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Abstract

The k-principal component analysis (k-PCA) problem is a fundamental algorithmic primi-
tive that is widely-used in data analysis and dimensionality reduction applications. In statistical
settings, the goal of k-PCA is to identify a top eigenspace of the covariance matrix of a dis-
tribution, which we only have black-box access to via samples. Motivated by these settings,
we analyze black-box deflation methods as a framework for designing k-PCA algorithms, where
we model access to the unknown target matrix via a black-box 1-PCA oracle which returns an
approximate top eigenvector, under two popular notions of approximation. Despite being ar-
guably the most natural reduction-based approach to k-PCA algorithm design, such black-box
methods, which recursively call a 1-PCA oracle k times, were previously poorly-understood.

Our main contribution is significantly sharper bounds on the approximation parameter degra-
dation of deflation methods for k-PCA. For a quadratic form notion of approximation we term
ePCA (energy PCA), we show deflation methods suffer no parameter loss. For an alternative
well-studied approximation notion we term cPCA (correlation PCA), we tightly characterize
the parameter regimes where deflation methods are feasible. Moreover, we show that in all
feasible regimes, k-cPCA deflation algorithms suffer no asymptotic parameter loss for any con-
stant k. We apply our framework to obtain state-of-the-art k-PCA algorithms robust to dataset
contamination, improving prior work in sample complexity by a poly(k) factor.
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1 Introduction

Principal component analysis (PCA) stands as a ubiquitous technique in the areas of statistical
analysis and dimensionality reduction (see e.g. [Pea01] and the popular reference [JC16]), offering
a powerful and general-purpose means to extract information from complex datasets. In one of its
most common use cases, applied to a distribution D, the k-PCA problem (Definition 1) seeks to
identify k orthogonal principal components (PCs) which capture the most variation in D. Succinctly
put, the goal is to output the top-k eigenvectors of the covariance Σ of D,1 or an approximation
thereof, where the key challenge is that we only have black-box sample access to Σ.

This statistical k-PCA problem is extremely well-studied, and due to its fundamental nature, many
recent works have explored the development of k-PCA algorithms under various constraints. These
variations include performing PCA in small space [JJK+16], under adversarial corruptions [JLT20,
DKPP23], when the distribution is heavy-tailed [Min15, WM17], or when the sampling process
admits correlations [NSW23, KS23]. In some problem settings, additional constraints might be
imposed on the data distribution (e.g. sparsity [ZHT06]) or the output of the PCA algorithm (e.g.
differential privacy [LKJO22], fairness [LCYY23]). In all these scenarios, asking for an exact k-PCA
is impossible due to our black-box access to the covariance matrix Σ in question, so the goal is to
output an approximate k-PCA, for appropriate notions of approximation.

Unfortunately, in many of the aforementioned settings, such as [JLT20, DKPP23, KS23, LKJO22],
results are only currently known for extracting a single approximate PC, rather than the more
general approximate k-PCA problem. However, for most practical applications of PCA such as
dimensionality reduction, extracting a single PC is not sufficient and hence these algorithms do not
readily apply. Given the sophisticated techniques required to prove correctness of even extracting
a single PC in these constrained statistical settings, it is often not immediately clear how to extend
the analysis of these works to design a corresponding k-PCA algorithm.

One of the most commonly-proposed solutions to alleviate the burden of k-PCA algorithm design,
assuming existence of a corresponding 1-PCA algorithm, is a reduction-based approach, known as
a deflation method [Mac08, AZL16] (see Algorithm 1). In this framework, the extraction of a single
approximate PC is treated as a subroutine, and the deflation method repeatedly projects out the
results of calls to this subroutine from the dataset, k times in total. It is straightforward to see that
if the subroutine returned an exact top eigenvector each time, this strategy would indeed succeed in
outputting an exact k-PCA of the target matrix. As mentioned previously, under black-box access,
the key challenge is to quantify the approximation degradation of this recursive procedure.

Indeed, despite their being perhaps the most natural reduction-based k-PCA strategy, there has
been surprisingly-limited work rigorously analyzing the performance of deflation methods. For
example, standard analyses require strong gap assumptions on the target matrix (e.g. each of the
top-k eigenvalues being separated) [LZ15], and this condition has even been quoted in a variety
of works as being necessary [LZ15, MM15, Sha16, LKO22]. The challenge of obtaining provable
guarantees for deflation methods (or small-block variants thereof) was an open problem stated in
[MM15]. Our primary contribution is a direct analysis of the approximation parameter degradation
of deflation methods, with no gap assumptions on the target matrix. This refutes the aforementioned
conventional wisdom that deflation methods fail without strong spectral assumptions.

Our work is motivated by a closely-related result of [AZL16], which primarily focused on applications
1The standard definition of an exact k-PCA allows for arbitrary tiebreaking if the dimensionality of the top-k

eigenspace is > k, see Definition 1 for a formal statement.
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in the white-box setting where the target matrix is explicitly available.2 However, the [AZL16]
analysis loses large polynomial factors in the approximation quality parameters, under their notion
of approximation (Definition 4), which we will shortly compare to our results. Our focus in this work,
in comparison, is to give tighter characterizations of when it is possible to obtain lossless or nearly-
lossless reductions in the black-box PCA setting, typically of interest in statistical applications.

1.1 Our results

We model black-box access to a target matrix M ∈ Sd×d
⪰0 through the template in Algorithm 1,

a black-box k-to-1-PCA reduction.3 Specifically, the algorithm only interacts with M through an
oracle O1PCA, which we assume returns an approximate top eigenvector of PMP for a specified
projection matrix P. This also explains why Algorithm 1 is often called a deflation method, as it
repeatedly “deflates” directions from consideration as specified by recursively calling O1PCA.

Algorithm 1: BlackBoxPCA(M, k,O1PCA)

1 Input: M ∈ Sd×d
⪰0 , k ∈ [d], O1PCA, an algorithm which takes as input M ∈ Sd×d

⪰0 and a d× d

orthogonal projection matrix P and returns a unit vector in Rd in span(P); P0 ← Id
2 for i ∈ [k] do
3 ui ← O1PCA(M,Pi−1)

4 Pi ← Pi−1 − uiu
⊤
i

5 end
6 Return: U← {ui}i∈[k] ∈ Rd×k

To motivate our approximation-tolerant analysis, first consider the performance of Algorithm 1
when O1PCA returns an exact 1-PCA of PMP on inputs (M,P), using the following definition.

Definition 1 (Exact PCA). For M ∈ Sd×d
⪰0 , the exact k-principal component analysis (k-PCA)

problem asks to return orthonormal V ∈ Rd×k such that
〈
VV⊤,M

〉
is maximal.

If O1PCA is assumed to be an exact 1-PCA algorithm, then it is straightforward to show that
Algorithm 1 is an exact k-PCA algorithm (indeed, this follows as a special case of our Theorem 1).

In Sections 3 and 4, our focus is analyzing the behavior of Algorithm 1 when O1PCA only has
approximate 1-PCA guarantees. We consider two types of approximation which are well-studied in
the literature, that we call energy PCA (or ePCA, see Definition 2) and correlation PCA (or cPCA,
see Definition 4). We chose these definitions of approximate PCA because of their prevalence as
error metrics in the PCA literature; to our knowledge, essentially all works on PCA in the statistical
setting (i.e., under sample access from a distribution) give guarantees under one of these metrics,
including the aforementioned works [Min15, JJK+16, WM17, JLT20, LKJO22, KS23, DKPP23,
LCYY23]. Correspondingly, our main results concern Algorithm 1 when O1PCA is assumed to be
an approximate 1-ePCA oracle or 1-cPCA oracle, notions formalized in Definitions 3 and 5, and we
want Algorithm 1 to respectively return a k-ePCA or a k-cPCA of M.

ePCA. The first approximation notion we consider is energy k-PCA, which defines the perfor-
mance of an approximate PCA algorithm by a sum of quadratic forms over components. Intuitively,
this definition quantifies the amount of variance of the data captured by the returned subspace.

2For example, in this white-box setting, one can query matrix-vector products with the target matrix, which is
not a realistic assumption if the target matrix is the covariance of a distribution we have sample access to.

3For notation used throughout the paper, see Section 2; Sd×d
⪰0 is the set of positive semidefinite d× d matrices.
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Definition 2 (Energy k-PCA). Let k ∈ [d], M ∈ Sd×d
⪰0 , and ϵ ∈ [0, 1]. We say orthonormal

U ∈ Rd×k is an ϵ-approximate energy k-PCA (or, ϵ-k-ePCA) of M if〈
UU⊤,M

〉
≥ (1− ϵ) ∥M∥k , where ∥M∥k := max

orthonormal V∈Rd×k

〈
VV⊤,M

〉
.

Our guarantees for Algorithm 1 as a black-box ePCA reduction are stated in the following result.

Definition 3 (ePCA oracle). We say OePCA is an ϵ-approximate 1-ePCA oracle (or, ϵ-1-ePCA
oracle) if, on inputs M ∈ Sd×d

⪰0 , and P ∈ Rd×d, where P is required to be an orthogonal projection
matrix, OePCA returns u ∈ Rd, an ϵ-1-ePCA of PMP, satisfying u ∈ span(P).

Theorem 1 (k-to-1-ePCA reduction). Let ϵ ∈ (0, 1), let M ∈ Sd×d
⪰0 , and let O1PCA be an ϵ-1-ePCA

oracle (Definition 3). Then, Algorithm 1, when run on M, returns U ∈ Rd×k, an ϵ-k-ePCA of M.

Perhaps surprisingly, Theorem 1 states that there is no loss in approximation parameters via the
reduction in Algorithm 1, if our approximation notion is ePCA. This is optimal; for example, if
d ≥ 2k, and M = diag ({1k, 0d−k}), then leting OePCA repeatedly return

√
1− ϵei+

√
ϵek+i in each

iteration i ∈ [k], the result is an ϵ-k-cPCA of M. Our proof of Theorem 1 in Section 3 is a simple
application of Cauchy’s interlacing theorem, but to our knowledge it was not previously known.

cPCA. The other notion of approximation we consider is correlation k-PCA, a popular definition
in the literature [Sha16, AZL17] which defines the performance of an approximate PCA algorithm
in terms of the correlation with the small eigenspace of M, allowing for a gap in the definition of
“small.” Let V<λ(M) denote the orthonormal matrix spanning the eigenspace of M corresponding
to eigenvalues < λ. We define cPCA as follows, parameterized by a gap Γ and a correlation ∆.

Definition 4 (Correlation k-PCA). Let k ∈ [d], M ∈ Sd×d
⪰0 , Γ ∈ [0, 1], and ∆ ∈ [0, k]. We say

orthonormal U ∈ Rd×k is a (∆,Γ)-approximate correlation k-PCA (or, (∆,Γ)-k-cPCA) of M if∥∥∥∥(V<(1−Γ)λk(M)(M)
)⊤

U

∥∥∥∥2
F
≤ ∆.

Definition 4 requires that U be almost entirely-contained in an eigenspace of M corresponding to
eigenvalues which are, at worst, barely outside the top-k space. For example, in the gapped setting
when λ2(M) < (1 − Γ)λ1(M) and k = 1 (so V<(1−Γ)λk(M) is simply the subspace orthogonal to
the top PC of M), Definition 4 implies recovery of the top PC in the sin2 error metric. In general,
cPCA guarantees can be viewed as more geometrically explicit than ePCA counterparts (as they
bound correlation with specific eigenspaces), and hence may be preferable when they are available.4

The only analysis of the black-box deflation method for k-PCA (Algorithm 1) we are aware of is
due to [AZL16], who gave a black-box k-to-1-cPCA reduction under the following definition.

Definition 5 (cPCA oracle). We say OcPCA is a (δ, γ)-approximate5 1-cPCA oracle (or, (δ, γ)-
1-cPCA oracle) if, on inputs M ∈ Sd×d

⪰0 , and P ∈ Rd×d, where P is required to be an orthogonal
projection matrix, OcPCA returns u ∈ Rd, a (δ, γ)-1-cPCA of PMP, satisfying u ∈ span(P).

4However, in some black-box settings e.g. robust PCA (Section 5.2), certificates on specific eigenspaces are harder
to achieve, and only weaker certificates such as quadratic forms have found algorithmic use (giving ePCA guarantees).

5We sometimes use lowercase Greek letters to denote parameters for the 1-cPCA oracle, to differentiate from
capital Greek letters used to parameterize overall k-PCA guarantees.
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Under Definitions 4, 5, the main result Theorem 4.1(a) of [AZL16] can be rephrased as follows:
Algorithm 1 returns a (∆,Γ)-k-cPCA if O1PCA is assumed to be a (δ, γ)-1-cPCA oracle, for

γ =
Γ

2
, δ = Θ

(
∆2Γ2

k4κk(M)2

)
, where κk(M) :=

λ1(M)

λk(M)
. (1)

In the white-box setting, (δ, γ)-1-cPCA runtimes typically scale polynomially in 1
γ and logarith-

mically in 1
δ (e.g., Theorem 1, [MM15]), so [AZL16] focused on maintaining a low overhead in γ.

However, known sample complexity lower bounds in the black-box statistical setting (e.g., Theorem
6, [AZL17]) show ≳ 1

γ2δ
samples are required to obtain a (δ, γ)-1-cPCA, even under strong tail

bounds such as sub-Gaussianity. Hence, the [AZL16] reduction in the black-box setting uses

≈ k4κk(M)2

∆2Γ4
, (2)

samples for obtaining a (∆,Γ)-k-cPCA via Algorithm 1, times problem-dependent factors such as
the dimension, which is a poly(k,∆,Γ) factor worse than the lower bound. Our goal is to understand
whether this parameter loss is inherent for black-box cPCA reductions.6 As a starting point, in
Section 2, we prove the following simple results transferring guarantees between Definitions 2 and 4.

Lemma 1. If U ∈ Rd×k is an ϵ-k-ePCA of M ∈ Sd×d
⪰0 , it is a (

ϵ∥M∥k
Γλk(M) ,Γ)-k-cPCA of M for any

Γ ∈ (0, 1).

Lemma 2. If u ∈ Rd is a (∆,Γ)-1-cPCA of M ∈ Sd×d
⪰0 , it is a (Γ + ∆)-1-ePCA of M.

By combining Lemmas 1 and 2 with our black-box ePCA reduction in Theorem 1, it is straightfor-
ward to show Algorithm 1 returns a (∆,Γ)-k-cPCA if O1PCA is a (δ, γ)-1-cPCA oracle, for

δ = γ = Θ

(
∆Γ

kκk(M)

)
. (3)

Our transfer lemmas and Theorem 1 therefore already yield a sample complexity scaling as

≈ k3κk(M)3

∆3Γ3
(4)

in standard statistical settings, which is incomparable to (2) in general but already improves upon
it in, e.g., the dependences on k and Γ. However, both (2) and (4) yield polynomial overheads
in various approximation factors. We hence ask the natural question: can we characterize when
Algorithm 1 serves as an asymptotically lossless cPCA reduction, even when k is a constant?

In Section 4, we give our main result analyzing the use of Algorithm 1 as a black-box k-to-1-cPCA
reduction. We show that if ∆ · κk(M)2 ≤ Γ2 for a target matrix M, then Algorithm 1 indeed is an
asymptotically lossless reduction for k = Θ(1). More precisely, we prove the following result.

Theorem 2 (k-to-1-cPCA reduction). Let (∆,Γ) ∈ (0, 1) and M ∈ Sd×d
⪰0 satisfy ∆ · κk(M)2 ≤ Γ2,

and let O1PCA be a (δ, γ)-1-cPCA oracle (Definition 5), where δ := 1
kΘ(log k) ·∆, γ := 1

Θ(k3)
· Γ, for

appropriate constants. Then, Algorithm 1 returns U ∈ Rd×k, a (∆,Γ)-k-cPCA of M.

That is, when ∆·κk(M)2 ≤ Γ2, it suffices to take O1PCA to be a (δ, γ)-1-cPCA oracle, for δ = Θk(∆),
γ = Θk(Γ). We complement Theorem 1 with an impossibility result (see Proposition 1), showing

6Note that Theorem 1 shows no such loss is necessary, if our approximation metric is instead ePCA.
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that if the condition ∆·κk(M)2 ≤ Γ2 is violated, then Algorithm 1 fails to have this lossless reduction
property, even when k = 2 and d = 3. In conclusion, Proposition 1 and Theorem 2 completely
classify regimes where Algorithm 1 acts as a lossless cPCA reduction, up to the dependence on k.

An immediate question in light of Theorem 2 is to obtain a tighter characterization of the k depen-
dence. We view our quasipolynomial kΘ(log k) factor overhead in the parameter degradation, which
is e.g. do(1) for k = Θ(log d), to be a proof-of-concept of Algorithm 1’s utility as a k-cPCA algorithm
design template; we conjecture it can be improved to be poly(k), which we leave open.

Applications. To showcase our reductions, in Section 5 we directly apply Theorem 1 to obtain
new algorithms for k-ePCA in the statistical setting, which are robust to adversarial corruptions to
the dataset. Our first such result extends a recent near-linear time 1-PCA algorithm of [DKPP23].

Theorem 3 (Robust sub-Gaussian k-ePCA). Let D be an O(1)-sub-Gaussian distribution on Rd

with covariance Σ. Let ϵ ∈ (0, ϵ0) for an absolute constant ϵ0, and δ ∈ (0, 1). Let T be an ϵ-
corrupted set of samples from D with |T | = Θ( d+log(1/δ)

ϵ2 log2(1/ϵ)
) for an appropriate constant. Algorithm

Ak (Corollary 3) run on inputs T , ϵ, γ = Θ(ϵ log(1ϵ )), δ, and k ∈ [d] outputs orthonormal U ∈ Rd×k

such that, with probability ≥ 1− δ, U is an O(ϵ log(1ϵ ))-k-ePCA of Σ, in time O(ndk
ϵ2

polylog( d
ϵδ )).

We then consider a heavy-tailed variant of the robust statistical estimation problem in Theorem 3,
where rather than requiring our distribution to be sub-Gaussian, we ask that it is hypercontractive
(Definition 8), the de facto finite moment bound assumption used in the PCA literature (see e.g.
[MZ18]). Under this heavy-tailed assumption, we design a new robust 1-ePCA algorithm following
a stability framework of [DKPP23] (see Definition 11), and prove the following result.

Theorem 4 (Robust hypercontractive k-ePCA). For an even integer p ≥ 4, let D be (p, Cp)-
hypercontractive on Rd with mean 0d and covariance Σ. Let ϵ ∈ (0, ϵ0), δ ∈ (0, 1), and γ =

Θ(C2
pϵ

1− 2
p ) such that γ ∈ (0, γ0) for absolute constants ϵ0, γ0. Let T be an ϵ-corrupted set of samples

from D with |T | = Θ(β(d log d+log(1/δ)
γ2 )) for an appropriate constant, where β := C6

pϵ
− 2

p . Algorithm
Ak (Corollary 3) run on inputs T , ϵ, γ, δ, and k ∈ [d] outputs orthonormal U ∈ Rd×k such that,
with probability ≥ 1− δ, U is an O(γ)-k-ePCA of Σ, in time O(ndk

γ2 polylog( d
ϵδ )).

We show our approximation factor γ in Theorem 4 is tight up to constants in Lemma 18. Moreover,
we mention that even for uncorrupted data and k = 1, we are unaware of any other polynomial-
time PCA algorithm with a similar additive dependence on log(1δ ) in the sample complexity under
a heavy-tailed assumption (rather than sub-Gaussianity), improving on [Min15].

Interestingly, both Theorems 3 and 4 incur no overhead in k in their sample complexities, since
our stability-based approach composes with deflation (see Lemma 15). The only other robust k-
PCA algorithm we are aware of (under the well-studied definition of robustness in Definition 10)
is due to Proposition 2.6, [KSKO20], which applies to distributions satisfying an assumption which
is a variant of (4, C4)-hypercontractivity, but is not directly comparable. We give a comparison
between our two results in the case p = 4 at the end of Section 5.2, where we show that under the
more standard assumption of hypercontractivity, our recovery rate matches the rate obtained by
[KSKO20], while our sample complexity improves by a factor of up to k2.

Finally, to show how to apply Theorem 2 to statistical settings, we design an online k-cPCA al-
gorithm for heavy-tailed distributions in Theorem 5 by using Oja’s algorithm [Oja82]. While The-
orem 5 does not match the state-of-the-art due to [AZL17], it follows a more black-box approach
rather than requiring a custom sophisticated analysis. As new 1-cPCA algorithms emerge in the
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literature, e.g. under the aforementioned input or output constraints, we are optimistic the roadmap
in Theorem 5 will serve as a useful template for solving the corresponding k-cPCA problems.

1.2 Our techniques

We now give a high-level overview of our proofs for Theorems 1 and 2. Letting M ∈ Sd×d
⪰0 , the

centerpiece of both our proofs is analyzing the approximation parameter degradation of composing
U1 ∈ Rd×k1 , an approximate k1-PCA of M, and U2 ∈ Rd×k2 , an approximate k2-PCA of M̃ :=
(Id − U1U

⊤
1 )M(Id − U1U

⊤
1 ) with U2 ⊥ U1, to form an approximate (k1 + k2)-PCA of M. We

describe how we analyze compositions under both types of approximation we consider.

Energy k-PCA. In the case of ePCA, we analyze this composition using Lemma 3, an application
of Cauchy’s interlacing theorem. Interestingly, we show that the composition of an ϵ-k1-ePCA and
an ϵ-k2-ePCA in the sense described previously results in an ϵ-(k1 + k2)-ePCA of M (Corollary 1),
i.e. we show that ePCA composition suffers no approximation parameter degradation. We defer the
details of our proof to Section 3, owing to the conciseness of the argument.

Correlation k-PCA. In the case of cPCA, our proof relies on Lemma 5, which bounds the quality
of a composition of two cPCAs. To describe this result, we introduce some notation. Let U1 be a
(δ, γ)-k1-cPCA of M and U2 be a (δ, γ)-k2-cPCA of M̃, and let U :=

(
U1 U2

)
and k := k1 + k2.

Moreover, for parameters (∆,Γ) to be set, let L := V≥(1−Γ)λk(M) be the large eigenspace of M
that (∆,Γ)-k-cPCAs are required to be correlated with, let Λ be diagonal containing eigenvalues of
M corresponding to L, and let L̃ := V≥(1−γ2)λk2

(M̃)(M̃) be the analogous large eigenspace of the
residual matrix M̃. Then, Lemma 5 states that U is a (∆,Γ)-k-cPCA of M, for

∆ := 3δ +
4δ

γ2
·

∥∥∥U⊤
1 LΛL⊤L̃

∥∥∥2
op

λk (M)2
, Γ := 2γ. (5)

In other words, as long as we can appropriately control the quantity ∥U⊤
1 LΛL⊤L̃∥op, we can bound

the parameter degradation (from (δ, γ) to (∆,Γ)) of composing two cPCAs. For instance, if this
quantity is O(γλk(M)), then cPCA composition blows up both the δ and γ parameters by constants.

Our proof of (5) applies the cPCA guarantees of U1 and U2 in turn, and uses a decomposition
inspired by the gap-free Wedin theorem of [AZL16] to bound a cross term arising in the analysis. In
light of (5), we focus on bounding ∥U⊤

1 LΛL⊤L̃∥op, i.e. for arbitrary unit-norm u ∈ span(U1) and
w ∈ span(L̃), our goal is to bound u⊤LΛL⊤w, where by definition of our algorithm, u ⊥ w. Note
that by our cPCA assumption, u is highly-uncorrelated with S := L⊥, the small eigenspace of M.

Our first observation is that when the spectrum of M is gapped, in that (1−γ)λk1(M) > λk1+1(M),
the cPCA guarantee of U1 affords an additional head guarantee (Definition 6) by taking comple-
ments. Concretely, L is simply the top-k1 eigenspace of M in the gapped setting, and because U1

captures almost all of the spectral mass of L, w (which is orthogonal to U1) is highly-uncorrelated
with L. In other words, we have shown that in the gapped setting, u and w lie almost entirely in
complementary eigenspaces of M. By exploiting this fact along with u ⊥ w, it is straightforward to
bound u⊤LΛL⊤w = O(γλk(M)),7 as we show in Lemma 7, so that ∆ = O(δ) in (5).

7In this step, we require that (∆,Γ) do not lie in the infeasible parameter regime ruled out by Proposition 1.
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Our second observation is that whenever the spectrum of M is not gapped, but M has a well-
conditioned top-k eigenspace, we can nonetheless use our head guarantee strategy to bound (5)
with some amount of approximation parameter degradation, shown in Lemma 11. To do this, we
show that in this setting, we can artificially induce a head guarantee with a loss of ≈ k in the
gap parameter by carefully inducting on intermediate cPCA guarantees (see Lemma 12). This lets
us conclude that while u,w do not lie in entirely-complementary eigenspaces, the spectrum of M
corresponding to the overlapping eigenspace lies in a very narrow range. By plugging in our bounds
into (5), we show that ∆ = δ · poly(k) and Γ = 2γ suffices in the well-conditioned regime.

After establishing complementary results in Lemma 7 (handling the gapped setting) and Lemma 11
(handling the well-conditioned setting), we show how to bucket the top-k spectrum of M so that one
of these two analyses always applies. We then recursively apply our composition results via dyadic
merging strategies, leading to Theorem 2, where the quasipolynomial kΘ(log(k)) loss arises due to
the number of merges. We consider the possibility of poly(k)-overhead black-box cPCA reductions
to be an interesting open direction suggested by our work, which likely requires new ideas.

1.3 Related work

We are aware of few papers considering deflation-based approaches to k-PCA without strong gap
assumptions on the target matrix (see e.g. [LZ15] for a gap-based analysis). The most direct
comparison is [AZL16], who analyze Algorithm 1 when O1PCA is a 1-cPCA oracle, giving guarantees
summarized in (1). Our Theorem 1 shows the lossiness in the [AZL16] reduction is unnecessary if
our approximations are instead measured through Definition 2 (ePCA), and yields a competitive
guarantee (3) for cPCA. Our Theorem 2 further removes all overhead in this cPCA reduction for
k = Θ(1), in the valid parameter regimes not ruled out by our lower bound, Proposition 1.

We also draw inspiration from the extensive body of work focusing on computationally efficient and
statistically optimal algorithms for PCA, e.g. [MM15, GHJ+16, Sha16] which give runtime bounds
in the white-box setting, and e.g. [HP14, SRO15, BDWY16, Sha16, JJK+16, LWLZ18] which focus
on offline and online variants of statistical PCA. In particular, the gap-free notion of approximation
in our cPCA definition is patterned off analogous definitions in this latter line. Further, several
other notions of PCA approximation have been proposed in the white-box setting, e.g. Eqs. (1)-(3)
of [MM15]; however, all such results we are aware of use matrix-vector products. Our motivation
is analyzing Algorithm 1 as a reduction, so we focused on error metrics where black-box 1-PCA
guarantees already exist, though it is interesting to prove similar reductions for other metrics.

Additionally, we mention the contemporaneous work of [MMM24], which gives analyses of variants
of k-to-1 reductions for block Krylov methods targeting low-rank approximation, which is very close
in spirit to our work. However, [MMM24] again requires access to matrix-vector products for their
reductions, which makes their results not directly applicable in our black-box setting.

Finally, iterative deflation has been popular in the context of sparse PCA [dGJL04, MWA06, Mac08,
YZ13], as designing direct k-PCA methods is challenging in this setting. However, we are not aware
of any general theoretical guarantees on this technique.

2 Preliminaries

For n ∈ N we let [n] := {i ∈ N | i ≤ n}. We denote the ith canonical basis vector in Rd by ei.

We denote matrices in capital boldface letters. For matrices A,B with the same number of rows, we
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let
(
A B

)
denote the horizontal concatenation of the matrices. We let Id be the d×d identity matrix

and 0d be the all-zeroes matrix. We say V ∈ Rd×r is orthonormal if its columns are orthonormal,
i.e. V⊤V = Ir; note that d ≥ r necessarily in this case. We let Sd×d be the set of real symmetric
d × d matrices, which we equip with the Loewner partial ordering ⪯ and the Frobenius inner
product ⟨M,N⟩ = Tr(MN). We let Sd×d

⪰0 and Sd×d
≻0 respectively denote the positive semidefinite

and positive definite subsets of Sd×d. We say A ∈ Rm×n has singular value decomposition (SVD)
UΣV⊤ if A = UΣV⊤ has rank-r, Σ ∈ Rr×r is diagonal, and U ∈ Rm×r, V ∈ Rn×r are orthonormal.
We refer to the ith largest eigenvalue of M ∈ Sd×d by λi(M), and the ith largest singular value of
M ∈ Rm×n by σi(M). For M ∈ Sd×d

⪰0 and k ∈ [d] we use ∥M∥k :=
∑

i∈[k] λi(M) to refer to its k-Ky
Fan norm, and ∥M∥op := σ1(M) is the ℓ2 operator norm of M ∈ Rm×n. For A ∈ Rm×n, the span
of A’s columns, i.e. {Av | v ∈ Rn}, is denoted span(A). For M ∈ Sd×d

≻0 and k ∈ [d], we define

κk(M) :=
λ1(M)

λk(M)
,

to be the k-condition number of M, i.e. the condition number of the top-k eigenspace of M, and
we abbreviate κ(M) := κd(M) for the (standard) condition number of M.

For a subspace V ⊆ Rd, we let PV ∈ Rd×d be the orthogonal projection matrix onto V . We often
identify a subspace V ⊆ Rd with a generating matrix V ∈ Rd×r, where r := dim(V ), such that V
has orthonormal columns and span(V) = V . In this case, note that PV = VV⊤ for any valid V.
We write U ⊥ V for subspaces U, V ⊂ Rd if every element of U is orthogonal to every element of
V . Similarly, for two orthonormal matrices U,V with the same number of rows, we write U ⊥ V if
span(U) ⊥ span(V). For orthonormal U ∈ Rd×r, we write U⊥ to mean any orthonormal d× (d− r)
matrix so that columns of U and U⊥ form a basis of Rd, and define U⊥ to be the orthogonal
complement of a subspace U ⊆ Rd. For M ∈ Sd×d and λ > 0, we denote the subspace spanned
by eigenvectors of M corresponding to eigenvalues at least λ by V ≥λ(M), and the corresponding
orthonormal generating matrix by V≥λ(M). We similarly define V >λ(M), V ≤λ(M), etc.

Linear algebra preliminaries. We use the following well-known linear algebra results.

Fact 1 (Cauchy’s interlacing theorem). Let d ∈ N and r ∈ [d]. For any M ∈ Sd×d and orthonormal
V ∈ Rd×r, λd−r+i(M) ≤ λi(V

⊤MV) ≤ λi(M) for all i ∈ [r].

Fact 2 (Weyl’s perturbation inequality). Let M,D ∈ Sd×d have ∥D∥op ≤ δ. Then,

λj(M)− δ ≤ λj(M+D) ≤ λj(M) + δ, for all j ∈ [d].

Fact 3. For any A,B ∈ Rm×n, 2∥A∥2F + 2∥B∥2F ≥ ∥A+B∥2F.

Fact 4. For any {xi}i∈[n] ⊂ R>0 and {wi}i∈[n] ⊂ R≥0 with
∑

i∈[n]wi = 1, we have for all p ≥ 1,

∑
i∈[n]

wix
p
i

 1
p

≥ ⟨w, x⟩ .

Fact 5. For A,B ∈ Sd×d with A ⪯ B and M ∈ Sd×d
⪰0 , Tr(AM) ≤ Tr(BM).

Finally, we prove the following basic observations relating Definitions 2 and 4, stated earlier, which
allow us to convert an ePCA guarantee to a cPCA one and vice-versa.
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Lemma 1. If U ∈ Rd×k is an ϵ-k-ePCA of M ∈ Sd×d
⪰0 , it is a (

ϵ∥M∥k
Γλk(M) ,Γ)-k-cPCA of M for any

Γ ∈ (0, 1).

Proof. Define V := V≥(1−Γ)λk(M)(M), W := V<(1−Γ)λk(M)(M), and ∆ := ∥W⊤U∥2F. Note
Tr(V⊤UU⊤V) = k −∆, and V⊤UU⊤V has ≤ k nonzero eigenvalues, all in [0, 1]. We bound

(1− ϵ) ∥M∥k ≤
〈
UU⊤,M

〉
=
〈
UU⊤,VV⊤MVV⊤

〉
+
〈
UU⊤,WW⊤MWW⊤

〉
≤
〈
V⊤UU⊤V,V⊤MV

〉
+∆

∥∥∥W⊤MW
∥∥∥

op

≤ ∥M∥k −∆λk(M) + ∆(1− Γ)λk(M) = ∥M∥k −∆Γλk(M). (6)

The second line used Fact 5 by noting that
〈
UU⊤,WW⊤MWW⊤〉 = Tr(W⊤MWW⊤UU⊤W)

and Tr(W⊤UU⊤W) ≤ ∆, and the third used the von Neumann trace inequality, which shows
that if {λi}i∈[ℓ] are the nonincreasing eigenvalues of V⊤MV and {σi}i∈[ℓ] are the nonincreasing
eigenvalues of V⊤UU⊤V, 〈

V⊤UU⊤V,V⊤MV
〉
≤
∑
i∈[ℓ]

σiλi.

Since the σi sum to k − ∆ and are each at most 1, it is clear that the right-hand side above is
bounded by ∥M∥k −∆λk(M) as claimed. The conclusion follows via rearranging (6).

Lemma 2. If u ∈ Rd is a (∆,Γ)-1-cPCA of M ∈ Sd×d
⪰0 , it is a (Γ + ∆)-1-ePCA of M.

Proof. Define V := V≥(1−Γ)λ1(M) and W := V<(1−Γ)λ1(M). The conclusion follows from〈
uu⊤,M

〉
=
〈
uu⊤,VV⊤MVV⊤

〉
+
〈
uu⊤,WW⊤MWW⊤

〉
≥
〈
V⊤uu⊤V,V⊤MV

〉
≥
〈
V⊤uu⊤V, (1− Γ)λ1(M)Idim(span(V))

〉
≥ (1−∆)(1− Γ)λ1(M) ≥ (1−∆− Γ)λ1(M),

where VV⊤, WW⊤, and M all commute since V and W are eigenvectors of M ∈ Sd×d
⪰0 .

Remark 1. One interesting asymmetry between Lemma 2 and its counterpart, Lemma 1, is that
there does not appear to be a natural k-PCA conversion analog of Lemma 2. For example, consider
the case where U ∈ Rd×k is a (∆,Γ)-k-cPCA of M ∈ Sd×d

⪰0 , but M has ≥ k eigenvalues in the range
(λk(M), (1 − Γ

2 )λk(M)), and span(U) is entirely contained in the corresponding subspace. Then,〈
UU⊤,M

〉
< kλk(M), which can be arbitrarily smaller than ∥M∥k if κk(M) is large.

It is important to note that naïvely applying such conversions with our lossless ePCA result in
Theorem 1 do not provide us with optimal cPCA overheads, as in Theorem 2, even when k = 2 and
κk(M) = 1. Our Theorem 2 does not suffer from such lossiness, up to an overhead only depending
on k, except in a parameter regime ruled out by Proposition 1.

Before we begin describing our techniques, we define another desirable property of the output of
the cPCA algorithms, which is complementary to the guarantee of Definition 4.

Definition 6 (Head guarantee for k-cPCA). For k ∈ [d], M ∈ Sd×d
⪰0 , let U ∈ Rd×k be orthonormal.

We say U satisfies a (h, ω,∆)-head guarantee with respect to M for ω,∆ ∈ R≥0, 0 ≤ h ≤ d, if

λh(M) > λh+1(M),

∥∥∥∥(V≥λh(M)(M)
)⊤

U⊥

∥∥∥∥2
F
≤ ∆, and

λh+1 (M)

λk (M)
≤ 1 + ω. (7)
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If h = 0, we only require the third condition above.

Definition 6 asks that U⊥ is highly-uncorrelated with the top-h eigenspace of M, so that U has
picked up most of the spectral mass, for an h such that λh+1(M) is not very separated from λk(M).
Note that Definition 4 does not explicitly guarantee a head guarantee in the absence of a gap.

3 k-to-1-ePCA reduction

In this section, we provide a guarantee on Algorithm 1’s performance when O1PCA in Line 3 is an
ϵ-1-ePCA oracle. We begin by stating one helper lemma used in the analysis.

Lemma 3. Let M ∈ Sd×d
⪰0 and r ∈ [d]. If P ∈ Rd×d is a rank-(d− r) orthogonal projection matrix,

then ∥PMP∥op ≥ λr+1(M).

Proof. This is a consequence of Cauchy’s interlacing theorem (Fact 1).

Theorem 1 (k-to-1-ePCA reduction). Let ϵ ∈ (0, 1), let M ∈ Sd×d
⪰0 , and let O1PCA be an ϵ-1-ePCA

oracle (Definition 3). Then, Algorithm 1, when run on M, returns U ∈ Rd×k, an ϵ-k-ePCA of M.

Proof. We proceed by induction on i ∈ [k]; for disambiguation let Ui ∈ Rd×i denote the horizontal
concatenation of the first i calls to O1PCA, so that Pi = Id −UiU

⊤
i . Observe that

Tr
(
U⊤

i+1MUi+1

)
= Tr

(
U⊤

i MUi

)
+ u⊤i+1Mui+1

≥ (1− ϵ) ∥M∥i + (1− ϵ) ∥PiMPi∥op
≥ (1− ϵ) ∥M∥i + (1− ϵ)σi+1(M) = (1− ϵ) ∥M∥i+1 .

The first inequality used the inductive hypothesis (the base case is i = 0) and the guarantee on ui+1

from Definition 3, and the second used Lemma 3. The conclusion follows by taking i = k.

We mention one elegant generalization of the proof strategy of Theorem 1, which shows that arbi-
trary compositions of two ϵ-ePCAs remain an ϵ-ePCA, regardless of the block size.

Corollary 1. Let ϵ ∈ (0, 1), let U1 ∈ Rd×k1 be an ϵ-k1-ePCA of M ∈ Sd×d
⪰0 , and define M̃ :=

(Id − U1U
⊤
1 )M(Id − U1U

⊤
1 ). Let U2 ∈ Rd×k2 be an ϵ-k2-ePCA of M̃ with U2 ⊥ U1, and let

k := k1 + k2. Then, U :=
(
U1 U2

)
∈ Rd×k is an ϵ-k-ePCA of M.

Proof. The proof is identical to Theorem 1, where we use Fact 1 to conclude

Tr
(
U⊤

2 MU2

)
≥ (1− ϵ)

∥∥∥(Id −U1U
⊤
1

)
M
(
Id −U1U

⊤
1

)∥∥∥
k2
≥ (1− ϵ)

∑
i∈[k2]

λk1+i(M).

4 k-to-1-cPCA reduction

In this section, we give our second black-box k-to-1-PCA reduction, which considers the case where
O1PCA in Line 3 of Algorithm 1 is a (δ, γ)-1-cPCA oracle. In Section 4.1 we first give two helper
tools which are used throughout to bound the spectra of matrices under projections formed via
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perturbations of its eigenvectors. In Section 4.2, we establish an impossibility result on k-to-1-
cPCA reductions in a range of the parameters (δ, γ). In the complement of this parameter regime,
we analyze the performance of Algorithm 1 and provide our main result, Theorem 2, in Section 4.3.

4.1 Gap-free Wedin decompositions and basic cPCA composition

In this section, we develop two general facts used throughout our analysis. The first is a matrix
decomposition inspired by the gap-free Wedin theorem (Lemma B.3 of [AZL16]). At a high level,
Lemma 4 applies noncommuting projection matrices compatible with only one of two matrices M, M̃
on different sides of their difference, and rearranges terms. Its conclusion allows us to develop tools
to bound the correlation between the small eigenspace of M and the large eigenspace of M̃.

Lemma 4. Let M ∈ Sd×d
⪰0 , let U ∈ Rd×r be orthonormal for r ∈ [d], and let M̃ := (Id−UU⊤)M(Id−

UU⊤). Suppose M, M̃ have eigendecompositions

M = LΛL⊤ + SΣS⊤, M̃ = L̃Λ̃L̃⊤ + S̃Σ̃S̃⊤, for U ⊥ L̃, U ⊥ S̃,

i.e. L,S, L̃, S̃ are all orthonormal, L,S have columns forming the eigenvectors of M, and L̃, S̃,U
have columns forming the eigenvectors of M̃. Then, assuming Λ̃ ∈ Sd×d

≻0 ,

S⊤L̃ =
(
Id − S⊤UU⊤S

)
ΣS⊤L̃Λ̃−1 − S⊤UU⊤LΛL⊤L̃Λ̃−1.

Proof. Let D := M̃−M = (Id −UU⊤)M(Id −UU⊤)−M. Then,

S⊤DL̃ = S⊤
((

Id −UU⊤
)
M
(
Id −UU⊤

)
L̃−ML̃

)
= S⊤

((
Id −UU⊤

)
ML̃−ML̃

)
= −S⊤UU⊤ML̃

= −S⊤UU⊤
(
SΣS⊤ + LΛL⊤

)
L̃

= −S⊤UU⊤SΣS⊤L̃− S⊤UU⊤LΛL⊤L̃, (8)

where the second equality used L̃ ⊥ U. We also have,

S⊤DL̃ = S⊤
(
M̃L̃−ML̃

)
= S⊤

(
L̃Λ̃−ML̃

)
= S⊤L̃Λ̃− S⊤ML̃ = S⊤L̃Λ̃−ΣS⊤L̃ (9)

where the second equality used M̃ = L̃Λ̃L̃⊤ + S̃Σ̃S̃⊤ and L̃ ⊥ S̃, and the fourth equality used
M = SΣS⊤+LΛL⊤. Combining (8) and (9) and right-multiplying by Λ̃−1, we have the claim.

We next prove a useful consequence of Lemma 4, which is repeatedly used to analyze the composi-
tions of approximate cPCA algorithms in Section 4.3. The proof first applies two cPCA guarantees
in turn, and then uses Lemma 4 to bound a cross term arising in the analysis.

Lemma 5. Let δ1, δ2, γ1, γ2 ∈ [0, 1
10 ]. Let U1 ∈ Rd×k1 be a (δ1, γ1)-k1-cPCA of M ∈ Sd×d

⪰0 , and
define M̃ := (Id − U1U

⊤
1 )M(Id − U1U

⊤
1 ). Let U2 ∈ Rd×k2 be a (δ2, γ2)-k2-cPCA of M̃ with

U2 ⊥ U1, and let γ := max(γ1, 2γ2), k := k1 + k2. Let the eigendecompositions of M, M̃ be

M = LΛL⊤ + SΣS⊤, where L := V≥(1−γ)λk(M)(M),

M̃ = L̃Λ̃L̃⊤ + S̃Σ̃S̃⊤, where L̃ := V≥(1−γ2)λk2
(M̃)(M̃), and U ⊥ L̃, U ⊥ S̃,
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i.e. orthonormal L,S have columns forming eigenvectors of M, and orthonormal L̃, S̃,U1 have
columns forming eigenvectors of M̃. Then, U :=

(
U1 U2

)
∈ Rd×k is a (∆, γ)-k-cPCA of M, with

∆ := δ1 + 2δ2 +
4δ1
γ22
·

∥∥∥U⊤
1 LΛL⊤L̃

∥∥∥2
op

λk (M)2
.

Proof. We first observe∥∥∥S⊤U
∥∥∥2

F
= Tr

(
U⊤SS⊤U

)
= Tr

(
U⊤

1 SS
⊤U1

)
+ Tr

(
U⊤

2 SS
⊤U2

)
. (10)

Since U1 is a (δ1, γ1)-k1-cPCA of M, it is also a (δ1, γ)-k-cPCA (since γ ≥ γ1), so we have
Tr
(
U⊤

1 SS
⊤U1

)
≤ δ1. Next, we bound Tr

(
SS⊤U2U

⊤
2

)
. Then, since U2 ⊥ U1,

Tr
(
U⊤

2 SS
⊤U2

)
= Tr

(
U⊤

2

(
L̃L̃⊤ + S̃S̃⊤

)
SS⊤

(
L̃L̃⊤ + S̃S̃⊤

)
U2

)
= Tr

((
U⊤

2 L̃L̃
⊤S+U⊤

2 S̃S̃
⊤S
)(

S⊤L̃L̃⊤U2 + S⊤S̃S̃⊤U2

))
≤ 2Tr

(
U⊤

2 L̃L̃
⊤SS⊤L̃L̃⊤U2

)
+ 2Tr

(
U⊤

2 S̃S̃
⊤SS⊤S̃S̃⊤U2

)
, using Fact 3

= 2Tr
(
L̃⊤U2U

⊤
2 L̃L̃

⊤SS⊤L̃
)
+ 2Tr

(
S̃⊤SS⊤S̃S̃⊤U2U

⊤
2 S̃
)

≤ 2Tr
(
L̃⊤SS⊤L̃

)
+ 2Tr

(
S̃⊤U2U

⊤
2 S̃
)
, using Fact 5,∥∥∥L̃⊤U2U

⊤
2 L̃
∥∥∥

op
≤ 1, and

∥∥∥S̃⊤SS⊤S̃
∥∥∥

op
≤ 1

≤ 2
∥∥∥S⊤L̃

∥∥∥2
F
+ 2δ2 (11)

where the last line used the cPCA guarantee. Now we bound ∥S⊤L̃∥F. By Lemma 4,

S⊤L̃ =
(
Id − S⊤U1U

⊤
1 S
)
ΣS⊤L̃Λ̃−1 − S⊤U1U

⊤
1 LΛL⊤L̃Λ̃−1. (12)

We next focus on the first term. Since ∥Σ∥op < (1− γ)λk (M), and λ1(S
⊤U1U

⊤
1 S) ≤ 1, we have

Λ̃−1L̃⊤SΣ
(
Id − S⊤U1U

⊤
1 S
)2

ΣS⊤L̃Λ̃−1 ⪯ (1− γ)2λk (M)2 Λ̃−1L̃⊤SS⊤L̃Λ̃−1.

Further, since Fact 1 implies λk(M) ≤ λk2(M̃), Fact 5 implies that

Tr
(
Λ̃−1L̃⊤SS⊤L̃Λ̃−1

)
= Tr

(
Λ̃−2L̃⊤SS⊤L̃

)
≤
∥∥∥Λ̃−1

∥∥∥2
op

∥∥∥S⊤L̃
∥∥∥2

F
≤ 1

(1− γ2)2λk(M)2

∥∥∥S⊤L̃
∥∥∥2

F
.

Combining the above two displays proves ∥(Id−S⊤U1U
⊤
1 S)ΣS⊤L̃Λ̃−1∥F ≤ (1− γ2)∥S⊤L̃∥F, since

(1−γ)2

(1−γ2)2
≤ (1− γ2)

2 for γ ≥ 2γ2. Plugging this into (12), along with a triangle inequality, yields∥∥∥S⊤L̃
∥∥∥

F
≤ (1− γ2)

∥∥∥S⊤L̃
∥∥∥

F
+
∥∥∥S⊤U1U

⊤
1 LΛL⊤L̃Λ̃−1

∥∥∥
F
,

which implies

∥∥∥S⊤L̃
∥∥∥

F
≤

∥∥∥S⊤U1U
⊤
1 LΛL⊤L̃Λ̃−1

∥∥∥
F

γ2
. (13)
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Finally, the conclusion follows by combining (10), (11), (13) and ∥AB∥F ≤ ∥A∥op ∥B∥F:∥∥∥S⊤U1U
⊤
1 LΛL⊤L̃Λ̃−1

∥∥∥2
F
≤
∥∥∥U⊤

1 S
∥∥∥2

F

∥∥∥U⊤
1 LΛL⊤L̃Λ̃−1

∥∥∥2
op

≤
∥∥∥U⊤

1 S
∥∥∥2

F

∥∥∥Λ̃−1
∥∥∥2

op

∥∥∥U⊤
1 LΛL⊤L̃

∥∥∥2
op

≤ δ1
1

(1− γ2)
2 λk2

(
M̃
)2 ∥∥∥U⊤

1 LΛL⊤L̃
∥∥∥2

op

≤ δ1(1 + 3γ2)

λk (M)2

∥∥∥U⊤
1 LΛL⊤L̃

∥∥∥2
op
≤ 2δ1

λk (M)2

∥∥∥U⊤
1 LΛL⊤L̃

∥∥∥2
op

. (14)

4.2 Invalid regimes for black-box cPCA

Before we prove our main result on cPCA (Theorem 2) in the following Section 4.3, in this section,
we point out that not all values of (δ, γ) pairs are feasible inputs for Algorithm 1 to serve as a lossless
black-box reduction even for constant k, unlike in the case of ePCA. Formally, we characterize two
types of parameter regimes for black-box cPCA using the following definition.

Definition 7 (Black-box cPCA regimes). Let g : [0, 1] × [1,∞) → [0, 1]. We say g induces an
invalid black-box cPCA regime if, for every f : N→ R>0, there is a value ∆ ∈ [0, 1], a k ∈ N, and
M ∈ Sd×d

⪰0 with d ≥ k such that, letting Γ := g(∆, κk (M)),8 and defining

δ :=
∆

f(k)
, γ :=

Γ

f(k)
, (15)

BlackBoxPCA does not always return a (∆,Γ)-k-cPCA if O1PCA is a (δ, γ)-1-cPCA oracle.

Conversely, we say g induces a valid black-box cPCA regime if there exists f : N→ R>0, such that
for all M ∈ Sd×d

⪰0 , ∆ ∈ [0, 1], Γ := g(∆, κk (M)), and (δ, γ) in (15), BlackBoxPCA always returns a
(∆,Γ)-k-cPCA if O1PCA is a (δ, γ)-1-cPCA oracle.

For example, suppose we establish g which induces an invalid black-box cPCA regime. This means
that for BlackBoxPCA to serve generically as a (∆,Γ := g(∆, κ))-k-cPCA algorithm for all ∆ ∈ [0, 1]
and κ > 1, we must ask for O1PCA to be a (δ, γ)-1-cPCA oracle where either δ = ok(∆) or γ = ok(Γ),
i.e. we necessarily suffer some loss in either the ∆ or Γ parameter by more than a function of k. The
following impossibility result establishes functions g which induce invalid black-box cPCA regimes.

Our choice to parameterize the regimes g in Definition 7 by κk(M) is motivated by a result of
[Lia23] (see Eq. (1.3) in that paper), which proves that some sample complexity overhead in κk(M)
is necessary in general. On the other hand, the requirement that Γ ≳

√
∆ appears to be an artifact

of the specific deflation strategy in Algorithm 1. We now state our main impossibility result.

Proposition 1 (Invalid black-box cPCA regimes). Let α, β, ν ∈ R>0, and g : [0, 1]× (1,∞)→ [0, 1]
be defined as g (∆, κ) := ν∆ακβ. If α > 1

2 or β < 1, g induces an invalid black-box cPCA regime.

Moreover, Theorem 2 shows that the complement of the regimes ruled out by Proposition 1 are all
valid regimes, where we suffer parameter degradation only in k. Hence, Proposition 1 and Theorem 2
completely characterize valid and invalid black-box cPCA regimes, under Definition 7.

8We let κk(M) denote the k-condition number of M, i.e. the ratio of λ1(M) and λk(M) (see Section 2).
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We establish Proposition 1 by giving 3-dimensional examples where Algorithm 1 fails to return a
(∆,Γ)-2-cPCA if Γ ≲ κ2(M)

√
∆ asymptotically, assuming O1PCA is a (δ, γ)-1-cPCA oracle, for any

δ, γ smaller than ∆,Γ by a constant. First, we show that sublinear functions induce invalid regimes.

Lemma 6. Let α, β, ν ∈ R>0, and define g : [0, 1]× (1,∞)→ [0, 1] as g (∆, κ) := ν∆ακβ. If α > 1
or β < 1, then g induces an invalid black-box cPCA regime.

Proof. Following the notation in Definition 7, fix f : N → R>0. Without loss of generality, we
assume that f is nondecreasing. Let C := f(2). We divide the analysis into two cases:

1. α > 1 : For any κ > 1, g(∆,κ)
∆(κ−1) ≤ min

(
1
2C ,

1
4

)
for all sufficiently small ∆.

2. β < 1 : For any ∆ > 0, g(∆,κ)
∆(κ−1) ≤ min

(
1
2C ,

1
4

)
for all sufficiently large κ.

Therefore, we can always find a pair (∆, κ) in both cases, such that g(∆,κ)
∆(κ−1) ≤ min

(
1
2C ,

1
4

)
. We will

show an example with k = 2 and a matrix M with k-condition number κk (M) = κ. If we can show
that for δ = ∆

C , two (δ, 0)-1-cPCA oracles fail to produce a (∆,Γ)-1-cPCA, where Γ := g(∆, κ), the
same will be true for calling two ( ∆

f(k) ,
Γ

f(k))-1-cPCA oracles, since δ = ∆
f(k) and 0 ≤ Γ

f(k) . This gives
us our desired contradiction, since it shows g induces an invalid black-box cPCA regime.

To this end, we now show that there is M ∈ S3×3
⪰0 with κk(M) = κ such that calling two (δ, 0)-1-

cPCA oracles as in Algorithm 1 fails to return a (∆,Γ)-2-cPCA. Define the 3× 3 diagonal matrix

M :=

κ 0 0
0 1 0
0 0 1− 2Γ

 .

We let u⊤1 =
(√

1− δ 0
√
δ
)

and observe u1 is a (δ, 0)-1-cPCA of M. We also let u2 be the top
eigenvector of M̃ := (I3−u1u

⊤
1 )M(I3−u1u

⊤
1 ), which is a (δ, 0)-1-cPCA of M̃. To compute u2, note

M̃ =

 δ((1− 2Γ)(1− δ) + κδ) 0 −
√

δ(1− δ)((1− 2Γ)(1− δ) + κδ)
0 1 0

−
√

δ(1− δ)((1− 2Γ)(1− δ) + κδ) 0 (1− δ)((1− 2Γ)(1− δ) + κδ)

 ,

so that the eigenvector-eigenvalue pairs of M̃ are

(e2, 1) ,

 −√δ0√
1− δ

 , (1− 2Γ)(1− δ) + κδ

 .

Since δ = ∆
C ≥

2Γ
κ−1 , we have

(1− 2Γ)(1− δ) + κδ = 1 + 2Γδ + (κ− 1) δ − 2Γ ≥ 1,

so u⊤2 =
(
−
√
δ 0

√
1− δ

)
is an exact 1-cPCA of M̃. In this case, U =

(
u1 u2

)
fails to be a

(∆,Γ)-2-cPCA of M as claimed, since∥∥∥U⊤V<(1−Γ)λ2(M)
∥∥∥2

F
=
∥∥∥U⊤e3

∥∥∥2
F
= 1 ≥ ∆.

The second equality can also be seen by noting that e3 ∈ span(U).
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We next improve Lemma 6 to show that we can rule out g asymptotically smaller than
√
· in ∆.

Namely for a fixed κ, while Lemma 6 rules out black-box cPCA reductions without parameter losses
for Γ≪ ∆, when ∆ is small enough, Proposition 1 further rules out such reductions for Γ≪

√
∆.

Proposition 1 (Invalid black-box cPCA regimes). Let α, β, ν ∈ R>0, and g : [0, 1]× (1,∞)→ [0, 1]
be defined as g (∆, κ) := ν∆ακβ. If α > 1

2 or β < 1, g induces an invalid black-box cPCA regime.

Proof. If α > 1 or β < 1, then applying Lemma 6 yields the claim. Thus, in the remainder of the
proof suppose 1

2 < α ≤ 1 and β ≥ 1. Fix f : N→ R>0, and define C := f(2).

Since α ≤ 1, there exists a c > 0 such that g(∆, 2) ≥ c∆ for all sufficiently small ∆. Let

K := min

(
c

10
,

1

10C
,

1

100

)
.

Since α > 1
2 , g(∆, 2) ≤ K

√
∆ for all sufficiently small ∆.

Assume ∆ < 1 is small enough that Γ := g(∆) satisfies

Γ ∈
[
c∆,K

√
∆
]
.

Let δ := 10K∆ ≤ ∆
C . Note that δ ≤ c∆ ≤ Γ. Let

M :=

2 0 0
0 1 0
0 0 1− 2Γ

 , M̃ :=
(
I3 − u1u

⊤
1

)
M
(
I3 − u1u

⊤
1

)
.

We prove g induces an invalid black-box cPCA regime by showing that calling two
(
∆
C , 0

)
-1-cPCA

oracles on M as in Algorithm 1 fails to return a (∆,Γ)-2-cPCA.

Define u1 =
(√

1− δ
√
δ/2

√
δ/2
)⊤, which is a (∆C , 0)-1-cPCA for M. Let u2 =

(
u21 u22 u23

)⊤
be the top eigenvector of M̃ and λ be the corresponding eigenvalue, so u2 is a (∆C , 0)-1-cPCA for
M̃. Since V<(1−Γ)λ2(M)(M) = e3, to prove U =

(
u1 u2

)
is not a (∆,Γ)-cPCA of M we must show

u223 > ∆. (16)

By a direct calculation,9 we get

λ = 1 +
δ

2
+

δΓ

2
+

(√
4Γ2 + δ2 + δΓ (2δ + δΓ− 4Γ)

2
− Γ

)
. (17)

Next, we provide upper and lower bounds on λ, which will be useful for the rest of the analysis.√
4Γ2 + δ2 + δΓ (2δ + δΓ− 4Γ) ≤

√
4Γ2 + δ2 + 4δΓ = 2Γ + δ,

and √
4Γ2 + δ2 + δΓ (2δ + δΓ− 4Γ) ≥

√
4Γ2 + δ2 − 4Γ2δ ≥ 2Γ,

9We provide a calculation of the eigenvalue here.
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where the last inequality used δ = 10K∆ ≥ 4K2∆ ≥ 4Γ2. Using these bounds in (17), we have

1 +
δ

2
< λ < 1 +

3δ

2
. (18)

Since u1 and u2 are distinct eigenvectors of M̃ ⪰ 0, they are orthogonal to each other. Therefore,

λu2 = M̃u2 =
(
I3 − u1u

⊤
1

)
M
(
I3 − u1u

⊤
1

)
u2 = Mu2 −

(
u⊤1 Mu2

)
u1.

Since M is diagonal, rearranging the above equality and writing u1, u2 in the canonical basis, (2− λ)u21
(1− λ)u22

(1− 2Γ− λ)u23

 =
(
u⊤1 Mu2

)
√
1− δ√

δ
2√
δ
2

 .

Using the bound on λ from (18), the above equation implies that u⊤1 Mu2, u21, u22, and u23 are all
nonzero, and λ /∈ {2, 1, 1− 2Γ}. Therefore,

u21
u22

=

√
2 (1− δ)

δ

(
1− λ

2− λ

)
,
u23
u22

=

(
λ− 1

λ− 1 + 2Γ

)
. (19)

Taking absolute values and using the bounds on λ from (18),∣∣∣∣u21u22

∣∣∣∣ ≤
√

2 (1− δ)

δ

((
1 + 3δ

2

)
− 1

2−
(
1 + 3δ

2

)) =

√
2 (1− δ)

δ

(
3δ

2− 3δ

)
≤ 1, (20)

and ∣∣∣∣u23u22

∣∣∣∣ = λ− 1

λ− 1 + 2Γ
≤ 1, (21)

where (20) used that δ = 10K∆ ≤ 1
10 . Inequalities (20) and (21) imply |u22| = max{|u21|, |u22|, |u23|}.

Since u2 is a unit vector, u222 ≥ 1
3 . Using (18) and (19), our claim (16) follows as shown below:

u223 =

(
λ− 1

λ− 1 + 2Γ

)2

u222 ≥

( (
1 + δ

2

)
− 1(

1 + δ
2

)
− 1 + 2Γ

)2

· 1
3

=
δ2

3 (δ + 4Γ)2
≥ δ2

75Γ2
≥ 100K2∆2

75
(
K
√
∆
)2 > ∆.

4.3 Black-box cPCA in the valid regime

In this section, we provide composition results used to bound the performance of Algorithm 1 in
the regime Γ ≥

√
∆ · κk (M), which is the asymptotically slowest decay rate on Γ not ruled out by

Proposition 1. Our analysis of the composition of black-box cPCAs proceeds in two steps.

1. In Lemma 9, we first consider the case where we perform a sequence of recursive cPCAs on
M, and there exist gaps in the spectrum of M. We show how in this gapped case, cPCAs are
composable with only a poly(k) blowup in cPCA parameters by applying Lemma 5.

2. In Lemma 13, we then consider the gap-free case, where we use a careful argument on head
guarantees (see Definition 6) that we show are recursively afforded by approximate cPCAs,
to bound the parameter blowup by a quasipolynomial factor in k.
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4.3.1 cPCA composition: the gapped case

In this section, we provide a composition lemma which applies under gap assumptions in the spec-
trum. Before providing our full gapped composition result, we state two helper lemmas.

Lemma 7. In the setting of Lemma 5, suppose that (1−γ1)λk1(M) > λk1+1(M) and δ1 ≤
γ2
2

16κk(M)2
.

Then, U is a (2(δ1 + δ2), γ)-k-cPCA of M, for γ = max(γ1, 2γ2).

Proof. By Lemma 5, it suffices to provide a bound on ∥U⊤
1 LΛL⊤L̃∥op.

Throughout the proof, let w ∈ span(L̃) ⊆ span([U1]⊥), u ∈ span(U1) be arbitrary unit vectors,
and note that u ⊥ w by definition. Let rank (L) = k′ ≥ k. Then,

u⊤LΛL⊤w =
∑
i∈[k′]

λi(M)[L⊤u]i[L
⊤w]i

=

k1∑
i=1

λi(M)[L⊤u]i[L
⊤w]i︸ ︷︷ ︸

:=R1

+

k′∑
i=k1+1

λi(M)[L⊤u]i[L
⊤w]i︸ ︷︷ ︸

:=R2

.
(22)

Let orthonormal L1 ∈ Rd×k1 span the subspace of eigenvectors corresponding to the largest k1
eigenvalues of M, and let S1 be the complement subspace. We assumed that (1 − γ1)λk1(M) >
λk1+1(M), so that ∥S⊤

1 U1∥2F ≤ δ1 by the cPCA guarantee. This also lets us conclude∥∥∥L⊤
1 U1

∥∥∥2
F
= ∥U1∥2F −

∥∥∥S⊤
1 U1

∥∥∥2
F
≥ k1 − δ1

=⇒
∥∥∥L⊤

1 w
∥∥∥2
2
≤ ∥L1∥2F −

∥∥∥L⊤
1 U1

∥∥∥2
F
≤ δ1 for all w ∈ Rd, w ⊥ U1.

(23)

Let Λ1 ∈ Rk1×k1 and Λ2 ∈ Rk2×k2 be diagonal matrices, so that Λ1 has diagonal entries {λi(M)}i∈[k1]
and Λ2 has diagonal entries {λi(M)}i∈[k]\[k1]. We now bound the terms in (22): first,

|R1| =
∣∣∣∣(L⊤

1 u
)⊤

Λ1

(
L⊤
1 w
)∣∣∣∣ ≤ ∥Λ1∥op

∥∥∥L⊤
1 w
∥∥∥
2

∥∥∥L⊤
1 u
∥∥∥
2
≤ λ1(M)

√
δ1.

In the last inequality we used (23). Next, we similarly have

|R2| ≤ ∥Λ2∥op

∥∥∥S⊤
1 w
∥∥∥
2

∥∥∥S⊤
1 u
∥∥∥
2
≤ λ1(M)

√
δ1,

since ∥S⊤
1 u∥2 ≤ ∥S⊤

1 U1∥F ≤
√
δ1. Plugging in the above two displays into (22), and applying

Lemma 5, then yields the result due to the assumed bound on δ1
γ2

:∥∥∥S⊤U
∥∥∥2

F
≤ δ1 + 2δ2 +

4δ1
γ22λk(M)2

·
(
2
√
δ1λ1(M)

)2
= δ1 + 2δ2 +

16δ21κk(M)2

γ22
≤ 2(δ1 + δ2).

Lemma 8. Let M ∈ Sd×d
⪰0 have λk+1(M) < (1− Γ)λk(M) for k ∈ [d] and Γ ∈ (0, 1), let V ∈ Rd×k

be an exact k-PCA of M, and let U ∈ Rd×k be a (∆,Γ)-k-cPCA of M. Then,∥∥∥(Id −UU⊤
)
M
(
Id −UU⊤

)
−
(
Id −VV⊤

)
M
(
Id −VV⊤

)∥∥∥
op
≤ 4
√
∆λ1(M).
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Proof. By our gap assumption, the cPCA guarantees imply ∥(Id −VV⊤)UU⊤∥2F ≤ ∆, so that∥∥∥(Id −UU⊤
)
VV⊤

∥∥∥2
F
= k −

〈
UU⊤,VV⊤

〉
=
∥∥∥(Id −VV⊤

)
UU⊤

∥∥∥2
F
≤ ∆.

Next, observe that, since UU⊤ −VV⊤ = UU⊤(Id −VV⊤)− (Id −UU⊤)VV⊤,∥∥∥UU⊤ −VV⊤
∥∥∥

op
≤
∥∥∥UU⊤(Id −VV⊤)

∥∥∥
op

+
∥∥∥(Id −UU⊤)VV⊤

∥∥∥
op
≤ 2
√
∆,

where we used our earlier bounds. The conclusion follows from(
Id −UU⊤

)
M
(
Id −UU⊤

)
−
(
Id −VV⊤

)
M
(
Id −VV⊤

)
=
(
Id −VV⊤

)
M
(
VV⊤ −UU⊤

)
−
(
UU⊤ −VV⊤

)
M
(
Id −UU⊤

)
,

after using the triangle inequality and our earlier bound on ∥UU⊤ −VV⊤∥op.

We now apply Lemma 7 recursively to obtain our gapped composition result, aided by Lemma 8.

Lemma 9. Let k ∈ [d] and r ∈ [k], such that
∑

j∈[r] kj = k for {kj}j∈[r] ⊂ N. Suppose for all
j ∈ [r], the following recursively hold for some δ, γ ∈ [0, 1

10 ], where we initialize P0 ← Id.

1. Uj is a (δ, γ)-approximate kj-cPCA of Pj−1MPj−1 with span(Uj) ⊆ span(Pj−1).

2. Pj = Pj−1 −UjU
⊤
j .

Suppose for ∆ := 4r2δ, Γ := 2rγ, max(∆,Γ) ≤ 1
10 , and letting Kj :=

∑
j′∈[j] kj′ for all j ∈ [r],

λKj+1 (M) < (1− Γ)λKj (M) for all j ∈ [r − 1], and ∆ ≤ Γ2

64κk(M)2
. (24)

Then U =
(
U1 . . . Ur

)
is a (∆,Γ)-approximate k-cPCA of M.

Proof. For all j ∈ [r], let Wj :=
(
U1 . . . Uj

)
∈ Rd×Kj , so that U = Wk. Our proof will be

by double induction. Throughout the proof, refer to the following assumption by Prefixr−1: for all
j ∈ [r − 1], Wj is a (∆,Γ)-Kj-cPCA of M. We will prove the stated claim assuming Prefixr−1,
which means that Prefixr−1 implies Prefixr. Because all the assumptions continue to apply if the
lemma statement took smaller values of r and k, this means we can induct on the base of Prefix,
justifying our assumption of Prefixr−1. For the remainder of the proof, suppose Prefixr−1 is true.

We first state a consequence of Prefixr−1. Let 1 ≤ j′ ≤ j ≤ r − 1, so Wj′ is a (∆,Γ)-Kj′-cPCA of
M by assumption, and Wj′W

⊤
j′ = Id −Pj′ . Moreover, let Vj′ ∈ Rd×Kj′ be an exact Kj′-cPCA of

M, which is unique by the gap assumption (24), and let Qj′ := Vj′V
⊤
j′ for convenience. We have:

λKj−Kj′+1

((
Id −Pj′

)
M
(
Id −Pj′

))
≤ λKj−Kj′+1

((
Id −Qj′

)
M
(
Id −Qj′

))
+
∥∥(Id −Pj′

)
M
(
Id −Pj′

)
−
(
Id −Qj′

)
M
(
Id −Qj′

)∥∥
op

≤ λKj+1(M) + 4
√
∆λ1(M)

< (1− Γ)λKj (M) +
Γ

2
λk(M) ≤

(
1− Γ

2

)
λKj (M)

≤
(
1− Γ

2

)
λKj−Kj′

((
Id −Pj′

)
M
(
Id −Pj′

))
.

(25)
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Here, the first inequality was by Fact 2, the second used Lemma 8 and the gap assumption (24)
with j ← j′, the third used (24) with j ← j, the fourth used λk(M) ≤ λKj (M), and the last used
Fact 1. In other words, (25) shows that after any j′ steps of our recursive cPCA procedure, all
remaining gaps (ensured for our original matrix by (24)) continue to hold in the residual matrix
(Id −Pj′)M(Id −Pj′), up to a small multiplicative loss in the gap parameter.

Next, we divide [r] into dyadic intervals, using L + 1 layers for L := ⌈log2(r)⌉, labeled 0 ≤ ℓ ≤ L.
In particular, the 0th layer is S0,1 := [r], the first layer consists of the intervals S1,0 := [2L−1] and
S1,1 := [r] \ S1,0, and so on. More generally, for each 0 ≤ ℓ ≤ L and 0 ≤ i < 2ℓ, we let

Sℓ,i :=
{
j ∈ [r] | i2L−ℓ + 1 ≤ j ≤ (i+ 1)2L−ℓ

}
,

aℓ,i :=
∑

j∈[i2L−ℓ]

kj = Ki2L−ℓ , bℓ,i :=
∑

j∈[min(r,(i+1)2L−ℓ)]

kj = Kmin(r,(i+1)2L−ℓ).

In other words, this dyadic splitting induces a binary tree, where the (Lth-layer) leaves correspond
to single elements in [r], and the (0th-layer) root corresponds to the set [r]. Moreover, the node in
the tree associated with Sℓ,i ⊆ [r] captures the interval [aℓ,i + 1, bℓ,i] ⊆ [k]. We refer to this node
as the (ℓ, i)th node, and we associate it with Wℓ,i, an approximate (bℓ,i − aℓ,i)-cPCA of the matrix
Pi2L−ℓMPi2L−ℓ . In particular, Wℓ,i is just the horizontal concatenation of Uj for all j ∈ Sℓ,i.
We inductively analyze the approximation quality of the intermediate Wℓ,i, to show that for all
0 ≤ ℓ ≤ L, Wℓ,i is a (δℓ, γℓ)-approximate (bℓ,i− aℓ,i)-cPCA of Pi2L−ℓMPi2L−ℓ for all 0 ≤ i < 2ℓ and

δℓ := 4L−ℓδ, γℓ := 2L−ℓγ.

The base case, ℓ = L, follows since all WL,i = Ui+1 are (δ, γ)-approximate cPCAs of their corre-
sponding PiMPi. Next, suppose inductively that all the Wℓ,i are (δℓ, γℓ)-approximate cPCAs for
some 0 ≤ ℓ < L, and all 0 ≤ i < 2ℓ. Then, consider some Wℓ−1,i, which is the composition of Wℓ,2i

and Wℓ,2i+1. To analyze this composition, we apply Lemma 7, which requires that

λbℓ,2i−aℓ,2i (Pi2L−ℓ+1MPi2L−ℓ+1) ≥ (1 + γℓ)λbℓ−1,i−aℓ−1,i
(Pi2L−ℓ+1MPi2L−ℓ+1) . (26)

Because γℓ ≤ γ0 ≤ Γ
2 for all 0 ≤ ℓ < L, (26) is implied by (25). Lemma 7 also requires δℓ ≤

γ2
ℓ

16κk(M)2
,

which is invariant to the choice of ℓ since δℓ and γ2ℓ grow at the same rate, so this is implied by our
bounds in (24). Therefore, we can apply Lemma 7 and Wℓ−1,i is indeed a (4δℓ, 2γℓ) = (δℓ−1, γℓ−1)-
cPCA as claimed. The conclusion follows by taking ℓ = 0, as 4L ≤ 4r2, 2L ≤ 2r.

The following byproduct of our proof of Lemma 9 is useful in our later development.

Lemma 10. In the setting of Lemma 9, suppose that λKj (M) ≥ 2
3λKj−1+1(M) for all j ∈ [r], where

we let K0 := 0. Then, for all j ∈ [r], we have κkj (Pj−1MPj−1) ≤ 2.

Proof. First of all, we have λkj (Pj−1MPj−1) ≥ λKj (M) by Fact 1. Moreover, an analogous argu-
ment to (25) shows that the largest eigenvalue of Pj−1MPj−1 is perturbed by at most Γ

2λk(M) ≤
1
20λKj−1+1(M), when compared to λKj−1+1(M), so λ1(Pj−1MPj−1) ≤ 1.05λKj−1+1(M). The con-
clusion follows from combining these inequalities, because 1.05 · 32 ≤ 2.

21



4.3.2 cPCA composition: the well-conditioned case

In this section, we analyze Algorithm 1 under the promise that κk(M) ≤ 2. We begin with a basic
helper lemma on composition under a head guarantee (Definition 6), patterned off of Lemma 7.

Lemma 11. In the setting of Lemma 5, let δ1 ≤
γ2
2

288 , κk(M) ≤ 2, and γ1 ≤ γ2. For 0 ≤ h ≤ d,
suppose that U1 satisfies a (h, 2k1γ1, δ1)-head guarantee (Definition 6) with respect to M. Then, U
is a (δ, γ)-k-cPCA of M, for δ := 130k21δ1 + 2δ2 and γ := 2γ2.

Proof. Throughout the proof, for convenience we denote

Lh := V≥λh(M) (M) =⇒
∥∥∥L⊤

h [U1]⊥

∥∥∥2
F
≤ δ1 and

λh+1 (M)

λk1 (M)
≤ 1 + 2k1γ1.

By Lemma 5, it suffices to bound ∥U⊤
1 LΛL⊤L̃∥op. Throughout the proof, let w ∈ span(L̃) ⊆

span([U1]⊥), u ∈ span(U1) be arbitrary unit vectors, so u ⊥ w. Next, let m ∈ [d] be the largest
index such that λm (M) ≥ (1− γ1)λk1 (M). Finally, let k′ := rank (L) ≥ k. Note that h ≤ k1 ≤
m ≤ k′, where h ≤ k1 follows because otherwise ∥L⊤

h [U1]⊥∥op < 1 is impossible, as this would mean

dim (span (Lh)) + dim (span ([U1]⊥)) = h+ d− k1 > d =⇒ span(Lh) ∩ span([U1]⊥) ̸= ∅.

Next, letting V :=
(
L S

)
be a full set of orthonormal eigenvectors for M, we have

u⊤LΛL⊤w =
∑
i∈[k′]

λi (M) [L⊤u]i[L
⊤w]i

=
∑
i∈[m]

λi (M) [L⊤u]i[L
⊤w]i +

∑
i∈[k′]\[m]

λi (M) [L⊤u]i[L
⊤w]i − λk1 (M)

〈
V⊤u,V⊤w

〉
=
∑
i∈[h]

(λi (M)− λk1 (M)) [L⊤u]i[L
⊤w]i︸ ︷︷ ︸

:=R1

+
∑

i∈[m]\[h]

(λi (M)− λk1 (M)) [L⊤u]i[L
⊤w]i︸ ︷︷ ︸

:=R2

+
∑

i∈[k′]\[m]

λi (M) [L⊤u]i[L
⊤w]i︸ ︷︷ ︸

:=R3

−
∑

i∈[d]\[m]

λk1 (M) [V⊤u]i[V
⊤w]i︸ ︷︷ ︸

:=R4

.

(27)
In the second equality, we used ⟨u,w⟩ = 0 and VV⊤ = Id, and in the third, we used that the
first m rows of V⊤ agree with L⊤. For convenience in the following, let Λ1 ∈ R(h−1)×(h−1), Λ2 ∈
R(m−h+1)×(m−h+1), Λ3 ∈ R(k′−m)×(k′−m) and Λ4 ∈ R(d−m)×(d−m) be diagonal matrices such that Λ1

has diagonal entries {λi (M)− λk1 (M)}i∈[h−1], Λ2 has diagonal entries {λi (M)− λk1 (M)}i∈[m]\[h−1],
Λ3 has diagonal entries {λi (M)}i∈[k′]\[m] and Λ4 has diagonal entries {λk1 (M)}i∈[d]\[m].

We now bound the terms in (27). For R1,

|R1| =
∣∣∣∣(L⊤

h u
)⊤

Λ1

(
L⊤
hw
)∣∣∣∣ ≤ ∥Λ1∥op

∥∥∥L⊤
hw
∥∥∥
2

∥∥∥L⊤
h u
∥∥∥
2
≤ λ1(M)

√
δ1.
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The last inequality used ∥L⊤
hw∥2 ≤

∥∥L⊤
h [U1]⊥

∥∥
F ≤
√
δ1. For R2, since ∥u∥2 = ∥w∥2 = 1,

|R2| ≤ ∥Λ2∥op ≤ max

{
λh+1 (M)

λk1 (M)
− 1, γ1

}
λk1(M).

For R3, R4, since
∥∥S⊤u

∥∥
2
≤
∥∥S⊤U1

∥∥
F ≤
√
δ1 by the cPCA guarantee on U1, and the jth rows of

V⊤ and S⊤ agree for any j > m by definition,

|R3| ≤ ∥Λ3∥op

∥∥∥S⊤w
∥∥∥
2

∥∥∥S⊤u
∥∥∥
2
≤ λ1(M)

√
δ1,

|R4| ≤ ∥Λ4∥op

∥∥∥S⊤w
∥∥∥
2

∥∥∥S⊤u
∥∥∥
2
≤ λ1(M)

√
δ1.

Plugging in the above displays into (27), we have

∥U⊤
1 LΛL⊤L̃∥2op ≤

(
3λ1(M)

√
δ1 +max

{
λh+1 (M)

λk1 (M)
− 1, γ1

}
λk1(M)

)2

≤ 18λ1 (M)2 δ1 + 2max
{
(2k1γ1)

2 , γ21

}
λk1(M)2

= 18λ1 (M)2 δ1 + 8k21γ
2
1λ1(M)2.

Applying Lemma 5 and using the assumed bounds in the lemma statement then yields the result:∥∥∥S⊤U
∥∥∥2

F
≤ δ1 + 2δ2 +

4δ1
γ22λk(M)2

·
(
18λ1 (M)2 δ1 + 8k21γ

2
1λ1(M)2

)
= δ1 + 2δ2 +

8δ1κk (M)2

γ22
·
(
9δ1 + 4k21γ

2
1

)
≤ 130k21δ1 + 2δ2.

In the absence of an explicit gap in the spectrum of M, Lemma 11 shows how to nonetheless apply
Lemma 5, assuming a head guarantee. The following lemma shows how to inductively use cPCA
bounds to enforce such a head guarantee. Informally, the requirement (28) states that after i steps
of Algorithm 1, the next h steps are a cPCA of the residual matrix, for all h ∈ [m]. We show that
(28) either implies a gap in the spectrum of the residual matrix, or that the entire residual matrix is
well-conditioned in the top-m subspace. Either case yields a guarantee compatible with Lemma 11.

Lemma 12. Let M ∈ Sd×d
⪰0 and let U ∈ Rd×d be orthonormal, with columns {uℓ}ℓ∈[d]. For 1 ≤ i ≤

j ≤ d, let U[i,j] ∈ Rd×(j−i+1) have columns {uℓ}ℓ∈[i,j]. Further, for i ∈ [d], suppose for all h ∈ [m],

U[i+1,i+h] is a (δ, γ) -h-cPCA of M̃i :=
(
Id −U[1,i]U

⊤
[1,i]

)
M
(
Id −U[1,i]U

⊤
[1,i]

)
. (28)

There is h ∈ [0,m− 1] so U[i+1,i+m] satisfies a (h, 2mγ, δ)-head guarantee with respect to M̃i.

Proof. Let h ∈ [1,m− 1] be maximal such that λh+1(M̃i) ≤ (1− γ)λh(M̃i); if no such index exists,
then we set h = 0. Then, by definition the first condition in (7) is satisfied for this value h if h ̸= 0,
and otherwise it is irrelevant. Further, since h is the largest such index, λj+1(M̃i) > (1− γ)λj(M̃i)
for all j ∈ [h+ 1,m− 1], so telescoping across all such j, we have the third claim in (7):

λh+1(M̃i)

λm(M̃i)
≤
(

1

1− γ

)m−h−1

≤ 1 + 2mγ.
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This holds even if h = 0, and the second claim in (7) is irrelevant in this case, so we assume h ≥ 1

henceforth. For notational convenience, let L̃i,h := V≥λh(M̃i)(M̃i) ∈ Rd×h. The definition of h

implies L̃i,h = [V≤(1−γ)λh(M̃i)(M̃i)]⊥, so (28) with m← h yields∥∥∥U⊤
[i+1,i+h]V

≤(1−γ)λh(M̃i)(M̃i)
∥∥∥2

F
≤ δ =⇒

∥∥∥U⊤
[i+1,i+h]L̃i,h

∥∥∥2
F
≥ h− δ

=⇒
∥∥∥L̃⊤

i,h

[
U[i+1,i+h]

]
⊥

∥∥∥2
F
≤ δ

=⇒
∥∥∥L̃⊤

i,h

[
U[i+1,i+m]

]
⊥

∥∥∥2
F
≤ δ.

In the last claim, we used that span(U[i+1,i+h]) ⊃ span(U[i+1,i+m]).

Finally, we apply Lemmas 11 and 12 to complete our analysis of Algorithm 1.

Lemma 13. Let k ∈ [d] and κk(M) ≤ 2. Let U ∈ Rd×k be the output of BlackBoxPCA (M, k,OcPCA)
(Algorithm 1) where OcPCA is a (δ, γ)-1-cPCA oracle. Let

∆ :=
(
132k2

)⌈log2(k)⌉ δ, Γ := 2⌈log2(k)⌉γ.

Assume ∆ ≤ Γ2

288 . Then U is a (∆,Γ)-k-cPCA of M.

Proof. We divide [k] into dyadic intervals as in Lemma 9, using L + 1 layers for L := ⌈log2(k)⌉,
labeled 0 ≤ ℓ ≤ L. In particular, the 0th layer is S0,1 := [k], the first layer consists of the intervals
S1,0 := [2L−1] and S1,1 := [k] \ S1,0, and so on. For each 0 ≤ ℓ ≤ L and 0 ≤ i < 2ℓ, we let

Sℓ,i :=
{
j ∈ [k] | i2L−ℓ + 1 ≤ j ≤ (i+ 1)2L−ℓ

}
.

This dyadic splitting again induces a binary tree, where singletons in [k] are leaves and the root is [k].
The node in the tree associated with Sℓ,i ⊆ [k] captures the interval [i2L−ℓ+1,min((i+1)2L−ℓ, k)] ⊆
[k], and (following notation in Lemma 12) we associate it with

Wi,ℓ := U[i2L−ℓ+1,min((i+1)2L−ℓ,k)].

Moreover, we define mi,ℓ := dim(span(Wi,ℓ)), and for all h ∈ [mi,ℓ], we let

W
(h)
i,ℓ := U[i2L−ℓ+1,i2L−ℓ+h],

i.e. W(h)
i,ℓ is the first h columns of Wi,ℓ. We inductively claim that for all 0 ≤ ℓ ≤ L, W(h)

ℓ,i is a
(δℓ, γℓ)-approximate h-cPCA of Pi2L−ℓMPi2L−ℓ , for all 0 ≤ i < 2ℓ, and all h ∈ [mi,ℓ], where

δℓ :=
(
132k2

)L−ℓ
δ, γℓ := 2L−ℓγ.

The base case ℓ = L follows by assumption. Next, suppose the claim above holds for some 0 ≤ ℓ < L,
and all 0 ≤ i < 2ℓ. Consider some Wℓ−1,i, the composition of Wℓ,2i and Wℓ,2i+1. If Wℓ,2i+1 is
empty, then all W(h)

ℓ−1,i are (δℓ−1, γℓ−1)-h-cPCAs of Pi2L−ℓ+1MPi2L−ℓ+1 by the inductive assumption.

Otherwise, by induction, (28) holds with i ← i2L−ℓ+1 and m ← 2L−ℓ, for δ ← δℓ, γ ← γℓ.
So, we can apply Lemma 12 to obtain h ∈ [0, 2L−ℓ − 1] satisfying the head guarantee needed by
Lemma 11. We then use Lemma 11 with M ← Pi2L−ℓ+1MPi2L−ℓ+1 to analyze our composition.
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In particular, κk′(Pi2L−ℓ+1MPi2L−ℓ+1) ≤ 2 where k′ := min(2L−ℓ+1, k − i2L−ℓ+1), by Fact 1 and
κk(M) ≤ 2. Moreover, δℓ grows faster than γ2ℓ , so the remaining requirement in Lemma 11 is
satisfied by our choices of ∆,Γ. Finally, Lemma 11 proves that Wi,ℓ−1 is a (δℓ−1, γℓ−1)-mi,ℓ−1-cPCA
of Pi2L−ℓ+1MPi2L−ℓ+1 . It is straightforward to check the same argument we used also shows that
W

(h)
i,ℓ−1 is a (δℓ−1, γℓ−1)-h-cPCA of Pi2L−ℓ+1MPi2L−ℓ+1 for all h ∈ [mi,ℓ−1], since we can truncate the

composition early. This completes the induction, and the conclusion follows by taking ℓ← 0.

4.3.3 Putting it all together

In this section, we finally combine the results from the previous two sections, and provide a generic
analysis on the parameter degradation of BlackBoxPCA’s guarantees when using 1-cPCA oracles.

Theorem 2 (k-to-1-cPCA reduction). Let (∆,Γ) ∈ (0, 1) and M ∈ Sd×d
⪰0 satisfy ∆ · κk(M)2 ≤ Γ2,

and let O1PCA be a (δ, γ)-1-cPCA oracle (Definition 5), where δ := 1
kΘ(log k) ·∆, γ := 1

Θ(k3)
· Γ, for

appropriate constants. Then, Algorithm 1 returns U ∈ Rd×k, a (∆,Γ)-k-cPCA of M.

Proof. For convenience in this proof, let

∆ :=
∆

640k2
, ∆′ :=

∆

18k2
, δ :=

∆′

(132k2)⌈log2(k)⌉
, Γ :=

Γ

10k
, Γ′ :=

Γ

2k
, γ :=

Γ′

2⌈log2(k)⌉
.

Also, let G be the set of indices i ∈ [min(k, d − 1)] such that λi+1(M) < (1 − Γ)λi(M), and let
the elements of G be denoted {Kj}j∈[r−1]. Let K0 := 0 and Kr := k, and define kj := Kj −Kj−1

for all j ∈ [r]. Following the notation of O1PCA, we let Uj := {ui}i∈[Kj−1+1,Kj ] ∈ Rd×ki , and we
iteratively define P(0) := Id, P(j) := P(j−1) −UjU

⊤
j for all j ∈ [r − 1]. We claim inductively that

for all j ∈ [r], Uj is a (∆′,Γ′)-approximate kj-cPCA of P(j−1)MP(j−1). Because Γ ≤ 1
10k , we have

λKj (M)

λKj−1+1(M)
=

Kj−1∏
i=Kj−1+1

λi+1(M)

λi(M)
>
(
1− Γ

)k ≥ 2

3
.

It is also straightforward to check that ∆,Γ satisfy the requirements of Lemma 9. Therefore, the
inductive assumption and Lemma 10 show that κkj (P

(j−1)MP(j−1)) ≤ 2. By applying Lemma 13
and ∆′ ≤ 1

288 · (Γ
′)2, we hence have completed our inductive argument. Finally, applying Lemma 9

shows that U is a (∆,Γ)-k-cPCA, so it is clearly also a (∆,Γ)-cPCA as claimed.

5 Applications

In this section, we give applications of our main results, Theorems 1 and 2, to the design of k-PCA
algorithms for statistical problems. In Section 5.1, we begin by proving several preliminary results
which will be used throughout our applications. We provide our results on robust k-PCA under
various distributional assumptions, Theorems 3 and 4, in Section 5.2. Finally, in Section 5.3, we
develop a simple k-cPCA algorithm in a heavy-tailed online setting in Theorem 5.

5.1 Preliminaries

In this section, we establish some results about the clipping of sampled data points that will be
used to handle heavy tails in subsequent applications. We first define the standard notion of (p, Cp)-
hypercontractivity (see, for example, [MZ18] where it was used in a similar context).
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Definition 8 ((p, Cp)-hypercontractivity). Let p ≥ 4 be a positive even integer. A distribution D
over Rd is said to be (p, Cp)-hypercontractive if for all v ∈ Rd,

EX∼D [⟨X − E [X] , v⟩p]
1
p ≤ CpEX∼D

[
⟨X − E [X] , v⟩2

] 1
2
.

We observe that Definition 8 is compatible with assuming D is centered and symmetric, with no
loss in parameters. Namely, let {Xi}i∈[n] ∼ D with covariance E[(X − EX) (X − EX)⊤] = Σ. If D
is not symmetric or centered, we can consider the n

2 independent variables

Yi :=
X2i−1 −X2i√

2
, i ∈

[
1,
⌊n
2

⌋]
.

Indeed, if X and X ′ are independent with probability distribution D and Y := (X −X ′)/
√
2, then

EY = 0d,E
[
Y Y ⊤] = Σ, Y is symmetric about 0d, and

EX,X′∼D [⟨Y, v⟩p]
1
p =

1√
2
EX,X′∼D

[(
⟨X − EX, v⟩ −

〈
X ′ − EX ′, v

〉)p] 1p
≤ 1√

2
EX,X′∼D

[
2p−1

(
⟨X − EX, v⟩p +

〈
X ′ − EX ′, v

〉p)] 1p
=
√
2EX∼D [⟨X − EX, v⟩p]

1
p ≤ CpEX∼D

[
2⟨X − EX, v⟩2

] 1
2

= CpEX,X′∼D

[〈
X −X ′, v

〉2] 1
2
,

where the inequality follows from Fact 4. So, Y also has a (p, Cp)-hypercontractive distribution.
Therefore, in applications for hypercontractive D, we assume without loss that D is centered and
symmetric. We next define a clipping operation relevant to our heavy-tailed applications.

Definition 9 (Clipping). Let R ∈ R>0. The R-clipping function TR : Rd → Rd is defined as

TR(x) := min

(
1,

√
R

∥x∥2

)
v

for all x ∈ Rd. Given distribution D over Rd, the R-clipped distribution of D is defined as TR(D).

We will often use T for the R-clipping function if the clipping radius R is obvious from context. In
the next result, we analyze the bias due to the clipping function.

Lemma 14 (Bias of clipping). Let D be (p, Cp)-hypercontractive over Rd with covariance Σ.

1. For all u ∈ Rd, u⊤(Σ− Ex∼D[TR (x) TR (x)⊤])u ≤ Cp
p

(
u⊤Σu

)
(Tr(Σ)

R )
p
2
−1.

2. For x ∼ D, Pr(∥x∥2 ≥
√
R) ≤ (Cp(

Tr(Σ)
R )

1
2 )(p−2).
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Proof. For x ∼ D and any unit vector u ∈ Rd we have,

E
[
⟨u, x⟩2 − ⟨u, TR (x)⟩2

]
= E

[
⟨u, x⟩2

(
1− R

∥x∥22

)
1

(
∥x∥2 ≥

√
R
)]

≤ E [⟨u, x⟩p]
2
p E

[(
1

(
∥x∥2 ≥

√
R
)) p

p−2

] p−2
p

, using Holder’s inequality

≤ C2
pE
[
⟨u, x⟩2

]
E
[
1

(
∥x∥2 ≥

√
R
)] p−2

p
, using (p, Cp)-Hypercontractivity

≤ C2
pE
[
⟨u, x⟩2

]
Pr
(
∥x∥2 ≥

√
R
) p−2

p

≤ C2
pE
[
⟨u, x⟩2

](E [∥x∥p2]
R

p
2

) p−2
p

, using Markov’s inequality (29)

Denote r := p
2 for convenience of notation. Then,

E [∥x∥p2] = E
[(

x⊤x
)r]

= E

∑
i∈[d]

x2i

r
=

∑
j1,j2,...jr∈[d]

E
[
x2j1x

2
j2 . . . x

2
jr

]
≤

∑
j1,j2,...jr∈[d]

E
[
x2rj1
] 1
r E
[
x2rj2
] 1
r . . .E

[
x2rjr
] 1
r , using Holder’s inequality

=
∑

j1,j2,...jr∈[d]

E
[
⟨x, ej1⟩

2r
] 1

r
E
[
⟨x, ej2⟩

2r
] 1

r
. . .E

[
⟨x, ejr⟩

2r
] 1

r

≤ C2r
p

∑
j1,j2,...jr∈[d]

E
[
⟨x, ej1⟩

2
]
E
[
⟨x, ej2⟩

2
]
. . .E

[
⟨x, ejr⟩

2
]
, using (p, Cp)-hypercontractivity

= C2r
p

∑
j1,j2,...jr∈[d]

(
e⊤j1Σej1

)(
e⊤j2Σej2

)
. . .
(
e⊤jrΣejr

)

= C2r
p

∑
i∈[d]

e⊤i Σei

r

= Cp
pTr (Σ)

p
2 .

Substituting this into (29) we have proven the second claim, and

E
[
⟨u, x⟩2 − ⟨u, TR (x)⟩2

]
≤ C2

pE
[
⟨u, x⟩2

](Cp
pTr (Σ)

p
2

R
p
2

) p−2
p

= Cp
pE
[
⟨u, x⟩2

](Tr (Σ)

R

) p
2
−1

which completes our proof of the first claim as well.

As an immediate consequence of Lemma 14 we have the following corollary.

Corollary 2. In the setting of Lemma 14, for any ρ ∈ (0, 12) and R ≥ (
Cp

p

ρ )
2

p−2 Tr (Σ), we have

1. ∥Ex∼D[TR (x) TR (x)⊤]−Σ∥op ≤ ρ ∥Σ∥op.
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2. Prx∼D(∥x∥2 ≥
√
R) ≤ ( ρ

C2
p
)

p
p−2 .

3. For all v ∈ Rd, Ex∼D[⟨TR (x) , v⟩p]
1
p ≤ 2CpEx∼D[⟨TR (x) , v⟩2]

1
2 .

Proof. Items 1 and 2 follow directly from substituting the value of R in Lemma 14. We next prove
Item 3. For x ∼ D we upper bound the pth moment of one-dimensional projections:

E [⟨TR (x) , v⟩p] = E

[
⟨x, v⟩p

(
1

(
∥X∥2 ≤

√
R
)
+

( √
R

∥x∥2

)p

1

(
∥X∥2 ≥

√
R
))]

≤ 2E [⟨x, v⟩p]

≤ 2Cp
pE
[
⟨x, v⟩2

] p
2
, using (p, Cp)-hypercontractivity of X (30)

We now obtain lower bounds on the second moments of one-dimensional projections:

E
[
⟨x, v⟩2 − ⟨TR (x) , v⟩2

]
≤ Cp

p

(
u⊤Σu

)(Tr (Σ)

R

) p
2
−1

using Lemma 14,

≤ C2
pE
[
⟨X, v⟩2

](( ρ

C2
p

) p
p−2

) p−2
p

= ρE
[
⟨X, v⟩2

]
.

Substituting this into (30) completes our proof:

E [⟨TR (x) , v⟩p] ≤ 2Cp
p

E
[
⟨x, v⟩2

]
1− ρ


p
2

≤ (2Cp)
p E
[
⟨x, v⟩2

] p
2
.

5.2 Robust PCA

In this section, we develop algorithms for robust PCA. The robust PCA problem asks us to output
an approximate PCA of a covariance matrix from independent draws from the inducing distribution,
even after a fraction of draws are corrupted. We define our contamination model formally below.

Definition 10 (Strong contamination model). Given a corruption parameter ϵ ∈ (0, 12) and a
distribution P, an algorithm obtains samples from P with ϵ-contamination as follows.

1. The algorithm specifies the number n of samples it requires.

2. A set S of n i.i.d. samples from P is drawn but not yet shown to the algorithm.

3. An arbitrarily powerful adversary then inspects S, before deciding to replace any subset of ⌈ϵn⌉
samples with arbitrarily corrupted points (“outliers”) to obtain the contaminated set T , which
is then returned to the algorithm.

We say T is an ϵ-corrupted version of S and a set of ϵ-corrupted samples from P.

Robust estimation typically requires that the inliers satisfy structural properties (that hold with
high probability) that distinguishes them from harmful outliers. In the context of PCA, we use the
following stability condition from [JLT20, DKPP23] to design our algorithms.
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Definition 11 (Stability). For ϵ ∈ (0, 12) and γ ≥ ϵ, we say a distribution G on Rd is (ϵ, γ)-stable
with respect to Σ ∈ Sd×d

⪰0 if for all functions w : Rd → [0, 1] such that EX∼G[w(X)] ≥ 1 − ϵ, the

weighted second moment matrix ΣGw := EX∼G[w(X)XX⊤]
EX∼G[w(X)] satisfies (1− γ)Σ ⪯ ΣGw ⪯ (1 + γ)Σ.

In [JLT20, DKPP23], the distribution G in Definition 11 corresponds to the uniform distribution
over the remaining inliers, i.e. S ∩ T in Definition 10. In this notation, the uniform distribution on
the corrupted set T can be written as (1−ϵ)G+ϵB, where B corresponds to the uniform distribution
over the outliers T \ S. Under the stability condition stated in Definition 11, the following result
from [DKPP23] gives a generic 1-ePCA algorithm that runs in nearly-linear time.

Proposition 2 ([DKPP23, Theorem 3.1]). Let ϵ0, γ0 be sufficiently small absolute constants. Let T
be a set of n data points in Rd. For ϵ ∈ (0, ϵ0) and γ ∈ (0, γ0), suppose the uniform distribution on T
can be written as (1− ϵ)G+ ϵB, where G is (ϵ, γ)-stable with respect to Σ. There is an algorithm A1

taking T , ϵ, γ, and δ ∈ (0, 1) as inputs. A1 outputs a unit vector v ∈ Rd such that, with probability
≥ 1− δ, v is an O(γ) 1-ePCA of Σ, and v lies in the span of T , in time

O

(
nd

γ2
polylog

(
d

ϵδ

))
.

In the context of our reduction in Theorem 1, we will repeatedly invoke the above algorithm A
on deflated data, i.e. after projecting out all reported principal components so far. Conveniently,
stability is preserved under arbitrary deflations, as shown below.

Lemma 15. Let S ⊂ Rd be such that the uniform distribution over S is (ϵ, γ)-stable with respect to
Σ. For any P ∈ Rd×d, the uniform distribution over {Px}x∈S is (ϵ, γ)-stable with respect to PΣP.

Proof. For A,B ∈ Sd×d, A ⪯ B implies PAP ⪯ PBP for all P ∈ Rd×d, giving the claim.

Thus, Proposition 2 is compatible with our framework in Theorem 1 and can be used as a 1-ePCA
oracle for Σ. Combining this observation with Theorem 1, we obtain nearly-linear time algorithms
for robust k-ePCA. Importantly, the sample complexity of our robust k-ePCA algorithm does not
increase with k, as we can reuse the same samples in each call to Proposition 2 due to Lemma 15.

Corollary 3 (k-ePCA in nearly-linear time under stability). In the setting of Proposition 2, there
is an algorithm Ak taking T , ϵ, γ, δ ∈ (0, 1), and k ∈ [d] as inputs. Ak outputs orthonormal
U ∈ Rd×k, such that, with probability ≥ 1− δ, U is an O(γ)-k-ePCA of Σ, in time

O

(
ndk

γ2
polylog

(
d

ϵδ

))
.

Corollary 3 also leads to k-cPCA guarantees using Lemma 1 and Theorem 2 in some parameter
regimes, but we focus on ePCA for compatibility with Proposition 2. In Sections 5.2.1 and 5.2.2,
we apply Corollary 3 to two fundamental distribution families: sub-Gaussian distributions and
hypercontractive distributions. Our results follow via establishing appropriate stability conditions.

5.2.1 Sub-Gaussian distributions

In this section, we show that by leveraging known stability conditions for sub-Gaussian distributions,
we can directly apply Corollary 3 to design a robust k-PCA algorithm. We first give a definition of
the sub-Gaussian distribution family under consideration.
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Definition 12 (Sub-Gaussian distribution). We say a distribution D on Rd is r-sub-Gaussian for
a parameter r ≥ 1 if it has mean 0d and covariance Σ,10 and for all unit vectors v ∈ Rd and t ∈ R,

EX∼D

[
exp(tv⊤X)

]
≤ exp

(
t2r

2
v⊤Σv

)
.

Next, we present a result from [JLT20] bounding the sample complexity required for the uniform
distribution over a set of corrupted samples to be stable with respect to a covariance matrix.

Lemma 16 (Corollary 4, [JLT20]). Let D be an O(1)-sub-Gaussian distribution on Rd with covari-
ance Σ. Let ϵ ∈ (0, ϵ0) for an absolute constant ϵ0, δ ∈ (0, 1), and for an absolute constant C, let
γ := Cϵ log(1ϵ ). If S is a set of n i.i.d. samples from D where, for an appropriate constant,

n = Θ

(
d+ log(1δ )

γ2

)
,

then with probability ≥ 1− δ, the uniform distribution over S is (ϵ, γ) stable with respect to Σ.

Applying Proposition 2 with Lemma 16 in hand, [DKPP23, Theorem 1.2] obtained a nearly-linear
time algorithm for robust 1-ePCA.11 By simply replacing the use of Proposition 2 with Corollary 3,
we further obtain the following robust k-PCA result for sub-Gaussian distributions.

Theorem 3 (Robust sub-Gaussian k-ePCA). Let D be an O(1)-sub-Gaussian distribution on Rd

with covariance Σ. Let ϵ ∈ (0, ϵ0) for an absolute constant ϵ0, and δ ∈ (0, 1). Let T be an ϵ-
corrupted set of samples from D with |T | = Θ( d+log(1/δ)

ϵ2 log2(1/ϵ)
) for an appropriate constant. Algorithm

Ak (Corollary 3) run on inputs T , ϵ, γ = Θ(ϵ log(1ϵ )), δ, and k ∈ [d] outputs orthonormal U ∈ Rd×k

such that, with probability ≥ 1− δ, U is an O(ϵ log(1ϵ ))-k-ePCA of Σ, in time O(ndk
ϵ2

polylog( d
ϵδ )).

As discussed previously, the sample complexity of Theorem 3 notably does not grow as k increases.

5.2.2 Hypercontractive distributions

In this section, we relax the sub-Gaussianity assumption used in [JLT20, DKPP23] and instead
assume that the data is drawn from a (p, Cp)-hypercontractive distribution (Definition 8). Our
main result in this section is the following algorithm for k-ePCA in the hypercontractive setting.

Theorem 4 (Robust hypercontractive k-ePCA). For an even integer p ≥ 4, let D be (p, Cp)-
hypercontractive on Rd with mean 0d and covariance Σ. Let ϵ ∈ (0, ϵ0), δ ∈ (0, 1), and γ =

Θ(C2
pϵ

1− 2
p ) such that γ ∈ (0, γ0) for absolute constants ϵ0, γ0. Let T be an ϵ-corrupted set of samples

from D with |T | = Θ(β(d log d+log(1/δ)
γ2 )) for an appropriate constant, where β := C6

pϵ
− 2

p . Algorithm
Ak (Corollary 3) run on inputs T , ϵ, γ, δ, and k ∈ [d] outputs orthonormal U ∈ Rd×k such that,
with probability ≥ 1− δ, U is an O(γ)-k-ePCA of Σ, in time O(ndk

γ2 polylog( d
ϵδ )).

We mention that the approximation factor of γ = Θ(C2
pϵ

1− 2
p ) achieved by Theorem 4 is optimal

under ϵ-corruption for a (p, Cp)-hypercontractive distribution (cf. Lemma 18). Further, the sample
complexity of Theorem 4 differs from the information-theoretic sample complexity by a factor of

10The same symmetrization strategy as discussed in Section 5.1 shows that the assumption that D is mean-zero is
without loss of generality. We defer additional discussion to [JLT20].

11Proposition 2 is applicable because if the uniform distribution over a set S is (ϵ, γ)-stable, then the uniform
distribution over S′ ⊂ S with |S′| ≥ (1− ϵ)|S| is also (ϵ, O(γ))-stable; we apply this with S′ = S ∩ T .
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β = C6
pϵ

− 2
p and a log d term [LKO22, Proposition 6.7]. In particular, for constant Cp, ϵ, the sample

complexity of Theorem 4 nearly-matches that of Gaussian data even for heavy-tailed distributions,
while being robust to a constant fraction of corruption and running in nearly-linear time.

At the end of the section, we give a detailed comparison between Theorem 4 and the closest related
work of [KSKO20], which handled distributions with bounded fourth moments under an assumption
related to (but not directly comparable to) our assumption of (4, C4)-hypercontractivity.

Theorem 4 follows by establishing that a large enough set of samples from hypercontractive distri-
butions satisfy the conditions of Corollary 3. To establish stability, one could hope that the samples
drawn from D are stable as is (without removing any ϵ-fraction). A common approach towards this
goal would be using matrix Chernoff bounds, which would lead to a multiplicative dependence on
log(1δ ), where δ is the failure probability. Instead, we shall use the following result from [DKP20],
phrased in our notation, that does a more white-box analysis and uses the flexibility permitted by
removing O(ϵ)-fraction of samples to establish a sharper dependence on log(1δ ).

Lemma 17 (Lemma 4.1 and 4.2, [DKP20]). Let D′ be a distribution on Rd satisfying uncentered hy-
percontractivity, i.e. for an even integer p ≥ 4, for all v ∈ Rd, (Ex∼D′ [⟨x, v⟩p])

1
p ≤ σp(Ex∼D′ [⟨x, v⟩2])

1
2 .

Let ϵ ∈ (0, 12) and δ ∈ (0, 1). Suppose D′ is supported on a ball of radius
√
R ≥ 1, and Σ′ :=

Ex∼D′ [xx⊤] satisfies ∥Σ′∥op = O(1). Let S be a set of n i.i.d. samples from D′, for

n = Θ

R log d

α2
+

σ4
p log(

1
δ )

α2
+

σ2
p log(

1
δ )

αϵ
2
p

+

√
d log(1δ )

ϵ2α
+

log(1δ )

ϵ

 ,

for an appropriate constant, and α ∈ (0, 1). Then with probability ≥ 1− δ, the uniform distribution
on S can be written as (1− ϵ)P + ϵB, where P is (ϵ, γ)-stable with respect to Id, for

γ = O
(
∥Σ′ − Id∥op + σ2

pϵ
1− 2

p + α
)
.

We are now ready to give our sample complexity bound for hypercontractive stability.

Proposition 3. For an even integer p ≥ 4, let D be a (p, Cp)-hypercontractive on Rd with mean 0d

and covariance Σ. Let ϵ ∈ (0, ϵ0) for an absolute constant ϵ0, δ ∈ (0, 1), and γ = Θ(σ2
pϵ

1− 2
p ) be such

that γ ≤ 1
2 . If S is a set of n i.i.d. samples from D where, for an appropriate constant,

n = Θ

(
C2
pϵ

− 2
p · d log(d)

γ2
+max(C4

p , C
8
pϵ

1− 2
p ) ·

log(1δ )

γ2

)
,

then with probability ≥ 1− δ, the uniform distribution on S can be written as (1− ϵ)P + ϵB for two
distributions P and B such that P is (ϵ, γ)-stable with respect to Σ.

Proof. We first observe that if the uniform distribution over a set S′ satisfies stability with respect
to Id, then S := {Σ

1
2x}x∈S′ satisfies stability with respect to Σ. We let the samples in S′ be drawn

as Σ− 1
2x for x ∼ D, and thus follow an isotropic distribution. Moreover, it is straightforward to

see that this transformed distribution also satisfies (p, Cp)-hypercontractivity. Thus, we assume D
is isotropic in the rest of the proof and establish stability with respect to Id.

Next, we consider a clipped variant of D. Let D′ be the distribution of TR(x) for R = (
Cp

p

ρ )
2

p−2d

and x ∼ D, so D′ is supported on a ball of radius
√
R ≥ 1. Let Σ′ := Ex∼D′ [xx⊤]. We shall choose
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ρ = C ′C2
pϵ

1− 2
p ≤ γ

2 for a large enough constant C ′, such that ρ ≤ 1 by an upper bound on γ. By
Corollary 2, ∥Σ′ −Σ∥op = ∥Σ′ − Id∥op ≤ ρ and the probability that a sample from D is clipped is
≤ ϵ

100 . In particular, by a Chernoff bound, this second conclusion shows that with probability at
least 1−exp(−Ω(nϵ)) ≥ 1− δ

2 , less than an ϵ
2 fraction of samples will be clipped. We let the clipped

samples form the distribution B. In the sequel, we prove stability of the unclipped samples.

Recall that D′ has second moment matrix Σ′ with ∥Σ′∥op ≤ 2, and D′ satisfies uncentered hyper-
contractivity with σp = 2Cp by Corollary 2. We hence may apply Lemma 17 with ϵ ← ϵ

2 , δ ←
δ
2 ,

and α← ρ = Θ(C2
pϵ

1− 2
p ), which again lies in (0, 1). Since ρ ≥ ∥Σ′ − Id∥op, with probability 1− δ

2 ,

P is ( ϵ2 , γ)-stable for γ = O(C2
pϵ

1− 2
p ). Finally, we bound the sample complexity:

n = O

R log d

α2
+

σ4
p log(

1
δ )

α2
+

σ2
p log(

1
δ )

αϵ
2
p

+

√
d log(1δ )

ϵ2α
+

log(1δ )

ϵ


= O

(Cp
p

ρ

) 2
p−2 d log d

γ2
+

C4
p log(

1
δ )

γ2
+

log(1δ )

γϵ
2
p

+

√
d

γ2
log(1δ )

(ϵ2/γ)
+

log(1δ )

ϵ

 (using the value of R)

= O

C2
pϵ

− 2
p
d log d

γ2
+

C4
p log(

1
δ )

γ2
+

log(1δ )

C2
pϵ

+

√
d

γ2
log(1δ )

(ϵ2/γ)
+

log(1δ )

ϵ

 (using the value of γ, ρ)

= O

C2
pϵ

− 2
p
d log d

γ2
+

C4
p log(

1
δ )

min(γ2, C2
pϵ)

+ C2
pϵ

− 2
p
d log d

γ2
+

log(1δ )

C2
pϵ

− 2
p (ϵ2/γ)

 (using
√
ab ≤ 2a+ 2b)

= O

C2
pϵ

− 2
p
d log d

γ2
+

C4
p log(

1
δ )

min(γ2, C2
pϵ, C

2
pϵ

− 2
p (ϵ2/γ))


= O

(
C2
pϵ

− 2
p
d log d

γ2
+ C4

p

log(1δ )

min(γ2, ϵ)

)
(using the value of γ)

= O

(
C2
pϵ

− 2
p
d log d

γ2
+max(C4

p , C
8
pϵ

1− 2
p )

log(1δ )

γ2

)
. (using the value of γ)

By a union bound, with probability 1−δ, the uniform distribution on S can be written as (1−ϵ)P +
ϵB, where P is ( ϵ2 , γ)-stable. Finally, ( ϵ2 , γ)-stability of P implies (ϵ, O(γ)) stability of P .12

We now provide the proof of Theorem 4, by leveraging Proposition 3 and Corollary 3.

Proof of Theorem 4. Let S be the set of i.i.d. samples from D. Proposition 3 implies that, with
probability ≥ 1 − δ, the uniform distribution on S can be written as (1 − ϵ)P + ϵB, where P
is (ϵ, γ) stable with respect to Σ. Since ϵ is small enough, the (ϵ, γ)-stability of P implies P
is also (10ϵ, O(γ))-stable. Let T be the corrupted set of samples and observe that the uniform
distribution on T is ≤ 2ϵ-far from P in total variation. Thus, the uniform distribution on T
can be written as (1 − 2ϵ)P ′ + 2ϵB′, where P ′ conditions P on a probability (1 − O(ϵ)) event and
consequently inherits (8ϵ, γ)-stability with respect to Σ from P ; see, for example, [DKPP22, Lemma
2.12]. Reparameterizing ϵ to 2ϵ, we see that Corollary 3 is applicable.

12To see this, note that stability implies every second moment matrix of a ϵ-weighted subset of the data is bounded
in the Loewner order by O(γ)Σ, a bound which can be applied twice.
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We now show that the error guarantee of Theorem 4 is optimal (up to constants) for small ϵ and
k = 1.

Lemma 18 (Lower bound for robust hypercontractive ePCA). Let c > 0 be a small enough constant
and let d ∈ N be sufficiently large. Let D be a (p, Cp) hypercontractive distribution on Rd for an

even integer p ≥ 4 and Cp > 2, with mean 0d and covariance Σ. Let ϵ ∈ (0, ϵ0) for ϵ0 = (
C2

p

8 )
p
2 and

let γ = C2
pϵ

1− 2
p . There is no algorithm that, with probability ≥ 1

2 , outputs a unit vector u that is a
cγ-1-ePCA of Σ, given infinite samples and runtime.

Proof. We exhibit d+1 mean-0d, (p, Cp)-hypercontractive distributions P = {Di}0≤i≤d. Moreover,
all of the distributions {Di}i∈[d] will have total variation distance ≤ ϵ from D0. Finally, letting
{Σi}0≤i≤d be the corresponding covariances, our construction will have Σ0 = Id, and Σi = Id+seie

⊤
i

for s := ϵ(0.25C2
pϵ

− 2
p − 1) = Θ(C2

pϵ
1− 2

p ) = Θ(γ), where we used ϵ ≤ ϵ0.

We now give our construction. Let P be the uniform distribution on {−1, 1} and let P ′ be the
distribution (1 − ϵ) + ϵB, where B is the uniform distribution on {±0.5Cpϵ

− 1
p }. Observe that

both P and P ′ are mean-zero and (p, Cp)-hypercontractive; indeed, for X ∼ P ′, E[X2] = 1 − ϵ +

0.25ϵC2
pϵ

− 2
p = 1 + s, while

E[Xp] = (1− ϵ) + ϵ2−pCp
pϵ

−1 ≤ Cp
p (E[X

2])
p
2 ,

where we use that Cp ≥ 2 and E[X2] ≥ 1.

Define D0 to be the distribution on Rd such that coordinate is sampled independently from P .
For each i ∈ [d], define Di to be the distribution on Rd such that all coordinates are sampled
independently, the ith coordinate is ∼ P ′, and all other coordinates are ∼ P . Since all Di are
product distributions, the arguments of [KS17, Lemma 5.9] imply that all Di are also (p, Cp)-
hypercontractive, and have the claimed covariances. Finally, the coupling formulation of total
variation distance implies all {Di}i∈[d] are at most ϵ far from D0 in the total variation distance.

Thus, under these conditions, it is possible that the distribution of inliers is D = Di∗ for some
unknown i∗ ∈ [d], but the adversary corrupts the distribution to be D0. If the algorithm outputs a
unit vector û in this case, then it is an ρ-1-ePCA for Di∗ for ρ = 1− 1+su2

i∗
1+s =

s(1−u2
i∗ )

1+s . Importantly,
the error ρ ≥ min(1,s)

4 if u2i∗ ≤ 1/4. Since D0 contains no information about the unknown index i∗,
we conclude that no algorithm can output a unit vector u ∈ Rd with u2i∗ ≥ 1

2 , for large enough d,
and thus the ePCA approximation error is at least cγ for a small constant c.

Comparison to [KSKO20]. As mentioned previously, the most comparable result to Theorem 4
in the literature is due to Proposition 2.6 of [KSKO20], which used a different set of distributional
assumptions than hypercontractivity. The assumptions used in Proposition 2.6 of [KSKO20] are:13

1

k
Ex∼D

[〈
UU⊤, xx⊤ −Σ

〉2]
≤ ν(k)2 for all orthonormal U ∈ Rd×k,

and
∥∥∥xx⊤ −Σ

∥∥∥
op
≤ B with probability 1.

(31)

13Proposition 2.6 of [KSKO20] assumes a stronger version of the first line in (31) where the inner product is taken
against arbitrary rank-k matrices with Frobenius norm 1. However, inspection of their proof shows they only use the
weaker (31), i.e. bounded inner products against matrices of the form 1√

k
UU⊤, which they term “semi-orthogonal.”
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For comparison, if D is a (4, C4)-hypercontractive distribution,

Ex∼D

[〈
vv⊤, xx⊤

〉2]
≤ C2

4

〈
vv⊤,Σ

〉2
for all v ∈ Rd. (32)

The assumption (31) differs in that applies to rank-k matrices (rather than rank-1), it enforces a
uniform bound ν(k) (rather than a bound sensitive to v, which is tighter if the spectrum of Σ is
uneven), and enforces an almost sure bound, which does not follow in general for hypercontractive
distributions. We now bound the parameters in (31) under the assumption (32) for fair comparison.

Let U ∈ Rd×k with columns {ui}i∈[k] be orthonormal, and suppose that (32) holds. Then,

Ex∼D

[〈
UU⊤, xx⊤ −Σ

〉2]
= Ex∼D

[〈
UU⊤, xx⊤

〉2
− 2

〈
UU⊤, xx⊤

〉〈
UU⊤,Σ

〉
+
〈
UU⊤,Σ

〉2]

= Ex∼D

〈∑
i∈[k]

uiu
⊤
i , xx

⊤

〉2
− 〈UU⊤,Σ

〉2
=
∑
i∈[k]

∑
j∈[k]

Ex∼D

[
⟨ui, xi⟩2 ⟨uj , xj⟩2

]
−
〈
UU⊤,Σ

〉2
≤
∑
i∈[k]

∑
j∈[k]

√
Ex∼D

[
⟨ui, xi⟩4

]
Ex∼D

[
⟨uj , xj⟩4

]
−
〈
UU⊤,Σ

〉2

=

∑
i∈[k]

√
Ex∼D

[
⟨ui, xi⟩4

]2

−
〈
UU⊤,Σ

〉2

≤

∑
i∈[k]

C4

〈
uiu

⊤
i ,Σ

〉2

−
〈
UU⊤,Σ

〉2
=
(
C2
4 − 1

) 〈
UU⊤,Σ

〉2
≤
(
C2
4 − 1

)
∥Σ∥2k .

The first inequality used the Cauchy-Schwarz inequality and the second inequality used (32). It
follows that the value of ν(k) that can be derived in (31) satisfies

ν(k) ≤
√

C2
4 − 1 ·

∥Σ∥k√
k

.

This bound is tight up to constant factors, as witnessed by the hypercontractive mixture distribu-
tion 1

2N (0d,
1
2Id) +

1
2N (0d,

3
2Id), whose covariance matrix is Σ = Id and whose hypercontractive

parameter in (32) is a constant bounded away from 1, since the fourth moment of a standard Gaus-
sian is 3. In this case, we claim that for any orthonormal matrix U ∈ Rd×k,

〈
UU⊤, xx⊤

〉
deviates

from its expectation by Ω(k) with constant probability, which is enough to lower bound ν(k) by
Ω(
√
k) by using the definition (31), since the left-hand side is 1

k times the variance of
〈
UU⊤, xx⊤

〉
.

The expectation of
〈
UU⊤, xx⊤

〉
is simply k. On the other hand, if x ∼ N (0d,

3
2Id) (which happens

with probability 1
2), the Hanson-Wright inequality implies that with high constant probability, we

have |x⊤UU⊤x − 3
2k| ≤

1
3k, so x⊤UU⊤x ≥ 7

6k. Therefore, the variance of
〈
UU⊤, xx⊤

〉
is indeed

Ω(k2), so ν(k) = Ω(
√
k), matching the above inequality up to a constant factor.

Next, by Proposition 2.6 of [KSKO20], the output Ũ of their proposed algorithm satisfies

∥Σ∥k −
〈
ŨŨ⊤,Σ

〉
= O

(
ϵ ∥Σ∥k + ν(k)

√
kϵ
)
= O (γ) ∥Σ∥k ,
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where γ =
√
ϵ, which is implied by the upper bound in Theorem 4 up to constant factors for

any C4 = Θ(1). Next, using the clipping argument in Lemma 14 for B := C2
4 · TrΣ

ϵ , under (32),
Pr(
∥∥xx⊤∥∥op ≥ B) ≤ ϵ.14 Therefore, the sample complexity used by Proposition 2.6 of [KSKO20] is

n = O

((
dk2 +

B

ν (k)

√
kϵ

)
log
(
d
δϵ

)
ϵ

)

= O

((
dk2

ϵ
+

Tr (Σ)

∥Σ∥k
k

ϵ1.5

)
log

(
d

δϵ

))
,

for C4 = Θ(1), which is worse than the sample complexity required in Theorem 4 in the dependence
on k. For example, in the reasonably well-conditioned regime where Tr(Σ) = Θ( dk · ∥Σ∥k), the
respective sample complexities of [KSKO20] and our algorithm for the same estimation rate are

O

((
dk2

ϵ
+

d

ϵ1.5

)
· log

(
d

δϵ

))
, O

(
d log d+ log 1

δ

ϵ1.5

)
.

5.3 Online heavy-tailed PCA

In this section, we provide a k-cPCA algorithm for heavy-tailed data without adversarial corruptions
in an online setting, as a proof-of-concept application of our cPCA reduction. More precisely, we let
X1, X2, . . . Xn ∼ D be i.i.d. draws from a (p, Cp)-hypercontractive distribution, D, with covariance
matrix Σ. Our goal is to perform an approximate k-cPCA of Σ, in the setting where the samples
arrive online, i.e. we are limited to using O(kd) space, where k ≪ d but n is potentially ≫ d.

We first establish a helper result, Lemma 19, which shows that an approximate k-cPCA of Σ ∈ Sd×d
⪰0

is also an approximate k-cPCA of Σ̂ ∈ Sd×d
⪰0 provided Σ and Σ̂ are sufficiently close in operator

norm. Our result follows from standard eigenvalue perturbation bounds from the literature.

Lemma 19 (cPCA perturbation). Let Σ, Σ̂ ∈ Sd×d
⪰0 satisfy ∥Σ − Σ̂∥op ≤ ρ. Let U ∈ Rd×k be a

(δ, γ)-k-cPCA of Σ̂ for max {δ, γ} ≤ 1
10 . Then for ρ < γλk(Σ)

2 , the following hold.

1. U is a (∆,Γ)-k-cPCA of Σ with ∆ := 8k( ρ
γλk(Σ))

2 + 2δ, Γ := 2γ.

2. κk(Σ̂) ≤ 2κk(Σ).

Proof. Let Ŝ := V̂≤(1−γ)λk(Σ̂)(Σ̂) denote the eigenspace of Σ̂ with eigenvalues ≤ (1− γ)λk(Σ̂) and
let L̂ denote its complement subspace. Similarly, define S := V≤(1−Γ)λk(Σ)(Σ) and let L denote its

14This is the threshold at which point the clipped samples can be treated as outliers.
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complement subspace. By definition of U, we have ∥Ŝ⊤U∥2F = Tr(U⊤ŜŜ⊤U) ≤ δ. Hence,

∥S⊤U∥2F = Tr
(
U⊤SS⊤U

)
= Tr

(
U⊤

(
L̂L̂⊤ + ŜŜ⊤

)
SS⊤

(
L̂L̂⊤ + ŜŜ⊤

)
U
)

= Tr
((

U⊤L̂L̂⊤S+U⊤ŜŜ⊤S
)(

S⊤L̂L̂⊤U+ S⊤ŜŜ⊤U
))

≤ 2Tr
(
U⊤L̂L̂⊤SS⊤L̂L̂⊤U

)
+ 2Tr

(
U⊤ŜŜ⊤SS⊤ŜŜ⊤U

)
, using Fact 3

= 2Tr
(
L̂⊤SS⊤L̂L̂⊤UU⊤L̂

)
+ 2Tr

(
SS⊤ŜŜ⊤UU⊤ŜŜ⊤

)
≤ 2

∥∥∥L̂⊤SS⊤L̂
∥∥∥

op
Tr
(
L̂⊤UU⊤L̂

)
+ 2

∥∥∥SS⊤
∥∥∥

op
Tr
(
Ŝ⊤ŜŜ⊤UU⊤Ŝ

)
≤ 2

∥∥∥S⊤L̂
∥∥∥2

op
Tr
(
L̂L̂⊤UU⊤

)
+ 2

∥∥∥SS⊤
∥∥∥

op
Tr
(
Ŝ⊤UU⊤Ŝ

)
≤ 2

∥∥∥S⊤L̂
∥∥∥2

op

∥∥∥L̂L̂⊤
∥∥∥

op
Tr
(
UU⊤

)
+ 2

∥∥∥SS⊤
∥∥∥

op

∥∥∥Ŝ⊤U
∥∥∥2

F

≤ 2k
∥∥∥S⊤L̂

∥∥∥2
op

+ 2δ, using the cPCA guarantee. (33)

Further, using Fact 2, ∣∣∣λk(Σ̂)− λk (Σ)
∣∣∣ ≤ ∥∥∥Σ− Σ̂

∥∥∥
op
≤ ρ. (34)

Therefore for Γ = 2γ,

(1− γ)λk(Σ̂)− (1− Γ)λk(Σ) = γλk (Σ) + (1− γ)
(
λk(Σ̂)− λk(Σ)

)
≥ γλk (Σ)− ρ (1− γ) , using (34)

≥ γλk (Σ)

2
, using ρ ≤ γλk (Σ)

2
.

Hence, by applying the gap-free Wedin theorem (Lemma B.3, [AZL16]), we have∥∥∥S⊤L̂
∥∥∥

op
≤ ρ

(1− γ)λk(Σ̂)− (1− Γ)λk(Σ)
≤ 2ρ

γλk(Σ)
. (35)

Combining (33) and (35) yields the first claim, as desired:

∥S⊤U∥2F ≤
8kρ2

γ2λk(Σ)2
+ 2δ.

Finally, for the claim regarding κk(Σ̂), we have by two applications of Fact 2:

κk(Σ̂) =
λ1(Σ̂)

λk(Σ̂)
≤

λ1 (Σ) +
∣∣∣λ1 (Σ)− λ1(Σ̂)

∣∣∣
λk (Σ)−

∣∣∣λk (Σ)− λk(Σ̂)
∣∣∣ ≤ λ1 (Σ) + γλk(Σ)

2

λk (Σ)− γλk(Σ)
2

≤
1 + γ

2

1− γ
2

κk (Σ) ≤ 2κk(Σ).

We specify a choice of ρ for convenient application of Lemma 19 in the following.

Corollary 4. In the setting of Lemma 19, if ρ :=
√

δ
8kγλk (Σ), U is a (3δ, 2γ)-k-cPCA of Σ.
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Corollaries 2 and 4 make our roadmap clear for heavy-tailed PCA. We first use Corollary 2 to devise
a clipping threshold for our data such that the clipped covariance matrix is close in operator norm to
the original distribution’s covariance matrix. We then perform approximate k-cPCA on the clipped
data, analyzed using our reduction in Theorem 2, and finally use Corollary 4 to convert the resulting
k-cPCA on the clipped covariance to a corresponding k-cPCA on the original covariance.

To demonstrate an instantiation of this strategy, we propose an online gap-free k-cPCA algorithm
for heavy-tailed data using Oja’s algorithm [Oja82] as the 1-cPCA oracle. More specifically, we use
the following guarantee on Oja’s algorithm from [AZL17].

Proposition 4 (Theorem 2, [AZL17])). There is an algorithm Oja with the following guarantee.
Let δ, γ ≥ 0 such that max (δ, γ) ≤ 1

10 and δ ≤ γ2

256 . Let d ∈ N, R > 0, and β ∈ (0, 1). Let
n = Ω( d

δγ2 log(
d
β )), and let {Xi}i∈[n] ∈ Rd be drawn i.i.d. from D, a distribution on Rd with mean

0d and covariance Σ, where ∥X∥22 ≤ R almost surely for X ∼ D. Then, with probability at least
1− β, Oja(δ, γ, {Xi}i∈[n], R) returns a (δ, γ)-cPCA of M, using O(d) space.

As a consequence of Proposition 4 and our roadmap described earlier, we conclude with the following.

Theorem 5. For an even integer p ≥ 4, let D be (p, Cp)-hypercontractive on Rd with mean 0d and
covariance Σ. Let (∆,Γ) ∈ (0, 1), assume ∆ · κk(Σ)2 ≤ Γ2, and set δ = 1

kΘ(log k) ·∆, γ = 1
Θ(k3)

· Γ,
for appropriate constants. Let

α :=

(
C2
pκk (Σ)

√
k

Γ
√
∆

) 1
p−2

, R := Θ(αTr (Σ)).

Let β ∈ (0, 1). If n = Θ(αdκk(Σ)2

δγ2 log( dβ )) for an appropriate constant, BlackBoxPCA (Algorithm 1)
using Oja as a (δ, γ)-1-cPCA oracle on n samples from TR(D) returns a (∆,Γ)-k-cPCA of Σ with
probability ≥ 1− β, in O(dk) space.

Proof. Let ρ := ( ∆
24k )

1/2 Γ
κk(Σ) . Using Corollary 4, for R ≥

(
Cp

p

ρ

) 2
p−2 Tr (Σ), the covariance of the

clipped distribution TR(D), Σ′, satisfies∥∥Σ′ −Σ
∥∥

op ≤ ρ ∥Σ∥op .

Next, we obtain a k-cPCA, U, of Σ′ by running Algorithm 1 on the clipped distribution. Using
Theorem 2 and the guarantees of Proposition 4, we have that U is a

(
∆
3 ,

Γ
2

)
-k-cPCA of Σ′. Finally,

we claim U is also a (∆,Γ)-k-cPCA of Σ by Corollary 4, which requires

∥∥Σ′ −Σ
∥∥

op ≤ ρ ∥Σ∥op ≤ 2

√
∆

24k
Γλk (Σ) . (36)

The proof follows by substituting the definition of ρ in (36). The space complexity is immediate
from the definition of Algorithm 1.

We do note that the prior work [AZL17], in addition to proving Proposition 4, gave a sophisticated
analysis of a simultaneous variant of Oja’s algorithm using a d×k block matrix, which applies to dis-
tributions with almost surely bounded supports (with rates parameterized by the covariance matrix
and the almost sure bound). While this [AZL17] result does not directly apply to hypercontractive
distributions, following the same roadmap as in Theorem 5, i.e. first truncating the distribution (via
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Corollary 2) and then bounding the perturbation (via Corollary 4), but using the k-Oja result of
[AZL17] in place of Proposition 4 and Theorem 2, obtains an improvement over Theorem 5. For
instance, [AZL17]’s k-Oja analysis applies in all parameter regimes because it is not bottlenecked
by the impossibility result in Proposition 1, and also incurs only a polynomial overhead in k.

We include Theorem 5 as a proof-of-concept of how to apply our reduction to give a more straight-
forward k-cPCA result by relying only on existence of the corresponding 1-cPCA algorithm, rather
than designing a custom analysis as was done in [AZL17]. We are optimistic about the utility of the
approach in Theorem 5 in providing tools for attacking future statistical PCA settings with various
constraints (e.g. privacy, dependent data, and so forth as mentioned in Section 1) via reductions,
as 1-cPCA algorithms are typically more straightforward to analyze than k-cPCA algorithms.
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