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Abstract

Zero-shot skeleton-based action recognition aims to de-

velop models capable of identifying actions beyond the cat-

egories encountered during training. Previous approaches

have primarily focused on aligning visual and semantic rep-

resentations but often overlooked the importance of fine-

grained action patterns in the semantic space (e.g., the

hand movements in drinking water and brushing teeth).

To address these limitations, we propose a Frequency-

Semantic Enhanced Variational Autoencoder (FS-VAE) to

explore the skeleton semantic representation learning with

frequency decomposition. FS-VAE consists of three key

components: 1) a frequency-based enhancement module

with high- and low-frequency adjustments to enrich the

skeletal semantics learning and improve the robustness of

zero-shot action recognition; 2) a semantic-based action

description with multilevel alignment to capture both lo-

cal details and global correspondence, effectively bridg-

ing the semantic gap and compensating for the inherent

loss of information in skeleton sequences; 3) a calibrated

cross-alignment loss that enables valid skeleton-text pairs

to counterbalance ambiguous ones, mitigating discrepan-

cies and ambiguities in skeleton and text features, thereby

ensuring robust alignment. Evaluations on the benchmarks

demonstrate the effectiveness of our approach, validating

that frequency-enhanced semantic features enable robust

differentiation of visually and semantically similar action

clusters, thereby improving zero-shot action recognition.

Our project is publicly available at: https://github.

com/wenhanwu95/FS-VAE.

1. Introduction

Human action recognition has gained significant attention

in computer vision due to its wide-ranging applications,

including surveillance [39, 40], human-computer interac-
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Figure 1. The overall design of our frequency-semantic enhanced

variational autoencoder for zero-shot skeleton action recognition.

tion [20, 33], and automated driving [20, 33]. Among

the various modalities, skeleton-based action recognition

stands out for its robustness to environmental variations,

as it focuses on 3D structural poses derived from hu-

man joints. Although conventional supervised approaches

[6, 9, 18, 21, 24, 30, 44, 45, 47] have achieved remark-

able success in this domain, their reliance on extensive la-

beled data limits their performance to diverse and unseen

action categories. Zero-shot skeleton-based action recogni-

tion (ZSSAR) addresses this challenge by enabling models

to recognize unseen actions using knowledge from seen ac-

tion categories and semantic descriptions.

Existing ZSSAR methods [7, 15, 19, 27, 28, 50, 51] pri-

marily align skeleton features with text embeddings within

a shared latent space to enhance generalization. Specially,

[15, 27, 28] employ Variational Auto Encoder (VAE) [22]

as the training framework to learn structured and generaliz-

able latent representations. However, these VAE-based ap-

proaches often yield less semantic information due to their

coarse feature representations. Skeleton sequences, unlike

raw videos, lack detailed appearance cues, making it dif-

ficult to encode the fine-grained semantics. As a result,

critical motions (e.g., nuanced limb or hand movements)

are often underrepresented, limiting the models’ ability to



capture semantic distinctions between similar actions such

as “drinking” and “eating”. Additionally, skeleton data are

inherently ambiguous due to occlusions and variations in

camera viewpoints, further complicating motion interpre-

tation. Traditional cross-modal alignments often treat all

skeleton-text pairs as equally reliable, ignoring the uncer-

tainty in skeleton representations. Since skeleton features

can be noisy and ambiguous, rigid alignment [15, 27, 28]

with text embeddings may lead to misalignment and de-

graded generalization in zero-shot scenarios.

Driven by these concerns, we raise two fundamental

questions: Q1: How can skeletal semantics be enriched

to enhance the generalization of learned features? Q2:

How can cross-modal alignment be improved by effectively

leveraging enriched semantics? To address these chal-

lenges, we design a framework that enhances action se-

mantics with frequency-based modeling and semantic ac-

tion descriptions. Additionally, a calibrated cross-modal

alignment module is proposed to bridge modality gaps, en-

abling robust zero-shot recognition of both global and fine-

grained patterns.

Firstly, our approach introduces a Frequency Enhanced

Module, which employs the Discrete Cosine Transform

(DCT) [2] to transform and enhance skeleton motions in the

frequency domain. This decomposition enables a structured

enhancement strategy, where low-frequency components

(overall semantic structure of actions) and high-frequency

components (fine-grained motion details) are selectively re-

fined. Specifically, low-frequency coefficients undergo a

progressively diminishing amplification effect to strengthen

the global motion representation without distorting struc-

tural integrity. Meanwhile, high-frequency coefficients are

subjected to an adaptive attenuation mechanism that gradu-

ally reduces their magnitude without excessive suppression.

This adjustment allows us to preserve subtle actions, such

as limb movements and micro-gestures, and simultaneously

mitigates the influence of high-frequency noise caused by

skeletal jitter. The enhancement not only enriches the se-

mantic representations but also improves the model’s ro-

bustness against noise and irrelevant variations.

Secondly, our framework incorporates a Semantic-based

action Description (SD) mechanism to generate embed-

dings that capture both localized and global action seman-

tics, enhancing cross-modal alignment in ZSSAR. This al-

lows the model to leverage semantic consistency for recog-

nizing unseen actions without direct supervision. The SD

consists of Local action Description (LD), which encodes

fine-grained motion details, and Global action Description

(GD), which represents overall body posture and move-

ment patterns. For example, LD highlights hand movement

in “drinking water”, while GD captures body coordination

and the sequential flow of motion. This structured descrip-

tion ensures that both detailed actions and contextual mo-

tion are well-represented, enabling a precise alignment with

frequency-enhanced skeleton features.

Thirdly, a calibrated cross-alignment loss is proposed

for semantic embeddings with frequency-enhanced skele-

ton features, addressing modality gaps and skeleton am-

biguities in ZSSAR tasks. It minimizes the disparity be-

tween true skeleton-semantic pairs while mitigating mis-

matched pairs. Unlike conventional uniform alignment

losses, the calibrated loss employs a sigmoid-based dis-

tance measure to dynamically balance contributions from

positive and negative pairs, ensuring robust learning even in

the presence of noisy or ambiguous skeleton data. By in-

tegrating the frequency-enhanced structure of skeleton and

text features, the loss further reinforces cross-modal corre-

spondence. Actions with overlapping semantics, such as

“drinking” and “eating”, can be effectively distinguished by

leveraging fine-grained details (e.g., hand trajectories) and

global patterns (e.g., body movements). This approach mit-

igates overfitting to noisy alignments and reduces modality-

specific biases, improving generalization to unseen actions

in zero-shot scenarios. The overall method of our FS-VAE

is illustrated in Fig. 1, and the contributions are as follows:

• We propose a Frequency Enhanced Module that em-

ploys Discrete Cosine Transform (DCT) to decompose

skeleton motions into high- and low-frequency compo-

nents, allowing adaptive feature enhancement to improve

semantic representation learning in ZSSAR.

• We introduce a novel Semantic-based action Descrip-

tion (SD), comprising Local action Description (LD) and

Global action Description (GD), to enrich the semantic

information for improving the model performance.

• A Calibrated Cross-Alignment Loss is proposed to ad-

dress modality gaps and skeleton ambiguities by dynam-

ically balancing positive and negative pair contributions.

This loss ensures robust alignment between semantic em-

beddings and skeleton features, improving the model’s

generalization to unseen actions in ZSSAR.

• Extensive experiments on benchmark datasets demon-

strate that our framework significantly outperforms state-

of-the-art methods, validating its effectiveness and ro-

bustness under various seen-unseen split settings.

2. Related Works

2.1. Zero­Shot Skeleton Action Recognition

Traditional ZSSAR methods focus mainly on mapping

skeleton features and semantic embeddings into a shared la-

tent space for alignment [15, 19, 43, 50]. These approaches

utilize techniques such as visual-textual correlation learn-

ing and adversarial training to reduce the modality gap.

Recent works have explored enhanced feature representa-

tions and multi-modal alignment strategies to improve per-

formance. For example, [51] leverages part-based feature



modeling to address prompting and partitioning issues in

alignment, while [28] introduces semantic attention mecha-

nisms to highlight irrelevant and related semantic features.

Despite these advances, existing methods often overlook the

semantics of frequency-domain features in capturing both

fine-grained motions and global action patterns. Moreover,

ambiguities in skeleton representations and noisy or mis-

matched skeleton-text pairs remain significant challenges.

Unlike prior works that focus solely on the spatial

and temporal domain, our work differs fundamentally by

leveraging frequency decomposition to model and enhance

skeleton motions in the frequency domain, capturing both

fine-grained motion variations and overarching action struc-

ture to provide richer skeletal semantics. Furthermore,

our calibrated cross-alignment loss explicitly addresses

skeleton-text ambiguities and modality gaps, ensuring ro-

bust alignment in zero-shot scenarios.

2.2. Skeleton­based Frequency Representation
Learning

Pose-based approaches aim to directly extract motion pat-

terns from human poses for applications such as motion

prediction [25], pose estimation [49], and action recogni-

tion [9]. These methods rely on representations from the

pose space, which naturally encode spatial structural re-

lationships and temporal motion dependencies. However,

effectively integrating these spatio-temporal aspects into a

unified framework remains a significant challenge.

Recent research has taken advantage of frequency do-

main transformations to encode temporal information [3]

compactly and smoothly. Studies such as [12, 26, 32, 42]

utilize DCT to convert temporal motion signals into the

frequency domain, facilitating frequency-specific represen-

tation learning. The decomposition of motion signals

into high- and low-frequency components enables a fine-

grained action analysis, preserving both subtle motion de-

tails and global movement patterns. Despite the success of

frequency-based modeling, its application in skeleton-based

action recognition remains limited and has not yet been ex-

plored in the context of zero-shot learning (ZSL). For ex-

ample, [4] employed a wavelet transform-based approach

to disentangle salient and subtle motion features, targeting

fine-grained action recognition. Similarly, [44] proposed a

frequency-aware transformer that enhances discriminative

feature learning for fully supervised action recognition.

In contrast, our approach pioneers the use of DCT in

ZSSAR, leveraging its ability to effectively enhance and

redistribute motion signals across frequency coefficients.

This ensures a robust representation of global motion pat-

terns while preserving fine-grained movement details with-

out amplifying noise. Additionally, a semantic-based action

description further enriches action semantics by capturing

both localized and holistic action patterns, bridging the se-

mantic gap between textual and skeletal features.

3. FS-VAE: Frequency-Semantic Enhanced

Variational Autoencoder

Our goal is to recognize actions from unseen categories us-

ing only seen class knowledge and their semantic represen-

tations. We adopt a generative VAE framework [15, 27, 28]

to learn the skeleton and semantic cross-model features,

which are used to generate unseen class representations in

latent space. To further enhance generalization in ZSL, we

propose a frequency-semantic enhanced framework that re-

fines skeletal inputs through frequency decomposition, pre-

serving essential motion patterns while improving align-

ment with semantic features. Below, we introduce the

model details in FS-VAE.

3.1. Problem Formulation

Zero-shot skeleton-based action recognition (ZSSAR) aims

to classify actions from unseen categories using knowledge

from seen categories. A skeleton dataset is represented as

D = {(Xi,Ci,Ai)}
N
i=1, where Xi ∈ R

J×3×F×M denotes

the skeleton sequence of the i-th sample, composed of 3D

joint coordinates over F frames for J joints and M subjects.

The corresponding action category is Ci, and Ai represents

the GPT-generated semantic description. The dataset is par-

titioned into a training set Ds
tr with samples of seen cate-

gories Cs, and two disjoint test sets: Du
te for unseen cate-

gories Cu and Ds
te for seen categories. The category sets

satisfy C = Cs ∪ Cu and Cs ∩ Cu = ∅, each action category

is associated with Ai.

The objective of ZSSAR is to learn a mapping function

f : RJ×3×F×M → Cu. To achieve this, we align the skele-

ton feature fs extracted from Xi with the text feature ft ob-

tained from Ai in a shared latent space. During training, a

feature alignment mechanism enforces the relationship be-

tween fs and ft for seen categories Cs. Specifically, the

skeleton feature fs is encoded into a latent distribution zs,

while the text feature ft is mapped to another latent distribu-

tion zt. These latent variables zs and zt serve as a bridge for

cross-modal knowledge transfer to ensure the learned repre-

sentations capture both motion and semantic patterns within

the cross-alignment. In Generalized Zero-Shot Skeleton-

Based Action Recognition (GZSSAR), the model classifies

actions from both Cs and Cu during testing.

3.2. Frequency Enhanced Module

Motivation for Frequency Enhancement in ZSL. In fully

supervised learning, frequency-aware models [4, 44] cap-

ture both high- and low-frequency components from labeled

data, where high-frequency details are particularly use-

ful for recognizing subtle movements, and low-frequency

motions are utilized to capture global movement patterns.
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However, the lack of unseen class data prevents the di-

rect learning of class-specific high-frequency distributions

in ZSL, making these details more sparse and noisy. To

address this, our approach enhances low-frequency com-

ponents to extract richer semantic information, improving

generalization to unseen categories. Meanwhile, we adap-

tively suppress high-frequency variations to preserve essen-

tial fine-grained details while mitigating noise (e.g., skele-

tal jitter or limb fluctuations). This adjustment reinforces

the ZSL training to learn richer skeletal information and

more structured semantics compared to conventional purely

spatial-temporal modeling [15, 27, 28], which leads to more

effective ZSSAR performance. The pipeline of the en-

hanced module is illustrated in Fig. 2 (b).

Frequency Division Formula. Let s ∈ R
J×C×F denote

the input joint sequence, where J represents the number of

joints, C the coordinate dimension (e.g., x, y, z), and F the

number of frames. The trajectory of the j-th joint across T
frames is denoted as Tj = (tj,1, tj,2, . . . , tj,F ). We apply

the DCT [32, 44, 48] to obtain the frequency-domain rep-

resentation for skeleton sequence: S = DCT(s), the DCT

decomposes the input skeleton sequence s into frequency

components, producing the transformed representation S of

the same length as the input. Each component in S cor-

responds to a specific frequency coefficient, where lower-

indexed coefficients represent low-frequency (global) mo-

tion patterns, and higher-indexed coefficients capture high-

frequency (fine-grained) details. For the trajectory Tj , the

i-th DCT coefficient to each individual trajectory is calcu-

lated as:

Cj,i =
√

2
F

∑F
f=1 tj,f

1√
1+δi1

cos
[

π(2f−1)(i−1)
2F

]

(1)

where the Kronecker delta ¶ij = 1 if i = j, and ¶ij = 0
otherwise. In particular, i ∈ {1, 2, . . . , F}, and the larger

i corresponds to higher frequency coefficients. These co-

efficients enable us to represent skeleton motion effectively

within the frequency domain by capturing both subtle dy-

namic details and global motion patterns [44].

Low-Frequency Adjustment. For the low-frequency

range, the adjustment is applied using the piecewise scal-

ing function g(i):

Sl ← S · g(i), i f φ (2)

where g(i) = 1 + wi

(

1− i
b

)

for low-frequency compo-

nents, φ is the low frequency threshold. Sl represents the

low-frequency components, which capture global motion

patterns such as large-scale movements of limbs and torso.

The term b is an adjusting parameter intended to make g(i)
decrease gradually within the low-frequency range. The



fraction i
b ensures a progressive reduction in enhancement

strength as frequency increases, thereby maintaining the in-

tegrity of large-scale global motion. The learned weight wi

adaptively controls enhancement for different frequencies,

amplifying the most distinguishing ones.

High-Frequency Adjustment. For the high-frequency

range, the scaling function g(i) is given by:

Sh ← S · g(i), i > φ (3)

where g(i) = 1 − wi

(

1− i−b
b

)

. Sh represents the high-

frequency components of the skeleton features, which cap-

tures fine-grained details such as finger, wrist, and rapid

limb movements. In high-frequency adjustment, b serves

as a normalization factor that controls the suppression of

high-frequency variables. Specifically, it ensures that atten-

uation decreases (i.e., g(i) increases) smoothly as frequency

increases, preventing excessive suppression of fine-grained

motion details. By scaling the suppression term propor-

tionally to i − b, this formulation mitigates skeletal noise

while preserving essential micro-movements. Meanwhile,

wi adaptively modulates the suppression strength for each

high-frequency component, up-weighting the most distin-

guishing frequencies.

Inverse Transform. The adjusted frequency-domain

signal is reconstructed into the time domain using the In-

verse Discrete Cosine Transform (IDCT), represented as:

fs = IDCT(S′), where S′ is the frequency-enhanced skele-

ton component in the frequency domain. The specific

restoration for each joint trajectory is given by:

tj,f =
√

2
F

∑F
i=1 Cj,i

1√
1+δi1

cos
[

π(2f−1)(i−1)
2F

]

(4)

where j ∈ {1, 2, . . . , J} and f ∈ {1, 2, . . . , F}. Here, tj,f
represents the restored joint trajectory in the time domain,

reconstructed from its frequency-domain coefficients Cj,i.

This process integrates enhanced global patterns and pre-

served fine-grained details, creating a comprehensive repre-

sentation of the action. Using the enhanced time domain

skeleton feature fs, the model aligns these features with

semantic embeddings, enabling robust recognition in zero-

shot scenarios. More frequency analysis and method illus-

tration can be found in Appendix F.

3.3. Semantic­based Action Description

Unlike the previous ZSL methods that focus on motion de-

scriptions in a temporal way [27] and focus on the action

prompting with GPTs [51] that ignores the semantic char-

acteristics, we propose a novel strategy that leverages se-

mantic decomposition and feature alignment to fully cap-

ture both the localized details and global semantic structures

inherent in human actions. This method stems from the ob-

servation that actions can be naturally divided into compo-

nents reflecting dynamic movements and overarching pat-

terns, enabling a comprehensive and robust representation

of action semantics.

The semantic text description consists of the Action La-

bel (AL) and a Semantic-Based Description (SD). SD is

further divided into two complementary components: Lo-

cal action Description (LD) and Global action Description

(GD). We adopt the pre-trained text-encoder of CLIP [34] to

extract the corresponding semantic features. fAL indicates

the feature of action label. The local component fLD cap-

tures fine-grained motion details, which are crucial for un-

derstanding localized dynamics and specific body-part in-

teractions. For example, in the action of “drinking water,”

fLD describes detailed movements such as “fist and move

the hand up to the head, then look up,” to emphasize pre-

cise body-part motions. In contrast, fGD represents the over-

all movements that provide a high-level overview, such as

“take liquid into your mouth, raise it to your head.” By in-

tegrating fAL, fLD and fGD, our representation enriches the

semantic space, capturing both localized motion details and

holistic action patterns. Extra examples of action descrip-

tions and promptings are listed in Appendix D.

To unify these components into a cohesive semantic em-

bedding, we concatenate the descriptions and normalize

them as follows:

ft =
Concat(fAL, fLD, fGD)

∥Concat(fAL, fLD, fGD)∥
(5)

3.4. Calibrated Cross­Alignment Loss

Motivation for Calibrated Loss. Text data, especially the

semantically rich descriptions we introduce in Section 3.3,

are inherently clean and precise, offering a strong founda-

tion for capturing action nuances. In zero-shot learning, the

text features serve as the bridge between seen and unseen

classes, enabling the model to generalize effectively. How-

ever, when the text encoder is affected by noisy skeleton

data, it may struggle to retain these semantic details, lead-

ing to suboptimal performance.

Skeleton-based features (e.g., gst ), on the other hand, are

noisy and unreliable for the following reasons. First, skele-

ton features omit crucial contextual information from the

raw video data, including environmental context and fine-

grained motion details. Second, variations in camera angles

and viewpoints further exacerbate ambiguities in skeletons.

Finally, skeletons for actions with similar motion patterns,

such as “drinking water” and “eating a meal,” are inherently

difficult to distinguish.

As a result, rigidly aligning gst with the text features ft
may result in poor updates to the text encoder, causing the

model to overlook important semantic details in the text

data. This misalignment is particularly problematic in zero-

shot learning, where the model must generalize to unseen

classes based on robust feature representations. To this end,



we propose the following calibrated alignment loss that en-

hances the resilience of the text encoder to noise, preserv-

ing the quality of learned representations. The illustration

is presented in Fig. 2 (c) and (d).
Definition of Calibrated Loss. The calibrated loss ad-

justs the alignment by encouraging positive text-skeleton
pairs to align while penalizing negative pairs, unlike [27,
28], which only encourages the alignment of positive pairs.
The calibrated loss is defined as:

LAlign =
λ

B

∑

i∈B

1

1 + exp((∥ft(i) − gs
t (i

−)∥2 − ∥ft(i) − gs
t (i)∥2)/λ)

+
λ

B

∑

i∈B

1

1 + exp((∥fs(i) − gt
s(i

−)∥2 − ∥fs(i) − gt
s(i)∥2)/λ)

,

(6)

where i− denotes a negative sample to i in the batch, and

¼ is a temperature parameter that controls the sensitivity of

the alignment loss.

Key Scenarios Addressed. The calibrated loss is robust

to the following scenarios:

1. Mismatched Positive Pair with a Reliable Negative

Pair: A mismatched positive pair arises when a skeleton

feature (e.g., gst (i)) is inherently ambiguous and resembles

skeletons from other classes. For instance, the skeletal se-

quence for “reading” may be similar to “writing.” Aligning

such an ambiguous skeleton with the text (ft(i)) of its own

class (“reading”) can degrade the text encoder. This prob-

lem can be balanced by introducing a reliable negative pair,

i.e., a reliable negative pair (ft(i) and gst (i
−) ((e.g., the text

feature for “reading” and a skeleton from “writing” that is

clearly distinguished from with “reading”)).

2. Mismatched Positive Pair with Mismatched Negative

Pair: The calibrated loss remains robust even when both

positive and negative pairs are mismatched. For instance,

ft(i) and gst (i) form a mismatched positive pair of text fea-

ture for “reading” but the skeleton feature though labeled

“reading”, resembles “writing”. Similarly, ft(i) and gst (i
−)

form a mismatched negative pair where the text feature rep-

resents “reading” and a skeleton is labeled “writing” but in-

herently similar to “reading”. The calibrated loss leverages

correctly aligned pairs in the dataset to counteract these in-

consistencies. This robustness stems from the symmetric

property of the sigmoid function, i.e., ℓ(a) + ℓ(−a) = 1,

which has been utilized to handle noisy labels [5, 14]. In our

case, let a = (∥ft(i)−gst (i
−)∥2−∥ft(i)−gst (i)∥

2)/¼ rep-

resent a term where both pairs are mismatched. Correctly

aligned pairs in the data set may contribute a correspond-

ing term −a, leading to a natural counterbalance due to the

symmetry of ℓ(·). For non-symmetric losses, i.e., where

ℓ(a) + ℓ(−a) is not a constant, even a correctly aligned

term cannot fully offset an incorrect one. A detailed anal-

ysis of the calibrated loss is provided in Appendix E. No-

tably, while our calibrated loss shares similarity with triplet

losses [10, 11, 13, 16, 17, 23, 37], most of these do not sat-

isfy the symmetric property and are, therefore, less robust to

noisy scenarios. In Appendix E, we construct various align-

ment losses based on triplet loss and present experiments

that demonstrate the advantages of our calibrated loss.

Overall Loss. Following the literature on variational

autoencoder (VAE)-based architecture for skeleton recogni-

tion [15, 27], we use the evidence lower bound loss (ELBO)

for reconstruction:

Ls
VAE = Eqφ(zs|fs)[log pθ(fs|zs)]

− ´DKL(qφ(zs|fs)∥pθ(zs|fs)),
(7)

where pθ(·) and qφ(·) represent the likelihood and the prior,

respectively. ´ is a hyperparameter that controls the bal-

ance between reconstruction and regularization. qφ(zs|fs)
follows the multivariate Gaussian distribution Ns(µs,Σs).
Lt
V AE is symmetric to Ls

V AE . And thus, the VAE loss is

LV AE = Ls
V AE + Lt

V AE . The overall loss is

Lcali
V AE = LV AE + ³LAlign, (8)

where ³ adjusts the trade-off between the VAE loss and the

alignment loss.

4. Experiments

4.1. Implementation Details

Our work mainly follows [15] for data preprocessing. The

data split strategy follows [15, 27]. In ZSL, a 55/5 split

means training on 55 seen classes and testing on 5 unseen

classes. In Generalized Zero-Shot Learning (GZSL), train-

ing remains the same, but testing includes both the 55 seen

and 5 unseen classes. We adopt Shift-GCN [8] as the skele-

ton extractor. Meanwhile, GPT-4 [1] is utilized to gener-

ate action descriptions. More settings can be found in Ap-

pendix B, and please refer to Appendix C for additional ex-

periments, including results on the PKU-MMD dataset [29].

4.2. Comparisons with State­of­the­Art Methods

To evaluate the effectiveness of our approach, we compare

it with state-of-the-art methods under both ZSL and GZSL

Table 1. Zero-Shot Learning Results. The highest values are high-

lighted in red, while the second-highest values (from other works)

are marked in blue. ↑ indicates the improvement over the second-

highest value. * indicates the reproduced results of the released

codes. † denotes the use of only wi for frequency coefficients.

Methods Venue
NTU-60 (ACC,%) NTU-120 (ACC,%)

55/5 split 48/12 split 110/10 split 96/24 split

ReViSE[19] ICCV2017 53.9 17.5 55.0 32.4

JPoSE[43] ICCV2019 64.8 28.8 51.9 32.4

CADA-VAE[36] CVPR2019 76.8 29.0 59.5 35.8

SynSE[15] ICIP2021 75.8 33.3 62.7 38.7

SMIE[50] ACMM2023 78.0 40.2 61.3 42.3

STAR[7] ACMM2024 81.4 45.1 63.3 44.3

GZSSAR*[27] ICIG2023 83.3 49.8 72.0 60.7

PURLS[51] CVPR2024 79.2 41.0 72.0 52.0

SA-DVAE[28] ECCV2024 82.4 41.4 68.8 46.1

Ours \ 84.2 52.6 71.2 61.9

Ours \ 86.9↑3.6 57.2↑7.4 74.4↑2.4 62.5↑1.8



Table 2. Generalized Zero-Shot Learning Results. The highest values are highlighted in red, and the second-highest values (from other

works) are marked in blue. H represents the harmonic mean. The result analysis is presented in Section 4.2.

Methods Venue
NTU-60 (55/5 split) NTU-60 (48/12 split) NTU-120 (110/10 split) NTU-120 (96/24 split)

Seen Unseen H Seen Unseen H Seen Unseen H Seen Unseen H

ReViSE[19] ICCV 2017 74.2 34.7 29.2 62.4 20.8 31.2 48.7 44.8 46.7 49.7 25.1 33.3

JPoSE[43] ICCV 2019 64.4 50.3 56.5 60.5 20.6 30.8 47.7 46.4 47.0 38.6 22.8 28.7

CADA-VAE[36] CVPR 2019 69.4 61.8 65.4 51.3 27.0 35.4 47.2 19.8 48.4 41.1 34.1 37.3

SynSE[15] ICIP2021 61.3 56.9 59.0 52.2 27.9 36.3 52.5 57.6 54.9 56.4 32.2 41.0

STAR[7] ACMM2024 69.0 69.9 69.4 62.7 37.0 46.6 59.9 52.7 56.1 51.2 36.9 42.9

GZSSAR*[27] ICIG2023 66.8 70.7 68.7 54.8 41.4 47.1 58.1 57.8 58.0 59.2 45.9 51.7

SA-DVAE[28] ECCV2024 62.3 70.8 66.3 50.2 36.9 42.6 61.1 59.8 60.4 58.8 35.8 44.5

Ours \ 76.4 61.9 68.4 57.4 43.5 49.5 55.7 66.8 60.7 58.7 48.3 53.0

Ours \ 77.0 74.5↑3.7 75.7↑6.3 56.2 48.6↑7.2 52.1↑5.0 59.2 67.9↑8.1 63.3↑2.9 57.8 51.9↑6.0 54.7↑3.0

Table 3. Influence of different modules. Semantic-based action

Descriptions (SD), Frequency-enhanced Module (FM), Calibrated

Loss (CL).

Modules NTU-60 (ACC,%) NTU-120 (ACC,%)

SD FM CL 55/5 split 48/12 split 110/10 split 96/24 split

: : : 83.3 49.8 72.0 60.7

6 : : 85.4 52.7 73.0 61.3

: 6 : 85.8 53.1 74.0 61.8

: : 6 84.4 54.1 72.8 60.0

6 6 6 86.9 57.2 74.4 62.5

settings. The results on NTU-60 [38] and NTU-120 [31]

datasets, following established split protocols [15, 27], are

summarized in Tables 1 and 2. Our model consistently

achieves the highest accuracy in ZSL, demonstrating strong

generalization to unseen actions. In GZSL, it outperforms

existing methods, leading to the highest harmonic mean

score[15] (H-score, H = 2×Seen×Unseen
Seen+Unseen

), highlighting the

effectiveness of FS-VAE in learning a semantic-enhanced

and well-calibrated representation. Notably, we focus on

unseen accuracy and the H-score as they best reflect gen-

eralization. Unseen accuracy measures the model’s ability

to classify novel actions, while H-score balances seen and

unseen performance to prevent biased predictions.

4.3. Ablation Study

Influence of Different Modules. Table 3 highlights the

impact of each key component in our framework, in-

cluding the Semantic-based Descriptions (SD), Frequency-

enhanced Module (FM), and Calibrated Loss (CL). Adding

SD improves the accuracy of the baseline to 85.4% in the

NTU-60 dataset (e.g., 55/5 split), emphasizing the impor-

tance of semantic enrichment. Similarly, integrating FM or

CL individually achieves 85.8% and 84.4%, respectively,

demonstrating their individual contributions to frequency-

specific feature learning and robust alignment. Combining

all three components leads to the highest performance of

86.9%, which confirms their complementary effects in ad-

dressing the ZSSAR challenges.

Influence of Different Text Descriptions. Table 4

presents the influence of different text descriptions, includ-

ing Action Label (AL), Local action Description (LD), and

Global action Description (GD). Using AL alone achieves

an accuracy of 81.9% on the NTU-60 dataset (55/5 split),

showing its fundamental role in providing basic semantic

information. Incorporating LD or GD results in 79.3% and

Table 4. Influence of different text descriptions. Action Label

(AL), Local action Description (LD), and Global action Descrip-

tion (GD).

Descriptions NTU-60 (ACC,%) NTU-120 (ACC,%)

AL LD GD 55/5 split 48/12 split 110/10 split 96/24 split

6 : : 81.9 38.7 70.3 47.3

: 6 : 79.3 43.8 54.5 45.7

: : 6 82.0 48.6 64.7 59.2

: 6 6 83.7 54.1 57.5 46.7

6 6 6 86.9 57.2 74.4 62.5

82.0%, respectively, suggesting that GD contributes more to

performance as it provides more comprehensive semantics

of the overall action. Combining LD and GD boosts the per-

formance to 83.7%, highlighting the synergy between these

two semantic-aware features. Integrating all three compo-

nents achieves the highest accuracy of 86.9%, demonstrat-

ing their complementary contributions to enriching seman-

tic embeddings in ZSSAR.

Influence of φ and b in Frequency Enhanced Module.

In Fig. 4(a)-(b), we evaluate the impact of various hyper-

parameter settings of our frequency-enhanced module. The

analysis reveals that φ and b play a crucial role in determin-

ing the overall accuracy of our method. The optimal con-

figuration is achieved with φ = 35 and b = 30. These val-

ues effectively balance feature enhancement of both global

action structures and fine-grained motion details. φ con-

trols the separation between low- and high-frequency com-

ponents, ensuring that structural semantics are preserved

while capturing subtle motion variations. Meanwhile, b de-

termines the intensity of enhancement, preventing the am-

plification of noise while enhancing the model’s ability of

discriminative representation learning.

Influence of ³ and ¼ for Calibrated Loss. Recall that

³ balances the reconstruction loss and alignment loss, play-

ing a crucial role in ensuring that both losses contribute ef-

fectively to the overall objective. Meanwhile, ¼ controls

the sensitivity of the alignment loss, with smaller values

making it more responsive to misalignments. Specifically,

a small ¼ places greater emphasis on larger misalignments

compared to a large ¼, which reduces this sensitivity, mak-

ing the alignment loss less responsive to smaller misalign-

ments. Notably, the alignment loss retains its symmetric

property regardless of the choice of ¼. As shown in Table 5,

the analysis reveals that the optimal combination of param-

eters is ³ = 0.1 and ¼ = 100 to yield the best performance.



(a) Accuracy difference (b) t-SNE for baseline [27] (c) t-SNE for our method

Figure 3. (a) shows the accuracy difference for seen-unseen actions compared to baseline [27] under the NTU-60 55/5 split, where the

outperforming accuracies are marked in red, and others are in blue. (b) and (c) depict the t-SNE visualizations, the corresponding action

indices (listed in Appendix G) are labeled in the clusters. Best viewed by zooming in.

(a) Influence of ϕ on NTU-60 split (b) Influence of b on NTU-60 split

Figure 4. Influence of ϕ and b in frequency enhanced module.

Impact of Removing Frequency Adjustment. In Ta-

bles 1 and 2 (denoted by ‘Ours ’), we also evaluate the im-

pact of removing explicit frequency adjustment and replac-

ing it with purely learnable frequency weight: S← S ·g(i),
where g(i) = wi. wi is the learnable weight applied di-

rectly to all frequency components. The performance drop

highlights two key issues: (1) Without explicit frequency

adjustment, the model fails to balance global structural pat-

terns and fine-grained details, leading to weaker semantic

alignment and increased sensitivity to noise. (2) Explicit

frequency scaling provides a prior-informed enhancement,

whereas purely learnable weights rely solely on data-driven

optimization. This often results in inconsistent frequency

adjustments across different training samples, leading to

overfitting to seen categories and ineffective generalization

to unseen actions.

4.4. Qualitative Analysis

We present the accuracy difference results compared to the

baseline method for the NTU-60 55/5 split in Fig. 3a.

Our approach consistently outperforms the baseline across

both seen and unseen actions. The results highlight our

method’s effectiveness in not only enhancing overall accu-

racy but also improving recognition across most discrimina-

tive actions. Notably, FS-VAE surpasses the baseline in ac-

tions that require fine-grained motion understanding, such

as “reading” and “writing” in unseen classes (orange) and

most of the actions in seen classes (green). Additionally,

Table 5. Influence of α and λ in calibrated loss.

α
NTU-60 (ACC,%) NTU-120 (ACC,%)

55/5 split 48/12 split 110/10 split 96/24 split

0.01 81.9 51.8 74.1 61.8

0.05 84.0 49.4 72.8 60.0

0.1 86.9 57.2 74.4 62.5

0.5 85.9 53.7 74.0 61.8

1 83.2 51.8 72.8 61.9

2 81.0 50.3 71.3 60.4

λ
NTU-60 (ACC,%) NTU-120 (ACC,%)

55/5 split 48/12 split 110/10 split 96/24 split

70 84.1 51.9 71.7 60.7

80 84.9 53.1 73.0 61.9

90 86.0 53.8 73.0 60.3

100 86.9 57.2 74.4 62.5

110 86.2 53.8 74.0 61.9

120 85.7 52.4 74.2 60.2

Fig. 3b and 3c present t-SNE [41] visualization examples

of NTU-60 dataset under 55/5 split. The results illustrate

that our method improves the visual and semantic align-

ment (e.g., better inter-class separation between a pair of

skeletal-similar actions, such as “reading” and “type on a

keyboard”). Furthermore, it produces a tighter and semanti-

cally structured embedding space (e.g., stronger intra-class

cohesion of “reading” and “pushing”).

5. Conclusion

We introduce a novel framework for zero-shot skeleton-

based action recognition (ZSSAR) that combines

frequency-enhanced modeling with a calibrated alignment

mechanism. The frequency-enhanced module leverages

DCT to capture fine-grained details and preserves global

patterns. The semantic-based action description enriches

feature embeddings, while the calibrated cross-alignment

loss dynamically addresses modality gaps and ambiguities.

Extensive evaluations on the benchmarks demonstrate

the state-of-the-art performance of our approach in rec-

ognizing unseen actions. This work establishes a robust

ZSSAR framework, paving the way for future advances in

frequency-aware action recognition.



References

[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ah-

mad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida,

Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al.

Gpt-4 technical report. arXiv preprint arXiv:2303.08774,

2023. 6

[2] Nasir Ahmed, T Natarajan, and Kamisetty R Rao. Discrete

cosine transform. IEEE transactions on Computers, 100(1):

90–93, 1974. 2, 18

[3] Ijaz Akhter, Yaser Sheikh, Sohaib Khan, and Takeo Kanade.

Nonrigid structure from motion in trajectory space. Ad-

vances in neural information processing systems, 21, 2008.

3

[4] Haochen Chang, Jing Chen, Yilin Li, Jixiang Chen, and Xi-

aofeng Zhang. Wavelet-decoupling contrastive enhancement

network for fine-grained skeleton-based action recognition.

arXiv preprint arXiv:2402.02210, 2024. 3, 16

[5] Nontawat Charoenphakdee, Jongyeong Lee, and Masashi

Sugiyama. On symmetric losses for learning from corrupted

labels. In International Conference on Machine Learning,

pages 961–970. PMLR, 2019. 6

[6] Yuxin Chen, Ziqi Zhang, Chunfeng Yuan, Bing Li, Ying

Deng, and Weiming Hu. Channel-wise topology refinement

graph convolution for skeleton-based action recognition. In

Proceedings of the IEEE/CVF international conference on

computer vision, pages 13359–13368, 2021. 1

[7] Yang Chen, Jingcai Guo, Tian He, Xiaocheng Lu, and Ling

Wang. Fine-grained side information guided dual-prompts

for zero-shot skeleton action recognition. In Proceedings

of the 32nd ACM International Conference on Multimedia,

pages 778–786, 2024. 1, 6, 7

[8] Ke Cheng, Yifan Zhang, Xiangyu He, Weihan Chen, Jian

Cheng, and Hanqing Lu. Skeleton-based action recognition

with shift graph convolutional network. In Proceedings of

the IEEE/CVF conference on computer vision and pattern

recognition, pages 183–192, 2020. 6, 18

[9] Hyung-gun Chi, Myoung Hoon Ha, Seunggeun Chi,

Sang Wan Lee, Qixing Huang, and Karthik Ramani. In-

fogcn: Representation learning for human skeleton-based

action recognition. In Proceedings of the IEEE/CVF con-

ference on computer vision and pattern recognition, pages

20186–20196, 2022. 1, 3

[10] Thanh-Toan Do, Toan Tran, Ian Reid, Vijay Kumar, Tuan

Hoang, and Gustavo Carneiro. A theoretically sound upper

bound on the triplet loss for improving the efficiency of deep

distance metric learning. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition,

pages 10404–10413, 2019. 6

[11] Xingping Dong and Jianbing Shen. Triplet loss in siamese

network for object tracking. In Proceedings of the Euro-

pean conference on computer vision (ECCV), pages 459–

474, 2018. 6, 14

[12] Xuehao Gao, Shaoyi Du, Yang Wu, and Yang Yang. De-

compose more and aggregate better: Two closer looks at fre-

quency representation learning for human motion prediction.

In Proceedings of the IEEE/CVF conference on computer vi-

sion and pattern recognition, pages 6451–6460, 2023. 3

[13] Weifeng Ge. Deep metric learning with hierarchical triplet

loss. In Proceedings of the European conference on com-

puter vision (ECCV), pages 269–285, 2018. 6

[14] Zhishuai Guo, Rong Jin, Jiebo Luo, and Tianbao Yang.

Fedxl: Provable federated learning for deep x-risk optimiza-

tion. In International Conference on Machine Learning,

pages 11934–11966. PMLR, 2023. 6

[15] Pranay Gupta, Divyanshu Sharma, and Ravi Kiran Sarvadev-

abhatla. Syntactically guided generative embeddings for

zero-shot skeleton action recognition. In 2021 IEEE Interna-

tional Conference on Image Processing (ICIP), pages 439–

443. IEEE, 2021. 1, 2, 3, 4, 6, 7, 11

[16] Alexander Hermans, Lucas Beyer, and Bastian Leibe. In de-

fense of the triplet loss for person re-identification. arXiv

preprint arXiv:1703.07737, 2017. 6, 14

[17] Elad Hoffer and Nir Ailon. Deep metric learning using triplet

network. In Similarity-based pattern recognition: third inter-

national workshop, SIMBAD 2015, Copenhagen, Denmark,

October 12-14, 2015. Proceedings 3, pages 84–92. Springer,

2015. 6, 14

[18] Yonghong Hou, Zhaoyang Li, Pichao Wang, and Wanqing

Li. Skeleton optical spectra-based action recognition us-

ing convolutional neural networks. IEEE Transactions on

Circuits and Systems for Video Technology, 28(3):807–811,

2016. 1

[19] Yao-Hung Hubert Tsai, Liang-Kang Huang, and Ruslan

Salakhutdinov. Learning robust visual-semantic embed-

dings. In Proceedings of the IEEE International conference

on Computer Vision, pages 3571–3580, 2017. 1, 2, 6, 7, 11

[20] Mohamad Kashef, Anna Visvizi, and Orlando Troisi. Smart

city as a smart service system: Human-computer interaction

and smart city surveillance systems. Computers in Human

Behavior, 124:106923, 2021. 1

[21] Qiuhong Ke, Mohammed Bennamoun, Senjian An, Ferdous

Sohel, and Farid Boussaid. A new representation of skele-

ton sequences for 3d action recognition. In Proceedings of

the IEEE conference on computer vision and pattern recog-

nition, pages 3288–3297, 2017. 1

[22] Diederik P Kingma, Max Welling, et al. Auto-encoding vari-

ational bayes, 2013. 1

[23] Vijay Kumar BG, Gustavo Carneiro, and Ian Reid. Learning

local image descriptors with deep siamese and triplet con-

volutional networks by minimising global loss functions. In

Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 5385–5394, 2016. 6, 14

[24] Inwoong Lee, Doyoung Kim, Seoungyoon Kang, and

Sanghoon Lee. Ensemble deep learning for skeleton-based

action recognition using temporal sliding lstm networks. In

Proceedings of the IEEE international conference on com-

puter vision, pages 1012–1020, 2017. 1

[25] Maosen Li, Siheng Chen, Yangheng Zhao, Ya Zhang, Yan-

feng Wang, and Qi Tian. Dynamic multiscale graph neural

networks for 3d skeleton based human motion prediction. In

Proceedings of the IEEE/CVF conference on computer vi-

sion and pattern recognition, pages 214–223, 2020. 3

[26] Maosen Li, Siheng Chen, Zijing Zhang, Lingxi Xie, Qi Tian,

and Ya Zhang. Skeleton-parted graph scattering networks



for 3d human motion prediction. In European conference on

computer vision, pages 18–36. Springer, 2022. 3

[27] Ming-Zhe Li, Zhen Jia, Zhang Zhang, Zhanyu Ma, and

Liang Wang. Multi-semantic fusion model for generalized

zero-shot skeleton-based action recognition. In International

Conference on Image and Graphics, pages 68–80. Springer,

2023. 1, 2, 3, 4, 5, 6, 7, 8, 11, 12

[28] Sheng-Wei Li, Zi-Xiang Wei, Wei-Jie Chen, Yi-Hsin Yu,

Chih-Yuan Yang, and Jane Yung-jen Hsu. Sa-dvae: Improv-

ing zero-shot skeleton-based action recognition by disentan-

gled variational autoencoders. In European Conference on

Computer Vision, pages 447–462. Springer, 2025. 1, 2, 3, 4,

6, 7, 11

[29] Chunhui Liu, Yueyu Hu, Yanghao Li, Sijie Song, and Jiay-

ing Liu. Pku-mmd: A large scale benchmark for continu-

ous multi-modal human action understanding. arXiv preprint

arXiv:1703.07475, 2017. 6, 11

[30] Haowei Liu, Yongcheng Liu, Yuxin Chen, Chunfeng Yuan,

Bing Li, and Weiming Hu. Transkeleton: Hierarchi-

cal spatial-temporal transformer for skeleton-based action

recognition. IEEE Transactions on Circuits and Systems for

Video Technology, 2023. 1

[31] Jun Liu, Amir Shahroudy, Mauricio Perez, Gang Wang,

Ling-Yu Duan, and Alex C Kot. Ntu rgb+ d 120: A large-

scale benchmark for 3d human activity understanding. IEEE

transactions on pattern analysis and machine intelligence,

42(10):2684–2701, 2019. 7, 11

[32] Wei Mao, Miaomiao Liu, Mathieu Salzmann, and Hongdong

Li. Learning trajectory dependencies for human motion pre-

diction. In Proceedings of the IEEE/CVF international con-

ference on computer vision, pages 9489–9497, 2019. 3, 4

[33] Satyajit Nayak, Bingi Nagesh, Aurobinda Routray, and Mon-

alisa Sarma. A human–computer interaction framework for

emotion recognition through time-series thermal video se-

quences. Computers & Electrical Engineering, 93:107280,

2021. 1

[34] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya

Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,

Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning

transferable visual models from natural language supervi-

sion. In International conference on machine learning, pages

8748–8763. PMLR, 2021. 5, 18

[35] K Ramamohan Rao and Ping Yip. Discrete cosine trans-

form: algorithms, advantages, applications. Academic

press, 2014. 15

[36] Edgar Schonfeld, Sayna Ebrahimi, Samarth Sinha, Trevor

Darrell, and Zeynep Akata. Generalized zero-shot learn-

ing via aligned variational autoencoders. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition Workshops, pages 54–57, 2019. 6, 7, 11

[37] Florian Schroff, Dmitry Kalenichenko, and James Philbin.

Facenet: A unified embedding for face recognition and clus-

tering. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 815–823, 2015. 6, 14

[38] Amir Shahroudy, Jun Liu, Tian-Tsong Ng, and Gang Wang.

Ntu rgb+ d: A large scale dataset for 3d human activity anal-

ysis. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 1010–1019, 2016. 7,

11

[39] Mohammad Shorfuzzaman, M Shamim Hossain, and Mo-

hammed F Alhamid. Towards the sustainable development

of smart cities through mass video surveillance: A response

to the covid-19 pandemic. Sustainable cities and society, 64:

102582, 2021. 1

[40] Roshan Singh, Alok Kumar Singh Kushwaha, and Rajeev

Srivastava. Multi-view recognition system for human activ-

ity based on multiple features for video surveillance system.

Multimedia Tools and Applications, 78:17165–17196, 2019.

1

[41] Laurens Van der Maaten and Geoffrey Hinton. Visualizing

data using t-sne. Journal of machine learning research, 9

(11), 2008. 8

[42] Jiashun Wang, Huazhe Xu, Medhini Narasimhan, and Xiao-

long Wang. Multi-person 3d motion prediction with multi-

range transformers. Advances in Neural Information Pro-

cessing Systems, 34:6036–6049, 2021. 3

[43] Michael Wray, Diane Larlus, Gabriela Csurka, and Dima

Damen. Fine-grained action retrieval through multiple parts-

of-speech embeddings. In Proceedings of the IEEE/CVF in-

ternational conference on computer vision, pages 450–459,

2019. 2, 6, 7, 11

[44] Wenhan Wu, Ce Zheng, Zihao Yang, Chen Chen, Srijan Das,

and Aidong Lu. Frequency guidance matters: Skeletal ac-

tion recognition by frequency-aware mixed transformer. In

Proceedings of the 32nd ACM International Conference on

Multimedia, pages 4660–4669, 2024. 1, 3, 4, 16

[45] Wentian Xin, Qiguang Miao, Yi Liu, Ruyi Liu, Chi-Man

Pun, and Cheng Shi. Skeleton mixformer: Multivariate

topology representation for skeleton-based action recogni-

tion. In Proceedings of the 31st ACM International Con-

ference on Multimedia, pages 2211–2220, 2023. 1

[46] Sijie Yan, Yuanjun Xiong, and Dahua Lin. Spatial tempo-

ral graph convolutional networks for skeleton-based action

recognition. In Proceedings of the AAAI conference on arti-

ficial intelligence, 2018. 11

[47] Songyang Zhang, Xiaoming Liu, and Jun Xiao. On geo-

metric features for skeleton-based action recognition using

multilayer lstm networks. In 2017 IEEE winter conference

on applications of computer vision (WACV), pages 148–157.

IEEE, 2017. 1

[48] Qitao Zhao, Ce Zheng, Mengyuan Liu, Pichao Wang, and

Chen Chen. Poseformerv2: Exploring frequency domain for

efficient and robust 3d human pose estimation. In Proceed-

ings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pages 8877–8886, 2023. 4

[49] Ce Zheng, Sijie Zhu, Matias Mendieta, Taojiannan Yang,

Chen Chen, and Zhengming Ding. 3d human pose estima-

tion with spatial and temporal transformers. In Proceedings

of the IEEE/CVF international conference on computer vi-

sion, pages 11656–11665, 2021. 3

[50] Yujie Zhou, Wenwen Qiang, Anyi Rao, Ning Lin, Bing Su,

and Jiaqi Wang. Zero-shot skeleton-based action recogni-

tion via mutual information estimation and maximization. In

Proceedings of the 31st ACM International Conference on

Multimedia, pages 5302–5310, 2023. 1, 2, 6, 11



[51] Anqi Zhu, Qiuhong Ke, Mingming Gong, and James Bai-

ley. Part-aware unified representation of language and skele-

ton for zero-shot action recognition. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 18761–18770, 2024. 1, 2, 5, 6

A. Appendix

The supplementary material is organized into the following

sections:

• Section B: More experimental settings. (i) Datasets in-

troduction (NTU-60, NTU-120, PKU-MMD); (ii) train-

ing strategy; (iii) parameter settings.

• Section C: Additional experiments. (i) Results on PKU-

MMD; (ii) results on different text feature extractors.

• Section D: Semantic-based action descriptions. (i)

Prompting examples; (ii) description examples.

• Section E: Calibrated alignment loss analysis. (i) Cal-

ibrated alignment loss explanation; (ii) extra ablation

study for calibrated alignment loss.

• Section F: Frequency-based skeleton representation

analysis. (i) Frequency domain representation and energy

preservation proof; (ii) semantic integrity with frequency

adjustment; (iii) frequency-based enhancement mecha-

nism; (iv) energy redistribution derivation; (v) illustration

example of frequency enhanced method; (vi) codes.

• Section G: Justification for choosing DCT.

• Section H: NTU-60 dataset action index.

B. More Experiments Settings

B.1. Datasets

NTU RGB+D 60 [38]. The NTU-60 dataset is one of the

most popular large-scale datasets designed for the analy-

sis of 3D human actions. It comprises 56,880 human ac-

tion sequences captured by three Kinect-V2 cameras, cov-

ering 60 distinct action classes. In this work, we use only

the skeleton data. Each skeleton sequence consists of up to

two skeletons per frame, with each skeleton containing 25

joints. In this paper, two seen/unseen splits are employed,

following prior work [15]: 55 seen classes and 5 unseen

classes, and 48 seen classes and 12 unseen classes. The un-

seen classes are randomly selected, maintaining consistency

with previous studies.

NTU RGB+D 120 [31]. The NTU-120 dataset is an ex-

tended version of NTU-60. It includes 114,480 action se-

quences performed by 106 subjects from 155 distinct view-

points, spanning 120 action classes. These 120 classes build

upon the original 60 classes in NTU-60, offering a broader

range of human actions. For zero-shot learning, the dataset

adopts seen/unseen splits of 110 seen classes and 10 unseen

classes, and 96 seen classes and 24 unseen classes, consis-

tent with the splits defined in [15].

Table 6. Zero-Shot Learning (ZSL) and Generalized Zero-Shot

Learning (GZSL) results on PKU-MMD (46/5 split).

Methods Venue ZSL (ACC,%)
GZSL (ACC,%)

Seen Unseen H

ReViSE[19] ICCV2017 59.3 60.9 42.2 49.8

JPoSE[43] ICCV2019 57.2 60.3 45.2 51.6

CADA-VAE[36] CVPR2019 60.7 63.2 35.9 45.8

SynSE[15] ICIP2021 53.9 63.1 40.7 49.5

SMIE[50] ACMM2023 60.8 - - -

SA-DVAE[28] ECCV2024 66.5 58.5 51.4 54.7

Ours \ 71.2↑4.7 64.3 54.5↑3.1 59.0↑4.3

Table 7. Comparisons of different text feature extractors in ZSL.

Model
NTU-60 (ACC,%) NTU-120 (ACC,%)

55/5 split 48/12 split 110/10 split 96/24 split

ViT-B/16 84.2 49.4 72.7 60.2

ViT-B/32 86.9 57.2 74.4 62.5

PKU-MMD [29]. The PKU-MMD dataset is a large-

scale benchmark for multimodal action recognition, provid-

ing both 3D skeleton sequences and RGB+D recordings. It

consists of 66 subjects and 51 classes. We conduct the ex-

periments on Phase I following the protocols from [27, 28]

and the skeleton features provided by [28] for a fair compar-

ison (skeleton features are generated by ST-GCN[46], 46/5

split settings, 46 seen classes and 5 unseen classes).

B.2. Training Strategy

The training phase follows the same processing procedure

as [27], which is systematically organized into four stages:

training the skeleton feature extractor to capture spatio-

temporal dependencies, optimizing the generative cross-

modal alignment module to bridge the skeleton and seman-

tic features, training the unseen class classifier for general-

ization, and the seen-unseen classification gate for accurate

category differentiation.

B.3. Parameter Settings

Table 12 shows the parameter settings of our method, in-

cluding the parameters applied during all the training stages

mentioned in the main paper and [27].

C. More Experiments

Results on PKU-MMD. Table 6 presents the ZSL and

GZSL performance on the PKU-MMD dataset under the

46/5 split settings [28]. Our approach consistently out-

performs prior methods in both ZSL and GZSL settings,

demonstrating its effectiveness in recognizing unseen ac-

tions while maintaining strong generalization.

Comparisons of Different Text Feature Extractors.

We evaluate two CLIP-based text encoders, ViT-B/16 and

ViT-B/32, for ZSSAR and GZSSAR tasks on NTU-60 and

NTU-120 datasets. As shown in Table 7, ViT-B/32 achieves

higher ZSL accuracies in all splits, e.g., 86.9% vs. 84.2% on

the NTU-60 55/5 split. For GZSSAR in Table 8, ViT-B/32

also outperforms ViT-B/16 in harmonic mean (H-score),



Table 8. Comparisons of different text feature extractors in GZSL.

Model
NTU-60 (55/5 split) NTU-60 (48/12 split) NTU-120 (110/10 split) NTU-120 (96/24 split)

Seen Unseen H Seen Unseen H Seen Unseen H Seen Unseen H

ViT-B/16 65.1 71.0 67.9 61.0 39.4 47.9 55.5 68.9 61.4 56.6 47.7 52.6

ViT-B/32 77.0 74.5 75.7 56.2 48.6 52.1 59.2 67.9 63.3 57.8 51.9 54.7

e.g., 75.7% vs. 67.9% on the NTU-60 55/5 split. Based on

these results, we use ViT-B/32 as the text feature extractor

in subsequent experiments.

D. Semantic-based Action Descriptions

Global Action Description Prompting Examples. ”De-

scribe the action of [ACTION NAME] by summarizing its

overall motion pattern and intent. Focus on the key move-

ments that define the action as a whole. Avoid excessive

details about specific joints but ensure the description cap-

tures how the action is performed in a natural way. For

example, describe how objects are manipulated, how body

posture changes, or the general sequence of motion from

start to finish.”

Local Action Description Prompting Examples. ”De-

scribe the action of [ACTION NAME] by detailing the pre-

cise movements of the hands, arms, or other involved body

parts. Provide a step-by-step breakdown of how the action

is executed at a fine-grained level, emphasizing joint mo-

tion, hand positioning, and transitions. Ensure the descrip-

tion remains human-readable and avoids overly technical

terminology.”

Description Examples. Table 13 illustrates how our

method refines action descriptions by incorporating both

global and local semantic components. Compared to the

baseline[27], which provides a vague summary, our ap-

proach explicitly decomposes actions into structured rep-

resentations.

For example, in the action “drinking water ”, the baseline

only mentions the ingestion process, whereas our Global

action Description (GD) highlights the sequential motion of

“grasping an object, raising it to the head, and simulating

a drinking motion”, capturing the structural essence of the

action. Meanwhile, Local action Description (LD) provides

finer details, such as “moving the fist up to the head and

looking slightly downward”, which are critical for distin-

guishing similar actions like “eating”.

Similarly, for “Brushing Teeth”, the baseline merely de-

scribes the purpose of the action (“to clean teeth with a

brush”), but GD focuses on the characteristic motion of

“moving a toothbrush back and forth”, while the LD re-

fines it further by specifying “hand movement towards the

head followed by wrist tremble”. This level of granularity

ensures better alignment between textual descriptions and

skeleton-based representations.

These examples demonstrate that our description method

not only improves semantic precision, which is crucial for

robust skeleton-based action recognition. By explicitly de-

composing actions into structured representations that en-

compass both global motion patterns and localized details,

the model gains a more comprehensive understanding of ac-

tion semantics. This enriched textual description provides

a stronger supervision signal for aligning skeleton features

with semantic embeddings, thereby reducing ambiguities in

action recognition.

E. Analysis of Calibrated Alignment Loss

E.1. Calibrated Loss Explanation

In this section, we break down the loss function to analyze

how the calibrated alignment loss operates. Without loss

of generality, consider a multi-class classification problem

with three classes: Class 1, Class 2, and Class 3. Each class

is associated with a ground truth distribution, denoted as P1,

P2, and P3. Assume we collect a dataset as follows: 1) S1

with n1+ñ data points in total, where n1 points are sampled

from the distribution P1, and we let S̃ denote ñ points from

P2. 2) S2, containing n2 points sampled from P2. 3) S3,

containing n3 points sampled from P3.

We identify two types of potential errors: (1) misalign-

ing points in S̃ with the text features of Class 1, and (2)

incorrectly enforcing S̃ to be far from the text features of

Class 2.

For simplicity, we focus on the first term in LAlign, as

the second term follows a similar structure. Let fk
t denote

the text feature of Class k, where k ∈ 1, 2, 3. Denote

L1
Align :=

3∑

q=1

¼
∑

m ̸=q

∑

i∈Sq

∑

j∈Sm

[
1

1 + exp((∥fq
t − gst (j)∥

2 − ∥fq
t − gst (i)∥

2)/¼)

]

.

(9)

Let

Lq,m := ¼
∑

i∈Sq

∑

j∈Sm

ℓq(i, j), (10)

where

ℓq(i, j) =
1

1 + exp((∥fq
t − gst (j)∥

2 − ∥fq
t − gst (i)∥

2)/¼)
.

(11)

Rearranging the terms, we can rewrite the loss function

as

L1
Align = L1,2 + L1,3 + L2,1 + L2,3 + L3,1 + L3,2,

(12)



where

L1,2 = ¼
∑

i∈S1/S̃

∑

j∈S2

ℓ1(i, j) + ¼
∑

i∈S̃

∑

j∈S2

ℓ1(i, j)

︸ ︷︷ ︸

(A)

. (13)

L1,3 = ¼
∑

i∈S1/S̃

∑

j∈S3

ℓ1(i, j) + ¼
∑

i∈S̃

∑

j∈S3

ℓ1(i, j)

︸ ︷︷ ︸

(B)

. (14)

L2,1 = ¼
∑

i∈S2

∑

j∈S1/S̃

ℓ2(i, j) + ¼
∑

i∈S2

∑

j∈S̃

ℓ2(i, j)

︸ ︷︷ ︸

(C)

. (15)

L2,3 = ¼
∑

i∈S2

∑

j∈S3

ℓ2(i, j) (16)

L3,1 = ¼
∑

i∈S3

∑

j∈S1/S̃

ℓ3(i, j) + ¼
∑

i∈S3

∑

j∈S̃

ℓ3(i, j)

︸ ︷︷ ︸

(D)

(17)

L3,2 = ¼
∑

i∈S3

∑

j∈S2

ℓ3(i, j) (18)

We observe that the noisy subset S̃ is only involved in

terms A, B, C, and D. Although term D involves S̃, it does

not lead to misalignment, as it merely encourages the text

of Class 3 to be similar to other text from Class 3 and dis-

similar to S̃. Since S̃ is generated from P2, this is a valid

operation. Terms A and C can be addressed in the following

theorem.

Theorem 1. For the data sets generated as described above

and the loss function defined accordingly, the terms A and

C are equal to constants in expectation, i.e.,

ES1,S2,S3
[A] = ES1,S2,S3

[C] = 1. (19)

Proof. For term A, we have

ES̃,S2



¼
∑

i∈S̃

∑

j∈S2

ℓ1(i, j)



 = ¼ñn2Ei∈P2
Ej∈P2

ℓ1(i, j)

= ¼ñn2Ei∈P2
Ej∈P2

ℓ1(i, j) + ℓ1(j, i)

2
,

(20)

where

ℓ1(i, j) + ℓ1(j, i)

2

=
1

1 + exp((∥f1
t − gst (j)∥

2 − ∥f1
t − gst (i)∥

2)/¼)

+
1

1 + exp((∥f1
t − gst (i)∥

2 − ∥f1
t − gst (j)∥

2)/¼)

=
exp((∥f1

t − gst (i)∥
2 − ∥f1

t − gst (j)∥
2)/¼)

1 + exp((∥f1
t − gst (i)∥

2 − ∥f1
t − gst (j)∥

2)/¼)

+
1

1 + exp((∥f1
t − gst (i)∥

2 − ∥f1
t − gst (j)∥

2)/¼)

= 1.

(21)

Similarly, for term C we obtain that

ES2,S̃



¼
∑

i∈S2

∑

j∈S̃

ℓ2(i, j)



 = ¼n2ñEi∈P2
Ej∈P2

ℓ2(i, j)

= ¼n2ñEi∈P2
Ej∈P2

ℓ2(i, j) + ℓ2(j, i)

2
,

(22)

where

ℓ2(i, j) + ℓ2(j, i)

2

=
1

1 + exp((∥f2
t − gst (j)∥

2 − ∥f2
t − gst (i)∥

2)/¼)

+
1

1 + exp((∥f2
t − gst (i)∥

2 − ∥f2
t − gst (j)∥

2)/¼)

=
exp((∥f2

t − gst (i)∥
2 − ∥f2

t − gst (j)∥
2)/¼)

1 + exp((∥f2
t − gst (i)∥

2 − ∥f2
t − gst (j)∥

2)/¼)

+
1

1 + exp((∥f2
t − gst (i)∥

2 − ∥f2
t − gst (j)∥

2)/¼)

= 1.

(23)

For term B, which is given by

∑

i∈S̃

∑

j∈S3

ℓ1(i, j) =

1

1 + exp((∥f1
t − gst (j)∥

2 − ∥f1
t − gst (i)∥

2)/¼)
,

(24)

note that ∥f1
t −gst (i)∥

2 represents a misalignment term, but

it can be partially balanced by ∥f1
t − gst (j)∥

2. Additionally,

the term B does not exist in the case of a binary classifica-

tion problem.



E.2. Extra Ablation Study for Calibrated Align­
ment Loss

In this subsection, we compare our results with those ob-

tained using triplet losses as alignment losses. Although

triplet losses also consider both positive and negative pairs,

most of them do not satisfy the symmetric property, making

them less robust to noisy features. The results are summa-

rized in Table 9.

Specifically, the triplet alignment losses are developed

based on popular triplet loss formulations, as follows. First,

following the work of [37], we define:

LT,1 =
1

B

∑

i∈B

max(∥ft(i) − g
s
t (i)∥

2
− ∥ft(i) − g

s
t (i

−
)∥

2
+ m, 0)

+
1

B

∑

i∈B

max(∥fs(i) − g
t
s(i)∥

2
− ∥fs(i) − g

t
s(i

−
)∥

2
+ m, 0),

(25)

which m is a margin term. It is not globally symmetric due

to max(·, 0) function.

Second, following [11, 16], we define

LT,2 =
1

B

∑

i∈B

log
1

1 + exp((∥ft(i) − gs
t (i

−)∥2 − ∥ft(i) − gs
t (i)∥

2)/λ)

+
1

B

∑

i∈B

log
1

1 + exp((∥fs(i) − gt
s(i

−)∥2 − ∥fs(i) − gt
s(i)∥

2)/λ)
,

(26)

which is non-symmetric due to the log function.

Third, following [17], we define

LT,3 =
λ

B

∑

i∈B

(

exp(∥ft(i) − gs
t (i)∥2

exp(∥ft(i) − gs
t (i)∥2 + exp((∥ft(i) − gs

t (i
−)∥2)

)

2

+
λ

B

∑

i∈B

(

exp(∥fs(i) − gt
s(i)∥2)

exp(∥fs(i) − gt
s(i)∥2) + exp(∥fs(i) − gt

s(i
−)∥2)

)

2

,

(27)

which is non-symmetric due to the squared function.

Fourth, following [23], we define

LT,4 =
1

B

∑

i∈B

max

(

1 −
∥ft(i) − gs

t (i
−)∥2

∥ft(i) − gs
t (i)∥

2 + m
, 0

)

+
1

B

∑

i∈B

max

(

1 −
∥fs(i) − gt

s(i
−)∥2

∥fs(i) − gt
s(i)∥

2 + m
, 0

)

,

(28)

which is also non-symmetric.

In the experiments of this subsection, the only distinction

between our method and the others lies in the formulation

of the alignment loss. As shown in Table 9, although most

of these methods outperform the baselines in the literature

of ZSSAR, they perform significantly worse than ours with

the calibrated alignment loss due to their absence of sym-

metry. This emphasizes the effectiveness of our alignment

loss design.

Table 9. ZSL accuracy with different alignment loss.

Alignment

Loss

NTU-60 (ACC,%) NTU-120 (ACC,%)

55/5 split 48/12 split 110/10 split 96/24 split

LT,1 84.4 45.3 72.7 58.6

LT,2 79.9 32.0 59.1 38.7

LT,3 83.8 49.5 71.8 60.7

LT,4 85.3 42.2 69.0 49.7

Ours 86.9 57.2 74.4 62.5

F. Frequency-based Representation Analysis

for Skeleton Sequences

F.1. Motivation

The Discrete Cosine Transform (DCT) enables lossless fea-

ture enhancement through energy-preserving manipulation.

The key sight is that the strict energy preservation of DCT

and Inverse-DCT (IDCT) between the frequency and time

domains: enhanced components in the frequency do-

main can be transferred to the time-domain features

through IDCT without information loss. This allows dual

semantic enhancements: 1) amplifying low-frequency co-

efficients enhances global motion patterns (e.g., overarch-

ing torso coordination), 2) refining high-frequency compo-

nents preserves fine-grained kinematics (e.g., hand trajec-

tories) while mitigating the noise. Moreover, this energy-

invariant enhancement provides richer information repre-

sentations for further alignment, where cross-modal corre-

spondences can be learned from both global and local action

semantics.

F.2. Frequency Domain Representation and Energy
Preservation Proof

Let s ∈ R
J×C×F denote a skeleton sequence in the time do-

main, where J is the number of body joints (e.g., 25 joints

in NTU-RGB+D dataset), C is the number of coordinate

dimensions (C = 3 for x, y, z coordinates), and F is the

temporal length (number of frames). The frequency-domain

representation C ∈ R
J×C×F is obtained through the or-

thogonal DCT. For each joint j ∈ {1, . . . , J}, coordinate

c ∈ {1, . . . , C}, and frequency index i ∈ {0, . . . , F − 1},

the transformation is defined as:

Cj,c,i =
F−1∑

f=0

sj,c,f · ϕi(f) (29)

where the normalized DCT basis functions ϕi(f) are given

by:

ϕi(f) =

√

2− ¶i0
F

· cos

[
Ã

F

(

f +
1

2

)

i

]

, (30)

with ¶i0 denoting the Kronecker delta function (i.e., ¶i0 = 1
when i = 0 and ¶i0 = 0 otherwise), and f ∈ {0, . . . , F −
1}.



For any joint j and coordinate c, the energy equivalence

between the time and frequency domains is proved as fol-

lows:

Efreq,j,c =

F−1∑

i=0

C2
j,c,i

=

F−1∑

i=0





F−1∑

f=0

sj,c,f ϕi(f)





2

=

F−1∑

i=0

F−1∑

f=0

F−1∑

f ′=0

sj,c,f sj,c,f ′ ϕi(f)ϕi(f
′)

=

F−1∑

f=0

F−1∑

f ′=0

sj,c,f sj,c,f ′
F−1∑

i=0

ϕi(f)ϕi(f
′)

=
F−1∑

f=0

s2j,c,f = Etime,j,c.

(31)

The orthogonality relationship [35]

F−1∑

i=0

ϕi(f)ϕi(f
′) =

{

1, if f = f ′

0, if f ̸= f ′

eliminates cross-terms between different frames (f ̸=
f ′). Consequently, the energy preservation holds globally:

J∑

j=1

C∑

c=1

F−1∑

f=0

s2j,c,f =

J∑

j=1

C∑

c=1

F−1∑

i=0

C2
j,c,i. (32)

F.3. Semantic Integrity with Frequency Adjustment

Given modified coefficients C ′
j,c,i = Cj,c,i · g(i) with scal-

ing function g(i), the reconstructed signal becomes:

s′j,c,f =

F−1∑

i=0

C ′
j,c,iϕi(f) =

F−1∑

i=0

g(i)Cj,c,iϕi(f) (33)

The modified energy preserves the relationship:

E′
time,j,c =

F−1∑

f=0

(s′j,c,f )
2

=
F−1∑

f=0

(
F−1∑

i=0

g(i)Cj,c,iϕi(f)

)2

=

F−1∑

i=0

F−1∑

k=0

g(i)g(k)Cj,c,iCj,c,k

F−1∑

f=0

ϕi(f)ϕk(f)

︸ ︷︷ ︸

δik

=
F−1∑

i=0

g(i)2C2
j,c,i = E′

freq,j,c

(34)

This derivation demonstrates three key properties: First,

the orthogonal basis eliminates cross-frequency interfer-

ence during adjustment (¶ik removes terms where i ̸= k),

ensuring distortion-free modifications. Second, energy re-

distribution follows E′
time =

∑

i g(i)
2C2

i , allowing con-

trolled enhancement (g(i) > 1) or suppression (g(i) < 1) of

specific frequency. Third, semantic integrity is maintained

through the physical meaning of frequency components -

low frequencies (i f φ) encode global motion trajectories,

while high frequencies (i > φ) capture local kinematic de-

tails (φ is the low-frequency threshold), enabling targeted

manipulation without corrupting overall motion semantics.

F.4. Frequency­based Enhancement Mechanism

Since semantic information in skeleton motion is inher-

ently tied to frequency components, higher energy indicates

richer information, while energy distribution across fre-

quencies highlights different motion scales. Thus, enhanc-

ing skeleton-based frequency components in the frequency

domain enriches semantic representation in the time domain

(proved above, semantic integrity is preserved during DCT-

IDCT), leading to improved generalization in ZSL. This

mechanism consists of two adjustments:

Low-Frequency Enhancement. The amplification term

wi

(
1− i

b

)
is designed to emphasize fundamental move-

ment patterns in skeletal dynamics. By progressively re-

ducing the enhancement effect as frequency increases, this

mechanism ensures that low-frequency components, which

encode the overall motion structure, are strengthened with-

out distorting the natural motion flow. For whole-body ac-

tions such as “walking” or “clapping,” it enhances limb co-

ordination and preserves joint continuity.

High-Frequency Suppression. The attenuation term

−wi

(
1− i−b

b

)
is designed to progressively reduce the sup-

pression effect as frequency increases. This ensures that

while high-frequency components are attenuated to miti-

gate noise and skeletal jitter, fine-grained and rapid mo-

tion details are not excessively diminished. The parameter b
controls the rate of suppression decay, allowing higher fre-

quency components to retain essential micro-movements,

such as finger and wrist gestures.

F.5. Illustration

We also provide the illustration example of our frequency-

enhanced mechanism in Fig. 5. Assume the number of

the DCT coefficients is 20, the low-frequency threshold φ
is 15. As shown in the figure, in the low-frequency range

(i f φ), the enhancement applied to the low-frequency co-

efficients gradually decreases, allowing a smooth transition

while preserving global motion integrity. Meanwhile, in the

high-frequency range (i > φ), the suppression of high-

frequency coefficients diminishes progressively, allowing

essential fine-grained motion details to be retained while



Property DCT Wavelet

Energy Compaction Strong global compaction Localized

Coefficient Control Easy frequency separation Requires multi-scale design

Integration Simple matrix operations Needs wavelet basis selection

Usage Semantic enrichment Fine-grained separation

Table 10. Comparison between DCT and Wavelet in terms of structural properties and usage for representation learning.

mitigating noise.

F.6. Code

The key part of the implementation of the frequency-

enhanced module in our method is presented in Fig. 6. The

code snippet provided illustrates the core mechanism of our

frequency-aware enhancement strategy within the skeleton

decoder. The codes for frequency adjustment with purely

learnable weight are also provided in Fig. 7. Extra ablation

study and discussion are provided in the main paper.

G. Justification for Choosing DCT

We adopt the Discrete Cosine Transform (DCT) as our fre-

quency encoding method due to its strong energy com-

paction property and its ability to flexibly separate low- and

high-frequency components. These characteristics make

it particularly effective for semantic representation learn-

ing in zero-shot settings, where training data is limited and

fine-grained generalization is critical. Specifically, DCT

helps preserve global motion information while enabling lo-

calized modulation. This frequency-aware modulation en-

riches latent representations without requiring strict tempo-

ral alignment, aligning well with the post-encoded features.

As shown in Table 10, while wavelet transforms are also

viable for signal analysis, they are primarily designed for

multi-scale, localized analysis and often require more com-

plex basis selection and hierarchical decomposition. In con-

trast, DCT is lightweight, easily integrable through matrix

operations, and offers more straightforward control over

frequency bands for modulation. Our use of DCT is not

intended as a traditional frequency separation mechanism,

as in prior fully-supervised methods[4, 44], but as a seman-

tic enhancement strategy to improve generalization under

zero-shot learning.

H. NTU-60 Dataset Action Index

We also provide the list of action indices from the NTU-60

dataset in Table 11.



Table 11. NTU-60 action classes and their corresponding indices.

Index Action

1 Drink water

2 Eat meal

3 Brush teeth

4 Brush hair

5 Drop

6 Pick up

7 Throw

8 Sit down

9 Stand up

10 Clapping

11 Reading

12 Writing

13 Tear up paper

14 Put on jacket

15 Take off jacket

16 Put on a shoe

17 Take off a shoe

18 Put on glasses

19 Take off glasses

20 Put on a hat/cap

21 Take off a hat/cap

22 Cheer up

23 Hand waving

24 Kicking something

25 Reach into pocket

26 Hopping

27 Jump up

28 Phone call

29 Play with phone/tablet

30 Type on a keyboard

31 Point to something

32 Taking a selfie

33 Check time (from watch)

34 Rub two hands together

35 Nod head/bow

36 Shake head

37 Wipe face

38 Salute

39 Put palms together

40 Cross hands in front

41 Sneeze/cough

42 Staggering

43 Falling down

44 Headache

45 Chest pain

46 Back pain

47 Neck pain

48 Nausea/vomiting

49 Fan self

50 Punch/slap

51 Kicking

52 Pushing

53 Pat on back

54 Point finger

55 Hugging

56 Giving object

57 Touch pocket

58 Shaking hands

59 Walking towards

60 Walking apart



Figure 5. The illustration example of the frequency-enhanced method.

Table 12. Implementation details and parameter settings.

Datasets NTU-60 NTU-120

Skeleton Feature Extractor Shift-GCN [8]

Text Feature Extractor CLIP-ViT-B32/16 [34]

Latent Embedding Dim (Stage 1) 256 512

Latent Embedding Dim (Stage 2) 100 200

Optimizer Adam

Learning Rate (Stage 2) 1.0× 10
−4

Batch Size (Stage 2) 64

Training Epochs (Stage 2) 1900

Unseen Class Features Dim (Stage 3) 500

Unseen Classifier Epochs (Stage 3) 300

Unseen Classifier Learning Rate 1.0× 10
−3

Classification Gate Logistic Regression (LBFGS, C = 1)

Frequency Module DCT-IDCT [2]

Frequency Parameters ϕ = 35, b = 30

Semantic Descriptions GPT-4 Generated (LD+GD)

Calibrated Loss α 0.1

Calibrated Loss λ 100

Hardware NVIDIA A100 × 1

Table 13. Examples of action descriptions between baseline and our method.

Action Baseline Description Global Description (Ours) Local Description (Ours)

Eating Meal/Snack to put food in your mouth, bite

it, and swallow it

to pick up food with your hand or utensil,

move it to the mouth, and chew

pinch and move the hand up to the head

Brushing Teeth to clean, polish, or make teeth

smooth with a brush

to move a toothbrush back and forth inside

your mouth

move the hand up to the head, then tremble

the wrist

Brushing Hair to clean, polish, or make hair

smooth with a brush

to run a brush or comb through your hair to

smooth it

move the hand up to the head, then move

the hand downward

Dropping an Object to allow something to fall by ac-

cident from your hands

to release an object, letting it fall freely to

the ground

release the hand in front of the middle of

the body



1 # x = input data

2 # dct = Discrete Cosine Transform function

3 # b = adjusting parameter

4 # freq_weight = learnable weight for frequency

5 # split_freq = threshold for low- and high-frequency adjustment

6 def dct_enhance(self, x):

7 # Apply DCT to transform input to the frequency domain

8 x_dct = dct.dct(x, norm=’ortho’)

9 # Frequency enhancement

10 for i in range(self.length_input):

11 start = self.split_points[i]

12 end = self.split_points[i + 1]

13 freq_weight = self.freq_weight[i]

14 # Low-frequency adjustment

15 if end <= self.split_freq:

16 # Scaling function for low frequency

17 decay_factor = 1 - i / self.b

18 x_dct[:, start:end] *= (1 + freq_weight * decay_factor)

19 # High-frequency adjustment

20 else:

21 # Scaling function for high frequency

22 decay_factor = 1 - (i - self.b) / self.b

23 x_dct[:, start:end] *= (1 - freq_weight * decay_factor)

24 # Inverse DCT to transform back to the time domain

25 return dct.idct(x_dct, norm=’ortho’)

Figure 6. PyTorch codes for frequency enhancement in the encoder.

1 def dct_enhance(self, x):

2 # Apply DCT to transform input to frequency domain

3 x_dct = dct.dct(x, norm=’ortho’)

4 for i in range(self.length_input):

5 start = self.split_points[i]

6 end = self.split_points[i + 1]

7 freq_weight = self.freq_weight[i]

8 # Apply learnable weight directly

9 x_dct[:, start:end] *= freq_weight

10 # Inverse DCT to transform back to time domain

11 return dct.idct(x_dct, norm=’ortho’)

Figure 7. PyTorch codes for frequency enhancement with pure learnable weights.
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