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Abstract

In this paper, we present the first explicit and non-asymptotic global convergence
rates of the BFGS method when implemented with an inexact line search scheme satis-
fying the Armijo-Wolfe conditions. We show that BFGS achieves a global linear conver-
gence rate of (1 — %)t for p-strongly convex functions with L-Lipschitz gradients, where
k = L represents the condition number. Additionally, if the objective function’s Hes-
sian is Lipschitz, BFGS with the Armijo-Wolfe line search achieves a linear convergence
rate that depends solely on the line search parameters, independent of the condition
number. We also establish a global superlinear convergence rate of O((1)"). These
global bounds are all valid for any starting point zy and any symmetric positive definite
initial Hessian approximation matrix By, though the choice of By impacts the number
of iterations needed to achieve these rates. By synthesizing these results, we outline
the first global complexity characterization of BFGS with the Armijo-Wolfe line search.
Additionally, we clearly define a mechanism for selecting the step size to satisfy the
Armijo-Wolfe conditions and characterize its overall complexity.
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1 Introduction

In this paper, we focus on solving the following unconstrained convex minimization problem

min f(z), (1)

where f : R — R is strongly convex and twice differentiable. Quasi-Newton methods
are among the most popular algorithms for solving this class of problems due to their
simplicity and fast convergence. Like gradient descent-type methods, they require only
gradient information for implementation, while they aim to mimic the behavior of New-
ton’s method by using gradient information to approximate the curvature of the objective
function. There are several variations of quasi-Newton methods, primarily distinguished by
their update rules for the Hessian approximation matrices. The most well-known among
these include the Davidon-Fletcher-Powell (DFP) method [Dav59; FP63|, the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) method [Bro70; Fle70; Gol70; Sha70], the Symmetric
Rank-One (SR1) method [CGT91; KBS93|, and the Broyden method [Bro65]. Apart from
these classical methods, other variants have also been proposed in the literature, includ-
ing randomized quasi-Newton methods [GGR16; GR17; KGRR20; LYZ21; LYZ22|, greedy
quasi-Newton methods [RN21a; LYZ21; LYZ22; JD23], and those based on online learning
techniques [JJM23; JM23|. In this paper, we mainly focus on the global analysis of the
BFGS method, arguably the most successful quasi-Newton method in practice.

The classic analyses of BFGS, including [BDM73; DM74; GT82; DMTR89; Yua9l; Al-98;
LF99; YOYO07; MER18; GG19], primarily focused on demonstrating local asymptotic su-
perlinear convergence without addressing an explicit global convergence rate when BFGS
is deployed with a line-search scheme. While attempts have been made to establish global
convergence for quasi-Newton methods using line search or trust-region techniques in pre-
vious studies [Pow71; Pow76; BNY87; BN89; KBS93; BKS96|, these efforts provided only
asymptotic convergence guarantees without explicit global convergence rates, thus not fully
characterizing the global convergence rate of classical quasi-Newton methods.

In recent years, there have been efforts to characterize the explicit convergence rate of BEFGS
within a local neighborhood of the solution, establishing a superlinear convergence rate of
the form (%)t; see, for example, [RN21c; RN21b; YLCZ23; JM22|. However, these results
focus solely on local convergence analysis of BFGS under conditions where the stepsize is
consistently set to one, the iterate remains close to the optimal solution, and the initial
Hessian approximation matrix meets certain necessary conditions. Consequently, these
analyses do not extend to providing a global convergence guarantee. For more details on
this subject, we refer the reader to the discussion section in [JJM24].

To the best of our knowledge, only few papers are closely related to our work and establish

a global non-asymptotic guarantee for BFGS. In [KTSK23], it was shown that BFGS with
-1

exact line search achieves a global linear rate of (1 — 2Lif(l + %)_1(1 + %)—1)2

where g is the strong convexity parameter, L is the Lipschitz constant of the gradient, By

is the initial Hessian approximation matrix, and Tr(-) denotes the trace of a matrix. After
3
t = O(d) iterations, this rate approaches (1 — %)t, which is significantly slower than the



convergence rate of gradient descent. Additionally, a recent draft in [Rod24] studied the

global convergence of BFGS under an inexact line search. While this work establishes a local
superlinear rate, it only shows a global linear rate of the form (1 — ‘L‘—i)t Hence, both these
results fail to prove any global advantage for BEGS over gradient descent. In [JJM24], the
authors improved upon [KTSK23] by showing a better global linear convergence rate and
a faster superlinear rate for BFGS with exact line search. Specifically, for an L-Lipschitz
and p-strongly convex function, BFGS initialized with By = LI achieves a global linear

rate of (1 — Z;;z )t for t > 1, while BFGS with By = pl achieves the same rate after dlog
iterations. With the additional assumption that the objective’s Hessian is Lipschitz, an
improved linear rate of (1 — £)" is achieved after O(k) iterations when By = LI and after
O(dlog k + k) when By = ul, matching the rate of gradient descent. A superlinear rate of

(1/v)t was also shown when the number of iterations exceeds specific thresholds.

Contributions. In this paper, we analyze the BFGS method combined with the Armijo-
Wolfe line search, the most commonly used line search criteria in practical BEFGS applica-
tions; see, e.g., [NW06]. For minimizing an L-smooth and p-strongly convex function, we
present a global convergence rate of (1 — %)t To the best of our knowledge, this is the first
result demonstrating a global linear convergence rate for BFGS that matches the rate of
gradient descent under these assumptions. Furthermore, we show that if the objective func-
tion’s Hessian is Lipschitz continuous, BFGS with the Armijo-Wolfe line search converges
at a linear rate determined solely by the line search parameters and not the problem’s condi-
tion number, k = L/u, when the number of iterations is sufficiently large. Finally, we prove
a global non-asymptotic superlinear convergence rate of (h(d.x.Co)/t)t, where h(d, x,Cp) de-
pends on the condition number x, the dimension d, and the weighted distance between the
initial point xy and the optimal solution x,, denoted by Cy. We summarize our results in
Table 1. By combining these convergence results, we establish the total iteration complexity
of BFGS with the Armijo-Wolfe line search. We also specify the line search complexity by
investigating a bisection algorithm for choosing the step size that satisfies the Armijo-Wolfe
conditions. Our result is one of the first non-asymptotic analysis characterizing the global
convergence complexity of the BFGS quasi-Newton method with an inexact line search.

Notation. We denote the fo-norm by || - ||, the set of d x d symmetric positive definite
matrices by Si 4, and use A X B to mean B — A is symmetric positive semi-definite. The
trace and determinant of a matrix A are represented as Tr(A) and Det(A), respectively.

2 Preliminaries

In this section, we present the assumptions, notations, and intermediate results useful for
the global convergence analysis. First, we state the following assumptions on the objective
function f.

Assumption 2.1. The function f is twice differentiable and strongly convex with parameter
w>0.

Assumption 2.2. The gradient of f is Lipschitz continuous with parameter L > 0.



‘ Initial Matrix ‘ Convergence Phase ‘ Convergence Rate ‘ Starting moment ‘

By Linear phase I (1- %)t U (By)
By Linear phase 11 (1 — %)t \IJ(BNO) + Co¥(By) + Cok

~ — t ~ _
By Superlinear phase (‘P(BO)JFCO;P(BOHCOR) U(By) + Co¥(By) + Cok
LI Linear phase I (1 — %)t 1
LI Linear phase 11 (1 — %)t dr + Cyk

7
LI Superlinear phase <d”+tﬂ> dr + Cok
ul Linear phase I (1 — %)t dlog k
ul Linear phase 11 (1— %)t (14 Cp)dlog k + Cok
7

wl Superlinear phase <(1+C°)dlfg”+con> (14 Cp)dlog k + Cok

Table 1: Summary of our results for (i) an arbitrary positive definite By, (i) By = LI,
and (iif) By = pl. Here, U(A) := Tr(A) — d — logDet(4), By = 1B, and By =
V2 f (x*)_%BOVZ f (x*)_% The last column shows the number of iterations required to
achieve the corresponding linear or superlinear convergence phase. For brevity, the abso-
lute constants are dropped.

These assumptions are common in the convergence analysis of quasi-Newton methods. Un-
der these, we show a global linear convergence rate of O((1 — £)%). To achieve a faster
linear convergence rate that is independent of the problem condition number, and a global
superlinear rate, we require an additional assumption that the objective function Hessian
is Lipschitz continuous, as stated next.

Assumption 2.3. The Hessian of f is Lipschitz continuous with parameter M > 0, i.e.,
for z,y € R, we have | V2 f(z) = V2 f(y)|| < M|z -y

Note that the above regularity condition on the Hessian assumption is also common for
establishing the superlinear convergence rate of quasi-Newton methods [BDM73; DM74;
GT82; DMT89; Yua9l; Al-98; LF99; YOYO07; MER18; GG19].

BFGS Update. Next, we state the general update rule of BFGS. If we denote z; as the
iterate at time ¢, the vector g, = V f(z;) as the objective function gradient at z;, and B; as
the Hessian approximation matrix at step ¢, then the update is given by

Tp41 = Ty + Medy, dy = —B; g1, (2)

where 17; > 0 is the step size and d; is the descent direction. By defining the variable
difference s; := 441 — x; and the gradient difference y; := V f(2141) — Vf(x¢), we can
present the Hessian approximation matrix update for BFGS as follows:

Byisis{ By,

Biy1 =B — (3)

T T, "
S Bysy St Yt



To avoid the costly operation of inverting the matrix By, one can define the inverse Hessian
approximation matrix as H; := B, 1 and apply the Sherman-Morrison-Woodbury formula

to obtain - - -
s s 5:8
Hypo = (1_ tTyt>Ht<1_yfrt>+ P (4)
Yy St St Yt Yy St

It is well-known that for a strongly convex objective function, the Hessian approximation
matrices B; remain symmetric and positive definite if the initial matrix By is symmetric
positive definite [NWO06]. Therefore, all matrices By and H; are symmetric positive definite
throughout this paper.

As mentioned earlier, establishing a global convergence guarantee for BEGS requires pairing
it with a line search scheme to select the stepsize 7;. This paper focuses on implementing
BFGS with the Armijo-Wolfe line search, detailed in the following subsection.

Armijo-Wolfe Line Search. We consider a stepsize 7; >0 that satisfies the Armijo-Wolfe
conditions

Flae+mdy) < fla) +anV f(ze) di, (5)
Vf(x + ntdt)Tdt > 5Vf($t)Tdt, (6)

where o and 3 are the line search parameters, satisfying 0 < a < g <land 0 < a < % The
condition in (5) is the Armijo condition, ensuring that the step size 7y provides a sufficient
decrease in the objective function f. The condition in (6) is the curvature condition, which
guarantees that the slope V f(z; + ntdt)Tdt at 7; is not strongly negative, indicating that
further movement along d; would significantly decrease the function value. These conditions
provide upper and lower bounds on the admissible step size 7;. In some references, the
Armijo-Wolfe line search conditions are known as the weak Wolfe conditions [Wol69; Wol71].
The procedure for finding n; that satisfies these conditions is described in Section 7. Next
lemma presents key properties of the Armijo-Wolfe conditions.

Lemma 2.1. Consider the BFGS method with Armijo- Wolfe inexact line search, where the
step size satisfies the conditions in (5) and (6). Then, for any initial point xg and any
symmetric positive definite initial Hessian approximation matriz By, the following results
hold for all t > 0:

_ T
f(xt)_ _lf(xt—irl) > a, _yt_l_st >1-4, and f@egr) < flay). (7)
9y St 9t St

Remark 2.1. While in this paper we only focus on the Armijo-Wolfe line search, our
results are also wvalid for some other line search schemes that require stricter conditions.
For instance, in the strong Wolfe line search, given 0 < a < 8 <1 and 0 < a < %, the
required conditions for the step size are

Flae+mdy) < f(ze) + oV f(z) dy, IV f( + medy) T dy| < BV f () Ty,

Indeed, if ny satisfies the strong Wolfe conditions, it also satisfies the Armijo-Wolfe condi-
tions.



Another commonly employed line search scheme is Armijo—Goldstein, which imposes the
conditions

—Clntvf(l’t)Tdt < flwy) = flze +medy) < —0277tvf(33t)Tdt7

with 0 < ¢1 < ¢ < 1. The lower bound on f(x) — f(x¢ + medy) in the Armijo—Goldstein
line search indicates that n, satisfies the sufficient decrease condition in (5) required for the
Armijo- Wolfe conditions, with o = ¢1. Moreover, given the convexity of f, the upper bound
on f(x) — f(xr +medy) in the Armijo—Goldstein line search suggests —n;V f (s +nedy) T dy <
flay) — flay +mdy) < —Cg?]tVf($t)Tdt. Thus, ny also meets the curvature condition in (6)
required in the Armijo- Wolfe conditions with = co. Hence, all our results derived under
the Armijo- Wolfe line search are also wvalid for both the strong Wolfe line search and the
Armijo—Goldstein line search.

3 Convergence Analysis

In this section, we present our theoretical framework for analyzing the global linear con-
vergence rates of BFGS with the Armijo-Wolfe line search scheme. To start, we introduce
some necessary definitions and notations. We define the average Hessian matrices J; and

Gy as

1 1
Jp = / V2 f (21 + T(Te41 — 20))dT, Gy = / V2 f (@ + 7(e — 24))dr, (8)
0 0

Further, for measuring the suboptimality of the iterates we define the sequence C; as

Cp o= %\/w(mt) T, >0, (9)

where M is the Lipschitz constant of the Hessian defined in Assumption 2.3 and u is the
strong convexity parameter introduced in Assumption 2.1.To analyze the dynamics of the
Hessian approximation matrices {B;};£5, we use the function W(A)

U(A) :=Tr(A) —d —log Det(A), (10)

well-defined for any A € S%,. It was introduced in [BN89] to capture the discrepancy
between A and the identity matrix I. Note that W(A) > 0 for any A € S, and ¥(A) =0
if and only if A = 1.

Before we start convergence analysis, given any weight matrix P € Si ., we define the
weighted versions of the vectors g¢, s;, y;, d; and the matrix By, J; as

Gi=P %g, & =Pis,  § =P iy,  d =P, (11)

B,=P:BP 2,  J =P 2JP . (12)

Note that these weighted matrices and vectors preserve many properties of their unweighted
counterparts. For instance, two of these main properties are g, §; = g, s and 9, 5; = v, 5.



Similarly, the update for the weighted version of Hessian approximation matrices closely
mirrors the update of their unweighted counterparts, as noted in the following expression:

Ao aT A f AT
B —RB Bisisy By Gty
t+1 = D¢ —

= — vt > 0. 13
3/ Bis 8 0 (13)

Finally, we define a crucial quantity, ét, which measures the angle between the weighted
descent direction and the negative of the weighted gradient direction, satisfying

ATA

A —G; St
cos(fy) = ———. 14
(@) Gellll el 14

3.1 Intermediate Results

In this section, we present our framework for analyzing the convergence of BFGS with
an inexact line search. We first characterize the relationship between the function value
decrease at each iteration and key quantities, including the angle 0; defined in (14).

Proposition 3.1. Let {z;};>0 be the iterates generated by BFGS. Recall the definitions of
weighted vectors in (11). Then, for any weight matriz P and for all t > 1, we have

% < (1 _ (t_:pqn%>i>t (15)

where Py, G, My and Ny are defined as

. J(x) = [T . a2 . 7, 8 R 7, 8
bt = ( t) ATA( a )7 qt ‘= —H t” , Ty 1= —f ;, ny = fo . (16)
—3; 4 fxe) — f(z) [ 8¢l —3y 8¢

This result shows the convergence rate of BFGS with Armijo—Wolfe line search depends on

four products: H';f;(l) Di, H';f;(l) G, H';f;(l) f;, and Ht ! Cos,’m . To establish an explicit rate, we

need lower bounds on these products. Lemma 2.1 shows that the lower bounds for HZ o Di
and H —o"; depend on the inexact line search parameters o and 3. We will further prove
that if the unit step size 1y = 1 satisfies the Armijo-Wolfe condltlons better lower bounds

can be obtained for these products. The lower bounds for HZ o0 i and Ht : COSA %) were
established in previous work [JJM24] as presented in Appendix D. Spemﬁcally, the bounds

for Hz’:O ¢; depend on the choice of the weight matrix, which varies in different sections of

the paper, requiring separate bounds for each case. However, the bound for Hf é%(g)

does not require separate treatment. This is explicitly established in Proposition D.1, a
classical result, as discussed in [NWO06, Section 6.4]. We build all our linear and superlinear
results by establishing different bounds on the terms in (15).

4 Global Linear Convergence Rates

Building on the tools introduced in Section 3, we establish explicit global linear convergence
rates for BFGS with the Armijo-Wolfe line search, requiring only the strong convexity



and gradient Lipschitz conditions from Assumptions 2.1 and 2.2. Our proof leverages the
fundamental inequality in (15) from Proposition 3.1 and lower bounds on the terms that
appear in the contraction factor. Here, we set the weight matrix P to P = LI and hence
define the initial weighted matrix By as By = %Bo. The following theorem presents our
first global linear convergence rate of BFGS for any By € Si 4

Theorem 4.1. Suppose Assumptions 2.1 and 2.2 hold. Let {x;}1>0 be the iterates generated
by BFGS, where the step size satisfies the Armijo- Wolfe conditions in (5) and (6). For any
initial point zo € R? and any initial Hessian approzimation matriz By € Si 1, we have

flar) = f(x) v 20(1 - B)\'
f(:vo)—f(w*)§<1_e K > et "

Remark 4.1. In [JJM2/], the authors analyzed BFGS with exact line search and established
W(Bgy)

a global linear rate of (1 — e~ 0 m)t In comparison, our result in (17) achieves a

faster linear rate by eliminating the \/k factor in the denominator. This improvement

arises from using the Armijo- Wolfe conditions. Specifically, under these conditions, we show

% > « as shown in Lemma 2.1, where o € (0,1/2) is a line search parameter. In
t
contrast, using exact line search, the authors in [JIM24] proved that f(xt)_’;(xt“) >

2
—g, st = VE+1’

thus leading to the extra \/k factor in their rate.

From Theorem 4.1, we observe that the linear convergence rate is determined by the quantity
U(By) Thus, to simplify our bounds, we consider two different initializations: By = LI and
BO = ,uI

Corollary 4.2. Suppose Assumptions 2.1 and 2.2 hold, {x};>0 are generated by BFGS
with step size satisfying the Armijo-Wolfe conditions in (5) and (6), and xo € R? is an
arbitrary initial point.

o [f the initial Hessian approximation matriz is set as By = LI, then for anyt > 1

Flx) = fl=) 20(1 - )\
Fleo) — F(as) S(“ " ) | (18)

o [f the initial Hessian approzimation matriz is set as By = pl, then for any t > 1 we

[@O-f@e) o () _ o9 20(1-8)

have Floo)=Fa) < (1- t. Moreover, fort > dlog k, we have

Fe) - fl) 20(1— §)\'
Fl0) — F(@s) S(“ £ ) | (19)

Corollary 4.2 shows that when initialized with By = LI, BFGS achieves a linear rate of
O((1— %)t) from the first iteration, matching the rate of gradient descent. It also indicates
that initializing with By = ul achieves a similar rate but after dlog x iterations. While this
suggests a preference for initializing with By = LI, subsequent analysis reveals that with
enough iterations, BFGS with either initialization can attain a faster linear rate independent
of k. In some cases, starting with By = pul may lead to fewer total iterations to achieve this
faster rate. We will explore this trade-off later.



5 Condition Number Independent Linear Convergence Rates

In this section, we improve the previous results and establish a non-asymptotic, condition
number-free global linear convergence rate for BFGS with the Armijo-Wolfe line search.
This requires the additional assumption that the Hessian is Lipschitz continuous. Our
analysis builds on the previous methodology but uses P = V2f(x,) instead of P = LI
to prove the condition number-independent global linear rate. Thus, the weighted initial
matrix By is V2f (x*)_%B0V2 f (a:*)_% Next, we present a general global convergence bound
for any initial Hessian approximation By € Sjl_ e

Proposition 5.1. Suppose Assumptions 2.1, 2.2 and 2.3 hold. Let {x:}+>0 be the iterates
generated by BFGS with the step size satisfying the Armijo- Wolfe conditions in (5) and (6).
Recall the definition of Cy in (9) and W(-) in (10). For any initial point xo € R? and any
wiatial Hessian approximation matrix By € Sjl_ 1, the following result holds:

Fao) = flan = (17201 = e w1

Proposition 5.1 demonstrates that the convergence rate of BFGS with the Armijo-Wolfe line
search is influenced by ¥(By) and the sum zz;é C;. The first term ¥(By) is a constant that
depends on our choice of the initial Hessian approximation matrix By. The second term
Zf;é C; can also be upper bounded using the non-asymptotic global linear convergence rate
provided in Theorem 4.1.

Theorem 5.2. Suppose Assumptions 2.1, 2.2 and 2.3 hold, and let {x;}+>0 be the iterates
generated by BFGS with the Armijo-Wolfe line search in (5) and (6). Then, for any initial
point zo € R? and any initial Hessian approzimation By € SSlH_, ift > 1’(30) +3Co¥ (By) +
ﬁCoﬂ, we have
f(@o) = f(zs) 3

This result shows that when the number of iterations meets t > W(By) + 3CoW(By) +

—2 __Coyk, BFGS with Armijo-Wolfe conditions achieves a condition number-independent

loiél(lleai) rate. The choice of By is critical as it influences the required iterations through
By = V2f(x*)_%BOV2f(:E*)_% and By = 1By. Different choices of By affect U(By) +
3Co¥(By) and thus the number of iterations needed for condition-free linear convergence.
While optimizing By to minimize W(By) + 3Co¥(By) is possible, we focus on two practical

initialization schemes: By = LI and By = ul.

Corollary 5.3. Suppose that Assumptions 2.1, 2.2 and 2.3 hold. Let {xt}i>0 be the iterates
generated by the BFGS method, where the step size satisfies the Armijo- Wolfe conditions in
(5) and (6), and zo € R? as an arbitrary initial point. Then, given the result in Theorem 5.2,
we have

o If we set By = LI, the rate in (20) holds for t > dk + ﬁCoﬂ,

o If we set By = pl, the rate in (20) holds for t > (1 + 3Cy)dlog k + ﬁC@ﬁ.



Based on Corollary 5.3, if Cy < k, or equivalently f(zg) — f(z.) < %, then BFGS
with By = pl requires less iterations to achieve the condition number-independent linear
convergence rate.

6 Global Superlinear Convergence Rates

In this seg:tion, we preslent our global superlinear result. Consider the definition By =
V2f(x,)"2ByV?f(r,)”"2 as well as the definition of p; which is given by

_ —gtTdt

= 9% =V (22, VE>0. (21)
[[de 2

Pt -

To motivate, let us briefly discuss why we are only able to show a linear convergence rate
instead of a superlinear rate in Theorem 5.2. By inspecting the proof, we observe that
the bottleneck is due to the lower bounds on p; and n;: we used p; > o and ny > 1 —
from Lemma 2.1, which leads to the constant factor a(l — ) in the final linear rate in
Theorem 5.2. Thus, to show a superlinear convergence rate, we need to establish tighter
lower bounds for p; and ns. In the following lemma, we show that if the step size n, = 1,
we are able to establish such tighter lower bounds.

Lemma 6.1. Recall p; = L&mm

AT &
and Ny = ygf;t defined in (16). If the unit step size

t
e = 1 satisfies the Armijo- Wolfe conditions (5) and (6), then we have

R 1+C . 1
pr=>1— ) g > ————.
' 2p4 'S+ C)p

(22)

In contrast to the constant lower bounds in Lemma 2.1, the lower bounds in (22) depend on
Cy and p;. Later, we show Cy — 0 and p; — 1. Hence, the lower bounds in (22) approach
1 as the number of iterations increases, enabling us to prove a superlinear rate. That said,
the lower bounds in Lemma 6.1 hold only when 7y = 1. To complete the picture, we need
to quantify when and how often the unit step size is selected during BFGS execution. This
is addressed in the next lemmas.

Lemma 6.2. Suppose Assumptions 2.1, 2.2, and 2.3 hold and define the constants

(1 1 B 7 1 _ 1
51.—m1n{6,\/2(1—a)—1,\/17__ﬁ—1}, 62 = 8772(1_0[)}7 63 : 7\/@,

which satisfy 0 < 01 < 6o < 1 < d3. If Cy < 61 and do < pp < I3, then ny = 1 satisfies the
Armigjo- Wolfe conditions (5) and (6).

(23)

Lemma 6.2 shows that when C; < ¢; and p; falls within the interval [dy,d3], the step
size ny = 1 is admissible and meets the Armijo-Wolfe conditions. Note that by the linear
convergence result in Theorem 4.1, the first condition on C; will be satisfied when ¢ is
sufficiently large. Additionally, using Proposition G.2 in the Appendix, we can show that the
second condition on p; is violated only for a finite number of iterations. These observations
are formally presented in the following lemma.
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Lemma 6.3. Suppose Assumptions 2.1, 2.2, and 2.3 hold and the iterates {x¢}i>0 are
generated by the BFGS method with step size satisfying the Armijo-Wolfe conditions in
(5) and (6). Recall Cy defined in (9), () defined in (10), {6;};_, defined in (23) and
By = %Bo. We have Cy < &1 when

log — (24)

Oé(l - 5) 51
Moreover, if we define w(z) = x —log(1 + ), the size of the set I = {t: p; ¢ [02,03]} is at
most

t > tp := max {\IJ(BO), 3K CO} .

1
min{w(de — 1), w(d3 — 1)}

~ — 60()/4,

< I —
HL_&(WQ%%+X%WG%%+QG_B)
Lemma 6.3 implies that conditions C; < §; and p; € [d9,d3] will be satisfied for all but a
finite number of iterations. Thus, if the line search always starts by testing the unit step
size (as shown in Section 7), we will choose 7; = 1, and accordingly, the tighter lower bound
in Lemma 6.1 will apply for all but a finite number of iterations. By applying these lower
bounds along with (15) from Proposition 3.1, we can prove a global superlinear convergence
rate, as presented next.

), where 04 1= (25)

Remark 6.1. Lemmas 6.2 and 6.3 are inspired by the analysis in [Rod24]. Specifically,
Lemma 5.10 of [Rod2}] characterized the conditions on Cy and py under which n =1 satis-
fies the Armijo condition (5), and further bounded the number of iterations where these
conditions are violated. However, our Lemma 6.2 addresses both the Armijo condition
in (5) and the curvature condition in (6), and the arguments appear simpler. Addition-
ally, our proof for the superlinear convergence rate differs from [Rod24]. Their approach
analyzed the Dennis-Moré ratio and measured “local” superlinear convergence using the dis-
tance ||Vf(x*)%(xt —x,)||. In contrast, our “global” result is based on the unified framework
in Proposition 3.1 and uses the function value gap as a measure of convergence.

Theorem 6.4. Suppose Assumptions 2.1, 2.2, and 2.3 hold and the iterates {x¢}i>0 are
generated by BFGS with step size satisfying the Armijo- Wolfe conditions in (5) and (6).
Recall the definition of Cy in (9), ¥(-) in (10), By := 7 By, By := V2f(x*)_%BOV2f(x*)_%,
and 01,89, 063,04 in (23) and (25). Then, for any xo € R? and any By € Si+7 the following
global superlinear result holds:

f(zy) — fay) 679 (Bo) + (86 + 95Co) ¥ (Bo) + (% log ?—f + %Co)“ t
Ay S , (26)
f(@o) = () t

where {52'}?:5 defined below are constants that only depend on line search parameters a and

B,

max{2 + %, 463}

) 09— 01 —log b2
EADY P R

2
, 07:=140406+05, 0g:=1+207+ 20, —1—0,

1
0g:=log ————
The above result shows a global superlinear convergence rate of the form O((%l)t), where
C" depends on the condition number k, the initial weighted distance Cj, and the initial

Hessian approximation matrix By. To simplify the expression, we report the above bound
for Bg = LI and By = ul.
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Corollary 6.5. Suppose Assumptions 2.1, 2.2, and 2.3 hold and the iterates {x}1>0 are
generated by the BFGS method with step size satisfying the Armijo- Wolfe conditions in (5)
and (6), and xg € R? as an arbitrary initial point. Then, given the result in Theorem 6./,
the following results hold:

o [f we set By = LI, then we have

(20) = fo.) _ (Srdn+ (i log § + G5 Coln )|
(:L'O) - f(x*) o t '

jf (27)

o If we set By = pl, then we have
39,
Flze) — f(z) . ((56+57+5800)dlog/-6+( T log &° o 4 3% Co)r ) @)

f(xo) — f(a) t

This result shows that BEGS with By = LI achieves a global superlinear rate of O((%)t),
while BFGS with the initialization By = pl converges at a global superlinear rate of
O((M)t) Hence, the superlinear result for By = ul outperforms the rate for
By = LI when Cylog k < K.

Remark 6.2. We chose By = LI and By = pl as two specific cases since they lead to
explicit upper bounds in terms of the dimension d and the condition number k in various
theorems, simplifying the interpretation of our results. In practice, however, we often set
By = cI, where ¢ = ﬁSTT%, with s = x9 — x1, y = Vf(xy) — Vf(x1), and x1,22 as two
randomly selected vectors. This choice ensures ¢ € [u, L], and in the following numerical
experiments, the performance of By = cl is similar to that of By = ul. The complexity of
BFGS with this initialization is reported in Appendix H.

7 Complexity Analysis

Discussions on the iteration complexity. Using the three established convergence
results in Theorems 4.1, 5.2 and 6.4, we can characterize the total number of iterations
required for the BFGS method with the Armijo-Wolfe line search to find a solution with
function suboptimality less than e. However, as discussed above, the choice of the initial
Hessian approximation By heavily influences the number of iterations required to observe
these rates. To simplify our discussion, we focus on two specific initializations: By = LI
and By = pul.

The case of By = LI: The overall iteration complexity of BFGS with By = LI is given by

log = 1

1
O | min /ilog ,(d+ Coh)k + log -
€ log( \/ +dn+C’on log )

12



The case of By = ul: The overall iteration complexity of BEFGS with By = ul is given by

1 1 log L
O [ min < dlog k + klog —, Cy(dlog k + k) + log —, 0g ¢

€ 1 1 1 1
¢ ¢ log <§+\/Z+ Co(dlog r+k) log E)

We remark that the comparison between these two complexity bounds depends on the
relative values of x, d, C, and €, and neither is uniformly better than the other. It is worth
noting that for BFGS with By = LI, we achieve a complexity that is consistently superior
to the O (/{ log %) complexity of gradient descent. Moreover, in scenarios where Cy = O(1)
and d < k, BFGS with By = ul could result in an iteration complexity of O (H + log %),
which is much more favorable than that of gradient descent. The proof of these complexity
bounds can be found in Appendix I.

Discussions on the line search complexity. We present the log bisection algorithm to
choose the step size 7; at iteration ¢ satisfying the Armijo-Wolfe conditions (5) and (6) in
Algorithm 1 in Appendix J. We define 1,,,;, and 7,4 as the lower and upper bounds of
the “slicing window” containing the trial step size 7, respectively. We start with the initial
trial step size 7y = 1 and keep enlarging or decreasing it depending on whether the Armijo
condition (5) or the curvature condition (6) is satisfied. Then, we dynamically update 7,
Nmaz and shrink the size of this “slicing window” (Mmin, maz ). We pick the trial step size n
as the geometric mean of 7,in and Ny, 1.e., logn = (10g Mmaz + 10g Mmas)/2, which is the
reason why we call this algorithm “log bisection”. Note that in each loop of Algorithm 1,
we query the function value and gradient at most once to check the Armijo-Wolfe conditions
at Lines 2 and 9. The next theorem characterizes the average number of function value and
gradient evaluations per iteration in Algorithm 1 after ¢ iterations, denoted by A;, which is
equivalent to the average number of loops per iterations.

Theorem 7.1. Suppose Assumptions 2.1, 2.2 and 2.3 hold. Let {x}1>0 be generated by
BFGS with step size satisfying the Armijo-Wolfe conditions in (5) and (6) and is chosen
by Algorithm 1. If we define o := (V(By) + ﬁ/ﬁ)C@, then for any initial point xo € RY
and initial Hessian approzimation BOGSjl_Jr, the average number of the function value and
gradient evaluations per iteration in Algorithm 1 after t iterations satisfies

1-— 2(1 —
Ay < 241og, (1—1—5 — i—k (ﬁ — (f) %)—i—Qlogz <log2 16(1—a)+log2(1+%)+

60 (By) + 120>
—).

The above result shows that when we run BFGS for N iterations, the total number of func-

tion and gradient evaluations is O (N + N log(1+ %)+ N log(1 + W)) Thus, the total

line search complexity can always be bounded by O(N log(¥(Bg)+0)) = O(N max{log d, log x,log Cy}).
Furthermore, notice that when N is sufficiently large such that we reach the superlinear
convergence stage, i.e., N = Q(¥(By) + o), the total line search complexity becomes O(N),

which means the average number of function and gradient evaluations per iteration is a con-

stant O(1). We report the line search complexity results of different By = LI and By = pl

in Appendix K.4.
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Figure 1: Convergence curves of BFGS with inexact line search of different By and gradeint
descent with backtracking line search.

8 Numerical Experiments

We conduct numerical experiments on a cubic objective function defined as

d—1
o A
fl@) =55 [ Do)z —vipw) = Bola | + S|, (29)
i=1
and g : R — R is defined as
1,13
=|w w| < A,
o) = 1 11" v (30)

Aw? — A?w| + 2A3  |w| > A,

where o, 8, A\, A € R are hyper-parameters and {v;}"_; are standard orthogonal unit vectors
in R, We focus on this objective function because it is used in [YOY07] to establish a tight
lower bound for second-order methods. We compare the convergence paths of BFGS with
an inexact line search step size 7 that satisfies the Armijo-Wolfe conditions (5) and (6) for
various initialization matrices By: specifically, By = LI, By = ul, By = I, and By = cl
where ¢ is defined in Remark 6.2. It is easily verified that ¢ € [, L]. We also compare the
performance of BFGS methods to the gradient descent (GD) method with backtracking line
search, using a = 0.1 in condition (5) and S = 0.9 in condition (6). Step size n; is chosen
at each iteration via log bisection in Algorithm 1. Empirical results are compared across
various dimensions d and condition numbers x, with the x-axis representing the number of

. . . . o fle)—flas)
iterations ¢ and the y-axis showing the ratio Floo)=F(@.)"

First, we observe that BFGS with By = LI initially converges faster than BFGS with
By = pl in most plots, aligning with our theoretical findings that the linear convergence
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rate of BFGS with By = LI surpasses that of By = pl in Corollary 4.2. In Corollary 4.2,
we show that BFGS with By = LI could achieve the linear rate of (1 — 1/k) from the
first iteration while BFGS with By = ul needs to run dlog s to reach the same linear rate.
Second, the transition to superlinear convergence for BFGS with By = ul typically occurs
around t ~ d, as predicted by our theoretical analysis. Although BFGS with By = LI
initially converges faster, its transition to superlinear convergence consistently occurs later
than for By = pl. Notably, for a fixed dimension d = 600, the transition to superlinear
convergence for By = LI occurs increasingly later as the problem condition number rises,
an effect not observed for By = pl. This phenomenon indicates that the superlinear rate
for By = LI is more sensitive to the condition number x, which corroborates our results in
Corollary 6.5. In Corollary 6.5, we present that BFGS with By = LI needs dk steps to reach
the superlinear convergence stage while this is improved to dlog x for BFGS with By = ul.
Moreover, the performance of BFGS with By = I and By = ¢l is similar to BFGS with
By = pl. Notice that the initializations of By = I and By = ¢l are two commonly-used
practical choices of the initial Hessian approximation matrix By.

9 Conclusions, Limitations, and Future Directions

In this paper, we analyzed the global non-asymptotic convergence rates of BFGS with
Armijo-Wolfe line search. We showed for an objective function that is p-strongly convex
with an L-Lipschitz gradient, BEGS achieves a global convergence rate of (1 —1/k)!, where
k = L/u. Additionally, assuming the Hessian is M-Lipschitz, we showed BFGS achieves
a linear convergence rate determined solely by the line search parameters, independent of
the condition number. Under similar assumptions, we also established a global superlinear
convergence rate. Given these bounds, we determined the overall iteration complexity of
BFGS with the Armijo-Wolfe line search and specified this complexity for initial Hessian
approximations By = LI and By = ul.

One limitation of this paper is that the analysis only applies to strongly convex functions.
Developing an analysis for the general convex setting is still unsolved. Another drawback
is that we focus solely on the BFGS method. Extending our theoretical results to the
entire convex Broyden’s class of quasi-Newton methods, including both BFGS and DFP, is
a natural next step.
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Appendix

A Some Results on the Connections between Different Hes-
sian Matrices

Lemma A.1. Suppose Assumptions 2.1, 2.2, and 2.3 hold, and recall the definitions of the
matrices Ji and Gy in (8), and the quantity Cy in (9). Then, the following statements hold:

(a) Suppose that f(xi1) < f(xy) for any t > 0, we have that

1

e V() = Jp = (1+ C)V2f (). (31)

(b) Suppose that f(xi11) < f(xy) for any t >0 and 7 € [0,1], we have that

1

3G V2 f(2.) 2 V2 (@ + 7 (21 — 20) 2 (L4 C)V2 f(x). (32)

(c) For any t > 0, we have that

1
1+ C;

V2 f(z) 2 V2 () 2 (1+ C) VA f(a). (33)

(d) For anyt > 0, we have that

1

= ctvzf(x*) =< Gy = (14 C)V2f (). (34)

(e) For anyt >0 and 7 € [0,1], we have that

1 -
T Cth < V2 (2 + 7(2e — 1)) = (14 C))Gy. (35)

(f) For anyt >0 and 7,7 € [0,1], suppose that f(xi+1) < f(x¢). Then, we have that

1
1+ 2C;

V2 f(my + Fs0) 2 V2 f (4 Fs0) 2 (14 2C) V2 f (g + 751). (36)
Proof. (a) Recall the definition of J; in (8). Using the triangle inequality, we have that

1
|W%@aaw=LAW%uQ—Wﬂa+ﬂuH—m»m

1
SAIWWWQ—Wﬂm+ﬂmH—%MW-
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Moreover, it follows from Assumption 2.3 that [|[V2f(z4) — V2 f(2: + 7(2i11 — 20)) || <
M|[(1 —7) (x4 — x¢) + T(2s — x41)|| for any 7 € [0,1]. Thus, we can further apply the
triangle inequality to obtain

1
V2 f(zs) — Je|| < /0 M||(1 = 7) (w4 — 2¢) + T(24 — Tpg1) ||dT
1 1
< Mar — 2. / (1= 7)dr + Ml|zess — 2. / rdr
0 0

M
= j(Hmt = Zul| + lTeg1 — 2]

Since f is strongly convex, by Assumption 2.1 and f(2:11) < f(z¢), we have §|x; —
z.]|? < f(x¢) — f(zs), which implies that ||z — 2. < \/2(f(z:) — f(x.))/p. Similarly,

since f(wiy1) < f(my), it also holds that [|xpr1 — 2] < 2(f(me41) — f(z4)) /1 <
V2(f(zt) — f(x.))/u. Hence, we obtain that

2%— % Te) — J\T
V£ (@) = Jill <~ /2T (@) = Fla). (37)

Moreover, notice that by Assumption 2.1, we also have J; = ul and V2f(z,) = pul.
Hence, (37) implies that

V2 f(s) — Jp < V2 f(2s) — T T =< %g\/%f(wt) — f(xs))Jy = CuJy,
ILLZ

Jo = V2 f(xe) 2 e = V2 f(x)| I = %\/Z(f(xt) — f@)) V2 f(2s) = CV2 f(z2).

where we used the definition of C; in (9). By rearranging the terms, we obtain (31).

Similar to the arguments in (a), for any 7 € [0, 1], we have that

V2 f (2 + 7 (i1 — 20)) — V2 ()|
< M||(1 = #) (@ — 22) + F(@e1 — 70|

< M((1 = A)lloe = @all + Florsr - 2.

< M (=207 - 1@+ 2 ) - 1e)

gMJ%U@»—ﬂm»

Moreover, notice that by Assumption 2.1, we also have V2f(z; + 7 (2401 — x¢)) = pul
and V2f(z,) = pl. The rest follows similarly as in the proof of (a) and we prove (32).

Similar to the arguments in (a), we have that

2 ~V?f(z Ty — T M x) — f(x4)).
[V2f () = V2 f ()] < M| NSﬂVW()ﬂQ)

Moreover, notice that by Assumption 2.1 we also have V2f(x;) = ul and V2 f(z,) =
pl. The rest follows similarly as in the proof of (a) and we prove (33).
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(d) Recall the definition of Gy in (8). Similar to the arguments in (a), we have that

1
1927 (22) — G| = H [ (9210 = 5o+ 7o~ 20) ar

1

< /0 IV (22) — V2 f (2 + 7o — ) dr

1 1
<M /0 I = 7)(@n — 2)lldr = My — 2. /0 (1 - 7)dr
M
= Tl — ) < fﬁ @),

Moreover, notice that by Assumption 2.1 we also have Gy = ul and V2f(x,) = ul.
The rest follows similarly as in the proof of (a) and we prove (34).

(e) Recall the definition of g; in (8). Similar to the arguments in (a), for any 7 € [0, 1],
we have that

HV2f(xt + 7:(1'* — a:t)) — GtH

= H/ol (V2f(xt + 7 (e — x1)) — V2 f (20 + (20 — fL"t))) dr

1
: / [V2f (20 + 7 (s —20) = V2f (20 + 72 —20)) || dr
0

1
< [ MIF o — i < M~ | < S VA~ T
0
Moreover, notice that by Assumption 2.1, we also have V2f(z; + 7(zs — 2¢)) = pul
and Gy > pl. The rest follows similarly as in the proof of (a) and we prove (35).

(f) Similar to the arguments in (a), for any 7,7 € [0, 1], we have that

HV2f(a:t + 7~'St) — V2f($t + %St)H
< M7 = 7llsell < Ml|sel] < M([|lzeg1 — @l + lwe — @)

< M (/260 - 1)+ 2 en) - f.)

< 2M¢ 2 (f(e0) - fla)

Moreover, notice that by Assumption 2.1, we also have V2f(z; + 7s;) = ul and
V2f(x; 4+ 7s;) = pl. The rest follows similarly as in the proof of (a) and we prove
(36).

O
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B Proof of Lemma 2.1

Recall that g = V f(x;). Given the condition in (5) and the fact that s; = nd;, we have

fl@ig) < f(ze) + ag/ st

Moreover, since B; is symmetric positive definite, we have —g, s; = ng, B Loy >0 (unless
g+ = 0 and we are at the optimal solution). This further leads to the first claurn, which is

f(xe) = f(2111)

>«
—gtTSt

Similarly, the above argument implies that ag,'s; < 0 and as a result f(x;41) < f(z¢) and
the last claim also follows.

To prove the second claim, we leverage the condition in (6). Specifically, if we subtract gtT dy
from both sides of that condition, we obtain that

(ge41 —g0) " de > (B —1)g dy

Next, using the fact that s; = nd;, by multiplying both sides by 7 and use the simplification
Yt = gr+1 — g¢ We obtain that

ytTSt > (B — 1)gtTSt = —QtTSt(l —f).

Again using the argument that —g,’ s; is positive (if we are not at the optimal solution), we
can divide both sides of the above inequality by —g, s;, leading to the second claim.

C Proof of Proposition 3.1

First, we note that g, §; = g, s; and ¢ 3; = y,' s;. Using the definition of p; in (16), we
have that

. tTSt 2
(@) = f(@e1) = s L 1G] (38)

Hence, using the definition of f; in (14) and the definition of 7, 7y in (16), it follows that

—9 3 @307 N8P @730 N5 9 s ZﬁtCOS2(ét)
196l NgelP18el® =g, 3¢ Ngell*18ell* 9,7 30 —g/ 3¢ iy

Furthermore, we have ||g¢||?> = ¢:(f(x:) — f(x+)) from the definition of ¢; in (16). Thus, the
equality in (38) can be rewritten as

cos2(6,)
my

f(x) = f(zt41) = DeGei (f(zt) — f(@4)).

By rearranging the term in the above equality, we obtain

Ccos (Gt)

Floren) = ) = (1= pdend =20 ) (£ () = f(32), (39)
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To prove the inequality in (15), note that for any ¢ > 1, we have

f (@) £ !L"z+1 (@) 77 (y_ .. cos?(6:)
f(xo) H) f(z) x*) g(l_ Pigiti— " )’

7

where the last equality is due to (39). Note that all the terms of the form 1— pl(jmz%(e) are

non-negative, for any ¢« > 0. Thus, by applying the inequality of arithmetic and geometric
means twice, we obtain

t—1 t—1 9,4 t
.. cos?( . .. cos“(0;
H <1 — Pigin; A ] ) [t Z < — Pigin; m( 2))]

=0 1=

0
-1 -\
1w~ _ .. cos? 0 . cos2(0;) ‘

= 1—= ) pigini——— - piQiniiA .
[ ' m

This completes the proof.

D Results from [JJM24]

In this section, we summarize some results that we use from [JJM24] to establish a lower
bound on Ht ! M and §;.

mg

Proposition D.1 ([JJM24, Proposition 2|). Let {B:}i>0 be the Hessian approximation
matrices generated by the BFGS update in (3). For a given weight matriz P € Sle, recall
the weighted vectors defined in (11) and the weighted matriz in (12). Then, we have

R R ~ 12 29
U(Biy1) < W (By) + ”AyTtU —1+lo %7 vVt >0,
Yp S my

where 1y is defined in (16) and cos(6;) is defined in (14). As a corollary, we have,

t—1
Zlog cos” )+ < Hyl” ) , vt > 1. (40)
0

i yz S

If we take exponentiation on both sides of the above inequality (40) in Proposition D.1,
we can obtain a lower bound for the product []Z; : COSm# with the sum S'_7 : ”yZ” and
i S Ui

\I/(Bo). This classical inequality describing the relationship between the ratio %(f)t)

the potential function ¥(.) plays a critical role in the following convergence analysis.

and

In the following two lemmas, we provide bounds on the quantities ¢; and ||||? /4, 9 respec-
tively by directly citing results from Lemma 4 and Lemma 5 in [JJM24] again. Notice that
both ¢; and ||9¢]%/5] 9 depend on different choices of the weight matrix P.
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Lemma D.2 ([JJM24, Lemma 4]). Recall the definition §; = % in (16). Suppose

Assumptions 2.1, 2.2, and 2.3 hold. Then we have the following results:

(a) If we choose P = LI, then ¢; > 2/k.
(b) If we choose P = V?f(x,), then G; > 2/(1 + Cy)?.

Lemma D.3 ([JIM24, Lemma 5]). Let {x:}4>0 be the iterates generated by the BFGS
algorithm with inexact line search satisfying (5) and (6). Suppose Assumptions 2.1, 2.2,
and 2.3 hold. Then we have the following results:

(a) If we choose P = LI, then % <1.
t

(b) If we choose P = N?f(x,), then % <1+

E Proofs in Section 4

E.1 Proof of Theorem 4.1

Recall that we choose P = LI throughout the proof. Note that given this weight matrix, it

~o112
can be easily verified that ”yT;” < 1 for any t > 0 by using Lemma D.3 (a). Hence, we use
St Yt

(40) in Proposition D.1 to obtain

t—1 2 é - t—1 o112 -
S log ) > y(,) + (1 - M) > —W(By),
i=0 m; i=0 Si Yi

which further implies that
= cos2(6;) 5
I | 22\ s o= Y(Bo)

Moreover, for the choice P = LI, it can be shown that ¢ = WJ;(%‘)) > 2 by using

- K
Lemma D.2 (a). From Lemma 2.1, we know p; > « and n; > 1 — (3, which lead to

t—1 P =1 =1 t—1 -1 0052(9-) 2a(1 — B) t (B

i1l {q 2/7 ~ ~ ~ 7 B —U(B
757 o’ = o[ Lo ] 1o [T =557 = < " > o
1= 1= 1= 1= 1=

Thus, it follows from Proposition 3.1 that

) — f(@.) T Didit A _ugy) 20(1 = B) '
mﬁ 1_<E)m—iCOS2(0i)) < <1—e t T) )

This completes the proof.
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E.2 Proof of Corollary 4.2

Notice that in the first case where By = LI, we have ¥(Bj) = 0 and thus it achieves the
best linear convergence results according to Theorem 4.1. On the other hand, for By = ul,
we have U(By) = U(£1) = d(% —1+1logk) < dlog k. We complete the proof by combining
these conditions with the inequality (17) in Theorem 4.1. Notice that e=* > e~1 > % for
z <1.

F Proofs in Section 5

F.1 Proof of Proposition 5.1

Recall that we choose the weight matrix as P = V?f(z,) throughout the proof. Similar to
the proof of Theorem 4.1, we start from the key inequality in (15), but we apply different

L(et) Specifically, by using Lemma D.3 (b), we have - ”yt” <14+

for any ¢t > 0. Hence, we use (40) in Proposition D.1 to obtain

bounds on the ¢; and

t—1 24 t—1 ) t—1
Zlog COSA('OZ) + < ||yZH > Z —\I/(BQ) o Ci7
i=0 mi i=0 Z Yi i=0
which further implies that
t—1 2/A ~
COSA (6:) > e—‘I’(BO)—ZZ;é Ci (41)
m;
=0

Moreover, since §; > ﬁg for any ¢ > 0 by using Lemma D.2 (b), we get

H l:I 1_|_C 2tHe—2C 2te -2 1C (42)
=0 =0

where we use the inequality 1 + x < e* for any x € R. From Lemma 2.1, we know p; > «
and n; > 1 — 5, which lead to

I:Iﬁlﬁz 2 Oét(l — 5)t (43)

Combining (41), (42), (43) and (15) from Proposition 3.1, we prove that

141
Flze) = f(2) T Pidii 3 ! _wBrsiio !
m s |- <E) Ty 0052(91)) < (1 —20(1 — B)e . > ‘

This completes the proof.
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F.2 Proof of Theorem 5.2

When we have ¢ > W(Bg)+3 Zf é C;, Proposition 5.1 implies the condition that % <
t
(1 — Le_ﬁ)) < (1 - &3_)) , which leads to the linear rate in (20). Hence, it is suf-

ficient to establish an upper bound on Z';f;(l) C;. Recall that C; = 2L\ /2(f(x;) — f(x4))
n2

defined in (9). We decompose the sum into two parts: EI‘I’O(BON—I C; and Y'_ rw(Bo) Ci-
For the first part, note that since f(x;4+1) < f(x;) by Lemma 2.1, we also have C;; <

for i > 0. Hence, we have ziZOBO] "¢y < Co[W(By)] < Co(¥(Bo) 4 1). Moreover, by
Theorem 4.1, when t > ¥(Bg) we have

fa) — fla) _wiew 20(1 - B) ! 20(1- )\ 20(1- B)\'
T <(1-e ) < () < (- 25E)
Hence, this further implies that

S ala y[fE) S 2009
Y G=0 Y TR <0 2 (1 - >

=[¥(Bo)] i=[¥(Bo)] i=[¥(Bo)]

i=1

where we used the fact that > "7, (1 —p)% = Y _» 1_pp+1_p < % —1 for any p € (0,1).
Hence, by combining both inequalities, we have

1 [W(Bo)]-1

! _ 3Cyk
Ci = ' Ci + Z C; < Co¥(By) + Oz(liiﬂ) (44)

t

@
Il
=)
~
Il
=)
<
|
—
S
~
[ou]]
S
N
=

Hence, this proves that (20) is satisfied when ¢t > W(By) + 3Co¥(By) + %.

F.3 Proof of Corollary 5.3

For By = LI, we have By = By = I and By = V2f(2.) 2 ByV2f(2.) "2 = LV2f(2,) "
Thus, it holds that ¥(By) = W(I) = 0. Moreover, by Assumptions 2.1 and 2.2, we have
11 2 V2 f(2s)” t< 1[ which implies that I < By < xI. Thus, we further have

U(By) < Tr(kl) — d — logDet(I) = dx — d < dk.

Combining these two results, the threshold for transition time can be bounded by W(By) +

3CoW(By) + %C@K/ < dk + ﬁC’om. Hence, by Theorem 5.2, the linear rate in (20)

is achieved when t > dx + o= )C(]I{

For By = pl, we have By = By = 11 and By = V2f(:n*)_%BoV2f(:E*)_% = puV2f(x,) "t
Thus, it holds that ¥(By) = \If(él) = %—d—l—dlog k < dlog k. Moreover, by Assumptions 2.1
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and 2.2, we have %I < By < I. This implies that

- . - 1
U(By) = Tr(By) — d — log Det(By) < Tr(I) —d — logDet(EI) = dlog k.
Combining these two results, the threshold for the transition tume can be bounded by

U(By) + 3Co¥(By) + ﬁCg/{ < (1+3Cy)dlogk + ﬁC’o/{. Hence, by Theorem 5.2,

the linear rate in (20) is satisfied when ¢ > (1 4+ 3Cj)dlog k + ﬁC’o/{.

G Intermediate Results and Proofs in Section 6

G.1 Intermediate Results

To present our result we first introduce the following function
w(z) :=x —log (z + 1), (45)

which is defined for z > —1. Further In the next result, we present some basic properties
of the function w(x) defined in (45).

Lemma G.1. Recall the definition of function w(x) in (45), we have that

(a) w(z) is increasing function for x > 0 and decreasing function for —1 < x < 0. More-
over, w(x) >0 for all z > —1.
5[72

(b) When x > 0, we have that w(z) > 5T

(c¢) When —1 < x <0, we have that w(z) > ﬁ—z

Proof. Notice that w'(z) = 177, we know that when x > 0, w'(z) > 0 and when —1 <z <0,
W'(z) < 0,w'(x) < 0. Therefore, w(z) is increasing function for > 0 and w(z) is decreasing

function for —1 < = < 0. Hence, w(z) > w(0) =0 for all z > —1.

w(x) > 2(f—j_x) is equivalent to wi(z) := 2(1 + x)w(z) — 22 > 0. Since wi(z) = 2z —

2log (1 +z) = 2w(z) > 0 for all # > —1, we know that wy(z) is increasing function for
x > —1 and hence, wy(z) > w1(0) =0 for x > 0.

w(zx) > ;_”F—Qm is equivalent to we(x) := (2+a)w(x)—2? > 0. Since wh(z) = 15 —log (1 +z)
0 for all x > —1, we know that wa(z) is decreasing function for x > —1 and hence, wa(z)
w2(0) =0 for x <0.

<
>

O

Proposition G.2. Let {B;}i>0 be the Hessian approzimation matrices generated by the
BFGS update in (3). Suppose Assumptions 2.1, 2.2, and 2.3 hold and f(x411) < f(x¢) for
any t > 0. Recall the definition of ¥(.) in (10) and C; in (9), we have that

t

|
—

t—1
wipi—1) S W(By)+2) Ci,  VE=1, (46)
i=0

~.
Il
o
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Proof. First, taking the trace and determinant on both sides of the equation (13) for any
weight matrix P € Si + and using results from Lemma 6.2 of [RN21c], we show that

X X Bo 2 <2 X o aTs
Te(Bry) = To(B) — Lo IE - pe(p,) — Det(5,) 21
5, By S¢ Yt 5, Btst

Taking the logarithm on both sides of the second equation, we obtain that

AT ~
Yt
log 5t
§;|—Bt8t

= log Det (B, 1) — log Det(B,).

Thus, we obtain that

U(Byy1) — U(By) = Tr(Byy1) — Tr(B,) + log Det(B;) — log Det(By 1)

_ gl [ Bese? ~log S gl [ Bese? o 3/ Ui o 13117
§;l—gt St Btst St Btst §;l—gt §;|—Btf§t ” ”2 '§t Btgt
which leads to
B3 50 Bidy A A Al [EA
- - —1=V(B;) = ¥(Bi1) + 57— —L+log———.
3] Bisy 15112 3 S0
Notice that By§, = —mge, 8] Bidy = —n2g, dy and ||3,]|2 = n2||d;||?, we have that
11gel* —§/ dy : : [As 13/
g—— —1=U(B;) — ¥(Biy1) + — 1+10gA rtt
AT B 50

Note that given the fact that — dt =0 B gr > 0, by using the Cauchy—Schwarz inequal-

o+ —afde

ity we obtain Hence, we can write

~o/di = T
—ald —a¥d . . 2 a2
P tog 2L 1 < W(By) — U(Biy) + L0y o 12
ke e 8¢ e 8¢ Ot

Now, by selecting the weight matrix as P = V2 f(x.,), many expressions get simplified and we

—aTd —ald ~ ~ _1 _1
have IIfiiIIzt = ”ZZ”; = pt, pr—log pi—1 = w(p;—1), and B; = By = V2f(x,) 2 B;V2f(x,.) "2
Hence, we have

2 ~
~ ~ 8
wlpr —1) < W(By) — w(Bry) + W2y o 157 (47)
St Yt St Yt

Notice that M < 1+ Cy for any t > 0 by using Lemma D.3 (b) with P = V2f(x,) and

log |L8th|/|t log ”st”S < log(l + C;) < Cy for any t > 0 by using (31) from Lemma A.1.
t t

Leveraging these conditions with the inequality (47), we obtain that

W(pt — 1) S \P(Bt) - \I’(Bt+1) + 2015
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Summing both sides of the above inequality from ¢ = 0 to ¢t — 1, we prove the conclusion

t—1 t—1 t—1
w(pi —1) S U(By) = W(B) +2> C; <U(By)+2» G,
i=0 i=0 i=0
where the last inequality holds since ¥(B;) > 0. O

Lemma G.3. Suppose Assumptions 2.1, 2.2, and 2.8 hold and C; < % and py > % at
iteration t, then we have

flze+di) < f(x). (48)

Proof. Since assumption 2.3 hold, using Lemma 1.2.4 in [Nes18], we have that

£) = F@) = Vi@ =) - 5l - ) V@) -2l < Gy -2l ey ert

Setting © = zy and y = x4 + dy, we have that
1 M
flae+dy) = fz) < g dy + §dtTV2f(l’t)dt + FHdt”?" (49)
Notice that using (33) from Lemma A.1 and the definition of p; in (21), we have that

dy||? 1+C
] _ gt

_gtT dy B Pt

dI V2 f(x)dy < (1+ COA] V2 f(x)dy = —g; dp(1+ C) (50)

Applying Assumption 2.1 with the definition d; = V2 f (a;*)%dt, we obtain that
—gld; 1

I —g/ dy ||d]?
de]l* < =5 llde P = —5———— T —
142 Pt

Id || =
e pe o —g/ldi

I -

~ ~ 1
Since —g,"d; < ||g|l||d¢|| by Cauchy-Schwarz inequality where §; = V2 f(x.)” 2 g, we obtain

7 ol sl 1
ldell = el s= < gtll—== = —lgtll,
(1Al —g/dy Pt
which leads to - -
—g dt 1 ~ —g dt 1 _
de]|* < —2—=—|ld¢|| < —5—— 1|3k |I- (51)
w2 Pt w2 Pt

By applying Taylor’s theorem with Lagrange remainder, there exists 7; € [0, 1] such that

f(we) = fas.) + Vf(m*)T(l’t —Zy) + %(xt - w*)Tvzf(mt + Tz — xp)) (T — 4)
(52)

= f(x:) + %(l’t — ) V2 f (w4 T — 20)) (1 — 22,

where we used the fact that V f(x,) = 0 in the last equality. Moreover, by the fundamental
theorem of calculus, we have

1
Vi(xy) = Vf(x,) = /0 V2f (2 + (2 — 20)) (34 — 2) dT = Gy(y — 2%),
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where we use the definition of Gy in (8). Since V f(z,) = 0 and we denote g; = V f (), this
further implies that

2y —xe = Gy {(V(x) = V() = G lgr. (53)
Combining (52) and (53) leads to

Pl — Fw) = 5] GV oo+ 7l — 20))Cr g (54

Based on (35) in Lemma A.1, we have V2 f(x; + 7 (24 — 2¢)) = ﬁGt, which implies that
- - _ 1
G2 f (s + 7o (e — 20))G7 L = e

Moreover, it follows from (34) in Lemma A.1 that Gy < (1 4+ Cy)V2f(x.), which implies
that

Gt

_1 1 _
Gy = 1JFCt(V2f(fC*)) g

Combining the above two conditions, we obtain that

GV f(m + Tl — )Gy ' = ﬁ(vzﬂx*))_ly

and hence
1

m”@t”z (55)

9 Gi V2 f(wy + Ty(we — 20)) Gy ge = 290 (V2 f(z.)) " g =

L
(1+Cy)
Combining (54) and (55) leads to
gkl < (1 + Co)v/2(f (x:) = f(a)- (56)

Combining (51) and (56) leads to

T
—qg, dy 1 .

b — |3l <

p2 P

Leveraging (49), (50) and (57) with the definition of C; in (9), we have that

_ T
1+ VAT ) 57

lde]|* <

1 M
flae+di) — flae) < g/ di + §dtTV2f($t)dt + FHdtH?’
1+C; M1 1

s+ g OOV ) 59
14+ C n Ci(14Cy)
2p 6p7

= —g/ di(—1+

= —g, di(—1 +

).

Notice that —g,'d; = —g/ B; Lg, > 0 and when C; < % and p; > %, we can verify that
1+Cy  Cy(1+Cy)

+ 2

2py 6p;

Therefore, (58) implies the conclusion that

flae+di) — f(ze) <O.

<1.
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G.2 Proof of Lemma 6.1

Since 1; = 1 satisfies Armijo-Wolfe conditions, we know that 7; is chosen to be one at
iteration ¢t and 411 = x; + d;. We have f(x41) < f(x¢) from Lemma 2.1. Using Taylor’s
expansion, we have that f(z,41) = f(zi) + g/ di + 3d] V*f(z; + F(2141 — 24))dy, where
7 € [0,1]. Hence, we have that

o fla) = fmen) | —gl di — 5d] VA (@ + Pz — x))d

MU A g dy

1AV (@t P — z))dr 1t G d/ V2 f(z.)dy _ L1+ C
2 —g/ dy h 2 —g; dy 200

=1

where we apply the (32) from Lemma A.1 since f(z;41) < f(x¢) and recall the definition of
pe in (21). Similarly, using (31) from Lemma A.1 since f(x¢11) < f(z¢), we have that
ﬁt o ytht o S;l—JtSt o d;l—Jtdt > 1 dtTVQf(x*)dt o 1

a _g;rst a _g;rst B —gtTdt T 14+ G —g;rdt (14 Cy)pt’

where we use the fact that y; = Jy.s; with J; defined in (8) and s; = 2441 —x; = d;. Therefore,
we prove the conclusions.

G.3 Proof of Lemma 6.2

Denote Zy+1 = x4 + dy and § = Ty — 2y = dy. Since §; < % and 6y > %, we have
f(@411) < f(xy) from Lemma G.3. Using Taylor’s expansion, we have that f(Z;y1) =
f(@) + g/ dy + 3d] V2 f (2 + 7(Zi41 — 21))dy, where 7 € [0,1]. Hence, we have

f@) = f(@rn) =9 de — 5] V2 f(ae + 7 (T41 — 24))dy

—gg—dt - —Q;th

LA VP f (a4 7 (B — @) o1 1+G df V2 f(x,)d, 1t
2 —g/ dy h 2 —g; dy 200

=1

where we apply the (32) from Lemma A.1 since f(Z41) < f(z¢). Therefore, when C; <
— _ 1 . fl@)=f(@rq1) 1+

0 < 2(1—a)—1and py > 09 > WeTTER we obtain that B > 1 50> a

and unit step size 1, = 1 satisfies the sufficient condition (5).

Similarly, using (31) from Lemma A.1 since f(Z¢+1) < f(x¢) and denote gx11 = V f(Zry1),
Ut = Jk+1 — gt, we have that

g;rgt _ g;rjtgt _ d;rjtdt N 1 dtTV2f(a:*)dt _ 1
-9/ 5%  —9/5% —g/d ~1+C  —gld, (1+Ci)pt
1 _ 1 . 7/ 5t 1
Therefore, when Cy < 61 < ﬁ_l and py < 03 = T We obtain that _;:gt > (E=enTT >

1— 3, which indicates that g, 1d; = g, 18 = ¥/ e+ 9/ 5t > —g/ 5:.(1—B)+ g/, 5 = Bg/ 5 =
Bg," d;. Hence, unit step size 7; = 1 satisfies the curvature condition (6). Therefore, we
prove that when C; < §; and o < p; < 3, step size 1, = 1 satisfies the Armijo-Wolfe
conditions (5) and (6).
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G.4 Proof of Lemma 6.3

Since in Theorem 4.1, we already prove that
fla) = fl@) _ (1 - uEw 20(1 - /3))?
f(@o) = f(zs) K

This implies that

Cy < <1 — e_\p(?o) 20(1-5) 5)>2 Co.

K

When t > ¥ (By), we obtain that

C, < <1_ M)ECO_
3K

When t > a(i’fﬁ) log %O’ we obtain that

2a(1 - )

3
< 01.
3K > Co <o

Ct§<1—

Therefore, the first claim in (24) follows.

Now define Iy = {t : py < 62} and Iy = {t : p; > 03}, we know that |I| = |I1| + |I2|.
Notice that for ¢t € I, we have that py — 1 < d2 — 1 < 0 since 3 < 1 and the function w(x)
defined in (45) is decreasing for —1 < z < 0 from (a) in Lemma G.1. Hence, we have that
Doier, Wpi — 1) = Y ey, w(d2 — 1) = w(d2 — 1)|11]. Similarly, we have that for t € I3, we
have that p; —1 > d3 —1 > 0 since d3 > 1 and the function w(x) is increasing for > 0 from
(a) in Lemma G.1. Hence, we have that » ;. w(p; —1) > > ey, w(d3 — 1) = w(d3 — 1)[12].
Using (46) from Proposition G.2, we have that Zf;(l)w(pi —1) < U(By) + 225;(1) C; <
W(By) + 235 C; for any t > 1. Therefore, we obtain that

+o0 +oo
U(Bo)+2) Ciz) wlpi—1) =Y wBi—1)+ Y wp—1)
i=0 i=0

i€l i€ls
> w(d2 — )|[I1| + w(d3 — 1)|I2] > min{w(d2 — 1),w(d3 — 1)}(|I1] + |I2]),

which leads to the result

U(By) + 235 G N Z*“
g < = g .
=10+ k] < min{w(dy — 1),w(d3 — 1)} o | WBo) 2 =0 <) (5)

where 84 := min{w@_i)’w(és_l)}. Using the upper bound of Y>> 7% C; < Co¥(By) + a?flcf';) in

(44), we prove the second claim in (25).
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G.5 Proof of Theorem 6.4

First, we prove that for any initial point o € R% and any initial Hessian approximation
matrix By € S¢ % 1, the following result holds:

s Yt > to,

flxe) — flzs) < [ 96to + 67U(By) + 65 S5 € t
fxo) — flzs) — ¢

where tg is defined in (24). We choose the weight matrix as P = V2 f(x,) throughout the
proof. Using results (41) and (42) from the proof of Proposition 5.1, we obtain that

= cos?(6;) 5 t—1 oo
H Y > oV (B0)=2i0 O > U(Bo)~3,"5 Ci (60)
i=0 i a a
t—1
[Ta = 2te2Tim0C > 2te 225 G (61)
i=0

Recall the definition of the set I = {t : p; ¢ [d2,03]}. Notice that for ¢ > ty, define
Is={t: t >to,pt ¢ [02,03]} and Iy = {t : t > tg, pt € [02,03]}. Then, we have that

t—1 to—1 to—1
Hﬁmz = H Pimi H piti = H Pimi H Dl H Divi. (62)
i=0 i=to i=0 icls icly
From Lemma 2.1, we know p; > « and ny > 1 — 8 for any t > 0, which lead to
to—1 )
H pini > alo(1— B)lo = ——¢ " 108 3at1-77 , (63)
_ L islleg o L —llog o=
l_I[pmz > l_I[a (1 2|I3| 219 > 2|Is\ 2a(1-8)
1€13 1el3 (64)
- 1 6—54 <x1/(1§0)+2 >y ci> 108 55113y
- 2|[3‘ M

where the second inequality holds since |I3| < |I], log Wl—ﬁ) > 0 and the last inequality
holds since (59) from the proof of Lemma 6.3 in Appendix G.4. Notice that when index
i € Iy, we have C; < §; from Lemma 6.3 and p; € [d2,03]. Applying Lemma 6.1 and
Lemma 6.2, we know that for ¢ € I, n; = 1 satisfies the Armijo-Wolfe conditions (5), (6)
and we have p; > 1 — lg—plc_i > 0 (since C; < 61 < %, pi > 02 > %) and 7; > from
(22). Hence, we obtain that

. 1+C’ 1 c; 1—|—C' 1
Hpn \M\H - (-|-CZ-) >2|I4| By H —)— (65)

1€y 1€1y Pi icl, Pi Pi

= (1+c Yoi
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where the last inequality holds since fcl > ¢~ Using the fact that logz > 1 — %, we
obtain

1
— _log p:
1+C; 1 1 —1 —1+C; g Pi
e | Ll S I
i€ly pi pi i€ly 1€1y
—-1-C; pi—1—log p;+2(1—p;)logp;—(1—-logp;)C;
_ H 6201*1 Cll —logp; H . i i 2pi—21—cil i)C4
€1y 1€1y (66)

w(p;—1)+2(1—p;) log p; —(1—log p;)C; —2(pj—1)log p;—(1—log p;)C;
— | | e 2p;,—1-C; 2 I | e 2p,—1-C;
i€ly 1€1y
2(p;—1)log pj+(1—log p;)C; 2(p;—1) log p;+(1—log §5)C;

— A —
— | | e 2p;—1-C; > I | e 255 —1-37 ,

i€ly 1€1y

where the second inequality holds since w(p; — 1) > 0 and the third inequality holds since
pi > 02 due to i € Iy and C; < §; due to i >ty and Lemma 6.3. Notice that 2p;, — 1 — C; >
252—1—51>0foralli€I4sinceCi§61§%andpizégzg.

When p; > 1, using log p; < p; — 1, (b) in Lemma G.1 and p; < 63 due to i € I, we have
that

(pi — 1)log p; < (pi — 1)* < 2pjw(p; — 1) < 263w(p; — 1). (67)

Similarly, when p; < 1, using logp; > 1 — %, (¢) in Lemma G.1 and p; > dy due to i € Iy,

we have )
i — 1 i+ 1 1
pi pi 02

Combining (66), (67) and (68), we obtain that

H(2—1+Ci)i

icls Pi Pi

2(p;—1)log p;+(1—log 69)C; 2(p;—1)logp; (1—log 62)C;

> ||e_ 265 - 1-6] — ||€ 265 1-0; He 265 1-0]

i€ly i€ly i€ly
2(pi—1)logp; _2(p;—1)logp; _ (1-logé2)C;

— | | e 202-1-061 | | e 200-1-061 | | e 253-1-61

1€1y,p;<1 i€ly,pi>1 i€ly

2(1+315)W(pr1) _ (1-logé9)Cy

_ _4d3w(p;—1)
> | | e 205 —1-07 | | Dog—1-07 51 | | e 2151

1€1y,p;<1 i€ly,pi>1 i€ly

(pi —1)logp; < —Jw(p; —1). (68)

2
25 464 1-logdy

— e 205-1-5; Dieny,pi<1WPi—) =g Yicry, o1 Y Pi— )~ a4y 2oier, Ci

1— log52
> 6—55 (Zzel4 0; <1 w(pi— )+ZZEI4 0i >1w(pi 1)) 265—1—01 21614

1—log &
— 6_55 2ierwlpi—1)= 265 —1— §1 2Zier, Ci
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2+-2
where 5 = max{g5— = 5 252 1 571 Combining (65) and (69), we obtain that

A Sier, Ci 1—|—C 1
Hpmi22|]4| €la H

i€ly i€ly pl
I 655 wipi—1)—(14+m28%2 y 5~
> e 08 Zuicry W\Pi 2oy 101 ) Zuicly Vi
—2nl (70)
1 §e ST 1)_ 20291 —logdy +o<>c
> 6_ 521-:0 w(pi— )_WZ
= oll4]
~ o 255 —51 —log & o
- 1 6—55<\11(Bo)+22;0 Ci)—g(srliljf SEvo;
= 9l14] ’

where the last inequality is due to (46) from Lemma G.1. Combining (62), (63), (64) and
(70), we obtain that

to—1

t—1
Hﬁinz - H pznz H pznz H pznz
=0

i€l i€ly (71)

> 289 —071 —log é.
> i (to 10g 51—y +(04 108 55—y +05) ¥ (Bo)+ (204 log 51—y +205+ 55 L5 2)z+°°c>
o .

Leveraging (60), (61), (71) with (15) from Proposition 3.1, we prove that

191 L
flae) — fla) oo cos2(0)\ "] e B B :
o)~ J@n) = 1—< Piliti— ) = ( JEDICE

i=0 i=0 =0

—5) —log § t
(1 t0 108 5r—gy +(1+04 log 535 +85)¥(Bo)+(3+264 log 55— yasg+ 28 PR 2)v o, >
— e t

)

S6to+67%(Bg)+dg Z+°° Cy t
f— 1 — e t

where the inequality is due to the fact that 1 — e™™ < z for any x € R and dg, d7,dg are
defined in Theorem 6.4. Hence, we prove that

R e e e ST

Using (44) from the proof of Theorem 5.2 in Appendix F.2, we have that

- t
< <56t0 + 670 (Bo) + 65 575 Ci)
t

<

= — 300/6
g i < CoV (B _.
iZOC < Co¥( 0)—|—a(1_5) (73)
Notice that from (24) in Lemma 6.3, we have that
_ 3K Co — 3K C’0
to = max{¥(Bp), — ' log =} < W(By) + —_log =2 74

Leveraging (72), (73) and (74), we prove the conclusion.
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G.6 Proof of Corollary 6.5

Using the fact that for By = LI, we have W( 70~) = 0 and U(By) < dk, and for the case
that By = ul, we have ¥(By) < dlog k, and ¥(By) < dlog k, we obtain the corresponding
superlinear results for these two conditions.

G.7 Specific Values of {§;}%_,

As we stated before, all the {§;}5_; are universal constants that only depend on line search
parameters o and 3. We can choose specific values of a and 3 to make definitions of {&;}%_;
more clear. If we pick o« = i and g = %, we have that

1
(51 = 6, (52 = g, (53 = 2, (54 = 118, (55 = 14, 66 = log8, (57 = 260, 58 = 524.

H Complexity of BFGS with the Initialization By, = c/

Recall that ¢ € [u, L] by our choice of ¢ in Remark 6.2. If we choose By = cI, then
U(By) = U(£]) = £d—d + dlog%. Moreover, we have U(By) = U(cV2f(z,)"!) =
cTr(V2f(x,)™!) — d — logDet(cV2f(x,)~!), which is determined by the Hessian matrix
V2f(z,)~1. In this case, one can use the upper bounds ¥(By) = d(£ — 1 + log £) and
U(By) = Tr(cV2f(w.) ") — d — log Det(cV2f(x,) ") < d(£ — 1+ logL) to simplify the
expressions.

Applying these values of W(By) and ¥(By) to our linear convergence result in Theorem 4.1

and the superlinear convergence result in Theorem 6.4, we can obtain the following conver-
gence guarantees for By = cl:

¢

o For ¢ >d(f — 1+log£), we have f2a=fred < (1 - 2200,

e For t = Q(d(ﬁ —1+1logL) + Cod(£ — 1 +logL) + Cok), we have % <

(O(d(ﬁ—l-l-log %)—l—coctl(%—l—l—log %)-l—Con))t'
Moreover, we can derive similar iteration complexity bounds following the same arguments
as in Section I. We also include the performance of BEFGS with By = ¢/ in our numerical
experiments as presented in Figure 1. We observe that the performance of BFGS with
By = ¢l is very similar to the convergence curve of BFGS with By = p/ in our numerical
experiments.

I Proof of Iteration Complexity

When By = LI, if we regard the line search parameters o and 3 as absolute constants, the
first result established in Corollary 4.2 leads to a global complexity of O(k log %), which is
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on par with gradient descent. Moreover, the first result in Corollary 5.3 implies a complexity
of O ((d + Cp)k + log %), where the first term represents the number of iterations required
to attain the linear rate in (20), and the second term represents the additional number of
iterations needed to achieve the desired accuracy e from the condition number-independent
linear rate. For the analysis of the superlinear convergence rate, we denote that Q7 =
dr + Cpk. From the first result in Corollary 6.5, we have that

o)~ f) 9
o) = fay) =3

Let T, be the number such that the inequality (QTL)t < € above becomes equality. we have

1 T, T,
log — = Ty log =% < Tu(=* — 1),
og 8 < (QL )
QL—I—\/Q%—I—4QLlog%
T, > .

2

Hence, we have that

1
1 T, Qr + Q%+4QLlog€ 1 1 logl
log = = T, log == > T, 1 v >Tolog | = + 1/~ < |
8 € 8 Qr — 8 20, B 8 2 + 4 + Qy,

t> .
log (%—I— %+QiLlog%)
Therefore, the iteration complexity for the case of By = LI is
1 log %

€

1
(d+ Coy)k + log —,
¢ log (% + \/% + dn—l—lCon log %)

Similarly, in this case of By = ul, the second result in Corollary 4.2 establishes a global
complexity of O (d log k + klog %), where the first term represents the number of iterations
before the linear convergence rate in (19) begins, and the second term arises from the linear
rate itself. Additionally, following the same argument, the second result in Corollary 5.3
indicates a complexity of O(Cydlog k + Cyk + log %) Here, the first term accounts for the
wait time until the convergence rate takes effect, and the second term is associated with

O | min < klog
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the condition number-independent linear rate. For the superlinear convergence rate, when
By = pl, to reach the accuracy of €, we need the number of iterations ¢ to be at least

where Q, = Cydlog k + Cyr. The proof is the same as the proof for the case of By = LI.
Therefore, the iteration complexity for the case of By = pl is

log %

1 1
O | min dlog/{—l—ﬁlogz,co(dlog/f—l—ﬁ)+logz, . - - -
log (5 +\/Z+ Co(dlog k+k) log E)

J Log Bisection Algorithm for Weak Wolfe Conditions

Algorithm 1 Log Bisection Algorithm for Weak Wolfe Conditions

Require: Initial step size n(¥) = 1, nggn =0, nﬁSZM = +00

1: fort=0,1,2,... do

2. if flzy +10Ddy) > f(x) + anDV f(x) T ds then
3 Set nﬁ,ﬁ;) = n(i) and ng;l) = 5;)m

4 if n'”) =0 then

5 n(i—i—l) _ (%)2”1—1

6: else

P = LS

8 end if

9: else if Vf(x;+n®d)"dy < BV f(x¢)" d; then
10: Set 77%?:%) = 771(’;?[1(2 and "77(721:;11) = 77()

11: if 777(7Z1)a:c = 400 then

19: T](H_l) _ 22i+1,1

13: else

o = B

15: end if

16:  else

17: Return n?

18:  end if

19: end for
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K Results and Discussion on the Bisection Scheme for Line
Search in Section 7

K.1 Proof of Lemma K.1

First, we present major results concerning the complexity of the bisection method, which
specifies a range of values that meet the conditions in (5) and (6).

Lemma K.1. Suppose that Assumptions 2.1, 2.2 and 2.3 hold. Recall the definition of p;
in (21) and Cy in (9). At iteration t, there is unique 1, > 0 such that the sufficient decrease
condition (5) is equity for n,, i.e.,

Fae+medy) = f2) +an V() dy. (75)

Then, n; satisfies the sufficient decrease condition (5) if and only if ny < n,.. We also have

that
21 — @)

1+ C;

Similarly, there is also unique n; > 0 such that the curvature condition (6) is equity for ny,
1.€.,

pr < mp < 2(1 = a)(1 4 C)py. (76)

V f (@ +mde) T dy = BV f (@) dy. (77)
Then, m; satisfies the curvature condition (6) if and only if n; > n;. Moreover, we have that

sy f-a > 1. (78)

m = (= B)(1+2C)

Proof. Notice that Assumption 2.1 indicates that the objective function f(x) is strongly
convex. Consider function hy(n) = f(2z,+nd;)—anV f(x;) " d;. We observe that this function
h1(n) is strongly convex and hy(0) = f(x¢), h}(0) < 0. Hence, there is unique 7, > 0 such
that hi(n,) = f(x¢) and ne <, if and only if f(zy + medy) < f(@) + aneV f (2) " dy.
Denote that Zyy1 = 2 + n.d;. We know that f(Zi1) — f(x¢) = ang, ds. Since f(Zip1) —
f(@) = neg) di + 302d] V2 f (2 + 7(Z41 — 21))dy for 7 € (0,1), we have that

1
gl dy + Gnpdy VP (we+ (T — @0))dy = omng dy,

—gtTdt
dtTVQf(a:t + T(Li'H_l — Z’t))dt

=21 — )
which leads to

—ald
+ dy
df V2 f (@ + 7(Tr1 — 20))dy

—g; dy

=2 IECITERER

<201 -a)(1+Ch)

=201 —a)(1 + Cp)—Z=L = 2(1 — ) (1 + Cy)py.
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_ —g; dy 20—a) —g/d _2(1-0o)
nr=2(1 - a)—==; — > o = Pt-
d, V2f(ze + 7(Teg1 — x))dy 1+ Cy d) V2 f(xy)dy 1+Cy
where we use the (32) from Lemma A.1 and the fact that f(Zi41) = f(x)+ameg) di < f(xy).
Hence, we prove the results in (76).

Similarly, consider function hy(n) = Vf (2, 4+ ndy) " d;. We observe that this function hs(n)
is strictly increasing function for n > 0 and he(0) = V f (:Et)Tdt < BVf (:Et)Tdt, ho(Mezact) =
Vf(z + nemctdt)Tdt =0 > BVf(xt)Tdt where Nezaer 1= argmin, o f(z; + nd;) is the
exact line search step size satisfying V f(x; +776mctdt)Tdt = 0. Hence, there is unique
M € (0, Negact) such that ho(m) = BV f(x) " dy and 1 >y if and only if V f (2, + nedy) " dy >
BY f(x) " d.

Notice that
(e +medy) = f(0) + o,V f(w0) " d.
Using mean value theorem, we know there exists 7 € (0,7,) such that
flae +nedy) = f o) + eV f e+ 7dy) T dy.

The above two equities indicates that

V(e +idy) " dy = oV fay) dy.
Recall that

V f (@ +mde) T dy = BV f () " dy.
Combing the above two equities, we obtain that

(Vf (e +0di) = V f (@ +mdy) T dy = =V f (@) di(8 — ).
Using mean value theorem again, we know there exists 77 € (;,7) such that
(Vf (e +7ids) =V f (2 + mds)) " dy = (77— m)dy V2 f (i + 7ids)d.

Leveraging the above two equities, we obtain that

—V f(x:) " dy
df V2 f(xy + fdy)dy

n—m=(8-a)
Notice that 7 < n,, we have that

_ ~V () d,
ez m= (8 -a) df V2 f(zy + 7idy)dy

Recall the definition of 7, in (77), we have that

(Vf (e +mde) =V f(2)  de = —(1— B)V f () dr.
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Notice that there exists 7 € (0,7;), such that
(Vf (e +mdi) =V f (1)) de = md) V2 f (g + iy )dy.
Combing the above two equities, we obtain that

_ (- BV f(r) ' dy

. 80
dtTWf(:nt + 7dy)dy (80)
Leveraging (79) and (80), we have that
_ _ T2 .

My emm g, (B O‘)dfrvzf(xt*‘i]dt)dt‘

m m (1= B)d, V2 f (¢ + 7dy)ds
Recall that z;11 = x4 + n.dy and notice that n < n,, n < M- We have that xt + ndy =
2t + 7(Tpp1 — x¢) and xy + ndy = x4 + T(Tpp1 — x¢) with 7 = " € (0,1) and 7 = -L € (0,1).

Since f(Zi1) = f(ze+nedy) = flz)+an.Vf(z)  dy < f(mt), applylng (36) in Lemma A1,
we prove the conclusion that

oy (B ) V(@ + id)dy

mo (1= B)d] V2f (x4 + 7jds)dy
L, (B=a)d! VP f (@ 4 F(Er41 — 24))dy B—a
N BV (ot H @ —e)d — A=A+ 20

K.2 Bound on the Number of Inner Loops

Proposition K.2. Suppose that Assumptions 2.1, 2.2 and 2.3 hold. Consider the BFGS
method with inexact line search defined in (5) and (6) and we choose the step size 1, ac-
cording to Algorithm 1. At iteration t, denote Ay as the number of loops in Algorithm 1 to
terminate and return the ny satisfying the Wolfe conditions (5) and (6). Then A is finite
and upper bounded by

1-p01+ 2@))
poe ) (81)
+ 2log, <1 +logy (2(1 — @)(1 4 Cy)) + max{log, py, log, E}>

At <2+ log, <1+

Proof. At the first iteration, if n(®) = 1 satisfies the weak Wolfe conditions (5) and (6),
the algorithm terminates and returns the unit step size 7, = 1. In this case, we have that
A= 1.

Suppose that at the first iteration, n(®) = 1 doesn’t satisfy the sufficient decrease condition

(5) but satisfies the curvature condition (6), we have that ?77(711)1:(; = +o0, nﬁ,lbzn = 1 and

17(1) = 2. Assume that in the Algorithm 1, ngfb)am is never set to a finite value and the
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algorithm never returns. This means that the condition in line 2 is never satisfied, and as a
result, we keep repeating steps in line 12. Thus, n(¥ = 22'~! and since the condition in line
2 is never satisfied, we always have that f(z, +n"d;) < f(x;) + an®V f(2;)"d;. Notice
that lim;_,ee ¥ — 400 and Vf(xzs)"dy < 0. We obtain that lim;_,. f(x; + n(i)dt) — —00,
which is a contradiction since f is strongly convex.

Hence, at some point, either the algorithm finds an admissible step size and returns, or
77,(72” must become finite. Suppose that this happens at iteration K7 > 1 of the loop in
Algorithm 1. Then, we know that K1) = 22"1-1  Tp the first case that the algorithm
finds an admissible step size and returns 71, n’! satisfies the Armijo-Wolfe conditions and
therefore n1 < n,.. Using the upper bound result in (76) from Lemma K.1, we obtain that

pED) = 92M1-1 <y < 2(1 — a)(1 + Cy)pt, which leads to

N = K1 < logy (1+1ogy (21— a)(1+ Ci)p) ). (82)
In the second case that U%)aw becomes finite but the algorithm does not terminate, we have
that n(K1=1) satisfies the sufficient condition (5) and n(51=1 < 5. Similarly, this implies
that

K1 <1+ log, (1 +log, (21— a)(1 + Ct)pt)). (83)

Then, we further go through the log bisection process. Notice that for any iteration ¢ > K7,
(4) (4)

the sequence 7qz is finite and non-increasing and the sequence 7, .,
The log bisection process indicates that

> 1 and non-decreasing.

(1) (0

Thmazx Thmax .
10g2 W = 5 10g2 n(z—,)', Vi > Kl. (84)

The Algorithm 1 implies that for any ¢ > K7, we have that

Fle +nSade) > flae) +anid V f(z) T dy, V(e + nf,i)mdt)Tdt < BV f(ze) " dy

Hence, we know that for any i > K, nﬁ,?ax > n, and nﬁfb)m < n; where n,.,n; are defined in
(75), (77) from Lemma K.1. Therefore, using result (78) from Lemma K.1, we have that for

any j > 1,

ngr{lem—w) My
min
Notice that (84) implies that
(K1+7) 1 (K1+1)
max max
logs ~Tertyy = 271 1982 gy (86)
min min
n(K1+1) ( 1+J)
which leads to 0 = lim;_, 4 23 =1 10gy o = lim;_, 4o logy 12 (K Ly > log2 > (0. This

is a contradiction. Hence, Algorithm 1 "must terminate after finite number of loops. Now
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suppose that Algorithm 1 terminates after K + I'y iterations, (85) and (86) indicate that
when I'y > 1, we have

1 e s My B-a
Sr log: G — log, S > logy 1 > log, (1+ I 2Ct)) (87)
where the last inequality holds since (78) in Lemma K.1. Notice that n,(,@[,{lffl) —922%1-1 and
775”1:1 = 22"77'=1 Hence, we obtain that
777(71121;1) Ki—1
logy —gery =271 < 1+logy (2(1 — a)(1 4 Cy)py). (88)

min

Combing (87), (88) and using logz > 1 — %, we have that

b —«
- _
Iy <1+ log, <1+log2( (1—a){A+Ci)pr) ) —log, log, <1 Taoaa —l-QCt))
b —a«a
- _
<1+ log, (1 +1logy (2(1 = a)(1 + Cy)py logy log <1 * (1-801+ 2Ct)> 89)
1

L+ = B)(1'+2—ct)
1-p)(1 +2ct))
f— ’

) -

) -
§1+log2<1+log2( (1—a)(1+C pt> log, (1—

)

=1+ log, <1+log2( (I —a)(1+4+Cypy +log2<

Leveraging (83) and (89), we prove that
A=K +T'

(1-p)(1+2C) (90)

68—« >
Similarly, suppose that at the first iteration, (%) = 1 satisfies the sufficient decrease condi-
et~
and nM) = % Assume that in the Algorithm 1, nﬁfb)m is never set to a positive value and the
algorithm never returns. This means that the condition in line 2 is always satisfied, and as
a result, we keep repeating steps in line 5. Thus, (¥ = (%)21_1 and since the condition in
line 2 is always satisfied, we have that f(z; +79d;) > f(x;) + an®V f(2;)"d;. Therefore,
we know that 7(® > 1, where 7, > 0 is defined in (75) from Lemma K.1. Notice that
n® > n. > 0 for any i and lim;_,o 7 = 0, this leads to a contradiction.

<2+ 2log, (1+logy (21— a)(1+ Copr) ) +log, (1+

tion (5) but doesn’t satisfy the curvature condition (6), we have that n,

Hence, at some point either the algorithm returns a step size satisfying the weak Wolfe
(4)

conditions or 7, ;. must become positive. Suppose that this happens at iteration Ky > 1 of

the loop in Algorithm 1. Then, we know that n(,2) = (%)21(2_1.

In the first case that the algorithm finds an admissible step size and returns n%2, 72

satisfies the Armijo-Wolfe conditions and therefore n’2 < 7,. Using the upper bound result
K.

in (76) from Lemma K.1, we obtain that n52) = 2272~1 <y < 2(1 — a)(1 + C})p;, which

leads to
A = Ko < log, (1 +log, (2(1— a)(1+ Ct)pt)). (91)
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In the second case that 777(7?”1 becomes positive but the algorithm does not terminate, we have
that n%2=1) doesn’t satisfy the sufficient condition (5) and pE2—1 > 777, Using the lower
bound result in (76) from Lemma K.1, we obtain that n(52—1) = (%)QK2 1>y, > 2-a)

1+C4 pt’
which leads to

+ Cy
Ky <1+ log <1+log 7) 92
Then, we further go through the log bisection process. Using the same techniques, we can
assume that Algorithm 1 terminates after Ky + I'y iterations, where I'y > 1 satisfies that

(K2+1) (K2+4T2)
1 Nmax Thmazx Tr 5 -
- > -
5T 1 log, oD = logy (RatT2) = log, 771 > log, (1 + 13+ 2Ct)) (93)

where the last inequality holds since (78) in Lemma K.1. Notice that 77,(,1[,{1?1) = (%)21@71_1

and nf2 = (%)21{2_1. Hence, we obtain that

min

(K2+1)
_ 1+ C
mazx  oKo—1
10g2 m =272 < 1+ 10g2 m (94)

min
Combing (93), (94) and using logz > 1 — 1, we have that

1+Ct

B —a )

1—B)(1+2Cy)
8-«

P log, log ( 1-B)1+ 2ot))

=)
1 + Ct ; ( 1 (95)
T aj) T

'y <1+ logy (1 + log, 2 log, log, (1 + (

<1+4logy (1 +log2

B—a
Pt L+ a0

o )

1+Ct

<1+ log, (1 + logg —— 2

Leveraging (92) and (95), we prove that

= Ko +17

1+C, (1—B)(1+2C) (96)
2(1—a)pt)+log2 <1+ B —a >
1

Notice that o < 5 and thus 2(11 5 < 2(1 — ), combining (82), (90), (91) and (96), we
prove the final conclusion

<2+ 2log, <1 + log,

(1-p8)(1+ 2Ct)>
b—a

1
+ 2logs (14 log, (2(1 — a)(1 + C)) + max{log, pr. log E}>'

A < 2+ log, (1+
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K.3 Proof of Theorem 7.1

Using result from Proposition K.2, we have that

1« (1= B)(1 +2Cy)
At_‘ZAZ<2+§Zk’g2<1+ s )
i=0 i=0 (97)
t—1
+ - ) logy (1 +logy (2(1 — a)(1 + C;)) + max{log, p;, log, })
=0
Using Jensen’s inequality, we have that
t—1 t—1
1 (1—pB)(1 +2C) 1-8  20—-p5)>ioCi
=S log, (1 ) < log, (1 =02 (08
t;ng 5 <log (1+ =0+ 50—y (98)
18 1
7 Z log, (1 +log, (2(1 — a)(1 + C;)) + max{log, p;, log, p_}>
=0 7
= 1 t—1 1
< log, (1 +logy 2(1 — @) Z log, (1 4+ C5) Zmax{logz pi,logy — p }) (99)
=0
Yo Ciy 1 — 1
< log, (1 +logy 2(1 — @) + log, (1 + Z—t Z max{log, p;,logy — o })
=0
We also have that
= = = 1
- Z max{log, pi, log2 } =7 Z logy pi + e Z logy Py
i=0 i=0,p;>1 1=0,0<p; <1
t—1 t—1 t—1 t—1
1 1 1 1 1 1
=2 > logpits Y lompity Y logy— PR > log o, (100)
i=0,p;>2 i=0,1<p; <2 i=0,5<p;<1 i=0,p;< 3
= = 1
§2+;'Z 10%202‘4‘; Z 10g2—i,
i=0,p;>2 i=0,p;<1

where the inequality is due to logy p; < 1 for p; < 2 and 10g2

definition of w and (b) in Lemma G.1, we obtain that

<1 for p; > 2 Using the

t—1 t—1 t—1
1 log, e log, e
7> lompi=—2 > logpi=—" > (ni—1-wp—1)
i=0,p;>2 i=0,p;>2 i=0,p;>2
log, € = 2p;
<=2 Y (w1 —w(p - 1) (101)
i—O,pi>2 pi
t—1
l 1 31
1089 € Z pi 1 + wipi —1) < g Z w(p; —1).
i=0p>2 P i=0,p;>2



Similarly, using (c) in Lemma G.1, we obtain that

R 1 logsye = 1 logsye =
= Y dogg—=—2 Y log—=—2 > (wpi—1)+1-p)
t . 1 pl t . 1 pl t - 1
2:07Pz§§ Z:07PZS§ 2:07Pz§§
t—1
log, e 1+ p;
< t2 Y (wlpi— 1)+ 1_—;00(/% —1)) (102)
i=0,pi<% '
t—1 -1
log, e 2 4log, e
=LY e ) <R Y i)
i=0,0;< 5 ' i=0,p; <%

Combining (100), (101) and (102), we prove that

= 1 = = 1
i Z max{logy p;,logy —} <2+ n Z logy pi + n Z logy —
i=0 Pi i=0,p:>2 i0p<t P (103
4log, e <= 6 —
) .
<2+ fzgw(m -1)<2+ ;(‘I’(Bo) +2Z;Ci)-
1= 1=

where we use the fact that w(p; —1) > 0 for any ¢ > 0 and the last inequality is due to (46)
in Proposition G.2. Leveraging (97), (98), (99) and (103), we have that

t—1 v,
Ay <2+ logy <1_|_ ;:i 1 2(51_—5)21-:150(72)

t—1

o, .
+ 2log, (3 +1logy 2(1 — a) + logy (1 + Z’%) + g(\IJ(BO) +2)° C’Z-)>
i=0

1-8  2(1-8) 35 Ci

§2+log2<1+5_a+ e )

+Z'§;éci
t

6W(By) + 12317} CZ-)

+ 2log, (log2 16(1 — ) + log, (1 .

)+
We prove the final conclusion using (44) from the proof of Theorem 5.2 in Appendix F.2,

ie.,
t—1

— 300/6
; Cz < CO\I’(BO) + m

K.4 Corollaries of Theorem 7.1 for By = LI and By = ul

Corollary K.3 (By = LI). Suppose that Assumptions 2.1, 2.2 and 2.3 hold. Let {x¢}i>0
be the iterates generated by the BFGS method, where the step size satisfies the Armijo-
Wolfe conditions in (5) and (6). For any initial point xo € R% and the initial Hessian
approximation matriz By = LI, the average complexity of line search Algorithm 1 T}, is
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upper bounded by

1-8 2(1-8) 3Cok )
B-a ' B-a al-pl

3Cyk Gk + 2005
all —p)t * t )

Ay <2+ log, <1+

+2log, (1og2 16(1 — ) +log, (1 +

Moreover, when t > 6dk + ﬁ(?oﬁ, we have that

Ay <2+ 1logy (1+ + 21ogy (5 + logy 2(1 — a)). (104)

3(1—-79)
)

1

Proof. Since By = LI, we have By = %Bo = I and By = V2f(a:*)_%B0V2f(x*)_§ =
LV2f(x*)_1. Using results in the proof of Corollary 5.3, we have

\I’(Bo) = 0, \I’(Bo) < dk.
Combining these two results with the result in Theorem 7.1, we prove the conclusion. [

Corollary K.4 (By = pl). Let {z:}1>0 be the iterates generated by the BFGS method with
inexact line search (5), (6) and suppose that Assumptions 2.1, 2.2 and 2.3 hold. For any
initial point xo € R and the initial Hessian approzimation matriz By = ul, the average
complexity of line search Algorithm 1 Ty, is upper bounded by

1 — 2 Codlog/€+a
At§2+log2(1+ =) = m)

08—« 0 —« t
Codlog ks + 3% 6(1 4 2Cp)d log ks + 35Cx
+210g2(1og216(1—a)+10g2(1+ . oAy - u ’3)).
Moreover, when t > 6(1 4+ 2Cq)dlog k + 3(61005) we have that
A <241 31— F)
¢ < 2+1logy (1+ W) + 21ogy (5 + logy 2(1 — a)). (105)

Proof. Since By = ul, we have By = %Bo = I and By = V2f(x*)_%B0V2f(a;*)_% =
uV=2f (a;*)_l. Using results in the proof of Corollary 4.2, we have
U (By) < dlog k, W(By) < dlog k.

Combining these two results with (26) in Theorem 6.4, we prove the conclusion. O
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