 is strongly identifiable, we deduce t(u2)2,j = 0 for all u2 ∈ [d2];

• ψ(X;β∗1j , β
∗
0j)

∂2π
∂h22

(Y |h2(X, η∗j ), ν∗j ), we have t3,j = 0.

For j ∈ [k∗2] such that |V2,j | > 1, by considering the coefficients of

• π(Y |h2(X, η∗j ), ν∗j ), we have t0,j = 0;

• ∂ψ

∂β
(u)
1

(X; 0d, β̄0i)π(Y |h2(X, η∗j ), ν∗j ), we have t(u)1,j,i = 0 for all u ∈ [d] and i ∈ V2,j ;

• ∂2ψ

∂β
(u)
1 ∂β

(v)
1

(X; 0d, β̄0i)π(Y |h2(X, η∗j ), ν∗j ), we have t(uv)4,j,i = 0 for all u, v ∈ [d] and i ∈ V2,j ;

• ψ(X; 0d, β̄0i)
∂π
∂h2

(Y |h2(X, η∗j ), ν∗j ), we have

d2∑
u2=1

t
(u2)
2,j,i

∂h2

∂η(u2)
(X, η∗j ) +

d2∑
u2,v2=1

t
(u2v2)
5,j,i

∂2h2

∂η(u2)∂η(v2)
(X, η∗j ) = 0.

As the expert function h2 satisfies the strong identifiability condition, we deduce t
(u2)
2,j,i =

t
(u2v2)
5,j,i = 0 for all u2, v2 ∈ [d2] and i ∈ V2,j ;

• ∂ψ

∂β
(u)
1

(X; 0d, β̄0i)
∂π
∂h2

(Y |h2(X, η∗j ), ν∗j ), we have
∑d2

u2=1 t
(uu2)
7,j,i

∂h2
∂η(u2)

(X, η∗j ) = 0. Since the expert

function h2 is strongly identifiable, we deduce t(uu2)7,j,i = 0 for all u ∈ [d], u2 ∈ [d2] and i ∈ V2,j ;

• ψ(X; 0d, β̄0i)
∂2π
∂h22

(Y |h2(X, η∗j ), ν∗j ), we have

1

2
t3,j,i +

d2∑
u2,v2=1

t
(u2v2)
5,j,i

1 + 1{u2=v2}

∂h2

∂η(u2)
(X, η∗j )

∂h2

∂η(v2)
(X, η∗j ) = 0.

Note that t(u2v2)5,j,i = 0 for all u2, v2 ∈ [d2] and i ∈ V2,j , we deduce t3,j,i = 0 for all i ∈ V2,j ;

• ∂ψ

∂β
(u)
1

(X; 0d, β̄0i)
∂2π
∂h22

(Y |h2(X, η∗j ), ν∗j ), we have t(u)8,j,i = 0 for all u ∈ [d] and i ∈ V2,j ;
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• ψ(X; 0d, β̄0i)
∂3π
∂h32

(Y |h2(X, η∗j ), ν∗j ), we have
∑d2

u2=1
1
2 t

(u2)
9,j,i

∂h2
∂η(u2)

(X, η∗j ) = 0. Since the expert

function h2 meets the strong identifiability, we deduce t(u2)9,j,i for all u2 ∈ [d2] and i ∈ V2,j ;

• ψ(X; 0d, β̄0i)
∂4π
∂h42

(Y |h2(X, η∗j ), ν∗j ), we have t6,j,i = 0 for all i ∈ V2,j .

Putting the above results together, we have (i) s0,j = s
(u1)
1,j = s2,j = s

(u1v1)
3,j = s4,j = s

(u1)
5,j = 0 for

all j ∈ [k∗1] and u1, v1 ∈ [d1]; (ii) t0,j = t
(u)
1,j = t

(u2)
2,j = t3,j = 0 for all j ∈ [k∗2] : |V2,j | = 1, u ∈ [d]

and u2 ∈ [d2]; (iii) t0,j = t
(u)
1,j,i = t

(u2)
2,j,i = t3,j,i = t

(uv)
4,j,i = t

(u2v2)
5,j,i = t6,j,i = tuv27,j,i = t

(u)
8,j,i = t

(u2)
9,j,i for all

j ∈ [k∗2] : |V2,j | > 1, u, v ∈ [d] and u2, v2 ∈ [d2]. This contradicts to the fact that at least one among
them is non-zero. Consequently, we achieve the local part in equation (30) and complete the proof.

D.4 Proof of Theorem 4

Note that it is sufficient to demonstrate that

inf
(G1,G2)∈Gk1,k2

(Θ)

EX [V (gG1,G2(·|X), gG∗
1,Ǧ2

(·|X))]

D4((G1, G2), (G∗
1, Ǧ2))

> 0,

for any pair of mixing measures (G∗
1, Ǧ2) ∈ Ǧk∗1 ,k2(Θ). For that purpose, given an arbitrary mixing

measure Ǧ2 :=
∑k2

i=1 σ(β̌0i)δ(β̌1i,η̌i,ν̌i), we need to establish its local part

lim
ε→0

inf
(G1,G2)∈Gk1,k2

(Θ):D4((G1,G2),(G∗
1,Ǧ2))≤ε

EX [V (gG1,G2(·|X), gG∗
1,Ǧ2

(·|X))]

D4((G1, G2), (G∗
1, Ǧ2))

> 0, (35)

and its global part

inf
(G1,G2)∈Gk1,k2

(Θ):D4((G1,G2),(G∗
1,Ǧ2))>ε′

EX [V (gG1,G2(·|X), gG∗
1,Ǧ2

(·|X))]

D4((G1, G2), (G∗
1, Ǧ2))

> 0. (36)

Since the global part (36) can be demonstrated analogously to that in Appendix D.1, we will
focus only on proving the local part (35) in this appendix. Assume by contrary that the above
local part is not true. Then, we can find a sequence (Gn1 , G

n
2 ) of the form Gn1 :=

∑kn1
i=1 ω

n
i δ(κni ,τni ),

Gn2 :=
∑kn2

i=1 σ(β
n
0i)δ(βn

1i,η
n
i ,ν

n
i )

for n ∈ N satisfying D4n := D4((G
n
1 , G

n
2 ), (G

∗
1, Ǧ2)) → 0 and

EX [V (gGn
1 ,G

n
2
(·|X), gG∗

1,Ǧ2
(·|X))]/D4n → 0, (37)

as n→ ∞. Moreover, we may assume WLOG that the number of shared experts kn1 , the number of
routed experts kn2 , and Voronoi cells V1,j = V1,j(G

n
1 ), V2,j = V2,j(G

n
2 ) are independent of the sample

size n. In addition, since Gn2 and Ǧ2 have the same number of atoms k2, we may assume WLOG
that the Voronoi cell V2,j admits only one element, that is, V2,j = {j} for all j ∈ [k2]. Thus, we can
represent the Voronoi loss D4n as

D4n =

k∗1∑
j=1

∣∣∣ ∑
i∈V1,j

ωni − ω∗
j

∣∣∣+ k∗2∑
i=1

(∥∆β̌n1i∥+ |∆β̌n0i|+ ∥∆η̌ni ∥+ |∆ν̌ni |)
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+
∑

j∈[k∗1 ]:|V1,j |=1

∑
i∈V1,j

ωni (∥∆κnij∥+ |∆τnij |) +
∑

j∈[k∗1 ]:|V1,j |>1

∑
i∈V1,j

ωni (∥∆κnij∥2 + |∆τnij |2), (38)

where we denote ∆β̌n1i := βn1i − β̌1i, ∆β̌n0i := βn0i − β̌0i, ∆η̌ni := ηni − η̌i, and ∆ν̌ni := νni − ν̌i for all
i ∈ [k2]. Recall that D4n → 0 as n→ ∞, then equation (38) implies that as n→ ∞, we have

• For j ∈ [k∗1] and i ∈ V1,j :
∑

i∈V1,j
ωni → ω∗

j , (κ
n
i , τ

n
i ) → (κ∗j , τ

∗
j );

• For i ∈ [k∗2]: (βn1i, β
n
0i, η

n
i , ν

n
i ) → (β̌1i, β̌0i, η̌i, ν̌i).

Now, we divide the proof into three main stages:

Stage 1 - Density Decomposition: In this step, we reuse the following decomposition of the
density discrepancy gGn

1 ,G
n
2
(Y |X)− gG∗

1,G
∗
2
(Y |X) in Appendix D.3

gGn
1 ,G

n
2
(Y |X)− gG∗

1,G
∗
2
(Y |X) =

1

2

[
(qGn

1
(Y |X)− qG∗

1
(Y |X)) + (pGn

2
(Y |X)− pG∗

2
(Y |X))

]
,

where we denote

qGn
1
(Y |X) :=

kn1∑
i=1

ωni π(Y |h1(X,κni ), τni ),

qG∗
1
(Y |X) :=

k∗1∑
i=1

ω∗
i π(Y |h1(X,κ∗i ), τ∗i ),

pGn
2
(Y |X) :=

kn2∑
i=1

σ((βn1i)
⊤X + βn0i)∑kn2

j=1 σ((β
n
1j)

⊤X + βn0j)
· π(Y |h2(X, ηni ), νni ),

pǦ2
(Y |X) :=

k2∑
i=1

σ((β̌1i)
⊤X + β̌0i)∑k2

j=1 σ((β̌1j)
⊤X + β̌0j)

· π(Y |h2(X, η̌i), ν̌i).

Stage 1.1: We also utilize the decomposition of the term qGn
1
(Y |X)− qG∗

1
(Y |X) in Appendix D.3

as follows:

qGn
1
(Y |X)− qG∗

1
(Y |X) =

∑
j∈[k∗1 ]:|V1,j |=1

∑
i∈V1,j

ωni [π(Y |h1(X,κni ), τni )− π(Y |h1(X,κ∗j ), τ∗j )]

+
∑

j∈[k∗1 ]:|V1,j |>1

∑
i∈V1,j

ωni [π(Y |h1(X,κni ), τni )− π(Y |h1(X,κ∗j ), τ∗j )]

+

k∗1∑
j=1

( ∑
i∈V1,j

ωni − ω∗
j

)
π(Y |h1(X,κ∗j ), τ∗j )

:= An,1(Y |X) +An,2(Y |X) +An,0(Y |X).

Above, the quantity An,1(Y |X) is expanded as

An,1(Y |X) =
∑

j∈[k∗1 ]:|V1,j |=1

2∑
ρ=1

A
(j)
n,1,ρ(X)

∂ρπ

∂hρ1
(Y |h1(X,κ∗j ), τ∗j ) +Rn,1(Y |X),
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where Rn,1(Y |X) is a Taylor remainder such that Rn,1(Y |X)/D4n → as n→ ∞, and

A
(j)
n,1,1(X) :=

∑
i∈V1,j

ωni

d1∑
u1=1

(∆κnij)
(u1) ∂h1

∂κ(u1)
(X,κ∗j ),

A
(j)
n,1,2(X) :=

∑
i∈V1,j

ωni
1

2
(∆τnij),

for all j ∈ [k∗1] such that |V1,j | = 1. In addition, we can rewrite An,2(Y |X) as

An,2(Y |X) =
∑

j∈[k∗1 ]:|V1,j |>1

4∑
ρ=1

A
(j)
n,1,ρ(X)

∂ρπ

∂hρ1
(Y |h1(X,κ∗j ), τ∗j ) +Rn,2(Y |X),

where Rn,2(Y |X) is a Taylor remainder such that Rn,2(Y |X)/D4n → as n→ ∞, and

A
(j)
n,2,1(X) :=

∑
i∈V1,j

ωni

( d1∑
u1=1

(∆κnij)
(u1) ∂h1

∂κ(u1)
(X,κ∗j ) +

d1∑
u1,v1=1

(∆κnij)
(u1)(∆κnij)

(v1)

1 + 1{u1=v1}

∂2h1

∂κ(u1)∂κ(v1)
(X,κ∗j )

)
,

A
(j)
n,2,2(X) :=

∑
i∈V1,j

ωni

(1
2
(∆τnij) +

d1∑
u1,v1=1

(∆κnij)
(u1)(∆κnij)

(v1)

1 + 1{u1=v1}

∂h1

∂κ(u1)
(X,κ∗j )

∂h1

∂κ(v1)
(X,κ∗j )

)
,

A
(j)
n,2,3(X) :=

∑
i∈V1,j

ωni

d1∑
u1=1

1

2
(∆κnij)

(u1)(∆τnij)
∂h1

∂κ(u1)
(X,κ∗j ),

A
(j)
n,2,4(X) :=

∑
i∈V1,j

ωni
1

8
(∆τnij)

2,

for all j ∈ [k∗1] such that |V1,j | > 1.

Stage 1.2: Next, we decompose the term Qn(Y |X) :=
[∑k2

j=1 σ((β̌1j)
⊤X + β̌0j)

]
· [pGn

2
(Y |X) −

pǦ2
(Y |X)] as

Qn(Y |X) =

k2∑
i=1

[
σ((βn1i)

⊤X + βn0i)π(Y |h2(X, ηni ), νni )− σ((β̌1i)
⊤X + β̌0i)π(Y |h2(X, η̌i), ν̌i)

]
−

k2∑
i=1

[
σ((βn1i)

⊤X + βn0i)− σ((β̌1i)
⊤X + β̌0i)

]
pGn

2
(Y |X)

=

k2∑
i=1

[
ψ(X;βn1i, β

n
0i)π(Y |h2(X, ηni ), νni )− ψ(X; β̌1i, β̌0i)π(Y |h2(X, η̌i), ν̌i)

]
−

k2∑
i=1

[
ψ(X;βn1i, β

n
0i)− ψ(X; β̌1i, β̌0i)

]
pGn

2
(Y |X)

:= Bn(Y |X)− Cn(Y |X),
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where we denote ψ(X;β1, β0) := σ(β⊤1 X + β0).

Stage 1.2.1: In this step, we decompose Bn(Y |X) by applying the first-order Taylor expansion to
the function ψ(X;βn1i, β

n
0i)π(Y |h2(X, ηni ), νni ) around the point (β̌1i, β̌0i, η̌i, ν̌i) as follows:

Bn(Y |X) =

k2∑
i=1

∑
|α|=1

(∆β̌n1i)
α1(∆β̌n0i)

α2(∆η̌ni )
α3(∆ν̌ni )

α4

× ∂|α1|+α2ψ

∂βα1
1 ∂βα2

0

(X; β̌1i, β̌0i)
∂|α3|+α4π

∂ηα3∂να4
(Y |h2(X, η̌i), ν̌i) +Rn,3(Y |X)

=

k2∑
i=1

2∑
ρ=0

B(i)
n,ρ(X)

∂ρπ

∂hρ2
(Y |h2(X, η̌i), ν̌i) +Rn,3(Y |X),

where Rn,3(Y |X) is a Taylor remainder such that Rn,3(Y |X)/D4n → as n→ ∞, and

B
(i)
n,0 :=

d∑
u=1

(∆β̌n1i)
(u) ∂ψ

∂β
(u)
1

(X; β̌1i, β̌0i) + (∆β̌n0i)
∂ψ

∂β0
(X; β̌1i, β̌0i),

B
(i)
n,1 :=

d2∑
u2=1

(∆η̌ni )
(u2) ∂h2

∂η(u2)
(X, η̌i)ψ(X; β̌1i, β̌0i),

B
(i)
n,2 :=

1

2
(∆ν̌ni )ψ(X; β̌1i, β̌0i),

for all i ∈ [k2].

Stage 1.2.2: Next, we proceed to decompose Cn(Y |X) by applying the first-order Taylor expansion
to the function ψ(X;βn1i, β

n
0i) around the point (β̌1i, β̌0i) as

Cn(Y |X) =

k2∑
i=1

∑
|α|=1

(∆β̌n1i)
α1(∆β̌n0i)

α2
∂|α1|+α2ψ

∂βα1
1 ∂βα2

0

(X; β̌1i, β̌0i)pGn
2
(Y |X) +Rn,4(Y |X)

=

k2∑
i=1

[ d∑
u=1

(∆β̌n1i)
(u) ∂ψ

∂β
(u)
1

(X; β̌1i, β̌0i) + (∆β̌n0i)
∂ψ

∂β0
(X; β̌1i, β̌0i)

]
pGn

2
(Y |X) +Rn,4(Y |X),

where Rn,4(Y |X) is a Taylor remainder such that Rn,4(Y |X)/D4n → as n→ ∞.

Combining the above decompositions, we can view An,0(Y |X)/D4n, [An,1(Y |X)−Rn,1(Y |X)]/D4n,
[An,2(Y |X) − Rn,2(Y |X)]/D4n, [Bn(Y |X) − Rn,3(Y |X)]/D4n, [Cn(Y |X) − Rn,4(Y |X)]/D4n as a
combination of elements from the following sets

S0,j := {π(Y |h1(X,κ∗j ), τ∗j )},

S1,j :=

{
∂h1

∂κ(u1)
(X,κ∗j )

∂π

∂h1
(Y |h1(X,κ∗j ), τ∗j ),

∂2h1

∂κ(u1)∂κ(v1)
(X,κ∗j )

∂π

∂h1
(Y |h1(X,κ∗j ), τ∗j ) : u1, v1 ∈ [d1]

}
,

S2,j :=

{
∂2π

∂h21
(Y |h1(X,κ∗j ), τ∗j ),

∂h1

∂κ(u1)
(X,κ∗j )

∂h1

∂κ(v1)
(X,κ∗j )

∂2π

∂h21
(Y |h1(X,κ∗j ), τ∗j ) : u1, v1 ∈ [d1]

}
,
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S3,j :=

{
∂h1

∂κ(u1)
(X,κ∗j )

∂3π

∂h31
(Y |h1(X,κ∗j ), τ∗j ) : u1, v1 ∈ [d1]

}
,

S4,j :=

{
∂4π

∂h41
(Y |h1(X,κ∗j ), τ∗j ) : u1, v1 ∈ [d1]

}
,

for all j ∈ [k∗1], and

T0,j :=

{
∂ψ

∂β
(u)
1

(X; β̌1i, β̌0i)π(Y |h2(X, η̌i), ν̌i),
∂ψ

∂β0
(X; β̌1i, β̌0i)π(Y |h2(X, η̌i), ν̌i),

∂ψ

∂β
(u)
1

(X; β̌1i, β̌0i)pGn
2
(Y |X),

∂ψ

∂β0
(X; β̌1i, β̌0i)pGn

2
(Y |X) : u ∈ [d]

}
,

T1,j :=

{
∂h2

∂η(u2)
(X, η∗j )ψ(X; β̌1i, β̌0i)

∂π

∂h2
(Y |h2(X, η̌i), ν̌i) : u ∈ [d], u2 ∈ [d2]

}
,

T2,j :=

{
ψ(X; β̌1i, β̌0i)

∂2π

∂h22
(Y |h2(X, η̌i), ν̌i)

}
,

for all j ∈ [k∗2].

Stage 2 - Non-vanishing coefficients: In this stage, we show that at least one among the
coefficients in the representations of An,0(Y |X)/D4n, [An,1(Y |X)−Rn,1(Y |X)]/D4n, [An,2(Y |X)−
Rn,2(Y |X)]/D4n, [Bn(Y |X)−Rn,3(Y |X)]/D4n, [Cn(Y |X)−Rn,4(Y |X)]/D4n does not converge to
zero when n→ ∞. Suppose that all these coefficients go to zero. By using the same arguments as in
Stage 2 in Appendix D.1, we have

1

D4n

[ k∗1∑
j=1

∣∣∣ ∑
i∈V1,j

ωni − ω∗
j

∣∣∣+ ∑
j∈[k∗1 ]:|V1,j |=1

∑
i∈V1,j

ωni (∥∆κnij∥+ |∆τnij |)

+
∑

j∈[k∗1 ]:|V1,j |>1

∑
i∈V1,j

ωni (∥∆κnij∥2 + |∆τnij |2)
]
→ 0,

as n→ ∞. Additionally, by considering the coefficients of the terms:

• ∂ψ

∂β
(u)
1

(X; β̌1i, β̌0i)π(Y |h2(X, η̌i), ν̌i) for i ∈ [k2], we get 1
D4n

∑k2
i=1 ∥∆βn1ij∥ → 0;

• ∂ψ
∂β0

(X; β̌1i, β̌0i)π(Y |h2(X, η̌i), ν̌i) for i ∈ [k2], we get 1
D4n

∑k2
i=1 |∆βn0ij | → 0;

• ∂h2
∂η(u2)

(X, η̌i)ψ(X; β̌1i, β̌0i)
∂π
∂h2

(Y |h2(X, η̌i), ν̌i) for i ∈ [k2], we get 1
D4n

∑k2
i=1 ∥∆ηnij∥ → 0;

• ψ(X; β̌1i, β̌0i)
∂π
∂h2

(Y |h2(X, η̌i), ν̌i) for i ∈ [k2], we get 1
D4n

∑k2
i=1 |∆νnij | → 0.

Taking the summation of the above limits, we deduce 1 = D4n
D4n

→ 0 as n→ ∞, which is a contradiction.
Thus, not all the coefficients in the representations of An,0(Y |X)/D4n, [An,1(Y |X)−Rn,1(Y |X)]/D4n,
[An,2(Y |X)−Rn,2(Y |X)]/D4n, [Bn(Y |X)−Rn,3(Y |X)]/D4n, [Cn(Y |X)−Rn,4(Y |X)]/D4n converge
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to zero as n→ ∞.

Stage 3 - Fatou’s lemma contradiction: In this stage, we attempto to show a contradiction to
the result of Stage 2 using the Fatou’s lemma. Firstly, we denote mn as the maximum of the absolute
values of the coefficients in the representations of An,0(Y |X)/D4n, [An,1(Y |X)−Rn,1(Y |X)]/D4n,
[An,2(Y |X) − Rn,2(Y |X)]/D4n, [Bn(Y |X) − Rn,3(Y |X)]/D4n, [Cn(Y |X) − Rn,4(Y |X)]/D4n. The
result of Stage 2 implies that 1/mn ̸→ ∞ as n→ ∞. In addition, we also denote

1

mnD4n
·
∑
i∈V1,j

ωni (∆κ
n
ij)

(u1) → s
(u1)
1,j ,

1

mnD4n
·
∑
i∈V1,j

ωni (∆τ
n
ij) → s2,j ,

1

mnD4n
·
∑
i∈V1,j

ωni (∆κ
n
ij)

(u1)(∆κnij)
(v1) → s

(u1v1)
3,j ,

1

mnD4n
·
∑
i∈V1,j

ωni (∆τ
n
ij)

2 → s4,j ,

1

mnD4n
·
∑
i∈V1,j

ωni (∆κ
n
ij)

(u1)(∆τnij) → s
(u1)
5,j ,

1

mnD4n
·
( ∑
i∈V1,j

ωni − ω∗
j

)
→ s0,j ,

for all j ∈ [k∗1] and

1

mnD4n
· (∆β̌n0i) → t0,i,

1

mnD4n
· (∆β̌n1i)(u) → t

(u)
1,i ,

1

mnD4n
· (∆η̌ni )(u2) → t

(u2)
2,i ,

1

mnD4n
· (∆ν̌ni ) → t3,i,

for all i ∈ [k2]. Due to the result of Stage 2, at least one among the above limits is different from
zero. Recall from equation (37) that we have

EX [V (gGn
1 ,G

n
2
(·|X), gG∗

1,Ǧ2
(·|X))]/D4n → 0,

Furthermore, according to the Fatou’s lemma, we get

lim
n→∞

EX [V (gGn
1 ,G

n
2
(·|X), gG∗

1,Ǧ2
(·|X))]

mnD4n
≥

∫
lim inf
n→∞

|gGn
1 ,G

n
2
(Y |X)− gG∗

1,Ǧ2
(Y |X)|

2mnD4n
d(X,Y ).

Then, it follows that [gGn
1 ,G

n
2
(Y |X)−gG∗

1,Ǧ2
(Y |X)]/[mnD4n] → 0 as n→ ∞ for almost surely (X,Y ).

As the input space is bounded and the parameter space is compact, the quantity
∑k2

j=1 σ((β̌1j)
⊤X +

β̌0j) is bounded. Therefore, we deduce

[ k2∑
j=1

σ((β̌1j)
⊤X + β̌0j)

]
[gGn

1 ,G
n
2
(Y |X)− gG∗

1,Ǧ2
(Y |X)]/[mnD4n] → 0,

as n→ ∞. This result indicates

1

2

[ k2∑
j=1

σ((β̌1j)
⊤X + β̌0j)

]
·
qGn

1
(Y |X)− qG∗

1
(Y |X)

mnD4n
+

1

2

Qn(Y |X)

mnD4n
→ 0.
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as n → ∞ for almost surely (X,Y ). From the decomposition of the terms qGn
1
(Y |X) − qG∗

1
(Y |X)

and Qn(Y |X) in Stage 1, we have

1

2

[ k2∑
j=1

σ((β̌1j)
⊤X + β̌0j)

]
· An,2(Y |X) +An,1(Y |X) +An,0(Y |X)

mnD4n
+

1

2

Bn(Y |X)− Cn(Y |X)

mnD4n
→ 0.

(39)

We have

lim
n→∞

An,0(Y |X)

mnD4n
=

k∗1∑
j=1

s0,jπ(Y |h1(X,κ∗j ), τ∗j ),

lim
n→∞

An,1(Y |X)

mnD4n
=

∑
j∈[k∗1 ]:|V1,j |=1

[ d1∑
u1=1

s
(u1)
1,j

∂h1

∂κ(u1)
(X,κ∗j )

∂π

∂h1
(Y |h1(X,κ∗j ), τ∗j )

+
1

2
s2,j

∂2π

∂h21
(Y |h1(X,κ∗j ), τ∗j )

]
,

lim
n→∞

An,2(Y |X)

mnD4n
=

∑
j∈[k∗1 ]:|V1,j |>1

[( d1∑
u1=1

s
(u1)
1,j

∂h1

∂κ(u1)
(X,κ∗j ) +

d1∑
u1,v1=1

s
(u1v1)
3,j

1 + 1{u1=v1}

∂2h1

∂κ(u1)∂κ(v1)
(X,κ∗j )

)

× ∂π

∂h1
(Y |h1(X,κ∗j ), τ∗j ) +

(1
2
s2,j +

d1∑
u1,v1=1

s
(u1v1)
3,j

1 + 1{u1=v1}

∂h1

∂κ(u1)
(X,κ∗j )

∂h1

∂κ(v1)
(X,κ∗j )

)∂2π
∂h21

(Y |h1(X,κ∗j ), τ∗j )

+
(1
2

d1∑
u1=1

s
(u1)
5,j

∂h1

∂κ(u1)
(X,κ∗j )

)∂3π
∂h31

(Y |h1(X,κ∗j ), τ∗j ) +
1

8
s4,j

∂4π

∂h41
(Y |h1(X,κ∗j ), τ∗j )

]
,

and

lim
n→∞

Bn(Y |X)

mnD4n
=

k2∑
i=1

[( d∑
u=1

t
(u)
1,i

∂ψ

∂β
(u)
1

(X; β̌1i, β̌0i) + t0,i
∂ψ

∂β0
(X; β̌1i, β̌0i)

)
π(Y |h2(X, η̌i), ν̌i)

+

d2∑
u2=1

t
(u2)
2,i

∂h2

∂η(u2)
(X, η̌i)ψ(X; β̌1i, β̌0i)

∂π

∂h2
(Y |h2(X, η̌i), ν̌i)

+
1

2
(∆ν̌ni )ψ(X; β̌1i, β̌0i)

∂2π

∂h22
(Y |h2(X, η̌i), ν̌i)

]
,

lim
n→∞

Cn(Y |X)

mnD4n
=

k2∑
i=1

[ d∑
u=1

t
(u)
1,i

∂ψ

∂β
(u)
1

(X; β̌1i, β̌0i) + t0,i
∂ψ

∂β0
(X; β̌1i, β̌0i)

]
pǦ2

(Y |X).

Note that for almost every X, the set{[ k2∑
j=1

σ((β̌1j)
⊤X + β̌0j)

]∂ρπ
∂hρ1

(Y |h1(X,κ∗j ), τ∗j ) : 0 ≤ ρ ≤ 4, j ∈ [k∗1]

}

∪

{
∂ψ

∂β
(u)
1

(X; β̌1i, β̌0i)π(Y |h2(X, η̌i), ν̌i),
∂ψ

∂β0
(X; β̌1i, β̌0i)π(Y |h2(X, η̌i), ν̌i),
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∂ψ

∂β
(u)
1

(X; β̌1i, β̌0i)pǦ2
(Y |X),

∂ψ

∂β0
(X; β̌1i, β̌0i)pǦ2

(Y |X),

ψ(X; β̌1i, β̌0i)
∂π

∂h2
(Y |h2(X, η̌i), ν̌i), ψ(X; β̌1i, β̌0i)

∂2π

∂h22
(Y |h2(X, η̌i), ν̌i) : u ∈ [d], i ∈ [k2]

}
is linearly independent w.r.t Y , implying that the coefficients of those terms in the limit in equa-
tion (39) are equal to zero.

Since the expert function h1 is strongly identifiable, then by employing the same arguments as in
the Stage 3 of Appendix D.3, we get s0,j = s

(u1)
1,j = s2,j = s

(u1v1)
3,j = s4,j = s

(u1)
5,j = 0 for all j ∈ [k∗1]

and u1, v1 ∈ [d1]. For i ∈ [k2], by considering the coefficients of

• ∂ψ

∂β
(u)
1

(X; β̌1i, β̌0i)π(Y |h2(X, η̌i), ν̌i), we get t(u)1,i = 0 for all u ∈ [d];

• ∂ψ
∂β0

(X; β̌1i, β̌0i)π(Y |h2(X, η̌i), ν̌i), we get t0,i = 0;

• ψ(X; β̌1i, β̌0i)
∂π
∂h2

(Y |h2(X, η̌i), ν̌i), we get
∑d2

u2=1 t
(u2)
2,i

∂h2
∂η(u2)

(X, η̌i) = 0. Since the expert func-

tion h2 is weakly identifiable, we deduce t(u2)2,i = 0 for all u2 ∈ [d2];

• ψ(X; β̌1i, β̌0i)
∂2π
∂h22

(Y |h2(X, η̌i), ν̌i), we get t3,i = 0.

From the above results, it follows that (i) s0,j = s
(u1)
1,j = s2,j = s

(u1v1)
3,j = s4,j = s

(u1)
5,j = 0 for all

j ∈ [k∗1] and u1, v1 ∈ [d1]; (ii) t0,i = t
(u)
1,i = t

(u2)
2,i = t3,i = 0 for all i ∈ [k2], u ∈ [d] and u2 ∈ [d2]. This

contradicts to the fact that not all of them equal to zero. As a consequence, we obtain the local part
in equation (35). Hence, the proof is completed.

E Proof of Auxiliary Results

E.1 Proof of Proposition 1

In this proof, we will leverage fundamental results on density estimation for M-estimators in [72].
Before streamlining our arguments, let us introduce some concepts from the empirical process theory
adapted to the setting of the model (1).

Firstly, we denote by Fk1,k2(Θ) := {fG1,G2(Y |X) : (G1, G2) ∈ Gk1,k2(Θ)} the set of conditional
density functions of interest. Furthermore, we also consider two variants of this set defined as

F̃k1,k2(Θ) :=
{1

2
f(G1,G2)(Y |X) +

1

2
f(G1,G2)(Y |X) : (G∗

1, G
∗
2) ∈ Gk1,k2(Θ)

}
,

F̃1/2
k1,k2

(Θ) := {f̃1/2 : f̃ ∈ F̃k1,k2(Θ)}.

For any δ > 0, the Hellinger ball centered around the the true density fG∗
1,G

∗
2
(Y |X) and intersected

with F̃k1,k2(Θ) is defined as

F̃1/2
k1,k2

(Θ, δ) := {p1/2 ∈ F̃1/2
k1,k2

(Θ) : h(p, fG∗
1,G

∗
2
) ≤ δ}.
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The size of the above Hellinger ball is determined by the quantity [72]

JB(δ, F̃1/2
k1,k2

(Θ, δ), ∥ · ∥2) :=
∫ δ

δ2/213
H

1/2
B (t, F̃1/2

k1,k2
(Θ, t), ∥ · ∥2)dt ∨ δ, (40)

where HB(t, F̃1/2
k1,k2

(Θ, t), ∥ · ∥2) stands for the bracketing entropy of F̃1/2
k1,k2

(Θ, t) under the L2(m)-
norm with m being the Lebesgue measure, and t ∨ δ := max{t, δ}. Equipped with these notations,
we are ready to present a standard result on density estimation for M-estimators in the following
lemma:

Lemma 1 (Theorem 7.4, [72]). Let δ ∈ (0, 1) and take Ψ(δ) ≥ JB(δ, F̃1/2
k1,k2

(Θ, δ)) such that Ψ(δ)/δ2

is a non-increasing function of δ. Then, for a universal constant c and for some sequence (δn)
satisfying

√
nδ2n ≥ cΨ(δn), the following holds for all δ ≥ δn:

P
(
EX

[
h(f

G̃n
1 ,G̃

n
2
(·|X), fG∗

1,G
∗
2
(·|X)) > δ

])
≤ c exp

(
− nδ2

c2

)
.

Given the above result, we will provide below the proof for Proposition 1.

Main proof of Proposition 1. Since F̃1/2
k1,k2

(Θ, t) ⊂ F̃1/2
k1,k2

(Θ) for any t > 0, we have

HB(t, F̃1/2
k1,k2

(Θ, t), ∥ · ∥2) ≤ HB(t, F̃1/2
k1,k2

(Θ), ∥ · ∥2) = HB(t/
√
2, F̃k1,k2(Θ), h), (41)

where the last equality is due to the relationship between the Hellinger distance h and the L2-norm.
Note that for any two mixing measure pairs (G1, G2) and (G′

1, G
′
2), Lemma 4.2 in [72] shows that

h2
(1
2
fG1,G2 +

1

2
fG∗

1,G
∗
2
,
1

2
fG′

1,G
′
2
+

1

2
fG∗

1,G
∗
2

)
≤ 1

2
h2(fG1,G2 , fG′

1,G
′
2
),

which yields that HB(t/
√
2, F̃k1,k2(Θ), h) ≤ HB(t,Fk1,k2(Θ), h). This result together with equa-

tion (41) implies that

HB(t, F̃1/2
k1,k2

(Θ, t), ∥ · ∥2) ≤ HB(t,Fk1,k2(Θ), h).

From the definition of the Hellinger ball size in equation (40), we have that

JB(δ, F̃1/2
k1,k2

(Θ, δ), ∥ · ∥2) =
∫ δ

δ2/213
H

1/2
B (t, F̃1/2

k1,k2
(Θ, t), ∥ · ∥2)dt ∨ δ

≤
∫ δ

δ2/213
H

1/2
B (t,Fk1,k2(Θ), h)dt ∨ δ

≲
∫ δ

δ2/213
[log(1/t)]1/2dt ∨ δ,

where the last inequality is due to Lemma 2 below. Let Ψ(δ) := δ
√

log(1/δ), it can be verified
that Ψ(δ)/δ2 is a non-increasing function of δ. Furthermore, the above result indicates that
Ψ(δ) ≥ JB(δ, F̃1/2

k1,k2
(Θ, δ), ∥ · ∥2). By considering the sequence (δn) defined as δn :=

√
log(n)/n, we

have
√
nδ2n ≥ cΨ(δn) for some universal constant c > 0. Then, according to Lemma 1, we get

P
(
EX

[
h(f

G̃n
1 ,G̃

n
2
(·|X), fG∗

1,G
∗
2
(·|X)) > C

√
log(n)/n

])
≲ exp(−c log(n)),

for some universal constant C depending on Θ.
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Lemma 2. The following holds for any 0 < ϵ < 1/2:

HB(ϵ,Fk1,k2(Θ), h) ≲ log(1/ϵ).

Proof of Lemma 2. Recall that for any mixing measure pair (G1, G2), we have

fG1,G2(Y |X) =
1

2

k1∑
i=1

ωiπ(Y |h1(X,κi), τi) +
1

2

k2∑
i=1

exp((β1i)
⊤X + β0i)∑k2

j=1 exp((β1j)
⊤X + β0j)

· π(Y |h2(X, ηi), νi).

Firstly, we will establish upper bounds for the Gaussian densities π(Y |h1(X,κ), τ) and π(Y |h2(X, η), ν),
respectively. Indeed, since the expert function h1 is bounded and the parameter space is compact, we
have |h1(X,κ)| ≤M1 for all X ∈ X for some constant M1 > 0, and ℓ1 ≤ τ ≤ u1 for some ℓ1, u1 > 0.
Therefore, for |Y | ≥ 2M1, since (Y−h1(X,κ))2

2τ ≥ Y 2

8u1
for all X ∈ X , we have

π(Y |h1(X,κ), τ) =
1√
2πτ

exp
(
− (Y − h1(X,κ))

2

2τ

)
≤ 1√

2πℓ1
exp

(
− Y 2

8u1

)
.

Next, for |Y | < 2M1, it follows that

π(Y |h1(X,κ), τ) =
1√
2πτ

exp
(
− (Y − h1(X,κ))

2

2τ

)
≤ 1√

2πτ
≤ 1√

2πℓ1
.

Combine the above results together, we deduce π(Y |h1(X,κ), τ ) ≤ E1(Y |X) for all (X,Y ) where

E1(Y |X) :=

 1√
2πℓ1

exp
(
− Y 2

8u1

)
, for |Y | ≥ 2M1

1√
2πℓ1

, for |Y | < 2M1.

By arguing in similar fashion based on the assumptions that |h2(X, η)| ≤M2 for all X ∈ X for some
constant M2 > 0, and ℓ2 ≤ ν ≤ u2 for some ℓ2, u2 > 0, we also get π(Y |h2(X, η), ν) ≤ E2(Y |X),
where

E2(Y |X) :=

 1√
2πℓ2

exp
(
− Y 2

8u2

)
, for |Y | ≥ 2M2

1√
2πℓ2

, for |Y | < 2M2.

Now, let λ ≤ ϵ be some constant that we will choose later, we denote p1, p2, . . . , pN as an λ-cover of
the set Fk1,k2(Θ), where N := N(λ,Fk1,k2(Θ), ∥ · ∥∞) stands for the λ-covering number of the set
Fk1,k2(Θ) under the L∞-norm. Then, we take into account the brackets [pLi , p

U
i ] given by

pLi (Y |X) := max{pi(Y |X)− λ, 0},
pUi (Y |X) := max{pi(Y |X) + λ,E(Y |X)},

for all i ∈ [N ], where E(Y |X) := 1
2E1(Y |X) + 1

2E2(Y |X). It can be justified that Fk1,k2(Θ) ⊆
∪Ni=1[p

L
i , p

U
i ] and pUi (Y |X)− pLi (Y |X) ≤ min{2λ,E(Y |X)}. Furthermore, we have

∥pUi − pLi ∥2 =
(∫

[pUi (Y |X)− pLi (Y |X)]2d(X,Y )
)1/2

≤ 2λ.
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By definition of the bracketing entropy, we get

HB(2λ,Fk1,k2(Θ), ∥ · ∥2) ≤ logN = logN(λ,Fk1,k2(Θ), ∥ · ∥∞).

Thus, we need to derive an upper bound for the covering number N(λ,Fk1,k2(Θ), ∥ · ∥∞). Let us
denote ∆ := ∆1 ×∆2 and Ω := Ω1 × Ω2, where

∆1 := {ωi ∈ R+ : (ω, κ, τ) ∈ Θ1},
∆2 := {(κ, τ) ∈ Rd1 × R+ : (ω, κ, τ) ∈ Θ1},
Ω1 := {(β0, β1) ∈ R× Rd : (β0, β1, η, ν) ∈ Θ2},
Ω2 := {(η, ν) ∈ Rd2 × R+ : (β0, β1, η, ν) ∈ Θ2}.

Since Θ1 and Θ2 are compact, the sets ∆1,∆2 and Ω1,Ω2 are also compact. Thus, there exist
λ-covers ∆1,λ,∆2,λ and Ω1,λ,Ω2,λ for those sets, respectively. Moreover, the cardinalities of those
λ-covers are bounded as follows:

|∆1,λ| ≤ O(λ−k1), |∆2,λ| ≤ O(λ−(d1+1)k1),

|Ω1,λ| ≤ O(λ−(d+1)k2), |Ω2,λ| ≤ O(λ−(d2+1)k2).

For each pair of mixing measure (G1, G2) ∈ Gk1,k2(Θ), we consider two other mixing measure pairs
(G′

1, G
′
2) and (G1, G2) given by

G′
1 :=

k1∑
i=1

ωiδ(κ̄i,τ̄i), G′
2 :=

k2∑
i=1

ω̄iδ(κ̄i,τ̄i),

G1 :=

k2∑
i=1

exp(β0i)δ(β1i,η̄i,τ̄i), G2 :=

k2∑
i=1

exp(β̄0i)δ(β̄1i,η̄i,ν̄i).

Above, ω̄i ∈ ∆1,λ is the closest point to ωi in that set, (κ̄i, τ̄i) ∈ ∆2,λ is the closest point to (κi, τi)
in that set, (β̄0i, β̄1i) ∈ Ω1,λ is the closest point to (β0i, β1i) in that set, (η̄i, ν̄i) ∈ Ω2,λ is the closest
point to (ηi, νi) in that set. Subsequently, we aim to upper bound the term ∥fG1,G2 − fG1,G2

∥∞. By
the triangle inequality, we have

∥fG1,G2 − fG1,G2
∥∞ ≤ ∥fG1,G2 − fG′

1,G
′
2
∥∞ + ∥fG′

1,G
′
2
− fG1,G2

∥∞.

We aim to upper bound the two terms in the above right hand sides, respectively. For ease of
presentation, for any mixing measure pair (G1, G2), we denote

qG1(Y |X) :=

k1∑
i=1

ωiπ(Y |h1(X,κi), τi),

pG2(Y |X) :=

k2∑
i=1

exp(β⊤
1iX + β0i)∑k2

j=1 exp(β
⊤
1jX + β0j)

π(Y |h2(X, ηi), νi).

We start with bounding the term ∥fG1,G2 − fG′
1,G

′
2
∥∞ as follows:

∥fG1,G2 − fG′
1,G

′
2
∥∞ ≤ 1

2
∥qG1 − qG′

1
∥∞ +

1

2
∥pG2 − pG′

2
∥∞.
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In particular, we have

∥qG1 − qG′
1
∥∞ = sup

(X,Y )∈X×Y

∣∣∣∣∣
k1∑
i=1

ωi

[
π(Y |h1(X,κi), τi)− π(Y |h1(X, κ̄i), τ̄i)

]∣∣∣∣∣
≤

k1∑
i=1

ωi sup
(X,Y )∈X×Y

∣∣∣π(Y |h1(X,κi), τi)− π(Y |h1(X, κ̄i), τ̄i)
∣∣∣

≲
k1∑
i=1

ωi(∥κi − κ̄i∥+ |τi − τ̄i|)

≤
k1∑
i=1

ωi(λ+ λ) = 2λ ≲ λ,

and

∥pG2 − pG′
2
∥∞

= sup
(X,Y )∈X×Y

∣∣∣∣∣
k2∑
i=1

exp(β⊤
1iX + β0i)∑k2

j=1 exp(β
⊤
1jX + β0j)

[
π(Y |h2(X, ηi), νi)− π(Y |h1(X, η̄i), ν̄i)

]∣∣∣∣∣
≤

k2∑
i=1

sup
(X,Y )∈X×Y

exp(β⊤
1iX + β0i)∑k2

j=1 exp(β
⊤
1jX + β0j)

∣∣∣π(Y |h2(X, ηi), νi)− π(Y |h1(X, η̄i), ν̄i)
∣∣∣

≤
k2∑
i=1

sup
(X,Y )∈X×Y

∣∣∣π(Y |h2(X, ηi), νi)− π(Y |h1(X, η̄i), ν̄i)
∣∣∣

≲
k2∑
i=1

(∥ηi − η̄i∥+ |νi − ν̄i|) ≤
k2∑
i=1

(λ+ λ) ≲ λ,

which implies that

∥fG1,G2 − fG′
1,G

′
2
∥∞ ≲

1

2
λ+

1

2
λ = λ. (42)

Next, we continue with bounding the term ∥fG′
1,G

′
2
− fG1,G2

∥∞ as

∥fG′
1,G

′
2
− fG1,G2

∥∞ ≤ 1

2
∥qG′

1
− qG1

∥∞ +
1

2
∥pG′

2
− pG2

∥∞.

By looking into each term in the above right hand side, we have

∥qG′
1
− qG1

∥∞ = sup
(X,Y )∈X×Y

∣∣∣∣∣
k1∑
i=1

[ωi − ω̄i]π(Y |h1(X, κ̄i), τ̄i)

∣∣∣∣∣
≤

k1∑
i=1

|ωi − ω̄i| sup
(X,Y )∈X×Y

|π(Y |h1(X, κ̄i), τ̄i)|

≲
k1∑
i=1

|ωi − ω̄i| ≤
k1∑
i=1

λ ≲ λ,
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and

∥pG′
2
− pG2

∥∞

= sup
(X,Y )∈X×Y

∣∣∣∣∣
k2∑
i=1

[
exp(β⊤

1iX + β0i)∑k2
j=1 exp(β

⊤
1jX + β0j)

− exp(β̄⊤1iX + β̄0i)∑k2
j=1 exp(β̄

⊤
1jX + β̄0j)

]
π(Y |h1(X, κ̄i), τ̄i)

∣∣∣∣∣
≤

k2∑
i=1

sup
(X,Y )∈X×Y

∣∣∣∣∣ exp(β⊤
1iX + β0i)∑k2

j=1 exp(β
⊤
1jX + β0j)

− exp(β̄⊤1iX + β̄0i)∑k2
j=1 exp(β̄

⊤
1jX + β̄0j)

∣∣∣∣∣ · |π(Y |h1(X, κ̄i), τ̄i)|

≲
k2∑
i=1

sup
(X,Y )∈X×Y

∣∣∣∣∣ exp(β⊤
1iX + β0i)∑k2

j=1 exp(β
⊤
1jX + β0j)

− exp(β̄⊤1iX + β̄0i)∑k2
j=1 exp(β̄

⊤
1jX + β̄0j)

∣∣∣∣∣
≲

k2∑
i=1

sup
X∈X

(
∥β1i − β̄1i∥ · ∥X∥+ ∥β0i − β̄0i∥

)
≲

k2∑
i=1

(
λ · sup

X∈X
∥X∥+ λ

)
≲ λ.

Putting these bounds together, we deduce

∥fG′
1,G

′
2
− fG1,G2

∥∞ ≲
1

2
λ+

1

2
λ = λ. (43)

From equations (42) and (43), we obtain

∥fG1,G2 − fG1,G2
∥∞ ≤ λ+ λ ≲ λ.

By definition of the covering number, we get

N(λ,Fk1,k2(Θ), ∥ · ∥∞) ≤ |∆1,λ| · |∆2,λ| · |Ω1,λ| · |Ω2,λ|
≤ O(λ−k1) · O(λ−(d1+1)k1) · O(λ−(d+1)k2) · O(λ−(d2+1)k2)

≤ O(λ−(d1+2)k1−(d2+d+2)k2).

As a result, we deduce

HB(2λ,Fk1,k2(Θ), ∥ · ∥2) ≤ logN(λ,Fk1,k2(Θ), ∥ · ∥∞) ≲ log(1/λ).

Let λ = ϵ/2, we achieve the desired result that HB(ϵ,Fk1,k2(Θ), ∥ · ∥2) ≲ log(1/ϵ). Hence, the proof
is completed.

E.2 Identifiability of DeepSeekMoE

Proposition 5 (Identifiability). For any pair of mixing measures (G1, G2), if the equation fG1,G2(Y |X) =
fG∗

1,G
∗
2
(Y |X) holds for almost surely (X,Y ), then we obtain (G1, G2) ≡ (G∗

1, G
∗
2).

Proof of Proposition 5. First of all, we expand the equation fG1,G2(Y |X) = fG∗
1,G

∗
2
(Y |X) for almost

surely (X,Y ) as follows:

1

2

k1∑
i=1

ωiπ(Y |h1(X,κi), τi) +
1

2

k2∑
i=1

exp(β⊤
1iX + β0i)∑k2

j=1 exp(β
⊤
1jX + β0j)

π(Y |h2(X, ηi), νi)
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=
1

2

k∗1∑
i=1

ω∗
i π(Y |h1(X,κ∗i ), τ∗i ) +

1

2

k∗2∑
i=1

exp((β∗
1i)

⊤X + β∗0i)∑k∗2
j=1 exp((β

∗
1j)

⊤X + β∗0j)
· π(Y |h2(X, η∗i ), ν∗i ). (44)

Since the location-scale Gaussian mixtures are identifiable [70], the above equation implies that
k1 + k2 = k∗1 + k∗2 and{

ωi′ ,
exp(β⊤

1iX + β0i)∑k2
j=1 exp(β

⊤
1jX + β0j)

: i′ ∈ [k1], i ∈ [k2]

}

=

{
ω∗
i′ ,

exp((β∗
1i)

⊤X + β∗0i)∑k∗2
j=1 exp((β

∗
1j)

⊤X + β∗0j)
: i′ ∈ [k∗1], i ∈ [k∗2]

}
,

for almost surely X. As the weights ωi′ and ω∗
i′ are independent of X for all i′ ∈ [k∗1], we deduce

k1 = k∗1 and {ωi′ : i′ ∈ [k∗1]} = {ω∗
i′ : i

′ ∈ [k∗1]}. For simplicity, we assume WLOG that ωi′ = ω∗
i′ for

all i′ ∈ [k∗1]. Furthermore, we also get k2 = k∗2 and{
exp(β⊤

1iX + β0i)∑k∗2
j=1 exp(β

⊤
1jX + β0j)

: i ∈ [k∗2]

}
=

{
exp((β∗

1i)
⊤X + β∗0i)∑k∗2

j=1 exp((β
∗
1j)

⊤X + β∗0j)
: i ∈ [k∗2]

}
,

for almost surely X. Again, we assume WLOG that exp(β⊤
1iX+β0i)∑k∗2

j=1 exp(β
⊤
1jX+β0j)

=
exp((β∗

1i)
⊤X+β∗

0i)∑k∗2
j=1 exp((β

∗
1j)

⊤X+β∗
0j)

for

almost surely X for all i ∈ [k∗2]. Due to the invariance to translation of the softmax function, this
result indicates that β1i = β∗1i + c1 and β0i = β∗0i + c0 for some c1 ∈ Rd and c0 ∈ R. Then, it follows
from the assumption β1k∗2 = β∗1k∗2

= 0d and β0k∗2 = β∗0k∗2
= 0 that c1 = 0d and c0 = 0. Therefore, we

obtain β1i = β∗1i and β0i = β∗0i for all i ∈ [k∗2].

Subsequently, we partition the index set [k∗1] into disjoint subsets U1, U2, . . . , Um1 such that for each
ℓ ∈ [m1], we have (i) ωi = ω∗

i′ for i, i′ ∈ Uℓ and (ii) ωi ̸= ω∗
i′ if i and i′ dot not belong to the same set

Uℓ. Similarly, we also partition the index set [k∗2] into disjoint subsets V1, V2, . . . , Vm2 such that for
each ℓ ∈ [m2], we have (i) exp(β0i) = exp(β∗0i′) for i, i′ ∈ Vℓ and (ii) exp(β0i) ̸= exp(β∗0i′) if i and i′

dot not belong to the same set Vℓ. As a consequence, we can rewrite equation (44) as

1

2

m1∑
ℓ=1

∑
i∈Uℓ

ωiπ(Y |h1(X,κi), τi) +
1

2S

m2∑
ℓ=1

∑
i∈Vℓ

exp(β0i) exp(β
⊤
1iX)π(Y |h2(X, ηi), νi)

=
1

2

m1∑
ℓ=1

∑
i∈Uℓ

ω∗
i π(Y |h1(X,κ∗i ), τ∗i ) +

1

2S

m2∑
ℓ=1

∑
i∈Vℓ

exp(β∗
0i) exp((β

∗
1i)

⊤X)π(Y |h2(X, η∗i ), ν∗i ),

for almost surely (X,Y ), where we denote S :=
∑k∗2

j=1 exp((β
∗
1j)

⊤X + β∗0j). The above equation
implies that

{(h1(X,κi), τi) : i ∈ Uℓ} = {(h1(X,κ∗i ), τ∗i ) : i ∈ Uℓ}, ∀ℓ ∈ [m1]

{(h2(X, ηi), νi) : i ∈ Vℓ} = {(h2(X, η∗i ), ν∗i ) : i ∈ Vℓ}, ∀ℓ ∈ [m2],

for almost surely X. As the expert functions h1 and h2 are identifiable, we deduce

{(κi, τi) : i ∈ Uℓ} = {(κ∗i , τ∗i ) : i ∈ Uℓ}, ∀ℓ ∈ [m1]
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{(ηi, νi) : i ∈ Vℓ} = {(η∗i , ν∗i ) : i ∈ Vℓ}, ∀ℓ ∈ [m2].

Therefore, we obtain

G1 =

m1∑
ℓ=1

∑
i∈Uℓ

ωiδ(κi,τi) =

m1∑
ℓ=1

∑
i∈Uℓ

ω∗
i δ(κ∗i ,τ∗i ) = G∗

1,

G2 =

m2∑
ℓ=1

∑
i∈Vℓ

exp(β0i)δ(β1i,ηi,νi) =

m2∑
ℓ=1

∑
i∈Vℓ

exp(β∗
0i)δ(β∗

1i,η
∗
i ,ν

∗
i )

= G∗
2.

Hence, the proof is completed.

F Extended Theoretical Results for Sparse Gating MoE

In this appendix, we extend the convergence analysis of parameter and expert estimations presented
in Theoreom 1 to the setting of a Top-K sparse gating function. Our main arguments rely on
fundamental techniques for dealing with the sparse gating function proposed in [54]. Since the
results of Theorems 2, 3, and 4 can be extended in a similar fashion, we will omit their extension here.

Problem setting: Assume that (X1, Y1), . . . , (Xn, Yn) ∈ Rd × R are i.i.d. samples drawn from
the softmax gating Gaussian mixture of experts of order k∗ whose conditional density function
sG∗

1,G
∗
2
(y|x) is given by:

sG∗
1,G

∗
2
(y|x) := 1

2

k∗1∑
i=1

ω∗
i π(y|h1(x, κ∗i ), τ∗i )

+
1

2

k∗2∑
i=1

softmax(TopK((β∗
1i)

⊤x;β∗0i))π(y|h2(x, η∗i ), ν∗i ), (45)

where the pair of ground-truth mixing measures (G∗
1, G

∗
2) are given by G∗

1 :=
∑k∗1

i=1 ω
∗
i δ(κ∗i ,τ∗i ) and

G∗
2 :=

∑k∗2
i=1 exp(β

∗
0i)δ(β∗

1i,η
∗
i ,ν

∗
i )

. Additionally, for any natural number k and vectors (vi)
k
i=1 and

(ui)i=1 in Rk, the TopK sparse function is defined as

TopK(vi,K;ui) :=

{
vi + ui, if vi is in the top K elements of v;
−∞, otherwise,

while the softmax function is formulated as softmax(vi) := exp(vi)/
∑k

j=1 exp(vj).

In practice, since the number of shared experts k∗1 and routed experts k∗2 are typically unknown, we
have to fit the ground-truth model (45) with k1 > k∗1 shared experts and k2 > k∗2 routed experts.
Thus, some ground-truth shared experts and routed experts will be fitted by more than one estimated
expert. As a result, since there are K routed experts activated per input in the ground-truth density
sG∗

1,G
∗
2
, it is necessary to activate K̄ > K experts in the density estimation in order to ensure its
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convergence to the true density. For that purpose, let us introduce the formulation of the density
estimation as follows:

s̄Gn
1 ,G

n
2
(Y |X) :=

1

2

kn1∑
i=1

ωni π(y|h1(x, κni ), τni )

+
1

2

kn2∑
i=1

softmax(TopK̄((βn1i)
⊤x;βn0i))π(y|h2(x, ηni ), νni ),

where K < K̄ ≤ k2 and the pair of mixing measure estimations (Gn1 , G
n
2 ) are defined as

(Ĝn1 , Ĝ
n
2 ) ∈ argmax

(G1,G2)∈Gk1,k2
(Θ)

1

n

n∑
i=1

log(s̄G1,G2(Yi|Xi)), (46)

where the set of mixing measures Gk1,k2(Θ) := Gk1(Θ1)× Gk2(Θ) is defined below equation (2).

Input space partition w.r.t the true density. In order that the density estimation sGn
1 ,G

n
2

converges to the true density sG∗
1,G

∗
2
, we must ensure that for each input, the K̄ routed experts

activated in the density estimation converge to the K routed experts activated in the true density.
Since the activated experts vary with the input value, we need to partition the input space X into
M :=

(k∗2
K

)
regions X ∗

m corresponding to
(k∗2
K

)
choices of activated experts in the true density. For

each m ∈ [M ], let us denote {m1,m2, . . . ,mK} as an K-element subset of the index set [k∗2], and
{mK+1, . . . ,mk∗2

} := [k∗2]\{m1,m2, . . . ,mK}. Then, the m-th region of the input space is defined as

X ∗
m :=

{
x ∈ X : (β∗1i)

⊤x ≥ (β∗1i′)
⊤x, ∀i ∈ {m1,m2, . . . ,mK}, i′ ∈ {mK+1, . . . ,mk∗2

}
}
,

for any m ∈ [M ]. For example, suppose that X ∈ X ∗
m where m ∈ [M ] such that {m1,m2, . . . ,mK} =

{1, 2, . . . ,K}. Then, it follows that

TopK((β∗
1i)

⊤X;β∗0i) = (β∗
1i)

⊤X + β∗0i,

for all i ∈ [K]. In other words, h2(X, η∗1), h2(X, η∗2), . . . , h2(X, η∗K) are the K routed experts activated
in the true density sG∗

1,G
∗
2
(y|x), which is reduced to

sG∗
1,G

∗
2
(y|x) := 1

2

k∗1∑
i=1

ω∗
i π(y|h1(x, κ∗i ), τ∗i )

+
1

2

K∑
i=1

exp((β∗
1i)

⊤x+ β∗0i)∑k∗2
j=1 exp((β

∗
1j)

⊤x+ β∗0j)
· π(y|h2(x, η∗i ), ν∗i ). (47)

Input space partition w.r.t the density estimation. Next, with the same input X ∈ X ∗
m, we

need to guarantee that the routed expert estimations converging to the above K routed experts
activated in the true density sG∗

1,G
∗
2
(Y |X) are also activated in the density estimation sGn

1 ,G
n
2
(Y |X).

For that purpose, it is necessary to partition the input space with respect to the density estimation.
In particular, we partition the input space into M̄ :=

(k2
K̄

)
regions X̄m corresponding to

(k2
K̄

)
choices

of activated experts in the true density. For each m̄ ∈ [M̄ ], we denote {m̄1, m̄2, . . . , m̄K̄} as an
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K̄-element subset of the index set [k2], and {m̄K̄+1, . . . , m̄k2} := [k2] \ {m̄1, m̄2, . . . , m̄K̄}. Given
these notations, we are ready to show that the input partition w.r.t the density estimation aligns
with the input space partition w.r.t the true density in the following lemma whose proof will be
provided in Appendix F.1:

Lemma 3. For any j ∈ [k∗2], i ∈ V2,j and β1i, β∗1j ∈ Rd, assume that there exist sufficiently small
εj > 0 satisfying ∥β1i − β∗1j∥ ≤ εj. Moreover, suppose that there exist m ∈ [M ] and m̄ ∈ [M̄ ] such
that {m̄1, m̄2, . . . , m̄K̄} = V2,m1 ∪ V2,m2 . . . ∪ V2,mK . Then, for any m ∈ [M ], if the input region X ∗

m

has non-zero measure, we have X ∗
m = X̄m̄, where

X̄m̄ :=
{
x ∈ X : (β1i)

⊤x ≥ (β1i′)
⊤x, ∀i ∈ {m̄1, m̄2, . . . , m̄K̄}, i′ ∈ {m̄K+1, . . . , m̄k2}

}
.

Suppose that the expert estimation h(X, η̂ni ) converges to the ground-truth expert h(X, η∗j ) for
some j ∈ [k∗2] and i ∈ V2,j . Then, Lemma 3 reveals that for almost surely X, if the expert h(X, η∗j )
is activated in the true density, then the expert h(X, η̂ni ) is also activated in the density estima-
tion. Mathematically, we have TopK((β

∗
1j)

⊤X;β∗0j) = (β∗1j)
⊤X + β∗0j occurs holds if and only if

TopK̄((β̂n1i)
⊤X; β̂n0i) = (β̂n1i)

⊤X + β̂n0i.

Density estimation convergence. Given the above input partition w.r.t the density estimation,
we exhibit in Proposition 6 an interesting phenomenon that the density estimation s̄

Ĝn
1 ,Ĝ

n
2

converges
to the true density sG∗

1,G
∗
2

under the Total Variation distance only if the number of routed experts
activated in the density estimation is bounded below as K̄ ≥ max{m1,m2,...,mK}⊂[k∗2 ]

∑K
j=1 |V2,mj |.

Proposition 6. If K̄ < max{m1,m2,...,mK}⊂[k∗2 ]

∑K
j=1 |V2,mj |, then the following holds:

inf
(G1,G2)∈Gk1,k2

(Θ)
EX [V (s̄G1,G2(·|X), sG∗

1,G
∗
2
(·|X))] > 0.

Proof of Proposition 6 will be provided in Appendix F.2. Following from the result of Proposition 6,
we will assume max{m1,m2,...,mK}⊂[k∗2 ]

∑K
j=1 |V2,mj | ≤ K̄ ≤ k2 in the rest of this appendix unless

stating otherwise to ensure the convergence of density estimation. Next, by combining the above
results and the arguments used to prove Proposition 1, we arrive at the following density estimation
rate.

Proposition 7. The density estimation s̄
Ĝn

1 ,Ĝ
n
2
(Y |X) converges to the true density sG∗

1,G
∗
2
(Y |X) at

the following rate:

EX [V (s̄
Ĝn

1 ,Ĝ
n
2
(·|X), sG∗

1,G
∗
2
(·|X))] = OP ([log(n)/n]

1
2 ).

Voronoi loss. In align with the above input partition w.r.t the true density, we need to modify the
formulation of the Voronoi loss previously defined in equation (4) as follows:

D5((G1, G2), (G
∗
1, G

∗
2)) := max

{m1,...,mK}⊂[k∗2 ]

{ k∗1∑
j=1

∣∣∣ ∑
i∈V1,j

ωi − ω∗
j

∣∣∣+ K∑
j=1

∣∣∣ ∑
i∈V2,mj

exp(β0i)− exp(β∗
0j)

∣∣∣
+

∑
j∈[k∗1 ],
|V1,j |=1

∑
i∈V1,j

ωi(∥∆κij∥+ |∆τij |) +
∑
j∈[K],

|V2,mj
|=1

∑
i∈V2,mj

exp(β0i)(∥∆β1imj∥+ ∥∆ηimj∥+ |∆νimj |)
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+
∑
j∈[k∗1 ],
|V1,j |>1

∑
i∈V1,j

ωi(∥∆κij∥2 + |∆τij |2) +
∑
j∈[K],

|V2,mj
|>1

∑
i∈V2,mj

exp(β0i)(∥∆β1imj∥2 + ∥∆ηimj∥2 + |∆νimj |2)

}
.

The maximum operator in the above formulation helps capture the convergence behavior of the
parameter estimation in different input regions partitioned w.r.t the true density. Given the loss
function D5(G,G∗), it is sufficient to establish parameter and expert estimation rates in the following
theorem:

Theorem 5. Suppose that the expert functions h1 and h2 are strongly identifiable. Then, the lower
bound EX [V (s̄G1,G2(·|X), sG∗

1,G
∗
2
(·|X))] ≳ D5((G1, G2), (G

∗
1, G

∗
2)) holds for any (G1, G2) ∈ Gk1,k2(Θ).

As a consequence, we have

D5(Ĝ
n
1 , Ĝ

n
2 ), (G

∗
1, G

∗
2)) = OP ([log(n)/n]

1
2 ).

Proof of Theorem 5. Analogous to Appendix D.1, it suffices to derive the local part

lim
ε→0

inf
(G1,G2)∈Gk1,k2

(Θ):D5((G1,G2),(G∗
1,G

∗
2))≤ε

EX [V (s̄G1,G2(·|X), sG∗
1,G

∗
2
(·|X))]

D5((G1, G2), (G∗
1, G

∗
2))

> 0, (48)

and the global part

inf
(G1,G2)∈Gk1,k2

(Θ):D5((G1,G2),(G∗
1,G

∗
2))>ε

′

EX [V (s̄G1,G2(·|X), sG∗
1,G

∗
2
(·|X))]

D5((G1, G2), (G∗
1, G

∗
2))

> 0. (49)

in this appendix. However, since the global part (21) can be established in the same fashion as in
Appendix D.1, its proof is omitted here. Thus, we will focus on showing only the local part (48).
Suppose that the local part does not hold. Then, we can find a sequence of mixing measure
pairs (Gn1 , G

n
2 ) of the form Gn1 :=

∑kn1
i=1 ω

n
i δ(κn1i,κn0i,τni ), Gn2 :=

∑kn2
i=1 exp(β

n
0i)δ(βn

1i,η
n
1i,η

n
0i,ν

n
i )

for n ∈ N
satisfying D5n := D5((G

n
1 , G

n
2 ), (G

∗
1, G

∗
2)) → 0 and

EX [V (s̄Gn
1 ,G

n
2
(·|X), sG∗

1,G
∗
2
(·|X))]/D5n → 0, (50)

as n→ ∞. Here, we may assume WLOG that the number of shared experts and routed experts kn1 ,
kn2 and Voronoi cells V1,j = V1,j(G

n
1 ), V2,j = V2,j(G

n
2 ) do not change with the sample size n. WLOG,

we may assume that the Voronoi loss D5n is reduced to

D5n =

k∗1∑
j=1

∣∣∣ ∑
i∈V1,j

ωni − ω∗
j

∣∣∣+ K∑
j=1

∣∣∣ ∑
i∈V2,j

exp(βn0i)− exp(β∗
0j)

∣∣∣
+

∑
j∈[k∗1 ],
|V1,j |=1

∑
i∈V1,j

ωni (∥∆κnij∥+ |∆τnij |) +
∑
j∈[K],
|V2,j |=1

∑
i∈V2,j

exp(βn0i)(∥∆βn1ij∥+ ∥∆ηnij∥+ |∆νnij |)

+
∑
j∈[k∗1 ],
|V1,j |>1

∑
i∈V1,j

ωni (∥∆κnij∥2 + |∆τnij |2) +
∑
j∈[K],
|V2,j |>1

∑
i∈V2,j

exp(βn0i)(∥∆βn1ij∥2 + ∥∆ηnij∥2 + |∆νnij |2). (51)
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Recall that we partition the input space w.r.t the true density into M =
(k∗2
K

)
regions. For each

m ∈ [M ], we denote {m1,m2, . . . ,mK} as a subset of the index set [k∗2] and {mK+1, . . . ,mk∗2
} =

[k∗2] \ {m1,m2, . . . ,mK}. Then, the m-th region is given by

X ∗
m :=

{
x ∈ X : (β∗1i)

⊤x ≥ (β∗1i′)
⊤x, ∀i ∈ {m1,m2, . . . ,mK}, i′ ∈ {mK+1, . . . ,mk∗2

}
}
,

for any m ∈ [M ]. Let K̄ ∈ N such that max{
∑K

j=1 |V2,j | : {m1, . . . ,mK} ⊂ [k∗2]} ≤ K̄ ≤ k2 and
let M̄ :=

(k2
K̄

)
. Next, for any m̄ ∈ [M̄ ], we denote {m̄1, m̄2, . . . , m̄K̄} as a subset of the index set

[k2] and {m̄K̄+1, . . . , m̄k2} := [k2] \ {m̄1, m̄2, . . . , m̄K̄}. Then, we partition the input space w.r.t the
density estimation sGn

1 ,G
n
2
(Y |X) as X = ∪M̄m̄=1X n

m̄, where the m̄-th region is defined as

X n
m̄ :=

{
x ∈ X : (βn1i)

⊤x ≥ (βn1i′)
⊤x, ∀i ∈ {m̄1, m̄2, . . . , m̄K̄}, i′ ∈ {m̄K̄+1, . . . , m̄k2}

}
for any m̄ ∈ [M̄ ]. Let XX ∗

m for m ∈ [M ] such that {m1,m2, . . . ,mK} = {1, 2, . . . ,K}. If there
does not exist m̄ ∈ [M̄ ] such that {m̄1, m̄2, . . . , m̄K̄} = V2,1 ∪ V2,2 ∪ . . . ∪ V2,K , then the ratio
EX [V (s̄Gn

1 ,G
n
2
(·|X), sG∗

1,G
∗
2
(·|X))]/D5n does not converge to zero, which contradicts the result in

equation (50). Thus, we can find m̄ ∈ [M̄ ] such that {m̄1, m̄2, . . . , m̄K̄} = V2,1 ∪ V2,2 ∪ . . . ∪ V2,K .

Since the Voronoi loss D5n converges to zero, it follows that βn1i → β∗1j for all j ∈ [K] and i ∈ V2,j .
Then, by means of Lemma 3, we deduce X ∗

m = X n
m̄ for sufficiently large n, implying that X ∈ X n

m̄.
Therefore, we can represent the true density and the density estimation when the sample size n is
sufficiently large as follows:

sG∗
1,G

∗
2
(y|x) := 1

2

k∗1∑
i=1

ω∗
i π(y|h1(x, κ∗i ), τ∗i ) +

1

2

K∑
i=1

exp((β∗
1i)

⊤x+ β∗0i)∑k∗2
j=1 exp((β

∗
1j)

⊤x+ β∗0j)
· π(y|h2(x, η∗i ), ν∗i ),

sGn
1 ,G

n
2
(y|x) := 1

2

kn1∑
i=1

ω∗
i π(y|h1(x, κni ), τni ) +

1

2

K̄∑
i=1

exp((βn1i)
⊤x+ βn0i)∑K̄

j=1 exp((β
n
1j)

⊤x+ βn0j)
· π(y|h2(x, ηni ), νni ).

Given the above formulations, we can achieve the local part (48) by employing the same arguments
used in Appendix D.1. Hence, the proof is completed.

F.1 Proof of Lemma 3

Let us consider εj = Njη, where η > 0 is some fixed constant, and Nj > 0 will be chosen later. Since
the input space X and the parameter space Θ are bounded, there exists a constant c∗m ≥ 0 such that

min
x,j,j′

[
(β∗1j)

⊤x− (β∗1j′)
⊤x

]
= c∗mη, (52)

where the above minimum is subject to x ∈ X ∗
m, j ∈ {m1,m2, . . . ,mK} and j′ ∈ {mK+1, . . . ,mk∗2

}.
We will show by contradiction that c∗m > 0. Suppose that c∗m = 0. For x ∈ X ∗

m, we may assume for
any 1 ≤ i < j ≤ k∗2 that

(β∗1mi
)⊤x ≥ (β∗1mj

)⊤x.
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As c∗m = 0, the result in equation (52) indicates that (β∗1mK
)⊤x− (β∗1mK+1

)⊤x = 0, or equivalently

(β∗1mK
− β∗1mK+1

)⊤x = 0.

In other words, X ∗
m is a subset of

N := {x ∈ X : (β∗1mK
− β∗1mK+1

)⊤x = 0}.

Since the difference β1mK − β1mK+1 is non-zero and the input X follows a continuous distribution,
then the set N has measure zero. Furthermore, as X ∗

m ⊆ N , it follows that X ∗
m also has measure

zero, which contradicts the fact that it has non-zero measure. Thus, we must have c∗m > 0.

Subsequently, let x ∈ X ∗
m and m̄ ∈ [M̄ ] such that {m̄1, m̄2, . . . , m̄K̄} = V2,m1∪V2,m2∪. . .∪V2,mK . We

will demonstrate that x ∈ X̄m̄. Indeed, recall that the input space X is bounded, then we may assume
that ∥x∥ ≤ B for any x ∈ X , where B > 0 is some constant. Then, for any i ∈ {m̄1, m̄2, . . . , m̄K̄}
and i′ ∈ {m̄K̄+1, . . . , m̄k2}, we have

β⊤1ix = (β1i − β∗1j)
⊤x+ (β∗

1j)
⊤x

≥ −NjηB + (β∗
1j′)

⊤x+ c∗mη

= −NjηB + c∗mη + (β∗
1j′ − β1i′)

⊤x+ β⊤1i′x

≥ −2NjηB + c∗mη + β⊤1i′x,

where j ∈ {m1,m2, . . . ,mK} and j′ ∈ {mK+1, . . . ,mk∗2
} such that i ∈ V2,j and i′ ∈ V2,j′ . Note that

if Nj ≤
c∗m
2B

, then we obtain x ∈ Xm̄, which implies that X ∗
m ⊆ X̄m̄.

Analogously, assume that there exists some constant cm ≥ 0 such that

min
x,j,j′

[
(β∗1j)

⊤x− (β∗1j′)
⊤x

]
= c∗mη,

where the above minimum is subject to x ∈ X̄m̄, i ∈ {m̄1, m̄2, . . . , m̄K̄} and i′ ∈ {m̄K̄+1, . . . , m̄k}.

Then, if Nj ≤
cm
2B

, we have X̄m̄ ⊆ X ∗
m. Consequently, by setting Nj =

1

2B
min{c∗m, cm}, we reach

the conclusion that X̄m̄ = X ∗
m. Hence, the proof is completed.

F.2 Proof of Proposition 6

To begin with, we show that

lim
ε→0

inf
(G1,G2)∈Gk1,k2

(Θ):D5((G1,G2),(G∗
1,G

∗
2))≤ε

EX [V (s̄G1,G2(·|X), sG∗
1,G

∗
2
(·|X))] > 0. (53)

Suppose that the above inequality does not hold, then there exist a sequence of pairs of mixing
measures (Gn1 , G

n
2 ) in Gk1,k2(Θ) given by Gn1 =

∑kn1
i=1 ω

n
i δ(κni ,τni ) and Gn2 =

∑kn2
i=1 exp(β

n
0i)δ(βn

1i,η
n
i ,ν

n
i )

that satisfies D5((G
n
1 , G

n
2 ), (G

∗
1, G

∗
2)) → 0 and

EX [V (s̄Gn
1 ,G

n
2
(·|X), sG∗

1,G
∗
2
(·|X))] → 0
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as n→ ∞. According to the Fatou’s lemma, we have

0 = lim
n→∞

EX [V (s̄Gn
1 ,G

n
2
(·|X), sG∗

1,G
∗
2
(·|X))]

≥ 1

2

∫
X×Y

lim inf
n→∞

|s̄Gn
1 ,G

n
2
(Y |X)− sG∗

1,G
∗
2
(Y |X)|d(X,Y ), (54)

implying that s̄Gn
1 ,G

n
2
(Y |X) − sG∗

1,G
∗
2
(Y |X) → 0 as n → ∞ for almost surely (X,Y ). WLOG, we

may assume that

max
{m1,m2,...,mK}

K∑
j=1

|V2,mj | = |V2,1|+ |V2,2|+ . . .+ |V2,K |.

Let X ∈ X ∗
m, where m ∈ [M ] such that {m1,m2, . . . ,mK} = {1, 2, . . . ,K}. Since the Voronoi loss

D5((G
n
1 , G

n
2 ), (G

∗
1, G

∗
2)) goes to zero, it follows that βn1i → β∗1j as n→ ∞ for any j ∈ [k∗2] and i ∈ V2,j .

By means of Lemma 3, we deduce X ∈ X̄m̄, where m̄ ∈ [q̄] such that {m̄1, m̄2, . . . , m̄K̄} = V2,1∪V2,2∪
. . . ∪ V2,K . However, as K̄ <

∑K
j=1 |V2,j |, the fact that {m̄1, m̄2, . . . , m̄K̄} = V2,1 ∪ V2,2 ∪ . . . ∪ V2,K

cannot occur. Thus, we obtain the result in equation (53). As a consequence, we can find a positive
constant ε′ such that

inf
(G1,G2)∈Gk1,k2

(Θ):D5((G1,G2),(G∗
1,G

∗
2))≤ε′

EX [V (s̄G1,G2(·|X), sG∗
1,G

∗
2
(·|X))] > 0.

Given the above result, it is sufficient to show that

inf
(G1,G2)∈Gk1,k2

(Θ):D5((G1,G2),(G∗
1,G

∗
2))>ε

′
EX [V (s̄G1,G2(·|X), sG∗

1,G
∗
2
(·|X))] > 0. (55)

Assume by contrary that the inequality (55) does not hold, then we can find a sequence (G̃n1 , G̃
n
2 ) ∈

Gk1,k2(Θ) such that D5((G̃
n
1 , G̃

n
2 ), (G

∗
1, G

∗
2)) > ε′ and

EX [V (s̄G̃n
1 ,G̃

n
2
(·|X), sG∗

1,G
∗
2
(·|X))] → 0.

Again, by utilizing the Fatou’s lemma as in equation (54), we get s̄G̃n
1 ,G̃

n
2
(Y |X)− sG∗

1,G
∗
2
(Y |X) → 0

as n → ∞ for almost surely (X,Y ). Since the parameter space Θ is compact, we can substitute
the sequence (G̃n1 , G̃

n
2 ) with its subsequence which converges to some pair of mixing measures

(G̃1, G̃2) in Gk1,k2(Θ). This result leads to s̄G̃1,G̃2
(Y |X) = sG∗

1,G
∗
2
(Y |X) for almost surely (X,Y ).

As the Top-K sparse gating MoE is identifiable, we deduce (G̃1, G̃2) ≡ (G∗
1, G

∗
2), or equivalently,

D5((G̃1, G̃2), (G
∗
1, G

∗
2)) = 0. On the other hand, due to the fact that D5((G̃

n
1 , G̃

n
2 ), (G

∗
1, G

∗
2)) > ε′ for

any n ∈ N, we obtain D5((G̃1, G̃2), (G
∗
1, G

∗
2)) > ε′ > 0, which contradicts the previous result. Hence,

we reach the result in equation (55) and complete the proof.

G Additional Experiments

In this appendix, we provide supplementary experimental results that reinforce and extend our
theoretical analyses. In Appendix G.1, we illustrate the convergence properties of the maximum
likelihood estimator (MLE) (Ĝn1 , Ĝn2 ) towards the true mixing measure (G∗

1, G
∗
2) using synthetic data,

explicitly evaluating four theorem-based scenarios. Appendix G.2 and Appendix G.3 provide detailed
training and validation performance curves during training of each model in language modeling and
vision-language modeling, respectively.
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Figure 5: Empirical illustration of the input - output relationship (X,Y ) under synthetic conditions
for each theoretical result. Each subplot corresponds to a different theoretical setting: (a) Theorem
1, (b) Theorem 2, (c) Theorem 3, and (d) Theorem 4.

G.1 Numerical Experiments

G.1.1 Experimental Setup

Synthetic Data. For each sample size n, we generate i.i.d samples {(Xi, Yi)}ni=1 by first sampling
Xi’s from the uniform distribution Uniform[−3, 3] and then sampling Yi’s from the true conditional
density fG∗

1,G
∗
2
(Y |X) or gG∗

1,G
∗
2
(Y |X) of Gaussian mixture of experts (MoE) model setting of each

theorem configuration. Figure 5 shows the visualization of the relationship between X and Y in
each experiment.

Maximum Likelihood Estimation (MLE). A popular approach to determining the MLE (Ĝn1 , Ĝ
n
2 )

for each set of samples is to use the Expectation-Maximization (EM) algorithm [16]. However,
since there are not any closed-form expressions for updating the gating parameters β0i, β1i in the
maximization steps, we have to leverage an EM-based numerical scheme, which was previously
used in [5]. We select the convergence criterion of ϵ = 10−6 and run a maximum of 1000 EM iterations.

Experiment Design. Our empirical investigation systematically examines four experimental
configurations, each precisely corresponding to the theoretical scenarios elaborated in our main paper.
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Each configuration includes 40 independent sample generations over a comprehensive range of sample
sizes n, specifically n ∈ [102, 105]. To ensure consistency and comparative clarity across experiments,
we uniformly adopt an architecture consisting of one shared expert (k∗1 = 1) complemented by two
routed experts (k∗2 = 2), where we fit two shared experts (k1 = 2) and three routed experts (k2 = 3)
in our experiment settings.

G.1.2 Theorem 1

The problem setting is defined in Equation 1, where we establish h1 and h2 to satisfy the identifi-
able experts condition, specifically h1(x, (κ2, κ1, κ0)) := κ2ReLU(κ

⊤
1 x+ κ0) and h2(x, (η2, η1)) :=

η2ReLU(η⊤1 x). The ground-truth parameters employed in our experiments are presented as follows:

ω∗ = 1.0, κ∗0 = 0, κ∗1 = 6, κ∗2 = −8, τ∗ = 0.25,

β∗01 = −0.5, β∗
11 = 5, η∗11 = −12, η∗21 = 4, ν∗1 = 0.4,

β∗02 = 0.5, β∗
12 = 5, η∗12 = 12, η∗22 = 4, ν∗2 = 0.4,

As illustrated in Figure 6a, the maximum likelihood estimator MLE (Ĝn1 , Ĝ
n
2 ) exhibits empirical

convergence to the true mixing measure G∗ under the Voronoi metric D1 (Equation 4) at the
rate of order OP ([log(n)/n]

0.451). This empirically observed rate closely matches the theoretical
parametric convergence rate OP ([log(n)/n]

1/2) established in Theorem 1, thereby validating the
practical applicability of the theoretical result under strongly identifiable expert assumptions.

G.1.3 Theorem 2

In this experiment, we adopt the problem setting outlined in Theorem 1. However, instead of
using two-layer FFNs, we define h1 and h2 are linear experts as in Section 2.2. Specifically, we set
h1(X, (κ1, κ0)) := κ⊤1 X + κ0 and h2(X, (η1, η0)) := η⊤1 X + η0, with the associated ground-truth
parameters defined as follows:

ω∗ = 1.0, κ∗0 = 0, κ∗1 = 2, τ∗ = 0.2,

β∗01 = −0.5, β∗
11 = 5, η∗11 = 8, η∗01 = 2, ν∗1 = 0.4,

β∗02 = 0.5, β∗
12 = 5, η∗12 = −6, η∗02 = 1, ν∗2 = 0.4,

The result is shown in Figure 6b. Under linear experts settings and Voronoi metric D2 (Equation 6),
the maximum likelihood estimator MLE has the convergence rate of OP ([log(n)/n]

1/2). Notably,
the linear expert settings make a perfect result with convergence rate of OP ([log(n)/n]

0.517) where
the noise in each sample size is minimal and uniform. This result strongly supports our theoretical
result in Theorem 2.

G.1.4 Theorem 3

This experiment is designed to empirically validate Theorem 3 under the problem setting specified
in Appendix A, which employs normalized sigmoid gating. Under the sparse regime, we set all
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Figure 6: Log-log scaled plots illustrating simulation results with different model settings. The
blue curves depict the mean discrepancy between the MLE (Ĝn1 , Ĝ

n
2 ) and the true mixing measure

(G∗
1, G

∗
2) accompanied by error bars representing the standard deviation over 40 times of experiments

for each sample size n. Additionally, an orange dash-dotted line represents the least-squares fitted
linear regression line for these data points.

over-specified parameters β∗1i equal to zero vectors. The expert functions follow the same structural
assumptions as in Theorem 1 where h1(x, (κ2, κ1, κ0)) := κ2ReLU(κ⊤1 x+ κ0) and h2(x, (η2, η1)) :=
η2ReLU(η

⊤
1 x). The complete set of ground-truth parameters used in this experiment is detailed

below:

ω∗ = 1.0, κ∗0 = 0, κ∗1 = 6, κ∗2 = −8, τ∗ = 0.25,

β∗01 = −0.5, β∗
11 = 0, η∗11 = −12, η∗21 = 4, ν∗1 = 0.4,

β∗02 = 0.5, β∗
12 = 0, η∗12 = 12, η∗22 = 4, ν∗2 = 0.4,

Figure 6c presents the experimental results for the convergence analysis under the sparse regime
utilizing normalized sigmoid gating. The maximum likelihood estimator (MLE) (Ĝn1 , Ĝ

n
2 ) empirically

converges to the true mixing measure (G∗
1, G

∗
2) at a rate of OP ([log(n)/n]

0.46) under the Voronoi
metric D3 (Equation 10). This empirical convergence rate is closely aligned with the theoretical
prediction articulated in Theorem 3. Consistent with the theorem’s implications, our experimental
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results suggest that under the sparse regime, normalized sigmoid gating does not exhibit significant
advantages in terms of convergence speed compared to standard softmax gating mechanisms.

G.1.5 Theorem 4

In this experiment, we adopt the same problem setting with Theorem D.4 specified in Appendix A.
With sigmoid gating under the dense regime, we define shared expert function h1 is strongly
identifiable while the routed expert function h2 is weakly identifiable. Specifically, h1 is the
two-layer FFNs function h1(x, (κ2, κ1, κ0)) := κ2ReLU(κ

⊤
1 x + κ0) where h2 is the linear experts

h2(X, (η1, η0)) := η⊤1 X + η0. The complete set of ground-truth parameters used in this experiment
is detailed below:

ω∗ = 1.0, κ∗0 = 0, κ∗1 = 6, κ∗2 = −8, τ∗ = 0.25,

β∗01 = −0.5, β∗
11 = 5, η∗11 = 8, η∗01 = 2, ν∗1 = 0.4,

β∗02 = 0.5, β∗
12 = 5, η∗12 = −6, η∗02 = 1, ν∗2 = 0.4,

Figure 6d presents the numerical results corresponding to Theorem D.4. Under the dense regime,
the Mixture-of-Experts (MoE) model achieves a convergence rate of OP ([log(n)/n]

0.552), which
closely aligns with the theoretical rate of OP ([log(n)/n]

1/2). This empirical evidence substantiates
Theorem D.4, suggesting that the use of normalized sigmoid gating contributes to improved sample
efficiency in DeepSeekMoE.

G.2 Language Modeling
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Figure 7: Average performance (%) compared in pairs with Vanilla SMoE across three model settings
over training steps on language modeling tasks. Left: Vanilla SMoE vs. DeepSeek-V3; Center:
Vanilla SMoE vs. DeepSeek-V2; Right: Vanilla SMoE vs. SMoE Sigmoid Gating.
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Figure 7 presents a pairwise comparison between DeepSeek-V3, DeepSeek-V2, SMoE Sigmoid Gating,
and the baseline Vanilla SMoE. Remarkably, across both model scales, by integrating normalized
sigmoid gating into SMoE, SMoE Sigmoid Gating yields a substantial improvement in convergence
rate compared to the softmax-gated baseline. Notably, in several training trajectories, SMoE Sigmoid
Gating achieves a convergence rate comparable to that of DeepSeek-V2. For a more detailed
examination, we provide the full training benchmark curves for both the 158M and 679M parameter
language modeling settings in Figure 14 and Figure 15, respectively.

G.3 Vision-Language Modeling
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Figure 8: Average performance (%) over training steps on vision-language pretraining tasks, comparing
SMoE variants across three model configurations. Left: Full comparison among Vanilla SMoE,
SMoE with Sigmoid Gating, DeepSeek-V2, and DeepSeek-V3; Right: Focused comparison between
Vanilla SMoE and SMoE Sigmoid Gating.

Figure 7 presents a pairwise comparison among DeepSeek-V3, DeepSeek-V2, SMoE with Sigmoid
Gating, and the baseline Vanilla SMoE. On vision-language pretraining tasks, SMoE Sigmoid Gating
exhibits a comparable convergence rate and final performance to the Vanilla SMoE. However, similar
to the DeepSeek variants, it demonstrates faster convergence during the later stages of training
and achieves greater training stability. To facilitate a finer-grained analysis, we provide benchmark-
specific performance trajectories in Figure 16.

H Additional Router Analysis

In this appendix, we provide further analyses regarding router behavior. Formal definitions, equations,
and detailed discussions on router saturation and router change rate are provided in Appendix H.1
and Appendix H.2, respectively. Additionally, an in-depth analysis of expert utilization is included
in Appendix H.3. For consistency, all analyses utilize the same ordered set of the 6000 most frequent
tokens from the validation dataset.

H.1 Router Saturation

In formal terms, router saturation is the proportion of expert activations at some intermediary
checkpoint at time t that matches the expert IDs activated at some final checkpoint T over the same

80



10 30 50 70 90

60

70

80

90

SMoE

10 30 50 70 90

60

70

80

90

SMoE Sigmoid Gating

10 30 50 70 90
40

50

60

70

80

90
DeepSeek-V2

10 30 50 70 90
40

50

60

70

80

90
DeepSeek-V3

Training Steps (k)

Ro
ut

er
 S

at
ur

at
io

n 
(%

)
Layer 0
Layer 1
Layer 2

Layer 3
Layer 4
Layer 5

Layer 6
Layer 7
Layer 8

Layer 9
Layer 10
Layer 11

Layer 12
Layer 13

Layer 14
Layer 15

Figure 9: Router saturation across layers for 158M-parameter models in language modeling tasks.
We compute saturation by comparing the routing to the top-8 experts with SMoE and SMoE Sigmoid
Gating, and the top-6 experts with DeepSeek variants.

dataset:

Router Saturation(t) =
1

N

N∑
i=1

∣∣∣E(t)
i ∩ E (T )

i

∣∣∣
k

,

where:

• N : The total number of tokens in the dataset.

• k: The number of top-k experts activated per input token.

• E(t)
i : The set of k experts activated for the i-th token at the t-th checkpoint.

• E(T )
i : The set of k experts activated for the i-th token at the final checkpoint T .

•
∣∣∣E(t)
i ∩ E (T )

i

∣∣∣: The number of common experts activated for the i-th token between the t-th
and final checkpoints.
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Router saturation provides a quantitative measure of how early the routing decisions converge during
training. A saturation value of 100% indicates that the router at an intermediate checkpoint routes to
the same set of experts as at the final checkpoint. High saturation values at early checkpoints reflect
early convergence in expert selection, indicating that the router has rapidly settled into a stable
assignment pattern. In contrast, low saturation values suggest ongoing exploration or adaptation
in expert allocations, signaling that the routing mechanism is still undergoing significant adjustments.

Figure 9 and Figure 11 show the detailed router saturation for each layer with 158M and 679M
parameters, respectively. The result shows that the later layer tends to saturate earlier during
training, where layer 0 is an outlier and saturates significantly slower than the others. Additionally,
we observe that in shared layer settings (DeepSeek-V2 and DeepSeek-V3), the gap between saturation
of different layers is smaller than SMoE and SMoE Sigmoid Gating. When comparing the MoE
model with normalized sigmoid gating and softmax gating, we can easily observe that the model
with normalized sigmoid gating exhibits a more uniform saturation rate across layers compared to
the model with softmax gating. This observation further highlights the effectiveness of normalized
sigmoid gating in mixture-of-experts model.

H.2 Router Change Rate

Router Change Rate is a metric that measures the stability of the gating of mixture of experts
models. This metric directly quantifies the gating fluctuation between two consecutive checkpoints:

Router Change Rate(t) =
1

N

N∑
i=1

∣∣∣E(t+1)
i \E(i)

i

∣∣∣
k

,

Where:

• N : The total number of tokens in the dataset.

• k: The number of top-k experts activated per input token.

• E(t)
i : The set of k experts activated for the i-th token at the t-th checkpoint.

• E(T )
i : The set of k experts activated for the i-th token at the (t+ 1)-th checkpoint.

•
∣∣∣E(t)
i \E(T )

i

∣∣∣: The number of non-intersecting experts activated for the i-th token between the
(t+ 1)-th and the t-th checkpoint

Router Change Rate is a quantitative metric to measure the stability of routing mechanism in
Mixture-of-Experts (MoE) during training. Unlike router saturation, which assesses convergence
towards a final routing decision, the router change rate evaluates fluctuations between consecutive
checkpoints. A low router change rate indicates stable routing decisions across training intervals,
implying that the gating mechanism has achieved consistent expert assignments, minimizing dis-
ruptions and promoting steady specialization of experts. Conversely, a high router change rate
suggests volatility in routing decisions, reflecting ongoing exploration or adjustment, potentially
introducing training inefficiencies and hindering expert specialization. Thus, monitoring the router
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Figure 10: Router change rate across layers for 158M-parameter models in language modeling tasks.
We compute router change rate by comparing the routing to the top-8 experts with SMoE and SMoE
Sigmoid Gating, and the top-6 experts with DeepSeek variants.

change rate provides valuable insights into the dynamics of expert allocation stability, enabling
deeper understanding and optimization of the routing strategy in MoE architectures.

Figure 9 and Figure 11 show the detailed router change rate for each layer with 158M and 679M
parameters, respectively. Similar to router saturation, later layers show more stability with lower
router change rate. However, the router change rate between layers show more consistency compared
to router saturation. Layer 0 still has some differences in router change rate, the difference with
other layers is still not too large, which show that although layer 0 saturates significantly slower, it
still keep the stability of during training. When comparing between different model settings, the
model with normalized sigmoid gating (SMoE Sigmoid Gating and DeepSeek-V3) shows lower and
more consistent router change rate compared with the model with traditional softmax gating (SMoE,
DeepSeek-V2).

H.3 Expert Utilization

To quantify the fairness of expert utilization in the Mixture-of-Experts (MoE) model, we apply
Jain’s Fairness Index to the router’s resource allocation across n experts. Let R = (r1, r2, . . . , rn)
denote the utilization vector, where ri ≥ 0 represents the proportion of input tokens (or total routing
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Figure 11: Router saturation across layers for 679M-parameter models in language modeling tasks.
We compute saturation by comparing the routing to the top-8 experts with SMoE and SMoE Sigmoid
Gating, and the top-6 experts with DeepSeek variants.

weight) assigned to expert i over a given evaluation window. The Jain’s Fairness Index J(R) is
computed as:

J(R) = J(r1, r2, ..., rn) =
(
∑n

i=1 ri)
2

n
∑n

i=1 r
2
i

,

This index ranges from [1/n, 1], where J(R) = 1 indicates perfectly uniform expert usage, (i.e., all
experts are used equally), where J(R) = 1/n signifies complete imbalance, with only one expert
active. Thus, higher values of J(R) correspond to fairer and more evenly distributed expert selection.

Figure 13 presents a comparison of Jain’s Fairness Index [29] across different Mixture-of-Experts (MoE)
model configurations and scales. Across both 158M and 679M parameter models, all configurations
exhibit a consistent pattern: fairness in expert utilization is highest in the initial layers and declines
in subsequent layers, suggesting that earlier layers facilitate broader expert utilization. Notably,
models employing normalized sigmoid gating (SMoE Sigmoid Gating and DeepSeek-V3) maintain a
higher fairness index, especially in the later layers, indicating better expert utilization. These results
highlight the efficacy of normalized sigmoid gating in promoting more balanced expert utilization
throughout the network.
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Figure 12: Router change rate across layers for 679M-parameter models in language modeling tasks.
We compute router change rate by comparing the routing to the top-8 experts with SMoE and SMoE
Sigmoid Gating, and the top-6 experts with DeepSeek variants.
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and 679 M (right) parameter models.
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I Experimental Details

I.1 Language Modeling

I.1.1 Datasets

SlimPajama. The SlimPajama [66] dataset is a filtered and deduplicated corpus of the 1.2T token
RedPajama dataset [75] designed for language model pretraining. It contains around 627B tokens
across diverse sources.
LAMBADA. The LAMBADA [58] dataset evaluates a model’s ability to predict the final word of
a passage, requiring understanding of broad discourse context. Each instance comprises a narrative
where the target word is only predictable when considering the entire passage, challenging models to
perform deep contextual comprehension beyond sentence-level cues
BLiMP. The Benchmark of Linguistic Minimal Pairs (BLiMP) [74] assesses language models’ grasp
of English grammar through 67 sub-datasets, each containing 1,000 minimal pairs. These pairs
differ subtly to test specific syntactic, morphological, or semantic phenomena, enabling fine-grained
evaluation of linguistic competence
Children’s Book Test (CBT). CBT [24] measures a model’s ability to utilize wider linguistic
context by providing passages from children’s books with a missing word to predict. The dataset
distinguishes between predicting syntactic function words and semantically rich content words,
emphasizing the importance of context in language understanding
HellaSwag. HellaSwag [81] challenges models with sentence completion tasks that require com-
monsense reasoning. Each instance presents a context and multiple plausible continuations, with
only one being correct. The dataset is adversarially filtered to be trivial for humans but difficult for
models, highlighting gaps in machine commonsense understanding.
PIQA. The Physical Interaction Question Answering (PIQA) [3] dataset tests models on physical
commonsense reasoning. It comprises questions about everyday tasks, requiring knowledge of physical
properties and affordances, challenging models to reason about the physical world without direct
sensory experience.
ARC-Challenge. The AI2 Reasoning Challenge (ARC) [11] presents grade-school level multiple-
choice science questions that necessitate reasoning and external knowledge. The Challenge set
includes questions that are particularly difficult for models, serving as a benchmark for advanced
question-answering capabilities .
OpenBookQA. OpenBookQA [35] consists of multiple-choice questions derived from a curated set
of science facts, resembling open-book exams. Answering requires combining the provided facts with
external commonsense knowledge, testing a model’s ability to integrate information from multiple
sources.
RACE. The Reading Comprehension Dataset from Examinations (RACE) [63] contains passages
and questions from English exams for Chinese middle and high school students. With nearly 100,000
questions, it evaluates a model’s reading comprehension and reasoning skills across diverse topics.
SIQA. Social IQa (SIQA) [63] focuses on social commonsense reasoning, presenting questions
about everyday social interactions. Models must infer motivations, reactions, and social dynamics,
challenging their understanding of human social behavior.
CommonSenseQA. CommonSenseQA [68] is a multiple-choice question-answering dataset that
requires models to apply commonsense knowledge. Each question is designed to probe a specific
aspect of commonsense reasoning, with distractor answers carefully crafted to be plausible yet
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incorrect.

I.1.2 Model Settings, Training Settings and Evaluation

Table 4: Comprehensive Model Configurations for Experimental Evaluation. SMoE refers to settings
applied for both Vanilla SMoE and SMoE Sigmoid Gating, whereas DeepSeek corresponds to
configurations used for DeepSeek-V2 and DeepSeek-V3 models.

Scale Model # params # act.
params

# trained
tokens dmodel H dhead NE Kr Ns

Expert
dim Nwarmup κ

Small
SMoE 158M 36M 6.5B 512 4 82 66 8 0 128 0 0.1

DeepSeek 158M 36M 6.5B 512 4 82 64 6 2 128 0 0.1

Large
SMoE 679M 131M 26.2B 1024 4 128 66 8 0 256 4000 0.25

DeepSeek 679M 131M 26.2B 1024 4 128 64 6 2 256 4000 0.25

Training datasets. We conduct the experiments on language modeling using the popular SLimPa-
jama [66] dataset. Due to the limited computational resource, we utilize only subsets of the
SlimPajama [66] dataset containing 6.5B and 26.2B tokens to train our 158M and 679M parameter
models, respectively.

Model Settings. Table 4 summarizes the comprehensive set of hyperparameters and configurations
for both scales and the two model variants evaluated in our experiments. All models employ a total
of Nr = 66 experts. For routing schemes, the baseline SMoE utilizes a top-8 expert routing strategy
(Kr = 8), while the DeepSeek variants adopt a mixed routing approach comprising top-6 expert
selection (Kr = 6) plus Ns = 2 shared experts. To align with the fine-grained expert segmentation
proposed in DeepSeekMoE [12], we set the expert dimensionality to 1/4 dmodel and increase the expert
count to 66 instead of the common settings with 16 experts. Additionally, the number of attention
heads is uniformly set to H = 4 across both model scales. All models leverage Rotary Positional
Embedding (RoPE) [67], PyTorch’s optimized attention implementation, and employ pre-layernorm
Transformers. To ensure balanced expert utilization, we use the standard load balancing loss defined
in Switch Transformers [21].

Training Settings. All models are trained in PyTorch using a batch size of 64, context length
of 1024, and a learning rate of 2.5e − 4. We apply 4000 linear warm-up steps specifically for the
larger-scale models and utilize the AdamW optimizer [46] with its default hyperparameters and a
weight decay of 0.01. Gradient clipping is performed with threshold κ, and the precise number of
linear warm-up steps (Nwarmup) per model variant is provided in Table 4. We tokenize the input
using SentencePiece [33], configured with a vocabulary size of 8000 tokens, which is trained on a
representative subset of the SlimPajama dataset [66].
Evaluation. We evaluate our model with the Perplexity score (PPL) and zero-shot performance
with nine different downstream tasks: LAMBADA [58], BLiMP [74], Children’s Book Test [24],
HellaSwag [81], PIQA[3], ARC-Challenge [11], RACE [35], SIQA [63] and CommonSenseQA [68].
For LAMBADA, we use the detokenized version from OpenAI, and we evaluate the top-1 accuracy
of the last word (it can span multiple tokens; here we use greedy decoding). For CBT, BLiMP, and
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RACE, we measure the accuracy of each task and report the average accuracy of the tasks.

Compute Resource. All models are trained and evaluated on a single node equipped with 4
NVIDIA A100 80GB CoWoS HBM2e PCIe 4.0 employing data-parallelism.

I.2 Vision Language Modeling

I.2.1 Datasets

LLaVA-558K. The LLaVA 558K [44] dataset is a curated subset of 558,000 image-text pairs derived
from the LAION/CC/SBU dataset. It is designed for the pretraining stage of visual instruction
tuning, facilitating the alignment between visual and language modalities. This dataset includes
BLIP-generated captions and synthetic multimodal conversations, serving as a foundational resource
for training models like LLaVA towards enhanced vision-language capabilities.
ALLaVA. ALLaVA [6] is a large-scale synthetic dataset comprising approximately 1.3 million
samples, generated using GPT-4V. It includes fine-grained image annotations and complex reasoning
visual question-answering pairs. The dataset aims to bridge the performance gap between traditional
large vision-language models and more resource-efficient lite versions by providing high-quality
training data for visual instruction tuning.
LLaVA-665K. The LLaVA-665K [42] dataset is an expanded and refined version of the original
LLaVA instruction tuning dataset, containing 665,000 multimodal instruction-following samples.
It integrates diverse sources such as VQAv2, GQA, OCR-VQA, and RefCOCO, among others, to
enhance the model’s performance across various vision-language tasks. This comprehensive dataset
supports improved visual instruction tuning for models like LLaVA-1.5 [42].
AI2D. The AI2D (AI2 Diagrams) [31] dataset comprises over 5000 grade school science diagrams,
annotated with more than 150,000 rich annotations and over 15000 corresponding multiple-choice
questions. It serves as a resource for evaluating models’ abilities in diagram understanding and
visual reasoning within educational contexts.
MMStar. MMStar [7] is a meticulously curated benchmark designed to evaluate large vision-
language models (LVLMs) on vision-indispensable tasks. It includes 1,500 samples across six
core capabilities and 18 detailed axes, ensuring each sample necessitates visual understanding and
minimizes data leakage.
POPE. The POPE (Polling-based Object Probing Evaluation) [40] dataset is developed to assess
object hallucination in LVLMs. It provides a systematic approach to evaluate the consistency of
object descriptions generated by models, highlighting tendencies to generate objects not present in
the input images.
ScienceQA. ScienceQA [47] is a large-scale multimodal dataset featuring science questions enriched
with lectures and explanations. It spans diverse subjects, including natural science, language science,
and social science, aiming to evaluate models’ abilities in multimodal reasoning and explanatory
question answering.
TextVQA. The TextVQA [65] dataset focuses on visual question answering tasks that require
reading and reasoning about text within images. It contains 45,336 questions over 28,408 images,
challenging models to integrate textual and visual information effectively.
GQA. GQA (Graph Question Answering) [27] is a large-scale dataset designed for real-world visual
reasoning and compositional question answering. It includes 22 million questions based on 113,000
images, each accompanied by scene graphs detailing objects, attributes, and relationships, facilitating
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structured reasoning evaluations.
MME-RealWorld-Lite. MME-RealWorld-Lite [83] is a streamlined version of the MME-RealWorld
benchmark, offering a subset of 50 samples per task to accelerate inference. It maintains the
benchmark’s focus on evaluating multimodal models in real-world scenarios with high-resolution
images and complex tasks.
MMMU Pro. MMMU Pro [78] is an enhanced benchmark for assessing multimodal models’
understanding and reasoning across multiple disciplines. It filters out questions answerable by
text-only models, augments candidate options, and introduces vision-only input settings, thereby
rigorously evaluating models’ true multimodal capabilities.
OCRBench. OCRBench [45] is a comprehensive evaluation benchmark for optical character
recognition (OCR) capabilities in large multimodal models. It encompasses 29 datasets covering
tasks like text recognition, scene text-centric VQA, document-oriented VQA, key information
extraction, and handwritten mathematical expression recognition, providing a thorough assessment
of OCR performance.

I.2.2 Model Settings, Training Settings and Evaluation

Model Settings. We embrace the vision-language pre-training task [42], a challenging problem
setting that enables effective model training with relatively limited data. We adopt the experiment
setting in LIBMoE [57] with LLaVA architecture [44], which includes three modules: pre-trained
Large Language Model, pre-trained visual encoder, and randomly initialized MLP connector. We
employ the pre-trained SigLIP (Patch14-224) [82] as the vision encoder, pre-trained Phi-3.5-mini-
instruct [1] as the LLM, and a randomly initialized MLP connector. In the Visual Instruction Tuning
(VIT) stage, we adopt a sparse upcycling approach [32] and upcycle only the MLP Connector into
8 experts, employing a top-4 expert routing strategy, while the DeepSeek variants adopt a top-3
expert routing scheme with an additional shared expert. Thus, our model has approximately 4.4B
parameters.
Training Settings. We follow LIBMoE [57] for the training settings. Specifically, our training
recipe with three stages of training: pre-training, pre-finetuning, and Visual Instruction Tuning
(VIT). In the first stage, we only pretrain the MLP connector for better alignment using LLaVA
558K dataset [44]. During the second pre-finetuning stage, we train all parameters using high-quality
caption data with the ALLaVA [6] dataset with 708K samples, aiming to warm up the entire model.
In the third stage, we upcycle the MLP Connector to MoE block and trained on visual instruction
tuning data (a subset of LLaVA-665K [42] with 332K samples). The learning rate is set to 1e− 3 for
pre-training the MLP connector and reduced to 2e− 6 for pre-finetuning and 4e− 6 for the final
stage. All models are trained in PyTorch using a batch size of 4 and AdamW optimizer [46] with its
default hyperparameters. We use Zero Redundancy Optimizer (ZeRO) [61] for memory optimization
with Zero2 for the first stage and Zero3 for both pre-finetuning and VIT stages.
Evaluation. Our model is evaluated under the zero-shot setting across a diverse set of benchmarks
encompassing various vision-language capabilities, such as perception, reasoning, OCR, instruction
following, etc. The benchmarks considered include AI2D [31], MMStar [7], POPE [40], ScienceQA
[47], TextVQA [65], GQA [27], MME-RealWorld-Lite [83], MMMU Pro [78], OCRBench [45].
Compute Resource. All models are trained and evaluated on a single node equipped with 4
NVIDIA A100 80GB CoWoS HBM2e PCIe 4.0 employing data-parallelism.
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I.3 Training Time and Resource Allocation

Table 5 summarizes the training time and resource utilization across all experimental settings.

Table 5: Training Time and GPU Resource Allocation Across All Experimental Settings.

Model Training Time
(hours) Resourse

Vision Language
Modeling

Pre-Training 5.5 4xA100

Pre-FineTuning 18 4xA100

Visual Instruction
Tuning

SMoE 10 4xA100
SMoE Sigmoid Gating 10 4xA100

DeepSeek-V2 10.5 4xA100
DeepSeek-V3 10.5 4xA100

Language
Modeling

158M parametes

SMoE 9.5 4xA100
SMoE Sigmoid Gating 10 4xA100

DeepSeek-V2 10.5 4xA100
DeepSeek-V3 10.5 4xA100

679M parametes

SMoE 65 4xA100
SMoE Sigmoid Gating 65 4xA100

DeepSeek-V2 71 4xA100
DeepSeek-V3 71.5 4xA100
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Figure 14: Benchmark curves during training in language modeling tasks for models with 158M
parameters.
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