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Abstract

A striking property of transformers is their ability to perform in-context learning (ICL),
a machine learning framework in which the learner is presented with a novel context during
inference implicitly through some data, and tasked with making a prediction in that context. As
such, that learner must adapt to the context without additional training. We explore the role
of softmax attention in an ICL setting where each context encodes a regression task. We show
that an attention unit learns a window that it uses to implement a nearest-neighbors predictor
adapted to the landscape of the pretraining tasks. Specifically, we show that this window widens
with decreasing Lipschitzness and increasing label noise in the pretraining tasks. We also show
that on low-rank, linear problems, the attention unit learns to project onto the appropriate
subspace before inference. Further, we show that this adaptivity relies crucially on the softmax
activation and thus cannot be replicated by the linear activation often studied in prior theoretical
analyses.

1 Introduction

One of the most compelling behaviors of pretrained transformers is their ability to perform in-context
learning (ICL) (Brown et al., 2020): determining how to solve an unseen task simply by making a
forward pass on input context tokens. Arguably the most critical innovation enabling ICL is the
self-attention mechanism (Vaswani et al., 2017), which maps each token in an input sequence to
a new token using information from all other tokens. A key design choice in this self-attention
architecture is of the activation function that controls how much “attention" a token pays to other
tokens. Softmax-activated self-attention (i.e. softmax attention) is most commonly, and successfully,
used in practice (Brown et al., 2020; Chowdhery et al., 2023; Min et al., 2022; Rae et al., 2021;
Thoppilan et al., 2022).

A natural approach to explain ICL adopted by the literature is to equate it with classical machine
learning algorithms, primarily variants of gradient descent (GD). Several works have shown that
when the ICL tasks are linear regressions and the activation in the attention unit is identity (referred
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Figure 1: Top Row: The black line denotes the target function over a domain (horizontal axis). The
gray dots are noisy training data, and the white dot is a query. From left to right, the Lipschitzness
of the target function grows and the optimal softmax attention window (shaded blue) shrinks.
Middle Row: Attention weights — which determine the attention window — as a function of the
relative position from the query for softmax and linear attention. The softmax weights adjust to the
Lipschitzness. Bottom Row: ICL error versus number of context samples for the three settings.
Adapting to function Lipschitzness leads softmax attention to achieve small error. Please
see Remark 2.1 and Appendix J for further discussion and details.

to as linear attention), transformers that implement preconditioned GD during ICL are global optima
of the pretraining loss, which is the population loss on ICL tasks (Ahn et al., 2023; Mahankali
et al., 2023; Zhang et al., 2023a). In particular, the prediction of such transformers with [ linear
attention layers equals the prediction of a regressor trained with [ preconditioned GD steps on the
context examples. However, since these analyses are limited to linear attention and tasks, they do
not explain the widespread success of softmaz attention at ICL.

More recent work Cheng et al. (2023) extends these results by showing that for general regression
tasks and any attention activation that is a kernel, ICL equates to training a kernel regressor via
functional GD in the Reproducing Kernel Hilbert Space (RKHS) induced by the activation. However,
this functional GD yields generalization guarantees only when the activation kernel is identical
to a kernel that generates the labels, which does not apply to the softmax activation, as it is not
a kernel. Further, like the aforementioned studies of the linear setting (Ahn et al., 2023; Zhang
et al., 2023a; Mahankali et al., 2023), this analysis only shows that pretraining leads to learning
the covariate distribution, while the activation implicitly encodes the label distribution needed for
accurate predictions. Thus, this line of work has not explained the very fundamental question of
what softmaz attention learns during pretraining that enables it to perform ICL on a wide variety of
downstream tasks. Motivated by this gap in the literature, we ask the following question.

How does softmazx attention learn to perform ICL?



To answer this question, we study general settings in which pretraining and evaluation ICL tasks are
regressions that share only Lipschitzness and label noise variance. Specifically, the rate at which
their ground-truth labels change along particular directions in the input space, and the variance in
the label noise, is similar across tasks. In such settings, we observe that softmax attention acts as
a nearest neighbors regressor with an attention window — i.e. neighborhood of points around the
query that strongly influence, or “attend to”, the prediction — that adapts to the pretraining tasks.
Specifically, our main result is as follows:

Main Claim: Softmax attention performs ICL by calibrating its attention window to
the Lipschitzness and label noise variance of the pretraining tasks.

Outline. We substantiate the above claim via two streams of analysis. To our knowledge, these are
the first results showing that softmax attention pretrained on ICL tasks recovers shared structure
among the tasks that facilitates ICL on downstream tasks.

(1) Attention window scale adapts to Lipschitzness and noise variance — Section 3. We
prove that the pretraining-optimal softmax attention estimator scales its attention window inversely
with the task Lipschitzness and jointly with the noise level to optimally trade-off bias and variance
in its prediction (Theorem 3.4). This requires tight upper and lower bounds on the pretraining ICL
loss. While the upper bounds (Lemma C.8) hold for all L-Lipschitz tasks, the lower bounds (Lemma
C.9) are more challenging and require considering specific classes of tasks. We consider two classes of
generalized linear models (GLMs), and obtain lower bounds via novel concentrations for particular
functionals on the distribution of the attention weights for tokens distributed on the hypersphere
(Corollary G.5).

(2) Attention window directions adapt to direction-wise Lipschitzness — Section 4. We
prove that when the target function class consists of linear functions that share a common low-
dimensional structure, the optimal softmax attention weight matrix from pretraining projects the
data onto this subspace (Theorem 4.4). In other words, softmax attention learns to zero-out the
zero-Lipschitzness directions in the ambient data space, and thereby reduces the effective dimension
of ICL. We prove this via a careful symmetry-based argument to characterize a particular gradient
of the ICL loss as positive (Lemmas H.3 and H.4).

Tightness of results. Our results highlight the importance of shared Lipschitzness across training
and test, as well as the critical role of the softmax activation, to ICL. We show that softmax
attention pretrained on the setting from Section 3 in-context learns any downstream task with
similar Lipschitzness to the pretraining tasks, while changing only the Lipschitzness of the evaluation
tasks degrades performance (Theorem 3.5) — implying learning Lipschitzness is both sufficient and
necessary for generalization. Further, to emphasize the necessity of the softmazx, we show that
the minimum ICL loss achievable by linear attention exceeds that achieved by pretrained softmax
attention (Theorem 3.6). We verify all of these results with empirical simulations (Section 3.1 and
Appendix J).

Notations. We use (upper-, lower-)case boldface for (matrices, vectors), respectively. We denote the
(identity, zero) matrix in R¥*? as (I, 04xq), respectively, the set of column-orthonormal matrices in
R¥** as OPF and the (column space, 2-norm) of a matrix B as (col(B), ||B||), respectively. We
indicate the unit hypersphere in R? by S%~! and the uniform distribution over S¥~! as ?. We use
asymptotic notation (O, Q) to hide constants that depend only on the dimension d.



1.1 Additional Related Work

Numerous recent works have constructed transformers that can implement GD and other machine
learning algorithms during ICL (von Oswald et al., 2023a; Akyiirek et al., 2022; Bai et al., 2023; Fu
et al., 2023a; Giannou et al., 2023), but it is unclear whether pretraining leads to such transformers. Li
et al. (2023b) and Bai et al. (2023) provide generalization bounds for ICL via tools from algorithmic
stability and uniform concentration, respectively. Wu et al. (2023) investigate the pretraining
statistical complexity of learning a Bayes-optimal predictor for ICL on linear tasks with linear
attention. Xie et al. (2021); Wang et al. (2023); Zhang et al. (2023b) study the role of the pretraining
data distribution, rather than the learning model, in facilitating ICL. Huang et al. (2023) studies
the dynamics of a softmax attention unit trained with GD on ICL tasks, but this analysis considers
only linear tasks and orthogonal inputs. The connection between ICL with softmax attention and
non-parametric regression has been noticed by other works that analyze the ICL performance of a
softmax-like kernel regressor (Han et al., 2023) and aim to improve upon softmax attention (Chen
et al., 2023; Tsai et al., 2019; Nguyen et al., 2022; Han et al., 2022; Deng et al., 2023a) rather than
explain what it learns during pretraining. Please see Appendix A for further discussion of the large
body of related works studying the theory of transformers, ICL and kernel regression.

2 Preliminaries

In-Context Learning (ICL) regression tasks. We study ICL in the regression setting popular-

ized by Garg et al. (2022), wherein each task is a regression problem in R%. The context for task
t consists of a set of n feature vectors paired with noisy labels {acgt), f(t)(xl(-t)) + egt)}?zl, where

f® . RY — R generates the ground-truth labels for task ¢ and egt) is label noise. Given this
)

context, the model solves the task if it accurately predicts the label of a query x,’ ;. During

pretraining, the model observes many such tasks. Then, it is evaluated on a new task with context
{:I:i,f(*)(acl(*)) + eg*) » . and query :L'El*ll We emphasize that the model is trained only on the
pretraining tasks, not the evaluation context. Unlike traditional supervised learning, which would
involve training on the context {z;, f*) (mg*)) + EE*) ", in order to predict f*) (:1:7(;)_1), ICL happens
entirely in a forward pass, so there is no training using labels from f*). Our inquiry focuses on how
ICL is facilitated by the softmax activation in the self-attention unit, which we introduce next.

The Softmax Attention Unit. We consider a single softmax attention head

Hsa(+;0) : RUFDx(HD) o RA+HDX(+1) parameterized by 6 == (W, Wg, Wy/), where

Wi, Wg, Wy € REFDX@HD are known as key, query, and value weight matrices, respectively.
Intuitively, for a sequence of tokens Z = [z1,...,2p11] € 2(d+D)x(n+1) the attention layer creates
a “hash map" where the key-value pairs come from key and value embeddings of the input tokens,
{Wg z; : Wy z;}. Each token z; is interpreted as a query Wq z;, and during a pass through
the attention layer, this query is matched with the keys {Wg z;}; to return an average over the
associated values {Wy z;}; with a weight determined by the quality of the match (proportional to

eWikz) (Wo z)). Specifically, Hg(Z;0) = [hsa(z1,Z:0),--- ,hss(2Zni1, Z; 0)], where
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hsa(zi, Z;0) =

With slight abuse of notation, we denote hga(z;) = hsa(zj,Z;0) when it is not ambiguous. To
study how this architecture enables ICL, we follow Garg et al. (2022) to formalize ICL as a regression
problem. Below we define the tokenization, pretraining objective and evaluation task.

Tokenization for regression. The learning model encounters token sequences of the form

7 — T T2 In Tntl| o Rld+D)x(nt1)
C o f®) e flea)tea ... f(zn)ten O ’

where the ground-truth labelling function f maps from R? to R and belongs to some class F, each
€; is mean-zero noise, and the i-th input feature vector x; € R? is jointly embedded in the same
token with its noisy label f(x;) + ¢; € R. We denote this token z;. The ICL task is to accurately
predict this label given the n context tokens {(x;, f(x;)+€;)}!_;, where f may vary across sequences.
The prediction for the label of the (n+1)-th feature vector is the (d+1)-th element of hgs(zn+1)
(Cheng et al., 2023), denoted hga(zn+1)a+1. Ultimately, the goal is to learn weight matrices such
that hsa(zn41)a+1 is likely to approximate the (n + 1)-th label on a random sequence Z.

(1)

Pretraining protocol. We study what softmax attention learns when its weight matrices are
pretrained using sequences of the form of (1). These sequences are randomly generated as follows:

fND(]:)v L1y---5 Lptl 1'1\('1 D:;G;(n+1)a €1,...,€n 1’1\51 Dé@(n-i_l) (2)

where D(F) is a distribution over functions in F, Dy is a distribution over R?, and D, is a distribution
over R with mean zero and variance o2. The token embedding sequence Z is then constructed as in
(1). Given this generative model, the pretraining loss of the parameters 8 = (Wg, W, Wy) is the
expected squared difference between the prediction of softmax attention and the ground-truth label
of the (n+1)-th input feature vector in each sequence, namely

L(0) =Ef e, fer}; (hsA(Zns1)ar1 — f(®ns1))” (3)

We next reparameterize the attention weights to make (3) more interpretable. For the last column
of Wy, we show in Appendix B that any minimizer of (3) in the settings we consider must have the
first d elements of this last column equal to zero. We follow Ahn et al. (2023); Zhang et al. (2023a);
Cheng et al. (2023) by setting the first n columns of Wy to zero. As in Cheng et al. (2023), we fix
the (d+1,d+1)-th element of Wy, here as 1 for simplicity. In the same vein, we follow Ahn et al.
(2023); Cheng et al. (2023) by setting the (d+1)-th row and column of Wx and W equal to zero.
To summarize, the reparameterized weights are:

W Oaxd  Odx1 W Mg Ogx1 W Mg Ogx1
v [led 1 ] K |:01><d 0 @ 01x4d 0 ( )

where Mg, Mg € R4 Now, since our goal is to reveal properties of minimizers of the pretraining
loss, rather than study the dynamics of optimizing the loss, without loss of generality we can define
M = M};MQ and re-define the pretraining loss (3) as a function of M. Doing so yields:

2
P (fm) + ) et MEnn
LOM) = Ep o (e, (Z 1(2(" PED T ) | (1cn)




Interpretation of the pretraining loss. The loss (ICL) clarifies how softmax attention can be

interpreted as a nearest neighbors regressor. When m;r M, 1 is a proxy for the distance between
x; and @41 (which we formally show in Section 3 as happening under reasonable assumptions), the
softmax attention prediction is a convex combination of the noisy labels with weights determined
by the closeness of x; to x,+1, such that the labels of points closer to @,41 have larger weight.
Moreover, the decay in weights on points further from @, is exponential and controlled by M,
which effectively defines a neighborhood, or attention window, of points around @, whose labels
have non-trivial weight. More formally, we can think of the attention window defined for a query
Tn+1 as the set AttnWindow(x,1; M) := {x: ' Ma,, 1 = Q(1)}. As we have observed in Figure
1, our key insight is that pretrained M scales this attention window with the Lipschitzness
of the function class. Generally speaking, larger M entails averaging over a smaller window and
incurring less bias due to the function values of distant tokens in the estimate, while smaller M
entails averaging over a larger window, resulting in larger bias due to distant token labels, but a
smaller noise variance. Figure 2 further depicts this tradeoff.

Connection to non-parametric estimation and the Nadaraya-Watson estimator. A non-

parametric estimation technique to interpolate between known values of a function is to use a kernel
estimator. The Nadarya-Watson (NW) estimator Prewitt (2003); Nadaraya (1964); Watson (1964)
is one such estimator, and interpolates the data as

fvw (€ng1) = Z I{Z(xn-l-bﬂfi)f(:ﬂi)

i K(wng1, )

where K (r) = e~ "*/" for some bandwidth h. In Section B.1 we show that optimizing the pretraining
loss (ICL) reduces to meta-learning the bandwidth of an NW estimator on a distribution of pretraining
tasks. However, to our knowledge, the literature has not determined the optimal bandwidth for the
kernel, as there has been no analysis of non-asymptotic lower bounds on the loss, which we need
to characterize the optimal solution. A close work to ours is Tosatto et al. (2021), which considers
regression on general L-Lipschitz tasks, but this analysis provides only a tight upper bound on the
loss.

Remark 2.1 (Extreme cases). Consider the following two settings.

(i) Constant functions. If each of the functions the attention unit sees in pretraining is constant,
as in the Left column of Figure 1, it is best to consider an infinite attention window, that is, take
M = 04xq as this results in a uniform average over all the noisy token labels.

(ii) Rapidly changing functions. If the pretraining functions change rapidly, as in the Right
column of Figure 1, attending to a distant token might only corrupt the estimate at the target. For
example suppose the input tokens are used to construct Voronoi cells on the surface of the hypersphere,
and the label for a new token in a cell is the label of the token used to construct that cell. The optimal
estimator attends only to the single nearest token since this incurs error only from label noise.

Remark 2.2 (Softmax advantage). To further highlight the utility of the softmax, we compare with
linear attention (von Oswald et al., 20253a; Zhang et al., 2023a; Ahn et al., 2023), whose estimator can
be written as hpa(z) = > ,(f(x;) + &) x] Mx, up to a universal scaling due to the value embedding.
This is again a weighted combination of labels, but one that does not allow for adapting an attention
window — any scaling of M does not change the relative weights placed on each label — unlike softmaz
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Figure 2: From left to right, as we shrink the attention window (shaded in blue), the estimator
has lower bias (the expected value of the estimate, depicted in purple, is closer to the ground-truth
label, depicted by the white circle) but larger variance (shaded in tan).
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attention. Please see Figure 1 (Middle Row) for a comparison of the weights used in the different
estimators.

3 Pretraining Learns Scale of Attention Window

One of our observations of the attention estimator hg, is that it computes a nearest neighbours
regression. We hypothesize that the role of pretraining is to select a neighbourhood within which to
select tokens for use in the estimator. In this section we characterize the radius of this neighborhood.

Definition 3.1 (Lipschitzness). A function f : X — R has Lipschitzness L if L is the smallest
number satisfying f(x) — f(x') < L||x — x| for all (z,x") € X2.

The general requirement for the function classes to which our results apply is that the class should
be invariant to isometries, each function should be Lipschitz, and the function value at two points
should be less correlated as those points get further. These are written formally in Assumption B.4.
To be concrete, we work with the following two function classes that satisfy these assumptions (this
is shown in Lemmas C.3 and C.7) to derive explicit bounds.

Definition 3.2 (Affine and ReLU Function Classes). The function classes F zﬁ‘ and F; are respec-
tively defined as:

Fil—(f . f®)=1w x4+ b wesS bile[-L, L]},
Fi=A{f:f@) =h(w' @)y +lo(-w'2)s +b, we S (b11,1) € [-L, L]*}.

D(}"Zﬁ),D(}";) are induced by drawing w ~ XU and b,1, 11,15 ok Unif([—L, L)) for some ¥ >
04xq. Note that the max Lipschitzness of any function in these classes is L, and ()4 = max(z,0).

Next, we make the following assumption, similar to Ahn et al. (2023), on the covariate distribution.

Assumption 3.3 (Covariate Distribution). The covariate distribution satisfies Dy = 37 1UY.

Now we are ready to state our main theorem that characterizes minimizers of (ICL).



Theorem 3.4. Let Assumption 3.3 hold and tasks f be drawn from (Case 1) D(F;”) or (Case 2)
D(F}). Forn=Q(1) and Qn~%?) < 0? < O(nL?), any minimizer of the pretraining loss (ICL)
satisfies' M* = wrQ2, where for A == ’;—L;, o= ﬁ and B = #2:

(Case 1) Q(A%) < |wko| < O <A7> (Case 2) Q (Aﬂ) < Jwkol <O (A?ﬁ).

Theorem 3.4 shows that optimizing the pretraining population loss in Equation (ICL) leads to
attention key-query parameters that scale with the Lipschitzness of the function class, as well as
the noise level and number of in-context samples. These bounds align with our observations from
Figures 1 and 2 that softmax attention selects an attention window that shrinks with the function
class Lipschitzness, recalling that larger wg results in a smaller window. Further, the dependencies
of the bounds on o2 and n are also intuitive, since larger noise should encourage wider averaging to
average out the noise, and larger n should encourage a smaller window since more samples makes
it more likely that there are samples very close to the query. To our knowledge, this is the first
result showing that softmax attention learns properties of the task distribution during pretraining that
facilitate ICL.

Learning Lipschitzness is critical to generalization. We next give the following generalization
result for downstream tasks.

Theorem 3.5. Suppose softmaz attention is first pretrained on tasks drawn from D(}"”LL) and then
tested on an arbitrary L— Lipschitz task, then the loss on the new task is upper bounded as £ < (’)(k—;)

Furthermore, if the new task is instead drawn from D(}"z,), the loss is lower bounded as £ > Q(ffﬁ)

for L' > L and L > Q(%d/z) for L' < L.

Theorem 3.5 shows that pretraining on D(F JLF) yields a model that can in-context learn downstream
tasks if and only if they have similar Lipschitzness as L. Thus, learning Lipschitzness is both
sufficient and necessary for ICL. If the evaluation task Lipschitzness is much larger than that seen in
pretraining, the pretrained model will give highly biased estimates. Conversely, if the evaluation
Lipschitzness is much lower, the pretrained model will not optimally average the label noise.

Necessity of Softmax. To further emphasize the importance of the softmax in Theorem 3.4, we
next study the performance of an analogous model with the softmax removed. We consider linear
self-attention (von Oswald et al., 2023a; Zhang et al., 2023a; Ahn et al., 2023), which replaces the
softmax activation with an identity operation. In particular, in the in-context regression setting we
study, the prediction of f(x,+1) by linear attention and the corresponding pretraining loss are given

by:

n

hpa(@ni) ==Y _(f(xi) + &)z M1,
i=1

LraM) :=E; iz teys (hra(@ngr) — f(@ni1))?.

As discussed in Remark 2.1, hp4(@,+1) cannot adapt an attention window to the problem setting.
We show below that this leads it to large ICL loss when tasks are drawn from D(F;).

'We further show in Appendix B that M* = wxoX for scalar wx¢q holds for a broad family of rotationally-invariant
function classes.
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Figure 3: Spectral norm of M during pretraining with varying L. FEach plot shows results for
different task and covariate distributions, with (tasks, covariates) drawn from (Left) (D(F;),U?),
(Middle-Left) (D(F;),U?), (Middle-Right) (D(F*),u?), (Right) (D(F5°),U?), where U is
a non-isotropic distribution on S~! (see Section 3.1 for its definition).

Theorem 3.6 (Lower Bound for Linear Attention). Consider pretraining on L1 with tasks f drawn
from D(F{) and covariates drawn from U?. Then for all M € R4, L 4(M) = Q(L?).

This lower bound on L 4 is strictly larger than the upper bound on £ from Theorem 3.5, up to
2
factors in d, as long as 2~ < 1, which holds in all reasonable cases. Please see Appendix F for the

proof.

3.1 Experiments

We next empirically verify our intuitions and results regarding learning the scale of the attention
window. In all cases we use the Adam optimizer with one task sampled per round, use the noise
distribution D. = N(0,0?), and run 10 trials and plot means and standard deviations over these 10
trials. Please see Appendix J for full details as well as additional results.

Ablations over L, 0 and n. We verify whether the relationship between the attention window
scale —i.e. |[M|~! — and L, o and n matches our bounds in Theorem 3.4 for the case when tasks
are drawn from D(F;") and the covariates are drawn from U?, as well as whether these relationships
generalize to additional function classes and covariate distributions. We train on tasks drawn from
D(F{) and D(F§*), where F§* := {f : f(z) = cos(Lw' &), w € S~} and D(F§*) is induced
by sampling w ~ U¢. In all cases we set d = 5, and use (L,o,n) = (1,0.01,20) if not ablating over
these parameters, and vary only one of {L,0,n} and no other hyperparameters within each plot.

Attention window scales inversely with L. Figure 3 shows that ||M]|| indeed increases with L

in various settings. In Figure 3(Left, Middle-Left), tasks are drawn from D(F}), and in Figure
3(Middle-Right, Right), they are drawn D(F7°%). In Figure 3(Left, Middle-Right), each @; is drawn
from 4%, whereas in Figure 3(Middle-Left, Right), each a; is drawn from a non-isotropic distribution
U? on S defined as follows. First, let Sy := diag([1,...,d]) € R™? then & ~ U? is generated by

1/2 .
/:I:

d
I8y %%
|V f(x)|| on average across f, it is not immediately clear that it implies larger |V, £(W 1 Wo)||
nor ||VMQ£(W}WQ)||, so in this sense it is surprising that larger L implies larger pretrained M
(although it is consistent with our intuition and results).

sampling & ~ N (0g4,1;), then computing x = . Note that although larger L implies larger
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Figure 4: Spectral norm of M during pretraining on tasks drawn from D(]:l+ ) in Left, Middle-
Right and D(F7*) in Middle-Left, Right. Left, Middle-Left show ablations over the noise
standard deviation ¢ and Middle-Right, Right show ablations over the number of context samples
n.
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Figure 5: Left, Middle-Left, Middle-Right: The test error for softmax attention as it is trained on
the distributions over 1-Lipschitz affine, ReLU, and cosine function (D(F2T), D(F; ), and D(F{s),
respectively), where the error is evaluated at each pretraining iteration on 5 tasks drawn from the
distributions over the 1-Lipschitz (affine, ReLU, cosine) function classes in (Left, Middle-Left,
Middle-Right), respectively. Right: The test error evaluated on tasks drawn from D(F7%) for

three softmax attention trained on tasks drawn from D(F), D(F$%), and D(FS9®), respectively.

Attention window scales with o, inversely with n. Figure 4 shows that the dependence of
|IM|| on o and n also aligns with Theorem 3.4. As expected, ||M|| increases slower during pretraining
for larger o (shown in Figures 4(Left, Middle-Left)), since more noise encourages more averaging
over a larger window to cancel out the noise. Likewise, || M]| increases faster during pretraining for
larger n (shown in Figures 4(Middle-Right, Right)), since larger n increases the likelihood that there
is a highly informative sample in a small attention window. Here always the covariate distribution is
ue.

Learning new tasks in-context. An implication of our work is that for the function classes we
consider, the softmax attention estimator does not adapt to the function class beyond
its Lipschitzness. We have already seen in Figures 3 and 4 that the growth of | M]|| during
pretraining is similar across different function classes with the same Lipschitzness, as long as o and
n are fixed. Here we verify the conclusion from Theorem 3.5 that for fixed n and o, the necessary
and sufficient condition for downstream generalization, measured by small ICL error, is that the
pretraining and downstream tasks have similar Lipschitzness. Figure 5 supports this conclusion.
Here we set d = 5,n = 200,00 = 0.01 and draw each x; i.i.d. from ¢?. In Figure 5(Left, Middle-Left,
Middle-Right), we train three attention units on tasks drawn from the 1-Lipschitz affine (D(F3f)),
ReLU (D(F7)), and cosine (D(F5*®)) task distributions. Each plot shows the test ICL error on
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tasks drawn from a distribution in {D(F2), D(F), D(F5%)}. Performance is similar regardless
of the pairing of pretraining and test distributions, as the Lipschitzness is the same in all cases,
demonstrating that pretraining on tasks with appropriate Lipschitzness is sufficient for
generalization.

Moreover, Figure 5(Right) shows that when the Lipschitzness of the pretraining tasks does not
match that of the test tasks, ICL performance degrades sharply, even when the tasks otherwise share
similar structure. Here the test task distribution is D(F}{°°), and the pretraining task distributions
are D(FM), D(F$%¥), and D(FS$®). The only pretraining distribution that leads to downstream
generalization is D(}"f‘ff) since its Lipschitzness matches that of the downstream tasks, despite the
fact that it is not a distribution over cosine functions, unlike the other distributions. Thus, these
results lend credence to the idea that in addition to being sufficient, pretraining on tasks with
appropriate Lipschitzness is necessary for generalization.

4 Softmax Attention Learns Direction of Attention Window

Thus far, we have considered distributions over tasks that treat the value of the input data in all
directions within the ambient space as equally relevant to its label. However, in practice the ambient
dimension of the input data is often much larger than its information content — the labels may
change very little with many features of the data, meaning that such features are spurious. This is
generally true of embedded language tokens, whose embedding dimension is typically far larger than
the minimum dimension required to store them (logarithmic in the vocabulary size) (Brown et al.,
2020). Motivated by this, we define a notion of “direction-wise Lipschitzness” of a function class to
allow for analyzing classes that may depend on some directions within the ambient input data space
more than others.

Definition 4.1 (Direction-wise Lipschitzness of Function Class). The Lipschitzness of a function
class F with domain X C R? in the direction w € S¥1 is defined as as the largest Lipschitz constant
of all functions in F over the domain X projected onto w, that is:

Lipy (F, X) := irel%{L cfww x) - fww' @) < Liw' z—w' 2| ¥V (x,2') € X2, f e F}.

Using this definition, we analyze function classes consisting of linear functions with parameters lying
in a subspace of RY, as follows:

Definition 4.2 (Low-rank Linear Function Class). The function class Fhn is defined as Far .= {f :
f(x) =a'BT z, a € R¥}, and D(FE) is induced by drawing a ~ U*.

where B € O%F is a column-wise orthonormal matrix. Since our motivation is settings with
low-dimensional structure, we can think of k& < d.

Let B, € 0%(@=F) denote a matrix whose columns form an orthonormal basis for the subspace
perpendicular to col(B), and note that the Lipschitzness of ]:]1%“ in the direction w is L if w € col(B)
and 0 if w € col(B_ ). Observe that any function in Fi can be learned by projecting the input onto
the non-zero Lipschitzness directions, i.e. col(B), then solving a k < d-dimensional regression. To
formally study whether softmax attention recovers col(B), we assume the covariates are generated

as follows.
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Assumption 4.3 (Covariate Distribution). There are fized constants ¢y # 0 and —0o < ¢y < 00 s.t.
sampling x; ~ Dy is equivalent to x; = cuBu; + ¢ B | v; where u; ~ Ut and v; ~ Uk,

Assumption 4.3 entails that the data is generated by latent variables u; and v; that determine

label-relevant and spurious features. This may be interpreted as a continuous analogue of dictionary

learning models studied in feature learning works (Wen & Li, 2021; Shi et al., 2022). We require no
1

finite upper bound on |c¢y| nor [ea]? SO the data may be dominated by spurious features.

Theorem 4.4. Let B € Q% and consider the pretraining population loss (ICL) with f ~ D(JFEm).
Suppose Assumption 4.3 holds, as well as at least one of two cases: (Case 1) o =0, or (Case 2)
n=2. Then among alM € M := {M e R™ .M =M, ||B'MB| < C%}, the minimizer of the

pretraining population loss (ICL) is M* = ¢BB'T for some ¢ € (0, C%]

Theorem 4.4 shows that softmax attention can achieve dimensionality reduction during ICL on any
downstream task that has non-zero Lipschitzness only in col(B) by removing the zero-Lipschitzness
features while pretraining on ]:g“. Removing the zero-Lipschitzness features entails that the nearest
neighbor prediction of pretrained softmax attention uses a neighborhood, i.e. attention window,
defined strictly by projections of the input onto col(B). To our knowledge, this is the first result
showing that softmax attention pretrained on ICL tasks recovers a shared low-dimensional structure
amonyg the tasks. Please see Appendix J for empirical results verifying that softmax attention indeed
recovers low-dimensional structure, even for tasks consisting of (nonlinear) generalized linear models.

4.1 Experiments

Due to our results in Section 3 showing that softmax attention can learn an appropriate attention
window scale when pretrained on nonlinear tasks, we hypothesize that it can also learn the appropriate
directions during pretraining on nonlinear tasks. To test this, we consider tasks drawn from low-
rank versions of affine, quadratic and cosine function classes, in particular: ]—%ﬁ ={f: f(x) =
a'B'z+2,a € S¥1}, 73 = {f : f(z) = (@'BTx)%a € Sk} and FYS = {f : f(z) =
cos(4a'B" x),a € S¥71}. Each task distribution D(FET), D(F3), D(Fg®) is induced by drawing
a ~ U We train Mg and Mg with Adam with learning rate tuned separately for softmax and
linear attention. We set d = 10, k = 2, n = 50, and o = 0.01. We draw {wz};:rll iid. from a
non-uniform distribution on S?~! for each task, and draw one task per training iteration. We draw
B randomly at the start of each trial, and repeat each trial 5 times and plots means and standard
deviations over the 5 trials. We capture the extent to which the learned M = M}MQ recovers

-
col(B) via the metric p(M, B) := %,

For test error, we compute the average squared error on 500 random tasks drawn from the same
distribution as the (pre)training tasks. Please see Appendix J for more details.

where opin(A) is the minimum singular value of A.

Results. Figure 10 shows that softmax attention recovers the low-rank structure when tasks are
drawn from each of the three function classes, which leads to test error improving with the quality
of the learned subspace. In contrast, linear attention does not learn any meaningful structure in
these cases.
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Figure 6: Representation learning error (p(M, B)) and test ICL error (mean squared error) during
pretraining softmax and linear attention on tasks from Left: fﬁﬁ, Center: F2 , and Right: FB*.

5 Conclusion

We have presented, to our knowledge, the first results showing that softmax attention learns shared
structure among pretraining tasks that facilitates downstream ICL. Moreover, we have provided
empirical evidence suggesting that our conclusions about what softmax attention learns during
pretraining generalize to function classes beyond those considered in our analysis.

Limitations and Future Work. We list the limitations of our analysis here, and hope that future
work will improve on these aspects. 1. The model we use in this work is an attempt to understand a
phenomenon that emerges in LLMs, which is that the output of the model can be ‘primed’ with some
examples provided in the context that resembles few-shot learning, even though they are only trained
on next token prediction. Establishing a mathematical framework for this remains an interesting
avenue for research. 2. Our work only considers the output of a single layer of attention. Studying
multiple layers is difficult because the effective {x;} themselves change from layer to layer.
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A Additional Related Work

Empirical study of ICL. Several works have studied ICL of linear tasks in the framework introduced
by Garg et al. (2022), and demonstrated that pretrained transformers can mimic the behavior of
gradient descent (Garg et al., 2022; Akytrek et al., 2022; von Oswald et al., 2023a; Bai et al., 2023),
Newton’s method (Fu et al., 2023a), and certain algorithm selection approaches (Bai et al., 2023; Li
et al., 2023b). Raventos et al. (2023) studied the same linear setting with the goal of understanding
the role of pretraining task diversity, while von Oswald et al. (2023b) argued via experiments on
general auto-regressive tasks that ICL implicitly constructs a learning objective and optimizes it
within one forward pass. Other empirical works have both directly supported (Dai et al., 2022) and
contradicted (Shen et al., 2023) the hypothesis that ICL is a gradient-based optimization algorithm
via experiments on real ICL tasks, while Olsson et al. (2022) empirically concluded that induction
heads with softmax attention are the key mechanism that enables ICL in transformers. Lastly,
outside of the context of ICL, Trockman & Kolter (2023) noticed that the attention parameter
matrices of trained transformers are often close to scaled identities in practice, consistent with our
findings on the importance of learning a scale to softmax attention training.

Transformer training dynamics. Huang et al. (2023) and Tian et al. (2023) studied the dynamics
of softmax attention trained with gradient descent, but assumed orthonormal input features and
either linear tasks (Huang et al., 2023) or that the softmax normalization is a fixed constant (Tian
et al., 2023). Boix-Adsera et al. (2023) proved that softmax attention with diagonal weight matrices
incrementally learns features during gradient-based training. Other work has shown that trained
transformers can learn topic structure (Li et al., 2023c), spatial structure (Jelassi et al., 2022), visual
features (Li et al., 2023a) and support vectors (Tarzanagh et al., 2023a,b) in specific settings disjoint
from ICL.

Expressivity of transformers. Multiple works have shown that transformers with linear (von
Oswald et al., 2023a,b), ReLLU (Bai et al., 2023; Fu et al., 2023a; Lin et al., 2023), and softmax
Akyiirek et al. (2022); Giannou et al. (2023) attention are expressive enough to implement general-
purpose machine learning algorithms during ICL, including gradient descent. A series of works have
shown the existence of transformers that recover sparse functions of the input data (Sanford et al.,
2023; Guo et al., 2023; Edelman et al., 2022; Liu et al., 2022). Fu et al. (2023b) studied the statistical
complexity the learning capabilities of attention with random weights. More broadly, Pérez et al.
(2021); Yun et al. (2019); Bhattamishra et al. (2020); Likhosherstov et al. (2021); Wei et al. (2022);
Song et al. (2023) have analyzed various aspects of the expressivity of transformers.

Other studies of softmax attention. Wibisono & Wang (2023) hypothesized that the role of the
softmax in attention is to facilitate a mixture-of-experts algorithm amenable to unstructured training
data. Deng et al. (2023a) formulated a softmax regression problem and analyzed the convergence of
a stylized algorithm to solve it. Han et al. (2023) showed that in a setting with ICL regression tasks
a la (Garg et al., 2022), a kernel regressor akin to softmax attention with M equal to the inverse
covariance of x converges to the Bayes posterior for a new ICL task — in this setting the conditional
distribution of the label given the query and n labelled context samples — polynomially with the
number of context samples, but did not study what softmax attention learns during pretraining.
Deng et al. (2023b) also compared softmax and linear attention, but focused on softmax’s greater
capacity to separate data from two classes. Vuckovic et al. (2020) and Kim et al. (2020) investigate
the Lipschitz constant of attention rather than what attention learns.
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Non-parametric regression. Our results imply that pretraining softmax attention reduces to the
problem of meta-learning the bandwidth of a Nadaraya-Watson estimator with a Gaussian kernel.
However, to our knowledge, the non-parametric regression literature has not addressed this problem.
The closest work is Tosatto et al. (2021), which only upper bounds the noiseless loss, and only in
the limit n — 0o, whereas our result characterizes the optimal bandwidth, which requires upper and
lower bounds on the noisy loss.

B Preliminaries

We first justify our claim that the first d rows of the last column of Wy, can be set to 04 for any
optimal choice of parameters.

Lemma B.1. If under the function distribution, a function f is equally likely as likely as —f, then

. , . . 0 0
any optimal solution to LWy, Wi, Wq) in 3 satisfies Wy = <OdXd dCXI
1xd
Proof. For readability we write 8; = e %kl ®i—®np ”22]‘ evrQll@i —zni1I? Guppose Wy =

0 . .
dxd V) (as optimal, then the loss can be written
O1xa ¢

2
L= Ef:{il’qz} <Zc(f(ml) + Ei) ﬁl + ZVT Z; ﬂz - f(anrl))

i

But because f and —f are equally likely, and because the noise is also symmetric about 0, we can
write this as

)

2
L= % Ef @it (Z c(f(mi) + ) Bi + Z v xi i — f(g;n+1)>

2
+ %Ef,{m},{ei} (Z c((=f)(wi) — &) Bi + ZVT i B — (—f)(a:n+1)>

We can couple the noise {¢;} and the data {x;} in the two summands above to write this as
E[(A+B+C)+(-A+B-0C)?,

where A =3, cf(z:)Bi — f(x) = — (3, c(=f)(:)Bi), B=Y., v x; B, and C =3, ce;3;. We can
set B = 0 simply by setting v = 04«1, and this has loss

2
L= Ef,{il:i} (Z c (f(wz) + Ez’) Bz - f(wn-‘rl))

(E[(A+C)2+(-A-C)]) <z (E[(A+B+C)*+(-A+B-C)%)

N =
N =
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In all of the distributions over functions we consider for pretraining, f is equally likely as —f, so
without loss of generality we set all elements of Wy, besides the (d 4+ 1,d + 1)-th to 0. For simplicity,
we set the (d 4 1,d + 1)-th element to 1.

Assumption B.2 (Covariate Distribution). For each token x, first we draw & as & ~ U®. Then x
is constructed as x = £'/2%.

Definition B.3 (Linear and 2-ReLU Function Classes). The function classes F¢" and .7-';; are
respectively defined as:

Fin = {fw: fw(@)=Iw' z+b, we ST 1€ [-L, L]}, (5)
Fi={fw: fw(®) =11 ReLU(wW" x) + 1y ReLU(-w' x) +b, w € S*1}. (6)
D(F™), D(F]) are induced by drawing w ~ N(0,57') and b,1,11,12 ~ Unif((—L, L]). We say that

these classes are L— Lipschitz, because the mazimum Lipschitz constant for any function in the class
is L.

Note that because |E71/2 x; || = 1 always, we have

2x; Mz,
_ “2—1/2 x; HQ + Hzl/QMEl/QZ—l/Q Tt H2 - HE—l/Q x; —21/21\/[21/22_1/2 Tt ”2

Let M/ = SY/2MXY/2. This means the attention estimator can be rewritten as

z] Mz, i)e*HZ_l/Q @ —M/S"1 2, |2

f(xi)e f(=z
h = = 7
sa(®) Ez: Zj %] Mani ZZ: Zj e I=7 22 —MET 2y |2 (7)

So the attention a token x,1 places on another x; is related to the distance between

M's /2 Tpy1 and 12 ;. Tt is natural to suppose under some symmetry conditions that M’
is best chosen to be a scaled identity matrix so that the attention actually relates to a distance
between tokens. Below we discus sufficient conditions for this.

Assumption B.4. The function class F and distribution D(F) satisfy

L|f(x)-fl<Llz—ylg1 Va,yeX* feF
2. Eropr) [f(2)f(y)] = p(x" y) Va,y € X2, for some monotonically increasing p.
3. For any isometry ¢ preserving the unit sphere, and f € F, we have fo ¢ € F.

Lemma B.5. Under Assumption B.4, any minimizer of Equation ICL satisfies M* = wKQE_l for
some scalar wigg > 0.

Proof. Let {y;} = {Z7Y2x;}. Suppose My, 1 # cy,,q for any ¢ > 0 for some y,, ;. Take
_ M d / _ Myn+1

Cyn+1 - || yn+1 || an yn+l - Cypi1

w : R* — R? satisfying W(Ypi1) = Cy, .1 Yns1- Note that this need not be linear. Let ¢ denote a

rotation that sends ¥y}, to ¥, 1.

(the projection of y onto the sphere). Consider a function
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Figure 7: Comparison between using M and w in Lemma B.5. Here we denote y := y,,. 1. Under
the attention induced by M, the center of attention for ¥y is actually y’, and the attention weights
are depicted by the light orange shading. Under the attention induced by w, the center of attention
for y is y and the weights are depicted by the light blue shading. Naturally, using the blue shaded
attention should lead to a better estimate of f(y) under mild regularity conditions.

We show that £(M) > L(w), that is, it is favorable to not rotate y,,, ;. We have

ly; My, |I?
LIM) =Efy, 1) (f(yn+1) szj(,e)eijymn )

) S f(y)e™ ly; My, 1|2
=Efy it FWn)” +Epy oy < S ey My, P
J

Z f(yn—i-l)f(yz‘)@_” Y My, 2]

—2E
FYns1:Y:} [ Zj 67” y;, —Muy, 12

i
Lets compare this with the loss of w. For a depiction of this, please see Figure 7

2
B Z f( )e H Y, — (’!Jn+1)”2
L(W) - Efzy'rH»l ?{yz} (f(yn+1) Z] e H yj _w(yn+1)H2

2
) S fly)eIwi- w(¥pi)l?
=Efy . v} f(Wni1) TEry v ( Z oy —w)l?

f yn+1 f(yl)e_” Y, _w(yn+1)”
-9 Ef Ynt1:1Yi) [Z Z 6_|| Yy, (Y1)l
There are three terms to compare. The first in each is identical. The second is also the same:
E S flyy)e” ly; My, |7
Fynsrdi} >, e 1o My P

S fy )e Iy Myn+1 1%
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(S flag e 19 —Cuns B 17\ 2
— Ey » Ef {y} Zz f(yz)e / _
" e Z e 1~y Yo
Z F(o(y,))e —ll¢(ys)—cypiq Ynia lI?
=By, Eriyy oy )—c B
ZJ e yj Yn+1 Yn+1
/5 flye— i —eunis B 2 2
=Ey +1 Ey {y:} 2 f(wi)e 2
" e Zj e_” Yj —Cypp1 Yt |l

The third takes some more work. For any choice of {y,}, let

ay7z+1 Ay} (y*) =

We see that aynﬂ’{yi}(y*) varies monotonically with yL_l y, for all y, .1, {y;}. That is,

T T
Yi Y1 > Y Ynn = Oy gy () >

6_” yn+1 — Y. ||2

e MWns —uall® 1 >, e N Ynp1 —wi P

ayn+1v{yi} <y;>7

fyn+1,{y1 [Z I
>

yZ e ”yz Myn+1 H ]

Z e~y =My, |1?

Ey [f (o) f(yy)] v Munaa IP

= Eyn+17{yi}

i

>, ey, —Muy, |12 ]

= Eyn+17{yi} [Z

)

=n Eyn-‘-lvy*v{yi}i:[nfl]

=n Eyn+11y*u{yi}i:[n71

=n Eyn-‘-lvy*v{yi}i:[nfl]

=n ]EynJrlvy*v{yi}i:[n—l]

=n Eyn+17y*7{yi}i:[n71]

Similarly, we have

T Ny, —M 2
p(yn+1 yl)e ” Y; yn+1 H
J

i T — -M 2
p(Ypi1 Yy )e ¥ MYnia

Ny, —My, 112 Y. —Ny; My, |12
6 * n ]6

Y1y )ony, ., () (1)

)
yn+l y*>a0yn+1 y’,{yi}(y*))}
(yn—l-l y*)acyn_H yn+17{¢>_1(yi)}(¢_1 (y*)))}
)

P90, v () (@ ()]

f yn+1
fvyn+1 7{yz [Z
(2

Ef [f(yn+1)f(yi)]

12

yn+1)

ye~llvi ~w(Yni1)l?
e Hy]

>

%

- ]EyrH-lv{yi}

P(Ypi1Yi)e

67” Yi —Cypi1 Ynt1 H2 ]

Z . 67” Yj —Cypi1 Yn+1 H2
J

= Eyn+17{yi} [Z

%

—ly; “Cypt1 Yn+1 ||2]

Z . 67” Yj —Cypi1 Ynt1 ”2
J
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T —y,. — . 2
=nk P('yn+1 Y. )e 19 —Cypiq Ynia |l ]

Ynt 1Yo AYi Fiz(n—1] [6_ Y —Cypiq Yntr 12 + Zj e—H Y —Cypi1 Yniy II?

T
=n Eyn-‘rl?y*v{yi}i:[nfl] [p(yn-‘rl y*)acyn_H Ynt+1:1Yi) (y*))]

Critically, for a given y,,, 4, ay’{yi}(y*) can be re-parameterized as
oy () (Ys) = O/{yi}(y* — Y1) Where O/{yi} is symmetric about 0 and decreasing. Similarly,

p(erlH y,) can be re-parameterized as p(yLl y.) = 0'(y. _yn+1) where o/, p/ are symmetric
decreasing rearrangement (that is, the set of points z such that p(x) > r is a ball about the origin).
From Lemma [.2 we then have

By EYo Wi} imin 1) |PWn1 920y, w0 (671 (02)]

= Eyn+1 Ey*a {yi}i:[nfl] [pl(H Ynt1 — Ysx ”)a{yl}(H Yn+1 _¢—1 Y. H)]
< Eyn+1 Ey*a {yi}iZ[nfl] [pl(H Ynt1 — Ys ”)Oé{y,}(H Yni1 — Yy H)]

= Ey7z+1 Ey,, {yi}i:["—ll [p(y;lr‘f'l y*)acyn+1 yn+17{yi}(y*):|

So L(w) < L(M). Let

2\ 2
B Zz f(yi)€*|| Yi ~Cypt1 Yn+t1 I

q(cyn-H) - Ef,{yi} (f(yn+1) o Zj 6_” Yj —Cypt1 Ynt1 2
Observe that L(w) =Ky . q(cy, . ). We might as well set w to be such that ¢, is the same for
all ¥, ; and a minimizer of ¢, so we have w(y,, 1) = cy,,;1 for all y,,,; which implies w = cI; for
some c¢. Because the optimal M is identity, the corresponding optimal M is X~} O

B.1 Rewriting the Loss

As a result of this, we can take M = wKQE_l and write the attention estimator as

7wKQHE_1/2 T; 72_1/2 Ty 41 ||2

(8)

hea(z) = Z f(zx;)e

y e wrQ|IST Ve, —B T 2y |2

This allows us to make the transformation X — £~1/2 X. This has the effect of making both the
data covariance and the induced function class covariance equal to the identity. Essentially, WLOG
we will henceforth consider 3 = I;. Henceforth, the estimator will be taken to be

hoa() :Zf(

mi)e—’wKQHfEi — a1 |

9)

; e~ WKQllTj — ®ny1 |2

and the loss will be parameterized by wxg as

4 ) e—wrol @ @i I 2
E(wKQ) _ Ef,{:cl} <Z (f(ah) + z) e Q B f(wn+1>>

Ej e~ wkQllT; —@ny1 ||?

i
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Because the noise ¢; is independent of everything else, we can decompose this into two terms, a
signal term and a noise term as follows

r — f(x;)) e K ;= ®ny1 || 2

- Z e~ wkQlT; —Tng1 2
i J

~~

[’signal (wKQ )

eie_wKQH x; — @ni |?

2
i Efj{wi} <Z Z]- e~ wrgll®; —®nt1 |2 B f<x”+1)>

%

Lnoise (wKQ)

We bound the first term in Appendix C and the second in Appendix D. A useful function that we
bound in Lemma G.4 and Corrolary G.5 in Appendix G is

n
go(r) = 3 |~z |pe =l =
=1

We will use this function, particularly for p = 0 and 1.

C The Signal Term

The purpose of this section of the Appendix is to obtain upper and lower bounds on Lgjgnal(Wkq)-
Because we work with two different distributions over functions, and because the bounds depend on
the distributions, we will make the distribution explicit in the argument to the function

No—wroll i — Tnt |2 2
Lagnal(wx Qi D(F)) = Ey (a) <f(wi) -2 e )

j e~ wkQllTj —Zni1 12

As a reminder, we consider the following two distributions over functions. Please see section B.1 to
see why we have set the covariance of w to be identity.

Definition C.1 (Affine and 2-ReLU Function Classes). The function classes ]—"gﬁ and Fi are
respectively defined as:

Fil— (1 f(®) =lw & +b, we ST},
Fio={f: f(®) =l ReLUW" )+l ReLU(—w " x) + b, w € S¥'}.

D(]—"Zﬁ),D(}"}:) are induced by taking w ~ U?, b,1,11,ly ~ Unif[—L, L].

First we have the following trivial bound on Lggnal(wWkq).

Lemma C.2. For all wixg we have Lgigna(wiq) < 4172

Vi

2
Proof. We have Ligna(wkq) < E {(Z W) ] for some positive {7;}. By Lipschitzness,
f(x:) — f(@ns1) < Ll @i — ng || < 2L. -
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C.1 Affine functions

Here we consider the affine function class F %ﬁ. First, we note that this class satisfies Assumption
B.4.

Lemma C.3. The affine class ]:Zﬁ in Definition 3.2 satisfies Assumption B.J.

Proof. 1. We have |f(x) — f(y)| = |[w ' (x —y)| < |w|||| = —y | by Cauchy-Schwarz.
2. Because b is independent of w, we have

E 2 L?
gpBulwl? o

Ef[f(2)f ()] = Bw P2 ww! y 8] =EP= -

3. w is isotropic, so ¢(w) is also supported by the distribution on w.

Lemma C.4. For affine functions, the signal term is upper bounded as

N

44
2
POy BEe 1) g > divd
‘Csignal(wKQ;D(f%ﬁ)) < (’w%(Q n n Q 5

A2 wig < d+2\/3

Proof. In the interest of readability, we will denote x,y; as . Consider & such that & =

—2w zT
> T %. Then our loss is given by E [I*w ' (z 7373)}2. First, since w is independent of

x, {z;}, we have EI* (w' ( —5:))2 =EiPww'(x—2)(x —&)", Now w has a uniformly randomly
chosen direction, so its covariance is a multiple of the identity. We have ETr(ww ') = E||w]||? = %2,

so Elww! = %Id. Continuing, E (w ' (z —5:))2 = é—; E| x —Z||?>. Take any ' | , we have

—2wkQ m;r x

N e
Ez'2'=FE E x] =
- z.e_QwKQ‘Bi T

i J

672wKQ m;r x
=E g Elz, ' | =] — =0 iterated expectation and symmetry
- Zj 672wKQ T, x

T

Decomposing & into an orthogonal and a parallel component, we have E ||z —Z|? =E||z —xzx ' & —
x' x'T Z||? for some ' | z with || 2’| = 1. But

Ele—zz'z—a'2'" z|°

=El|lz(l—z' &)|?+E|| 22" z|> - 2Bzl —z' &)z «'2'"

=El|lz(l—2' &)|?+E| ' 2" z|? vl =0 = 2Bzx(l—z' @)z 2’2" =0 (10)

. d+vd
Case 1: wig > +T‘[
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Consider first the term E || @(1 — @' @)[|? = E(1 — =" &)?. Here we have with probability 1 — &

T% S(1—al a)evrelz—=il® gy (wrg)

1 - -
’ S cunal-ai TP 290(wiQ)
+1
Con (weg ) G, 1
< ( KQ) . g@ Corollary G.5 (11)
3~ Ghwkq

The other term E || 2’ 2’7 &||> = E(z'T )2 is the component of the bias in the direction orthogonal

2
(x'T £)% = (ZZ ' x; ewKQwiwlz)

Z.e*kaHmz‘*wHQ

to x.

; )2) —2wKQ||mi—mH2

Popoviciu’s Variance inequality
(Z e*UJKQII T — Tn H2)

(1 - a7 a;) e 2wallei—e|?

(Z e~ WkQll®i—x 2 )

—2wkqll®i — =z

@ g evwallm-w P\

<< Ee—wmﬂm—sﬂP )
Z
Z
Z

| —x ||%e _ 92(2wkq)

(3, e~wrallz —=[?)? g3 (wkg)

With probability 1 — %, when wig > d + V/d we have

d
zaon (51— o 51
g 2wk < ngKQ

90(wKQ) 1\ 3 2 09222+1n
o (wm) B

L2 1 U)IQ(Q
ﬁsi na. ;D <O = —
gnal(Wr Q3 D(FL)) 30 | wrg +—

The signal bias is upper bounded by 4L? always (Lemma C.2). The overall upper-bound on the
expectation is
L2 1 w IQ(Q

. ;D < EY R TN
Eslgnal(wKQ’ (‘FL» =0 3d \ wio " n

Case 2: wiqg < d%\/a. We always have L(wgg) < 4L? from Lemma C.2. O
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Lemma C.5. For affine functions, the signal term is lower bounded as

Q< L? ) WO > d+vd
fcsignal(wKQQ D(fzﬁ)) > who Q 2

Q(1) wig < /4

S

e—QwKQ z,:r x

R —— e
Zj e—QwKQ z, x

Proof. Similar to Equation (10), for & =), x; , we have

LQ
—E

L?
. . !) F’&H‘ > - E o T 4 2 —
ﬁ&gnal(wKQv ( L )) = 3d H IB(l € :B)H 3d

(1-—x"z)?
Now consider the term 1 — ! Z. We have

(1 - xT :L,i)e—wKQHfB—mi 12 - g2(wKQ)
> evrellz @i ~ 290(wkQ)

Case 1: wig > d‘*‘T‘/a. Here we have from Corollary G.5, with probability 1 — 1/n

g+1
2
(1 =27 a;)evrelz - N @n(rm) Cp, 1
Seuxele-a? = i 52 )3 20y wiQ

With probability 1/n < % the lowest we can have is Lggnal(wig) = 0, so overall we have

L2 /Cy 1 2
Esi na Z =
gnal (WK Q) 2 5 <Cb wm)

Case 2: d%ﬂ <wgg < d%‘/a. From Corollary G.5, with probability 1 — %

241
T 02 Cyn ()7 2
S —aTa)evwele -l Cn (g ) g dne
S emwralle—i |? T 2Cyne 2wxe T 20, 5+1°
wKQ

With probability 1/n < % the lowest we can have is Lgignai(wiq; D(Fi)) = 0, so overall we have

2

- L2 @6210](@
“oqd \ ™ diq1
24d \ Gy wfi;

Laignal(wrq; D(F3))

Case 3: d+T\/E > wg@. From Corollary G.5, with probability 1 — %

S —aT xy)ewrellz—zil®  Cypetvre Cy
> =

> = — o 2WKQ,
S emwrellz =i |? ~ 2Cyne2vKQ T 20,

With probability 1/n < 3 the lowest we can have is Lgigna(wig; D(F affy) — 0, so overall we have

L2 (G 2
. . affyy > — [ =2¢-2wkq
Camlung: DOFED) = 5 (e
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Corollary C.6. Combining the above, we have

1 1 w2 1
L2 o N2 < Esignal(wKQ; D(f%ﬁ)) < L2 O —— + KQ += . (13)
(wrqg +1) W n n

We can now perturb these bounds in the case ofthe ReLU-based function class F;"

C.2 ReLU-based functions

Consider the function class

Fi ={hReLU(w  2) + bReLU(—w ' @) +b:w € S* 1 b,1y,1y € [-L, L]},

(2 )+ = max(z,0). Consider a distributions on F;, namely D(F}). Let D(F})

where ReLU(z) :=
|. That is, a vector w is drawn uniformly on the unit

be induced by w ~ U4, b, 11,1y ~ Unif[-L, L
hypersphere. Then two norms are selected, 1,12, and the overall function is given by

fwirlo(@) = HReLU(w ' &) + bReLU(—w ' @) + b,

so that it follows one affine rule in one halfspace, and another affine rule in the opposite halfspace
Please see section B.1 to see why we have set the covariance of w to be identity

Lemma C.7. The class .Fz and distribution D(]—'JLF) defined above satisfy Assumption B.4.

Proof. 1. Each function is defined as being piece-wise L-Lipschitz, and it is continuous, so it is
also L—Lipschitz overall.
. T
2. With probability 1 — QW the points & and y are such that (w' x)(w' y) < 0 (that
is, they are on opposite sides of the hyperplane defining the two pieces of the ReLLU). Because
the bias b is independent of the other parameters, we have as in the proof of Lemma C.3

2
By [f@) ()] = o + B [Ba wwTy| (w7 2)(w ) > 0l(w 2)(w ) > 0]
+Ew |:l1l2 x'ww' y’ (whaz)(w'y) <0P[(w' z)(w' y) <0

= Ig; + Ew [l% x! way) xz' way > 0] <2arccosﬂ(m—ry)> Ly

Let x = ” 7 for any vector . Consider a re-parameterization of the pair (z,y) as &(x,y) —

(x +y,x—vy). Because « and y are on the unit sphere, this is a bijection as
_ 1446 1—-0 1490 1-6
1
& (aay):( 5 Tt Y T y)-
y). The push-forward of ¢ is also uniform,

(z,
y) is distributed as U x UL, For any x,y, let
f(yg)] is a decreasing function of 6. Finally,

That is, for any z,y, §_T1 (§wr (xz,y)) =

that is for x,y satisfying "y = 6, &

(z,
& H(x,y) = (zg,yy). Then we have E |

(zo
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for 0 < ¢, L? :L'ér ww 'y, > L? m;r, WW | Yy SO :1:;}r ww! Yy, <0 = azg, ww ' yy < 0. The
product of two positive increasing functions is itself non-increasing. Since we have both

2arccos(a " 7] . . .
2arceos(w y) are increasing functions of ' y, we also

2 arccos (wT y)
T

Ew [L? x ww' y‘ x"ww'y > 0] and
have

Ew [LQ xz'ww' y‘ z'ww'y >0 <
. . . . T . 2 T T T T 2arccos(mT y)
is an increasing function of &' y since Ey, [L ' Ww y‘ x' ww' y>0>0and | ——— | >
0.
3. w is distributed uniformly on the hypersphere, so ¢(w) is also also distributed uniformly on
the hypersphere for any isometry ¢ that preserves the origin.

O
Lemma C.8. The signal term is upper bounded as
120 (gl + 1) wig > 45/
Esignal(wKQ;D(fz)) < WKQ n KQ = 2\[
412 wiq < Y4
Proof. We have
2
S (F(x) — fmn)) e wral @ —@n |
ESignal(wKQ; D) = Eﬂ{wi} ( Z Zz e—wKQH z; — T |2
2
<E Yuillzi—zn He—memi—mn 2
= Hf{zi} S, e—wrQl @i — @ |2
2
< ( L91<wm>>
90(wKQ)
With probability 1 — %, when wgg > d+T\/3 we have
d+1
_ . : B .
g1(wkQ) < Cyn (@) < Cy <1> 2
go(wkq) ~ ( 1 )‘é = Cp \wko
) P
We always have Lsgnal(wig) < 4L? from Lemma C.2. So the overall upper bound is
1 4
Esignal(wKQ;D) < L2 (UJKQ + n)
For wxg > %, as before, we always have Lggna(wig; D) < 4 2. 0O

Lemma C.9. The signal term is lower bounded as

Laignat(wiq; D(FE)) > Laignal(wiq; D(F)) /2
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Proof. Again for readability we will write x,4+1 as . For any f € ]-"JLr let fgzag denote the
corresponding affine function that is equal to f in the halfspace containing x, that is if f(z') =
LReLU(w' 2') + [oReLU(—w ' @) + b, and WLOG w' 2’ > 0, then fg.z(x’) = 1w’ x’ +b. Note
that fg .g comes from a w selected from the unit sphere and b, € [—L, L] exactly as f ~ D(Fr), so
it is actually statistically indistinguishable from a sample from D(F gﬁ), the distribution over affine
functions in Definition 3.2 (and the object of Lemma C.5). The error of the nonlinear estimator can

be written as ,

cvKQlE —wilg
5 o Kale o
A={i:(z] w)(x" w) < 0} denote the set of points on the opposite side to x of the hyperplane

defining the function.

where v, = Let us compare the two errors due to the two functions. Let

Lyignai(wr@; D(F}))

2
Fa i} (Z f(@i)yi — f(fﬂ))
2
fix{z:} (Z fw aff .’132 Vi + Z fm aff(wl)) Vi — f(w)>

€A

2

2
= Em,{mﬁ]Ef me aff mz Vi fm aff( ) +Ef (Z f(mz)71)>

igA i€A

2 2
:Em,{zi}]Ef <Zf$aff mz Vi f:caﬂ( )) +Ef (me,aff(mi)%>

€A

_2Ef (waaff :171 Vi fwaff > (Zf:c aff :Bz > +Ef (Zf(wl)fy’)>

€A €A

2
2 Ef,:m{aci} [(Z Ja,aff ()i — fa, aff(x ))2] +Ef7:1:7{$i} (Z fw,aﬁ(wi)7i>

i€A

2
-2 Ef,a:,{wl} |:<Z f:c aff 581 Vi f:z: aff( ))2:| Ef,:z:,{wl} (Z fw,aﬂ(mi)7i>

€A

2

1€A

Here the third equality holds because f(x;) is independent of fg .g(x;) if i € A,j & A.
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Let ¢ = Ef 4 (a2} (Zz‘eA f(a:l)%))Q =Ef 2 (Zz‘eA f%ag(mi)%))z. Then from the above we have

2
Ef,w,{wi} (Z f(wz)’)/z - f(CC)) > (£signal(wKQ; D(-FL))(WKQ) - Q)2 + q27

which has minimum at ¢ = Lggna(wkg; D(Fr))/2, completing the proof. O

D Bounds on Noise Variance

In this section we obtain upper and lower bounds on the variance of the estimator due to label noise.
There are three relevant parameters: d, the ambient dimension of the data; wg, the scaling induced
by the attention layer; and n, the number of tokens. Recall that the noise term is

2 2
gie”VKQll®i —®nia |
Luoise (WK Q) = Ef:{wi} Z ¥ e~ wkQll®j —®nt1 |2
J

i

Because the ¢; are independent, this can further be simplified as

e 2wkQll @i — ®ni1 |2

Loise = 2E Li
(wrQ) = 0" Bz Zi:(zjewKQ”mjwn+1“2>2

2
. . n a
Lemma D.1. The noise term is bounded for d + Vd < WrQ < (W)
d
O_Qw% o? <1 + wf(Q>
K
TQ < Looise(wrg) <O —
Proof. We have
9 e~ 2wkl @i —n |2 9 [90(2wkQ)
Lnoise(wKQ) =o0°E Z 5| =0 E |:2:| .
i (Z e~ wkQl T —@n ||2> 90(wk Q)
J
. . - 1
Using Lemma G.5, we have with probability at least 1 — -
d
cpn ( L ) ’ — W
90(2wrQ) T < O YKQ
go(wr@)* ~ - n

1 % 2 67”2
CnN (wKQ>
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—— bias upper bound —— overall upper bound
bias lower bound overall lower bound
noise

Figure 8: Left: Rough upper and lower bounds for the bias term (shaded region), along with the
noise variance (gray). Right: Overall upper and lower bound for the in-context loss. The horizontal
dashed line establishes an upper bound for the optimal loss, while the vertical dashed lines establish
lower and upper bounds for the parameter wx that can attain the optimal loss.

and similarly

1
90(2wiq) _ " (ww@)
go(wrq)? — N? T2

i ()
WKQ

Finally, in the worst case, we have 0 < Lyoise(Wrq) < 1. O

Finally, we show that the noise term is monotonic in wgg.

Lemma D.2. L, isc(w) > Loppise(w') <= w > w’

Proof. Let a; = e_w/”“’ci_”""““g, b = e~ (w=w)llzi=zai1l® The result follows from Lemma L.3 because
{a;} and {b;} satisfy a; > a; <= b; > b; <= ||z; — Tpq1| < ||7j — Tnga]]- O

E Optimizing the Loss

For the nonlinear function class F7, we have the following.

Theorem E.1. Suppose the functions seen in pretraining are drawn from D(]—"JLF) as in Definition

d 2
3.2, the covariates are drawn as Assumption 3.3, n = Q) <%) and nd+2 = Q(1), then the optimal

M satisfies
M = ’IUKQId (14)

where wiq satisfies

0 ((m%ﬁ) <wgg <O ((nL2)$) . (15)

Proof. We consider three regions in which the optimal value could potentially lie and see that only
the third region is viable.
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Case 1. wxg < d+ V/d: In this case, the signal term lower bounds the optimal loss by Lemma C.5
as Q(1).

2

Case 2. wgg > (1 Ogﬂ) ¢ In this case, the noise term lower bounds the optimal loss. From

2

Lemma D.2 we know that the noise term is non-decreasing in wgq so in the range wxg > € <logn> E

2
is lower bounded by Lyoise(WK Q) at wxg = Q(( nt ) _which is Q ( o? )

logn logn

2
Case 3. d+Vd < wrg < 0 ( L )d By combining Lemmas C.8, C.9, and D.1 , we obtain the

logn
following overall bound on the loss:

d d

1,2 o2w?2 1,2 w2 24 72
5 K9 < L(wkgg) <€ TR . i
(wrg +1) n WKQ n n

c

for some constants ¢, c that only depend on d. In the range wxg > d + Vd, we have wrg > 1
d

2,,2
and wigg < n, so the upper bound can be relaxed as Lyoise(WKQ) < 2€ (LTLQ + %), which is

2 2
minimized at wigg = (”L2) 2 Here it is upper bounded by 4¢ (%) 2 We note first of all

o2d

ologn
L

that for large enough n (as long as n = ) ( and niz = Q(1)) this is lower than the lower

bounds we got in Case 1 and Case 2, so this is indeed the region of global optimal solution. From
d

2
Lemma C.9 we have Lyoise(WKQ) > Lz 4 azw% > L?
Q

ot —5— which gives

KQ
2
L? o?d\ 2
C—5 < Enoise(wKQ) < 4EL2 <L2)
wKQ n

9 which gives

for the upper bound, we similarly also have Lyise(Wrg) > wajQ + g2YKQ > g2

d

2 a
d 2\ da+2 w?i
4c <dL ? > > s

n n
2 2
nL2 d+2 C 2 d
= WgQ < < poy > <4Cdd+2>

Of course, for this to not be vacuous we need

2
nL2\TE (e o2 NG (1 n \i
o? c ~ \45V/dlogn

We will again hide constants that depend only on d and write this as

_2 2
nL?\ 7+2 n d
o logn
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d
which is true as long as n > (@) . O

For the affine function class F4, we have the following

Theorem E.2. If the functions seen in pretraining are drawn from D(]—"}iﬁ) as in Definition 3.2,

d+2
and the noise variance o and Liphscitz constant L satisfies n > (Llofg%) , and ni > Q(1), and

the covariates are drawn as Assumption 3.3, the optimal M satisfies
M = wggly (16)

where wiq satisfies

Q ((nLQ)TL*> <wgg <O ((nLQ) 3221‘2‘;) . (17)

Proof. Again we work with three cases.

Case 1. wgg < d + V/d. Again in this case we have a lower bound to the signal term of Q(1).

2

Case 2. wgg > (2 ( n )E. Again we have a lower bound of 2 ( o? )

logn logn

2
Case 3. d+Vd < wrg < ( 1 )d Combining Lemmas C.4, C.5, D.1 is

logn
1,2 w;;( 1.2 w;;( w;%(_ L2 4+ o2
S+ 2B < Llwgg) <e | o— 0 KLy 2 KO
(wKQ + 1) n Wik n n

We will minimize the upper bound. First suppose 5—; > wgq for the wig that minimizes the upper
bound. Then we have

2 2 %_1
L o w
Llwgg) <e| —— + — +202-E<
'LUKQ n n

2
This upper bound is minimized at wxg = nd+2. However, this contradicts the constraint that

2 _2_ 2 2 e . .
WrQ < %, when nd+z > %, as we assume. So we have wig > % for the minimizer. This means
the upper bound is no more than

d
L? 2 2Wiq n o? + L2

wKQ n n
9 2
This upper bound is minimized at wxg = (%) 4 where it is upper bounded by
2 O-Qd ﬁ L2 2 O'Qd %H
Loise(wWrq) < 4L7¢C <nL?> +-< 5L2C <nL?> '



whenever n > L . We see that

d
L wj, L2
Llwgg) ¢ | 5— +0>—2L | > =
2
.2 24\ a+4
— c— <5L20<U2
Wko nL

d d
L2 w2 w
L(wgkq) >c NRpE X0 > QUQ—KQ
@ w2 n n
KQ
2(d+2) 2
nL?\ 4ats [ G 2 \d
— wigQ < (02 ) (5cdd+4>

Of course, for this to not be vacuous we need

2(d+2) 2 2
TLL2 d+4) C ._2 d 1 n d
5—dd+1 < | —=—] .
o2 c ~ \45v/dlogn

We will again hide constants that depend only on d and write this as

2(d+2)
nL? EGa) n \94
o logn

Llog®n d+2
o

[SH[ S

which again is true as long as n = Q2 (

E.1 Generalization Bounds

We conclude this section with a proof of the generalization error on a new L—Lipschitz task.

Theorem E.3. Suppose our attention is first pretrained on tasks drawn from D(]:zr) and then
tested on an arbitrary L— Lipschitz task, then the loss on the new task is upper bounded as L <

O <£—2) Furthermore, if the new task is instead drawn from D(F},), the loss is lower bounded as
£ = min{Q45), AT}

n

Proof. We know from Theorem E.2 that Q(A®) < wxg < O(A%?). The upper bound for £(wgkq),
d

2
Lo 2w . . : . - .
which is O(wLTQ + IJQ ), is a convex function for d > 2, so in any range it attains its maximum value

at the extreme points We can check the cases to see that this is (’)(max{k—; Adﬁ/?, AL;B + A—dﬁ}) =

n
(9(1{4—; + Ads/Q + AQB + A—dﬁ) O(/I\’—Z) for large enough n.
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Now consider testing on a new task from D(F},). The ICL loss for Q (A?) < wgg < O (A%) is
bounded below as Q(f—;z) and Q(%d/z). O

2d
The implication of this is that if L' > L, the error scales as (L')? rather than (L')3+2 while for
L' < L, the error is lower bounded by a constant.

F Lower Bound for Linear Attention

In this section we prove Theorem 3.6.

Lemma F.1. Consider the function distributions D(Fr) and D(F) described in Definition 3.2.
We have L1 > QL?), that is, the ICL error is lower bounded as (L?).

Proof. We start by decomposing the ICL loss into a bias dependent term and a cenetered term. For
feFpe{FH F 1}, let f denote the centered function f — E, f. Let f/ denote the flip of f about
its expected value, so f' = E, f — f. We observe that f is independent of E,, f. For linear attention,
we have, for f ~ D(Fp)

LraM) =Ef 2.3 ()i [(hLA(anrl) - f($n+1))2}

n 2
=Ef (2} {ei)s (Z <(f(cci) + Ei):IZZT Mwn+1> — f(a:n+1)>

i=1

" 2
=Ef (2} {e)s (Z (?(fﬂi)w; Mz, + 6z Mz,1 +E, fa) Mﬁvn+1) - f($n+1)>

n 2
= Ef,{mi}i,{ei}i (Z <?(ml)mz—r Mxpq1 + €i$;r anJrl) - f(anrl)) (18)

i=1

2
+ Ef,fc,{wi} (Z (Ez f) wz—r M $n+1>

)

n

2
> Ef,{zi}i,{ez‘}i (Z <?<CBZ)CC1T Mz,i1 + fixiT Mwn—l—l) - ?(xml—l) —E; f) (19)

i=1

By symmetry, this is also equal to the same expression using f’ instead of f, since f and f’ are
distributed identically. Besides, E, f = E, f’ and € is symmetric about the origin, so

n 2
Lra(M) > ]Efu{mi}iv{ei}i (Z (f/(ml)m;r M1+ Eixz—'r anJrl) — fl(®ny1) — Ey f,>

n 2
= Ef7{$i}i7{ei}i <Z (f’(wz)a:;r Mz, — eiac;r M;an) _ f’($n+1) _E, f)
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n 2
= Ef,{wi}i,{ﬁ}i <_ (Z (?(ZEZ)ZB: M$n+1 + Eimz—‘r an-ﬂ) - f($n+1)> - EIB f)

i=1

Let A = >, (?(ml)w;rl\/[mnﬂ +eiazz—M:cn+1) — f(xpy1) and B = E, f. Then we see that
Lra(M) > LE(A+ B)? + LE(-A+ B)? = E A% + E B2, Meanwhile, E (E, f)? is just the variance
of the signal term in D(F3T) or D(F}), which is %2 So Lra(M) > %2 O

G Bounds for g,(r)

The purpose of this section is to obtain upper and lower bounds on
" T 2
go(r) = 3 i = [PerleT el
i=1

for p=0,1/2,1. For this, we will need high probability upper and lower bounds on the number of
points in a spherical cap under a uniform distribution over the hypersphere. Consider n points {x;}
drawn uniformly from o4_1, the uniform measure over Sy_1, the d—dimensional hypersphere. The
measure of the e— spherical cap around = € Sy_1, C(e,z) = {x’' : &'T £ > 1 — ¢} is denoted by o..

G.1 Bounds on Spherical Caps

Figure 9: The surface area of the purple hemisphere is used to upper bound the surface area of C (%)7
while the volume of the green hypersphere is used as a lower bound. Points in the orange region are
Si+1\ S;, and their count is N;11 — N;.

Lemma G.1. The area of the spherical cap C(€), oe is bounded as
(2¢ —€2) 2 4

< (26) % e—ed/4

Proof. We derive a lower bound as follows. We replace the surface area of a spherical cap in Sg_1
with a d — 1 dimensional ball of the same boundary. Let V; denote the volume of a d dimensional
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ball (that is, V3(r) = %71’7“3), and let Ay denote the surface area of a d dimensional sphere (so
Az(a) = 47r?). Tt is known that

Then we have

Lemma G.6

The upper bound is similar. This time we replace the cap with the surface of a hemisphere with the
same boundary. We have

(== - onS a1
o < 2 A,(1) = 5 < (2¢ — 52) 2

O

We will also need upper and lower bounds on a discretized version of the incomplete gamma function.

Definition G.2. Denote by vy(d, o, m) the expression y(d,a,m) = S ide=o%.

We have the following

Lemma G.3. Ford > 5,1 < a <2, the incomplete Gamma function is bounded as

mie=oem=112 < o (d,a,m) < mile Y2 m < d+/d
FZ(j;ll) < y(d,a,m) < zz(ﬁrll) m>d+Vd

Proof. We compare with the Gamma function

I'(d+ 1):/ tle tdt.
0

Note that [~ tde~*"dt = adIH Joo tetdt = #F(d +1). Because the function t?e~* is uni-modal

with maximum (%) , we have from Lemma I.1

= d\? & o0 1
;ze +<a6> +Zz;nze =, 2 pYESY (d+1)
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d+vd
o

. Then we have

Now suppose m >

0o 00
2 :ide—az S § : ide—az
i=m

I
()¢
/
S
_l’_
N
~
ISH
CB|
=
+
S
Q
| —

IN
(]
7 N
S
+
N
N———
ISH
Cb‘
=
+
B
7
Q
| —
U
-+
R
S
+
—_
N————
ISH

00 \/» d va\i— d+vd
< > s d) e~ (V) <edci¢8) )
o
Z‘:d+\/3
d
_ d + \/g 6_(d+\/a) 1 < i d 2\/&
e 1 — e—aVd/(d+Vd) — \ ae «

the first inequality follows because d+af < m, the second follows because Qd“ > 2‘321“ the last

Vi
follows because (1 + %) < er and 176% < 2x for x < 2. Over all, we have

d
o0 T(d+1
sz i 2—\/&+1 < 2/ pe-tgr — LA D
e 0 Qi+l

While for the upper bound we have

m

d o
Z d —od ( d > < / tde_atdt — F(ddjr_ll)
0 0%

Finally, we use Lemma G.3, specifically that (%)d < 27d (g)d < Fo(;iiill ) to yield the desired

result.

For m < d%ﬂ, we have from Lemma G.7 that mde— ™ > %ide_m SO

m

d —ovi —am—1
§ :’Lde azzmde am—z3
1=0

and

m
d —oi _ _1
§ :Zde ai < md+16 am—3

1=0
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G.2 Bounds on g,(r)

Lemma G.4. Suppose {x;} are drawn independently and uniformly from the unit hypersphere. For
2 > 45\/677“%,71 >5,d>2,p <2, we have gp(r) = > 1| ||, — @ Hpe_T””cviT_‘c||2 satisfies

logn =
P é+£ é+£
p_ n22 1\2"2 d »p 2\2"2 d p
1—e2 2)——— (= 42 < <3n(Z 470
Y (r) Wy tyEn=an= n(T) Mgty

with probability at least 1 — %

Proof. For 0 < ¢ < r let N; denote the number, and S; denote the set, of points satisfying

: 1
l-i<gle — |z,—z| < (%) 2. Also denote by N_; the points satisfying @] = < 0, and let
S_1 denote this set. Note that

n

_ T 2

golr) = Yl @] —a|rerlal =l
=0

r—1
=3 2 el —elpelm = 3 el —afpere 2l

i=0 j€S;1+1\S; JES-1
r—1 . P

20+ 1)\ 2 _,, _
i=0

Similarly,

Note that because N; > 0,

S (2@: 1)> : Nijie > ’”z: (2@: 1)> (Nix1 — Ni)e ™

1=0

And similarly,

r—1 N\ P r—1 N ) .
21\ 2 9 21\ 2 _9 _ 21
E (r) Nijre % = E (T> (Njy1— Nj)e 2 =0 = - = 0

i=0 i=1 j=0
r—1 r—1 .\ 2
21\2 _o
= (Nj+1 — N;j) Z (7‘) e
J=1 =]
r—1 o0 2\ 2
2
<Y W)Y (X)) e
J=1 =]
r—1 00 9 % (m)g Z_j 41 ]
A =] —2j J L (]
SjZI(N]-H N])ZZ;<T‘> e = .’L<j<j )



and so
r—1

N\ P r—1 .
(1) S (2) e < S -0 (%)
j=0

=0

Tp<A4

2
e—2(z+1)

By a Chernoff bound for Binomial random variables, we have with probability 1 — -:

N;=noi <noi +

3
S

and
1

N; = noi > noi — /4nlognai‘ < §na;

Whenever
d
1 1\2 _ 161
noi > 16logn Vi < () > Glogn

T 2md \T n

and

N_1§n

Over all we have with probability 1 — -

r—1 . )
2 1 2 .
h(r) S § < (’L + )) Ni+16721 4 2pN_1672T

,
=0
r—1 . dyp
. 2 2
<n 2e % (2(Z—i_1)> + 2P
r
=0
i_i_E r
e (2) 2732 Zi%—kge—% + 2Pe—2r
" i=1
d,p
2\2%z 4
= 2ne? <7‘) ’y(§+g,2 r) 4 2Pe™?"n
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So at last, we have

2\2t2 4
p
< 16n | — -4+ =,2
i) <100 (2)" (5 + 52
We obtain a lower bound in the same way.
r—1 N g
b (k) 3 (2) e (1)
— r 2V 2nd \T
=0
P 1+£ r—1
> (1—ez7?) 22: y <1> CUN et
Vv 3aerm r :
=0
d p
28 [1\2t2 d
> (1 - e%fZ) ne - 7(7 + 8727T)
8etwd \T 2 2

T T
with probability 1 — 2 > 1 — o when 2 > 45V/dr? 0

It will be useful to simplify this bound in regimes that we are interested in

Corollary G.5. Suppose {x;} are drawn independently and uniformly from the unit hypersphere.
For 2 > 45\/&7’%,71 > 5, p<2<d, we have g,(r) = > || @i —x Hpe_”””ciT —=l* sqtisfies with

logn =

7 1
probability 1 — 5~

gp(r) =0 < dﬁp) r= d+2\/8

r 2

gp(r) =0 (ne*%) r< 7d+2\/3

The following bounds are known for the Gamma function.

Lemma G.6. The Gamma function satisfies

1. V2rd () < T(d+1) < ev/2md ()

e

I(z+3) 1
2. F(x—i—i) Z Vz+0.5

Proof. 1. Please see Robbins (1955).
2. Please see Knaeble (2015).

O
Lemma G.7. The following inequality holds:
<1+ ! )d Vi > =3 (20)
— ] e e
Vd -
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Proof. Take the logarithm of both sides, we have that this is equivalent to

dlog<1+;g>zf—;

A Taylor series expansion of log(1 + z) demonstrates that log(l + %) = Zi(—l)”lﬁ. Ford > 1,

these terms are decreasing in absolute value beyond i = 2, so we can upper bound the log with just

the first two terms: log(l + %) > ﬁ — 5 =

H Attention Window Captures Appropriate Directions

In this section we prove Theorem 4.4, which entails showing that if the Lipschitzness of the function
class is zero in some directions, one-layer self-attention learns to ignore these directions when the
function class consists of linear functions. First, we give a brief sketch of the proof.

H.1 Proof Sketch

We briefly sketch the proof of Theorem 4.4. WLOG we write M = BF 4+ B | G where F := B'M
and G := BIM. Lemma H.2 leverages the rotational symmetry of Fg in col(B) to show that the
loss is minimized over (F,G) at (F,G) = (cB',¢B ) for some constants ¢, c’. It remains to show
that £L(cBB" + ¢B B]) > L(cBB") whenever ¢ is nonzero. Intuitively, if the attention estimator
incorporates the closeness of BI x; and BI Tn,y1 into its weighting scheme via nonzero Q, this
may improperly up- or down-weight f(a;), since projections of x; onto col(B,) do not carry any
information about the closeness of f(x;) and f(x,41).

Using this intuition, we show that for any fixed ¢’ and {v;}; such that ¢/ v;rvnﬂ + v;—QvnH for some
i,i’, the attention estimator improperly up-weights f(x1), where 1 € arg max; ¢/ viTvnH WLOG. In
particular, the version of the pretraining population loss (ICL) with expectation over a, {u;}; and
{e;}; is reduced by reducing ¢'v{ v,,+1. The only way to ensure all {¢’ viTvnH}i are equal for all
instances of {v;}; is to set ¢’ = 0, so this ¢ must be optimal.

To show that reducing ¢ VIVn+1 reduces the loss with fixed {v;};, we define a; := VeV Vni1 for all

i € [n] and show the loss’ partial derivative with respect to «a; is positive, i.e.

. n Ty, _ al Npeciulu N 2
9 (ﬁ(c, {ai}i) == Ea fui}ofeihs [(ZZl(a uln 3 Uni1 + i) al) ]) >0.  (21)

=
dan oIy et tnti gy

This requires a careful symmetry-based argument as the expectation over {u;}; cannot be evaluated
in closed-form. To overcome this, we fix all u; but u; and one other u; # u, 41 with ay < ay. We
show the expectation over (uj,uy) can be written as an integral over (y1,y2) € S¥71 x S¥=1 of a
sum of the derivatives at each of the four assignments of (uj,uy) to (y1,y2), and show that this
sum is always positive. Intuitively, any “bad” assignment for which increasing a; reduces the loss is
outweighed by the other assignments, which favor smaller 1. For example, if y1 = u, 41 # y2, and
u; = y; and uy = yo, we observe from (21) that increasing «; can reduce the loss. However, the
cumulative increase in the loss on the other three assignments due to increasing «; is always greater.
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H.2 Full Proof

We now prove Theorem 4.4 in full detail.

Lemma H.1. For any u € S*! and oy, ...,y such that min; oy; > 0, and any c,,c, € R\ {0},
define
.

cu, u+c CUTuOéZOé]

Sy Y (=) T (u; — u)e’
(Z?:l ecicujuai)Q

J(c) := chiE{ui}ie[n]

2 =1
+o E{uz}te[n] [(Zn . 662 cuTu )2
=

Then for any § > 0, 0 ¢ argming<.<5 J(c).

Proof. We show that there exists some arbitrarily small € > 0 such that J(e) < J(0) by showing

d{l(cc) ‘c:(] < 0. We have

dJ(c)

de
c2e(uituy+u)Tu

n n n
& QL Ot Uit
= 268y | 2o D D (0 — )T (wy — w)(uf w — ufu) oo
u™={u; }icn] !il = i i (2?21 ecﬁcujuai)S

2c(2u;+uy+un)Tu

n n n
2.2 T T e“u O( O O
+ 207 B} icnm E E E (uj u—uyu) —
(S e vy
i=1¢/=14"=1 i=1€ &7}

Setting ¢ = 0 results in

dJ(c)
— = a u T(w T T Vs
de T )P E E E Efuticp { u) (uy —u)(u; u— ui,,u)azayaw}
=0 ii i=14¢=14"=1
202 c
T 2
5 et SO B, Tua?apag
l 1 I—1 i —
1=114'=14i"=1
- n Oé 3 Z Z Z {uitiem |: ) (ui/ - u)(ui u-— ui”u)alaz’az”} (22)
71 vo=14=14"=1
= a u T T T Vv
o n T 3 Z Z Z {u’b}ze |:<ul u; + 1) (ul u— uiuu)alaﬂazu}
_1 Z i=14=14"=1
T T
TL )3 Z Z Z {uitien) [ u'uy +u/u)(ufu - ui”u)aiai’ai”]
= i=14=14¢"=1
2 4
2¢ CaCu

7W
. Z Z Z {uiticrn [ (u'uy +ufw)(uu - u;u)aiai’ai”} (23)

i=14¢=14¢"=1
2 4 n
_ 2c;c, ‘
T e =
=1 Q; =1
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<ZZ {uiticn) [uTUZ’u uazazu} ZZ {Witiepm) [u uZ/uTuuaZaw}>

i=14"=1 i=1i"=1
(1 ’LL T T
TL 03 Z Z Z {uitien [ u(u; u— ui”u)aiai/ai”}
7’: i=14=14"=1
- ToT TV
N S p [T - o] o
_1 i=14i=14"=1
T T
=——— n BE E E E oy ain By, i) [u u;u; u}
i=14=14"=1
(1 ’LL E T
n 3 Qg Oty {uiticn) u u;u;yu
=1 O[Z 1=14i=1¢"=1
2ctc 2 no
a~u U
= — i +k o '322%(12/ (25)
iz ) H i

<0 (26)

where (22) follows since E[u;] = 0, (23) similarly follows since odd moments of uniform random
variables on the hypersphere are zero, (24) follows by the i.i.d.-ness of the u;’s, (25) follows since
E[u;u/] = +I; and u'u = 1, and (26) follows since min; o; > 0. This completes the proof. O

Lemma H.2. Consider any B € Q™F and resulting function class .7-"1”1. Consider the training
population loss L defined in (ICL), and tasks drawn from D(F&") such that Ealaa’] = 21y for
some ¢, # 0 and let M := M;MQ be optimized over the domain Mg = {M € RIxd . M =
MT,|B'MB|; < c—%} for any ¢ > 0. Then any

M* € arg Mmi/\r}l L(M) (27)
eMe

satisfies M* = ¢;BBT + 3B B for some cj : |c}| € (0, 5.

Proof. Without loss of generality (WLOG), we can decompose M = BF + B, G where F := B'M
and G = BIM. Recall that for each i € [n + 1], x; = ¢,Bu; 4+ ¢,B v;. Thus, for each i € [n], we
have

exiTManrl — X BFxn+1 X, BlGanrl
— eCul FXn+1erVi GxXpt1
T
= eCuli Fxnt1q, (28)
. T .
where, for each i € [n], a; = e®Vi Gxnt1 For ease of notation, denote X = X, 1.

We start by expanding the square and using the linearity of the expectation to re-write the population
loss as:

L(M)
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= Ea:xv{xi}ie[n]a{ei}ie[n]
™M ™M
S Z?Zl(aTBTxi —a'BTx+¢)(a’BTx; —a BTx +¢;)eXi VX VX

(S, exi Mxy2

_ 2
= CuEa,x,{Ui}v{Vz‘}ie[n]
S Y@ —aTw) (@ Ty - aTu)er e P,
(i e Fxay)?
Z?:l €2cuuiTani2 ]
2

2
t+o Euv{ui}z{ai}iG[n]»{Ei}ie[n] [(zn 1€C“UZTFXOQ')

1=

S (s = w) T (wy —w)est ey P,

(Zn . ecquani)Z

1=

=[Ex CgciE{Ui}7{Vz‘}ie[n]

::[:signal (va)

n 20 uTFX 2
) lel e“Cull; Oli
+0 E{ui},{vz'}ig[n] [(Zn . ec%“Iani)J ] (29)

1=

::Enoise (M:x)

WLOG we can write Fx = R(Fx)u||Fx||z for some rotation matrix R(Fx) € OF**. Denote
C1(Fx) := ||Fx||2. Then we have

Esignal (Ma X)

Zn Zn (ui N u)T(uj . u)ecuC’l (Fx)u] R(Fx)u+c,C1 (Fx)u;rR(Fx)uaiaj

_ 22R i=1 22j=1
aCu{u;},{v:} (2?21 eCuCI(FX)u?R(FX)uai)Q
_ 22K S0 S (w0 — W R(FX)R(Fx) T (1) — w)e O RO PRI
abu™{u;},{vi} 7, 6cuC’1(Fx)uiTR(Fx)uai)2
(30)
1
= 2c2E () fv,
CaCuto{u;},{vi} (Zn . 6cuC'l(Fx)u%.TR(Fx)uO[i)2

3% ((R(Fx)Tui ~R(Fx)"u)  (R(Fx) u; - R(Fx) u)
i=1 j=1

« eCu C1 (Fx)u] R(Fx)u+e,Ch (Fx)u;r R(Fx)u

O[iOéj)

_ ag Z:‘Lzl Z?:l (ui . R(FX)TU)T(UJ' B R(FX)Tu)ecuCﬁ(Fx)u;ru-i-cuCl(Fx)u;-ruaiaj
= CaCull{u} {vi} (Z?:l ecuCl(Fx)u;—uai)Q

(31)

where (30) follows since R(Fx)R(Fx)" = I and (31) follows since the distribution of u; is the same
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as the distribution of R(Fx)"u; for any rotation R(Fx)". Define

Zz 12] 1 (FX) ) (uj_R(FX)T ) cuCl(Fx)u u+cu01(Fx)u Oéza]

(ZTL ) 6cuC1 (Fx)ujuai)Q

1=

g(Fa u, V) = E{ui},{vi}

for any F € R¥*4. We have Lggna(M) = c2c2Eyv[g(F, u,v)], and Note that if F/ = ¢B", then
Rpx = Ix and Cq(F'x) = ¢yc. Thus,

4 (Fx)

g(F,u,v) —g(——= - B’ u,v)
E Sy S (0~ R(Fx) Tw)T () — R(Fx) ")t B wren im0,
= H{ui{vi} >, 6cuC'l(Fx)uiTu%,)2
n n N ¢y, C1(Fx) +cuC (Fx)
= Efu v} 2 i1 2 =1 (W —w) (u; —uje™™ e Taiay
iV (Z?:l ecucl(Fx)ui uai)2
= Bfu).vi}

Oy Z;L:l(ug—u —u/R(Fx)"u+ ujTu - u;—R(Fx)Tu)eC“Cl(Fx)uiT“JrC“Cl(Fx)“JT“aiaj
(anl ecucl(Fx)u;ruai)Q

1=

S (u] u - u] R(Fx) Tu)ernCiFulug, 51| cecrBou g,

(S ecuCr(Fxulug,)2

= 2B {u} (v}
[S™7 (uTu — ul R(Fx)Tu)ec«C1(Fxulu .
szl 1 7 ¢
Z?:l 66“01 (Fx)ujuoéi

= 2B}, {vi)

= Q(UT — UTR(FX))E{Ui}v{Vi} [

7}7 u,ecucl(Fx)ulTua,
Zz;bl ? T - ¢ (32)
Z' L eCu 1(Fx)u, uai

1=

n . cuCl(Fx)uTu . .
S wie i az] and WLOG write u; = py, + qu;, where py, == uu'u;

Define & := Eg v 1.
€ eu {uz}v{vz} 2?21 eCu01<Fx>u;ruai

and qq, = (I — uu')u;. Note that for any W; = pu, + Qu;, U, := Py, — Qu; occurs with equal
probability, and flipping qy, does not change any exponent or «; in (32). Thus

u=RFE > i1 (Pu; + Qui)ecucl (Fx)u:uai
U= E{(pu;-au,) e {vi} Zﬂ ecuC1(Fx)u,L.Tuai

=1
.
—1lF Z?:l(zpui + qQu; — Qui)ecucl(Fx)ui Yo,
2{(Pu; ,qu; ) }is{vi} Z?:l eC“Cl(Fx)uiTuai

—E iy Py, g, (33)
{Pu; }is{vi} Zﬂ ecuC1(Fx)uiTuai

=1

=cu

ulua ecucl (Fx)ul ual

where ¢ := E{ui}’{vi} |:ZZL —

n o cu Cq (Fx)u u
Zi:l

} Note that for any u;, —u; occurs with equal proba-
@
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bility, so

) . uTui ecuCl(Fx)ulTu
€= Z {ui}{vi} n cuCl(Fx)uTu

Ej:l € 7

(67}

-
1> B }[ u u e 19U g,
-2 u;g,\Vi T T
C1(Fx)u, ) n cC1(Fx)u;u_
i=1 cuCLEXu ey 3T e Iy
u;—u e—cuCl(Fx)uzTuai
—cuC1(Fx)u] u . n cuC1(Fx)ulu
e—cuC1(Fx)u, 0‘2“‘2]' )i € i My

. n - ecucl(Fx)uiT“ai
=2 ZE{ui}7{Vz‘} u; u ccuC1(Fx)u] u cuC1(Fx)u!

im1 041"‘2] 1j£i € i Yy
e cuC1(Fx) a
B C1(Fx)u, n lc C1(Fx)u! u ’ (34)
e e PN Ny 4 570 sy eI ey
Since a; > 0 and ¢, > 0 by definition, ecuCLFx)uu «; is monotonically increasing in u u. Also,
x) := =% is monotonically increasing for x > 0 for all ¢ > 0. Thus we have that
T+c y g
u/u>0
ecuC1(Fx)u2—uai —cuCl(Fx)uTuOé,
T - T
Cucl(FX)u Ugy, + Z] 1 ot eCuCl(FX)uj uOéj —cucl(Fx)u Upy, + ZJ 1 ok Zecu(}1(Fx)uj uaj
(35)
and thereby & > 0. Therefore, argmax, cgi—1(u')T@ = u, in particular u'a > u'R(Fx)'a

whenever R(Fx)u # u, so (32) is strictly positive if R(Fx)u # u. Thus, for any u,v such
that R(Fx)u # u, g(F,u,v) > g(Cl(FX)BT u,v). Also, for any u,v such that R(Fx)u = u,
9(F,u,v) = g(“{PIBT 0 v).

Next we need to account for Lpeise(M, x). Again writing Fx = R(Fx)u||Fx||z and C;(Fx) = ||Fx]2
and using the rotational invariance of u;, we obtain

-
27} chuui an2

i=1 7

n cuu, Fx . \2
Doicg € )
?: e?cuCl(Fx)uTR(Fx)uaZQ
)2

_ 2
=0 }Eu,v,{ui},{vi} [(Zn ecuCl(Fx)uTR (Fx)u

=1

Enoise(M) = U2Ex7{xi}ie[n] [(

Q

i=

(Zz_l ecucl (Fx)ujuai>2

n QCuCl(Fx)ui ua2
=0 Euv{uz} {vi} [ ]
where (36) follows using the rotational invariance of u;. So, returning to (29), we have
L(M) = Ex[Lggnal(BF + B, G,%) + Lyoise(BF + B G, x)]

Z?:l Z;‘L:1(ui _ u)T(uj _ u)eCu(h(Fx)u;ru+CuCl(Fx)u;ruaiaj

(E?:l ecuCl (Fx)u;ruai)2

> Eu,v C?LCZE{ui}’{vi}

50

> 0,



n 2¢,C1(Fx)u u 2
2 Disi€ Loy
+ 0 Biuy v} ' )2] ] (37)

(Xiy e (Fxjuug,

where (37) is strict if R(Fx)u # u for some u, v, which is equivalent to saying that F ¢ {¢BT, ¢ > 0}.

Next, recall that we have defined «; = ecvVi Gx Using a similar argument as earlier, by the rotational
. . . T

invariance of the v;’s, for any fixed x, we can write a; = e®2(G*¥)Vi el where Cy(Gx) == ||Gx||o and
e is the first standard basis vector.

Next, for c1,co > 0 and some fixed u, v, define

Z?:l Z;L:1 (ui _ u)T(uj _ u)ecuclu;ru—i-cuclu;uecvczv:m—&-cvcgv;el

(En 1 ecuclujuecucgvjm )2
1=

H(u7 v, (1, 02) = ELCZE{ui}:{Vi}

T T
n e?cuclui UGQCUCQVi el

+ 0B fvi) iz (38)

(Zn 1 ecuclu;ruecvczv:el )2
1=

and let

(Ci(u,v),C5(u,v)) € arg min H(u,v,cy,c9) (39)

(c1,62):0<e1 <5 ,e22>0
U

Since H does not vary with v, we have (C}(u,v),C5(u,v)) = (Cf(u), C5(u)) WLOG. In fact, H does
not vary with u either, due to the rotational invariance of the u;’s. So, we have (Cf(u,v),C5(u,v)) =
(CT,C5) WLOG, i.e. there is a single pair (C7, C5) that minimizes H(u, v, ¢, c2) over ¢y, co for all
uc SF!and vesihl,

Thus F* = C;B" and G* satisfies ||G*x|| = C3 for all x, which implies, using also that M is
symmetric, that G* = C’;BI. O

Lemma H.3. Consider any o = [aq,...,ay] such that o = max; o and ap > min; o; > 0.
Further, let ¢ € (0,2]. Define

S (- w) T (uy - e Y

Hggna(u, o) :=Egy1 (40)
signa {u }ze[n] (Z?:l ecujuai)z
Then
8If[signal(uu a) > 0.
80&1

Proof. We first compute M“%‘%fl(um. Using the linearity of the expectation and the quotient rule
we obtain:

a-Ersignal(ua O{)

8@1
e 0 S X (m — )T (w) —we™ M My
= Huitien | 9a n_culu, \2
1 (Dimq e Yoy)

o1



(i e May)? (Z?:z(ul —U)T(uj—u)ecul ueuj o+ [lwm —uHQeZCUTum)

= ZE{uZ}Z
(Zz 1 ecu ual)4
- (Z?:l ;}:1(1” _ u)T(uj — u)e™ § utcuf u, 04])(2?:1 ecuiTuOéi)eculTu
— {uz}z (Z . ecu uaz)4
1=
n culu,. n T ) culTu—i-cu-Tu )
(Doizg €™ M) Zj:l(ul —u) (u; —ue 7oy
=
- (Z?:l Z?:l(ui . u)T(uj . u)ecu u+cu uaza])ecufu
— 4B{u

(0, e hay)3
:2271:271:52-,]- (41)

i=2 j=1

where

N c(u] utu] utul )
u u u uje 4 J
S j OézOl]E{u /}2/6 [( ! /L) ( J ) .

—
(2= €™ a)?
Note that terms with ¢ = 1 do not appear in (41). We analyze S;; + S;; and each S, ;, j ¢ {1,4}
separately, and will ultimately show that each of these terms is positive. We start with the latter
case as it is easier to handle. For j ¢ {1,7}, we have
(ur — ;) " (u; —u)e
—
(i € )
[(ul . ui)TuuT(uj . u)ec(uru-l—u;ru-&-u;-ru)]
n T

€ln] (22:1 ecui,uai/)g

uil' (Ik - uuT)(uj _ u)ec(ulTu—I—uiTu—&—ujTu) T

c(uf utu u—i—u;r u)
Sij = iRy,

- ala]}E{u 1}

k3

+ ;0 E{u '}

i'en I (23:1 ecu;uai/)3 ]
=0
_HZT (Ik - uuT)(uj _ u)ec(uiru—i-u;ru—‘ru;.ru) ]
S E{u /}ZIE n cuTu (42)
L >oi_qje )3 |
=0
E (u]—u - u;ru) (u‘;ru — 1)€C(u1ru+u;ru+u;|—u)
= 040 {u, /}lle[n] (22:1 ecu;uoéil)3

where the latter two terms in (42) are zero by the same argument as in (33): flipping the component
of either u; or u; perpendicular to u does not change any of the values in any exponent, and each
flip occurs with equal probability. Next, note that if a; = aq,

T T T T T T
. u]—u(u;-ru . 1)ec(u1 utu/ utu;u) u?u(u;-'—u . 1)ec(u1 utu utuu)
{uirtireqn T {u;r -
€[n] (Z’n; . Y, ,uai/)g € (En; ) Y, ’uOéi/)3

thus S; ; = 0. Otherwise, o; < ay by definition of a7, and there must be some such «;, since if
not, there would be some ¢ € Ry such that a = ¢’a*. For the case a; < ai, we use a symmetry
argument to show that S; ; > 0.
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First we define additional notations. Let U1; := {uy }iepa (1,11, and for any (a,b) € [—1,1]%, define

(a — b)(u;l'u _ 1)6c(a+b+u;.'—u)

fap(Us) = S
(eran + ePa + 354y ;€ a3

In particular, for any a € [~1,1], define p, := Py, [u{ u = a]. Since u; and u; are i.i.d., we have
Py, u; [uf u=a, uiTu =b] =Py, u, [uf u=0b, uZTu = a] = pupy for any (a,b) € [~1,1]? Thus, by the
law of total expectation we have

1 1
Sij = @iy, | [ / / fap(U1,i)paps da db}

azaj

- [ / / (Fas(T11) + Foa(T1.))papy da db} (43)

Next we show that for any instance of a,b and Uy, fop(U1,) + fo.a(U1;) is positive. We have:

fan(Uri) + fo.a(Urs)
= (a = b)(ufu— ety

1 1
X ca cb cufu 3 B cb ca cufu 3
(ean +ePa; + 3,4y €M )3 (ePan + ey + 37 ;e M)

>0
with equality only if a = b or u; = u, since ujTu < 1 with equality only if u; = u, and
a>b < (e“aj+ePa; + Z ec“iT’uaZ-/)?’ > (ePay + e“a; + Z ecu;“ai/)3 (44)
i1 i1,

due to o1 > a; and o > 0 for all ¢/. So we have S;j > 0.

Next we analyze S; 1 + S;; . In these cases we cannot immediately drop the components of u; and
u; that are perpendicular to u. We have:

- —w) " — c(2u] u+u u)
Sz 1+ Sz i = O‘zalE{u ! (ul uz) (u1 u)e 1 ]

i'eln I (Z?}Zl ecu;uai,)g

_(ul B uz‘)T<uz‘ . u)ec(ulTu+2uiTu)]

(S ety )3

2
+ o E{ui’}i’e[n]

B T T
E (1 —uju; — uf u+ u, u)ecur viu v
= ;X1 {u ’}Z’E " Cqu 3
L (zile e ay)
r T T
. (T — 1 — afu -+ ] e we2uTw
+ O[ {I_l /}z/e [n] n Cqu 3
L (ZZ‘/:1 e Moy )

u;ru — u]—u)ec(ulTu+u¢Tu)( cuju ag + ecu ual)
(S0, ™ M ay)3

[(1 _ u;l'ul) c u1 u+u u)(ecu1 uoé1 _ ecu az)]

(
= OézE{u i Yileln) [

+ aiE{ui/}i/G[n]

T

(= € M)

o3



Now we can split uiTul into the product of the components of u;, u; in the direction u and the
product of their components in the perpendicular subspace as before. Doing so yields

T T
(u;ru _ uiru)ec(ul u+tu; u) (ecu1 aq + et uaz)
Si’l + Si’i = aiE{uﬂ}z”e[n]

(ng . ecuTuai/)ZS
[(1 _ uZTuu—I'ul)ec(u1 u+ui u) (ecu]—uoé1 _ ecuTual)
Tu
(o= e air)?
uzT (Ik _ uuT)ulec(u1 utu] u) (ecurual _ 6cu;ruO[i)
T
(D i—y e air)?
u;l—u _ uil—u)ec(ulTu—i-u.Tu) (ecu1 Qg + e ual)
(Thoy e )3
[(1 _ uiTuuTul)ec(ulT‘”“i u) (ecuir a1 — ef T az)]

(X5, ety )3

+ aiE{ui’}i’e[n]

B aiE{ui/}i/E[n] [

(
= aiE{ui’}i’G[n] [

+ o,

i’ €[n]

Next, define

_ (0] u — uf w)ecvhu/wecufug, 4 goufug,)
9ap(Ut) = E{ui/}i’e[n} n_ecupu
D=y e May)3

(1-— uiTuuTul)ec(ulT“Jr“iT“)(eC“'lT o] — e 041)
(273 . €CUT’uOJi/)3

We argue similarly as in the previous case, except that here we must include additional terms.

+Eq (45)

i }i’e [n]

Sia+ Sii

B [/ / 9ap(U13) + 95.0(U1,0))paps da db}

(67 B
- ?EUl,i [/1/1 Gap(Uri)paps da db] (46)

where

Gaop(U1,0) = 9gap(U1) + go,a(U12) (47)
We show that for any (a, b) € [—1,1]* and any Uy ;, Go5(Uy ;) is positive, which implies that S; 1 +S;;
is positive by (46).
First, note that if b = a for any a € [~1,1] and Uy ;, we have

Gaa(U14) = Efu.1, (1 —a?)e3**(ay — ai) >0 (48)
i’ Jil €[n] ((Oél + Oéz) a4 Zz e\ {1} ev aZ )3

since each term inside the expectation is nonnegative, as > < 1 and a; > «;. Note that this implies
Gap = 0 when a = b, so WLOG we consider b # a for the remainder of the proof. Now we focus on
showing (61). Throughout, we will make use of the notation

dop = e“oq + e®a; + Z ecuz‘T’“ai/ (49)
'en]\{1,i}
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which represents the cube root of the denominator in all terms when uiru = a and uiTu = b, and

Yab =1 —ab+a—b.
Using this notation, we can rewrite

b
atb) € Va1 — €V Ya b0
3
da,b

Gap(T15) = el (50)

Therefore,

9ap(U1,1) + gb.a(U1,1)

ca cb cb ca
. ec(a+b) € Yb,a¥1 — €7 Va, b0 + €C(a+b) € Ya,b¥1 — €7 bas
- 3 3
da,b db,a

= 60(a+b) d;idlj,g (al <6ca7b,adg,a + GCb’Ya,bdZ,b) -y (eca’)/b,adg,b + GCb'Va,bdg,a> )

Note that ec(“+b)d;:;’db_2’ > 0, so it remains to show that the term inside the parentheses is positive.
This term can be rearranged as:

3 b A3 3 b 3
aj <6ca%,adb,a + €° ’Ya,bda,b) — (eca%,ada,b + €° ’Ya,bdb,a>
3 b 3
= (o1 — ) (eC“7b7adb7a + e %,bda,b)
3 b 3 3 b 3
+ <€Ca%,adb,a + e Yapdyp — € Ypady p — €° ’Ya,bdb,a>

= (a1 = ) (€™, + e rapdiy) + i (4], = diy) (€00 =€) (51)

=T =T5

First we show that 7} is positive by analyzing 7, and 73 4. For any (a,b) € [—1,1]% such that a # b,

0 0
() = 5 (L= ab+a—b) = —1-a<0 (52)

with equality holding if and only if a = —1. If a = —1, we have 7., =1+b—1—b = 0 for all
b € [—1,1]. Otherwise, (52) shows that 7, is strictly decreasing with b, so it is minimized over
be[-1,1] at b=1. When b =1, we have 7, =1 —a+a—1 =0 for all a. So, v, > 0 with
equality holding if and only if @ = —1 or b = 1. Note that by symmetry, this implies v;, > 0 with
equality holding if and only if @ =1 or b = —1. So, we can have both v,; = 0 and 73, = 0 if and
only if a = b= —1 or a = b = 1. However, we have a # b, so at least one of 7, ; and v, , are strictly

positive, and T} is strictly positive (using also that ay > «y).

We next show that T3 is positive. Observe that
dyy—ddy>0 < b>a (53)
since a1 > oy, S0 it remains to show

b>a < e“pg— ed’*ya,b > 0. (54)

95



where
Yoo — €Pyap = (1 —ab—a+b) —e®(1 —ab+a—b). (55)
We first show the forward direction, namely b > a = e“yp 4 — ed”yal, > 0.

Note that if b = a, e“y, 4 — er'yaJ, = 0. So, if we can show that for any fixed a, e“*v;, — ed’y@b
is increasing with b as long as b > a, then we will have e“y;, , — ed’fya,b > 0 for b > a. To show
€““Voa — C’Cb%,b is increasing, we take its partial derivative with respect to b:

0

5 (ecafybﬂ — ed’fya,b> =e“(1—a)+e®(1+a+chb—ca—c+ cab) (56)
We would like to show that the RHS of (56) is nonnegative. To do so, we show that its partial
derivative with respect to a is positive, so it achieves minimum value at a = —1, at which point the

value is positive. We have:

= q(b) = q(a) (57)

where g(x) := e“(1 + cx — ¢). Note that ¢(x) is monotonically increasing in = € [—1, 1]; to see this,
observe that
8 CcT cx cxT
a—q(az):e (I1+cx—c)c+e“c=e"2+cx—c)e>0 (58)
x

where the inequality follows since ¢ € (0,2] and = € [—1,1]. Therefore, since b > a, we have
q(b) — q(a) > 0 and % (% (ecavbﬂ - er’yaJ,)) > 0 from (57). As a result, % (eca%ﬂ — 80b7a7b)

achieves minimum value at @ = —1. At this point, using (56) we have
0
% (eca%,a — ed”ya’b> =2e “+ ed’(cb +c—c—cb)
=2e¢ ¢
>0

This implies that the minimum value of e“y, , — er'yaJ, over b € [a, 1] is achieved at b = a, and we
know this value is zero, so we have that e“~y, , — ed"ya,b > (0 when b — a.

To show the backward direction of (54), namely e“*y, , — €Cb’7a,b > (0 = b > a, note that the
converse, namely a > b = e“y,, — e"’b’y%b < 0, follows by the same argument as above with a
and b swapped. Therefore, we have T > 0 as desired. O

Lemma H.4. Consider any o = [a1, aa] such that oy > ag > 0. Further, let ¢ € (0,1]. Define

T T
e2cu1 ua% + eZch ua%

Hpoise(u, o) := Bu g (eculTqu + ecu;“OéZ)z

Then

8Hnoise(u7 a)

>0
(90(1
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Proof. We have

T T
e2cu1 ua% 4 €2cu2 uag
Hnoise(ua a) = Eu1,u2

T T
(ecu1 ua1 4 ey ua2)2

Since n = 2, we have

T T
a‘Z¥noise(uv a) [ d e uOé% + e2cus uOé% ]
T a9, up,u2

= T T
oo Oay (ecu1 Uy + el ua2)2

T T T
2e2cu1 u&l(ecu1 uoé1 + eCly ua2)2
up,uz

T T
(ecu1 qu + Uz ua2)4

T T T T T
2(ecu1 uO[1 + eCla uOQ)ecu1 u(€26u1 ua% + chul uag)]

—Eu
1,u2 T T
(ecu1 uO[1 eCuy ua2)4

T T T T
ec(ul u+u, u) (ecu1 Un — eCuz ua2)
- 2a2Eul’u2 cu u cuj u 3
(e My + eM2 Mag)

T T T T
ec(ul utuy u)(ecu1 U —eU2 ua2)

Define N = Ey, u, [ } , and

T T
(ecu1 uoq_’_ecu2 ua2)3

dop = €e“ar + ePay

Now, we have

1 1
N = ha ppapy da db

|
—

|
—

[y
[y

Il
N~ NI~ N~ NR N

|
—
|

(ha,b + hb,a)papb da db

|
_

|
_

[y
[y

1 1 1
(hap + hoa)papsx{a # b} da db+ 3 / / (hap + hpa)Papbx{a = b} da db
—1J-1

|
—

I
—

1
(hap + ho.o)Papbx{a # b} da db + / haap? da
-1

[y
[aey

1

1 1 /!
(Rap + hoa)papoxia # b} da db + 3 / ha.ap> da + 3 / hppp db
—1 -1

|
—

I
—

[y
[y

1 1 1
(s + brapapicla £} dadbt 5 [ [ o da db
—-1J-1

— =

1
/ hpppi da db
-1

-
—
L

1

1 1
(ha,b + hb,a)papr{a 7é b} da db + Z / / (ha,apz + hb,bpg) da db
~1

-1

—_
—_

|
N~ N

\L\ +
\L\H

Hay, da db (59)

|
—

|
—

o7



where
P2 p;
Hgyp = papy(hap + hpa) + ?aha,a + Ebhb,b (60)

We will show that for any (a,b) € [—1,1]? and (pa, pp) € [0,1]%, H, is positive, which implies that
N; is positive by (59). To do this, assuming h, o is nonnegative for any a, it is sufficient to show

Ha,b = ha,b + hb,a + ha,ahb,b > 07 (61)

since this implies hqp + hp g > —+/haafpp and thus, from (60),

. 2
Hap > —pappy/ haahop + Eaha,a + Ebhb,b
2
fhow [
(pa 9 Db 9
0

Before showing (61), we need to confirm that h, , is not negative for all a € [—1, 1]. We have

> (62)

3ca
e’y — ag)
haa = — B >0 (63)
a,a
since each term inside the expectation is nonnegative, as a1 > . Note that this implies H,p > 0
when a = b, so WLOG we consider a > b for the remainder of the proof.

Note that

o e3c(a+b)(a1 _ a@,)? B (041 _ a2)2 (64)
a,allb,b = 636(a+b)(a1 +a2)6 - (al _|_a2)6

Using this, we have

Hyp = hop + hoa + v/ haahip
62cob+cbal _ e2cb+caa2
= -
d3
a,b

= d3d, 2" (0 + ag)’?

chbJrca 2ca+cba2

o] —e a1 — Q9
d?,a (a1 + 042)3

X ((ecaal — €Cb042)dia(041 + a2)3 + (ed’ozl — ecaag)dib(al + a2)3
=P
e~ G (01— as) ) (65)

=:P

To show that ﬁ@b is positive, we need to show that P is positive. Without loss of generality we can
consider a; = 1 and ag € (0,1) by dividing the numerator and denominator of Hypoise by a%. Thus,
for the remainder of the proof we treat o1 as 1 and write « := «g for ease of notation. Using this
notation we can expand P as follows:

P = (e — e®a)d} (1 + a)® + (¢ — ¢“a)dd (1 + ) + e 8 (1 - a)
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= (e —e®a) (e + e“a)’ (1 + ) + (e — e“a)(e” + ePa)’(1 + a)’®
+ 6—c(a+b)(eca + ecba)S(ecb + ecaa)S(l —q)
= (ePea—ch 4 ¢Seb—ca) (a3(1 _ a))
+ (e* + e*®) (—a — 5a® + 5at + af)
+ (630a+cb + e3cb+ca) (1 + 6a 4+ 1003 — 10a* — 6a° — a?)
+ 2020 (1 4 50 4 27a% + 3a® — 3a* — 27a° — 5a’ — )

_ (1 _ a) % ((eE)cacb + e5cbfca)od3

+ (efea 4 eteb) (—a— a? — 60’ — ot — a5)

+ (e3ca+6b +e3cb+ca) (1 +70é+ 70&2 + 170{3 +7Oé4 —|—7Oé5 +046)
+ g2cat2ch (1 + 6a + 3302 + 3602 + 330 + 6a° + a6) )

Recall that 1 — a > 0, so we need to show that the sum of the remaining terms is positive. These
terms can be written as a polynomial in y :== (@~ ag follows:

P(1 — o)~ leca5b — 1643
+9° (—a—a2—6a3—a4—a5)
+y (1 +7a+ 70 + 1703 + 7a* + 7a° + 046)
+ ¢ (1 + 6a + 33a? + 3602 4 33a* + 6a° + a6)
+ 3% (1+Ta+ 70 + 170® + Ta* + 7a® + o)
+y(—a—a2—6a3—a4—a5)
+a? (66)

We know that % > ¢° > ... > 1 since a > b. We also have that o < 1. Using these facts we next
show that the sum of the third and smaller-order terms in the RHS of (66) is positive.

(%) ==y (14 6+ 330” + 36a° + 330" + 6a° + f)
+ 3 (14 Ta+70* +170° + 7o’ + 7a” + of)
+y(—a—a2—6a3—a4—a5)
+a?

>y (1+ 6a+ 33a” + 36a° + 33’ + 6a° + )
+y(1+7a+7a* +17a® + Ta* + 7a® + of)
+y(—a—a2—6a3—a4—a5)
+a?

>y (2+ 120 + 3907 + 470° + 390" 4+ 120° + 1a°)

>0

Next we show that the sum of the sixth-, fifth-, and fourth-order terms is positive. Let ag = a3,
as =a+ao?+6a+at+a’ and ay =1+ Ta + 7a? + 1703 + 7a* + 7a® + ab, so the sum of the

sixth-, fifth-, and fourth-order terms is y%ag — y°as + y*as. Note that 32a¢ < a4 since a < 1, and

a5—4a6:a+a2—|—2a3+a4+a5
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= — (7.5a + 7.5a° + 15a° 4 7.5a" 4 7.50°)

7.5
1
<= (1+ 70+ 7a® + 170 + Ta* + 70” + o)
a4
_ M 67
7.5 (67)
thus a5 < 24 + 4ag. Also, y = ela=b) < 02 < 7.5 since ¢ < 1. Therefore,
yPag — yPas + y'as = y* (y2a6 — yas + as)
a
>yt (y2a6 — dyas — 9745 + a4)
4 2 Y
>y y“ag — dyag + aq (1—7—5>
—_———
>0 since y<7.5
>yt (y2a6 — 4yag + 32a¢ (1 — 7—3/5))
62
4 2
= e 32
Y ae <y 7‘5y+ )
> gyt L62y’ + 32 (68)
ac | == [ 22
vas\ 7y \75
>0 (69)

where (68) follows by minimizing the terms inside the parentheses over y. Thus, we have I:Ia,b > 0,
which completes the proof. O

Now we can finally prove Theorem 4.4. We prove a slightly stronger result, formally stated as follows.

Theorem H.5. Consider any B € Q™% and the corresponding function class ]:]lgm as defined in
lin

(4.2). Suppose tasks are drawn from D(Fg") and Assumption 4.3 holds. Recall the pretraining
population loss:

Yo (f(@i) = f(Xng1) + Ei)eijxn+1 ) 2 (70)

E(M) = EfV{xi}iE[n«l»l]7{5i}ie[n] < Zn XIMxn-ﬁ»l

i=1¢€

Consider two cases:

e Case 1: 0 =0, n > 1. Then define C), = 2.
o Case 2: 0 >0, n=2. Then define C), = 1.

Then in each case, among all M € M := {M € R4 . M = M, |B'MB||; < %}, any minimizer
M* of (70) satisfies M* = cBB' for some ¢ € (0, %]

Proof. From Lemma H.2, we have M* = chBT + 5mathbelBI for some ¢ € R and some
¢p € (0, %], where €}, = 2 in Case 1 and Cp, =1 in Case 2. Suppose that ¢ # 0. Then it remains to
show that £(c,BB" +¢éB B]) > £(c,BB").
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We start by establishing the same notations as in the proof of Lemma H.2. For each i € [n + 1],
x; = ¢y Bu; + ¢,B v;. Thus, for each i € [n], we have

x;ern_H cpx;rBBTxn_H c’x;rBLBIxn_H

(& =€ (&

_ ecpciujuwrlec%év;vmrl
2..T
= ecpcuui Un+1 lo% (71)
where, for each i € [n], a; == eV Va1 For ease of notation, denote x = x,41, U := Uu4+1 and
¢ = ¢yc2. Also, note that for any x;, f(x;) =a'B'x; = c,a’u;, and that drawing f ~ D(Fir) is

equivalent to drawing a ~ D, for some distribution D, over RF such that Eq- Da [aaT] = chk. Using
this, we have:

L(c,BB' +¢B B])

2
(Z?:l(cua—rui - CuaTu + Gi)ecu;ruai)

afuv{ui}ie[n]7{ai}i€[n]7{€i}i€[n] (Z . Ccu u,,. )2
1= 7

= Ew{ui}ie[n],{ai}ie[n]

I I B (a1~ cia T ) (e, — caTu ) Y M

(iy e v)?

= Buw ety dodicto
Zz 1 E] (g u)T(uj —u)e™ St 1 Mooy g > QZCHI“O@O@‘
& (i e )? (g e v)?
= By H(u )
where o := |1, ..., ] and
H(u, )
9 222 123 1 u)T(uj —u)e™ Juteu; UO‘ZO‘J o2 Zr e2en]u ZQ

= E{ui}ie[n] Ca u (72)

<22;1 e o) (05 €™ M)
Define a* = [1,...,1] € R". We proceed by showing that for any u € S?!, all € R satisfy

(i) if @ =ca* for some ¢ € Ry, then H(u,a) = H(u,a*)
(i) if a # da* for any ¢ € Ry, then H(u, o) > H(u,a*)

This implies £(c,BB" +¢éB B]) > £(c,BB"), since
Po({a=ca* forsome d € R }) =1 < ¢=0,

which implies that ¢ = 0 is the unique argument that achieves the minimal value of C(chBT +
¢B B]) over ¢ € R (and this value is Ey [H(u, a*)]).

Proving (i) is trivial as it can be easily checked that H(u,a) = H(u,ca) for all u € S4 !, o € R%,
and ¢ € Ry.
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Proving (i7) is more involved. Consider any a # ¢'a* for any ¢ € R;. WLOG let 1 € arg max; «;.
We show that the partial derivative of H(u, ) with respect to « is strictly positive, which means
that H(u, o) can be reduced by reducing «; by some € > 0. We can repeat this argument, repeatedly
reducing max; o; at each step and thereby reducing the loss, until we reach an o’ satisfying o’ = ¢ a*.
Since the loss is reduced at each step, we have that H(u, o) > H(u, o).

To show that the partial derivative of H(u, ) with respect to ay is strictly positive, we decompose

OH(u,a) astgnal(u @) OHnoise (u,00)
Oay Oal + Oal ? Where

Z?:l Z?:1(ui _ u)T(uj _ u)ecu u+qu ualaj
T

Hsignal(uaa) = C c E{uZ}ZE[n]

(2?21 ey, uOZi)2
n 2cu] u, 2
, 2 > iy €M Moy
Hn01se(u7 a) =0 E{ui}ie[n] [(Z:L_l ecu;ruai)2]
By Lemma H.3, we have E)HSigg%i(um > 0. If o0 = 0 we are done, otherwise we have n = 2 and
M{%‘?Eua) > (0 by Lemma H.4. This completes the proof. O

I Additional Lemmas

Lemma 1.1. Consider a continuous unimodal function f. Then we have
S f(i) - max f < / ()t <3 £() + max f
i=0 0 i=1

Proof. Let T' denote the point that achieves the maximum of f. Then we know that f(t) > f(|t])
for t < T, while f(t) > f([t]) for t > T. This means [/ | f(t)dt < f(i) < [/*' f(t)dt for t < |T|

andf (t)dt > f(7) >fz+1f (t)dt for t > [T'] So

LT)

S =Y i+ S £
1=0 1=0

i=[T1
|7

<> e dt+2/ f(t)

i=0 " 1
[T1

00 it
> / fode+ [ fd
i=0 v* L

7|
5/0 f(t)dt + max f

Similarly we have

[T oo

ijf Zf Zf()



LT)

7 0 141
s;[ﬂwwzj 0

[ "
00 [T]
< ;/¢_1f(t)dt_ L f(t)dt

T]

< /0 f(t)dt — max f

Lemma 1.2. If f and g are nonnegative measurable real functions, then

[ @@ < [ @)y @

where f*,g* are the symmetric decreasing rearrangements of f and g.

Proof. Please see Lieb & Loss (2001) or Hardy et al. (1952). O

Lemma 1.3. Suppose {a;},{b;} are sorted the same way, a; > aj <= b; > bj. Then we have

Sa? Y
Ca?  (Saib)?

Proof. Cross multiplying and expanding, we have

D ahQaibi)? < (Y aitd)(Y_ a)?
<~ Z aibiajbja% < Z a?b?ajak
2,7,k 3,7,k
1 1
= 3 Z aibiajbjai + ajbjakbka? + akbkaibia? < 3 Z a?bfajak + a?bjzakai + azbiaiaj
i,5,k .,k
1
<~ § Z a%bgajak + a?bjz-akai + aibzaiaj — (aibiajbjai + ajbjakbkag + akbkaibia?) >0
i’j’k
1 2 2 2
<~ g Zaiajak (aibi + ajb]- + akbk — aibjbk — ajbkbi — akbibj) >0

i)j)k

The last of which follows from the rearrangement inequality (Hardy et al., 1952). O

J Additional Experiments and Details

All experiments were run in Google Colab in a CPU runtime. We used a random seed of 0 in all
cases. All training was executed in PyTorch with the Adam optimizer. We tuned learning rates in
{1073,1072,107 !} separately for linear and softmax attention, and we initialized Mg and Mg, by
setting each to 0.001I,, and tie the weights of Mg and Mg to speed up training.
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Figure 10: Representation learning error (p(M, B)) and test ICL error (mean squared error) during
pretraining softmax and linear attention on tasks from Left: fﬁﬁ, Center: F2 , and Right: FB*.

Figure 1. The upper row depicts our functions, which increase in Lipschitzness from left to right.
The black curve depicts the ground truth, while the gray dots depict the noisy training samples.
The shaded region represents the attention window. The middle row depicts the attention weights
for softmax and linear attention. We remark that the softmax is able to adapt to the Lipschitzness
while linear is not. The bottom row depicts the ICL error as a function of the context length n
for Linear and ReLU pretraining using Linear and Softmax attention. That is, at each iteration, a
context is drawn from a non-linear regression (defined below) consisting of a randomly phase shifted
cosine function. The ICL task is to predict the function value at a randomly chosen query on the
unit circle. Each point in the plot depicts the ICL error of a pretrained attention unit (using softmax
(blue) or linear (orange) activation) at the end of 15000 iterations with learning rate 1073, We use
d = 2 and a distribution D(F, piis). Here we define

Funills = {vcos (6 —b)}

and a distribution D(F, nins) is induced by drawing b uniformly from [—m,7w]. We use v =0,1.5,6
for the left, middle and right plots in the bottom row, respectively.

Figures 3, 4, 5. In all cases, we use an exponentially decaying learning rate schedule with factor
0.999. In Figures 3 and 5 we use initial learning rate 0.1 and in Figure 4 we use an initial learning
rate 0.01. Moreover, in all cases besides those with varying n in Figure 4, we compute gradients
with respect to the ICL loss evaluated on N = |\/n] query samples per task (that is, each context
input to the attention unit has n + N samples, of which n are labeled, and the other N labels are
inferred). When n varies in Figure 4, we use N = 1. In Figure 5 we show smoothed test ICL errors
with smoothing rate 0.01.

Figure 10. We randomly generate B on each trial by first sampling each element of B iid. from the
standard normal distribution, then take its QR decomposition to obtain B. To draw the covariates,
we draw a random matrix J € R by sampling each element i.i.d. from the standard normal

distribution. Then, we compute J = (JTJ)'/2. Then we draw &; ~ N (04,1;) and set x; = ”ﬁ?”.
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